
 Advanced search

Linux Journal Issue #108/April 2003

Features

Control Everything from One Place with Synergy by Chris
Schoeneman

Run the pointer off the edge of the screen...onto a whole
different computer? Forget the KVM switch, and use Synergy to
interact with all your systems at once.

Scanning with SANE and Other Tools by Michael J. Hammel
Here's the software and configuration to make scanning under
Linux work.

Linux for a Small Business by Gary Maxwell
Can you exchange files with customers and keep track of
business books with 100% free software? Small-business owner
Gary Maxwell says yes.

The Grand Unified Desktop by Marco Fioretti
Applications for a variety of toolkits are coming together in a
free best-of-breed desktop. To work together seamlessly,
though, they need to follow important new standards.

Indepth

Fixing Photo Contrast with The GIMP by Eric Jeschke
If the sky is great while the ground is black, or the ground is
right but the sky is washed out, use The GIMP to make the whole
photo look properly exposed.

Programming under GNUstep—An Introduction by Ludovic Marcotte
Borrow code written for Mac OS X and develop your own
applications in Objective-C.

The GNOME 2 Desktop Environment by Russell Dyer

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/108/6393.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6560.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6469.html

GNOME 2 offers better-looking fonts and full-keyboard
navigation.

Hacking Red Hat Kickstart by Brett Schwarz
Most of the savings from Linux desktops come from reduced
administration costs—like rolling a custom RPM-based load that
installs itself.

Embedded

Driving Me Nuts The USB Serial Driver Layer, Part II by Greg Kroah-
Hartman

Toolbox

Kernel Korner The Linux Kernel Cryptographic API by James Morris
At the Forge Content Management by Reuven M. Lerner
Cooking with Linux Sometimes, You Have to Do It Yourself by
Marcel Gagné
Paranoid Penguin rsync, Part II by Mick Bauer

Columns

Linux for Suits Subcontinental Smackdown by Doc Searls
EOF Linux Distributions Agree on Standards by Scott McNeil

Reviews

Kylix 3.0 Enterprise (with C++) by Dragan Stancevic
Hacker's Delight by Michael Baxter

Departments

Letters
upFRONT
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6473.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6573.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6451.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6563.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6508.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6554.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6592.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6478.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6527.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6555.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6596.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6594.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6593.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6595.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Control Everything from One Place with Synergy

Chris Schoeneman

Issue #108, April 2003

Connect machines to each other and themselves using software instead of KM
switchboxes.

What is synergy? The dictionary defines it as an “advantageous conjunction of
distinct elements”. The Synergy utility achieves this conjunction by
transparently sharing a single keyboard and mouse between two or more
computers using a TCP/IP network. Synergy also shares selected text and
clipboard selections with full ICCCM (Inter-Client Communication Conventions
Manual) and Unicode support. It automatically translates linefeeds between
UNIX and Windows formats, enabling cut and paste across systems as easily as
within a single system. In addition, it forces screensavers to activate and
deactivate in concert. In short, each computer uses its own display(s), and you
simply roll the mouse off the edge of one display to jump to another. So, it's
almost like having one big desktop spread across multiple computers.

Synergy provides a software replacement for keyboard/mouse (KM)
switchboxes. It currently runs on Linux and Windows and has preliminary
support for Solaris; any combination of these platforms works. This article
describes how to install and configure Synergy between two (or more) Linux
boxes. Configuration usually takes only a few minutes.

Building and Installing

First, download the latest stable version of Synergy from SourceForge
(sourceforge.net/projects/synergy2). Then follow the usual steps:

tar xzf synergy-X.Y.Z.tar.gz
cd synergy-
./configure
make
su -c 'make install'

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://sourceforge.net/projects/synergy2

where X.Y.Z is the version number. You can install a prebuilt RPM instead,
which is also available from the site. Executables are installed in /usr/local/bin
unless you provided a different location to configure. Repeat this process on
each computer to be connected or simply copy over the binaries (synergyc and
synergys).

Configuring the Server

Next, choose the server, the system with the keyboard and mouse physically
connected to it. This system requires a Synergy configuration file that names
the server, the computers that may connect (the clients) and their virtual screen
arrangement. It's a plain-text file with two required and one optional sections.
Here's an example configuration file:

section: screens
 guava:
 mango:
end
section: links
 guava:
 right = mango
 up = guava
 mango:
 left = guava
end
section: aliases
 guava:
 guava.tropical-fruit.org
 mango:
 mango.tropical-fruit.org
end

The screens section simply lists the server hostname and the hostnames of all
permitted clients. The links section describes the virtual adjacency of the
computers. For example, guava lists mango as being located to its right, so
when the mouse moves off the right edge of guava it appears at the opposite
(i.e., left) edge of mango. Each computer can have at most one of each of the
following directions listed: left, right, up and down. A computer also can link to
itself; in this example, moving off the top of guava will move the mouse to the
bottom of guava.

Links are not automatically symmetric. Making the jump to mango reversible
requires that guava is listed as being to the left of mango. This feature becomes
more useful with more than two computers. For example, a third computer,
banana, could be up from guava and mango, but only one of those could be
down from banana.

The third section, aliases, is optional. Clients provide their hostname (or a name
specified on the command line) to the server when connecting, so the server
can find them in the configuration. Some systems report their fully qualified
domain name, others list only their hostname, depending on their network
configuration. The aliases section, as it suggests, provides a list of names that

each computer is known as. The above configuration permits mango to connect
as mango or mango.tropical-fruit.com. The server also checks the aliases when
looking up its own name.

You may have noticed the configuration file doesn't indicate whether guava or
mango is the server. That's because doing so isn't necessary. This configuration
works as is with either system as the server. For this example, we'll assume
guava is the server. Prepare a configuration file for your particular setup using
the above example as a template, and save it to $HOME/.synergy.conf.

Testing the Client and Server

Now start the Synergy server:

synergys -f -1

We cover the meaning of the options later on. The server logs some messages
to the shell, and if all goes well, it's ready and waiting for connections. Any links
from the server to itself in the configuration should work at this point. On
guava we could move the mouse off the top edge of the screen, and it would
jump to the bottom edge.

With the server running, you're ready to connect a client system. On your other
system (mango in our example) start the client with:

synergyc -f -1 --no-camp guava

replacing guava with the hostname or network address of your server. The
client also logs some messages to the shell and either connects to the server or
quits with an error. If it connected successfully you can now use the mouse,
keyboard and clipboard between the two systems. Test any other clients in the
same way.

If the command-line options are invalid or the configuration file has an error,
Synergy writes an error message to the shell and quits. If the server or client
fails for some other reason, you'll receive a log message prefixed by ERROR or
FATAL briefly describing the problem. Space here doesn't permit a complete list
of errors, but the message should provide enough information to diagnose the
problem.

The command-line options used above indicate that the client and server
should run in the foreground, messages should be logged to the shell (-f) and
the system should quit when a nonpermanent error occurs (-1). By default,
both the client and server run in the background, messages are logged to
syslog and the system waits a few seconds then retries after non-permanent
errors. The --no-camp option tells the client to quit after the server forcefully

closes a successful connection. Normally the client cleans up then tries
connecting again; more on that below. A few other options are available; use --
help to see a list.

Starting Synergy Automatically

Once you've tested the server and client(s), you'll probably want them to start
automatically in the future. Synergy requires an X server, so starting it before
the X server starts won't work. The easiest way to start Synergy automatically is
to add a line to your $HOME/.xsession or similar X session startup script.
Typically, you'd run the Synergy server from .xsession with no arguments and
run the client with the server hostname as the only argument. They'd run in the
background and quit when the X server quits or restarts.

The problem with this setup is Synergy isn't running during the login screen,
which is managed by XDM or one of the eqivalents such as GDM or KDM. If you
have the necessary permissions, you can reconfigure your display manager to
start Synergy when the X server starts. First, copy $HOME/.synergy.conf to /etc/
synergy.conf (no leading dot on the latter) so the display manager can find it.
Then edit the display manager's Xsetup script; different distributions put this
file in different places so you may have to search for it. Near the end of the
script but before any call to exit add two lines. You can use either:

/usr/bin/killall synergyc
/usr/local/bin/synergyc guava

replacing guava with the hostname of your server to start the client, or:

/usr/bin/killall synergys
/usr/local/bin/synergys

to start the server. Don't forget to remove any lines in your .xsession that try to
start Synergy. For security reasons, some display managers (XDM and KDM, but
not GDM) grab the keyboard and do not release it until the user logs in. This
prevents a Synergy server from sharing the mouse and keyboard until the user
logs in. It doesn't prevent a Synergy client from synthesizing mouse and
keyboard input, though; log in to the server and then use Synergy to log in to
the client.

Without the --no-camp option, the client tries connecting to the server every 60
seconds until it succeeds, so the client can start before the server. You can
exploit this feature on a laptop: run the client on the laptop all the time. When
it's attached to your home network, it'll connect to the Synergy server within 60
seconds. Then you can use the server's keyboard and mouse instead of the
laptop's.

Finally, an important note about security. As of this writing, Synergy has no
authentication and no encryption safeguards. Because it transmits all mouse
and keyboard input, including passwords, do not use Synergy on or across
untrusted networks. Future versions of Synergy will address this shortcoming.

email: crs23@bigfoot.com

Chris Schoeneman is a graphics software engineer at Pixar Animation Studios.
In addition to Synergy, he's also the author of bzflag. He lives in Berkeley,
California, and can be reached at crs@groundhog.pair.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:crs23@bigfoot.com
mailto:crs@groundhog.pair.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Scanning with SANE and Other Tools

Michael J. Hammel

Issue #108, April 2003

Here's how to get started using a scanner from Linux, and a comparison of the
features in available scanning software.

A few years ago, Linux users were often confronted by the complex relationship
between off-the-shelf video hardware and the XFree86 drivers that made them
work. To understand how to configure your new video card, you needed to
understand detailed hardware issues, such as which chipset your video card
used. While this problem has eased as more video card makers have started to
support XFree86 development directly and to provide their own XFree86
drivers, the Linux scanner world still is in that detailed hardware stage.

The Hardware

Scanners can connect to a PC in three basic ways: through a parallel port,
through a SCSI bus host adapter or through the newer Universal Serial Bus
(USB). It's next to impossible to find off-the-shelf scanners that don't support
USB these days, though many also support parallel interfaces as well. SCSI
interfaces mostly have been dropped by scanner makers in favor of USB.

USB support in the Linux 2.4 kernel series can be handled either by using the
USB kernel scanner driver or by using the libusb library. You can check for the
kernel scanner driver by running the following command:

lsmod | grep scanner

If this command returns anything, you have the kernel scanner driver. If it
doesn't, you can load the scanner driver with this command:

modprobe scanner

This command also will load the USB core module (called usbcore when you
run lsmod) if it's not already loaded. In order for the scanner to work with USB,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the right USB HCI module also must be loaded. For USB 1.0 devices, the module
to load is usb-uhci. For USB 1.1 it's usb-ohci. For 2.0 devices, even when running
at lower speeds, it's usb-ehci. My USB hardware is USB 1.1, so I have to load the
OHCI version:

modprobe usb-ohci

To use the libusb library instead, remove the scanner modules using this
command (which should be run as the root user):

rmmod scanner

Although support for the kernel scanner driver is rumored to be going away
with the forthcoming 2.6 kernel release, it's still common in the current 2.4
kernels. Therefore, for the rest of this article we assume the use of the kernel
scanner driver.

You can launch your scanner software using a script that runs the appropriate
modprobe commands, so you can make sure the scanner driver is already
loaded. Alternatively, you can use one of the system start-up scripts, such as
the /etc/rc.local file commonly used on Red Hat systems, to load the scanner at
boot time.

With the scanner driver loaded, next mount the USB filesystem, again as the
root user:

mount /proc/bus/usb

Then you can list the devices on the USB bus:

cat /proc/bus/usb/devices

This command won't produce any output if you don't have the scanner, USB
core and HCI drivers (either uhci, ohci or ehci, as described previously) loaded.
The devices file is verbose, but what you're looking for are the vendor and
product IDs:

P: Vendor=04b8 ProdID=011d Rev= 1.00

Hang on to these values—you'll need them later if SANE can't find your
scanner. If you want to be certain your scanner will be seen by SANE, reload the
scanner driver like so:

rmmod scanner
modprobe scanner vendor=0x4b8 product=0x011d

We included the vendor and product IDs this time when we loaded the scanner
driver. We also prefixed the IDs with 0x—this is required if you use the
modprobe command in this way.

The sane-usb man page gives a more detailed discussion on getting your USB
scanner configured. See the Linux USB Project page at www.linux-usb.org for
help with general USB configuration and testing.

The Tools of the Trade

Now that we have the basic hardware configuration, we want to make sure the
SANE software can access it. The version of SANE used for this article is 1.0.8.
SANE software comes in two parts: the back-end driver software and the front-
end user interfaces. SANE actually only provides the back-end drivers and a few
command-line front ends. X-based graphical front ends, such as XSane and
QuiteInsane, are separate projects that make use of the SANE back ends.

Most modern Linux distributions now include a version of the SANE back ends.
However, many distributions are providing outdated releases. The SANE web
site (www.mostang.com/sane) provides links to current binary distributions in
RPM or similar formats for Red Hat, Debian, Mandrake and Slackware.

Once you have the SANE back ends installed, you need to configure the back-
end drivers. The first trick is to make sure SANE can find a scanner. The SANE
software provides a command-line tool, called sane-find-scanner, that can find
any SCSI scanner and most USB scanners. Run this command either with your
normal user ID or as root; no command-line options are necessary. The output
from this command will be some comments and a line that looks something
like this (for USB scanners):

sane-find-scanner: found USB scanner
 (vendor = 0x04b8, product = 0x011d)
 at device /dev/usb/scanner0

This means SANE can see the scanner using the device /dev/usb/scanner0,
which is good; thus, we need to configure only this scanner's back-end drivers.
However, if you don't get a line like this—if no scanner can be found—when
you run sane-find-scanner as your normal user, you might have to change the
permissions of the device file. You can verify this by running the command as
the root user. If sane-find-scanner finds the scanner when run as root, the
problem is a permissions issue. Assuming you are the only user on your
machine, the problem is simple to fix:

chown owner.owner /dev/usb/scanner0
chmod 660 /dev/usb/scanner0

In this example, owner is your user ID and group ID. If you need to share this
scanner with other users, you can set up a scanner group instead:

chgrp scanner /dev/usb/scanner0
chmod 660 /dev/usb/scanner0

http://www.linux-usb.org
http://www.mostang.com/sane

These two commands need to be run as root. All users who need access to the
scanner must be added to the scanner group. One other note on the device file:
you may be tempted to make a symbolic link from /dev/usb/scanner0 to /dev/
scanner. Don't. The SCSI back ends use the /dev/scanner device name, and
linking it to the USB device will confuse the USB back ends.

Now that SANE can see the scanner, it's time to choose its back-end driver. This
is the first tricky part. For most Epson scanners you would use the Epson back
end. But for the Epson Perfection 1260—an affordable model commonly
stocked by most electronics stores—the back end is actually the Plustek driver.
For most scanners you can make educated guesses from the SANE web site
supported-hardware list. Barring that, you can try to find the vendor and
product IDs and match them to the information on the supported-hardware list
on the Linux USB Project web site.

SANE Configuration

Now that you have picked the appropriate driver, it's time to configure the back
end. If you installed SANE using RPMs or using the default configuration when
built from source, SANE's configuration files are located under /etc/sane.d. The
main configuration file is called dll.conf. This file tells SANE which drivers to use.
By default, many drivers are enabled. If you have only the one, you can limit
this to the driver for your specific scanner. In our example, we've
uncommented only the Epson driver, because we're using the Epson KOWA
back end instead of the Plustek driver.

Not all back ends support all types of scanners. No matter what type of
connection your scanner uses, each back-end configuration file needs to know
the name of the device file your scanner will use. Remember, we found the
device filename using the sane-find-scanner tool. Unfortunately, the format
used to define this in the configuration file varies from back end to back end.

The Plustek back end (the default back end for SANE support of the Epson
Perfection 1260) includes distinct sections for the USB and parallel port types of
scanners. To specify the device file in this configuration file, use the device
keyword followed by the name of the device file, as in this example:

device /dev/usb/scanner0

This entry must go in the appropriate section of the Plustek driver configuration
file. However, in the Epson configuration file used by the Epson KOWA back-end
driver for the Epson Perfection 1260, the device file is specified using the USB
keyword followed by the device filename, as in this example:

usb /dev/usb/scanner0

Both the Epson and Plustek configuration files provide comments to help in
their configuration, and all back ends have their own man pages to provide
further configuration assistance. Though many configuration options are
provided, the only option really required for all of them is the device file.

To test that your SANE configuration is working, try the following command:

scanimage -T

If your test fails, you may want to verify once again that the proper USB
modules have been installed, that the device can be found by sane-find-
scanner and that you have the correct device filename in your SANE back-end
configuration file. The scanimage program's help option also can provide quite
a bit of additional information about your scanner's capabilities:

scanimage --help

Graphical Front Ends

The hardware is configured and ready to run. What you need now is an easy-to-
use, front-end graphical interface that lets you preview your scans, select
regions to scan from the preview and, perhaps, make color, quality and
resolution adjustments. You also need a way to get the scan into The GIMP for
further processing.

There are actually three freely available front ends for use with SANE, plus a
shareware tool that exists outside of SANE. Let's take a brief look at each
before comparing features and quality issues.

XSane

This project has grown up with the SANE Project, side by side. The user
interface is based on GTK+, and it includes a GIMP plugin to allow scanning
directly from the File®Acquire menu in The GIMP.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f1.large.jpg

Figure 1. The XSane Front End Managing the Epson Perfection 1260

When run as a GIMP plugin, the Viewer window is not used—the scanned
image is transferred directly to The GIMP in a Canvas window. Be sure to read
the documentation thoroughly to get the most from this interface, including the
links to the scanning tips web pages.

The Preview window allows both user-defined and automatic scan regions to
be set. Black, gray and white points also can be set in the preview prior to the
full-sized scan. The Viewer window provides limited editing.

QuiteInsane

Like XSane, QuiteInsane offers a GIMP plugin. However, this plugin is in early
development and may not provide as much stability as XSane's. Beyond this,
QuiteInsane offers much of the same functionality as XSane, plus a few extras.
QuiteInsane's image viewer allows the user to select regions of the image to
work with and permits printing directly from the image viewer.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f2.large.jpg

Figure 2. The QuiteInsane Front End Managing the Epson Perfection 1260

QuiteInsane integrates into the KDE desktop, allowing drag-and-drop of images
from the Image Viewer into other applications. Although integrating with other
applications may not be required, it's a nice feature to have for desktop users.

Image Scan!

The only scanner maker to support the SANE Project actively is Epson. The
Epson KOWA Corporation has released their own front end, known as Image
Scan!, along with an updated back end that unifies support for all current Epson
scanners. This product has the advantage of providing updated drivers for off-
the-shelf scanners directly from the manufacturer.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f2.large.jpg

Figure 3. The Image Scan! Front End Managing the Epson Perfection 1260

This front end is less sophisticated than XSane or QuiteInsane, providing fewer
features, yet it has a cleaner, less cluttered interface. It also lacks a built-in
image viewer, opting to use either The GIMP specifically for image editing or
saving scans directly to a file or a printer. There is no built-in help and little on-
line documentation.

VueScan

XSane, QuiteInsane and Image Scan! all function as front-end user interfaces to
the SANE back-end scanner drivers. However, one other scanner product does
not use the SANE back ends at all: VueScan from Hamrick Software. This
product is shareware and provides its own set of scanner drivers for a wide
variety of scanners.

Figure 4. The VueScan Front End Managing the Epson Perfection 1260

VueScan offers many features not provided by the front ends to SANE, such as
device calibration, focus and exposure. It does not provide image editing or a
GIMP plugin. Scans need to be saved to file first, then opened in an image
editor.

Feature Comparisons

Of the four front ends, only one is limited to one vendor—Image Scan!, which
supports only Epson scanners. The other three support various vendors. All
front ends provide variations on gamma and color channel correction either
before or after a scan, or both in some cases. XSane, QuiteInsane and VueScan
all provide a built-in image viewer with limited image editing capabilities. Image
Scan! scans only to a file or directly into The GIMP.

The areas of largest differentiation in all four front ends are where scans can be
sent and how they can be printed. XSane offered the most destinations for
scans, including e-mail and FAX. Optical character recognition (OCR) is
supported by both XSane and QuiteInsane through the external gocr program.

XSane, QuiteInsane and Image Scan! provide a continuous update to the
preview display when a preview scan is in progress. This means you can watch
the scan as it happens. The same is true for full scans. VueScan does not
provide continuous updates.

Printing is by far the biggest difference in all four. QuiteInsane is the only front
end that offers printing from the application, with various print options. XSane
can scan directly to the printer, but you can't print a scan from the built-in

image viewer. VueScan offers printing from the image viewer, but the interface
is clunky and lacks features.

Documentation for both XSane and QuiteInsane is extensive and fairly well
written. HTML documentation is also provided for VueScan but is far less
complete. Image Scan! has a minimalist man page.

All of the open-source tools provide GIMP plugins, though VueScan does not.
XSane's plugin is the most advanced in stability. QuiteInsane's plugin is feature-
rich but is under early development and may not be as stable as users might
prefer. Image Scan!'s plugin is functionally equivalent to its standalone version,
while XSane and QuiteInsane offer slightly modified versions for their GIMP
plugins.

Table 1 is a comparison of the four scanner front ends. Although this table is a
good tool for choosing which front end to start with, you would be missing out
if you didn't at least try each of them.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532t1.large.jpg

Table 1. Scanner Front-End Comparisons

Quality Comparisons

All scans for XSane and QuiteInsane will be essentially the same because of the
use of the common SANE back ends. Image Scan! includes a driver that
provides the same level of quality as the Epson Windows driver. VueScan's
driver is its own. In Figure 5, the two scans compare the Epson and the VueScan
driver. Figure 6 shows a close-up of these scans around the eyes. The SANE
version has a smoother transition between pixels, and the VueScan provides
more detail in the reflection in the left eye.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532t1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532t1.large.jpg

Figure 5. Comparison: Left—SANE; Right—VueScan. JPEG quality was set to 100 for the SANE
version.

Figure 6. Close-up of the SANE (Epson) and VueScan scans showing variations in quality.

Summary

Each front end has its own unique benefits and drawbacks. XSane's support for
scan quality is based on film media options, such as Agfa, Fuji and Kodak film
negatives, which give it added ease of use.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6532f6.large.jpg

Image Scan! is targeted more toward the casual desktop user. As an added
bonus it provides a driver straight from Epson that supports commonly
available scanners.

VueScan is much faster than the other tools for zooming in on the preview,
because it keeps the scan in memory. This makes VueScan preferable to the
SANE-based solutions for those who scan large numbers of images.

Only VueScan offers multiple color space support, including sRGB, PAL, NTSC,
CIE, Apple, Adobe and others. It was, however, the only one to crash during
testing.

QuiteInsane has numerous features that are missing from the other front ends.
For example, menubars can be moved, which is a feature this front end
inherited from the use of Qt. Other benefits of this tool include a user-
modifiable curve graph, similar to The GIMP's Curves tool for adjusting red,
green and blue channels; printing directly from the Viewer window with user-
configurable scaling; margins; image resolution; and page size options.

However, there are no color-correction presets based on media types, and the
available preset scan sizes are in millimeters and non-US standard sizes—no
letter or legal options. Despite these few missing features, QuiteInsane has the
edge.

Whether you are a professional artist or a casual photographer, there are
plenty of Linux-based scanning options. Each front-end user interface offers
something different, and back-end drivers are plentiful, with manufacturers
such as Epson starting to offer their own versions supporting their specific
models. These all combine to put scanning on Linux on par with any desktop.

Resources

Michael J. Hammel (mjhammel@graphics-muse.org) is an author, graphic artist
and software developer current working for a storage startup in Houston,
Texas. He has spoken at the ALS, LinuxWorld and SXSW conferences and
chaired a conference on Linux in Colorado. His web site, The Graphics Muse
(www.graphics-muse.com), is an important reference for graphics artists and
developers on the Linux platform.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6532s1.html
mailto:mjhammel@graphics-muse.org
http://www.graphics-muse.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for a Small Business

Gary Maxwell

Issue #108, April 2003

If you're self-employed or run a small shop, here are some office applications
you should be using.

In a recent article, an author asked a question: “Is Linux ready for mission-
critical production environments in the enterprise?” His answer was an
unqualified yes, which shouldn't be too surprising. Anyone who has ever heard
of Linux knows of its legendary strengths in the server space. A better question
—at least from a writer's perspective—would be: “Is Linux ready to handle the
day-to-day demands of a small, home-based writing or consulting business that
doesn't have an IT staff?”

Improved hardware detection and ease-of-use distributions such as Mandrake,
SuSE and Red Hat have helped Linux make its way onto more desktops than
ever before. Add to this the constant refinement of Linux applications, such as
office suites, e-mail clients, contact managers, fax clients, web browsers and
financial software, and you have a system that places viable alternatives into
the hands of every writer and consultant.

I made this discovery almost a year ago. In the spring of 2002, I took inventory
of the software I used to run my commercial writing business and found that
Linux provided me with a viable, free alternative to every proprietary
application I used. This fact, combined with the stability and security of Linux,
made the decision to move my small business to the platform an easy one. And
I haven't looked back.

Maybe you're a writer or consultant who is seriously thinking about
alternatives, as I once did. Or perhaps you've heard of Linux but aren't sure
exactly which applications to use. In this article, I provide an overview of four
programs found in any Linux distribution that a writer or consultant can use to
run a business. Space does not allow me to cover every feature of each
application. But I hope to cover enough of the basics so the reader has a good

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

feel for what these applications can do and how they can be used in a small
business.

The Linux applications I'm about to discuss may not have all of the features of
their proprietary counterparts. That is, applications provided under Linux have
the same functionality but not necessarily the same bells and whistles. We
shouldn't be concerned with bells and whistles here, but rather with using tools
that allow us to get our work done at a relatively low cost and in a stable,
secure environment. If that's what you're looking for, read on.

Tools of the Trade

A small writing or consulting business has minimum requirements where
software is concerned. I suppose that's one of the perks of this type of
endeavor. The following applications are typically the most commonly used in
the operation of a small, home-based writing or consulting business: an office
suite, a contact manager/e-mail client, a web browser and financial software.
Anything more is gingerbread.

OpenOffice.org

OpenOffice.org is my office suite of choice. It is 100% open source, runs on
several platforms and is freely available at www.openoffice.org. One of the
OpenOffice.org suite's greatest strengths is its use of XML-based file formats.
XML is a structured metalanguage that easily can encapsulate files for
distribution between computer systems that otherwise would be incompatible.
So, the longevity of your data is guaranteed.

The OpenOffice.org suite consists of four different applications: OpenOffice.org
Writer, OpenOffice.org Calc, OpenOffice.org Impress and OpenOffice.org Draw.

OpenOffice.org's Writer is the word processor in the suite. Its interface has a
familiar look and feel; it's similar to Microsoft Word and Sun's StarOffice Writer
(Figure 1).

http://www.openoffice.org

Figure 1. Doing My Assignment

As a commercial writer I use only about 10-15% of a word processor's power.
My clients do most of the graphic design and formatting. From business letters
and proposals to articles and books, OpenOffice.org Writer is more than
enough to get my work done.

The Writer interface is intuitive and laid out in a manner conducive to finding
what I need when I need it. It has everything necessary for today's established
freelance writer/consultant and then some, and it saves data in several file
formats, including Microsoft Word 6, Microsoft Word 95, Microsoft Word
97/2000/XP, rich text format (RTF) and StarWriter 5 (an early StarOffice file
format). It even exports PDFs.

One caveat: if you use a lot of tables or special formatting, some of it may be
lost or garbled when exporting to Microsoft Word or another office suite. A
good rule of thumb is the simpler your layout, the better its compatibility with
other word processors.

Because the needs of a writer are few, I hardly use the other programs in the
OpenOffice.org suite. But as far as spreadsheets go, OpenOffice.org's Calc has
all of the ordinary features one would expect in a spreadsheet, including
autosum, autoformat, graphs and many other functions. It saves work in
Microsoft Excel, StarCalc, the Data Interchange Format and, of course, in its
own format (Figure 2).

Figure 2. The OpenOffice.org Calc Spreadsheet

OpenOffice.org's Impress, a presentation program, has all of the basic features
of Microsoft PowerPoint, but it lacks templates. This lack of templates makes
more work for you when designing presentations. Impress reads and writes
PowerPoint, StarImpress and its own file format (Figure 3).

Figure 3. Building a Presentation

The drawing application, Draw, has all of the usual graphic features, including
the ability to read the most common types of graphic files. It saves to
OpenOffice.org's Draw format and the StarDraw format, and it is good for basic
needs (Figure 4).

Figure 4. Drawing a Graph

Contact Manager/E-Mail Client

Although Linux has many available options for both contact managers and e-
mail, I prefer to combine them. Doing so makes things more convenient—
everything is right there, so I don't have to open two different applications.
Ximian Evolution fills this need quite nicely. It is at once an e-mail client and a
contact manager/task scheduler, and it provides the writer/consultant with a
one-stop information resource. Upon starting the program for the first time,
you will be taken to the summary screen (Figure 5).

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f5.large.jpg

Figure 5. Starting Ximian Evolution

Along with weather information and a listing of recent articles about Linux,
Evolution shows how many messages are in your inbox and outbox. It also
shows any pending tasks or appointments for the day. Down the left-hand side
of the Summary Window are the different areas within Evolution that allow you
to set up appointments, schedule tasks and send and receive e-mail. Clicking
the Inbox icon will take you to Evolution's e-mail client (Figure 6).

Figure 6. Checking the Inbox

Evolution has a look and feel similar to Microsoft's Outlook program. All of the
usual e-mail buttons and services are listed across the top of the page. One
nice feature with the release of Evolution 1.2.1 is the New button. With a click,
you can create a new mail message or contact without having to navigate to
that specific area of Evolution.

With Evolution's contact client, contacts are easily created and managed (Figure
7). I can enter the usual name, address, phone number and so on, but I also can
click on the details panel and violà! I have another screen to record additional
information. And, the more information I have on clients, the better my ability
to communicate with them. In case you're wondering, the collaboration panel
allows you to record the URLs for those clients who publish their calendar
information on the Internet. It's another example of how Evolution's developers
have put a lot of thought into the components of this program.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f7.large.jpg

Figure 7. A Contact in Evolution

Once I build a list of contacts, I can search the list based on any number of
different search criteria: alphabetical order, e-mail address or category (Figure
8). You even can create your own search criteria using the Advanced selection.
You then can file contacts under any category you choose and search for them
accordingly. For me, this makes prospecting a snap.

Figure 8. Classifying a Contact

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f7.large.jpg

The Calendar client (Figure 9) is pretty straightforward, and you can set up the
calendar window to suit your tastes. The window areas can be changed simply
by dragging the borders to the desired size. Once you've navigated to the
desired day, double-click on the appointment time and a separate window
opens up (Figure 10). You then can fill in the details of your appointment and
store it for later viewing. You also can set up your calendar to remind you
several minutes, hours or days in advance of an appointment.

Figure 9. Evolution Calendar

Figure 10. Appointment Specifics

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f10.large.jpg

The Task Scheduler works in a similar fashion. Navigate to the New button and
choose task. A window opens up that allows you to type in the details of your
task. The tasks are stored in the “task” area of Evolution and can be displayed in
order of time and date, allowing you to see whether you are on track in a
project or group of tasks. Also, once a task is completed, you can check it off
and know exactly what you have finished as well as what else you have left to
do.

Several more features are available that you can explore for yourself. Like
Linux, Evolution allows you to accomplish the same task in several different
ways.

A Web Browser

By far, two of the most popular web browsers are Mozilla (Figure 11)--based
upon the same rendering engine as its commercial counterpart, Netscape
Navigator—and Galeon (Figure 12), a web browser that sports many of the
same features as Mozilla and is part of the GNOME desktop.

Figure 11. Mozilla

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f11.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f11.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f11.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f12.large.jpg

Figure 12. Galeon

In addition to these two browsers, Linux also offers Konqueror, the KDE-based
file manager/web browser. Most Linux browsers support 128-bit encryption for
secure transactions.

Speaking of transactions, it's usually a good idea to have more than one web
browser available. The reason? Web site access. At first, you think a browser is a
browser; other than the look and feel, they all do the same thing. Even though
it is popular, Mozilla lacks a feature that Konqueror has: changeable user
agents.

When you connect to a web site, your browser identifies itself to the server,
offering its name, version number and the system on which it is running.
Though most web sites are browser agnostic, some will give you a hard time if
you do not have a certain kind of browser.

For instance, every time I tried to log in to my telephone company's web site I
always had problems. The site never let me get past a certain point. After
scratching my head for a while, I remembered hearing reports of some web
sites not supporting browsers other than Microsoft's Internet Explorer.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f12.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f12.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f13.large.jpg

Figure 13. Konqueror's User Agent Feature

This is where the User Agent comes in (Figure 13). I simply changed my web
browser's identity to Internet Explorer 5.0, and my web site transaction went
through without a hitch. You won't run into this situation too often, but if you
do, try changing the user agent and see what happens. Again, this
demonstrates how Linux offers the user many different ways of accomplishing
the same task in addition to tools for overcoming proprietary obstacles.

Financial Software

Once you earn your money, you need to keep track of it. Financial software
usually fills the need. One of the best-kept secrets of Linux is the open-source
accounting project GnuCash (Figure 14).

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f13.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f13.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f14.large.jpg

Figure 14. GnuCash Tracks Your Dollars

GnuCash is a robust, easy-to-use accounting system that makes balancing your
personal books a snap. And GnuCash's Setup Wizard allows you to set up
multiple accounts with different opening balances, simply by answering a few
questions and making a few selections (Figure 15).

Figure 15. GnuCash Setup

Although GnuCash sports features of its proprietary counterparts, such as
transaction auto-completion and check number auto-increment, it uses double-
entry accounting, like professional accountants and enterprise accounting
software.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f14.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f14.large.jpg

The idea behind a double-entry system is that there is a debit from an account
and a credit to an account for each transaction. This way, you know where the
money came from and where it went. For instance, if I want to pay for some
business-related books, I would debit my savings account and credit an
expense account for books (Figure 16). This is an invaluable tool when you need
to find out where all of your money went.

Figure 16. Where Did the Money Go?

What is really nice about GnuCash is you can customize it to suit your personal
financial situation. A list of common accounts comes ready-made—expenses,
income, stocks, investments—each with its own sub-account structure.
However, you also can add your own accounts and delete those you don't use
(Figure 17).

Figure 17. Customizing the Accounts

Another nice feature of GnuCash is the ability to split transactions, so you can
include several debit or credit accounts in a transaction. This allows you to fine-

https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f16.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f16.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f16.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f17.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f17.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6543f17.large.jpg

tune a transaction and show every account involved in a specific financial
activity.

Lastly, GnuCash has several graphical reports that show at a glance your net
worth, your income, your expenses, profit-loss and so on. This alone allows you
to manage your finances with greater precision.

Many more features—too numerous to mention here—come with GnuCash,
but suffice it to say that for a one-person shop, GnuCash has all of the features
you need and then some.

At the time of this writing, GnuCash is at release 1.6.7 and is designed to be
used for personal finances. No business features, such as customer and vendor
tracking or invoicing and bill payment, exist. But you can customize GnuCash to
balance the books for a small business with a little tweaking, as mentioned
previously. With the release of GnuCash 1.8, small-business accounting
features will be available, including invoicing and bill payment.

Conclusion

If you are currently using a proprietary operating system and proprietary
applications and have decided to make the switch to the security, stability and
freedom of Linux, I welcome you, and I consider my mission accomplished.

After spending nearly 15 years with a Fortune 100 company, Gary Maxwell

started a second career as a commercial writer. A Linux enthusiast, Gary
operates his business completely with Linux and open-source software. He
specializes in advertising copywriting and corporate communications. For
questions or comments, he can be reached at gary@garymaxwell.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:gary@garymaxwell.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Grand Unified Desktop

Marco Fioretti

Issue #108, April 2003

How developers and distributions can make diverse software work together
better.

In December 2002, I wrote an article for the Linux Journal web site
(www.linuxjournal.com/article/6476) about the new Bluecurve desktop for Red
Hat 8.0, which includes programs from both GNOME and KDE. I received a lot
of feedback, including many suggestions on how to write desktop applications
that would cooperate with applications written using other toolkits and work
well in any desktop environment.

The Problem

An integrated desktop is one whose components work together, wherever they
come from, and one that never forces the end user to do the same thing many
times. The current default solutions, like GNOME and KDE, often present limits
if one tries to mix pieces.

Communication between graphical clients, from simple drag-and-drop to the
handling of icons, menus, metadata such as URLs and, in general, window-level
interactions, work out of the box only for some subsets of clients and window
managers. The same applies to centrally managed and good-looking fonts.

And what about localization? How many programs are still a pain to use with a
non-English language or keyboard?

KDE and GNOME are two collections of applications that seem to solve many of
these problems. But are toolkit-centric, all-or-nothing approaches the easiest to
maintain? What if somebody creates an even better toolkit? What about
applications from other toolkits or the whole best-of-breed philosophy so
natural among free software users?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6476.html

In other words, what is the best way to develop that killer application for your
favorite desktop, other people's favorite desktops and the desktop of the
future?

The Solutions

Re-inventing the wheel may be silly, but it's much less silly than inventing a
wheel that needs a new road. Consequently, even if there already are 20 chat
clients for Linux, code another one if it feels good; however, make sure that it
interoperates with what already exists. Start with common sense, and use the
right free standards and protocols. Afterward, check that whatever toolkit or
library you choose respects them too. Many top developers already are fully
aware that this is the winning approach in the long term. GNOME developer
Havoc Pennington wrote, “Interactions between applications and the runtime
environment really need to take place via documented, toolkit-independent
protocols and file formats.” Let's look at how to do this in practice.

File Formats

The most interesting thing in the office formats field, but also for many other
types of structured data storage, probably is the work of the Oasis Group. The
Oasis file formats are being developed starting with the OpenOffice.org ones,
so OpenOffice.org developers will have an easier time. But every program, from
Emacs to KOffice to the next word processor, can use them.

Along these lines, there's no need to create yet another bookmark format. XBEL
(XML Bookmark Exchange Language) is a bookmark interchange format that
Galeon and Konqueror already use.

The idea of an interchange format is valid for other configuration files too. UNIX
and Linux still are following the toolbox approach: no mammoths, but a lot of
little pieces, each doing one thing well. One practical consequence of this is that
all the applications doing the same thing will need to know and store the same
set of parameters, or very similar ones.

Sticking to the chat client example, the really silly thing would be to have one
configuration file for Qt_chat_app, one for GTK_chat_app, one for
MyToolKit_chat_app and so on. There is a fundamental difference between a
file and the way it is created or updated. Using different editing methods are
okay (vi, a control panel, etc.), but in the long term, what really matters is having
a single ~/.chatrc file with every existing chat client using it and not complaining
if the settings changed from another chat client. Usenet newsreaders already
use the standard .newsrc file. Until a standard emerges for your category of
application, an acceptable compromise is to have your new program load the
settings of other similar clients when it first starts and use them as defaults.

Guessing the MIME type of a file from its name is an action performed looking
at a MIME database. This can be unified too, so that every desktop and
program is guaranteed to read the same data; freedesktop.org has a draft
specification of how to do this.

Graphical Interfaces

Many people say that X is showing its age and point to ambitious, far-reaching
projects like Fresco. Even without aiming so high, however, a lot can be done to
make sure that any mix of clients and window managers behave properly. A
starting point for approaching this kind of problem is the freedesktop.org site,
especially its standards section.

Remember what we just said about applications of the same type sharing the
same set of configuration parameters? We were referring to the core
functionality, but the same approach can be used with all GUI-level settings, in
all the components of your desktop. Things like background color or the
double-click timeout are needed by all programs and still can be configured
once and for all by each user, regardless of the particular mix of toolkits he or
she needs. The X Resource Manager was not designed to be changed
interactively and merges what is written in ~/.Xdefaults with data from other
sources, so it is not the right back end for a GUI configuration tool. Go for the
Xsetting specification instead, which is being designed to solve this and other
problems.

Let's go one step further. What comes after the internal configuration of each
class of applications and the way they appear and react to local user actions?
The graphical interaction with other applications and the window manager.

Dragging and dropping text from any window to another one already is
possible, theoretically at least, if all interested parties follow the XDND protocol.
This currently is supported not only by GTK+ and Qt, but also by script-oriented
toolkits like Tk and Perl/Tk and by relative outsiders like FOX.

Figure 1 shows how XDND works. When an application must send something to
another one, it issues the proper toolkit call. The toolkit sends everything,
through the XDND protocol, to the other toolkit, and the answer is passed back
to the program in the same way.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6560f1.large.jpg

Figure 1. XDND, the Drag-and-Drop Protocol for X

The source must declare all the MIME types it supports to its toolkit. These can
be text in many formats, images or filenames. The target must declare which
formats it recognizes inside that list. In this way, formatted text can be passed
between two word processors without losing font, color and so on. At the same
time, passing a paragraph from, say, KOffice to vi will lose formatting but keep
the text intact.

When drag-and-drop doesn't work, the problem is almost always inside the
application's XS, which didn't declare all the MIME-types, used only custom
ones or misused either the toolkit or the protocol in some similar way.
Practically speaking, it means that bug reports must be filed against the
applications, not the toolkits or XDND.

Other interactions between X clients, or between clients and the window
manager, must follow the ICCCM (Inter-Client Communication Conventions
Manual) and the Extended Window Manager Hints, EWMH for short, formerly
known as the NetWM specification. It should be noted that even the good old X
clipboard is fully described in the ICCCM. Detailed explanations of how to
handle this are provided by Keith Packard and Jamie Zawinski.

The second window interaction standard works on top of ICCCM. It deals with
all the window management features not specified in its predecessor, because
they started to appear after it. EWMH originally was meant to be a replacement
of what was then the GNOME window manager specification, but it is designed

https://secure2.linuxjournal.com/ljarchive/LJ/108/6560f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6560f1.large.jpg

correctly in that it can be implemented and supported in any desktop
environment. GNOME 2 and KDE 3 both support EWMH, so any application
conforming to it can be expected to play nicely inside both environments or
with any of their components. Developers willing to have a more precise, yet
quick feel of what EWMH is supposed to do may want to look at KDE's netwm.h.

Fonts and Encoding

Have we covered all that is needed to build a Grand Unified Desktop? Certainly
not. Consider Red Hat 8.0. Almost everybody, including those who hate the idea
of a GNOME/KDE hybrid, agreed that at least the fonts look much better than
before. The way to duplicate this particular bit of magic on your distribution of
choice is well known.

First, the improvement is due to anti-aliasing, which makes characters
smoother by adding pixels in the proper places. Figures 2 and 3 show the same
text in a standard xterm and in an anti-aliased one.

Figure 2. Text in a Standard Xterm

Figure 3. Anti-Aliased Text

Second, Red Hat 8.0 is the first mainstream distribution to have used as much
UTF-8 encoding as possible (more on this later) and the new client-side font-
management system implemented by the xft2 and fontconfig libraries.

Basically, fontconfig can figure out what fonts are available in the system and
which is best for each document. Once this is known, xft2 can tell the X server
what to draw. Both libraries need to interact with FreeType or an equivalent
rasterizing engine. In other words, font detection and rendering have been
cleanly separated but packaged in a way that any client can embed. This means
that:

• Eventually, font servers should not be needed anymore.
• Installing new fonts, even without the root password, is much easier.
• Any application using fontconfig reads all font configurations from the

same XML file(s), which can be edited by any front end.
• Font management (in any application) can now proceed at the speed of

these two libraries, not at the speed of X itself.
• Because fontconfig doesn't require xft2 or any other X-related element, it

can be embedded in anything that deals with fonts, including print drivers
and libraries. libgnomeprint22 is doing exactly that.

Another nice thing about the xft2/fontconfig system is that it is not an all-or-
nothing deal. It can coexist peacefully with traditional font servers, which still
may be needed to assist older applications. This is what happens with Red Hat
8.0. And, xft2 can talk to both old and new XFree86 servers. The first ones

receive long sequences of low-level drawing instructions. The others, compiled
with the Render extension, receive faster, more sophisticated commands.

When drawing nice symbols is only half of the work and an application also
needs advanced text layout, the tool of choice is Pango, which uses fontconfig.
Pango is another tool born inside a more or less monolithic desktop, GNOME,
but currently is developed to be usable in any other environment.

One last word about fonts—nicer drawings are cool, but if they were only used
for digits and the English alphabet, they wouldn't really be worth the effort,
would they? Moving to Eastern European, African or Asian languages, ASCII
can't even handle “Hello, World!”

For developers, this means any new application must be coded to deal with
multilanguage encodings from day one, and all existing programs must be at
least checked to guarantee that they still will work. This is not merely a
suggestion. If you think you are safe because you only use ASCII and only write
some scripts, think again. The next time you upgrade and your code is
catapulted into an internationalized shell, terminal or window manager, it will
break. My Perl one-liner for random e-mail signatures stopped working for this
very reason on Red Hat 8.0, and in almost three months, no one on three
different lists could suggest a solution.

The character encoding that is becoming the standard on Linux is Unicode
UTF-8 [see “Unicode” by Reuven M. Lerner in the March 2003 issue of LJ]. The
good news is that it can represent all characters existing on the planet, so no
other encodings are necessary. Figure 4 shows Emacs, as packaged in Red Hat
8.0, dealing with all kinds of symbols and characters. The bad news is that
because non-ASCII characters take more than 8 bits and sometimes much more
space on screen, many deeply ingrained dogmas, starting with the equation “1
character = 1 byte”, simply disappear. The right resources to deal with this,
apart from the Linux Unicode HOWTO, are the mini-guide to “UTF-8 soft and
hard conversion” and the UTF8_STRING mechanism that aims to preserve the X
cut-and-paste system in a UTF-8 world. At a higher level, programming for
internationalization, regardless of the operating system, is the goal of
Openi18n.org.

Figure 4. Emacs as Packaged in Red Hat 8.0

Menus and Icons

What is left to achieve a nice GUI? Menus and icons. A desktop entry standard
that describes, regardless of the environment, how to build menus, how to
launch each application and so on, already exists at freedesktop.org. It does
have some limitations, namely the lack of a common place where .desktop files
should be put and the hardwiring of menus, coming from the fact that they
simply mirror how these files are located on disk. A virtual folder extension to
the standard is being written to overcome these limits. Another specification
with a similar scope is available to standardize icon locations and theme
selection.

Ease of Installation

Yes, if you distribute the source, everyone can compile and install your
program, but why make it hard for others to figure out why the program can't
find which libraries are installed? Why hard code things so they will work only
on one distribution? The Linux filesystem hierarchy from the LSB group is your
friend here, whatever application you plan to write.

Conclusion and Credits

I have nothing against pure KDE or pure GNOME. I only hope that the next
generation of desktop applications will make it easier for everyone to build his
or her own environment from any combination of programs without sacrificing
real functionality and performance. The methods and tools described here are
a good way to build such applications, and I am grateful to their developers.
Many thanks also to Havoc Pennington, Keith Packard, the members of the kde-
devel list and everyone who answered on the linuxjournal.com web site to help
me in writing this article.

Resources

email: m.fioretti@inwind.it

Marco Fioretti is a hardware systems engineer interested in free software both
as an EDA platform and (as the current leader of the RULE Project) as an
efficient desktop. Marco lives with his family in Rome, Italy.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/108/6560s1.html
mailto:m.fioretti@inwind.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Fixing Photo Contrast with The GIMP

Eric Jeschke

Issue #108, April 2003

Fix the too-dark areas in your photo without washing out the light areas.

In my last article (LJ, February 2003), I described how to improve candid flash
photos by removing red-eye using the GNU Image Manipulation Program
(GIMP). In this article, I present another GIMP gem for fixing your photographs:
using a digital split neutral density filter to repair bad pictures resulting from
shooting high-contrast scenes.

The human eye is a remarkable image capture instrument. It is able to view a
scene with a large dynamic range (range of luminosity or brightness) and to
discern detail in both bright highlights and dim shadows. Dynamic range in
photography is often measured in stops, where each stop represents a
doubling or halving of light. Humans can discern detail in a scene with about 14
stops of dynamic range. Film and digital capture sensors are not as adept. Slide
film typically can handle around 5-6 stops. Detail in areas below the lower limit
is blocked up into dark shadows, and detail above the upper limit shows up as
blown-out (completely white) highlights. Negative film does a bit better at 9-10
stops, and some high-end digital cameras (DSLRs) can do even slightly better
than that. Typical consumer digicams fare somewhere in the lower middle of
the pack and capture about 6-9 stops of detail, depending on the bit depth
used in the digital capture process, the sensor size and a few other factors.

Knowledgeable photographers often have dealt with the limited dynamic range
of their equipment by trying to compress the dynamic range of the scene they
are photographing using fill-flash, lighting or reflectors to light up shadows or
special filters, such as a split neutral density filter (sometimes also referred to
as a graduated neutral density filter) to darken the highlights. An example of
such a filter is shown in Figure 1. It is an accessory you can attach to the front of
your lens. It has a clear side and a dark gray side, with a small continuous
transition zone dividing them. The dark part of the filter has the effect of
reducing light by 1 stop, 2 stops or more, depending on the strength of the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

filter. When the camera is set up for a high-contrast shot (e.g., a sunset), the
filter is positioned in front of the lens so that the dark part covers the highlights
(e.g., the sky) and the clear part covers the rest of the image (e.g., everything
below the skyline). The photographer then can meter the exposure for the
shadows. If the filter is positioned correctly, the metering is accurate, and the
photographer has knocked on wood, thrown a pinch of salt over his shoulder
and said a short prayer, the whole image will come out properly exposed.

Figure 1. A Split Neutral Density Filter

Most casual shooters won't be bothered to carry around split neutral density
filters and use them. In such situations, a compromise exposure is the only real
option. A typical programmed auto-exposure metering system often will set an
exposure that takes the middle road, losing detail at both ends of the
luminance range. If you're willing to control the exposure yourself, follow a rule
of thumb that is oft-repeated by photographers shooting slide film: expose for
the important highlights. It often will be possible to rescue some detail from the
shadows later, but once highlights are blown out, there's nothing that can be
done to recover that detail. Remember that the rule says “important highlights”.
If you are taking a picture of a sunset, you want to preserve the texture and
detail in the clouds, which are brilliantly lit by the setting sun; if your main
subject is a moose standing in a field at sunset then you'd probably rather have
the detail in the moose's fur, and let the cloud detail fare as it will.

Although you can't recover detail that is completely clipped in such exposures,
it is often possible to tweak an image to rescue a fair amount that is lurking in
the highlights or shadows. The process in traditional wet-film processing is
called dodging and burning. When making a print from a negative, parts of the
paper are exposed more or less than the rest to hold details in highlights or

pull detail from shadows. These sort of machinations used to be reserved for
advanced darkroom enthusiasts. However, now anyone with a copy of The
GIMP can do all of this and more with considerable ease.

Let me illustrate with the following example: a Utah sunset, shown in Figure 2
loaded into a GIMP window. I had followed the sage advice and exposed for the
clouds and highlights on the cliff face and allowed the foreground to go quite
dark. Using the LAB decompose plugin, I can decompose this RGB image into
the LAB constituents. Of these, the L channel shows the full range of luminance
values carried in the image. As you can see from Figure 3, there is a
considerable amount of detail in the foreground trees, which in the original
image look almost completely blocked up. This is good, but how do I pull out
this detail, while retaining the beautiful detail and color of the cliffs and clouds?

Figure 2. A Utah Sunset Photo Loaded into a GIMP Window

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f3.large.jpg

Figure 3. Using the LAB Decompose Plugin

The technique for rescuing that shadow detail is a bit like the digital equivalent
of using a split ND filter. I combine two versions of the same scene, where each
version has been optimized for either highlights or shadows. The technique
makes use of layers and layer masks in The GIMP, so it is important to have a
basic understanding of what these are beforehand. The next section introduces
these concepts and provides a high-level overview of how the overall technique
works.

Layers and Layer Masks

All images in The GIMP can be composed of one or more layers. When an
image is first loaded, it occupies the default Background layer, as shown in
Figure 4. You can add additional layers on top of the background layer. These
upper layers can contain anything you want. Frequently, you'll want to create
upper layers that are different versions of the same image. This is most easily
accomplished by duplicating a layer, such as in Figure 5 where I duplicated the
Background layer. Each layer can be manipulated independently of the others.
In Figure 6, I used a Levels adjustment on the upper layer to lighten it.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f4.large.jpg

Figure 4. The Default Background Layer

Figure 5. Duplicating a Layer

Figure 6. Using a Levels Adjustment to Lighten a Layer

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f6.large.jpg

Layers can be combined in various ways to produce a single image, as if you
were looking through the top layer down to the bottom. One way of doing this
is to reduce the opacity of part or all of the upper layers. The opacity of a layer
can be changed from 100% (opaque) to 0% (completely transparent) or
anywhere in between. It also is possible to make parts of the same layer have
different opacities (or levels of transparency, if you prefer to think of it that
way). Again, there are many ways to do this, but one of the most flexible ways is
with a layer mask. A layer mask can be added to a layer and becomes one of its
attributes. It is a gray-scale image that is the same size as the layer. The layer
mask has the effect of varying the opacity of each pixel in the layer according to
each corresponding pixel value in the mask. A black pixel in the mask makes
the corresponding pixel in the layer completely transparent. A white pixel
makes it completely opaque, and any value in between calculates a percentage
of opacity between these two extremes.

I'm sure you are beginning to see the possibilities. In Figure 7 we see a useful
layer mask created for the upper layer in this image. Once the layer mask is
added, it is filled with a gradient, which has the effect of carefully blending the
upper layer image from completely transparent to totally opaque, as shown in
Figure 8. Finally, the image can be flattened for output, as shown in Figure 9.

Figure 7. A Layer Mask

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f8.large.jpg

Figure 8. Using a Gradient

Figure 9. Flattening the Image for Output

Layer masks are only one of the many attributes a layer can have. Other
attributes, such as the blend mode, also affect how a layer combines with the
other layers below it. Further research into how layers work will pay off with big
rewards in your GIMP image editing abilities.

The Nitty-Gritty

Now that we have layers and masks under our belt, let's get to the details of the
technique. Most of the menus in The GIMP are accessed by clicking the right-
most mouse button in an image window. In the description that follows, a right-
click is abbreviated RC. If I describe a GIMP action to invoke I will mention the
series of menus or a keyboard shortcut in parentheses. For example, Open the
image (RC-->File-->Open), means right-click in the image window and choose
File, then from that menu choose Open. If a keyboard shortcut makes more

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f8.large.jpg

sense I'll list the combination of keys to press; e.g., copy the image (Ctrl-C)
means press and hold the Control key and press C.

In the original image, open the Layers dialog (Ctrl-L). In that dialog, right-click on
the Background layer name and select Duplicate, or use the button circled in
Figure 10. Now double-click on the duplicate layer and rename the new layer
ND Filter. This step is not strictly necessary, but it is helpful to prevent
confusion about what is on each layer, especially if you open this file again six
months later and are trying to figure out what you did. At this point, your
Layers dialog should look something like Figure 10.

Figure 10. Layers Dialog

In the Layers dialog, select the ND Filter layer. Go to the image window and
perform any editing you want to enhance highlight or shadow detail. The Levels
(RC-->Image->Colors-->Levels) or Curves (RC-->Image-->Colors-->Curves)
operations are good choices for this, but you can also use Brightness/Contrast
(RC-->Image-->Colors-->Brightness and Contrast), the dodge/burn tools or
anything else that works for you. We are working on the duplicate layer so don't
worry about the good part of the image; let it go too dark or too light.
Concentrate on the area that needs improvement. In this case I've used Levels
(moved the middle slider to the left a bit, as shown in Figure 11) to lighten the
whole image until the foreground is about where I want it.

Figure 11. Using Levels to Lighten an Image

At this point you will be in the position illustrated by Figure 6, where you can
see your lightened image, which obscures the original image below it. We now
want to add a layer mask that will reveal the upper part of the lower image. In
the Layers dialog, right-click on the ND Filter layer and select Add Layer Mask. In
the Add Mask Options dialog, select White (Full Opacity) and click OK. Finally,
click the eye next to the Background layer in the Layers dialog to turn off
visibility of the Background layer. Your Layers dialog should now look like
Figure 12, with a little white layer mask icon next to the layer image icon on the
ND Filter layer.

Figure 12. Turning off the Visibility of the Background Layer

Go up to the main GIMP toolbox window and select the gradient fill tool, circled
in Figure 13. Go back to the image window and click-drag a line in the angle and
direction that you want the split between the upper and lower layers (lower
layer at the beginning of the drag, upper layer at the end). The length of the line
that you drag determines how graduated or abrupt the transition will be, and
the resulting blend. Experiment to get a feel for it, but generally you will want a
short stroke centered over the transition zone (e.g., horizon). Because we
turned off visibility of the background, your feedback will be immediate, as
shown in Figure 14; a portion of the image should disappear just past the
transition zone. If you didn't get the split at the right place simply click-drag
another line, and the new gradient fill will replace the old. To get an idea of
what you are doing, refer back to the gradient in Figure 7. You can see a
miniature version of your gradient in the layer mask icon in the Layers dialog.
Remember, the gradient fill affects the transparency of the upper layer. White
is opaque; black is transparent, and anything in between is some degree of
translucent.

Figure 13. The Gradient Fill Tool

Figure 14. Applying the Gradient Fill Tool

Time to check your handiwork: click the eye next to the Background layer in the
Layers dialog to turn visibility of that layer back on. Behold—your combined
image with the best exposure of both worlds. Now, click the eye next to the ND
Filter layer in the Layers dialog off and on to view the effect quickly with and
without this digital split ND Filter. Nice, eh? Figure 15 shows the final result.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f14.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f14.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f14.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f15.large.jpg

Figure 15. The Final Result

The real beauty of this approach is that our original image is untouched on the
Background layer. The lightened image on the second layer did not require any
painstaking selection to affect only the required areas, and the layer mask (in
this case) was trivial to create. For maximum flexibility, you can save this image
in The GIMP's native XCF format, and it will retain all of the layered structure.
This allows you to go back in and make additional adjustments easily, safe in
the knowledge that your original unmodified image is conveniently available on
the Background layer if you ever need to redo the upper layer or the layer
mask. When you are ready to export the image to one of the more common
image formats, such as TIFF or JPEG, it will flatten the image as shown in Figure
9.

Knowing how the layer mask works, you can visualize how to apply the
technique to images that have much more complicated transitions between the
highlights and shadows (e.g., a dark mountain sticking up into the sky). The
layer mask can be manipulated like any other gray-scale image to force the
upper and lower layers to blend together wherever you like and in whatever
manner you like.

I hope you find this technique useful. I'm guessing that it will rescue many
vacation sunset photos—perhaps one from the Geek Cruise?

https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f15.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6411f15.large.jpg

email: jeschke@mano.uhh.hawaii.edu

Eric Jeschke (eric@redskiesatnight.com) holds a PhD in Computer Science from
Indiana University and has worked as a software engineer, university professor
and freelance consultant. He lives in Hawaii with his wife, kids and an
overweight cat. Eric enjoys his family, outdoor adventures, taking photographs
and running Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jeschke@mano.uhh.hawaii.edu
mailto:eric@redskiesatnight.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Programming under GNUstep—An Introduction

Ludovic Marcotte

Issue #108, April 2003

With GNUstep, you can develop a new application or port one from Mac OS X.

This article provides an introduction to GNUstep development. It guides the
reader through installing GNUstep and developing a small application. The
Objective-C language, a true object-oriented superset of ANSI C, is used in this
article. Its syntax is simple, unambiguous and easy to learn.

A Short History

OpenStep, which was proposed as an open standard by NeXT Computer, Inc., in
1994, is a collection of advanced object-oriented APIs designed for rapidly
developing applications in the Objective-C language. It was designed to be
implemented independently of the computer's operating system. To this end,
there were implementations of the standard for Mach, Microsoft Windows (NT
and 95), Sun Solaris and HP-UX.

In the early 1990s, GNUstep, a free implementation of the OpenStep standard,
was born. GNUstep aims to be a fully compliant OpenStep implementation,
supporting a wide range of operating systems, while being entirely free.
GNUstep is released under the terms of the LGPL license. GNUstep currently
works well on Linux, Solaris and most BSDs, and there is also preliminary
support for Microsoft Windows.

As was widely reported at that time, Apple bought NeXT in 1996. Now, with Mac
OS X, Apple is moving forward with Cocoa, an extension of the OpenStep API.
While creating Cocoa, Apple added new classes that enrich the API. GNUstep is
partially supporting those new features, and better support is being added
every day.

GNUstep also offers a well-defined separation between the user-interface
classes (part of the application kit) and the underlying windowing system. This

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

layer, called gnustep-back, provides implementations for various windowing
systems, allowing gnustep-gui to work properly under various back ends. Back
ends currently are being developed for the X Window System, Microsoft
Windows and Ghostscript. Figure 1 shows the different layers of GNUstep.

Figure 1. The Different Layers of GNUstep

GNUstep also offers bindings to other languages, like Java (using JIGS) and Ruby
(using RIGS), allowing developers to create applications using those languages.
Additionally, GNUstep offers powerful scripting capabilities through StepTalk,
which allows you to create scriptable applications or servers using Smalltalk.
Finally, GNUstep offers an extension so that Guile, a version of Scheme, can be
used as a scripting language.

Installing GNUstep

In order to compile GNUstep under Linux, that the following programs and
libraries (with headers) need to be installed (versions indicated or higher): GNU
make 3.75, GNU libc 2.1.2, GNU gcc 3.0.3, XFree86 4.1, ffcall 1.8, OpenSSL 0.9.6c
(not required but recommended), libtiff 3.5.5 and libxml 2.2.3.

Once all those requirements are satisfied, you are now ready to download and
compile GNUstep. We are going to install an unstable release of GNUstep
because new features have been added recently that are worth using and
mentioning, especially regarding Gorm—the Graphical Object Relationship
Modeler. Gorm is a clone of OpenStep's excellent interface-builder application.
Gorm allows the developer to create user interfaces quickly from a palette of
standard objects.

Get the following releases from the GNUstep web site: GNUstep make 1.5.1,
GNUstep base 1.5.1, GNUstep gui 0.8.3, GNUstep back 0.8.3 and Gorm 0.2.0.

Once you have downloaded those releases, you are ready to install GNUstep.
You must first install GNUstep make, base, gui and finally, back. Look at the
INSTALL file of each release carefully for installation instructions. For detailed
instructions on installing GNUstep, refer to the GNUstep Build Guide for Unix
Systems (see Resources).

Once GNUstep is compiled and installed, load the proper set of environment
variables by executing a shell script (adjust the path, if necessary).

Bash users would type:

. /usr/GNUstep/System/Makefiles/GNUstep.sh

And, C-shell users would type:

. /usr/GNUstep/System/Makefiles/GNUstep.csh

To compile and install Gorm, simply uncompress the file and type (as root):
cd Gorm
make
make install

Developing a Small Application

Now that GNUstep and Gorm are compiled and installed, you can develop your
small application, a simple TIFF image viewer. This application will use the
Model-View-Controller (MVC) design. The MVC design pattern separates a
software component into three pieces: a model, a view and a controller. Figure
2 shows how the MVC pattern is used in our small application.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f2.large.jpg

Figure 2. Using the MVC Pattern

Under GNUstep, use Gorm to create the views of an application. This
application allows you to create the user interface of your application. Once
created, the user interface will be saved as an archive file (containing a
serialized object graph) in its own subdirectory. To start Gorm, simply type:

openapp Gorm.app

Once Gorm has started, show the Inspector and the Palettes windows by
clicking on the Inspector... and Palettes... menu items from the Tools menu.
Now, create a new application by clicking on the New Application menu item
from the Document menu. Once those steps are completed, your desktop
should look like Figure 3.

Figure 3. Creating a New Application

Let's examine Figure 3 in order to explain the different elements. Table 1 shows
the different elements, and their roles.

Table 1. Parts of the Gorm Interface

From the Palettes window, drag an NSImageView object to the empty window
(My Window) and drop it. Figure 4 shows the icon that represents the
NSImageView object.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6418t1.html

Figure 4. NSImageView Object

Now, click on the NSImageView in the window, and the inspector window will
update itself so you can set the correct attributes to this object. Set the border
to Line Border and the scaling to To Fit. The Inspector window for the attributes
of the NSImageView should look like Figure 5.

Figure 5. The Inspector Window for the Attributes of NSImageView

Now, from the Inspector window, select the Size item from the combo box at
the top to set the auto-sizing properties of the NSImageView object. Setting the
auto-sizing properties to NSImageView will allow the object to resize properly if
the user resizes the window. Set the parameters by clicking on the lines inside
the Auto-sizing box to look like those in Figure 6.

Figure 6. Setting the Auto-Sizing Parameters

Next set the window attributes. Click on My Window in the File window. Set the
title to Tiff Viewer in the Inspector window. The Inspector window for the
attributes should look like Figure 7.

Figure 7. Setting the Window Attributes

You need to add a menu item so you can open an image file. To create a new
menu item, choose the menu palette from the Palettes window, drag the Item
menu to the Main Menu (above the Hide menu item) and drop it. Click on the
newly created Item menu option in the Main Menu, set its title from the
Inspector window to Load Image and press Return.

Now, you need to create a controller class that will interact with the user
interface. Click on the Classes icon from the File window and select the
NSObject item from the tree view. Click on the Classes menu item in the Gorm
menu, and select Create Subclass.... In the Classes tree view in the File window,
you will now find a NewClass entry. Double-click on the NewClass item and
replace the text with “AppController”.

Next, you need to create an outlet for your NSImageView object. An outlet is an
instance variable that refers to an object—in this particular case, the
NSImageView object. To add an outlet to your AppController class, click on the
Outlet icon to the right of the AppController class (in the File window); click on
the Classes menu item in the Gorm menu, and select Add Outlet/Action.... In
the Classes tree view in the File window, you will now find a newOutlet entry as
a child item of AppController. Double-click on the newOutlet item, and replace
the text with “imageView”. Repeat these steps to add a window outlet.

After creating the outlet, you need to add an action to your controller. An action
is a target-action method. To add one to the controller, click on the Action icon
to the right of the AppController class (in the File window); click on the Classes
menu item in the Gorm menu, and select Add Outlet/Action.... In the Classes
tree view in the File window, you will now find a newAction: entry as a child
item of AppController. Double-click on the newAction: item, and replace the
text with “loadImage:”.

You are now ready to instantiate your AppController class in order to produce a
particular object from its class template. You need to instantiate your controller
class because Gorm connects live objects. Select the AppController item in the
File window's tree view, and click on the Instantiate menu item from the Classes
menu.

Now you can now connect your live objects (in this case, NSImageView) to your
outlets and set the action. To connect the NSImageView object to your
AppController instance, click the Objects icon in the File window, then, while
pressing the Ctrl key, click and drag from the AppController icon (from the File
window) to the NSImageView object in the Tiff Viewer window. Click on the
imageView item in the Inspector window, and click on the button Connect. This
connects the NSImageView live object to the imageView outlet. To connect the
window outlet, while pressing the Ctrl key, click and drag the AppController icon
(from the File window) to the My Window icon (from the File window). Now,
click on the window item from the Inspector window, and finally, click on the
Connect button. Figure 8 illustrates the connection being made between the
window object and its outlet.

Figure 8. The Connection Being Made between the Window Object and Its Outlet

To set the action of the Load Image menu item, Control-click and drag on the
menu item to the AppController instance icon in the File window. Then, click on
target in the Inspector window, select the loadImage: item, and click on the
Connect button. This sets the action of the Load Image menu item to

loadImage:. So, when the Load Image menu item receives a click from the user,
the loadImage: method will be invoked.

Now, save everything by choosing the Save menu item from the Document
menu. Give it the name MainMenu. This creates a MainMenu.gorm directory,
holding the archived view of the application.

Finally, create the AppController class' source files by selecting the
AppController class entry in the Classes tree view and choose the Create Class's
Files... from the Classes menu. Leave the names as they are and simply click on
the OK button. This creates two files: AppController.m and AppController.h.

Now, quit Gorm, open your favorite editor and modify AppController.h so it
looks like Listing 1. The complete source code with comments is available; see
Resources.

Listing 1. AppController.h

Then, modify AppController.m (the implementation of the AppController class)
so that it looks like Listing 2.

Listing 2. AppController.m

Now, create a very basic Model for the application—ImageModel. This small
class will hold the current displayed image. Now create the implementation of
the ImageModel class as shown in Listings 3 and 4.

Listing 3. ImageModel.h

Listing 4. ImageModel.m

Now, create a small property list, shown in Listing 5, in which you specify the
application name, description and the name of the main Gorm file to load upon
startup.

Listing 5. TiffViewerInfo.plist

Then, create a small GNUmakefile in order to compile and link your small
application. The GNUmakefile should look like Listing 6.

Listing 6. GNUmakefile

Finally, compile and start the small application:

https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418l6.html

make
openapp TiffViewer.app

Once the application starts, click on the Load Image menu item and select a
TIFF file. It should display properly in the window, as shown in Figure 9.

Figure 9. Displaying an Image

Porting to and from Apple Mac OS X

When porting an application from GNUstep to Mac OS X (or the other way
around), some important things must be considered. For example, when
porting to Mac OS X, you have to redo the user interface using Interface Builder
under Mac OS X. The following steps are needed to port the application to Mac
OS X:

1. From the File menu of Project Builder, select New Project... and select
Cocoa Application. Click on the Next button.

2. Specify the project name (Tiff Viewer) and the project location. Click on the
Finish button.

3. Now, select the Classes node and add the files AppController.m and
ImageModel.m from the Project menu.

4. Expand the Other Sources node and delete the main.m file.
5. Expand the Resources node and double-click on the MainMenu.nib node.

This will start Interface Builder.
6. Much like you did under Gorm, drag and drop the NSImageView in the

empty window and the Load Image menu item in the File menu.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418f9.large.jpg

7. Because the controller class (AppController) was created in the previous
section, you simply can reuse it under Mac OS X. In Interface Builder, from
the Classes menu, choose Read Files.. and select AppController.h.

8. From the File window, click on the Classes tab, select AppController and
from the Classes menu, choose Instantiate AppController.

9. Now, connect the outlets and the action like we did under Gorm.
10. Save the modified interface, and quit Interface Builder.
11. From the Build menu in Project Builder, choose Build and run. This will

compile and launch the application.

Once the application is launched, choose Load Image from the file menu and
select a picture to show. The final result should look like Figure 10.

Figure 10. The Same Application Running under Mac OS X

As you can see, we have ported the application without rewriting a single line of
code. Even if the application is quite simple, complex applications can be
developed under GNUstep and easily ported to Mac OS X. Affiche and
GNUMail.app are good examples of applications that are portable between
GNUstep and Mac OS X.

Going the other way, more care should be taken when porting applications
from Mac OS X to GNUstep. First, you have to redo the user interface of the
application using Gorm. Secondly, GNUstep currently does not provide an
implementation of some Cocoa classes like NSToolbar, NSDrawer or any core
foundation services. To avoid problems when porting a Mac OS X application
using those unimplemented functionalities to GNUstep, you will need to use

conditional compilation. Finally, one or more GNU Makefiles must be created in
order to compile the application under GNUstep.

Conclusion

As we have seen in this article, developing a GNUstep application is relatively
easy. GNUstep offers a rich, clean and consistent API for developing true cross-
platform applications in the Objective-C language.

New application kit back ends are being developed for Microsoft Windows,
DirectFB and Ghostscript, thus allowing support for a wider range of computing
environments. Also, OpenGL support has recently been added through the
implementation of the NSOpenGLView class.

Finally, GNUstep-based distributions are emerging. For example, the LinuxSTEP
Project aims to create a fully integrated, desktop Linux operating environment
that is not bound by some of the more traditional approaches of common
Linux distributions.

All listings referred in this article are available by anonymous download at
ftp.linuxjournal.com/pub/lj/listings/issue108/6418.tgz.

Resources

email: ludovic@Sophos.ca

Ludovic Marcotte (ludovic@inverse.ca) holds a Bachelor degree in Computer
Science from the University of Montréal. He is currently a software architect for
Inverse inc., a small IT consulting company located in downtown Montréal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/108/6418.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418s1.html
mailto:ludovic@Sophos.ca
mailto:ludovic@inverse.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The GNOME 2 Desktop Environment

Russell Dyer

Issue #108, April 2003

A look at the improvements and functionality of the GNOME 2 desktop.

The GNOME Foundation (gnome.org) released GNOME version 2.0 last summer
and version 2.2 in January 2003. These releases mark a move toward a
standardized desktop and a commitment to scheduled releases. GNOME has
become an excellent choice for first-time and nontechnical users. “With the
exception of some specialized applications, one can be fully productive in
business with the GNOME desktop. That's something that has only occurred
with free software in the last 12 to 18 months”, says Tim Ney, GNOME
Foundation executive director. With the improvements made in GNOME 2,
Linux's chances of increasing its market share rose significantly.

Changes to GNOME

The transition for GNOME 1.x users to GNOME 2 will involve a few minor
annoyances that can be expected when upgrading a desktop. Going from one
learning curve to another is common in Linux; however, in upgrading my
personal computer to GNOME 2, I was surprised to realize GNOME 1.4 had
given me a certain level of comfort I did not want disturbed.

The people at the GNOME Foundation told me they were looking to streamline
the desktop and cut down on the multitude of choices—to make workstations
simpler and reduce the learning curves for new users. As a result, many minor
applications, especially redundant ones, have either been eliminated or moved
to a submenu labeled Extras. GNOME 2 also provides a more consistent look
and feel from one program to another, thanks to an improvement in themes
and fonts. “We're trying to strike more of a balance—setting standards while at
the same time keeping the flexibility of Linux”, says Havoc Pennington, GNOME
developer and Foundation board member.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://gnome.org

Despite how content some of us may be with Linux in the rough, nontechnical
users don't always appreciate the struggle. To compete for larger markets,
GNOME has simplified the desktop. Pennington says, “It's not about removing
choices but giving you a default choice to get you started quickly and easily.” So,
instead of offering the user five different browsers and three different word
processors, there's one of each. If you don't like the ones picked out for you—
which were designed with the new GNOME 2 libraries—you can always find the
RPM on the Web and load it.

Figure 1. GNOME Desktop

Thanks to a usability study conducted by Seth Nickell of the GNOME Project, the
program menus have been nicely reorganized. GNOME no longer buries
utilities under several layers of submenus or within other programs. It also
does not require the user to make command-line changes or to edit
configuration scripts directly. Instead, GNOME 2 provides graphical interfaces
for just about all system settings in easy-to-find places under main menus.

GNOME comes with many applications and utilities. Because I cannot cover all
of them, I review a few key components from each section to help those new to
GNOME get started. Some components are new to GNOME 2, and others have
been included in GNOME for some time.

Panels

As is common with some desktop environments, GNOME provides users with
panels for launching and managing programs, as well as for monitoring their
systems. Panels can be placed at the top, bottom, left and right margins of the
desktop. More than one panel per margin can be set up, and panels can be

https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f1.large.jpg

floating so that they can be placed anywhere on the desktop. They can be
configured to remain open, to hide automatically, or they can resize themselves
as needed depending on the number of running applications. A panel also can
be set up with a button for extending and retracting the panel.

Initially, one panel is set up along the top margin with a menu for launching
programs. Another panel is placed along the bottom margin with icons for
launching each major component of OpenOffice, which is now the default office
suite for GNOME 2. It also has links to the web browser, Mozilla, and the default
e-mail client, Ximian's Evolution. All things considered, these are good choices
for the average Linux user and especially for nontechnical users. If you don't
like these choices, however, you easily can remove or add program launchers
to the panels. Simply right-click on an icon and choose Remove from the panel
to remove it. To add an item, right-click on an open section of the panel, select
the Add to panel menu, and pick the application you want to add from one of
the submenus.

Workspaces

The bottom panel initially contains a workspace switcher or pager. This isn't
unique to GNOME, but it's a useful component of the desktop, allowing you to
have multiple virtual desktops running simultaneously. You can open a couple
of related applications on one page and have another page with another set of
applications, so you can switch between them quickly without having to
minimize and maximize. For example, when using a program like The GIMP,
which opens each image and tool in a separate window, it's handy to be able to
switch to another workspace to check for e-mail without disturbing The GIMP
windows.

Applets

Depending on your computer, certain applets already are placed on the panels,
but several others may be added. By default, the clock applet is installed.
However, the choices for faces are now limited to a single digital one. The old
GNOME provided a half-dozen or so, including some stylish analog clock faces.
For laptops, a battery monitor applet is placed on the panel. You can add a
dictionary form, a weather report applet, a scrolling marquee stock ticker,
modem indicator lights, an e-mail box notifier, a CD player and audio volume
controls, and a floppy disk mounter—something useful for users who don't
know the mount command to save their data.

Continuity

One very useful feature of a fully integrated desktop environment is the ability
to copy and paste text between applications. In recent years, this has been

possible in GNOME, but it was fairly spotty and not very dependable. However,
this no longer seems to be much of a problem. You now can copy from a web
browser to a terminal window running vi to a word processor and so on.
Resolving this bug has greatly added continuity to the GNOME environment.

Figure 2. GNOME 2.2 Really Cleans Up the Fonts

Another continuity achievement is the improvement in screen fonts. In the
past, screen fonts had a jagged look. That's all changed, says GNOME Release
Coordinator Jeff Waugh of Sydney, Australia:

With GTK+ 2.0 [used in GNOME 2.0], we gained Pango,
a font layout, rendering and i18n library. But with
GTK+ 2.2 [used in GNOME 2.2], it now supports new
font configuration software written by Keith Packard,
fontconfig. This really cleans up the fonts. They span
all desktop applications in GNOME because everything
is based on GTK+.

The result is a desktop with a consistent, professional look throughout.

Nautilus

An integral part of GNOME is Nautilus, a graphical interface for managing files
and configuring Linux. The simplest way to access Nautilus is by double-clicking

on the Home icon on the desktop. Nautilus is a comprehensive drag-and-drop
file manager. You can copy and move files by key strokes, by dragging and
dropping a file's icon from one window to another or by right-clicking on a file's
icon and selecting a choice from the pop-up menu. The pop-up menu also
provides a screen for modifying permissions and ownerships. You also can now
add graphical markers to icons associated with specific files to earmark them
(e.g., important or personal).

Figure 3. Emblems Screenshot

If, like me, you've accumulated hundreds of data files on your computer, within
dozens of directories going down several levels, you'll appreciate Nautilus'
bookmark feature. Simply browse your way to a directory you use often, click
on the Bookmarks pull-down menu and select Add Bookmark. The next time
you want to get to that directory, click on the icon created for it in the
Bookmarks menu and you're there.

Configuring

Nautilus is also a graphical interface for configuring both GNOME and the
underlying OS. You can reach the GNOME utilities and configuration programs
through the menus or by clicking on the Nautilus pull-down menu labeled Go
and choosing Start Here. A window then opens with four program group icons
that read, Applications, Preferences, Server Settings and System Settings.
Incidentally, the desktop had an icon for it in version 1.4, but it has been
replaced by the configuration menus.

The Applications menu group connects to all the applications that appear in the
main menu on the menu panel. Here you can launch programs or add

application launchers to the menus. However, this doesn't work in version 2.0,
which was shipped with Red Hat 8.0. It has been fixed in version 2.2.

Under the Preferences menu group, you can modify a variety of settings such
as the background, the default font and the mouse settings. You can pick a
different theme or change the focus behavior of windows here. Those who are
more keyboard- than mouse-prone will appreciate the Keyboard Shortcuts
utility. With it you can create key combinations to do things like open favorite
programs or switch workspaces. Many are already set up in this utility, but they
can be modified.

The Server Settings program group provides links to utilities for configuring
server applications such as Apache's web service. This program group will have
more or fewer utilities depending on what's installed on a system. At a
minimum, though, there is an interface to the xinetd services located in the /
etc/rc.d/init.d directory. These are the same system services that are accessible
from the old setup program.

Figure 4. Nautilus System Settings

The System Settings program group has all the good stuff for configuring a
computer. Many of these utilities are coming from Red Hat but have been
developed for GNOME. This includes an interface for date and time and a utility
for changing the video display settings. Incidentally, this is now where you
adjust your X configuration; it's no longer part of the setup program, in case
you were frustrated not to find the X configurator there. With version 2.2,
support for multiheaded display with multiple video cards and monitors was
simplified. Waugh says, “Nautilus will manage both desktops with the same

process, and panels will be able to display on both heads, etc. There's even
support for migrating applications between displays and such.”

Clicking on the Network icon in the System Settings window will open a utility
(neat) for configuring network cards and the hosts file. The printer utility
(printconf-gui) allows the user to add printers, set print drivers and restart the
printer dæmon.

Accessibility

The improvement in GNOME 2 that will most directly affect increasing free
software's desktop market share is accessibility for people with disabilities.
“The US government can now use open-source desktop solutions, which wasn't
going to happen otherwise because of government regulations”, says
Pennington. He adds:

It also benefits normal users in a lot of ways. For
instance, one of the accessibility requirements is full
keyboard navigation [mentioned above]. You can do
just about anything from the keyboard now. Also,
themes have been enhanced because of accessibility
regulations: color contrasts, default font size and so
on.

With the accessibility barrier eliminated, Linux's target market has been
expanded greatly, and options for all users have been improved in the process.
Pennington says, “Sun Microsystems first brought accessibility to GNOME's
attention. It was a huge project involving a couple years of work and about 20
developers. We're very excited about it and we're proud of what has been
accomplished.”

Menus and Applications

Besides the system configuration menus mentioned above, in the main menu
there are several other menus for launching applications. A menu labeled
Accessories includes a calculator, a dictionary and a simple text editor (gedit).
Under the menu labeled Office, OpenOffice is included along with Dia for
creating organizational charts and flowcharts, along with MrProject for project
management. The Graphics menu provides links to The GIMP and a few other
image manipulation programs. The Games menu includes many games, some
of which utilize the GNOME libraries: a couple solitaire games, a few popular
line-up-the-dots games, a GNOME version of Minefield, Mahjongg and several
others. I can't list all of the applications installed by default, but as you can see,
streamlining the GNOME menus did not short-change the user.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f5.large.jpg

Figure 5. Ximian Evolution

Ximian Evolution

Probably the best application that makes use of the GNOME libraries is
Ximian's e-mail client, Evolution. It was rated by Linux Journal in November
2002 as one of readers' favorite e-mail clients available for Linux. Evolution
allows for multiple POP and IMAP accounts. It comes with e-mail filtering, spell
checking and the ability to attach binary files. Although it works with standard
POP and IMAP servers as is, with the addition of Ximian's proprietary
Connector, users can connect to a Microsoft Exchange server for group address
books and appointment planning—an important compatibility component.

One feature of Evolution that other e-mail programs don't have is virtual
folders. “V-Folders allow the user more flexibility and ease of organizing e-mails
—they're contextual views of your messages. That is something completely
unique to Evolution”, says Christine McLellan, senior product manager for
Evolution. For example, in addition to a view of e-mail shown in the inbox in
which messages can be sorted by date, subject or sender, a virtual folder is
provided that shows only the unread messages. This virtual folder can make
working through new messages quick and easy. Virtual folders also can be set
up for messages with certain subjects or from certain people. A word of caution
though, if you delete a message in a virtual folder, it's deleted from all folders at
the same time.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6469f5.large.jpg

Conclusion

The GNOME Foundation has made fabulous improvements to the desktop, and
they have achieved much-needed consistency and stability with GNOME 2.
“None of this would have happened without our developers, hundreds of which
aren't paid by GNOME and are not sponsored by their employers”, says Ney. At
this point, the Foundation's plans are to release stable updates every six
months, with the next one (v. 2.4) scheduled for June 2003. Version 2.4 will
include a Nautilus drag-and-drop CD burner function and more improvements
to fonts. With their commitment to scheduled improvements to the desktop,
GNOME has become a desktop environment that can be relied on by
businesses, users and developers.

Russell Dyer is a Perl programmer and a MySQL developer living and working
on a consulting basis in the New Orleans area. His Bachelor's degree is in
English, and he also has been working on a Master's degree in English. He
welcomes reader responses to his articles and can be reached at
russell@dyerhouse.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:russell@dyerhouse.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Hacking Red Hat Kickstart

Brett Schwarz

Issue #108, April 2003

How to create a single CD for fast and easy customized installation.

Installing Linux is a relatively easy task. However, I was faced with the task of
installing it on multiple machines repeatedly, which is time consuming and
prone to errors. This problem affected our whole group and other groups that
relied on us. So I started using Red Hat Kickstart to automate the installs. This
helped, but there still was room for improvement. What I ultimately wanted
was an automated installation that would fit on one CD, dynamically partition
the hard drives and contain all of the updated packages. I wanted to be able to
start an installation then walk away from the machine, returning only when it
was done. To accomplish this, I supplemented Kickstart with a customized
version of the Red Hat installation program, Anaconda.

Although not officially supported, Red Hat has made available several tools and
documentation to assist in customizing an installation. I describe a few of the
possible ways to do this here, which should give the reader enough information
to get started.

The following topics are covered in this article: replacing packages with
updates, reducing the installation size to fit on one CD, utilizing Kickstart in the
custom installation and creating a custom message screen.

The reader should have a good understanding of Linux installations in general.
I also assume that no esoteric hardware is being used, as other customizations
may be needed to accommodate such hardware.

Setting Up the Build Machine

The first step is to prepare the build computer. Because the installer tools are
specific to a particular release, the build computer needs to have the same Red
Hat release as the one used on the target(s). For our example, Red Hat 8.0 is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

being used. There are some differences between Red Hat 8.0 and previous
versions, and you need to investigate them if you use a previous version.

Once the build computer has the correct release installed, the Anaconda
packages need to be installed. These usually are not installed by default, so
they need to be manually installed. They are located on the second CD of the
standard Red Hat distribution and are named anaconda, anaconda-runtime
and anaconda-help (optional).

The next step is to create a directory structure where the installation files will
be located. The partition should have adequate space available, approximately
3GB. The actual location is based on your preference; for this article, the base
directory is located at /RH80. Under this directory, we create directories for
each of the CDs:

mkdir -p /RH80/CD{1,2,3}

We are not concerned with the source packages, so CD4 and CD5 are not
included.

We make an additional directory where we can create the custom installation:

mkdir /RH80/ONE_CD

Now we can copy the contents of the CDs to the respective directories. Mount
the first CD, then issue this command:

cp -a /mnt/cdrom/* /RH80/CD1/

Repeat this step for CD2 and CD3.

Copy the contents of the CD directories to the ONE_CD directory, but hard link
them instead of actually copying the files. This saves space and is quicker:

cd /RH80
cp -al CD1/* ONE_CD/
cp -al CD{2,3}/RedHat/RPMS/* ONE_CD/RedHat/RPMS/

You'll get an overwrite TRANS.TBL message; you can answer no.

Selecting the Packages

Next we trim down the contents of the ONE_CD directory so it fits on one CD. I
assume the CD size to be 700MB. I will not go into detail on how to do this, as

the list of files to remove from the distribution is different from one installation
to another. However, here are some tips for trimming down the distribution:

• Don't include the source RPMs.
• Remove the dosutils directory, as these will be automated installs.
• Remove any unnecessary packages. This can be complicated, because you

need to make sure that the dependencies are still intact.

You should keep a record of the files that were removed. You can use this list in
case you need to back out, and you will need it later if you edit the comps.xml
file.

For the package selection, I logged to a file all of the base and core group
packages with their dependencies (according to the comps.xml file). In order to
find this information, I used the script getGroupPkgs.py (see Resources):

cd /RH80/ONE_CD/RedHat/base
getGroupPkgs.py comps.xml > /RH80/pkglist

Any additional package names can be appended to the end of this file. After my
list was complete, I removed the packages not on the list by using the
syncRpms.py script (see Resources). The arguments are the package directory
and the list of packages is generated from getGroupPkgs.py. This script
removes the packages not listed in the package list and prints out the package
names. We redirect that to a file so we have a log:

cd /RH80
syncRpms.py ONE_CD/RedHat/RPMS/ pkglist > pkgs_rem

We can monitor the installation size by using the du command. The -h option
displays the result in human readable format, and the -s option gives a
summary of the whole directory tree:

du -hs /RH80/ONE_CD

The hdlist files actually decrease in size after they are regenerated (see below),
because we removed many of the packages. This in turn reduces the size of the
CD image.

The tricky part about removing packages is they may break dependencies. Even
though getGroupPkgs.py resolved the dependencies base on the comps.xml
file, they are not guaranteed to be accurate. Adding additional packages may
break dependencies as well. One way to verify their accuracy is to create a
temporary RPM database, and then do a test install on that database with the
packages you have selected:

cd /RH80/ONE_CD/RedHat/RPMS
mkdir /tmp/testdb

rpm --initdb --dbpath /tmp/testdb
rpm --test --dbpath /tmp/testdb -Uvh *.rpm

Look for any error messages regarding failed dependencies. If any appear,
resolve the dependencies by either adding or removing files that caused the
discrepancy, and repeat the above test.

Once the package dependencies have been resolved, you can download the
package updates pertinent for your installation. Put these files under a
separate directory:

mkdir -p /RH80/updates/RPMS/

Remove the old files from the build directory and then link the updated files to
the build directory. Do this for each updated package (where old_rpmfile is the
previous version of the package):

cd /RH80/ONE_CD/RedHat/RPMS/
rm
... remove each old rpm
cd /RH80/updates/RPMS/
cp -l
... do this for each rpm

You should keep a record of the updated packages, in case you need to back
them out. It's also a good idea to check the dependencies and size one more
time, in case they changed after the packages were updated.

Next, we check the internal checksum of each package with the -K option to
rpm. First we need to import the key:

cd /RH80/ONE_CD/RedHat/RPMS
rpm --import /usr/share/rhn/RPM-GPG-KEY
rpm -K *.rpm | grep "NOT *OK"

This isn't strictly necessary, but because we downloaded package updates, this
verifies they are valid.

Preparing the Installation Files

Once all of the packages have been updated, we need to regenerate the hdlist
files. They contain only the headers of the packages, which allows Anaconda to
retrieve the header information more quickly. Because we updated packages,
we need to regenerate these files with the genhdlist tool, which is part of the
anaconda-runtime package:

/usr/lib/anaconda-runtime/genhdlist /RH80/ONE_CD/

Next we need to handle the comps.xml file. This file defines package groups
and package dependencies (although they are not guaranteed). The file

structure was changed in Red Hat 8.0 to be XML-based; in previous releases it
was only a simple text file with some obscure tags. We need to ensure that
packages defined within groups are included in our installation. We need to be
concerned only with groups we are installing. If packages are missing (or if
packages were added), we need to edit the comps.xml file (see Resources).
Because we chose all of the packages in the Core and Base groups, however,
we don't need to edit this file. We simply need to specify those groups under
the %packages directive in the Kickstart file. See Listing 1 for an excerpt from
the Kickstart file.

Listing 1. Excerpt from the Kickstart File

Technically, we can leave out the @Core and @Base groups, as they are
installed by default. They are included here for illustrative purposes.

Creating a Custom Message Screen

We also want to create a custom message screen to give the user special
instructions. The message screens are kept in the boot.img file (for CD-ROM
installs) under the images directory. This is a DOS filesystem, so we can mount
it to get to the contents:

cd /RH80/ONE_CD/images
mount -o loop -t msdos boot.img /mnt/boot

Looking in /mnt/boot, you see six message files: boot.msg, options.msg,
general.msg, param.msg, rescue.msg and snake.msg. We create our own
message file and call it custom.msg, an arbitrary name. Because snake.msg
isn't really used, we replace that entry within syslinux.cfg with custom.msg. Edit
syslinux.cfg in /mnt/boot and replace F7 snake.msg with F7 custom.msg.

A few other modifications were made to the syslinux.cfg file; refer to Listing 2.
The default entry was changed from linux to ks. If the timeout occurs or if the
user presses Enter at the boot prompt, then the ks label is used. Additionally,
the timeout value was decreased from 600 to 60, so the installation can start
sooner if there is no input from the user. The display entry was changed as
well. Instead of boot.msg being the initial message screen, we wanted our
custom message to be displayed. For the append line under the ks label, we
added two things. The first is the keyword text, to enable text-based installs.
Then we changed the keyword ks to ks=cdrom:/ks.cfg. This hard codes the
Kickstart location so the user doesn't have to specify it at the boot prompt.

Listing 2. Modified syslinux.cfd File

Next we create our custom.msg file. Listing 3 shows our custom.msg. The
contents of the file can be marked up, such as adding color around words. For

https://secure2.linuxjournal.com/ljarchive/LJ/108/6473l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6473l2.html

example, ^O09Custom^O02 changes the color of Custom to blue, and ^O02
changes it back. See the syslinux reference in the Resources section for more
information.

Listing 3. Custom Message

Once we have composed the custom message, we need to umount the boot
image:

umount /mnt/boot

Building the CD

Before actually creating the CD, you may want to test it by doing a network
install. See the Red Hat Kickstart documentation on how to do this.

We want this custom installation to be automated, so we put the Kickstart file
on the CD itself. You can create the Kickstart file with any text editor, or you can
use the GUI tool called Kickstart Configurator.

In the %pre section, add a shell script to probe the hard drives and dynamically
create the partition information based on the number of drives. We take
advantage of the fact that Kickstart executes the %pre section and then re-
reads the Kickstart file. When it reads it for the second time, it includes the /
tmp/partinfo file where the %include directive is located (see Listing 1). The /
tmp/partinfo file is the output from the script. We use the list-harddrives
command, which lists the available hard drives and their sizes. Having the
partition created dynamically frees us from having to create multiple Kickstart
files that hard code the partition information.

Once the Kickstart file is created, name it ks.cfg and place it in the root directory
of our installation tree (/RH80/ONE_CD/). It is possible to create more than one
Kickstart file and place all of them on the CD. Different Kickstart files might
address different hardware configurations.

We can now create the ISO image. From our previous steps, the distribution
should be small enough to fit on one CD and contain all of the updated
packages. The mkisofs program creates the image, and then we can copy the
image to the CD. The command to create the ISO image is:

cd /RH80/ONE_CD
mkisofs -r -T -J \
-V "My Custom Installation CD" \
-b images/boot.img \
-c images/boot.cat \
-o /RH80/mydist.iso \
/RH80/ONE_CD

https://secure2.linuxjournal.com/ljarchive/LJ/108/6473l3.html

Refer to Table 1 for a description of the options.

Table 1. Options Used for mkisofs

The last parameter to mkisofs is the source directory of the contents that need
to be included in the image file (e.g., our custom installation directory). Several
other parameters are available that you may want to use. For example, the -A, -
P and -p options add additional labeling information to the image. The -m and -
x options also allow you to exclude certain directories and file patterns from
the image. See the mkisofs man page for additional information.

Next, add a checksum to the ISO image. This is not strictly necessary, but it
provides a way for end users to check the integrity of the CD. The tool to add a
checksum to the ISO image is called implantisomd5. To add a checksum to the
ISO image, use the following command:

implantisomd5 /RH80/mydist.iso

A companion tool, checkisomd5, can be used to verify the checksum for you:

checkisomd5 /RH80/mydist.iso

The CD also can be verified during the installation. After booting from the CD,
the user can issue this command:

linux mediacheck

Now we can burn the image to the CD. I assume the CD writer is already set up
on your system. We use cdrecord below, but you can use other programs as
well. The command is invoked as:

cdrecord -v speed=4 dev=0,0,0 /RH80/mydist.iso

The speed and dev options depend on your system. The device for the dev
argument can be determined by using the -scanbus option to cdrecord:

cdrecord -scanbus

Using the CD

Once the image is burned onto the CD, insert the CD into the target machine
and boot the machine. You should get the custom message that you created
earlier. At this point, you can either press Enter at the boot prompt or let it
timeout. When it times out it uses the default label, which we specified as ks
(Kickstart).

If we did everything right, the installation should proceed without user
interaction. In my experience, the installation takes approximately ten minutes.
This may differ depending on your exact configuration.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6473t1.html

Conclusion

With a combination of Kickstart and a customized Anaconda, a powerful and
flexible installation can be created. This installation greatly improved cycle time
and reduced errors for my project. I was able to install multiple machines,
multiple times almost effortlessly. In this article, I touched on only a few ways
to take advantage of Kickstart and Anaconda, but there are many other
possibilities. I encourage those interested to read the documentation in the
Resources section and to join the Kickstart and Anaconda mailing lists for
further information.

Resources

email: bschwarz@pamd.cig.mot.com

Brett Schwarz lives near Seattle, Washington, with his wife, son and dog.
Although he is familiar with multiple platforms, his platform of choice is Linux.
He is a computer and wireless systems consultant. He can be contacted via his
home page at www.bschwarz.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6473s1.html
mailto:bschwarz@pamd.cig.mot.com
http://www.bschwarz.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The USB Serial Driver Layer, Part II

Greg Kroah-Hartman

Issue #108, April 2003

How can you create a USB device that works with the generic USB serial driver?
Read and learn.

In the first part of this article [LJ, February 2003], I introduced the USB serial
layer and the basics of how to register a driver with the layer. This article
explains some of the details about how data flows through the layer and how
USB serial devices show up in sysfs.

Generic USB Serial Devices

In Part I of this article, I briefly mentioned the generic USB driver in the context
of getting a USB device to communicate through it easily, with no custom
kernel programming. Unfortunately, I didn't explain exactly how to do this, and
many people wrote in with questions.

To create a USB device that works with the generic USB serial driver, all that is
needed is two bulk USB endpoints on the device, one IN and one OUT. The
generic USB serial driver will bind those two endpoints together into a single tty
device that can be read from and written to from user space. For example, a
device with the endpoints as described by /proc/bus/usb/devices (Figure 1)
shows up as a single port device and produces the following kernel message
when plugged in:

Generic converter detected
Generic converter now attached to ttyUSB0
 (or usb/tts/0 for devfs)

Then any user can send data to the device through the /dev/ttyUSB0 node.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. A Sample /proc/bus/usb/devices Entry

If a device has more than one bulk IN and bulk OUT pair, multiple ports are
assigned to the device. For example, a device with the endpoints as described
by /proc/bus/usb/devices (Figure 2) shows up as a two-port device and
produces the following kernel messages when plugged in:

Generic converter detected
Generic converter now attached to ttyUSB0
 (or usb/tts/0 for devfs)
Generic converter now attached to ttyUSB1
 (or usb/tts/1 for devfs)

For this device, both /dev/ttyUSB0 and /dev/ttyUSB1 can be used to
communicate.

Figure 2. Entry for a Two-Port Device in /proc/bus/usb/devices

The order of the endpoints is not important, so all of the IN endpoints could be
first, followed by the OUT endpoints (unlike the previous examples that
alternate). The USB serial core will take all of the IN and OUT endpoints and
pair them up in the order they are seen. It also will assign an interrupt endpoint
to a bulk pair, if one is present, but the interrupt endpoint will not be used by
the generic driver; it can be used only by a USB serial driver within the kernel.

To get the generic USB serial driver to bind to the device, the USB vendor and
product IDs need to be specified as a module parameter when the usbserial
module is loaded. For example, to bind to the previously described device with
a vendor ID of ffff and product ID of fff8, use the following command:

modprobe usbserial vendor=0xffff product=0xfff8

If the user cannot be expected to load the usbserial module with the specific
device ID, or if more than one device ID should be used by the generic USB

serial driver, a very tiny driver can be written. An example of this is shown in
Listing 1. In this driver, no callback functions are specified, only the product and
vendor IDs of the devices that should be controlled. This is shown in the
declaration of the struct usb_serial_device_type:

static struct usb_serial_device_type tiny_device = {
 .owner = THIS_MODULE,
 .name = "Tiny USB serial",
 .short_name = "tiny",
 .id_table = id_table,
 .num_interrupt_in = NUM_DONT_CARE,
 .num_bulk_in = NUM_DONT_CARE,
 .num_bulk_out = NUM_DONT_CARE,
 .num_ports = 1,
};

Specific vendor and product IDs should be listed in the id_table pointer:
static struct usb_device_id id_table [] = {
 { USB_DEVICE(MY_PRODUCT_ID, MY_DEVICE_ID1) },
 { USB_DEVICE(MY_PRODUCT_ID, MY_DEVICE_ID2) },
 { USB_DEVICE(MY_PRODUCT_ID, MY_DEVICE_ID3) },
 { } /* Terminating entry */
};

Listing 1. The Tiny Tiny USB Serial Driver

In all, this driver contains only two functions, which are two and three lines
long, and three variable definitions. With it, all of the generic USB serial driver
functionality will occur for the specified devices. The driver automatically will be
loaded for the device when it is plugged in to the system, which is also a nice
feature. This has to be one of the smallest working Linux kernel drivers
possible. Compile it with:

echo "obj-m := tiny_tiny_usbserial.o" > Makefile
make -C <path/to/kernel/src> SUBDIRS=$PWD modules

The Windows operating system also supports this kind of device interface
through the Windows USB OPOS serial driver, which will create virtual “COM”
ports for the device. This allows hardware vendors to create USB devices that
do not require any custom driver development for both Linux and Windows
machines, which can be highly desirable.

Life Cycle of a USB Serial Device

When a USB-to-serial device is plugged in, a long series of steps are taken to
allow a specific USB-to-serial driver to control an individual tty device. The steps
are as follows:

• The USB hub driver detects a new device. It assigns a USB number to the
device and reads the basic USB description from the device, which it then
populates into a struct usb_device with a number of struct usb_interfaces
that represent the whole USB device.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6573l1.html

• The USB core takes the device and registers the USB interfaces with the
kernel driver core.

• The kernel driver core looks through the currently registered list of USB
drivers to determine if any of them will accept this device.

• Because this is a USB-to-serial device, the USB serial core accepts control
of the device from the kernel driver core.

• The USB serial core builds up a single struct, usb_serial, and calls the
specific USB serial driver's probe() function with this structure.

• The USB serial driver's probe() function initializes the device if it should
and then returns control back to the USB serial core.

• The USB serial core creates the struct usb_serial_port structures
depending on the number of serial ports on this specific device and then
calls the USB serial driver's attach() function, if present.

• After the attach() function returns, the individual struct usb_serial_port
structures are registered with the kernel driver core.

• The kernel driver core calls back into the USB serial core for every
individual port.

• The USB serial core calls the individual port_probe() function in the USB
serial driver for the port, if present, and then registers the port with the
tty layer, completing the initialization process.

After this process, the tty device node is bound to the individual USB serial port.
When the device node is opened by a user, the following steps happen in the
kernel:

• The kernel looks up the device node and determines that the tty layer has
registered this node, so it calls the tty layer's open function.

• The tty layer looks up the device and determines that the USB serial core
has registered this node with it, so it calls serial_open() in the drivers/usb/
serial/usb-serial.c file.

• The serial_open() function determines what specific USB serial driver is
registered for this node.

• The module count for the specified USB serial driver is incremented in
order to prevent it from being unloaded while a user is talking to the
device.

• If the specified USB serial driver has an open() function, it is called with
struct usb_serial_port for the specific port being passed to it.

• The USB serial driver then can do any hardware-specific open
functionality that is needed and send off any USB urbs that are necessary
to start accepting data from the device.

When a user calls write() on the device node to send data to the specified serial
port, the following steps happen in the kernel:

• The kernel calls the tty_write() function within the tty core. It has
previously set up this pointer during the open call, so it will not look it up
again.

• tty_write() calls the line discipline's write() function for this specific tty
device.

• The line discipline calls the USB serial core serial_write() function.
• The serial_write() function determines the specific USB serial driver used

by this file and calls the write() function of it.
• The USB serial driver can then copy the data into a buffer and send it out

the USB connection to the device, handling any special formatting issues
the device might require.

• After the data has been sent completely, the driver can wake up the tty
device in order to send any buffered data to it. This should be done with
the simple call:

schedule_work(&port->work);

When data is received by the USB serial driver for a specific port, it should place
the data into the specific tty structure assigned to that port's flip buffer:

for (i = 0; i < data_size; ++i) {
 if (tty->flip.count >= TTY_FLIPBUF_SIZE)
 tty_flip_buffer_push(tty);
 tty_insert_flip_char(tty, data[i], 0);
}
tty_flip_buffer_push(tty);

When a user calls read() on the device node, any data in the tty flip buffer for
this port is returned.

When the device node is closed by the user, the following steps occur within
the kernel:

• The tty_release() function is called in the tty core by the kernel.
• tty_release() determines if this is the last reference held on this device

node (remember, a device node can be opened by multiple programs at
the same time). If it is, the USB serial core serial_close() function is called.

• The serial_close() function calls the USB serial driver's close() function,
allowing it to shut down any pending USB transfers and get into a quiet
state.

• The USB serial core then decrements the module count for the USB serial
driver, possibly allowing it to be unloaded.

sysfs Representation of USB Serial Devices

In the previous description of how the USB serial device becomes bound to a
specific USB serial driver, the kernel driver core is called a number of times.
This happens because the USB serial core is represented as a bus within the
kernel driver model, allowing multiple ports to be present on a single USB
device.

For example, the following device is an eight-port USB-to-serial device on the
first USB bus in the system. Its location in sysfs is /sys/devices/pci0/00:09.0/
usb1/1-1/1-1.1. Within that directory are the following directories and files:
1-1.1:0/, bcdDevice, bConfigurationValue, bDeviceClass, bDeviceProtocol,
bDeviceSubClass, bmAttributes, bMaxPower, bNumConfigurations,
bNumInterfaces, idProduct, idVendor, manufacturer, name, power, product,
serial, speed, ttyUSB0/, ttyUSB1/, ttyUSB2/, ttyUSB3/, ttyUSB4/, ttyUSB5/,
ttyUSB6/ and ttyUSB7/.

The files in this directory provide the USB-specific information for this device, as
do the files in the 1-1.1:0/ directory, which is the first interface on this device.
The ttyUSB* directories are created by the USB serial core and contain the
following files: dev, name and power.

The dev file contains the major and minor number for this specific device,
which then can be used to determine the proper device node for talking to it. In
the /sys/bus/usb directory, this USB device is seen as being bound to the
io_edgeport USB driver (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f3.large.jpg

Figure 3. The /sys/bus/usb Tree

There is also a usb-serial bus, which shows the individual USB serial ports that
are registered with the kernel (Figure 4). As these individual ports are tty
devices, they also show up in the tty class directory (Figure 5).

Figure 4. The /sys/bus/usb-serial Tree

Figure 5. The /sys/class/tty Tree

Through all of these different links back to the single USB device, the type of
USB device, how many tty ports it has and what type of USB serial driver
controls it, easily can be determined. This is also much more information than
what was shown in the /proc/tty/driver/usb-serial file, as described in Part I of
this article.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6573f4.large.jpg

The sysfs interface is described here only briefly, but it contains a wealth of
information about all physical and virtual devices that are contained in a
system at a given point in time. For a better description of sysfs and the kernel
driver model, see Pat Mochel's 2003 linux.conf.au paper at www.kernel.org/
pub/linux/kernel/people/mochel/doc/lca.

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.kernel.org/pub/linux/kernel/people/mochel/doc/lca
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/lca
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux Kernel Cryptographic API

James Morris

Issue #108, April 2003

A new general framework offers much-needed crypto services to all parts of the
kernel.

This article provides a brief overview of the new cryptographic API for the Linux
kernel. It is aimed at anyone with a technical interest in Linux, such as system
administrators, and other curious people who would like to gain insight into the
API's design, implementation and application. Some knowledge of kernel
internals is useful but not essential for a broad understanding of API concepts.

The history of this API is short. Not long before the Halloween 2002 kernel
feature-freeze, an IPSec implementation being developed by Dave Miller and
Alexey Kuznetzov became slated for inclusion into the 2.6 kernel. IPSec requires
cryptographic support within the kernel, which along with an increasing general
need for kernel cryptography, prompted the development of a new
cryptographic API.

Design

Although initially aimed at supporting IPSec, the API has been designed as a
general-purpose facility, with potential applications including encrypted files,
encrypted filesystems, strong filesystem integrity, the random character device
(/dev/random), network filesystem security (for example, CIFS) and other kernel
networking services requiring cryptography.

A specific design requirement was that the API work directly in place on page
vectors. A page is the primary unit of memory managed by the kernel. A page
vector-based API allows for deep integration with kernel substructures, such as
the VFS and networking stack, as well for as scatter-gather operations. In the
case of IPSec, cryptographic transforms may be applied directly to
discontiguous memory pages associated with network packets.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Simplicity was a significant design goal, which is always a good idea in general,
and particularly important for kernel and security code.

Deployment flexibility was another goal. For example, the API has a flexible
policy toward algorithms; they can be loaded dynamically as kernel modules,
without the API needing to know anything about them in advance.

Future design goals include:

• Hardware support for cryptographic accelerator cards and NICs with IPSec
offload.

• Support for specification of algorithm preferences when multiple
implementations are available, for example, optimized assembler versions
and various hardware implementations.

• Asymmetric cryptography support (RSA), which may be needed in the
kernel to support multicast IPSec and kernel module signature
verification. This may be a contentious issue, as asymmetric cryptography
is generally slow and complicated—both are very good reasons to exclude
it from the kernel.

• A unified API for user-space applications wishing to utilize available
cryptographic hardware, such as SSL, IPSec key exchange, secure routing
protocols and DNSSec.

• Further optimizing the API memory footprint to cater to embedded
systems scenarios.

Algorithms

Three types of algorithms are currently supported by the API:

1) Digests (one-way hash functions)--these take arbitrary messages and
produce short, fixed-length message digests. To be one-way, the hash function
must be designed so it is easy to generate the hash but difficult to compute the
original message from the hash. For cryptographic purposes, hash functions
need to be collision-resistant, so that it is difficult for two messages to hash to
the same value. Applications include ensuring data integrity and generating
message authentication codes for network protocols. Examples of digest
algorithms are MD5 and SHA1.

A message authentication scheme called HMAC (RFC2104) is included within
the API, which will operate on any standard digest algorithm. This is currently
used to generate authentication data for IPSec packets.

2) Ciphers—these algorithms implement symmetric key encryption, where a
plain-text message is encrypted with a key to produce ciphertext. Generally, the

same key is used to decrypt the ciphertext back into the original plain text. It
should be easy to encrypt and decrypt messages with the key (which must be
kept secret) but difficult to do so without it. Applications include encrypting
data to ensure privacy and generation of message authentication codes.
Examples of cipher algorithms are Triple DES, Blowfish and AES.

There are two types of ciphers: block ciphers operate on fixed-length blocks of
data (e.g., 16 bytes), and stream ciphers use a key stream to operate on as little
as one bit of data at a time.

Ciphers also may operate in a variety of modes, such as Electronic Codebook
(ECB), where each block of plain text is simply encrypted with the key, and
Cipher Block Chaining (CBC), where the previously encrypted block is fed into
the encryption of the next block.

3) Compression—this is often used in conjunction with encryption so that it is
more difficult to exploit weaknesses related to the original plain text as well as
to speed up encryption (i.e., compressed plain text is shorter). By definition,
encrypted data should be difficult to compress, but this adversely affects
performance over links that normally utilize compression. Compressing data
before encryption helps reduce this performance hit in many cases. Examples
of compression algorithms are LZS and Deflate.

So far, algorithm implementations from well-known sources have been
adapted for use with the API, as they are more likely to have been reviewed and
widely tested. For inclusion into the mainline kernel, algorithms generally must
be patent-free (e.g., IDEA will not be a candidate for inclusion until around
2011), based on open, recognized standards and submitted with a set of test
vectors.

Page Vectors

Before discussing the API structure, let's briefly look at memory pages and page
vectors. As mentioned previously, a page is the fundamental unit of memory
managed by the kernel (on i386, pages are 4KB in size). Consider a buffer
containing, say, 1,460 bytes of user-space data. It belongs to a specific page in
the kernel, offset from the start of the page by some amount, and has a length
of 1,460 bytes. This buffer can be represented as a page-based tuple:

{ page, offset, length }

An interface, such as the cryptographic API that works directly with pages,
needs to deal with this tuple, or page vector. An existing kernel data structure
called a scatterlist is employed, which contains a page vector and normally is
used for scatter-gather DMA operations.

The cryptographic API uses scatterlists to operate on arrays of discontiguous
page vectors. The primary purpose of scatter-gather in the kernel is to avoid
unnecessary copying of data. It also seems to result in cleaner code. Many
readers will be familiar with scatter-gather I/O in the form of the readv() and
writev() system calls. The kernel cryptographic API uses the same general
concept but operates on pages instead of plain memory buffers.

API Structure

The API deals with two primary objects:

• Algorithm implementations—kernel modules that contain the underlying
algorithm code.

• Transforms—objects that instantiate algorithms, manage internal state
and handle common implementation logic. Transforms are managed by
crypto_alloc_tfm() and crypto_free_tfm(). A set of API wrappers are
provided to simplify transform use and to allow the properties of a
transform's underlying algorithm to be queried.

The following pseudo-code demonstrates a typical use of the transform
interface, where some kernel code needs to encrypt data using the Blowfish
cipher in electronic codebook (ECB) mode:

tfm = crypto_alloc_tfm("blowfish",
 CRYPTO_TFM_MODE_ECB);
crypto_cipher_setkey(tfm, key, keylength);
crypto_cipher_encrypt(tfm, &scatterlist,
 numlists);
crypto_free_tfm(tfm);

As shown in Figure 1, the API is layered so that core logic is hidden from
cryptography users and algorithm implementors. This core logic includes
generic transform management, scatterlist manipulation and abstraction of
underlying algorithms. Further down, per-algorithm-type logic is handled, such
as cipher processing modes and utilizing digests for generating message
authentication codes.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6451f1.large.jpg

Figure 1. Structure of the Kernel Cryptographic API

The algorithm management layer contains logic for locating, loading and
reference counting algorithm implementations. The latter is required to
prevent nasty things from happening if an attempt is made to unload an
algorithm module that is still in use.

An algorithm runtime query interface is provided so that calling code can
determine which algorithms are available on the system. This is primarily
intended for use by key negotiation protocols, such as ISAKMP/IKE.

Finally, the algorithm registration interface allows modules to register one or
more algorithms, specifying various properties such as the name of the
algorithm, its block size and minimum and maximum key sizes. The list of
currently registered algorithms and their properties may be viewed in /proc/
crypto.

Conclusions

This is still a young API that is likely to evolve somewhat, especially if some of
the future design goals listed here are implemented.

In terms of API users, IPSec works and performs well, especially for a first cut
with no performance optimizations. Existing kernel components that need

https://secure2.linuxjournal.com/ljarchive/LJ/108/6451f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6451f1.large.jpg

cryptography are expected to convert to the new API over time, and hopefully,
cool new projects will be developed because of it.

Acknowledgements

Many thanks to David Miller and Nancy Chan for reviewing this article.

Resources

email: jmorris@intercode.com.au

James Morris is a software developer involved with the Netfilter, LSM, SELinux
and Linux kernel cryptographic API projects. He works as an independent
consultant in Sydney, Australia.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6451s1.html
mailto:jmorris@intercode.com.au
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Content Management

Reuven M. Lerner

Issue #108, April 2003

Give your web site newspaper-grade content management with open-source
software.

Remember the good ol' days of the Web? Back when a webmaster was a jack-
of-all-trades, doing everything from graphic design to database programming
to DNS table manipulation? As the Web matured, however, one-person web
sites became increasingly rare. True, it's still relatively easy for a someone to
create and maintain a simple web site, but even the smallest organizations
typically split responsibility between programmers, designers and the people
who provide content. Moreover, many organizations want different people to
be responsible for different types of content, with each having ultimate
authority over a particular section.

Of course, this is old hat to the publishing world. Back when I edited my college
newspaper, we used a composition and typesetting system called Atex. Atex
was beloved for many reasons but mostly because it worked the way that
newspapers do. Reporters using an Atex system would send articles to their
editors by pressing the Send button on a massive, specialized keyboard. Editors
could look at the list of articles awaiting their attention, edit articles, send an
article back to the reporter who wrote it or send articles onto the Typesetting
department. By design, everyone was forbidden from viewing, modifying or
retrieving articles they had sent to the next person in the process chain. The
image of a reporter shouting “stop the presses!” might be romantic and
inspiring, but it is also unrealistic in today's world, where newspapers are
businesses with tight deadlines.

As web sites grow to resemble newspapers, we should not be surprised to see
them adopting software—known as content management systems, or CMS—
that works much like Atex used to do. But organizing documents, people and
work flow is a difficult task, particularly if you try to put everyone's needs into a
single software package. So even though content management is crucial to an

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

increasing number of web sites, CMS salespeople have gained a reputation for
selling bloated, expensive software that is large on promises and small on
delivery.

What Does a CMS Do?

One of the problems with content management is that every web site has
different needs. For this reason, proprietary CMS software usually is sold in two
parts. The customer first pays for the basic software and then pays at least as
much in consulting and support services. Thus, CMS software is not only
expensive but requires a fair amount of implementation and testing time. In
other words, a CMS usually is closer to a toolkit than a finished application.
Most of these toolkits include the following functionality:

• Users: if everyone on a web site is going to be given different permissions,
obviously each user will need a different login. A CMS thus comes with
user-management software, allowing you to create, delete, edit and ban
users on the system. Most systems also make it possible for users to
retrieve forgotten passwords.

• Permissions: just as Linux allows you to set read, write and execute
permissions on different files, CMS software typically allows the site
administrator to define different permissions for each user on the system.
To return to our newspaper analogy, reporters are allowed to enter
content, editors can modify content (or return it to a reporter) and
publishers can make content publicly available (or return it to an editor).

• Groups: although you theoretically can assign permissions to individual
users, this quickly becomes tedious. So, most CMS software allows you to
group users together for the sake of assigning permissions. For example,
you can indicate that Tom, Dick and Harry can write and edit but not
publish, or you can assign these permissions to the Canonical Names
group, with the same effect.

• Templates: many templating systems exist, including JSP, HTML::Mason
and PHP. The best ones separate design, content and programming logic
from each other, so designers, writers and programmers can work on a
site simultaneously without stepping on one another's toes.

• Publishing: the Web's biggest double-edged sword is its
instantaneousness. The moment you modify foo.html on your server,
everyone can see what changes you made. What if you made a mistake?
What if you want to test the file beforehand? The CMS solution is to mark
each piece of content as published when it should be viewed by the
outside world. Until an article has been published, it is invisible.

• Staging or previewing: just as newspaper and magazine publishers want
to see what the finished product will look like before they begin to print
actual copies, web publishers want to preview their site before it is live on

the Web. Thus, many sites run staging servers, identical in most ways to
their production servers except they are hidden from the outside world.
Testing is done on these preview servers; when the editor or publisher is
satisfied, content is pushed to the production servers. A CMS almost
certainly will allow you to set up your system in this way.

• Work flow: staging is the final step in what might be a long journey from
an author's workstation to a production web server. How content makes
its way through the system is known as work flow, and much of what a
CMS does is allow you to define and manage that work flow. Should
reporters be allowed to yank stories back from their editors? How many
levels of editors do you want? Where do designers fit in? Who gives the
final send-off to content? All of these questions are handled by the work-
flow portion of a CMS.

• Publishing dates: the good news about the Web is that things are
published instantaneously. But what if your corporation is announcing a
stock split and cannot reveal that information until 9:00 AM on Monday?
You could sit next to the computer, waiting until the clock strikes 9:00 to
press the Enter key and revealing the document for everyone to see. Or
you can use a CMS, which typically allows you to specify when an article
will appear, as well as when it should expire.

• Web-based editing: although a web browser is one of the worst possible
programs to use for serious text editing, most CMS systems allow you to
write some or all of your documents using your browser. To be fair, just
about every CMS also lets you upload files from your local computer.
Web-based editing comes in handy when you're on the run or want to
touch up one or two things. Of course, any CMS that offers such editing
facilities also checks that someone trying to edit a page is authorized to do
so.

• Search: most CMS packages offer some sort of search facility, so you can
find documents within the system.

Although this list is by no means exhaustive, it should give you a sense of the
types of problems that a CMS tries to solve. But as you can imagine, every CMS
offers a slightly different set of features and different ways of attacking these
problems.

Because a CMS spends much of its time storing, retrieving and tracking content,
it should come as no surprise that a database is almost essential to a CMS.
Commercial CMS packages typically expect you to use a proprietary database
system, such as Oracle or Microsoft's SQL Server. As you might expect, open-
source CMS software generally is designed to work best with open-source
databases, such as MySQL or PostgreSQL. Zope's Content Management
Framework (CMF), which is a toolkit for creating a custom CMS, also uses a

database, but in this case, it's the built-in Zope Object Database (ZODB) rather
than an external relational database.

Content Management vs. Application Development

If you have ever developed serious web applications, you immediately will see a
large degree of overlap between the features a CMS offers and the features you
expect from a web application server. Most CMS software sits on top of a web
application server, using its underlying infrastructure to handle HTTP
connectivity, users, groups, permissions and even the database API. In some
ways, CMS was the first popular class of application to be deployed on the Web,
much as spreadsheets were the first applications used on personal computers.

Overall, it's a good thing CMS software is written on top of an application
server, especially in the open-source world. This means you can add new
modules to the core CMS, handle new types of documents, change the
templates, extend the database and add new types of permissions and work-
flow rules. But it's important to remember the difference between an
application server and a CMS. The former provides the infrastructure for
creating applications, and the latter is an application you can customize.

So if you're looking to create a web-based newspaper, magazine or corporate
news site, a CMS is undoubtedly the right type of software for you. But if you
want to create a web-based application that tracks donations to your favorite
charity, a CMS probably won't provide the flexibility you need. The difference
between web applications and web publications has always been a murky one,
but as web applications become increasingly sophisticated, CMS software will
be recognized as one type of product you can run on a web platform.

Because content management systems normally run on top of an application
server, your choice of CMS might depend on the type of server on which it runs.
Many companies have moved to J2EE (Java 2 Enterprise Edition) as their
underlying platform. Indeed, the well-known Vignette CMS originally was
designed to work with Tcl but migrated to J2EE when the buzz surrounding J2EE
became too great to ignore. Because J2EE is a standard, rather than a product,
customers can choose application servers and CMS software separately. You
can use the open-source Tomcat/JBoss duo or the proprietary offerings from
companies like BEA or IBM.

If you dislike Java, or if your development team is more familiar with another
set of technologies, you might consider a non-J2EE CMS. Such products do exist,
and we will look at several of them in the coming months, such as Zope's CMF,
the CMF-based Plone, Bricolage (Perl/PostgreSQL), PHPNuke/PostNuke/Xoops
(PHP) and Midgard (PHP).

Regardless of what technology you decide to use, a CMS is increasingly
necessary and useful for producing web sites. Even if you're the only person
working on your web site, moving to a CMS is probably a wise move, if only to
help standardize the look, feel and delivery of content on your site. And, if you
ever decide to add new types of content, the CMS will probably be able to
handle it, though you might need to tinker with it somewhat.

Conclusion

CMS software is probably the first type of application designed for the Web.
Most content management solutions are expensive and proprietary, but an
increasing number of open-source options are available for those who want
greater freedom and lower cost. Given that content management systems
normally need a great deal of customizing and tuning, this is another niche for
which open-source tools are an excellent fit.

Resources

Reuven M. Lerner (reuven@lerner.co.il) is a consultant specializing in open-
source web/database technologies. He and his wife Shira recently celebrated
the birth of their second daughter, Shikma Bruria. Reuven's book Core Perl was
published by Prentice Hall in early 2002, and a second book about open-source
web technologies will be published by Apress in 2003.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6563s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Sometimes, You Have to Do It Yourself

Marcel Gagné

Issue #108, April 2003

How to set up and use KDE Desktop Sharing and redesktop, the remote-control
package.

François, make sure that hub is plugged in. Merci, mon ami. Now watch as I
connect to the terminal in the wine cellar's east wing. You see, I have full access
from up here. I can control the desktop, start applications, install software and
so on. In fact, François, if you were down there now, we could both use the
desktop. What do you mean, “But what is it good for?”

Sometimes, François, there is no control like remote control. If you could share
your Linux desktop with another user or take control of another user's desktop
as needed, you could save a great deal of time controlling the session or simply
observing what is happening. For instance, let's pretend a certain waiter
recently installed his new Linux system and occasionally needs a little guidance.
Mais non, François, it is purely a hypothetical question. Your expertise with the
desktop is well known. Please do not fret.

Ah, mes amis! Welcome to Chez Marcel, home of tantalizing Linux fare, great
service and fine wine. Please sit and make yourselves comfortable. François,
why don't you run down to the cellar? Something Italian today, I think. Bring
back the 1997 Brunello di Montalcino for our guests.

I was explaining to François that there are times when nothing works better
than taking control of a remote desktop in order to do what needs to be done.
Perhaps the best incentive is the office environment. Using desktop sharing, a
system administrator could deal with individual desktop issues without leaving
the comfort (or convenience) of the office. Do you need to show a user how to
add an icon to the desktop? Connect to their desktops and have them watch.
Have you received a call asking for help interpreting an error message? Connect
to the system and ask the user to recreate the scenario while you watch. The
possibilities are endless.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

An excellent cross-platform remote-control package is VNC from AT&T
Laboratories in Cambridge, England. The problem with VNC is it doesn't provide
any means of controlling the main X display ($DISPLAY:0), so taking control of a
user's desktop to fix a problem or to show them how to do something is out of
the question.

Enter KDE Desktop Sharing from creator Tim Jansen. The package is scheduled
to be part of the standard network offerings in KDE 3.1, which may be out as
we speak. Those running KDE 3.0 also can take advantage of this great package
by visiting Tim's site, www.tjansen.de/krfb, and downloading the latest source.

Building the package is the standard extract and build five-step with a twist. The
twist is the package is stored as a bzip2 file rather than as a straight gzip file.

tar -xjvf desktopsharing-0.7.tar.bz2
cd desktopsharing-0.7
./configure --prefix=
make
su -c "make install"

The reason I suggest adding the prefix shown above is KDE Desktop Sharing
becomes a KDE control center module, so letting your KDE implementation
know where the software lives is a good idea. For instance, I've installed this on
Red Hat, Mandrake and SuSE systems. Red Hat and Mandrake's KDE directories
are subdirectories of /usr, while SuSE's are in /opt/kde3.

Before we move on to using the product, let me clear up one other potential
area of confusion. Different distributions sometimes opt for nonstandard KDE
menus, meaning that things aren't where this little installer expects to find
them. A case in point is the Mandrake 9.0 desktop. Despite the installation
having gone smoothly, the Desktop Sharing configuration option did not
appear in the Control Center menu. The fix is an easy one, once you know
about it. Here is what you do: from the desktopsharing distribution directory,
change to the krfb/kcm_krfb directory and manually install the desktop entry
for the KDE Control Center (the following is one single command line):

/usr/bin/install -c -p -m 644 kcmkrfb.desktop
/usr/share/applnk-mdk/Configuration/KDE/Network/

Once again, I stress that when this feature becomes part of the actual KDE
distribution (release 3.1), installation won't be a problem at all. Now, when you
have finished compiling, installing and tweaking menus, make sure to log out
from your KDE desktop before you continue. While the desktop reboots, why
not take a moment to appreciate the bouquet from this most excellent wine,
non?

http://www.tjansen.de/krfb

To configure your client PC for remote access, start by bringing up the KDE
Control Center from your application starter menus (the big K in the lower left-
hand corner). You also can start the control center by typing kcontrol & at a
shell prompt. When kcontrol starts, click on the Network icon in the left-hand
sidebar menu and select Desktop Sharing, as shown in Figure 1. As you can see,
two tabbed windows appear on the right-hand side. One is labeled Access and
the other is Network.

Figure 1. Configuring KDE Desktop Sharing from the Control Center

The Network tab takes the least amount of explanation, so I will cover it first.
Click the tab, and you'll have the opportunity to override the default to Assign
port automatically. KDE Desktop Sharing's default port is 5900, but unchecking
this box here makes it possible to assign a specific port number.

On to the Access tab. Invitations are the means by which access is granted to
the desktop, but it also is possible to allow uninvited connections as well. I
suspect, mes amis, that I do not have to explain the security implications of this
course of action. For this reason, allow me to tell you how to create and
manage invitations.

For starters, click the button that says Create & Manage Invitations. The window
that pops up offers you two important choices. You can create either a New
Personal Invitation or a New E-mail Invitation. Let's start with a personal
invitation.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg

Figure 2. Creating a Personal Invitation for a KDE Control Session

For security reasons, the invitation itself lasts for only an hour. If you don't do
anything else, Desktop Sharing automagically comes up with a password and
an expiration time for the session. The host address necessary for the
connection also is displayed. Overriding either the password or the expiration
time is not allowed. Make sure you pass on the information as it is shown to the
person who will be connecting. When you have passed on the information (or
written it down), click Close.

The other option is an e-mail invitation. The only catch here is you are sending
the means to access your system via e-mail during that one hour period. If you
choose this option, you'll receive a warning about plain-text e-mail over the
Internet and the wisdom of encrypting said e-mail. Click Continue to get past
the warning and a KMail message appears, ready for you to click Send. If no
one answers the invitation, it disappears within an hour. Incidentally, you also
can manage invitations with the following command:

krfb &

Before we move on, click Close to get past all those invitations, and we'll have
another look at the second means of providing access, uninvited connections. If
sending an e-mail invitation presents interesting security concerns, then a wide-
open, permanent invitation should ring additional bells. That said, in an office
environment it also may be the sanest method of giving yourself access. If you
check on Allow uninvited connections, you still have to assign a password for
connecting. Furthermore, you have the opportunity to Confirm uninvited
connections before accepting. You also can decide to give those uninvited
connections the ability to control the desktop.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg

To connect to the desktop, you can use any VNC client; but the slicker way is to
install KDE Desktop Sharing on the controlling desktop also. You'll find the
interface friendly and appealing. To start the client, either select it from the
Internet menu under the big K or call the program directly from the command
line:

krdc &

After creating an open invitation with a confirm option, a remote client trying to
connect generates a warning message asking whether you want to allow that
connection (Figure 3).

Figure 3. A Request for Desktop Control

After accepting the request, the remote user still has to enter the password, at
which point you'll see a nice blue eye staring at you from the system tray.

One of the great things about this particular program is you can resize or scale
the virtual desktop to almost any size. Size your window, then click on the
magnifying glass icon. If you would like a particularly psychedelic experience,
set up an invitation on your own machine and try connecting to it. You'll receive
an endless cascade of desktops, an effect much like standing between two
parallel mirrors facing each other (Figure 4).

https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f4.large.jpg

Figure 4. Fun-House Mirrors, Linux Style!

Ah, it is very exciting to consider how much closer Linux can bring us, non? It is
true even when dealing with non-Linux systems. Allow me to demonstrate.

Another remote-control package worth your consideration is a little something
Matt Chapman has cooked up called rdesktop. Here's the idea. From time to
time, you may have to work on a box running Windows 2000. If that box
requires you to connect using Win2K's Terminal Server, you no longer need to
shut down your Linux system to do your work.

Simply put, rdesktop is a GPLed Windows (NT/2000) Terminal Server client,
which means it uses RDP (remote desktop protocol). If you'd like to use
rdesktop and keep running a Linux desktop in the process, pick up your copy of
the source at www.rdesktop.org. Build it using the classic extract and build five-
step:

tar -xzvf rdesktop-1.1.0.tar.gz
cd rdesktop-1.1.0
./configure
make
su -c "make install"

The whole process should take no more than a few seconds.

When the installation is complete, you can start the program like this:

rdesktop -u Administrator -p PaSsWoRd 192.168.22.212

https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f4.large.jpg
http://www.rdesktop.org

The -u parameter specifies a user account on the Windows server, while the -p
option specifies the password. Have a look at Figure 5 for a screenshot of my
KDE 3.1 desktop running rdesktop to a remote Windows 2000 server.

Figure 5. Windows Terminal Server Access Using rdesktop

As you can see, mes amis, with a network connection and your Linux system,
you are never far away. It is just like being there.

Mon Dieu, has the time passed so quickly. As I cannot connect to your systems
and pour you a glass of wine, I must attend to it here before François and I
close the restaurant for the night. François, would you be so kind as to refill our
guests' glasses a final time? Until next time, mes amis, let us all drink to one
another's health. A votre santé! Bon appétit!

Resources

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6553s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

rsync, Part II

Mick Bauer

Issue #108, April 2003

Setting up rsync modules at the filesystem level and making connections.

Last month we covered setting up an rsync server for anonymous access.
Listing 1 shows the sample rsyncd.conf file from last month, illustrating some
options particularly useful for tightening security. Returning to our example,
here's a word about setting up rsync modules (directories) at the filesystem
level. The guidelines for doing this are the same as those for anonymous FTP
chroot environments. The only exception is that no system binaries or
configuration files need to be copied inside them for chroot purposes, as is the
case with some FTP servers.

Listing 1. Sample rsyncd.conf File

The rsync configuration file needs only a little customization of paths and
allowed hosts to start serving files to anonymous users. But that's a pretty
narrow offering. How about accepting anonymous uploads and adding a
module for authenticated users? Listing 2 outlines how to do both.

Listing 2. Additional rsyncd.conf Modules

First, we have a module called incoming, whose path is /home/incoming. The
guidelines for publicly writable directories (see “Tips for Securing Anonymous
FTP” in Building Secure Servers with Linux) apply, but with one important
difference: for anonymous rsync, this directory must be world-executable as
well as world-writable, that is, mode 0733. If it isn't set this way, file uploads fail
without any error being returned to the client or logged on the server.

Some tips that apply for configuring FTP are to watch this directory closely for
abuse and never make it or its contents world-readable. Also, move uploaded
files out of it and into a nonworld-accessible part of the filesystem as soon as
possible, perhaps with a cron job.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/108/6508l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6508l2.html

The only new option in the [incoming] block is transfer logging. This causes
rsync to log more verbosely when actual file transfers are attempted. By
default, this option has a value of no. In addition, the familiar option read-only
has been set to no, overriding its global setting of yes. No similar option exists
for telling rsync this directory is writable; this is determined by the directory's
actual permissions.

The second part of the example defines a restricted-access module named
Audiofreakz. There are three new options to discuss here. The first option, list,
determines whether this module should be listed when remote users request a
list of the server's available modules. Its default value is yes.

The other two new options, auth users and secrets file, define how prospective
clients should be authenticated. rsync's authentication mechanism, available
only when run in dæmon mode, is based on a reasonably strong 128-bit MD5
challenge-response scheme. This is superior to standard FTP authentication for
two reasons. First, passwords are not transmitted over the network and
therefore are not subject to eavesdropping attacks. Brute-force hash-
generation attacks against the server are theoretically feasible, however.

Second, rsync doesn't use the system's user credentials; it has its own file of
user name-password combinations. This file is used only by rsync and is not
linked or related in any way to /etc/passwd or /etc/shadow. Thus, even if an
rsync login session is somehow compromised, no user's system account is
directly threatened or compromised unless you've made some poor choices
regarding which directories to make available using rsync or when setting those
directories' permissions.

Like FTP, however, data transfers themselves are unencrypted. At best, rsync
authentication validates the identities of users, but it does not ensure data
integrity or privacy against eavesdroppers. To achieve those goals you must run
it over either SSH or Stunnel.

The secrets file option specifies the path and name of the file containing rsync
user name-password combinations. By convention, /etc/rsyncd.secrets
commonly is used, but the file may have practically any name or location—it
needn't end, for example, with the suffix .secrets. This option also has no
default value; if you wish to use auth users, you also must define secrets file.
This example shows the contents of a sample secrets file:

watt:shyneePAT3
bell:d1ngplunkB00M!

Contents of a Sample /etc/rsyncd.secrets File

The auth users option in Listing 2 defines which users, among those listed in
the secrets file, may have access to the module. All clients who attempt to
connect to this module, assuming they pass any applicable hosts allow and
hosts deny ACLs, are prompted for a user name and password. Remember to
set the permissions of the applicable files and directories carefully, because
these ultimately determine what authorized users may do once they've
connected. If auth users is not set, users are not required to authenticate, and
the module is available over anonymous rsync. This is rsync's default behavior
in dæmon mode.

And that is most of what you need to know to set up both anonymous and
authenticated rsync services. See the rsync(8) and rsyncd.conf(5) man pages for
full lists of command-line and configuration-file options, including a couple I
haven't covered here that can be used to customize log messages.

Using rsync to Connect to an rsync Server

Lest I forget, I haven't explained how to connect to an rsync server as a client.
This is a simple matter of syntax; when specifying the remote host, use a
double colon rather than a single colon and use a path relative to the desired
module, not an absolute path.

For instance, to revisit the scenario in last month's example, in which the client
system is called near and the remote system is called far, suppose you wish to
retrieve the file newstuff.tgz and far is running rsync in dæmon mode. Suppose
further that you can't remember the name of the module on far in which new
files are stored. First, you can query far for a list of its available modules, as
shown below:

[root@near darthelm]# rsync far::
public Nobody home but us tarballs
incoming You can put, but you can't take

(Not coincidentally, these are the same modules we set up in this month's
examples; as I predicted in the previous section, the module Audiofreakz is
omitted.) The directory you need is named public. Assuming you're right, the
command to copy newstuff.tgz to your current working directory would look
like this:

[yodeldiva@near ~]# rsync far::public/newstuff.tgz .

Both the double colon and the path format differ from SSH mode. Whereas
SSH expects an absolute path after the colon, the rsync dæmon expects a
module name, which acts as the “root” of the file's path. To illustrate, let's look
at the same command using SSH mode:

[yodeldiva@near ~]# rsync -e ssh \
far:/home/public_rsync/newstuff.tgz .

These two aren't exactly equivalent, of course; whereas the rsync dæmon
process on far is configured to serve files in this directory to anonymous users
(i.e., without authentication), SSH always requires authentication (although this
can be automated using null-passphrase RSA or DSA keys, described in Chapter
4 of Building Secure Servers with Linux). But it does show the difference
between how paths are handled.

Tunneling rsync with Stunnel

The last rsync usage I'll mention is the combination of rsync, running in dæmon
mode, with Stunnel. Stunnel is a general-purpose TLS or SSL wrapper that can
be used to encapsulate any simple TCP transaction in an encrypted and
optionally X.509-certificate-authenticated session. Although rsync gains
encryption when you run it in SSH mode, it loses its dæmon features, most
notably anonymous rsync. Using Stunnel gives you encryption as good as SSH's,
while still supporting anonymous transactions.

What About Recursion?

Stunnel is covered in-depth in Chapter 5 of Building Secure Servers with Linux,
using rsync in most examples. Suffice it to say that this method involves the
following steps on the server side:

1. Configure rsyncd.conf as you normally would.
2. Invoke rsync with the --port option, specifying some port other than 873

(e.g., rsync --daemon --port=8730).
3. Set up a Stunnel listener on TCP port 873 to forward all incoming

connections on TCP 873 to the local TCP port specified in the previous
step.

4. If you don't want anybody to connect “in the clear”, configure hosts.allow
to block nonlocal connections to the port specified in Step 2. In addition,
or instead, you can configure iptables to do the same thing.

On the client side, the procedure is as follows:

1. As root, set up a Stunnel listener on TCP port 873 (assuming you don't
have an rsync server on the local system already using it), which forwards
all incoming connections on TCP 873 to TCP port 873 on the remote
server.

2. When you wish to connect to the remote server, specify localhost as the
remote server's name. The local Stunnel process now opens a connection
to the server and forwards your rsync packets to the remote Stunnel

https://secure2.linuxjournal.com/ljarchive/LJ/108/6508s1.html

process. The remote Stunnel process decrypts your rsync packets and
delivers them to the remote rsync dæmon. Reply packets, naturally, are
sent back through the same encrypted connection.

As you can see, rsync itself isn't configured much differently in this scenario
than anonymous rsync would be—most of the work is in setting up Stunnel
forwarders.

Resources

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the O'Reilly
book Building Secure Servers with Linux, composer of the “Network
Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6508s2.html
mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Subcontinental Smackdown

Doc Searls

Issue #108, April 2003

In the global fight between Tux and Bux, where's the best place to bet on the
penguin? Try India.

Linux for Suits

Subcontinental Smackdown

On November 11, 2002, the William and Melinda Gates Foundation announced
a commitment of $100 million towards HIV/AIDS prevention in India. The
announcement came on the eve of a highly publicized visit to India by William
Gates himself. Timed for release with his arrival there, Microsoft announced it
would be “deepening its India commitment by making investments of
approximately $400 million US over the next three years in several aspects of
its India business including education, partnerships, innovation, localization
and the Development Center.” So, did it work? The better question might be:
how could it work?

Here in the US, spending on information technology (IT) is notoriously down.
Although there's a great deal of whining about this by CEOs and IT technology
suppliers, the conditions hardly compare with those in India, where the $600
US price of a cheap PC might amount to a year's salary.

No doubt the cheap, black-market pricing of Windows' earlier generations did
much to allow Microsoft to spread as far as it has in India. But the New York
Times reports the distance isn't all that great, because there still are only about
four million PCs in a country with a population exceeding a billion (and
expected to pass China by the middle of the century).

But unlike earlier versions of the OS, Windows XP is built not to work unless the
user calls or logs in to have the software turned on by Microsoft's
authentication process. If Microsoft has its way, all copies in India will be paid
for.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Windows XP isn't cheap. And even though it's competing with a free OS, Gates
said Microsoft had no plans to discount the OS beyond the usual breaks for
educational organizations. Given the competitive situation, how can Microsoft
win against Linux in an economy where MS goods carry luxury pricing?

I don't know, and I don't much care—that's Microsoft's problem. What's
interesting to me is the other stuff that borrowed interest in Microsoft's
problem brings up, such as the potentially leading role that Indian developers
are likely to play in the Linux movement.

There are some very ambitious Linux developers in India. Take Rajesh Jain, for
example. After I wrote about India on the Linux Journal web site, a reader wrote
to clue me in about what Jain is up to with his new company, Emergic:

Like Michael Robertson, he was in the internet news
business with IndiaWorld, which he subsequently sold.
I think that along with Lindows he is one of the folks
trying out something in a different fashion with Linux,
and there is definitely a huge market at the lower end
if he makes the right (whatever those might be) moves.

Here's how Jain describes his plans:

Emergic is about creating a software platform that
brings down costs of technology by a factor of 10, thus
making it affordable for consumers and enterprises in
the world's emerging markets.

Emergic is about realizing Bill Gates' vision of “a
computer on every desktop and in every home”--a
vision that has not yet gone beyond the world's 10,000
largest companies and 500 million consumers, most of
whom are in the world's developed markets.

Emergic is going to become the computing platform
for the next 500 million consumers and the world's 25
million small and medium [-sized] enterprises, who
have not been able to adopt technology because of its
dollar-denominated pricing.

Emergic is targeted at the world's emerging markets,
because they are where technology has not yet
penetrated deeply, and yet, for whom, technology
offers perhaps the last opportunity to better integrate
into the world's value chain and improve the standard
of living for their people.

Jain wants to drive the cost of hardware down to $125-150 US or less and
software down to $5-10 US/month. And he wants to do it by leveraging old
computers as thin clients for running applications, all the usual Linux suspects.
He explains:

What is different about thin clients this time around?
After all, they've been talked about ever since
computing began.

The major difference is the re-use of older hardware.
We use older cars, older manufacturing plants, older
homes, but we don't tend to use older computers.

The world's developed markets have been saturated
with technology. New PC sales now imply upgrades,
creating a huge supply of older computers. (These PCs)
still have a lot of life left in them—after all, they are no
more than a few years old [and they] can be available
for $100 US or so in large numbers or $125-150 US in
smaller quantities.

He's counting on broadband and talking mostly about enterprise
environments:

Server-based computing using Linux is now possible
because LAN speeds have gone up to 100Mbps,
enabling the transfer of a lot more data over the same
network. The result is that a “thick server” (which is
actually a new desktop with 1GB RAM and two hard
disks in a software RAID configuration) can easily
support 30-40 users. Such a server would cost about
$1,500-2,000 US, implying a per-client cost of no more
than $50 US.

Taken together, the thin client and thick server
combination not only brings down the cost of both
hardware and software by 90%, but it also provides
the IT manager complete control of the client desktop
from the server. What every user sees on their thin
client can be standardized and controlled from the
thick server itself.

There's a lot more to his plans, but rather than focus on them, let's look at
some other things that are happening in the culture itself. For example,
consider the work being done at the Indian Institute of Management in
Ahmedabad. Writes Peter Day in BBC News:

The Indian Institute of Management is not merely for
potential internet billionaires, and the students in their
new blue gowns are not the reason for my journey.

I go to Ahmedabad to have lunch with a tableful of
some of the most ingenious people I have ever met—
inventors and gadgeteers from the fields and villages
of rural India where 700 million of its one billion
people still live. Over rice and dhal and vegetables
eaten with the hand, they talk excitedly about their
inventions and ideas.

They are gathered under the auspices of the Society for Research and Initiatives
for Sustainable Technologies and Innovation. The acronym spells Sristi, the
Sanskrit word for creation.

Sristi is the creation of Anil Gupta, a professor from the Institute whose
Honeybee Network has been collecting creative ideas from around rural India
for the past ten years. The idea database now exceeds 10,000.

Then there are Dr Sugara Mitra's hole-in-the-wall experiments (see “Natural
Forces” from the March 2002 issue), by which street urchins in New Delhi and
elsewhere around the country learn computing from free public kiosks.

My points: 1) We're talking about highly resourceful people here—a lot of them.
2) We're also talking about values very much in line with what Linux, free
software and open source are all about. That's why I wouldn't be surprised to
see Tux beat Bux in a big way here, first.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Distributions Agree on Standards

Scott McNeil

Issue #108, April 2003

Community-built software and community-built standards are two sides of the
same coin. Standards help ensure that the freedom to invent, the essence of
open source and of Linux, doesn't compromise the ability to write software that
works together effectively.

Way back in 1997, a group of Linux software developers were pondering what
could be done to circumvent the minor but troubling variations between the
different Linux distributions. Not only that, but they were also contending with
differences between versions of a single Linux distribution.

For the group's free software developers, the issue was finding the time to
build new functionality and enhancements rather than spending hours
verifying that their software worked on all the Linux distributions.

For the non-free software developers, the issue was the same, but they also
had paying customers to placate and employees to take care of. Something had
to be done.

Fortunately, almost everyone agreed, from upstream authors to Linux
distributions to users. Soon thereafter the Linux Standard Base (LSB) Project
was formed, with Alan Cox designing the web site, Bruce Perens taking the
leadership role and Jon “maddog” Hall offering guidance. Things seemed fine,
with Linus Torvalds behind the effort, but this group of pioneers didn't realize
just how huge a project they had signed on to. Not only did they need to create
a standard that would meet the needs of developers, distributions, businesses
and users, but they had to make it really work, and they only had one chance to
do it right.

Fast-forward to the year 2000. The LSB was at version 0.02 and was being
approached by a group of developers wanting advice for creating a Linux
internationalization standard. After a few discussions it was apparent that a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

new format was needed, something that would bring in more resources to both
efforts while allowing them to remain independent and community-led. This
was the genesis of the Free Standards Group.

The Free Standards Group is a California nonprofit corporation dedicated to
accelerating the use and acceptance of open-source technologies through the
development, application and promotion of standards.

Soon after its founding in late 2000, the Free Standards Group acted as a
galvanizer for free and open-source developers and the IT industry alike.
Activities around the development of the LSB and Openi18n, the Open
Internationalization Initiative, really began to take off. By the close of 2001, both
groups had completed version 1.0 of their standards and were confident they
would meet with widespread adoption. This confidence was primarily because
the targeted adopters were the same people and companies that built the
standards. Developers like Ted Ts'o, Stuart Anderson and Dan Quinlan and
companies like Red Hat, SuSE, HP and IBM all put their resources into this
effort.

These were not efforts for simply documenting a specification; rather, they
were creating a formal comprehensive behavioral description of the Linux
system and a method for building on to it and proving it. For example, the LSB
includes test suites for the operating system, applications and build
environment. It also includes a build environment, sample implementation,
application battery and full documentation. Here is a breakdown of the pieces:

• Written specification: defines the behavior of an LSB-compliant operating
system. It does not say which version of a kernel, library or other core
element should be used, only the ways each piece will behave. This allows
for developers to have to be concerned only with the APIs and APIs of the
operating system.

• Test suites: include tests for the operating system, applications and build
environment.

• Build environment: an isolated environment that developers chroot into
to build compliant applications.

• Sample implementation: an isolated environment that developers chroot
into to test run compliant applications.

• Application battery: a collection of open-source applications run to stress
test compliant operating systems.

About six months after the release of the complete LSB, LSB Certification was
launched. Certification gave vendors of both Linux distributions and Linux-
based applications a method for verifying and displaying that their products

adhered to the standard. Within six weeks of launching LSB Certification,
Mandrake, Red Hat and SuSE had applied for and passed LSB Certification.

Today, every major Linux distribution vendor has applied for and achieved LSB
Certification. The debate about fragmentation among the Linux distributions
can now come to a close. Application developers can be assured that when
they build to the LSB, their applications will run unmodified on any LSB-
Certified system. Users will benefit from compatibility among the distributions
and a larger body of applications.

Despite its great success in the adoption of its standards, the Free Standards
Group and its LSB and Openi18n Workgroups are not sitting still. We are
moving forward in extending our existing standards and taking on new tasks
such as printing and desktop standards.

If you have any interest in the future of Linux you can join us. Membership is
open to individuals, nonprofits (including educational institutions), companies
and government agencies. To find out more, visit www.freestandards.org.

Scott McNeil is one of the founders and executive director of the Free
Standards Group.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.freestandards.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kylix 3.0 Enterprise (with C++)

Dragan Stancevic

Issue #108, April 2003

Product review of new Kylix release.

Kylix is a powerful RAD (rapid application development) tool. All three flavors of
Kylix 3.0 (Open, Professional and Enterprise) come with both C++ and Delphi
(Pascal) compilers. The Enterprise edition I reviewed comes with more than 190
components for rapid application development. On top of generic GUI-building
components, it also comes with Borland's dbExpress architecture, which
enables native access to DB2, Oracle9i, Informix, Informix SE, InterBase, MySQL
and PostgreSQL databases. It also comes with BizSnap, WebSnap and DataSnap
components, which enable easy development of web services that interoperate
with enterprise databases.

The Kylix 3.0 Enterprise package contains a lot of documentation:

• Quick Start Guide: an introduction to the product. You will learn how to
customize the IDE, and it will also give you an idea of the terminology
used to describe various parts of the user interface and its functions.

• Kylix Developers Guide: a decent-sized book with in-depth information on
usage and development with Kylix. It contains numerous code examples
in both C++ and Delphi syntax. It also gives a rather detailed description of
the CLX component library. Most of the CLX components are portable
between Windows and Linux. For the components that are not portable,
this guide has a whole chapter dedicated to porting applications from
Windows to Linux.

• Delphi Language Guide: the name of this guide says it all. It comes in
handy if you've never used Object Pascal but are interested in learning. It
also can be a good reference if you are a Delphi programmer.

• CLX (pronounced “clicks”) Object Hierarchy poster: this poster shows in an
easy-to-read tree view how all the CLX components (objects) fit together. It
uses color coding to represent the editions of Kylix in which the objects

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

are available. The Enterprise edition has the most components, and the
Open edition has the least.

• Borland Solution Partner Resource Guide: creating components for Kylix is
a business in itself. Many different companies write various components
for Kylix. For a few hundred dollars, most of the solution partners will
provide you with objects that can drastically cut down on your
development time. A full list of solution partners is available at
www.BorlandSolutions.com.

• Kylix Enterprise (CD): contains the Kylix development executables,
libraries and other resources, including source code for all the
components. The full component source is useful, but because all the
components were written in Delphi, they might be a bit hard to
understand if you are not a Pascal buff. The CD also contains both C++
and Delphi versions of the compiler and a lot of sample code. After
installing the software, take a look at the examples in the kylix3/examples/
directory and the tutorials in the kylix3/documentation directory.

• Companion Tools (CD): I definitely recommend browsing through this CD
as it includes a lot of nice tools. This software doesn't belong to Borland;
the tools were written by individuals, groups or corporations. Here you
will find various components such as compression, profiling, scripting and
game components. Each and every tool comes with its own license, and
it's nice to find a lot of open-source code under the GPL and LGPL.

• Enterprise Server (CD): here you will find Borland's application server. The
server comes with a development license; a deployment license key needs
to be obtained separately.

• Rave Reports (CD): this visual designer by Nevrona Design lets you create
custom reports. Once you start the designer, you can point and click to
design the look of your report. You can generate reports through different
data sources, including database lookups. Once you have your design
ready, you save the design into a file, which is later used by calling on the
Rave components to generate a report.

Installation

On the installation CD are several text files that you should probably read
before installing. They contain descriptions of caveats associated with the
installation, development, building and deployment process. After reading the
text files on the CD, I ran the installation script. The software can be installed in
text mode or graphical mode under X. The script will check to see if it can make
a connection to the X server. If it can, the installation process will run under X.
This portion of the installation actually uses the Loki installer, and everything is
pretty straightforward. One problem was that it didn't create the KDE icons,
despite the fact that I checked the box for the installer to do so.

http://www.BorlandSolutions.com

First Run

When you run the command startbcb to bring up the C++ version of the IDE, a
registration window will pop up. After filling in the data, the on-line registration
went without a problem. After the registration window is closed, a nice splash
window pops up. It takes quite a bit of time to load the IDE, so I can see the
need for a splash screen. When the development environment is fully loaded, a
default project is generated.

The IDE is comprised of several floating windows. The main window is docked
to the top of the desktop, and it contains all the menus and tabs with the
components that are available for use. The second window is the Object
Inspector, which shows all the properties and events of an object. A property of
a visible component is, for example, what color it should be, its placement
rules, caption and more. Under the Events tab of the Object Inspector, you can
see all the events this component supports, such as On Click, On Start Drag, On
Drag Over and more. The third window is the code editor that shows files that
are a part of your program. There is a tab for each open file plus a tab called
Diagram. You can drag and drop components onto the Diagram tab from the
Object Tree View to create diagrams of your project. The fourth window is the
Object Tree View, which shows the tree hierarchy of your program as you add
components to it. For a visual representation, take a look at Figure 1.

Figure 1. A C++ Application in the IDE

https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f1.large.jpg

First Compilation

I decided to press the Run button with the default project. It turns out that my
default installation of Linux didn't install the glibc-devel package. As you can
imagine, this generated a lot of compile errors. It's not a big deal, but I would
expect the installer to warn me about missing package dependencies. I
installed the RPM and pressed the Run button one more time. This time, the
compiler finished, but the linker had problems finding libX11.so. I knew exactly
what was wrong; reading all the Readme files before the installation paid off.
SuSE installer didn't create the symbolic link libX11.so to libX11.so.6. After I
created the link manually, everything worked. I was ready to write, or should I
say “point and click”, some code.

Building Projects

The whole IDE interface might be a bit confusing at first. After you get a feel for
it, you will find it's really easy to build applications. Application design works
exactly like a WYSIWG editor. I grab a few components from the component bar
and drop them onto my form. I assign one or two of the components
properties. What I am looking at is an application that I have not even compiled
yet, but the database lookups are running. Simply setting the Active properties
to true on the database components was enough to get queries going. I can see
how my application would look if I had actually compiled and ran it. Take a look
at Figure 2 to see what I mean.

Figure 2. Previewing an Application with Real Data before Compiling

https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f2.large.jpg

Coding

After clicking around I decided that I wanted to see how the actual coding
experience is with the tool. I grabbed a button from the component bar and
placed it onto my form (application main window). When I double-clicked this
button, the Object Inspector switched to the Events tab and selected the
OnClick event. Meanwhile in the code editor, a code framework for the click
event was built. My keyboard focus was placed at the function block start,
ready for code entry. I wanted the application to close when I clicked the button
that I just placed on the form. I started typing “Application->” and a small
window popped up in the editor. It listed all the functions and properties of my
application instance called “Application” (Figure 3).

Figure 3. Automatic Function Name Completion in the Editor

As I typed in the letter T of the function name (Terminate) that I wanted to call,
the code-completion feature eliminated properties and functions that didn't
match up. When I saw what I was looking for, I scrolled up and down through
the list and pressed Enter. That filled in the code in the editor, then I need to
add the semicolon at the end. I thought to myself “that's nice but how about if I
spice it up a bit?” I included a Linux header file called utsname.h and
instantiated a structure of type utsname and name tst. I typed in tst. and
waited to see what would happen. The same window popped up and listed all
the structure members and their types (e.g., char[65]). This comes in handy in
those “what's that function called again?” moments.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374f3.large.jpg

Conclusion

Borland introduced Delphi for Windows a long time ago, with many of the Kylix
features. Years later they introduced the C++ Builder for Windows, which as the
name suggests, was the C++ version of Delphi. It is nice that a C++ edition of
Kylix for Linux is finally here. All in all, I like the design of Kylix. Despite the fact
that it's not a new concept, it still has benefits.

After playing around with Kylix some more I found a few bugs in the software.
When trying to assign images to components, the application would freeze. I
am guessing it's possibly some sort of synchronization issue because attaching
to the Kylix process with strace brought it back to life. I also found that the
code-completion window sometimes refused to pop up. To put things in
perspective I must say that Kylix was not certified to run on the distribution that
I had freshly installed on my laptop. I used SuSE 8.1, although Kylix 3.0 was
certified to run on SuSE 7.3.

As a final thought, if you are looking into evaluating development tools for
enterprise applications I would recommend putting Kylix 3.0 on your “tools to
evaluate” list.

Product Information

Resources

email: visitor@xalien.org

Dragan Stancevic is a kernel and hardware bring-up engineer in his late
twenties. Although Dragan is a software engineer by profession, he has a deep
interest in applied physics and has been known to play with extremely high
voltages in his free time.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/108/6374s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6374s2.html
mailto:visitor@xalien.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Hacker's Delight

Michael Baxter

Issue #108, April 2003

The book is a wonderful collection of techniques for any programmer looking
to improve efficiency for key algorithms.

Book Review: Hacker's Delight by Henry S. Warren, Jr.

Boston, Pearson Education, Inc., 2003

ISBN: 0-201-91465-4

$39.99 US (hardcover)

Hacker's Delight is a treasure trove for learning how to write efficient code.
Over the course of 16 chapters and two appendices, fiendishly clever
algorithms are illustrated through numerous examples coded in C and with
graphics, along with the mathematical theory that supports the techniques.

The introduction describes an instruction set and execution efficiency model on
which the rest of the work is based. This provides a useful means for assessing
computational efficiency on most modern computers. Then the stage is set for
a chapter about many little issues surrounding bit-level representation. Next, a
chapter each is provided for algorithms involving power-of-two boundaries and
arithmetic bounds.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Efficient techniques for bit-level manipulations, such as counting the bits in a
word, are described in the next three chapters, and the next four chapters form
an étude about some key arithmetic operators and functions, including efficient
multiplication and two kinds of integer division. A chapter follows covering
algorithms for computing key elementary functions on integers. This includes
logarithms, exponentials, plus square and cube roots.

In some specialized applications, alternative representations for the meaning of
the bits can offer an advantage. Unusual number system bases and Gray codes
are described in detail in two chapters. Gray codes, for instance, are useful for
enumerating states in finite-state machines where only one bit changes per
state transition.

One chapter provides an algorithmic glimpse on a variant of the Peano curve
called the Hilbert curve, which is an interesting related space-filling curve. The
Hilbert curve is amenable to recursive algorithms and has some bit-level
computational advantages for representing spatial distances in coordinates.
These algorithms find usefulness in image processing, rendering and
compression.

A nice summary of IEEE Std 754-1985 floating-point arithmetic includes a
procedure for comparing floating-point numbers using only integer operations,
formulas for computing the probability density function for the number of
leading digits in select ranges of representable numbers and a handy table of
miscellaneous number values represented in hex for both single- and double-
precision floating point.

The last chapter provides algorithms for computing prime numbers, using
Willan's and Wormell's Formulas. Primes have uses in hashing algorithms and
cryptography, among other things.

Two appendices provide 4-bit arithmetic tables and a more detailed description
of Newton's Method for function approximation. The arithmetic tables are a
handy way to envision the work done in algorithmic steps that are a fraction of
a typical word length. The bibliography also is rich, listing many original papers
for arithmetic, number theory and the techniques embellished within the book.

You can employ these techniques to attain mastery of some important inner-
loop code, while enjoying the beauty of arithmetic algorithms. The author is a
veteran of IBM, and his programming tricks are born of experience across four
decades, from the IBM 704 through the PowerPC. The book is a wonderful
collection of techniques for any programmer looking to improve efficiency for
key algorithms in areas such as compiler development, databases, arithmetic
for image and signal processing, and code libraries.

—Michael Baxter

email: mab@cruzio.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mab@cruzio.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #108, April 2003

LJ readers sound off.

Zaurus Fans Unite

Excellent article [“Must-Have Zaurus Hardware and Software”, LJ, January 2003]!
Very informative and a lot of detail. I have just bought my Zaurus, and I
downloaded a lot of utilities and was able to set my Zaurus's configuration with
the help of Guylhem Aznar's article. Thank you.

—Vinh Duong

Be Careful with ptrace

In “Playing with ptrace, Part II” [LJ, December 2002], Pradeep Padala talked
about injecting code into a process and finding some “free space” to put it in to.
It's worth noting that the space referred to is not really “free”; it's usually either
the cleared space used for global storage in the executable and its shared
libraries or the C library's heap storage area. In any case, writing over this data
and not restoring it before allowing the execution to continue (as may seem
reasonable at first) could cause all sorts of weird behaviour, including program
crashes.

—Shaun Clowes

FreeS/WAN Updates

Just got my January 2003 issue of LJ and was quite surprised to see a FreeS/
WAN article included—nice work! I was really happy to see you used the
RSASigs in the examples instead of preshared secrets, a welcome change from
the usual and insecure examples I've read in the past. I maintain
www.freeswan.ca, an alternate source of information, patches and prepatched
versions of FreeS/WAN for interoperation with many devices. Freeswan.org

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.freeswan.ca

now ships RPMs for Red Hat 7.x and 8.x for all kernel combinations. These
include only the ipsec.o modules and user-land tools and don't replace your
vmlinuz and grub/lilo configs. Folks should update to 1.99, as there was a
serious denial-of-service flaw that is now fixed.

—Ken Bantoft

Mick's reply: Thanks very much for your suggestions. Part II appeared in the
February 2003 issue, and I doubt this is the last I'll write on the subject!

Surprising Our Readers...with Quality

As a long-term LJ reader (fourth year), I am really surprised about the great
January 2003 issue—it covers all the stuff that I am interested in without even
knowing about it. The GCJ, Screen and DDD/quicksort articles shed more light
into the daily use of our beloved Linux platform. Please keep us informed about
developments in compilers, debuggers and other development tools to make
us more effective in developing new stuff. Keep up the good work.

—Raphael Arlitt, Germany

make penguins && make party

What LUG meeting or BOF session would not be enhanced by penguin canapés
and an igloo cheeseball? We humbly submit pseudo-code for building same
and an image as proof that it's working code.

Ingredients:

https://secure2.linuxjournal.com/ljarchive/LJ/108/6527f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6527f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/108/6527f1.large.jpg

2 packages cream cheese1 cheeseball1 can large black olives, pitted1 can small
black olives, pitted1 carrot1 packages toothpicks with yellow or orange
fringecrackers1 tin kippered herring (optional symbolic offering to penguins)

#!/bin/bash
while hungry;
do (\
 cut_cream_cheese_into_strips_and_cover_cheeseball;\
 make_igloo_entrance_tunnel_from_cream_cheese_strip;\
 use_toothpick_to_sculpt_snow_block_seams;\
 peel_carrot_with_vegetable_peeler;\
 cut_carrot_into_coin-sized_slices;\
 cut_slender_wedge_from_each_carrot_slice_and_reserve_for_beak;\
 slit_each_large_olive_and_stuff_with_cream_cheese;\
 puncture_each_small_olive_and_insert_carrot_wedge_beak;\
 skewer_small-olive_head_large-olive_torso_and_carrot-slice_feet_with_toothpick;\
 arrange_olive_penguins_about_cheeseball_igloo_on_serving_dish;\
 arrange_crackers_on_serving_dish_or_nearby;\
 serve);
done

Herring also can be served to set the scene. Herring are one of two things that
make penguins contented. This recipe is a clean-room implementation
developed by reverse engineering based on a study of olive penguins and a
cheeseball igloo served at a party. We hope the process is not patented. In any
case, we assert that the recipe is our own work, and we release it under the
terms of the GNU Free Documentation License.

—Michael Callaham [penguins] and Jennifer Gentry [igloo]

Keep LJ Free of Microsoft Ads

I have just received the February 2003 issue of Linux Journal, was reading
through the Letters and came across the one with the guy who wants to run
Microsoft ads in LJ. If I want Microsoft ads, I will go to a Windows magazine. It is
true that MS ads cannot harm us, but they are annoying!

—Mitch Anderson

Linux and Land Reform

Kudos for Jon Hall, the LJ magazine and the thought behind the GNU/Linux and
other free, open-source software movements (“Back to Brazil”, Letters, February
2003). The heavy reluctance against land reform is the root cause of
fundamental socioeconomic problems in many parts of the globe, including
Southeast Asia, South Asia, Central and South America and Africa. I believe land
reform movements in these countries share the same vein that the Linux/GNU
movement has. Our country, Japan, had been coerced into doing a total land
reform by the US occupation policy in 1940s. It liberated not only the land but
the minds of so many common people, enabling the making of the world's
second biggest economy and modern industry.

—Hiroshi Iwatani

Origin of “Wardriving”

In two articles [LJ, September 2002], Doc Searls incorrectly claims that the terms
“wardriving” and “warchalking” were derived from the movie War Games. I
believe they actually were derived from the term “war dialing”, the process of
sequentially dialing a range of phone numbers in search of a modem connect
tone. War dialers were utilities that could be left to run and accumulate
interesting numbers to be investigated later. These programs were the
equivalent of today's internet port scanners.

—Jonathan Hutchins

War Games came out in 1983, and we don't know of an example of the term
“wardialing” before that. Although the other “war” terms are derived from
“wardialing”, it's likely that “wardialing” came from the movie. Wardialing is still
a threat according to a 1998 survey by Peter Shipley: www.dis.org/filez/war.pdf.

—Editor

maddog Inspires One Reader...

Just to say what an inspirational answer to the unfair criticism maddog received
from that reader in Brazil [Letters, LJ, February 2003]. I really liked maddog's
reply, especially the paragraph that starts “I believe...”. I just might put that
paragraph on an A4 page above my desk! Great stuff!

—Paul

PS: Not sure what you guys have done, but LJ now arrives in my office in-tray
the day after you announce it on the web site. It used to take weeks (or longer).
Whatever you've done, keep doing it.

...and Loses Another

I don't subscribe to LJ to read about politics, especially apologies for terrorists
and other assorted anti-American, third-world riffraff. My subscription expires
in March 2004, and I won't be renewing.

—Chas

http://www.dis.org/filez/war.pdf

Where Is the Fun?

I see Linux as losing its sense of humor. I am willing to bet a cup of coffee that
this is due to the infusion of money from big business. Don't we have a wacky
penguin? Don't we have XBill? Isn't that funny stuff? The answer is a qualified
yes. It's funny, but it's funny in the same regard that recess is fun—that being
because it is at a set time and place and supervised. But Linux never had a
recess time before. You could play all day and still get everything done. It's time
to get off our collective asses and put the fun back in Linux.

—Mutant

You can't spell FUN without U.

—Editor

What Happened to the Thick LJs?

Before I decide not to resubscribe, is Linux Journal going to return to the size
that it used to be? I feel that the quality and content of the magazine has
dropped in the last year and find it hard to sign up again for another year. The
cost has not changed, but the content has!

—Tony

The number of pages of content depends on the number of pages of
advertising. More ads fund more content. In a down economy when ads are
few, page counts go down everywhere.

—Editor

maddog 3, Brazilian Land Barons 1

Man, when I got to the “I believe in....” paragraph I nearly choked up. I'm glad
you took the space to allow his response [LJ, February 2003]. Oh, and another
good reason for showing MS ads—they're always a good laugh. Good mag.

—Daniel

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

Various

Issue #108, April 2003

Gtk-Perl Flash Cards: www.masswire.com/flash.tgz

Flash cards have always been a good way to go through questions. You get the
question, provide a response and see if it's correct. That's the theory behind
this little application. You can classify the question as difficult or easy, put as
many as you'd like in the data file and quiz yourself. The application provides a
way to keep track of the number of correct and incorrect responses, total
number of questions, a button to randomize the next question and more.
Requires: Perl, Perl module Gtk.

—David A. Bandel

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.masswire.com/flash.tgz

Checkbot: degraaff.org/checkbot

This is a simple, lightweight web checker. If you run it with the --match option
and match your domain name, it will not wander off on all the sites you might
be linked to. You can have it mail the results or simply watch it traverse your
site picking up the URLs. No more broken links, no matter how complex the site
—at least none you don't know about. Requires: Perl, Perl modules
File::Basename and LWP.

—David A. Bandel

Dbmail: www.dbmail.org

If you're running a large mail server with thousands of users, Dbmail may be
helpful. Users and mail are all stored in an SQL database; system users do not
need to be created. The Dbmail program comes not only with dbmail-smtp, a
receive-only SMTP dæmon (you'll still need sendmail or another MTA for
outgoing mail), but also with dbmail-pop3d, a pop3 server, and dbmail-imapd,
an IMAP dæmon. Instructions for setup are sketchy, so you'll need to figure it
out for yourself. Fortunately, that's not too hard to do. Configuration includes
things like POP or IMAP before SMTP. Requires: PostgreSQL or MySQL, libssl,
libcrypto, glibc.

—David A. Bandel

diff -u: What's New in Kernel Development

In spite of the October 31, 2002 feature-freeze, developers continue to hack on
their favorite projects. December saw a number of such developments, some
weirder than others. In the POSIX realm, Krzysztof Benedyczak and others did
some work on implementing POSIX message queues to allow processes to
communicate more directly with each other. Linux always has maintained a
love/hate relationship with POSIX (and other official standards), sticking to the
principle that bad ideas should be avoided whether they have an official seal or
not. Message queues have not been particularly controversial in the Linux
arena, but the UNIX world at large has not always agreed on the proper public
interfaces for them. So whatever the ultimate Linux message-queue
implementation, there will be permanent issues surrounding attempts to port
any applications that use the feature.

Drivers for new hardware are churned out constantly, development series or
no. December saw several new drivers for Via cards (the 8633 AGP and 8233
onboard sound card) from Nathaniel Russell and a framebuffer driver for the
Intel 810 and 815 graphics chips from Antonino Daplas. Overall the framebuffer
code did not fare spectacularly well in December, though many patches and

http://degraaff.org/checkbot
http://www.dbmail.org

advancements were made. Part of the problem is the basic framebuffer design
makes assumptions that simply are not true for certain hardware, and the
design issues are hard to correct because a lot of user-space code relies on the
existing implementation. But James Simmons has been quite active in
addressing the issues that can be addressed, and a lot of work by him and
others will be in the 2.6 framebuffer code, including some fancy new APIs.

A whole new architecture saw the light of day in December. After a month's
intense labor, Andrey Panin ported Linux to the SGI Visual Workstation. Some
might say, as Alan Cox did when Andrey announced his work, that such an
effort belonged truly in the land of dementia. After all, the VISWS was
apparently a flash in the pan, appearing briefly a few years ago and then
dropping off the map. But Alan still applied the patch.

Intel's sysenter and sysexit instructions, introduced way back with the Pentium
II, finally are starting to find support under Linux. Theoretically, they provide a
quick way to perform system calls, but in practice it proves difficult to find an
implementation that doesn't sacrifice too much of the speed the instructions
are intended to save. A lot of progress was made in December, but this is all
quite invasive work, and as Alan Cox has said, Linus Torvalds appears to be
“doing the slow slide into a second round of development work again”, as was
the case with all other development series.

Speaking of invasive work, it looks as though Andre Hedrick's new IDE

subsystem will be dropped en masse into the 2.4 kernel. Normally such an
invasive change would be attempted only during a development cycle, but
apparently the old IDE code is too nightmarish to live. News of the new IDE
code's imminent acceptance into 2.4 was greeted with shouts of jubilation from
all sectors. Quite a different reaction from Linus' decision to drop a new virtual
memory subsystem into an earlier 2.4 kernel.

In the final months of 2002, some folks decided to set up a Bugzilla database to
help bring 2.5 to a successful, stable conclusion as soon as possible. Not all
developers feel that Bugzilla is the best tool for the job, however. Since the bug
database was first set up, it has proven difficult to use in certain ways. Bugs go
unclaimed, and developers have trouble finding references to bugs in their
areas of interest. In light of this, John Bradford decided to start from scratch
and implement an entirely new bug-tracking system, designed specifically for
the Linux kernel. He chose to focus on automating much of the search facility
and enhancing the organization and presentation of bugs to streamline the
ability to find bug reports in any particular area of interest. That said, the
existing Bugzilla database has its adherents, and as of the end of December
2002, John still had not put together a fully usable replacement.

—Zack Brown

Domino on Acid: www.winterdrache.de/freeware/domino/index.html

This is an extremely difficult game but includes its own tips, hints and tricks
manual. You can download this game or play it right on the Internet. It can be
invoked as a jar file for a standalone game or called from any Java-enabled
browser. If you're like me, you'll have tiles all over the place and be no closer to
a solution than when you started. Requires: Java.

—David A. Bandel

LJ Index—April 2003

1. Sum offered (and paid out in January 2003) by Lindows founder Michael
Robertson for the successful port of Linux to Microsoft's Xbox by the end
of 2002: $100,000

2. Sum offered by Robertson for a port to Xbox with no hardware
modification by the end of 2003: $100,000

3. Year by which Linux is expected to become the majority server operating
system: 2009

4. Position Linux is expected to occupy soon among desktop operating
systems: 2

5. Price in rupees of Hewlett-Packard's AMD 1.5GHz Athlon-based Presario
home computer, sold with Red Hat Linux: 30,990 ($645 US, as of January 3,
2003)

http://www.winterdrache.de/freeware/domino/index.html

6. Price in rupees of Hewlett-Packard's Intel 1.6GHz Intel-based Presario
home computer, sold with Windows XP: 40,000 ($833 US, as of January 3,
2003)

7. Additional discounts on the Linux Presario, in rupees, from “assemblers”:
2,000

8. Millions of Google results from a search for “Linux” on November 29,
2002: 41

9. Millions of Google results from a search for “Linux” on January 2, 2003: 59
10. Growth in “Linux” results per day over the same period: 529,412
11. Position of Linux among Google's top ten technology searches in 2002: 4
12. Position of Microsoft among Google's top ten technology searches in

2002: 9
13. Number of applications shown on stage by Sun Microsystems at Comdex

Fall 2002: 2
14. Number of applications shown on stage by Sun Micrososytems at Comdex

Fall 2002 that ran on Linux: 2
15. Percentage of servers on which Linux is expected to run by 2006-2007: 45

Sources

1. 1, 2: Xbox Linux Project (xbox-linux.sourceforge.net)
2. 3: Butler Group Server Operating Systems Report (www.butlergroup.com)
3. 4: IDC (via ZDNet)

4. 5-7: Financial Express
5. 8-10: Google
6. 11, 12: Search Engine Watch
7. 13, 14: Doc Searls, reporting from Comdex

8. 15: Meta Group, quoted in BusinessWeek

They Said It

When a need comes up for a new file or print server, don't talk about installing
a Linux box. Talk about installing a new file or print server. As long as what you
implement does the job and works reliably, no one will care how it's done as
long as it works.

—Craig Sanders, Debian developer and professional system administrator

A for-profit software company cannot compete with the economics of open
source—free is as cheap as it gets. Nor, it turns out, can it compete with open
source's quality testing process. Though the pace of open-source development
can be languid and tends to create products less functionally rich than their

http://xbox-linux.sourceforge.net
http://www.butlergroup.com

proprietary counterparts, the stuff gets tested so often and so brutally by so
many different people that most open-source programs are judged to be more
stable and reliable. In a commodity market, low cost and reliability count more
than bells and whistles.

—Christopher Koch, CIO Magazine

What I've found is that a Linux administrator who knows what he's doing
should be able to administer two to three times the amount of boxes a
Windows administrator should be able to administer.

—Brian Schenkenfelder, n+1

Mongolian makes the impossible possible and enters the list at a whopping
15th place (supported). Sanlig Badral, Ochirbat Batzaya, Tegshbayar,
Bayarsaihan and the other guys in the Mongolian team have certainly made an
impressive start by jumping right in the top crowd with over 95% translated
messages!

—Christian Rose, on the GNOME-I18n Mailing List (GNOME is now 100%
translated to Mongolian)

psh: www.focusresearch.com/gregor/psh

For all the Perl mongers out there, this shell might be for you. It has a number
of the features of Bash, but it's a little more Perl-friendly. I've recently started
using it as my login shell, so we shall see. It's certainly lighter. If you're skeptical,
ask me if I'm using it a year from now. I see a day when Perl may replace all the

http://www.focusresearch.com/gregor/psh

other system utilities (if one is so inclined), but until then, I'll be satisfied with a
Perl shell. Requires: Perl, BSD::Resources (optional).

—David A. Bandel

Advanced Packet Sniffer: www.swrtec.de/clinux

As I noted when I originally reviewed this application three years ago, this
particular sniffer is unlike tcpdump. Here, you can see the packet payload,
which may make a lot of sense to you or none at all (particularly if someone is
using an encrypted connection). One of the reasons I most like this sniffer is
you can show someone what information is floating around on their network
for anyone to read. Requires: glibc.

—David A. Bandel

Mongolian makes the impossible possible and enters the list at a whopping
15th place (supported). Sanlig Badral, Ochirbat Batzaya, Tegshbayar,
Bayarsaihan and the other guys in the Mongolian team have certainly made an
impressive start by jumping right in in the top crowd with over 95% translated
messages!

http://www.swrtec.de/clinux

—Christian Rose, on the gnome-i18n mailing list (GNOME is now 100%
translated to Mongolian)

email: david@pananix.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tools for Desktop Success

Don Marti

Issue #108, April 2003

Looking at applications that meet the needs of business and standards that are
bridging the gap between competing Linux desktops.

The last thing we're going to try to do this month is answer the question, “Is
Linux ready for the Desktop?”, because only you can answer that. Nobody's
going to blow a whistle and make it practical for everyone at once to install
desktop Linux.

I've been using Linux on the desktop since around the time Netscape Navigator
came out. Unfortunately, many of the applications people use to get their jobs
done aren't available on Linux yet. So if you have a lot of data buried in some
proprietary format, you might have to keep some proprietary desktops around.
In this issue though we're going to provide as much information as possible to
help put your company or organization on the path of freedom and self-
determination.

Leading by example is Gary Maxwell, who's no Linux or UNIX guru—just a
small-business owner looking for stability in his working environment. He's now
running his whole commercial writing firm on free software. Find out how he's
doing on page 48.

If you don't like the fact that applications written with different toolkits often
don't work well together, now there's something you can do about it. Check out
our cover and read Marco Fioretti's “The Grand Unified Desktop” article on page
38. Marco received a lot of comments on our web site when he praised Red
Hat's Bluecurve desktop for mixing the best of GNOME and KDE, and now he's
taking an in-depth look at standards for things like drag-and-drop and
configuration files. Don't take sides in the desktop war—follow standards so
you can use the applications you like.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Page 44's article comes from the “stuff the editor wanted to learn” pile. Chris
Schoeneman has invented what you might call a software KVM switch. It's
Synergy, a program that lets you move the pointer to the edge of one system's
display and start working on another system. Set your laptop down next to
your desktop system, and automatically get more work space without switching
keyboards.

Setting up Linux for desktop use still has some tricky parts, and scanning
certainly qualifies. On page 54, Michael J. Hammel goes through the intricate
dance of setting up a scanner. If you can do this, buy yourself a beverage and
consider yourself ready for most Linux tasks.

Whether you're planning to develop software for desktop Linux, run The GIMP
or design a web content management system, there's plenty of other good
stuff in this issue too.

Finally, you might not think of “Hacking Red Hat Kickstart” (page 83) as a
desktop Linux article. After all, the whole point Brett Schwarz makes is you can
install and configure a new system without touching the mouse and keyboard
even once. But the promise of user control over time-consuming tasks is one
important reason people think a Linux desktop is worth the effort in the first
place.

Don Marti is editor in chief of Linux Journal. Since reading the Bayesian spam-
filtering article from last issue, he is most likely to read mail with the words
“wrote”, “discussion”, “mutt”, “hardware” or “reform”.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Eclecticism for the Masses

Heather Mead

Issue #108, April 2003

Variety being the spice of life and all that, the LJ site offers a little something for
everyone.

Being eclectic is a good thing, even though the word often is said in a tone of
voice usually reserved for words like “lice” and “spellcheck”. The Linux Journal
web site, however, prides itself on being a compendium of topics related to
open-source, free software and, of course, Linux. In any given week, a visitor
might find articles ranging from hardware reviews to lessons in spam filtering
to how-tos for building one's own VPN gateway. It may sound obvious, but a lot
of people are using Linux to do a lot of different things. Our site attempts to
provide articles that explain how to do what you're dying to try, as well as
introduce topics and projects with which you might not be familiar. We might
even be able to help you win an argument.

Say, for instance, someone is giving you the old line about Linux being too hard
to use. Point them to “Interview with a Grandmother” (www.linuxjournal.com/
article/6562), in which Joe Klemmer talks to his mom about her experience with
OEone's HomeBase Linux system. Not only is it so easy the proverbial
grandmother can use it, this real grandmother uses her computer “ever so
much more than before”.

Back in early January 2003, senior editor and business reporter Doc Searls
prognasticated Linux and open-source events for 2003 in “Which Major PC
Vendor Will Sell Desktop Linux First?” (www.linuxjournal.com/article/6548). As
the title indicates, Doc feels this is the year Linux on the desktop will show up in
a major way, thanks to the support of some major vendors. Is he right? Also, be
sure to check out the predictions and comments offered by readers at the end
of the article.

Finally, it wouldn't be LJ if we did not have at least one security article. In
“Security with PHP Superglobals” (www.linuxjournal.com/article/6559), David

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6562.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6562.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6548.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6559.html

Lechnyr describes his desire to make after-the-deadline on-line reservations for
ski equipment and how easy that turned out to be thanks to the site's use of
GET statements. If the site had used PHP superglobals, which allow users “to
specify which variables received by a specific method should be used”, it would
have been more secure, but he wouldn't have had skis waiting the next
morning.

Just like having a music collection with a little Ella, a little Hank, some Buzzcocks
and the essential Who is a good thing, so is having a web site with a little bit of
everything—I mean, you'd rather be eclectic than boring, right?

Remember to check the Linux Journal web site often; new articles are posted
daily. If you want to write an article for us, drop a line to info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #108, April 2003

Our experts answer your technical questions.

Root Partition Mysteriously Read-Only

I have a Red Hat 7.2 system with two physical drives, each partitioned with
three logical volumes. I have done something that caused my main root
partition to be read-only. I've checked the directory permissions, and they are
fine. But if I try to vi or touch a file in root or anywhere in a root subdir, I receive
touch: creating 'test': Read-only file system.

—Jeff Manning, Jeff@VMWorks.com

Make sure you are truly on the root partition:

cd /
df .

The output should include a Mounted on column with a value of /. If it truly is
mounted read-only, it is most likely because you had some filesystem error.
You should fix it before you mount the partition read-write:

fsck /dev/hda2

Replace /dev/hda2 with the entry under the Filesystem column in the output of
df. Finally, do this to mount the root partition as read-write:

mount / -o remount,rw

—Christopher Wingert, cwingert@qualcomm.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:Jeff@VMWorks.com
mailto:cwingert@qualcomm.com

Switching to GDM from KDM

When my machine boots up in X, I get back what I think is the KDE login
manager. I would prefer to use GNOME's GDM, as it has better features and is
more customizable. How do I make GDM the default X login manager?

—Gordon Baldwin, gordonbaldwin@bigpond.com

Log in as root and edit the /etc/sysconfig/desktop file, changing:

DESKTOP="KDE"

to:

DESKTOP="GNOME"

—Keith Trollope, ktrollope@san.rr.com

Upgrade Makes Printers Disappear

I recently upgraded StarOffice from 5.2 to 6.0, and my system can no longer
access the network printers. The printers are HP LaserJets with JetDirect cards,
and they have their own IP addresses. Using spadmin outputs only to a default
printer; there is no obvious way to specify an IP address. Looking at
psprint.config shows a location parameter but offers no documentation saying
how to set up an IP printer.

—Murray Zangen, murray@nj.com

First, add the printers to the system using printtool and specify JetDirect
printer. Then, in spadmin, add the printer definition for StarOffice. When you
get to the print command window, specify the printer in the command, for
example:

lpr -P hp3

—Keith Trollope, ktrollope@san.rr.com

Emergency LILO Tip

This is a follow-up to the bulletproof backup/boot question that appeared in
Best of Technical Support in the January 2003 issue. LILO knows about the -R
option, which basically means “install this boot entry just once, then use
default”. You may, at an early boot stage, install your emergency mode with lilo
-R. At system shutdown (when all went well, if you are picky after remounting /
as read-only) you may re-install your normal mode. So, if the box crashes

mailto:gordonbaldwin@bigpond.com
mailto:ktrollope@san.rr.com
mailto:murray@nj.com
mailto:ktrollope@san.rr.com

unexpectedly (or goes down quickly from, say, a forced reboot with Ctrl-Alt-
Delete), you come up in emergency mode.

—Tomas, mlavergne@cfl.rr.com

Connecting to a Microsoft Network

How do I stick a Linux box into my Windows peer-to-peer network? I have an
existing Windows peer-to-peer network that includes one Windows XP machine
and three or four Windows 98 machines. They have fixed addresses in the
10.1.1.1-10.1.1.14 range. All the machines are completely shared, and there are
no passwords; I'm the only actual user most of the time. How do I make the
Windows machines see the drives on the Linux machine and vice versa?

—J. G. Owen, owen_labs@worldnet.att.net

Samba can help with this task. Setting up Samba this way can be confusing,
however, because the documentation doesn't make it clear from the first step
that there are actually two halves to this task. In Windows, client and server
functionality is the same. Once the network is up, you can browse other
systems, and they can browse yours. With Samba, each side has to access the
other. Once Samba is installed, it takes only a little work to access other
systems. You should be able to use the smbmount command to mount a share
from another system. In fact, if you have other name resolution methods
correctly installed, such as DNS, you generally don't need to run nmbd and
smbd. For permanent shares, you can add a line to /etc/fstab that is similar to
the following:

//machname/share /mountpt smbfs åusername=xxx,password=yyy 1 1

You do need to set the Linux machine up as a server to enable other machines
to access it. This is done by editing smb.conf to define the basic server
properties as well as the shares to create. Then run nmbd and smbd to provide
those services. The trick to avoiding sometimes-messy PDC-related work is to
compile Samba such that it supports your normal password services. You can
then add users to your system normally and use the smbpasswd utility to
create the file Samba actually uses. It's a relatively manual process (described in
the “Unofficial HOWTO” at www.samba.org), but it does do the trick. If you want
to browse as well as share, make sure you add the guest or no-name account.

—Chad Robinson, crobinson@rfgonline.com

Various versions of Windows are a bit touchy with the Network Neighborhood.
The best thing to do is edit /etc/samba/smb.conf. Make sure the “workgroup =
line” matches your workgroup. Add a “netbios name =” for the name of your

mailto:mlavergne@cfl.rr.com
mailto:owen_labs@worldnet.att.net
http://www.samba.org
mailto:crobinson@rfgonline.com

machine. Depending on your installation, the default passwords will be picked
up from /etc/password.

—Christopher Wingert, cwingert@qualcomm.com

I Have No Inetd and I Must...Telnet?

inetd on my system, Slackware 2.0.28, stops on occasion, barring access from
telnet. Is there an easy way to automatically restart inetd if it dies?

—Mark Johnson, Mark.Johnson@InfoHarvest.ca

You're running an extremely old version of inetd, and some versions did have
stability problems. Several solutions to your problem are available. If it is
possible to upgrade your system, newer versions usually work fine, and you'll
receive other benefits as well. If you'd like a replacement, try such alternatives
as xinetd or daemontools, both of which are quite stable and add some
features to the mix. However, if your cron service is trustworthy and you don't
need to restart the service the second it dies, you might try running the
following script every five minutes or so from cron:

#!/bin/sh
ISINETS=`ps ax | grep inetd |
grep -v grep | wc -l`
 if [$ISINETD != 1]; then
 /usr/sbin/inetd
 fi

—Chad Robinson, crobinson@rfgonline.com

We've said this before, but please replace telnet with OpenSSH to avoid
exposing your passwords and other sensitive data to the network. Packages for
the OpenSSH client and server are available for all the Linux distributions, and
compatible clients are available for every common platform. SSH is as easy to
use as telnet, and it automatically encrypts your connection.

—Don Marti, info@linuxjournal.com

Setting the IP Address on SuSE

I'm operating SuSE 8.0 on my IBM ThinkPad 600E and am trying to connect to
our LAN server at work. How do I configure TCP/IP so it automatically
recognizes the addresses?

—Layla, satchumwatch@netscape.net

Run YaST2, the SuSE setup tool, and go to the Network address setup screen.
Select Automatic address setup (via DHCP) to use a DHCP server if one is

mailto:cwingert@qualcomm.com
mailto:Mark.Johnson@InfoHarvest.ca
mailto:crobinson@rfgonline.com
mailto:info@linuxjournal.com
mailto:satchumwatch@netscape.net

available, or select Static address setup and fill in an IP address and subnet
mask to set the address manually.

—Don Marti info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #108, April 2003

Acceleron64 Opteron Servers, SCOoffice Server, iSystem Enterprise 3.0 and
much more.

Acceleron64 Opteron Servers

Einux announced a new family of 64-bit dual processor AMD Opteron-based
rackmount servers called the Acceleron64 series. The first offerings are the
A1840, an enterprise-class server, and the A1820, a carrier-class server. The
A1840 is a 1U server with support for four hot-swappable hard drives. RAID 5
are available, and Fibre Channel and iSCSI SANs connectivity to external storage
arrays can be added. The A1820 is a 1U server with a hot-swappable
350W+350W redundant power supply. Both servers offer support for up to
12GB of DDR333 ECC memory, an Ultra 320 SCSI controller, dual GB Ethernet
interfaces and hot-swap fans.

Contact Einux, 1313 North Milpitas Boulevard #110, Milpitas, California 95035,
866-883-4689, www.einux.com/about/acceleron64.php.

SCOoffice Server

SCOoffice Server, from The SCO Group, is a backoffice software suite for small-
to medium-sized businesses. SCOoffice includes SCO Linux 4.0, SCOoffice Mail
Server 2.0 and SCOoffice Base Server. SCO Linux 4.0 is based on the
UnitedLinux 1.0 distribution. The Mail Server is preconfigured to support mail,
address book and calendar features of various mail clients, including sendmail,
Eudora and Outlook. The Base Server provides a graphical interface for
configuring printers, file sharing, networks and other shared resources and
utilities.

Contact The SCO Group, 355 South 520 West, Suite 100, Lindon, Utah 84042,
801-765-4999, www.sco.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.einux.com/about/acceleron64.php
http://www.sco.com

iSystem Enterprise 3.0

MetiLinx, Inc. has released iSystem Enterprise 3.0, a software suite for adaptive
infrastructure management. iSystem connects real-time analysis of system
performance across every layer of the data center to tools that can redirect
transactions, improving system availability and performance. Version 3.0
provides tools for server virtualization, IT cost allocation, database
synchronization and replication and easy system integration. iSystem 3.0
automates many system management tasks, enabling multiplatform
environments to self-manage and self-heal.

Contact MetiLinx, Inc., 999 Baker Way, Suite 410, San Mateo, California 94404,
888-399-5469, www.metilinx.com.

Appro 2U Server Series

Two new server series are available from Appro Computers, one using Xeon
processors and one using Athlon processors, both using a 2U rackmount form
factor. On the Xeon side, the 2224X is available with dual Xeon processors, four
SCSI or IDE hard drives, up to 12GB of DDR, ECC memory (PC2100) and two
10/100 Ethernet ports. The 2228X system comes with eight SCSI drives. The
Athlon machines offer dual Athlon MP processors, up to 4GB of DDR, ECC
memory (PC2100) and two 10/100 Ethernet ports. The 2224 server comes with
four SCSI or IDE hard drives, while the 2228 features eight SCSI drives.

ContactAppro International, 446 South Abbott Avenue, Milpitas, California
95035, 800-927-5464, www.appro.com.

Astaro Security Linux v4

At LinuxWorld NYC, Astaro Corporation announced version 4 of Astaro Security
Linux, its all-in-one internet security software. Astaro Security combines a
firewall/VPN gateway with software for spam filtering, content filtering, URL
blocking and virus protection. New features for Astaro Security v4 include VLAN
and WLAN support, virus protection for POP3 e-mail accounts, heuristic spam
blocking and increased Radius and LDAP support for local and remote user
authentication. The VPN authenticates via IPSec and preshared keys, and its
PPTP offers 128-bit encryption. VPN throughput is up to 115Mb/second, and
firewall throughput is up to 735Mb/second with a 1266MHz processor.

Contact Astaro Corporation, 67 South Bedford Street, Suite 400W, Burlington,
Massachusetts 01803, 781-229-5880, info@astaro.com, www.astaro.com.

http://www.metilinx.com
http://www.appro.com
mailto:info@astaro.com
http://www.astaro.com

MontaVista CEE

MontaVista Linux Consumer Electronics Edition (CEE) is an embedded operating
system and cross-development environment for consumer electronics devices.
It features dynamic power management, enhanced filesystems, development
tools for system performance tuning, processor and peripheral support, cross-
development tools for system and application development, and hundreds of
deployable utilities, libraries, drivers and other runtime components.
Distributed in both binary and source formats, CEE provides real-time
functionality and multiprocess and multithreaded support that can be used in
devices such as mobile phones, set-top boxes, digital televisions and
automotive telematics.

Contact MontaVista Software, 1237 East Arques Avenue, Sunnyvale, California
94085, 408-328-9200, www.mvista.com.

Umigumi

The OpenBrick Community introduced a new project, named Umigumi, that
aims to simplify the installation and the distribution of OS installers by using
Flash memory cards. Based on user input, Umigumi creates compact Flash
cards with bootable code. The card can then be inserted into a different system
to reconfigure that system as a router, firewall, VPN, OGG player, print server,
thin client and so on. Originally designed to work with OpenBrick, Umigumi can
support any embedded hardware platform, including PowerPC, StrongARM/
XScale, Mips/Mipsel, SuperH, SPARC and 68K, running open-source operating
systems.

Contact Umigumi, www.umigumi.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.mvista.com
http://www.umigumi.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/toc108.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Control Everything from One Place with Synergy
	Chris Schoeneman
	Building and Installing
	Configuring the Server
	Testing the Client and Server
	Starting Synergy Automatically

	Scanning with SANE and Other Tools
	Michael J. Hammel
	The Hardware
	The Tools of the Trade
	SANE Configuration
	Graphical Front Ends
	XSane
	QuiteInsane
	Image Scan!
	VueScan
	Feature Comparisons
	Quality Comparisons
	Summary

	Linux for a Small Business
	Gary Maxwell
	Tools of the Trade
	OpenOffice.org
	Contact Manager/E-Mail Client
	A Web Browser
	Financial Software
	Conclusion

	The Grand Unified Desktop
	Marco Fioretti
	The Problem
	The Solutions
	File Formats
	Graphical Interfaces
	Fonts and Encoding
	Menus and Icons
	Ease of Installation
	Conclusion and Credits

	Fixing Photo Contrast with The GIMP
	Eric Jeschke
	Layers and Layer Masks
	The Nitty-Gritty

	Programming under GNUstep—An Introduction
	Ludovic Marcotte
	A Short History
	Installing GNUstep
	Developing a Small Application
	Porting to and from Apple Mac OS X
	Conclusion

	The GNOME 2 Desktop Environment
	Russell Dyer
	Changes to GNOME
	Panels
	Workspaces
	Applets
	Continuity
	Nautilus
	Configuring
	Accessibility
	Menus and Applications
	Ximian Evolution
	Conclusion

	Hacking Red Hat Kickstart
	Brett Schwarz
	Setting Up the Build Machine
	Selecting the Packages
	Preparing the Installation Files
	Creating a Custom Message Screen
	Building the CD
	Using the CD
	Conclusion

	The USB Serial Driver Layer, Part II
	Greg Kroah-Hartman
	Generic USB Serial Devices
	Life Cycle of a USB Serial Device
	sysfs Representation of USB Serial
Devices

	The Linux Kernel Cryptographic API
	James Morris
	Design
	Algorithms
	Page Vectors
	API Structure
	Conclusions
	Acknowledgements

	Content Management
	Reuven M. Lerner
	What Does a CMS Do?
	Content Management vs. Application
Development
	Conclusion

	Sometimes, You Have to Do It Yourself
	Marcel Gagné

	rsync, Part II
	Mick Bauer
	Contents of a Sample /etc/rsyncd.secrets
File
	Using rsync to Connect to an rsync
Server
	Tunneling rsync with Stunnel

	Subcontinental Smackdown
	Doc Searls
	Linux for Suits
	Subcontinental Smackdown

	Linux Distributions Agree on Standards
	Scott McNeil

	Kylix 3.0 Enterprise (with C++)
	Dragan Stancevic
	Installation
	First Run
	First Compilation
	Building Projects
	Coding
	Conclusion

	Hacker's Delight
	Michael Baxter

	Letters
	Various
	Zaurus Fans Unite
	Be Careful with ptrace
	FreeS/WAN Updates
	Surprising Our Readers...with Quality
	make penguins && make
party
	Keep LJ Free of Microsoft
Ads
	Linux and Land Reform
	Origin of “Wardriving”
	maddog Inspires One Reader...
	...and Loses Another
	Where Is the Fun?
	What Happened to the Thick
LJs?
	maddog 3, Brazilian Land Barons 1

	UpFront
	Various
	diff -u: What's New in Kernel
Development
	LJ Index—April
2003
	Sources
	They Said It

	Tools for Desktop Success
	Don Marti

	Eclecticism for the Masses
	Heather Mead

	Best of Technical Support
	Various
	Root Partition Mysteriously Read-Only
	Switching to GDM from KDM
	Upgrade Makes Printers Disappear
	Emergency LILO Tip
	Connecting to a Microsoft Network
	I Have No Inetd and I Must...Telnet?
	Setting the IP Address on SuSE

	New Products
	Heather Mead
	Acceleron64 Opteron Servers
	SCOoffice Server
	iSystem Enterprise 3.0
	Appro 2U Server Series
	Astaro Security Linux v4
	MontaVista CEE
	Umigumi

