JOURNAL

Advanced search

Linux Journal Issue #75/july 2000

™ GETTING NT OUT-AND LINUX IN

FUTURE
TECH

What will \5
you be 4

wearing <

tomorrow?
-

Focus

Science & Engineering by Marjorie Richardson

Features

Gri: A Language for Scientific lllustration by Dan E. Kelley and Peter
S. Galbraith
This scripting language avoids integrating analysis and display
capabilities and instead focuses on providing precise and
flexible control over the display of technical material.
Tracking Satellites with PREDICT by John A. Magliacane
A look at the development and use of an open-source satellite-
tracking and orbital-prediction program.
Detecting Chaos in the Field by Juergen Kahrs
All that is real is reasonable, and all that is reasonable is real. —
G.W.F. Hegel, 1770-1831
THOR: A Versatile Commodity Component of Supercomputer
Development by Robert A. Davis
CERN continues to use Linux as their OS of choice for modeling
and simulation studies.
A GNU/Linux Wristwatch Videophone by Steve Mann
This fully fuctioning prototype, designed and built by Steve
Mann in 1998, was demonstrated in 1999, and later used to
deliver a videoconference at ISSCC 2000.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/075/4107.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993.html

Forum

Three-Tier Architecture by Ariel Ortiz Ramirez
Professor Ortiz presents a little of the theory behind the three-
tier architecture and shows how it may be applied using Linux,
Java and MiniSQL.

cgimodel: CGI Programming Made Easy with Python by Chenna

Ramu and Christina Gemuend
Always look on the bright side of life and at a method for
debugging CGI programs on the command line.

Mapping Lightning with Linux by Timothy Hamlin
NM Tech studies lightning to determine basic charge structures
and learn more about storm morphology.

Using Linux in Embedded and Real-Time Systems by Rick Lehrbaum
When you need an embedded operating system, Linux is a good
place to start. Here's why.

Troll Tech Announces Embedded GUI Toolkit by Craig Knudsen
Troll Tech enters the embedded systems market—here's what's
happening.

The Montréal 2000 Linux Expo by Marcel Gagné
LJ's French chef visits Montréal April 10-12 for more than the
food.

Reviews

Medusa DS9 Security System by Robert Dobozy
Cyagwin: For Windows NT by Daniel Lazenby
Understudy by Daniel Allen

Columns

Take Command The System Logging Deemons, syslogd and klog
by Michael A. Schwarz
Take command of your log files by learning to handle those
pesky logging deemons.
Linux Means Business Using Linux at Left Field Productions by
David Ashley
One programmer's experiece developing a Gameboy emulator
on Linux.
System Administration Getting the NT Out—and the Linux In by
David C. Smith
An overview of configuring Linux using Samba to replace the
services provided from Windows NT servers.
Kernel Korner Linux System Calls by Moshe Bar
How to use the mechanism provided by the IA32 architecture for
handling system calls.
Linley on Linux Voice Recognition Ready for Consumer Devices by
Linley Gwennap
Cooking with Linux An Appetite for Discovery by Marcel Gagné
Looking at the skies for stars and aliens can both be done on
Linux systems.
At the Forge Press Releases with Mason by Reuven M. Lerner
Focus on Software by David A. Bandel

https://secure2.linuxjournal.com/ljarchive/LJ/075/3508.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3616.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3973.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3980.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4023.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4081.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4032.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4036.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3828.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3476.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4048.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4064.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4066.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4062.html

Embedded Systems News by Rick Lehrbaum

Departments

Letters

UupFRONT

Penguin's Progress: Collecting RFCs by Peter H. Salus
Linux for Suits The Message by Doc Searls

Best of Technical Support

New Products

Strictly On-Line

Mastering Algorithms with C by John Kacur

Red Hat Linux 6 for Small Business by Paul Dunne

Low-Bandwidth Communication Tools for Science by Enrique Canessa

and Clement Onime
No access to the Internet? Browse the Web via e-mail instead!

Security Technologies for the World Wide Web by Wael Hassan

Getting Started in Computer Consulting by Ralph Krause

Teach Yourself Emacs in 24 Hours by Ralph Krause

Linux Administration A Beginner's Guide by Harvey Friedman

AIPS and Linux: A Historical Reminiscence by Patrick P. Murphy
The Astronomical Image Processing System looks at the sky
using the radio wave section of the electromagnetic spectrum.

Archive Index

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4085.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4106.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4105.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4091.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4112.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4078.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4079.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3736.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3807.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3825.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3854.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3868.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3963.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4006.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4040.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Focus: Science and Engineering

Marjorie Richardson

Issue #75, July 2000

| must say this issue ended up being more science than engineering, but
perhaps that is not surprising considering my scientific leanings.

| must say this issue ended up being more science than engineering, but
perhaps that is not surprising considering my scientific leanings. | thought
about dropping the word “engineering”, but since the S&E focus has become
traditional, | decided to keep the word and wave my hands a bit. Our main
feature article is from Dr. Steve Mann of wearable computer fame, and he has
certainly pulled off a slick piece of engineering in his videophone watch shown
on our cover. Dr. Mann is an accomplished photographer as well as inventor,
and he gets credit for the picture of the watch on the cover and the one with
his article. Dr. Mann certainly lives on the leading edge of this technology, and
we are happy to have another article from him to keep us abreast of
developments in wearable computers.

For those readers who like to watch the skies, we have a little of everything:
satellite tracking, astronomy (even our French chef, Marcel, has something to
say on this one), storms and lightning. Science articles can be found
everywhere: in Features, Forum and Strictly On-Line—enjoy!

Linley Gwennap becomes a regular columnist for us this month with his column
“Linley on Linux”, where he will keep us up to date on some of the latest
happenings in the electronics market for Linux. This month, he tells us what's
happening in the field of voice recognition.

Speaking of columnists, Moshe Bar will also be joining us on a regular basis to
teach us about kernel issues in Kernel Korner, and next month, we'll have an
all-new column on cross-platform programming written by Michael D.
Crawford. Both should keep our inner penguin quite happy.

—Marjorie Richardson, Editor in Chief

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Contents

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4107s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Gri: A Language for Scientific Illustration

Dan E. Kelley
Peter S. Galbraith

Issue #75, July 2000

This scripting language avoids integrating analysis and display capabilities and
instead focuses on providing precise and flexible control over the display of
technical material.

Like other computer users, scientists sometimes find themselves torn between
simple tools and complex tools, between ease of use and power.

Take writing, for example. The simplest tools for writing are those of the office-
suite variety, because they are GUI-based. If you can click and point, you can
produce results quickly without climbing a steep learning curve.

However, you might also pay a price for this shallow learning curve. Many
technical writers who make extensive use of mathematical notation find GUI-
based products to be both limiting and annoying when used for anything but a
one-pager. For example, graduate students in our research field (Physical
Oceanography) often write hundreds of equations in their dissertations. Almost
without exception, these students use markup languages (mostly TeX and
LaTeX) for this work. It must be admitted that markup-based writing tools are
harder to learn than GUI-based tools, but the effort of learning is rewarded
with precise control over output that is aesthetically pleasing and flexible
enough to meet all reasonable demands.

What goes for words also goes for pictures. For quick jobs, it's lovely to use a
GUI-based graphing package or a spreadsheet. However, many users prefer a
markup-based system for complicated illustrations, for the same reasons they
prefer a markup-based system for complicated text. An additional factor is that
GUI-based systems cannot help with illustrations that must be generated
automatically without human intervention.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

An interesting example is provided by storm-surge forecasts prepared by
oceanographers at Dalhousie University in Nova Scotia, Canada. Storm surges
are unusual elevations in sea level that are driven by anomalous wind stresses
and low atmospheric pressures associated with storms. These surges can cause
considerable damage to low-lying areas. Since damage is worsened if a surge
happens to occur at the time of a high tide, it is important to make precise
predictions of surge arrival times. Surge-induced damage can be greatly
reduced if people are given sufficient warning of impending storm surges.
Dalhousie researchers have developed numerical ocean models, akin to
numerical weather models, for predicting the incidence of storm surges in the
northwest Atlantic Ocean. The goal is to provide advance-warning systems that
display surge forecasts graphically on the Web. Gri is used for the graphics in
this system, because it can be run without human intervention. It is so flexible,
researchers can tailor the illustrations to be quickly understood by non-
technical users.

We mention this storm-surge example mostly because we find it interesting.
Many folks use Gri, so we could have picked other examples of Gri applications
in different disciplines of science and engineering. To help you decide whether
Gri might help you in your own work, we will explain how to use Gri for some
basic scientific illustrations (line graphs, contour graphs and image graphs).
This will be enough to get you up and running in a few minutes. After that, we'll
outline a few examples from our own work and that of colleagues. In this
second part, we won't be hesitant about explaining the scientific background of
the work, since we've enjoyed reading such things in this magazine.

Getting Started

One feature scientists like about Gri is that it provides fine control over nearly
all aspects of the appearance of the output. This is relevant because scientists
have diverse needs, ranging from complicated working plots to pared-down
and elegant diagrams for use in proposals, conference presentations and
publications. Many Gri users report it is flexible enough to satisfy the full range
of applications, removing the need to learn one tool for working plots and
another for “publication-quality” illustrations.

Gri achieves its flexibility by being highly configurable; it has many knobs you
can twiddle. Just because the knobs are there doesn't mean you need to touch
them, since the Gri defaults are reasonable for many applications. The
reasonableness of the defaults may well result from the fact that Gri was
designed by a scientist for his research work, not by a committee or a corporate
structure that had surveyed (or imagined) a market.

Line Graphs

Perhaps the best way to illustrate the defaults and the simplicity of Gri is to
show how one would produce the most common form of scientific illustration,
a line graph describing x,y data. To be specific, let's suppose we have an ASCII
file named linegraph.dat, containing the following x,y pairs:

0.05 12.
0.25 19.
0.50 15.
0.75 15.
0.95 13.

[oNoNoNoNé|

Creating a line graph then takes just three Gri commands:

open linegraph.dat
read columns x y
draw curve

If these commands were stored in a file called linegraph.gri and if Gri were
invoked as gri linegraph.gri in a UNIX shell, the result would be a PostScript file
named linegraph.ps as shown in Figure 1. Gri does not draw to the screen,
because screen-drawing libraries are more limited than PostScript and high-
quality PostScript viewers are freely available on all platforms.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f1.large.jpg

19

18

17

16

15

14

13

12

0O 01 02 03 04 05 06 07 08 09 1
X

Figure 1. A Simple Line Graph Produced by Gri

The example illustrates a few things. To begin with, Gri syntax is simple, being
patterned on English and purposefully using a minimum of punctuation. For
example, the open command takes as an argument the name of the file
containing the data. This file name is not enclosed in parentheses, as it would
be in a subroutine-based language. We think the lack of parentheses makes Gri
easier to read than some languages. Nor is there any need for the file name to
be enclosed in quotation marks, although these are required for file names
with spaces in them (and for pseudo-file names created by UNIX pipe
commands, which are supported in the Perl style).

Now let's move on to the read line. Gri knows of four types of data: scalars,
columns, grids and images. These types are what you'd expect: scalars hold
numerical values or strings, columns hold lists of numbers, grids hold two-
dimensional matrices and images hold pixels. Each data type has a host of
associated read commands and data-processing commands. Folks who are
used to programming languages should note that Gri is an illustration-oriented
language, not a programming-oriented one, so it attaches special meanings to
columns. Thus, the columns named x and y in the example above correspond
to the x,y values in a Cartesian space. Gri also has a column named z used for

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f1.large.jpg

gridding, a column called w used for weights in statistical operations, columns
called u and v for vector fields, etc.

The draw curve command tells Gri to draw a curve composed of line segments
connecting these points. You may not be surprised, given the focus on drawing,
to learn that Gri has many options for draw--over 40, in fact. For example, to
get symbols drawn at the data points, you could add the line draw symbol
someplace after the read command. This will draw bullets at the x,y points.
Bullets are the default, but Gri provides a dozen other symbol choices. The
symbols are designed according to the recommendations of scientific journals
and technical-drafting texts. For example, efforts have been made to ensure
that the superposition of any two symbols does not result in a symbol that can
be mistaken for a third symbol type. The default symbol size is a diameter of
0.1 cm (defined in the expected way for a bullet, and in a reasonable way for
non-circular symbols). If this doesn't suit your application, you could issue a
command such as set symbol size 0.2 to create larger symbols (in this case, 0.2
centimeters). This is by no means the only set command. It has many options,
since Gri is designed to be configurable. Indeed, there is an average of nearly
two set commands for each draw command.

In addition to such basic commands and a few others discussed next, Gri
provides programming features such as “if” statements, loops and system calls.
It also provides a simple scheme for creating new commands to complement
the existing commands; e.g.,

Draw Logo

F.. Gri commands to draw a logo

}
creates a new command to draw a logo. This command is invoked by Draw
Logo, just as if it were a built-in command. Many users store such definitions in
a file called ~/.grirc and thus customize Gri for the sort of work they do.

Gri updates its PostScript output file step by step as it processes commands.
When Gri executes any drawing command, the item is drawn with whatever
settings (fonts, colors, line widths, etc.) are in place at that time. To use an
artistic analogy, draw will paint with whatever color has been stored on the
brush with the most recent set command. Many other scripting graphic
languages follow a different approach, with some commands being able to
alter the form of material that has already been drawn (e.g., axis in matlab).
Such languages are meant to be used interactively in an exploratory way, so it
makes sense to have this out-of-order processing. However, Gri processes
commands in order, because it is designed to be used non-interactively in a
planned way.

Gri scripts are not typically written in one large chunk. Instead, Gri users
typically write their scripts a bit at a time, running Gri at frequent intervals to
see what the results look like. Some like to keep a PostScript viewer open at all
times, clicking on an update button every time they run Gri. Most Gri users run
it from inside Emacs, which has a button that runs Gri and displays the output.
This is but one helpful feature of the Gri Emacs mode. It also provides syntax
coloring, indentation, linkage to the on-line Gri documentation, command-
specific help, command completion and a search facility that lists all Gri
commands containing a given word.

Contour Graphs

Whereas line graphs can be accomplished in as little as three commands,
contour graphs are not much more complicated. Suppose we have a file called
temp.dat that contains measurements of ocean temperature made once per
decade, over the period from 1950 until 2000, at depths of 500 meters, 400
meters, 300 meters and so on, up to the surface at 0 meters. The natural way to
store such a dataset is in a matrix or “grid” in Gri. There are three steps to
drawing this in Gri.

First, set up the x,y vertices of
the grid ...

set x grid 1950 2000 10

set y grid © 500 100

then read the grid data ...

open temp.dat

read grid data

and plot contours:

draw contour

As you can see, comments in Gri start with the pound sign, as in many other
scripting languages. In this example, a uniform grid is used (i.e., time increasing
by 10 years between samples), but non-uniform grids are also easy to handle.
For many applications, grids are read in from data files instead of being
specified in the command file. As for the drawing of the contours, that's fairly
easy since Gri can determine, by scanning the grid, a reasonable default range
of contours.

Image Graphs

Images are not much harder to deal with. There are many image formats in this
world, and Gri handles only a few. This causes few problems, since good
conversion programs are available (e.g., ImageMagick). Let's suppose we have a
raw (headerless) image file in 8-bit resolution. The 8-bit pixels have 256 possible
values, in the range 0 to 255. Satellite-derived measurements of ocean
temperature are typically in this format. A common scale for the data is that 4.9
Celsius gets a pixel value of 0 while 30.4 Celsius gets 255, with linear variation in
between. Let's say that the image is 512 pixels by 512 pixels, and that the
geographical coverage spans a box with the lower-left corner at x=0 and y=0

and the upper-right corner at x=20 and y=20. We want the image drawn with
blue for cold water and red for warm water. Listing 1 shows how to handle this
in Gri. As you can see, it is quite easy to make Gri create line graphs, contour
graphs and image graphs.

Listing 1.

A quick note about file names and other properties. In the examples given so
far, we always specified the names of the data files in the script, but that means
users have to modify the file for use with other data. For this reason, many
scripts use a command called query to ask the user the name of the input file.
This command stores a user's answers into variables that may later be used in
open commands. The query command has an option to provide a list of
permitted answers (e.g., “yes” and “no”) so that users cannot make mistakes. In
many laboratories, query is used extensively, so that novices can use
complicated Gri scripts without having to edit Gri scripts they don't yet
understand. This lets students dive into their research instead of getting too
distracted with the tools of the work.

Radionuclides Reveal Ocean Mixing

Let's turn to a more complicated example, based on an illustration from one of
our research papers. Here, and in the remainder of this article, we will show
only fragments of the Gri code, to illustrate topics not already covered.

A key issue in understanding the climate system is the interaction between the
ocean and the atmosphere. The heat capacity of the top three meters of the
ocean is equal to that of the entire atmosphere, but everyone knows the ocean
is more than three meters deep. In fact, the mean depth is more like three
kilometers. Given this, it is not surprising that the ocean is important to the
heat balance of the planet and thus to the climate system. Beyond the ability to
soak up heat from the sun (or re-release it), the ocean has currents that
transport heat from one location to another. The exact pathways of this
transport are not fully mapped out yet, and we are still unsure of some
fundamental dynamical aspects of the system. A great deal of evidence
suggests that vertical mixing in the ocean is very important to these patterns of
heat flow. Thus, ocean mixing is important not just to the ocean itself, but also
to the whole climate system. This is a prime motivation for studies of ocean
mixing, which is our research specialty.

One good way to observe mixing is to insert a tracer and see where it goes. This
is not as easy as it sounds, so oceanographers also make great use of tracers
that are naturally occurring or introduced without the specific intention of
studying mixing. An example of the latter is a suite of radionuclides introduced
into the atmosphere by atmospheric bomb testing carried out by the U.S. and

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743l1.html

the U.S.S.R. in the 1960s. These radionuclides have found their way into the
ocean. One radionuclide, a hydrogen isotope named tritium, is especially useful
for studying ocean mixing. Figure 2 shows a plot from a paper (see Resources)
in which one of us, together with a geochemist colleague named Kim Van Scoy,
tried to work out the rate of ocean mixing by tracing the movement of tritium
over several decades.

60°

40°

20°

00

== S, . R RS e LS S e
100° 120° 140° 160° 180° 200° 220° 240° 260°
Figure 2. A Contour lllustration, Showing the Depth of Maximal Concentration of Tritium in
the Ocean

Our approach was to do time derivatives of properties that are spatially
averaged over a particular geographical area. The area is defined by the
streamlines of the average ocean circulation pattern. Now, averaging gridded
data is easy: just sum along the rows and columns of the grid. Unfortunately,
however, our observations were not made on a grid. As Figure 2 shows, the
observations are at manifestly non-uniform locations which correspond to ship
tracks on cruises designed with other goals in mind. Our first step, then, is to
cast these x,y,z data onto a uniform x,y grid. After reading in the columns and
setting up an x,y grid (exactly as discussed above), we create the grid by using

convert columns to grid barnes

This is our first example of a convert command. Commands in this category
perform conversions from one data type to another. Since contouring works on
a grid, we must convert column data into the grid. In this case, we have chosen
to use the so-called “barnes” method of gridding, which is but one of several
gridding methods in Gri (see Resources). The method applies a Gaussian-
weighted low-pass filtering (averaging) scheme that is run iteratively. Initial
iterations map out the large-scale variation in the field, while later iterations fill
in details in regions where the data sampling is intense enough to justify doing
So.

In the previous example, we let Gri pick contours; in fact, that is how we started
out with the working plots that led to the diagram shown in Figure 2. For

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f2.large.jpg

publication, however, we ended up deciding to highlight certain contours by
drawing them with thicker lines:

set line width rapidograph 00
draw contour 50 unlabelled
set line width rapidograph 2
draw contour 100

where the “rapidograph” method of naming line thicknesses by the scheme
used for Rapidograph technical fountain pens has been used. Line widths may
also be given in units of printer points.

At this stage, we had the scientific result we wanted. We used the Gri command
write grid to write the gridded data into a file, then we integrated the values
with a Perl script (called from within Gri with a system command), then we were
done with part of the work. For presentation, we wanted to draw this in a map
format, so we started by customizing the axes a bit:

set x name ""
set y name ""
set x format %.01f\circ
set y format %.01f\circ

The first two commands remove the names x and y from the axes by setting
the names to blank strings. The second two set the format of the axis numbers,
using the notation of the C programming language. We also added a LaTeX-like
part to the format (enclosed in dollar signs) to make Gri draw degree signs for
longitude and latitude. Gri can draw Greek letters and mathematical symbols in
this way, although the emulation of TeX is by no means complete, sinceitis a
daunting task.

A map isn't too helpful without coastlines. Since coastline files are quite big, our
system retains the data in a binary format for quick reading. We use the format
called netCDF, which is quite popular in earth science (see http://
www.unidata.ucar.edu/packages/netcdf/). Out of the many advantages to this
format, one is quite relevant to Linux users: it is fully binary-compatible across
big-endian and little-endian computers and across computers with different
word lengths. It also permits naming of data entities, so you don't have to
remember that the first column is latitude and the second longitude, or vice
versa. Gri handles netCDF format easily:

open map_land.nc netCDF
read columns x="lon" y="Tlat"

is all it takes to read the coastline data. We'll fill in the coastline with a light
brown color, and then draw a black coastline:

read colornames from RGB "/usr/1lib/X11/rgb.txt"
set color burlywood
draw curve filled

http://www.unidata.ucar.edu/packages/netcdf
http://www.unidata.ucar.edu/packages/netcdf

set color black
draw curve

In addition to X11-based colors and a dozen or so familiar colors above like
black, Gri permits you to specify colors in either an RGB or an HSV framework.

Viewing the Ocean with Satellites and Ships

Speaking of colors, a common application of Gri is generating illustrations of
color images. Within oceanography, such images often fall into two broad
categories: fields generated by numerical models and fields generated by
satellite observation. In each case, the advantage of Gri over tools that are
more image-based is that Gri invites the user to draw other graphical elements
as well as the images.

Figure 3 provides a good example, showing some of the work in the ECOLAP
program, spearheaded by oceanographers at the Rio Grande University in
Brazil (see http://www.peld.furg.br/). This research group has a ten-year
program to measure and understand the physical and biological variability of
the Brazil Rio Grande estuary and the adjacent sea. Figure 3 shows a satellite
image of ocean temperature, and the location of ship-based observations
made on 22 February 2000. Land is colored a ruddy brown in the figure, and
the palette indicates sea surface temperature as measured by the satellite. The
processing of the satellite image is done exactly as described in the more
hypothetical example given near the beginning of this article. The two panels
are drawn simply by changing axes and redrawing. The palette was drawn with
a command called draw palette, the guiding lines were drawn with the
commands draw box and draw line and the labels were drawn with draw label.
By now, you may be getting the impression that it's pretty easy to guess the
names of Gri commands. This guessing isn't necessary; just type “draw” in the
Emacs mode and press the ESC key followed by the TAB key, and the mode will
display all commands starting with the word “draw”, i.e., all drawing options.

http://www.peld.furg.br
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f3.large.jpg

Temperatura (°C)

- .
!TFI | R . S B)

H 1 11 12 13 14 15 16 17 18 18 20 21 22 23 24 25 26 27

- " | CRUZEIRO PELD
ECOLAP
TSM <2000-FEB-22>

l -
~
2 LA 4
10 de ']é
y O
w . 4
=)
= 4 a4
=
-
<
— 3
33 4
l/>
y "OEstagées hidrograficas
~ +Estagdes completas
53 52
LONGITUDE

Figure 3. Image Showing Satellite-Derived Sea Surface Temperature East of Brazil, Uruguay
and Argentina

A noteworthy feature of Figure 3 is the use of symbols to indicate the locations
at which ship measurements of ocean properties were made. These ship-based
observations usually run from the ocean bottom to the surface, and typically
involve measurements of physical properties of the water as well as biological
properties, such as the occurrence of different species through the depths. In
past decades, oceanographers were greatly challenged to explain patterns in
ship-based observations, and Figure 3 illustrates why. Consider the ship sample
near the middle of the larger image. It lies in a thin filament of cold water
(green color), whereas the other samples lie in warmer water. To some extent,
the biology is just “along for the ride” as currents move water from one place to
another, so it might not be surprising if this middle sample had different
biological characteristics (e.g., species typical of cold water) than the nearby
stations. The superposition of satellite and ship data on one graph, which is so
easy to accomplish in Gri, provides a powerful insight into the systems under
study.

It almost goes without saying that the script-based nature of Gri is important in
constructing such diagrams. Nothing about this diagram was prepared with a
mouse, and nothing in the Gri script requires modification for another cruise of

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f3.large.jpg

the ship (since query commands are used to set up all file names). As soon as
the ship does an observation and a latitude-longitude pair is written in a data
file, the Gri script can be rerun and a new diagram prepared.

New Ways to Measure Ocean Mixing

Understanding turbulent flow is one of the grand challenges in physics, and
ocean mixing provides a good example. The ultimate goal is to be able to
predict mixing, which is a small-scale phenomenon that is difficult to measure,
based on large-scale properties that are easy to measure. One proposed
technique is to examine vertical variation of water density on intermediate
scales. If this can be done, it will greatly expand our database of ocean mixing
knowledge, since density measurements are common. But can it be done? This
guestion was addressed in the Ph.D. dissertation of the second author. Figure 4
shows a diagram patterned after a paper about this work. The illustration
shows two things. The red image shows a theoretical prediction of where
mixing should be occurring, through time and through depth. The blue-filled
curves show where mixing actually occurred.

Ri
0 1{4 1{2 3{4
| —

Thorpe Displacement (m)

~15

Depth (m

Time (min)

Figure 4. Indicators of Mixing in Surface Regime of Ocean

To be more specific, the red image shows the so-called Richardson number.
Theory indicates that the type of mixing known as Kelvin-Helmholtz overturning
can occur only when the Richardson number, a measurement of the
competition between stabilizing and destabilizing effects, falls below a critical
value of 1/4. We measured the variation of the Richardson number over depth
and time on a grid. Our first inclination was to contour this, but since we

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3743f4.large.jpg

wanted to superimpose other things, we decided to use an image instead for
clarity. The gist of the Gri code can be guessed from what you've read so far,
the only new feature being the use of the command convert grid to image to
transform our grid data into an image that can be colored. We drew the image
in shades of red by running the color scale across intensities of the red hue,
instead of across hues as in the previous example. We did this because we
wanted to superimpose another curve of a certain color, and that would be
difficult to discern with a spectrum below. The image indicates that mixing
should occur in a band that lies roughly at 17 meters deep and that this mixing
band should bob up and down over the time of observation.

With the theory painted in red, we'll turn to the observations. Blue seemed to
look pretty, so we started by drawing blue vertical lines corresponding to the
times when a density-measuring probe was lowered from the side of the ship.
We call the density variation with depth a density “profile”. The seawater
density in the ocean normally increases with depth, because heavy water sinks
and buoyant water rises. However, eddying mixing motion can overturn this
density profile, momentarily lifting heavy water above light water. With
sufficiently precise density probes, this sort of mixing can be revealed
graphically by plotting the difference between the observed density profile and
an artificial profile created by reordering the density data to make density
increase monotonically with depth. We keep track of the distance individual
points had to be moved in the reordering process and call this the “Thorpe
displacement profile”. This profile gives an indication of the intensity and extent
of mixing patches. We draw these Thorpe profiles with a filled curve, as in the
command

draw curve filled to x 0.0

We do this once for each profile, after first redefining the axes so that x=0
corresponds to the time of the ship observation.

You may agree that the observations are in rough agreement with the theory,
since the observed depths and times of high mixing rates (blue curves) appear
to match with the theory (red image). The main implication of this is not that
low Richardson numbers yield mixing; we already knew that, from experiments
in the field and in the laboratory. Rather, the main implication is that our
density probe is capable of picking up mixing signals of this particular strength.
This is important, because the instrument we were using is much more
common than the instruments normally used to measure mixing. For more on
how and why the technique works, we encourage you to consult our paper,
which, we might add, employs Gri for every figure.

Notice that the axes in this diagram lie outside the box in which the data are
drawn. The second author prefers this style, while the first prefers the
conventional style. In this, as in most things, Gri offers you a choice.

Resources

Dan Kelley (Dan.Kelley@Dal.Ca) is an associate professor of oceanography at
Dalhousie University in Nova Scotia, Canada.

Peter Galbraith (psg@debian.org) is a research scientist with the Canadian
Department of Fisheries and Oceans.

Dan wrote Gri and Peter wrote the Emacs mode. The fact that neither author is
a professional programmer may explain the limited practical nature of these
tools.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3743s1.html
mailto:Dan.Kelley@Dal.Ca
mailto:psg@debian.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Tracking Satellites with PREDICT

John A. Magliacane

Issue #75, July 2000

A look at the development and use of an open-source satellite-tracking and
orbital-prediction program.

When Sputnik 1 was launched into orbit on October 4, 1957, the space age was
born and the fields of science, engineering and technology were changed
forever. At last count, there were over 8500 payloads from over 30 countries in
orbit around the earth. All of these spacecraft are bound to their home planet
by the Earth's gravitational field, and their motions can be described by simple
principles of gravity and planetary motion discovered by scientists such as Isaac
Newton and Johannes Kepler hundreds of years ago.

Today, earth-orbiting satellites serve many purposes and play important roles
in global positioning and navigation, communication networks, scientific
exploration, earth resource research, national defense, weather monitoring
and education. USSPACECOM, the United States Space Command (formerly
NORAD), along with NASA, the National Aeronautic and Space Administration,
use radar and optical-ranging techniques to keep close track of the thousands
of man-made objects in earth orbit and provide orbital data suitable for orbital
modeling and open-ended tracking of unclassified payloads. With an accurate
set of orbital parameters in one's possession, it is possible to determine
velocities and the past, present and future positions of a satellite in its orbit
around the earth with a degree of accuracy suitable for many science and
engineering applications.

The Development of PREDICT

PREDICT is an effort to bring a versatile, open-source, satellite-tracking and
orbital-prediction application to the Linux operating system. PREDICT was
adapted from ideas developed in earlier satellite-tracking and orbital-prediction
software written nearly a decade ago for use on the then-popular Commodore
64 home computer.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The original version of PREDICT was created as a replacement for the QuickTrak
satellite orbital prediction program that was also available for the C64. While
QuickTrak was written in BASIC and its source code was interpreted at runtime,
PREDICT was written in C and compiled into 6502 machine code. The sole
reason for writing PREDICT was to be able to quickly forecast passes of amateur
radio communication satellites in advance of their arrival.

For real-time satellite tracking, a separate program called SpaceTrack was
written, using a combination of BASIC and hand-assembled machine code.
SpaceTrack was sophisticated enough to permit the display of a satellite's
position on a bit-mapped Mercator projection map of the world. It even had the
ability to articulate the tracking coordinates of a satellite through a voice
synthesizer connected to the Commodore 64's user port. The speech
synthesizer was used to relay tracking coordinates to a visual observer in real
time over a short-range radio link so that the Mir space station and other large
spacecraft could be easily located and identified in the evening sky. The speech
routines were written entirely in hand-assembled machine language and
executed through the same address vector as the computer's hardware
interrupt routines. This essentially created a multitasking environment, with the
voice synthesizer receiving data through a background process that in no way
interrupted the numerical processing taking place in the foreground by the
BASIC interpreter.

Although neither program was ever released to the public, they served me
quite well for several years until a switch from the aging Commodore 64 to a
more modern MS-DOS-based PC was made. In many ways, the switch to the
MS-DOS platform was a significant step backward from the C64, especially in
terms of programming flexibility and the requirement to relearn the
programming process under the new environment. PREDICT was eventually
ported to MS-DOS, but the MS-DOS environment simply was not enticing
enough to add many new features to the program. Furthermore, there was
seemingly no simple way of multitasking and passing parameters between
processes under MS-DOS as was possible (as odd as it sounds) on the older and
less-sophisticated C64.

PREDICT was also ported to several multi-user UNIX machines around the same
time, but hardware differences and the lack of a true understanding of the
operating environment prevented further development of the program.
Nevertheless, the DOS version of PREDICT was polished up and released to
several popular Internet and dial-up software repositories as free software in
May 1994, and became quite popular among amateur radio operators involved
in satellite communications.

By the time Windows 95 was released, it was time to switch computing
environments entirely to Linux. PREDICT was successfully ported from DOS to
Linux, and has functioned well in the Linux environment for many years. A pre-
compiled Linux binary of PREDICT was released as free software to several FTP
sites in 1996. Then in 1999, major portions of the program were rewritten, and
in an effort to enhance PREDICT's functionality, several real-time satellite-
tracking modes similar to those available in the original SpaceTrack program
were added to the program. Speech routines were also added, but instead of
using a voice synthesizer to produce vocal announcements, audio samples
were sequentially directed to the system sound card using a separate program
that was invoked by PREDICT. Much like the original design of SpaceTrack, the
speech routines were executed as background processes so as not to delay the
execution of real-time orbital calculations while the announcements were being
made.

The Benefits of Open Source

The newly enhanced version of PREDICT was released as open-source software
under the GNU General Public License and uploaded to Metalab and several
other FTP sites in December 1999. Several weeks later, major portions of
PREDICT Version 2 were successfully ported from Linux to DOS using Caldera's
DR-DOS operating system and the DJGPP software development environment.
This was done to serve as a replacement for the earlier DOS version of PREDICT
that was released in 1994.

Within weeks of the Linux release of PREDICT Version 2, the benefits of open
source and the GNU General Public License were quickly realized. Bdale
Garbee, amateur radio operator N3EUA, built and packaged PREDICT for
inclusion in the “potato” release and all later versions of Debian Linux. The
Debian PREDICT package is available for all Debian-supported CPU
architectures.

Jean-Paul Roubelat, amateur radio operator F6FBB, modified PREDICT to allow
the program to control the azimuth and elevation rotators that support his
satellite antennas using a hardware interface known as a Kansas City Tracker.
Using PREDICT, Jean-Paul was able to have his Linux-based computer
automatically track his satellite antennas with the passage of OSCAR satellites
in range of his home.

lvan Galysh, KD4HBO, working at the U.S. Naval Research Laboratory in
Washington, Maryland, selected PREDICT for tracking the Stensat satellite. With
the source code in his possession, lvan was able to turn PREDICT into a socket-
based server, allowing the program to make real-time tracking data available to
external programs through UDP socket connections. One of the client
programs lvan created was an antenna-rotator-control program similar to the

function of Jean-Paul Roubelat's program, except it used a different hardware
interface. Another was an XForms-based GUI map display program that plots
the location and orbital path of satellites being tracked by PREDICT on a
Mercator projection map of the world.

By March, a third program that reads Doppler shift information calculated by
PREDICT and uses that data to correctly adjust the operating frequency of
uplink transmitters and downlink receivers used in satellite communication
systems was under development. With the benefits of the socket-based server
code clearly evident through these modular client applications, Ivan's server
code was made an integral part of PREDICT's official source code and was
released in version 2.1.0 in early April 2000.

Features of PREDICT Version 2.1.x

The latest version of PREDICT may be downloaded from ftp.amsat.org/amsat/
software/Linux/predict-latest.tar.gz or from metalab.unc.edu under the /pub/

linux/apps/ham subdirectory.

As of version 2.1.0, PREDICT's major features included:

A fast orbital prediction mode that predicts passes of satellites, providing
dates, times, coordinates, slant-range distances and sunlight and optical
visibility information. Predictions are displayed in tabular form and may
be saved to a log file for later reference, printing or parsing by other
programs.

An optical visual orbital prediction mode that displays satellite passes that
may be optically visible to the ground station.

A solar illumination prediction mode that calculates how much time a
satellite will spend in sunlight each day.

A real-time tracking mode that provides dynamic information such as sub-
satellite point, ground station azimuth and elevation headings, Doppler
shift, path loss, slant range, orbital altitude, orbital velocity, footprint
diameter, orbital phase, the time and date of the next AOS (acquisition of
signal or LOS, loss of signal, of the current pass), orbit number and
sunlight and visibility information for a single satellite, while providing live
azimuth and elevation headings for both the sun and moon.

A multi-tracking mode that provides sub-satellite point, azimuth and
elevation headings, sunlight and visibility and slant-range distance
information for all 24 satellites in the program's current database on a
real-time basis. Azimuth and elevation headings for the sun and moon are
also provided, as a well as a listing of the AOS dates and times for the next
three satellites expected to come into range of the ground station.

ftp://ftp.amsat.org/amsat/software/Linux/predict-latest.tar.gz
ftp://ftp.amsat.org/amsat/software/Linux/predict-latest.tar.gz
ftp://metalab.unc.edu

« Static information such as semi-major axis of ellipse, apogee and perigee
altitudes, and anomalistic and nodal periods of satellite orbits.

« Command-line options which permit alternate ground station locations to
be specified or alternate orbital databases to be read and processed by
the program, effectively allowing an unlimited number of satellites to be
tracked and managed. Additional options allow any orbital database file to
be updated automatically using NASA Two-Line element data obtained via
the Internet or via pacsat satellite without having to enter the program
and manually select menu options to update the database.

+ Avoice mode that allows live azimuth and elevation headings of a satellite
to be articulated to an observer to assist in locating a satellite by optical
means.

+ A socket-based server mode that permits PREDICT to be used to supply
real-time tracking data, such as azimuth and elevation headings, footprint
diameters, sub-satellite point latitude and longitude values, normalized
Doppler shift data and next-predicted AOS times to external programs
such as rotator control software, graphical map-tracking software or radio
frequency control programs residing either on the host machine or any
networked client.

Software Installation

The process of installing PREDICT differs somewhat from that of most open-
source software requiring compilation at installation time. An ncurses-based
installation program is used to probe the system hardware for the existence of
a sound card, and header files are built according to this information and with
reference to the installation directory chosen by the user. The program is then
compiled, and the resulting executable file is symbolically linked between the
installation directory and /usr/local/bin. The same procedure of using symbolic
links is also used for PREDICT's man page. The main advantage of this
installation method is that it is simple, relatively error-proof and distribution-
independent. It also keeps all program files under a single subdirectory, rather
than scattering them throughout the entire file system.

Once the program is built and installed, the user is asked to enter his latitude,
longitude and altitude above sea level. A database of Keplerian orbital data is
also required for the satellites of interest to the user. A database of amateur
radio and several “high-interest” satellites is included with the program to get
things started. Since the accuracy of Keplerian orbital data seldom remains
high for long periods of time, facilities are included in the program to permit
the database to be updated from more recent element sets. A simple shell
script is included with the program to facilitate this update through an
anonymous FTP connection to ftp.celestrak.com. This script may even be
invoked through a crontab, permitting automatic updates of PREDICT's orbital

database to take place on a regular basis without the need for user
intervention.

Running PREDICT

PREDICT R EES

PREDICT +2.1.0
By John AA. Magliacane
KD2BD Software — Copyright 1991-2000

fivailable Functions

[P1: Predict Satellite Passes

LV]1: Predict Visible Passes

[S1: Solar Illumination dictions
LT1: Single Satellite Tracking Mode
[M]1: Multi-Satellite Tracking Mode
[Ul: Update Database From NASA TLEs
[E]1: Keyboard Edit of Orbital Database
[G]: Edit Ground Station Information
[D1: Display Satellite Orbital Data
L11: Progrom Information

[Q1: Exit Program

Figure 1. PREDICT's Main Menu

PREDICT is a text-based program, and its start-up screen (see Figure 1) lists all
of the program's main functions. Several tracking and orbital-prediction modes
are available, as well as several utilities to manage the program's orbital
database.

PREDICT IR ES

KD2BD s Orbit Calendar For HUBBLE
Date lime El Az Phase Lat Long Range Orbit

Fri 30Jun00 23:52:25% 219 127 2808 35844
Fri 30Jun00 :53:50 210 131 2393 35844
Fri 30Jun00 :55:15 198 135 2050 35844
Fri 30Jun00 :56:39 182 139 2% - 1825 35844
Fri 30Jun00 :58:03 162 142 b g 1763 35844
Fri 30Jun00 :59:27 144 146 1876 35844
Sat 01Jul00 :00:50 128 150 - 2137 35844
Sat 01Jul00 =02:1% 117 153 X 2502 35844
Sat 01Jul00 :03: 111 156 g 2817 35844

Sat 01Jul00 :33: 240 140 2813 35845
Sat 01Jul00 235 233 144 . 2346 35845
Sat 01Jul00 :36: 222 147 1933 35845
Sat 01Jul00 :37: 206 151 1622 35845
Sat 01Jul00 :39:1¢ 184 155 . 1473 35845
Sat 01Jul00 :40: 161 158 1525 35845
Sat 01Jul00 :42: 142 162 1760 35845
Sat 01Jul00 43: 166 z 2123 35845

More? Ly/nl > l

Figure 2.0rbital Prediction Mode

https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f2.large.jpg

PREDICT includes two orbital-prediction modes to predict any pass above a
ground station, or list only those passes that might be visible to a ground
station through optical means. In either case, predictions will not be attempted
for satellites that can never rise above the ground station's horizon, for
satellites in geostationary orbits, or satellites that appear to have decayed in
the earth's atmosphere since the last Keplerian orbital data update. If a satellite
is in range at the starting date and time specified, PREDICT will adjust the
starting date back in time until the point of AOS, so that the prediction screen
displays the pass in its entirety from beginning to end. Figure 2 shows the
orbital prediction mode of several passes of the Hubble Space Telescope in
range of New Jersey in early July, 1999.

PREDICT BIEER

PREDICT Real Time Tracking Mode
Iracking: MIR On: Thu 23Mar00 00:51:32

SATELLITE AL TTTUDE SLANT RANGI

40.70 N. 209 wmi 233 mi
75.94 N. 336 ke 375 'm

DIRECTION VELOCLTY DOPPLER SHIFT

298.00 Az 17240 wmi 146: +1712 H=z
+59.78 [l 27746 km 435: +5100 H=z

PATH LOSS FOOTPRINT ORBITAL PHASI

146: 127 dB 2517 =i 29 (360)
435 137 dB 4051 ke 21 (256)
Sun Moon
Orbit Number: 80558
289.14 nz LOS at: Thu 23Mar00 00:56:40 UTC 92.67 Nz
19.67 EI Spacecraft is currently visible 12.02 Ll

Figure 3. The Single-Satellite-Tracking Mode

In addition to predicting satellite passes, PREDICT allows satellites to be tracked
either individually or as a group of 24 using the program's Multi-Satellite
Tracking Mode. The positions of the sun and moon are also displayed when
tracking satellites in real time, as are the eclipse and optical visibility conditions
of the satellites in the database. Real-time tracking data is available to socket-
based clients when PREDICT is running in either the single-satellite or the multi-
satellite-tracking mode. Figure 3 displays tracking coordinates for a single
satellite in real time. Real-time positions for 24 satellites are shown in Figure 4,
along with a schedule for upcoming satellite passes. Satellites currently in
range are highlighted for easy identification.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f4.large.jpg

PREDIGT, RIEIES

PREDICT Real-Time Multi-lracking Mode
Current Date/Time: Thu 23Mar00 00:35:43

Satellite Az _ONg g Satellite Az

0SCAR-10 p. 2 2471¢ 0SCAR-29

0SCAR-11 28 . 0SCAR-36

0SCAR-14 2 62 3 TECHSAT

PACSAT 42 3¢ 24 3709 TMSAT

HEBERSAT X . 54 3822 SEDSAT-1

LUSAI 38 28 23 8998 RS-12/13

0SCAR-20 ¢ 127 4879 RS-15

0SCAR-22 9 257 13207 SUNSAT

0SCAR-23 28 ' 344 8258 NIR

0SCAR-25 64 3120 UARS ¢ 329 11935
ITAMSAT ¢ 419 3736 ISS a ; 9900
0SCAR-27 & 33 221 10486 D HUBBLE 2275

Upcoming Passes
Sun
LTANSAT on Thu 23Mar00 00:37:03 UIC
286.28 Az THSAT on Thu 23Mar00 00:41:56 UTC
16.80 EI MIR on Thu 23Mar00 00:4/7:12 UIC

Figure 4. Multi-Tracking Mode

Applications and Use

PREDICT was designed primarily to aid in facilitating communication through
amateur radio satellites. Nearly 20 satellites currently in orbit carry some form
of communication transponder or telemetry beacon intended for amateur
radio use. OSCAR spacecraft (orbiting satellite carrying amateur radio) that
contain analog transponders relay signals they receive back to earth in real
time. Those that carry digital transponders relay files between sender and
recipient anywhere on the planet on a store-and-forward basis. Some OSCAR
satellites also carry earth-imaging cameras and scientific and educational
experiments, the results of which are transmitted by low-power beacon
transmitters carried on-board the satellites. Even the U.S. space shuttles and
the Mir space station have carried amateur radio equipment into orbit for use
by astronauts and cosmonauts working in space. The International Space
Station (ISS) will carry a multi-mode amateur radio station for use by astronauts
working on the space station. The image of Melbourne, Australia in Figure 5
was taken by the earth-imaging camera on-board the TMSAT-OSCAR-31
amateur radio satellite.

Since none of these spacecraft are in geostationary orbit, some form of tracking
and orbital prediction must take place before radio contact may successfully
occur. PREDICT provides all the information needed to predict passes of these
spacecraft over a particular ground station location, and track them in real time
once they have arrived. A graphical orbital-display program operating as a
socket-based client of PREDICT is shown in Figure 6. The footprint as well as
several consecutive orbits of the Mir space station are shown on the map.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f4.large.jpg

— “~

Figure 6. Socket-Based Client Graphical Orbital Display

In addition to providing real-time tracking coordinates, PREDICT also calculates
the amount of Doppler shift expected at any given moment during a pass, so
that compensation in uplink transmitter and downlink receiver frequencies may
be accurately made. Path loss calculations for determining the RF (radio
frequency) link budget between ground station and satellite are also provided.

Since PREDICT also tracks the sun and moon in real time, the sky locations of
these celestial objects can be used to determine geographical bearings at the
user's location. This information is particularly helpful in accurately aligning
directive antenna systems to known directions prior to tracking satellites. Since
PREDICT also tracks the position of the sun and earth with respect to satellites
tracked by the program, spacecraft telemetry can be better analyzed knowing
when the satellite being studied has spent considerable periods in sunlight or
in eclipse. The Solar Illumination Prediction mode can determine in advance
when or if a spacecraft will enter a “solar orbit” and experience periods of
continuous sunlight. These periods are also typically the best times for
astronauts to plan extra-vehicular activities in space.

Images from weather satellites in geostationary orbit are often seen on
television and via the Internet, but a host of weather satellites from the United
States, Russia and China in low-earth orbits provide high-resolution images
over regional areas. Receiving images from these satellites is a rewarding
hobby for many, and PREDICT can provide all the information required for
predicting passes of weather satellites and tracking them from horizon to
horizon once they have arrived.

map [a/ 5 kS

Figure 5. Melbourne, Australia

Finally, PREDICT also determines periods when large spacecraft may be visible
in the evening or predawn skies. There are approximately 150 satellites that are
classified as being “visible”, all of which can be accurately tracked through
PREDICT. Large spacecraft, such as the U.S. space shuttles, the Hubble space
telescope, the Mir Space Station (see Figure 7) and the International Space
Station are easily seen by the naked eye under the right viewing conditions. The
International Space Station will be particularly interesting to watch as it slowly
expands with construction scheduled to take place over the next few years.
PREDICT's voice capabilities are ideal for relaying tracking coordinates to
satellite observers, effectively eliminating the need to read a computer monitor
or printout for real-time tracking information.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3777f5.large.jpg

Figure 7. The Mir Space Station

Conclusion

Development of PREDICT continues on an almost-daily basis after having been
released as open-source software under the GNU General Public License last
year. Through the development of PREDICT, the Linux operating system has
clearly shown itself as being a superb platform for the design, development and
implementation of applications relating to science, engineering and education.
The free exchange of ideas, the open scrutiny of those ideas among peers, and
the constructive feedback gained from such open discussions is not unlike the
long-held traditions of the science and engineering fields. This environment will
surely contribute to the continued success of Linux, not only in the fields of
science and engineering, but in many other areas as well.

Resources

email: kd2bd@amsat.org

John A. Magliacane has been using Linux since 1.1.59. He holds an advanced
class FCC amateur radio license (KD2BD) as well as a commercial FCC radio
operator's license. His interests include satellite communication systems, Linux
software development and hardware design. John may be reached via e-mail at
kd2bd@amsat.org, or via the KITSAT-OSCAR-25 satellite.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3777s1.html
mailto:kd2bd@amsat.org

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Detecting Chaos in the Field

Juergen Kahrs

Issue #75, July 2000

All that is real is reasonable, and all that is reasonable is real. —G.W.F. Hegel,
1770-1831

Scientists and engineers were among the first to notice what a powerful
combination the Linux kernel and the GNU tools are. Thus, it is no surprise that
it was the sober scientists who started replacing expensive supercomputers
with inexpensive networks of GNU/Linux systems. In spite of the strong
position of GNU/Linux in all areas of scientific computing, there are still some
aspects of the Linux kernel which have been neglected by engineers. One of
them is the sound card interface.

In the early days of Linux, sound cards were notoriously unreliable in their
ability to process data and continuous signals. They were supposed to handle
sounds in games, and nothing more; few people tried to record data with them.
Today, modern sound cards allow for simultaneous measurement of signals
and control of processes in real time, and good sound cards can compete with
expensive data acquisition cards which cost more than the surrounding PC.
This article demonstrates how to abuse a sound card for measurements in the
field.

With appropriate software, an ordinary PC can do much more than just record
data in the field and analyse it off-line in the office. Due to the extreme
computing power of modern CPUs, it is possible to analyse data while
recording it in real time. On-line analysis allows for interactive exploration of
the environment in the field, just like oscilloscopes of earlier days, but with an
added dimension.

Sound Installation

First, you will need to install the sound card and its drivers in your Linux
system. As usual, the book that comes with your Linux distribution should help

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s2.html

a lot, and HOWTOs on the Internet provide the necessary instructions (see
sidebar “Sound Installation”). When your sound card and its drivers are
installed, you should do some testing with it. Make a recording while adjusting
the mixer gain, and play the recording back through your loudspeaker. The
mixer is an important feature of your sound card, because it allows you to
adjust the sensitivity of the A/D converter to the level of the signal to be
recorded. This is even more important when recording with a resolution of 8
bits. Keep in mind that we are looking for fast and robust measures of
qualitative effects, rather than precise quantitative measurements.

Phase Space

If your GNU/Linux system does not already have some audio applications
installed, see Resources for a collection of addresses on the Internet. There,
you will find applications like smix, a mixer with a well-designed user interface.
It can handle multiple sound cards, and has the features needed for serious
work:

1. interactive graphical user interface
2. command-line interface
3. configuration file settings

It makes no difference to your sound card whether the recorded signal comes
from an acoustic microphone or an industrial sensor. Signals of any origin are
always stored as sequences of values, measured at fixed time intervals (i.e.,
equidistant in time). Acoustic signals on a CD, for example, are sampled 44,100
times per second, resulting in one (stereo) value every 1/44100 = 22.7
microseconds.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f1.large.jpg

velocity vs displacement
3 cydes ol a perdulum in dervative phiase space

T T T T |
o - | - RS e i
00 B o fdnsp-ﬂ —~—
velo = max |
energy al knebic |
ay { \MYG
50 b 4 e + + 4 — 4
oY
-
o k- e 2d cycle & — /| —
% > gisp = max
> velo=0 X
energy all potental
50 - -
- l i
00 ot e L ! sl
l s l 1
-100 -50 0 50 100
dsplacement

Figure 1. Phase Space Portrait of a Pendulum

While musicians may be interested in filtering these signals digitally (thereby
distorting them), we are more interested in finding and analysing properties of
the measured, undistorted signal. We are striving to find the rules of change
governing the sampled series of values. The major tool in Nonlinear Signal
Processing for finding the laws of motion is delay coordinate embedding, which
creates a so-called phase space portrait from a single time series (Figures 1 and
2). If you are not interested in technical details, you may envisage it as a tool
which turns a sequence of sampled numbers into a spatial curve, with each
direction in space representing one independent variable. If you are interested
in technical details, you will find them in the Phase Space sidebar. In any case,
you should look at the list of FAQs of the newsgroup sci.nonlinear (see
Resources). These explain the basic concepts and some misconceptions, and
provide sources for further reading.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f2.large.jpg

velocily vs displacement
law of mation in derivative phase spuce

T T T T T T T T T T || T T T T T T

-) " i} D L S S + ' ' . ' ' ‘ ' - . '

velocity in AD converter unis
BIRRLRBIEEBRBERRIBES

) N A I G O A S A R R I R
71 72 73 74 75 76 77 78 79 B0 81 82 B3 B4 B5 B6 €7 88 B9 00
displacement in AD corverter unis

~
(=]

Figure 2. Progress of the Pendulum in Phase Space

Before delving into multi-dimensional space, let us look at an example. Plug a
microphone into your sound card's jack, whistle into the microphone and use
any of the many freely available sound editors (see Resources) to record the
whistling. The resulting recording will look very much like the sine wave in
Figure 3. It is not surprising that your recorded wave form looks similar to the
wave form of the pendulum in Figure 3. The vibrating substances (gas or solid)
may be different, but the laws of motion are very similar; thus, the same wave
form.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f3.large.jpg

displacement and velocty of a perdulum over ime

T T T T T L4 T T T
cdsplacement

energy energy
al a’»-.
kindtic /pétential

50 -/ “‘ f ‘\ “‘ '-. .

50 k- { | / _

| HlleFi
p { \ " e 1L Jewl
-100 k- e ' Hefhgesend]

0 20 40 €0 80 100 120 140 160 180 200

Figure 3. Wave Form of Pendulum

You can download some software from the FTP server of Linux Journal, which
records your whistling and does the phase-space analysis for you (see
Resources). Instead of displaying the wave form, the software just extracts
important measures of the signal which help you refine your measurements
(Figure 4). Remember, it is not my objective to show you how to present
stunning, glossy pictures; rather, it is to demonstrate what a valuable tool your
Linux machine is when analysing real-world signals in the field.

sample rate block length [tau = de 0l steps Reset
[Hz] [s]
. 48000 . 20.0 Quit |
@ 44100 . 100 ® single
s 32000 ., 5.0 10_’ - accumulate
L 22050 . 2.0
~ 16000 % 1.0 ZSj
~ 1025 . 05 zj
.~ 8000 v 0.1

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f4.large.jpg

Figure 4. Finding a Good Embedding by Adjusting Independent Parameters

Start the software by typing

wish -f embed.tcl | dmm

A window will pop up that looks like Figure 4. In this window, you can control
the way the software measures the whistling sound from your microphone.
You can change the sample rate (click on 44,100Hz) from left to right, the length
of the analysed blocks (click on 1 second) and the parameters tau and de, which
are needed for reconstruction of the phase space portrait from just one
measured signal. This is comparable to the displacement of Figure 1; we have
no velocity measurement here.

Embedding

Each time we analyse an unknown signal, we have to start with some educated
guessing of the two parameters:

* tauis the temporal distance, or delay, between spatial coordinates

 deis the number of dimensions of the reconstructed phase space

These parameters are of crucial importance for a good unfolding of the portrait
of the signal in reconstructed phase space (see the sidebar Embedding). In
Figure 5, you can see how the choice of tau influences the portrait. Values
which are too small cannot unfold the portrait; values which are too large are
not shown, but often lead to meaningless (noisy, uncorrelated) portraits. The
software supports you in finding good values for tau and de. After years of
intense research, scientists still rely on some heuristics for choosing suitable
values for these parameters.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s4.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f5.large.jpg

recansiructed phase space
3 cycles of apendulum in delayed phase space

T T T T
100 | delay 1 ——— o BRI, T ._,.,”
3y o ol -“‘.‘.‘~=_' r g
de'ay 15 voereee ._‘.:"')// }
- 3 4 o -‘v:’ .
< d i {
& 1 rd! £
50_ - o * el - ,}.1,9/_’{,... el

g ._/‘ g L‘.
g f o]
—g 0 e 8 ‘__/')i .'4»/ 7
© ,/ }

g . : / ¥ // v
= 4 © G e ¥ i
& > // v 1
//’-.f.-” : - /

I
,4/ M*“u.\h v
<100 ere scgrres Bt 1T L Thad
i i i
-100 -50 0 50 100
chsplacement

Figure 5. Differences in Unfolding, Depending on Parameter

In the particular case of your whistling, the values in Figure 4 should resultin a
good unfolding of the portrait. Do not worry about the text lines which fill your
terminal window. They are needed for checking the quality of the unfolding.
Restart the software by typing

wish -f embed.tcl | dmm | wish -f out.tcl

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f6.large.jpg

Independent parameters Statistical parameters Distribution parameters Dynamics backward Dynamics forward
L T e~ = e X T S X I
Lok ength 10 mmm O W 7 paaa O0RE i O0RE
oo 250 R potine 0 7211 (SRRl BRI
r———ev—-—-__—

[steps e N 0.0367 |

Figure 6. Parameters of a Sine Wave

and the text lines will be converted into the more readable form of Figure 6. In
the additional window popping up now, you will see several columns. On the
left (in grey), the independent parameters of the first window are repeated. The
second column from the left tells you if the loudness of the measured signal is
well-adjusted to the sensitivity of your sound card's input. The general rule is,
as long as there are red lines in the second column, you have to adjust
sensitivity (with a separate mixer software) or loudness. Now, turning to the
third column, we see more-advanced parameters:

« Spread is the difference between the largest and the smallest value,
measured in AD converter units. Small values indicate insufficient strength
of the signal.

* Infis the average information content of one sample, measured in bits. A
constant baseline signal yields 0 bits (minimum) and random noise has 8
bits (the maximum with 8-bit samples).

« Mutinfis the average mutual information of one sample and the delayed
one. Thus, it tells you how similar the signals of both axes in Figure 5 are.
A value of 1 means they are perfectly coupled (in the sense of probabilistic
dependency), 0 means completely independent.

 AutoCorr (autocorrelation) is another measure of similarity. Since the late
1980s, there has been a (questionable) rule of thumb saying that a value
near 0 indicates a good unfolding of the reconstructed portrait. The
maximum is 1.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f6.large.jpg

* PrErHy measures predictability and therefore determinism of the signal.
The underlying algorithm of prediction is the conventional linear
predictive filter as used in many adaptive filtering applications like
modems. The minimum 0 indicates perfect (linear) predictability, while the
maximum 1 indicates complete unpredictability by means of linear
filtering.

Determinism, Prediction and Filtering

Again, the rule is, as long as there are red lines in the third column, phase space
is not reconstructed properly. Now, turning to the last two columns, you will
notice they look identical. Indeed, they are. The difference is this: when
evaluating the parameters of the fourth column, the software uses a reversed
time axis. When reversing time, i.e., exchanging past and future, prediction
turns into postdiction and vice versa. Reversing the time axis is a simple and
effective way of checking the validity of parameters which are especially
susceptible to measurement errors. In general, if reversal of time changes a
parameter, it is not trustworthy, which bring us to the next parameter:

* If FNearN (percentage of false nearest neighbours) is reliable, the lines will
turn green and be the same in both columns (near 0). Otherwise, it will
turn red and indicate that the neighbourship relation of points in phase
space is not preserved when changing the parameter de, indicating an
insufficient embedding.

* PrErLiis the result of re-calculating parameter PrErHy over the whole data
block. They should always be roughly the same. If not, there must be a
reason for it, and things get interesting.

* PrErN measures the predictability with a nonlinear prediction algorithm.
Signals originating from a linear system are usually predicted more
precisely by PrErLi while signals from nonlinear sources are often
predicted better by nonlinear prediction.

+ MaxLyap measures separation (progressing over time) of points nearby in
phase space. By definition, values larger than 0 indicate chaos.

When measuring signals from nonlinear systems, PrErLi often turns red
(indicating insufficient linear predictability) while PrErN stays green (indicating
sufficient nonlinear predictability). In case of a truly chaotic signal, MaxLyap will
turn green (valid) and have opposite signs on the right-most columns. This
indicates nearby points are separating over time when time is going forward,
and they are approaching each other at the same rate when moving backward
in time.

Embedding

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s5.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s3.html

For the moment, the number of parameters and values may be overwhelming.
If you start by playing with the software and actually analysing some signals in
the field, you will soon become acquainted with the parameters in their colours
and columns. The first time, you should look only at the two left-most columns
in Figure 6. All parameters there have intuitive meanings, and you will soon be
able to foretell how they change when applied to a different signal, a clipped
signal or an oversampled signal. Here are some typical situations and how to
recognize them:

* Sine wave: just as in Figure 6, de (embedding dimension) should be 2 or 3.
Mean (i.e., average) and Median (i.e., “middlest”) are the same. Modus is
jumping back and forth between Maximum and Minimum. If the Spread
reaches its maximum (256), Inf gets near 8 (bits).

* Zero baseline (short-circuit or switched off) can be recognized by looking
at column 2. All values are identical. In column 3, Spread and Inf are
almost 0.

* Switching on a microphone, there is a short and sharp impulse resulting in
a sudden change of Spread, few others change.

+ Sawtooth (Figure 7) looks much like the sine, except for Modus, which
jumps wildly. Mutinfis at its maximum, linear prediction works only with
higher-order filters, while nonlinear prediction works better with low
embedding dimensions.

* Noise comes in many different flavours, all of them having low values of
AutoCorr and most with a low Mutinf.

Independent parameters Statistical parameters Distribution parameters Dynamics backward Dynamics forward

o s Ree T ETD Ged WU A SR S8
Lk e 10 R [e N

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914f7.large.jpg

Figure 7. Parameters of a Sawtooth Signal

Why not calculate some kind of fractal dimension of a signal? By definition,
calculation of dimensions must look at the values over a wide range of scales.
With 8 bits of resolution, this is impossible or questionable. But even if we had
some fractal dimension value, it would not be as useful as the largest Lyapunov
exponent. Furthermore, are all these measurements any good? Yes, there are
some areas of application:

« System Identification: in some applications, the focus of attention is more
on the quality of the signal (stochastic or deterministic, linear or nonlinear,
chaotic or not).

* Prediction: today, linear prediction is one of the most important
algorithms for digital signal processors (DSPs) in telecommunication, be it
mobile telephony, modems or noise canceling. If there are systems with
nonlinear behaviour involved, nonlinear prediction can be advantageous
(see sidebar “Determinism, Prediction & Filtering”).

* Control: if you know the structure of your system's phase space well
enough, you can try to control the system like this:

1. ldentify periodic orbits in phase space.

2. Look for an orbit which meets the given requirements (goes through a
certain point, or has minimum energy or cost).

3. Modify a suitable parameter or a variable just slightly to stabilize the
desired periodic orbit.

4. When Ott, Grebogi & Yorke first published successful application of this
method (called the OGY method) in 1990, they even managed to control a
system in the presence of chaos.

Projects

In the late 1990s, several people analysed the time series of the financial
markets in order to find signs of nonlinearity or chaos (for example, Blake
LeBaron in Weigend & Gershenfeld's book, page 457). Some hoped to be able
to predict time series of stock values in this way. Kantz & Schreiber took the
idea one step further, and contemplated the application of the OGY method to
control the stock market. But in a footnote on page 223 of their book, they
admit, “We are not aware of any attempts to control the stock market as yet,
though.” When | looked at the chart of Red Hat stock in late 1999, | wondered
whether someone had finally managed to apply the OGY method to the time
series of the Red Hat share price.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s6.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3914s1.html

email: Juergen.Kahrs@t-online.de

Juergen Kahrs (Juergen.Kahrs@t-online.de) is a development engineer at STN
Atlas Elektronik in Bremen, Germany. There, he uses Linux for generating
sound in educational simulators. He likes old-fashioned tools like GNU AWK
and Tcl/Tk. Juergen also did the initial work for integrating TCP/IP support into
gawk.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Juergen.Kahrs@t-online.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

THOR: A Versatile Commodity Component of

Supercomputer Development

Robert A. Davis

Issue #75, July 2000

CERN continues to use Linux as their OS of choice for modeling and simulation
studies.

The world's highest energy particle accelerator, the Large Hadron Collider
(LHQ), is presently being constructed at the European Center for Particle Physics
Research (CERN) near Geneva, Switzerland. The planned date for first collisions
is 2005. Since the demise of the US Superconducting Super Collider (SSC) in
1993, CERN has essentially become a world laboratory where American,
African, European, Asian and Australian physicists work side by side. The LHC
will penetrate deeper than ever into the microcosm to recreate the conditions
prevailing in the universe just a millionth of a millionth of a second after the big
bang when the temperature was ten-thousand-million-million degrees.

Our group is a small part of the team of approximately 1500 physicists, from
over 100 institutions around the world, engaged in the construction of the
ATLAS (A Toroidal LHC ApparatuS) experiment, one of two general-purpose
detectors preparing to take data at the LHC. The experimental environment of
ATLAS is punishing. For example, ATLAS has hundreds of thousands of detector
channels and must keep up with a collision rate that can give rise to
approximately 30 new events every 25 nanoseconds. Also, detectors and their
accompanying electronics often must operate in high-radiation environments.
It is obvious that the computing requirements in such an arena are, to say the
least, demanding. CERN is no stranger to software developments required to
solve the unique problems presented by international particle physics. For
example, the World Wide Web was initially designed at CERN to help
communication among the several hundred members scattered in numerous
research institutes and universities.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Design Considerations

The particle physicists in our group are involved in two areas which pose large
computing problems. The first is in the area of time-critical computing, where
the raw rate must be reduced from an event rate of around one gigahertz to
about 100Hz by a three-stage, real-time data selection process called triggering.
We are involved, along with groups from CERN, France, Italy and Switzerland, in
the final stage of triggering, called the Event Filter, that reduces the data rate
from 1GB/s to 100MB/s, fully reconstructs the data for the first time and writes
the data to a storage medium. It is estimated that this last stage of processing
would currently require on the order of a thousand “Pentiums”, if current
trends in the development of processor speed continue.

We are also actively involved in simulating the response of the ATLAS detector
to the physics processes that will be, or might be, present. This second task is
not time-critical, but requires large simulation programs and often many
hundreds of thousands of fully simulated events. Neither of these applications
requires nodes to communicate during processing.

In order to pursue our research aims in these two areas, we had to develop a
versatile system that could function as a real-time prototype of the ATLAS Event
Filter and also be able to generate large amounts of Monte Carlo data for
modeling and simulation. We needed a cost-effective solution that was scalable
and modular, as well as compatible with existing technology and software. Also,
because of the time scale of the project, we required a solution with a well-
defined and economical upgrade path. These constraints led us inevitably
toward a “Beowulf-type” commodity-component multiprocessor with a Linux
operating system. The machine we finally developed was called THOR, in
keeping with the Nordic nature of the names of similar-type systems such as
NASA's Beowulf machine and LOKI at Los Alamos National Laboratory.

During our design discussions on THOR, it soon became clear to us that the
benefits of scalability, modularity, cost-effectiveness, flexibility and access to a
commercial upgrade path make the commodity-component multiprocessor an
effective approach for providing high-performance computing for a myriad of
scientific and commercial tasks—capable of being utilized for both time-critical
and off-line data acquisition and analysis tasks. The combination of commodity
Intel processors with conventional fast Ethernet and a high-speed network/
back-plane fabric (Scalable Coherent Interface (SCI) from Dolphin Interconnect
Solutions Inc.) enables the THOR machine to run as a cluster of serial
processors, or as a fully parallel multiprocessor using MPI. It is also possible to
rapidly reconfigure the THOR machine from a fully parallel mode to an all-serial
mode, or for mixed parallel-serial use.

The THOR Prototype

In order to demonstrate the basic ideas of the THOR project, a prototype has
been constructed. A photograph of a slightly earlier incarnation of THOR is
shown in Figure 1. This prototype at present consists of 42 dual Pentium II/1ll
MHz machines (40 450MHz and 44 600MHz processors), each with 256MB of
RAM. Each node is connected via a 100Mb/s Ethernet 48-way switch. A 450MHz
dual Pentium Il computer provides the gateway into the THOR prototype. The
prototype has access to 150 gigabytes of disk space via a fast/wide SCSI
interface and a 42-slot DDS2 tape robot capable of storing approximately half a
terabyte of data. The THOR prototype currently runs under Red Hat Linux 6.1.

&SI R N e 2
Figure 1. The THOR Commodity Component Multiprocessor

Sixteen of the 40 nodes have been connected into a two-dimensional 4x4 torus,
using SCI, which allows a maximum bi-directional link speed of 800MB/s. We
have measured the throughput of the SCI to be 91MB/s, which is close to the
PCl bus maximum of 133MB/s. This maximum will rise when the 64-bit version
of the SCI hardware, in conjunction with 64-bit PCI bus widths, are available.
The use of SCl on THOR permits the classification of these THOR nodes as a
Cache Coherent Non-Uniform Memory Access (CC-NUMA) architecture

https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f1.large.jpg

machine. This 16-node (32-processor) subdivision of the THOR prototype was
implemented and tested as a fully parallel machine by a joint team from
Dolphin Interconnect Solutions Inc. and THOR in the summer of 1999. A
schematic diagram of the THOR Linux cluster is shown in Figure 2.

THOR schematic
gateway host + disk array + tape robot

Campus 100 Mb | 3
Backbone §

SCSI I uw
100 Mb I

— 48 port switch

100 Mb I-'
ﬁ

=1 [-I
S ol
- -
o B -
- : - . \ ‘
T q -

- - %

|y Iy
=1l s =1]
| |
| |

I
l
l,
' -l 4x4 2D
77| SCI mesh
- |
]
|

0) 800 MByte/s
-4 =1

40 dual SMP node rackmount array
(80 processors)

Mar, 2000

Figure 2. Schematic Diagram of the THOR Linux Cluster

The THOR prototype described above is now being benchmarked as a parallel
and serial machine, as well as being used for active physics research.
Researchers have access to full C, C++ and FORTRAN compilers, CERN and NAG
numerical libraries and MPI parallel libraries for their research use. We also
plan to acquire the recent Linux release of IRIS Explorer for THOR research use
in the near future. PBS (a Portable Batch System developed at NASA) has been
running on THOR since March, 1999.

Benchmarking

We benchmarked the THOR prototype extensively, when it consisted of 20
450MHz dual Pentium lIs. This benchmarking used a variety of software. The
first of two benchmark programs reported here was a three-dimensional Fast
Fourier Transform (FFT) program written in FORTRAN using MPI. This software
uses the THOR cluster as a parallel machine rather than a serial processor. As
can be seen in Figure 3, the speed of a single THOR node using this FFT is
comparable to a 450MHz Cray-T3E and the Calgary DEC Alpha cluster (in 1999)
and is roughly 50% slower than an SGI Origin 2000 (R10K). As a fully parallel

https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f2.large.jpg

machine, one can see that THOR is competitive with the Calgary DEC Alpha
cluster and with the Cray-T3E for this FFT procedure.

3D FET Benchmark

10 e . e
—X— Cray-T3E (450MHz, SOOMFLOPS) .
— M — Thor-Dual Pl Cluster (450MHz-SCl) |-
—o— DEC-Alpha Cluster (500MHz-Myrinet) ||

- —e— SGI Origin 2000 (R10K)
g 1 =
= 3
O -
(&) .
> -
4 :
2 -
; 0.1 E
e 3
o :
0-01 A L A A A A Lok l A A A A A Rl

1 10 100
Number of Processors

Figure 3. Benchmark Results from a 3-D Fast Fourier Transform Program

The second benchmark was obtained using the code developed to utilize the
method of finite differences in the area of seismic modeling, and is written in C
using MPI. In this case, the comparison was between the THOR multiprocessor
using SCl interconnect, or 100 Mbp/s Ethernet and an SGI Origin 2000. The
results are shown in Figure 4. As can be seen, the use of the SCI backplane/
network fabric improves the performance of the THOR multiprocessor as
compared to an Ethernet network solution. According to this benchmark, the
performance of the THOR multiprocessor using SCI becomes comparable to
that of the SGI Origin 2000 as the number of processors approaches sixteen.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f4.large.jpg

2D Finite Difference Benchmark

100 —————————
- — a— Thor-Dual PIl Cluster (450MHz-100mb)
~M® — Thor-Dual PII Cluster (450MHz-SClI)
— @ SGI Origin 2000 (R10K)
10

CPU Time (Seconds)

1 4 i IR TR TR T T T |

1 10 100
Number of Processors

Figure 4. Benchmark Results from a Finite Differences Program for Seismic Modeling

Our Experience with THOR

Over the last year and a half, THOR has grown from just two dual Pentium Il
machines to over 40 dual Pentium II/llls. We found that the maintenance and
operation of a two-node array was not much different from running a 40-node
array. Another gratifying feature, which has been reported by other groups
with Beowulf-type clusters, is the reliability of the THOR cluster. We have been
running the PBS batch queuing system since March, 1999, and have logged
over 80,000 CPU hours with only one system failure due to a power
interruption, which led us to introduce non-interruptible power supplies for the
complete cluster. Another important discovery was that the construction and
maintenance of THOR did not need a team of highly skilled personnel. We
found that only “one quarter” of a person skilled in PC networking and Linux
was required to implement the system, with some initial assistance from
Dolphin for the SCI network. Also, the use of commodity operating systems
allows programs to be developed at researchers' desktop machines for later
implementation on THOR, thus easing the task of software development.

Our experience running THOR has been in three main areas: multiple-serial
Monte Carlo (or embarrassingly parallel) production jobs, prototyping an Event
Filter sub-farm for ATLAS (a time-critical operation using specialized software
developed for the ATLAS high-level trigger system) and as a fully parallel
processor. Large Linux clusters are probably most effective when running
applications that require almost no inter-processor communication where the
network does not become a bottleneck. However, many applications that

https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972f4.large.jpg

require fully parallel machines for significant message passing still spend most
of their time computing.

Because parallel computing is such an important topic, we spent some time
assessing how the THOR multiprocessor running Linux can be used to
implement applications requiring parallel processing. Since there is currently a
high level of support for shared-memory programming under SMP Linux, we
have used the THOR Linux cluster with the message-passing construct,
Message Passing Interface (MPI). There are several advantages to using this
programming model. For example, many parallel applications are limited more
by floating-point performance than by inter-processor communication. Thus,
SCl and even fast Ethernet are sufficient even when there is a relatively large
amount of message passing. Another advantage is that MPI is a standard
programming interface that runs on many parallel machines, such as the Cray
T3 series, IBM SP series, SGI Origin, Fujitsu and PC/Macintosh clusters.
Therefore, code can be moved easily between platforms.

One of the THOR groups involved in Plasma Physics research has developed
simulations that follow the motion of about 12 million charged particles. A
portion of this code utilizes multi-dimensional Fast Fourier Transforms. We
achieved nearly perfect scalability for up to 32 processors (all that was available
at the time) on the THOR cluster. The code, following the MPI model, was easily
transferred from an SGI Origin 2000 platform to the THOR Linux cluster. The
performance of this program on THOR compared with other platforms as
shown in Figure 3. Other benchmarks are given in Figure 4. At the time these
benchmarks were performed, THOR consisted of only 450MHz machines.

Cost of Ownership

Our experience with the THOR Linux cluster described above shows that if we
divide the total cost of the machine by the number of processors, we end up
with a cost of around $1,500 (CDN) per processor. This is cheaper than
conventional supercomputers by more than a factor of ten, assuming
reasonable discounts apply. Although there are certainly applications in which
conventional supercomputers are irreplaceable, on a price-performance basis,
THOR (or Beowulf)-type multiprocessors are more attractive. Another cost
advantage of the THOR Linux cluster is the low software cost. GNU's compilers
and debuggers, along with free message-passing implementations (MPI) and
portable batch-queuing system (PBS), with no yearly fees, offer good low-cost
solutions. Better compilers including FORTRAN9O, such as the Absoft product,
offer significant performance enhancements and debugging tools in the MPI
environment.

The comparatively small upfront costs of the THOR Linux cluster are matched
by its low running costs. Our experience indicates that, at least for machines as

large as THOR, the manpower costs involved with running the machine are low.
For example, THOR requires only approximately 30% of the time of a
networking/Linux expert. We think this is due to the reliability, design simplicity
and accessibility of the commodity component multiprocessor approach. New
nodes can be added to THOR on the fly without rebooting any machines; also,
problem nodes can be hot-swapped. The node being a conventional PC,
probably with a one-year warranty, can either be repaired or thrown away. In
fact, hardware and software maintenance costs for THOR have proven to be
negligible compared to the annual maintenance fees required by most
conventional supercomputer producers. Such fees can be in excess of tens of
thousands of dollars per year. The advantages of Beowulf-type clusters like
THOR, running Linux, are so numerous that we are not surprised that more and
more scientific and commercial users are adopting this approach.

Resources

Acknowledgements

email: pinfold@phys.ualberta.ca

James Pinfold (pinfold@phys.ualberta.ca) is Director of the Centre for
Subatomic Research at the University of Alberta and leader of the THOR Linux
cluster, a commodity component supercomputer project. His main research
effort is in the area of high-energy collider physics, where he is currently
working on the OPAL and ATLAS experiments at the European Centre for
Particle Physics (CERN) near Geneva, Switzerland.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3972s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3972s2.html
mailto:pinfold@phys.ualberta.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

A GNU/Linux Wristwatch Videophone

Steve Mann

Issue #75, July 2000

This fully fuctioning prototype, designed and built by Steve Mann in 1998, was
demonstrated in 1999, and later used to deliver a videoconference at ISSCC
2000.

Videophone wristwatches are a science-fiction concept that is here today. The
two key inventive concepts that make this new technology possible are:

* The use of a body-worn computer system (WearComp) as a base station
(see my article “University of Toronto WearComp Linux Project” in LJ,
February 1999). Images from the wristwatch are sent to the WearComp,
and from the WearComp to the Internet. Images received from the
Internet are sent to the wristwatch display (a full-colour VGA display). Full-
colour broadcast quality is transmitted at six to eight frames per second
using an experimental radio transmitter.

+ The use of a concomitant cover activity. Unlike science fiction's vision of
how a wristwatch videophone might work, the camera points ahead
rather than up at the user. In this way, the wristwatch captures a video
image of what the wearer is looking at, rather than merely a picture of the
wearer. Thus, taking a picture or shooting a video may be masked by a
concomitant cover activity, such as checking the time or just resting an
arm on a countertop (see sidebar “Concomitant Cover Activity”).

Concomitant Cover Activity

A VGA screen is configured using XF86Config set to 640x480, 24-bit colour,
allowing video to be displayed at the captured resolution. The camera also
operates at 640x480 resolution with 24-bit colour video capture at 30 frames
per second. Images may be processed or stored locally, or transmitted at a
lesser rate. A future version will transmit images at the recording speed of 30
frames per second rather than the current six to eight frames per second limit
imposed by the slow (2.4 megabits per second) radio link.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993s2.html

The wristwatch provides a computer output screen with XF86, upon which the
viewfinder function operates, using one of the windows or the root window.
Graphics, including a transparent oclock, appear over the top of the video
viewfinder window.

Using the VideoOrbits image stabilizer, it takes pictures at 640x480, 24-bit
colour, up to 5000 pixels across, in true 48-bit colour (convertible to 24-bit
colour pictures suitable for high-quality prints). VideoOrbits is available under
the GPL from http://wearcam.org/orbits/.

Figure 1. A Wristwatch Videoconferencing Computer

In Figure 1, Eric Moncrief is shown wearing the watch, and Stephen Ross is
pictured on the XF86 screen as a 24-bit true-colour visual.

http://wearcam.org/orbits
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f2.large.jpg

WRISTBAND A
OCLOCK/XCLOCK ——

SELECTORS

XF86 DISPLAY AREA

COLOR DISPLAY

FIG. 2: GNUX WRISTWATCH
VIDEOPHONE CLOCKFACE

Figure 2. Clock Face

A SECRET function, when selected, conceals the videoconferencing window by
turning off the transparency of the oclock, so that the watch then looks like an
ordinary watch (showing just the clock filling the entire 640x480-pixel screen).
The OPEN function cancels the SECRET function and opens the
videoconferencing session up again.

Technical Problems and How They Were Overcome

One technical problem that arises from running GNU/Linux (GNUX) on a
wristwatch is the input. We are experimenting with an input pie menu system.
A user can easily select eight directions of the compass, but since this device
has a clock face (at least, that is its concomitant cover usage), a 12-position pie
menu makes the most sense.

The pie menu is described in “A Comparative Analysis of Pie Menu
Performance” by Callahan, Hopkins, Weiser and Shneiderman, 1988.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f3.large.jpg

- i
7 3 \.
/
* -
;'.: =
/ ABC
l‘ "
' |
9 TWRY? PEF— 3
|
|]
\ AV GHI
30N / 4
r/ //
PGRS KL
LS~ MBO T
6

FIGUHRE 3: WRISTWATCH VIDEOCONFERENCING MENU
Figure 3. Wristwatch Videoconferencing Menu

Figure 3 depicts a natural choice of pie menu for a wristwatch display. The
display is typically a computer screen with 480 pixels down and 640 pixels
across, measuring approximately 0.7 inches on the diagonal. Upon the display
is the image of a clock face, superimposed on top of a video signal from the
camera. Time is displayed as a transparent xclock or oclock (or both, one
superimposed upon the other). Our modified oclock is available from http://
wearcam.org/gclock/ and an exclusive or (EOR) oclock is under development to
reduce screen real estate use. In the figure depicted here, the time is 4:03.

The device truly looks like an ordinary wristwatch, although one in which the
hands are displayed electronically, because it is in fact a wristwatch, among
other things. It is natural for such a wristwatch to have a circle displayed on the
screen (this is a feature of the original oclock), but unlike the oclock, it has
numbers displayed around the periphery of the circle. In this way, it is easier to
tell time, and the numbers may also be assigned a secondary meaning (e.g.,
select “0” to stop recording, “4” to kill all processes and halt the processor, “7” to
wake up the system from sleep mode, etc.).

Since humans are quite good at telling time, the numbers are often missing
from commercial wristwatches, and some wristwatches do not even have
markings for each hour. Instead, we often rely on our heightened sense of

https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f3.large.jpg
http://wearcam.org/gclock
http://wearcam.org/gclock

visual acuity to discern the angle of the hands upon the clock face. Thus, it is no
surprise that the clock menu is usable without paying much attention to the
face of the clock. The user just needs to stroke the face of the clock in the
direction desired.

The entry of numbers on a touch-sensitive clock face in the context of the
current invention may be done as vectors (e.g., with no regard to location, only
to direction). Thus, a stroke from left to right is regarded as the number 3,
regardless of where the stroke begins or ends. A downward stroke (e.g., from
top to bottom) is regarded as the number 6 regardless of where the stroke
begins or ends, and so on.

Thus, telephone numbers can easily be entered into the device, and similarly,
an alphabet can be constructed much like the alphabet of an automated DTMF
(dual-tone multi-frequency) answering system used for voice mail and the like
in telephony.

Since there are 12 pushbuttons on a telephone and also 12 hours on a clock
face, there can be a one-to-one correspondence between the numbers of the
clock face and those of the telephone. The hours 10:00 and 11:00 are used for
the symbols “*” and “#" of the telephone touchpad.

The data entered by way of the clock face menu is typically combined with the
video recording made from the scene. The clock face menu is sufficient for
entering a department store manager's name, which may be appended to the
video file header, so that a large database of recorded video may be navigated
later using these short text headers.

Going Further

https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f4.large.jpg

MICROPHONES o DISPLAY

!]

—

CAMERA PROCESSOR EARPIECE(S)
INVOLUNTARY VOLUNTARY VIBRA-OUT OR
INPUTS INPUTS ELECTRODES

FIG 4: BLOCK DIAGRAM OF WRISTWATCH VIDEO PRODUCTION FACILIT
Figure 4. Block Diagram of Video Production Facility

Due to direct contact between the wristwatch and the body, the pulse (heart
rate) as well as skin conductivity (sweatiness index) of the wearer may be
determined, and this information may be appended to or recorded with the
video signals. This may facilitate, for example, a future search through all video
in which the wearer's heart rate exceeds a certain threshold. It has been found
that when a department store manager is dishonest with respect to refund
policies, or a clerk refuses to tell a customer his name, the customer's heart
rate increases dramatically, and the customer often sweats profusely. Thus, this
extra information can later help locate moments of tension in a previously
recorded argument at the refund counter.

Programs Developed for the Wristwatch Videophone

Linaccess: GNUX for Low Vision

The small size of the display required the development of an X Window System
configuration that was easy to read on a small screen. This gave rise to the
Linaccess project, where GNUX was made accessible on low-vision systems.
This project has two distinct but closely related goals. First, to make GNUX
accessible to the visually challenged, or those suffering from low vision, such as
age-related macular degeneration, glaucoma or the like. (Note that this project
differs from the blinux project in the sense that the goal of Linaccess is to use
visual output, but to make it more accessible to those with low vision.) Second,
to make GNUX usable on small screens, such as the wristwatch system. In

https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3993s3.html

many ways, we're all suffering from low vision when we're trying to read a 0.7-
inch diagonal screen.

Resources

Dr. Steve Mann (mann@eecg.toronto.edu) is regarded by many as the inventor
of the wearable computer (computing being distinct from special-purpose
devices such as wristwatches and eyeglasses), and of the EyeTap video camera
and reality mediator. He also built the world's first covert fully functional
WearComp with display and camera concealed in ordinary eyeglasses in 1995,
for the creation of his award-winning documentary “ShootingBack”. He is also
the inventor of the wristwatch videophone, the chirplet transform, a new
mathematical framework for signal processing, and of comparametric image
processing. He is currently a member at University of Toronto, Department of
Electrical and Computer Engineering.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3993s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Three-Tier Architecture
Ariel Ortiz Ramirez

Issue #75, July 2000

Professor Ortiz presents a little of the theory behind the three-tier architecture
and shows how it may be applied using Linux, Java and MiniSQL.

In the beginning, there were mainframes. Every program and piece of data was
stored in a single almighty machine. Users could access this centralized
computer only by means of dumb terminals. (See Figure 1.)

|i.“_\|

—0
== |4vr———
— Terminal
— user interaction
| —)
Mainframe
data and programs

Figure 1. Mainframe Architecture

In the 1980s, the arrival of inexpensive network-connected PCs produced the
popular two-tier client-server architecture. In this architecture, there is an
application running in the client machine which interacts with the server—most
commonly, a database management system (see Figure 2). Typically, the client
application, also known as a fat client, contained some or all of the
presentation logic (user interface), the application navigation, the business
rules and the database access. Every time the business rules were modified,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the client application had to be changed, tested and redistributed, even when
the user interface remained intact. In order to minimize the impact of business
logic alteration within client applications, the presentation logic must be
separated from the business rules. This separation becomes the fundamental
principle in the three-tier architecture.

Server -
database E—

Client
presentation logic
and business rules

Figure 2. Two-Tier Client-Server Architecture

In a three-tier architecture (also known as a multi-tier architecture), there are
three or more interacting tiers, each with its own specific responsibilities (see
Figure 3):

Data Server
business data Middle Tier Server
business rules

Client
presentation logic

Figure 3. Three-Tier Architecture

« Tier 1: the client contains the presentation logic, including simple control
and user input validation. This application is also known as a thin client.

* Tier 2: the middle tier is also known as the application server, which
provides the business processes logic and the data access.

« Tier 3: the data server provides the business data.

These are some of the advantages of a three-tier architecture:

* It is easier to modify or replace any tier without affecting the other tiers.

* Separating the application and database functionality means better load
balancing.

+ Adequate security policies can be enforced within the server tiers without
hindering the clients.

Putting the Theory into Practice

In order to demonstrate these design concepts, the general outline of a simple
three-tier “Hangman” game will be presented (check the source code in the
archive file). The purpose of this game, just in case the reader isn't familiar with
it, is to try to guess a mystery word, one letter at a time, before making a
certain number of mistakes.

I Hangman Chent - Netzcape
fle £ Vew Go Conemrscsn Meb
@ ¢« 3 & a2 A S &
Rebad Home Sewch lNwtcage Pt Secuwy
“Socdmats B Gotofier i et w3 v hargran esd

Hangman Client

B c

|
P
w

Give Upl | Category: [animais +|

L‘_j‘i“-"(hi-l- = — Tiﬁ&a..
Figure 4. Hangman Client Running in Windows 98

https://secure2.linuxjournal.com/ljarchive/LJ/075/3508f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3508f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3508f4.large.jpg

The data server is a Linux box running the MiniSQL database management
system. The database is used to store the mystery words. At the beginning of
each game, one of these words is randomly selected.

At the client side, a Java applet contained in a web page (originally obtained
from a web server) is responsible for the application's graphical user interface
(see Figure 4). The client platform may be any computer with a web browser
that supports applets. The game's logic is not controlled by the applet; that's
the middle tier's job. The client only takes care of the presentation logic: getting
the user's input, performing some simple checking and drawing the resulting
output.

The server in the middle tier is a Java application, also running within a Linux
box. The rules of the “Hangman” game (the business rules) are coded in this
tier. Sockets and JDBC, respectively, are used to communicate with the client
and the data server through TCP/IP.

Web Server

TCHIF

Data Server

Client (N SQL)

(lava Applet)

TOPAR

Appheation Server
{Tava Application)

TCPIP

Figure 5. Diagram of Hardware Nodes

Figure 5 presents a UML (Unified Modeling Language) deployment diagram that
shows the physical relationship among the hardware nodes of the system.

Even though the design described gives the impression of requiring a different
machine for each tier, all tiers (each one running on a different process) can be
run in the same computer. This means the complete application is able to run

in a single Linux system with a graphical desktop, and it doesn't even have to be
connected to the Net!

Running MiniSQL

MiniSQL, developed by Hughes Technologies, is an exceptionally fast DBMS
with very low system requirements. It supports a fairly useful subset of the
Structured Query Language (SQL). Using it for commercial purposes requires
purchasing a license, although free licenses are provided for academic and
charity organizations.

The software is distributed in source code form, all bundled up in a gzipped tar
file (currently, the latest distribution file is msql-2.0.11.tar.gz). It may be
downloaded from the Hughes Technology web site (see Resources). The
MiniSQL manual, with all the necessary installation and usage information, is
contained in the files msql-2.0.11/doc/manual.ps.gz and msql- 2.0.11/doc/
manual-html/manual.html, once the distribution file is extracted. The reader is
encouraged to carefully review and follow the instructions contained there.
However, it must be noted that two important details are missing from the
MiniSQL manual:

+ The “system” section contained in the /usr/local/Hughes/msql.conf file has
a parameter called Remote_Access that has a default value of false. It
must be changed to true in order to allow access to the database from
remote systems.

* Like other server daemons (for example, the HTTP web server), the
MiniSQL 2.0 server, called msql2d, should be run as a background
process. Executing the following command as root should achieve this: /
usr/local/Hughes/bin/msql2d &

In addition to the database server, MiniSQL comes with some other useful
utilities: a server administration program, an interactive SQL monitor, a schema
viewer, a data dumper and a table-data exporter and importer. The server
administration program is required to create the Hangman database that will
contain the mystery words. The following command must be executed as root:

/usr/local/Hughes/bin/msqladmin create hangman

Afterward, a mystery-words table needs to be created. Only two columns will
be contained in this table: word (the mystery word or sentence) and category (a
classification for the mystery word: computers, animals, movies, etc.), both of
them being character strings. Also, a few rows should be inserted. The
interactive SQL monitor may be used for both purposes. Executing the
command

/usr/local/Hughes/bin/msql hangman

enters the interactive monitor with the “hangman” database. The MiniSQL
prompt should appear. SQL queries can now be issued, followed by “\g"(GO) to
indicate that the query should be sent to the database server. Here are the SQL
commands for the Hangman application:

create table mystery (word char(40), category char(15))\g

insert into mystery values ('elephant', 'animals')\g
insert into mystery values ('rhinoceros', 'animals')\g
insert into mystery values ('gone with the wind', 'movies')\g

Accessing the MiniSQL from a Java Program

The application's middle tier uses Blackdown's Linux Port Java Development Kit
1.2.2, release candidate 4, and CIE's mSQL-JDBC driver for JDBC 2.0. The Java
tutorial is one of many excellent places to learn how to access databases from
within a Java program; that's why only the specific issues on accessing MiniSQL
will be dealt with here.

Before attempting to access the MiniSQL server from a Java application, the
corresponding JDBC driver must be installed. The driver may be freely
downloaded from The Center for Imaginary Environments web site (see
Resources). The distribution file comes with many things, but the most
important part is the JAR file that contains the driver itself (currently, the file is
msql-jdbc-2.0b5.jar). The easiest way to install the driver is to copy the JAR file
to the /usr/local/jdk1.2.2/jre/lib/ext directory (root privileges are required to
copy files to this directory).

In order to load the driver from the Java program, the following statement
should be executed:

Class.forName('"com.imaginary.sql.msql.MsqlDriver");

The connection to the database server is established when executing this
statement (ignore line wrap):

Connection con = DriverManager.getConnection
('jdbc:msql://localhost:1114/hangman');

Inside the JDBC URL, the URL of a remote system should replace “localhost” if
the MiniSQL server is not running in the same machine. 1114 is the default port
number to which the MiniSQL server is listening. The msql.conf file can be
modified in order to specify another port number.

Conclusions

The three-tier architecture is a versatile and modular infrastructure intended to
improve usability, flexibility, interoperability and scalability. Linux, Java and
MiniSQL result in an interesting combination for learning how to build three-

tier architecture systems. Nevertheless, more convenient implementations
than the one presented here may be produced using component technology in
the middle tier, such as CORBA (Common Object Request Broker Architecture),
E)B (Enterprise Java Beans) and DCOM (Distributed Component Object Model).
The interested reader should review these topics to get a better understanding
of the current three-tier architecture capabilities.

Resources

y: A b
email: aortiz@campus.cem.itesm.mx

Ariel Ortiz Ramirez (aortiz@campus.cem.itesm.mx) is a faculty member in the
Computer Science Department of the Monterey Institute of Technology and
Higher Education, Campus Estado de Mexico. Although he has taught several
different programming languages for almost a decade, he personally has much
more fun when programming in Scheme and Java (in that order). He can be
reached at aortiz@campus.cem.itesm.mx.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3508s1.html
mailto:aortiz@campus.cem.itesm.mx
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

cgimodel: CGI Programming Made Easy with Python
Chenna Ramu

Christina Gemuend

Issue #75, July 2000

Always look on the bright side of life and at a method for debugging CGI
programs on the command line.

The Common Gateway Interface (CGl) is a way in which you can let others from
all over the world execute a program that resides on your computer. CGl is
dynamic, since it runs in real time. You can decorate the CGI output with HTML
(Hyper Text Markup Language). Most of the time, CGl is used as a front end for
existing applications. CGIl can be easy or complex, depending on the complexity
of your project. Most CGI developers know the frustration which comes with
debugging the CGI programs.

We present a very simple and robust way of doing CGI programming with
Python. Debugging your CGl is easy, since you can do it on the command line,
and integrating existing applications to work with CGI is just one step.

For our work, we chose Python, an object-oriented scripting language with a
clear syntax. It is very easy to use, widely available and is free software.

Our intended audience is both experienced and novice CGI programmers. We
will use the words “function” and “method” interchangeably. Note that CGI can
be written in any computer language.

The GET and POST Methods

There are two ways of invoking CGI programs: through a URL with all data
included, or by submitting HTML forms.

The two methods defined in HTTP to send your data to the CGI are GET and
POST. When the method is GET, the CGI program gets the input from the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

QUERY_STRING environment variable. When the method is POST, the CGI
program gets the input from standard input (STDIN). In both cases, one has to
parse the input to obtain the input argument name,value pairs.

CGI may or may not be complicated, but when you have a larger application
with many features, you might have problems in testing, debugging, etc. This is
true with all software projects. Debugging becomes problematic with CGls. For
example, when the method is GET, you have to set up environment variables
QUERY_STRING and REQUEST_METHOD. When the method is POST, you must
set up REQUEST_METHOD and CONTENT_LENGTH (number of bytes) to read
from standard input (STDIN). Moreover, when your program crashes, it is not
visible to your browser—you do not know what happened. The only message
you get in this situation is the error report made by the web server.

You can use either of these methods (GET/POST) depending on your need. If
you will be sending more data to CGl, use the POST method. When you have
less data to be sent to CGl, use GET to put all the data inside the URL. For
example, on one line, type:

<A HREF="/cgi/cgimodel.py?fun=DisplayFile&fileName=
cgimodel.pycgimodel">cgimodel

With HTML FORMS (for POST method), the same would be

<FORM METHOD="post" ACTION="/cgi-bin/cgimodel.py">
<INPUT TYPE=hidden name=fun value=DisplayFile>
<INPUT TYPE=hidden name=fileName value=cgimodel.py>
<INPUT TYPE=SUBMIT VALUE="cgimodel">

</FORM>

We all know the difficulties of and have adopted different styles for debugging
CGI programs. Our intention is to build CGI that does not work in the traditional
way, but like other programs which work on the command line. This means you
can test your CGI the way you test any other program on the command line.
When it works on the command line, it is guaranteed to exhibit the same
behavior on the Web.

The cgimodel Module

Let us see how we can make life easier with cgimodel, which lets you integrate
your existing application in an elegant way without much hassle. Basically it
consists of two modules: cgimodel.py (see Listing 1) and cgidisp.py (see Listing
2).

Listing 1. cgimodel.py

Listing 2. cgidisp.py

https://secure2.linuxjournal.com/ljarchive/LJ/075/3616l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3616l2.html

cgimodel.py is a wrapper to Python's CGlI module. It also encapsulates reading
from the command line, so there is no real difference in invoking from HTML
FORMS or a URL or the command line.

The CollectArgs function in the cgimodel.py module takes care of collecting
arguments including name,value parameters from CGI or the command line.
On the UNIX command line, you can supply the name,value parameters like
this:

-namel valuel -name2 value2

or like this:
namel valuel name2 value2

The same is true for both URL and FORMS.

You do not have to modify anything in cgimodel.py. You just have to use it. The
main section of cgimodel contains the following lines:

d = Dispatcher()
parDict = CollectArgs(parDict)
print mime_html
fun=parDict['fun']
if not fun:
print "usage: cgimodel -fun functionName"
d.ShowAvailableFunc()
TraceIt(parDict)
else:
try:
d.dispatch(fun,parDict)
except:
TraceIt(parDict)

cgimodel.py tries to call the function you have given as an argument to the
parameter -fun.

When there is no such function available, it tells you the names of functions
that can be called. If there is an exception (because of a syntax error, etc.) in the
program, the exception will be traced back and reported. You can use this
feature to e-mail the exception to yourself and make your CGI program more
stable.

The cgidisp Module

The other module, cgidisp.py, is the one in which you have to modify or insert
an instance to the class Dispatcher for your application using one argument,
namely parDict. For example, under class Dispatcher, if you define a method
like

def cmd_myHello(self, parDict):
print "<H1>Hello</H1>"

then this function is immediately available to the outside world. You can call it
on the command line this way:

cgimodel.py -fun myHello

with URL (GET method)
cgimodel.py?-fun=myHello

and with HTML forms as

<FORM METHOD="post" ACTION="/cgi-bin/cgimodel.py>
<INPUT TYPE=hidden name=fun value=myHello>

<INPUT TYPE=SUBMIT VALUE="Say Hello">

</FORM>

It's that easy!

The dispatch method under the class Dispatcher is called from cgimodel.py
with one argument. This argument is the name of the function to be executed.
Here is the interesting part. After prefixing the function name with the “cmnd_”
string, the dispatch method checks to see if such a function is available with
hassattr. The Dispatcher maps the command to the function and executes it.
This way, you do not have to use a lookup table to keep track of available
functions. The additional overhead of adding a new command to the new
function is not there; you just have to write the function and call it through the
command line. The functionality is already there. This kind of pattern is
possible with Python, since it is a highly dynamic language.

Please note that when calling the method, we are not using the prefix cmd_ of
the method. This is explained later.

The main section of the Dispatcher class contains the following:

class Dispatcher:
def __init_ (self):
self.debug = None
def dispatch(self, command,args=None):
mname = 'cmd_' + command
if hasattr(self, mname):
method = getattr(self, mname)
if not args:
return method()
else:
return method(args)
else:
print "<PRE>" self.error(command)<\n>
self.ShowAvailableFunc()
print "</PRE>"
def cmd_Hello(self,parDict):
print " Hello World !"
def cmd_ShowDict(self):
print "<PRE></H1>Debug Info:</H1><HR>"
for k,v in parDict.items():
print "%-30s : %s " %(k,v)
print "</PRE>"
def error(self,s):
print " #Error: <BB>Function (%s) not available\n " %s
return

All your parameters are available in the parDict dictionary whether they are
input from URL, FORM or command line—there is no difference. You can check
for their existence in this way:

if parDict['param']:

print " yes ", parDict['param']
else:

print " No "

The None object is returned when there is no parameter, i.e., when you try to
access an unspecified parameter.

The instances inside the class Dispatcher are of two types: those that are
prefixed by the “crnd_” string are qualified for calling from outside; internal
instances are not visible outside. For example, the error instance cannot be
called from CGI, but the instances cmd_Hello and cmmd_ShowDict can be called.
This convention is made to differentiate between the instances that are for
internal (used inside the class Dispatcher) and external (by cgimodel/cgidisp)
use.

So, add a “cmd_"” prefix to the instances you want to use with CGI. For example,
cmd_TopPage can be called with

cgimodel.py -fun TopPage
on the command line and
cgimodel.py?-fun=TopPage

will be the corresponding URL. The -fun is mandatory. This way, you can
indicate which function you want to call. Obviously, you can have as many
functions as you want, and they are CGl-ready. This is the exact requirement of
larger CGI projects.

A couple of functions come with the module for free. The function DisplayFile
displays colorized Python source code on the Web. This one relies on the
module py2html.py, available with the standard Python distribution.

cgimodel.py -fun DisplayFile -fileName cgimodel.py
URL equivalent:
cgimodel.py?-fun=DisplayFile&fileName=cgimodel. py

Note the name=value and the & to separate the name,value pairs—the
traditional method of specification for CGl.

The method cmd_ShowDict shows all dictionary items in the parDict dictionary
and is useful for checking whether you have supplied the correct parameters.

Adding Existing Modules to CGI

Assume you already have this module:

#!/usr/bin/env python
testmethod.py
def Methodl(namel, name2,name3):
print namel, name2, name3
if __name__ == '__main__"':
Methodl1('one', 'two', 'three')

Edit the cgidisp.py module, inserting the following method under the class
Dispatcher:

def cmd_TestMeth(self, parDict):
import testmethod
namel = parDict['namel']
name2 = parDict['name2']
name3 = parDict['name3']
testmethod.Method1(namel, name2, name3)

Now it is ready! You can call this on the command line by typing on one line:

cgimodel.py -fun TestMeth -namel one -name2 two -name3 three

or by URL (all on one line):

cgimodel.py?-fun=TestMeth&namel=one&name2=two&name3=three

or by FORMS:

<FORM METHOD="post" ACTION="/cgi-bin/cgimodel.py">
<INPUT TYPE=hidden name=fun value=TestMeth>

<INPUT TYPE=hidden name=namel value=one>

<INPUT TYPE=hidden name=name2 value=two>

<INPUT TYPE=hidden name=name3 value=three>

<INPUT TYPE=SUBMIT VALUE="Run">

</FORM>

It would be much better if you could separate HTML text from CGI modules, so
that CGl looks thinner and more readable. You can use the template modules
(see Resources) to do this. The template module keeps the text away from the
CGI and has a page-paragraph structure. Each CGl call can be associated with a
page, and each paragraph can be used to set up the view of your HTML page.

cgimodel can host any number of applications. The redundancy of writing a CGl
front end is no longer necessary. Since many applications can be run by a single
cgimodel, logging information particular to each application can be done for
later analysis to improve server performance, stability of each application,
better service, etc. Currently, this can be done with the log information
generated by the web server.

With cgimodel.py, cgidisp.py and possibly the template.py modules, you should
find writing and testing CGI programs easier.

Resources

Chenna Ramu (ramu.chenna@embl-heidelberg.de) holds a postgraduate
degree in mathematics. He currently works for European Molecular Biological
Laboratory in Heidelberg, Germany, in the area of biocomputing. Interests are
theoretical study about DNA/protein sequences, database development,
parsing, compilers, system administration and web technology. He came across
Python recently (thanks to Gert Vriend) and found it quite nice for
programming.

Christine Gemuend has a degree in computer science. She is interested in
parallel computers and database systems, and is working in the area of
informatics.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3616s1.html
mailto:ramu.chenna@embl-heidelberg.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Mapping Lightning with Linux
Timothy Hamlin

Issue #75, July 2000

NM Tech studies lightning to determine basic charge structures and learn more
about storm morphology.

The New Mexico Institute of Mining and Technology (NM Tech) has developed a
deployable system for mapping the lightning discharge activity of
thunderstorms in three spatial dimensions and time. The array, which utilizes
Global Positioning System (GPS) technology for accurate timing and is
patterned after the Lightning Detection and Ranging system developed and
utilized by NASA's Kennedy Space Center, is known as the Lightning Mapping
Array (LMA) and consists of 10 to 15 stations deployed about a county-wide
area of approximately 30-50km in diameter.

Each station detects and accurately times the arrival of impulsive VHF (very high
frequency) events in a 6MHz passband centered at 63MHz. The time and
magnitude of the impulsive radiation is recorded up to once every 100 ys,
making it possible to store up to a maximum of 10,000 triggers per second.
Triggers from each station are combined with data from the other stations at a
central site, where differential time-of-arrival techniques are used to generate
solutions for the locations of the source events, in both space and time. A
typical lightning discharge may consist of several hundred to a few thousand
located sources. The observations made by the system are found to reflect the
basic charge structure of electrified storms, as well as provide invaluable
information on the overall storm morphology.

Figure 1 demonstrates observations of a horizontally extensive lightning
discharge from a storm over central Oklahoma on the evening of June 10, 1998.
The discharge occurred over the southern edge of the measurement network
and had an overall extent of 75km. The flash began as an intracloud discharge
between the main negative and upper positive charge layers of the storm.
Subsequent breakdown in the negative charge level continued the discharge to
the north, where it produced a negative-polarity stroke to ground. This

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

discharge, which lasted approximately 2.5 seconds, produced more than 2400
located radiation events and demonstrates the LMA's ability to determine
discharge structure at the individual flash level. The different panels show plan
view, east-west and north-south vertical projections and height-time plots of
the lightning activity. The color scale in this example represents the progression
of time, blue being early in the flash and red being late (linear scale). The small
boxes on the plan view detail the locations of the measurement stations.

& sz
gl T d a

Figure 1. Lightning Discharge in Oklahoma

Figure 2 demonstrates the LMA's ability to view storms on much larger scales.
This example is an integration of five minutes of data, where the color scale
now represents event density, red being the highest activity and purple the
lowest (logarithmic scale). Data of this type helps to determine the location of

https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f1.large.jpg

the main conective cells in storm systems, as well as determine the overall size
and structure of the storm.

x,; fi uh

LA

didlhh -L b J[o h [»'*9“

Eost—West distonce (km) Altitude (km

Figure 2. LMA Integration of Five Minutes of Data

What's Linux Got to Do with It?

At the very core of operation for this system is Linux. To best demonstrate the
flow of data and Linux's involvement with it, we trace the stream from its
source. An impulsive VHF event occurs, and the radiation from it arrives at a
given remote station. Operating in each station is an inexpensive PC running
Linux. Each PC has a custom-built digitizer card (built and designed here at NM
Tech) which interfaces with the PC over the ISA bus. The arrival time and power
of each event is recorded and stored into a 16-bit, 32KB-deep FIFO. The digitizer

https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3973f2.large.jpg

board sets a flag (or generates an interrupt) noting when the FIFO becomes
half-full.

On the Linux side, there is a device driver (written in C) running, which polls for
the half-full flag or can be set to utilize interrupts (they happen only a few times
a second, so polling works quite well). When a half-full flag is detected, the
driver initiates a block transfer from the FIFO to the system, where the data is
then flushed to disk.

The digitizer board itself, which utilizes a microcontroller in conjunction with a
programmable logic device (PLD) to maintain phase-lock with the GPS receiver
(good to about 50-100 nanoseconds), must be configured using a passive-serial
mode. This is accomplished by interfacing through the parallel port on the PC
and clocking in the configuration data (one bit at a time) needed to program the
PLD interface. A few calls to ioperm make this an easy task, and the availability
of excellent Linux documentation helped greatly along the way.

The collection process goes on all the time, so data starts to build up on the
remote stations. The data files are stored as fixed-length files, 10MB each. Once
a file reaches 10MB, Perl scripting takes charge. The scripts perform a variety of
actions. First, they take a completed file and write it to the local DAT tape drive.
Currently the stations use DDS-II drives, so each tape can hold about 4GB of
uncompressed data, which amounts to about a week's worth of data
(depending on storm activity). After a successful write to tape, the file is moved
to a backup location on the local disk as a redundancy method. The scripting
monitors the tape writes, logs them and monitors hard-drive space. If drive
space becomes limited, the oldest files successfully written to tape are
removed. Data tapes are collected on a routine basis via the famed “sneaker
net” and brought back to a central location for postprocessing.

It would be nearly impossible (although we have done it) to do this all blind. We
take advantage of the ease of networking in Linux to achieve real-time control
over the stations. Each remote station connects back to a central site via
wireless radio modems operating at 115,200bps. The remote stations establish
a PPP link between themselves and the main site; the PPP links are maintained
quite easily with use of more Perl scripts. Having all of the stations networked
to a central site, one which has Internet access, is a real benefit. This allows for
control over the stations from virtually anywhere. All one has to do is get to the
central site, and access to the remote stations is only an slogin away. Real-time
control is invaluable; there are many things which need to be monitored and
adjusted at each station, such as the triggering threshold of the digitizer,
monitoring signal strength, checking battery backup status and controlling the
GPS receiver.

Once the data have been collected at the central processing location, the real
work begins. The data must be extracted from tape and combined for each
station with corresponding time intervals. A workhorse machine is needed. We
currently use a dual-processor Linux box running SMP. After combining the
data, various forms of filtering must be done before the solutions can be
obtained. A variety of languages and services help with the task: filters written
in C, Perl and shell scripts for keeping track of vitals, more C to invert the data,
IDL to display the data, HTTP and FTP servers to collaborate with others and so
on.

In the works is a transition to full real-time processing, which is well underway.
We hope to eliminate the sneaker net and bring all data back real time, process
it and archive it all in one place. This will reduce the number of man hours
considerably, as well as make the system a more effective tool in collaborative
field campaigns.

Linux has proven to be an important part of every aspect of this project. The
ease of development on this platform is unparalleled, as is its flexibility of
application. The prodigious documentation, as well as the massive proliferation
of freely distributed software, has made it our OS of choice. We could not do
what we do without it! It should also be mentioned that the PCs in the remote
stations are up constantly—the last /proc/uptime reports over 300 days since
the last reboot. Show me a Windows box that can run for nearly a year,
network constantly, and archive over 100GB of data without so much as a
hiccup!

Acknowledgements

Lo N
R = J
l S a0, S {/

email: thamlih@nrﬁt.edu

Timothy Hamlin (thamlin@nmt.edu) has been a graduate student in physics at
NM Tech for the past three years, and hopes to complete his Ph.D. sometime
before the next millennium. He has been an avid UNIX user for over 10 years
and a Linux convert/administrator/programmer/what-have-you since 1996.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/075/3973s1.html
mailto:thamlin@nmt.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Using Linux in Embedded and Real-Time Systems

Rick Lehrbaum

Issue #75, July 2000

When you need an embedded operating system, Linux is a good place to start.
Here's why.

Intelligent dedicated systems and appliances used in interface, monitoring,
communications and control applications increasingly demand the services of a
sophisticated, state-of-the-art operating system. Many such systems require
advanced capabilities such as high resolution and user-friendly graphical user
interfaces (GUIs), TCP/IP connectivity, substitution of reliable (and low-power)
flash memory solid-state disk for conventional disk drives, support for 32-bit
ultra-high-speed CPUs, the use of large memory arrays, and seemingly infinite
capacity storage devices including CD-ROMs and hard disks. This is not the stuff
of yesteryear's “stand-alone” code, “roll-your-own” kernels or “plain old DOS".
No, those days are gone—forever!

Then, too, consider the rapidly accelerating pace of hardware and chipset
innovation, accompanied by extremely rapid obsolescence of the older devices.
Combine these two, and you can see why it has become an enormous
challenge for commercial RTOS (real-time operating system) vendors to keep
up with the constant churning of hardware devices. Supporting the newest
devices in a timely manner—even just to stay clear of the unrelenting
steamroller of chipset obsolescence—takes a large and constant resource
commitment. If it's a struggle for the commercial RTOS vendors to keep up,
going it alone by writing stand-alone code or a roll-your-own kernel certainly
makes no sense. With the options narrowing, embedded system developers
find themselves faced with a dilemma:

« On one hand, today's highly sophisticated and empowered intelligent
embedded systems—based on the newest chips and hardware
capabilities—demand nothing less than the power, sophistication and
currency of support provided by a popular high-end operating system like
Windows.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

* On the other hand, embedded systems demand extremely high reliability
(for non-stop, unattended operation) plus the ability to customize the OS
to match an application's unique requirements.

Here's the quandary: general-purpose desktop operating systems (like
Windows) aren't well-suited to the unique needs of appliance-like embedded
systems. However, commercial RTOS, while designed to satisfy the reliability
and configuration flexibility requirements of embedded applications, are
increasingly less desirable due to their lack of standardization and their inability
to keep pace with the rapid evolution of technology.

The Alternative

Fortunately, an exciting alternative has emerged: open-source Linux. Linux
offers powerful and sophisticated system management facilities, a rich cadre of
device support, a superb reputation for reliability and robustness and extensive
documentation. Best of all (say system developers), Linux is available with
source code at no charge.

Unlike Windows, Linux is inherently modular and can be scaled easily into
compact configurations—barely larger than DOS—that can even fit on a single
floppy. What's more, since Linux source code is freely available, it's possible to
customize the OS according to unique embedded system requirements. It's not
surprising, then, that Linux has created a new OS development and support
paradigm in which thousands of developers continually contribute to a
constantly evolving Linux code base. In addition, dozens of Linux-oriented
software companies have sprung up, eager to support the needs of developers
building a wide range of applications, ranging from factory automation to
intelligent appliances.

Which Linux?

Because Linux is openly and freely available in source form, many variations
and configurations are available. There are implementations specifically for
“thin server” or “firewall” applications, small footprint versions and real-time
enhanced versions. There are also Linux ports for non-x86 CPUs, including
PowerPC, RISC, 68xxx and microcontrollers.

How do you decide which distribution to use? First, realize that all Linux
distributions are variations on the same theme—that is, they are collections of
the same basic components, including the Linux kernel, command shells
(command processors) and many common utilities. The differences tend to
center around which of the many hundreds of Linux utilities have been
included, what extras are included on the distribution CD and how the
installation process is managed. Distributions may include either open-source

or proprietary software such as, for example, StarOffice. Even though Linux is
free, purchasing a “commercial” Linux distribution can have many advantages,
including development tools, useful utilities and support. The many companies
which are now building businesses around distributing and supporting Linux
are busy investing in developing tools and services to differentiate their Linux
offerings from the rest of the pack. Some of the special capabilities being
developed include:

* Installation tools to automate and simplify the process of generating a
Linux configuration that is tuned to a specific target's hardware setup.
These can save weeks or even months of development effort.

+ Avariety of Windows-like GUIs that vary in size, appearance, features and
capabilities to support a wide range of embedded requirements.

« Support for the specific needs of various embedded and real-time
computing platforms and environments (e.g., special CompactPCl system
features).

Yet despite this great diversity, all Linux implementations share a common
core, including kernel, drivers, several popular GUIs and utilities.

Small-Footprint Linux

For many embedded systems, the main challenge in embedding Linux is to
minimize system resource requirements in order to fit within constraints such
as RAM, solid-state disk (SSD), processor speed and power consumption.
Embedded operation may require booting from (and fitting within) a
DiskOnChip or CompactFlash SSD; booting and running without a display and
keyboard (“headless” operation); or loading the application from a remote
device via an Ethernet LAN connection. There are many sources of ready-made,
small-footprint Linux. Included among these are a growing number of
application-oriented Linux configurations and distributions that are tuned to
specific applications. Some examples are routers, firewalls, Internet/network
appliances, network servers, gateways, etc. You may also opt to create your
own flavor of embedded Linux, starting from a standard distribution and
leaving out modules you don't need. Even so, you should consider jump-
starting your efforts by beginning with someone else's working configuration,
since the source code of their version will be available for that purpose. Best of
all, this sort of building on the efforts of others in the Linux community is not
only completely legal—it's encouraged!

Real-Time Linux

Many embedded systems require predictable and bounded responses to real-
world events. Such “real-time” systems include factory automation, data
acquisition and control systems, audio/video applications and many other

computerized products and devices. The commonly accepted definition of real-
time performance is that real-world events must be responded to within a
defined, predictable and relatively short time interval. Although Linux is not a
real-time operating system (the Linux kernel does not provide the required
event prioritization and preemption functions), several add-on options are
available that can bring real-time capabilities to Linux-based systems. The most
common method is the dual-kernel approach. Using this approach, a general-
purpose (non-real-time) OS runs as a task under a real-time kernel. The
general-purpose OS provides functions such as disk read/write, LAN/
communications, serial/parallel 170, system initialization, memory
management, etc., while the real-time kernel handles real-world event
processing. You might think of this as a “have your cake and eat it too” strategy,
because it can preserve the benefits of a popular general-purpose OS while
adding the capabilities of a real-time OS. In the case of Linux, you can retain full
compatibility with standard Linux while adding real-time functions in a non-
interfering manner.

Of course, you could also dive in and modify Linux to convert it into a real-time
operating system, since its source is openly available. But if you do this, you will
be faced with the severe disadvantage of having a real-time Linux that can't
keep pace, either features-wise or drivers-wise, with mainstream Linux. In
short, your customized Linux won't benefit from the continual Linux evolution
that results from the pooled efforts of thousands of developers worldwide.

'Who Needs Real-Time?

In any case, how many applications actually require real-time enhancements to
Linux? Bear in mind that “real-time” is a relative, not an absolute, expression. As
mentioned before, a real-time system must handle real-world tasks within
acceptable—and predictable—time windows. Although CPUs run at ever-
increasing speeds (approaching 1GHz), the world around them goes on at a
constant speed. Therefore, real-time performance is becoming ever easier to
achieve. Back when the “traditional” RTOS were first developed, embedded
systems depended on 4- and 8-bit CPUs clocked at single-digit megahertz
speeds and running out of kilobytes of RAM. Now, with CPUs speeding along at
up to 1GHz and with memories measured in the hundreds of megabytes, real-
time performance is becoming less of a concern. The greater concern has
become speed to market and sophistication of functionality. Where execution
efficiency was the watchword of the CPU-bound past, protocols are the key to
the Internet-centric future.

Going Soft

There's a term to describe the use of ordinary operating systems in real-world
applications with acceptable results: “soft real-time”. In many systems, you can

ensure that the real-world constraints of your application can be achieved
without resorting to using a specialized RTOS. However, this tends to be
practical only when required response times are in milliseconds—not
microseconds. Assuming that's the case, a minimally configured Linux on a
reasonably fast processor (486-133 or faster) without special real-time add-ons
may well suit your needs. If soft real-time sounds like what you need, you may
want to check out a Linux add-on called Linux-SRT (soft real-time). On the other
hand, your system may indeed require microsecond-level response times. In
that case, you can either dedicate an inexpensive microcontroller or DSP to
handling the time-critical events, or you can use one of several available real-
time Linux add-ons (e.g., RTLinux or RTAI).

Embedded and Real-Time Linux Solution Providers

Since Linux is free, how can anyone build a profitable business based on
offering commercial Linux distributions? It's a lot like bottled water—basically,
what you pay for is services: packaging, delivery, quality assurance, etc. A word
of caution: don't assume that every Linux-related program you download from
the Web or obtain from a Linux CD can be freely reproduced and incorporated
into the devices you develop. Some commercial Linux distributions that target
embedded and real-time applications include proprietary third-party tools and
utilities that require licensing and royalty payments if you incorporate them
into multiple systems. In other words, read the fine print. For now, however,
licensed Linux system software is the exception rather than the rule. With the
market placing such a high value on Linux and its associated software being
open source and royalty-free, most Linux software companies serving the
embedded and real-time Linux market have opted to build their businesses
based on selling tools, offering engineering services and providing technical
support.

Given the strong position of Microsoft Windows in the end-user desktop/laptop
market, it's unlikely the “average” desktop/laptop PC user will be running Linux
any time soon. On the other hand, in embedded and real-time applications
where the OS is an underlying and hidden technology supporting appliance-like
operation of a non-computer device, several key features of Linux are making it
a growing preference among system developers:

* Source is available and free.

* There are no runtime royalties.

* Linux supports a vast array of devices.
* Linux is truly a global standard.

+ Linux is sophisticated, efficient, robust, reliable, modular and highly
configurable.

Time will tell, but it certainly looks as though Linux has already altered the
embedded and real-time operating system landscape in a fundamental and
irreversible way. The result? Developers now have greater control over their
embedded OS; manufacturers are spared the costs and headaches of software
royalties; end users get more value. And the penguins of the South Pole are
celebrating.

Resources

email: rick@linuxdevices.com

Rick Lehrbaum (rick@linuxdevices.com) co-founded Ampro Computers, Inc. in

1983. In 1992, Rick formed the PC/104 Consortium and served as its chairman

through January 2000. In October 1999, Rick turned his attention to embedded
software, founding LinuxDevices.com—"the Embedded Linux Portal”.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3980s1.html
mailto:rick@linuxdevices.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Troll Tech Announces Embedded GUI Toolkit

Craig Knudsen

Issue #75, July 2000

Troll Tech enters the embedded systems market—here's what's happening.

Troll Tech announced in March that it is developing Qt/Embedded, a new GUI
toolkit for embedded Linux systems. The toolkit aims to provide embedded
systems developers with the same power and cross-platform portability as the
desktop versions of Qt, Qt/Windows and Qt/X11.

Linux users will recognize Qt as the GUI toolkit that powers the popular K
Desktop Environment (KDE), now a standard component of most Linux
distributions including Caldera OpenLinux 2.4, Linux Mandrake 7.0, Corel Linux
1.0, Red Hat Linux 6.2 and Slackware 7.0.

Unlike Troll Tech's Qt/X11 product for Linux, Qt/Embedded does not require
the X Window System. Instead, Qt/Embedded applications access the Linux
frame buffer directly. Removing X reduces the memory requirements of the
toolkit drastically, leaving more memory available for applications.

While Troll Tech is not aiming to replace X, it may do so in some cases. Qt/
Embedded includes its own windowing system, allowing multiple applications
to run with overlapping windows. Qt/Embedded will not, however, provide
remote display capabilities like X. Qt/Embedded also provides its own support
for TrueType fonts, a function normally provided by X.

Because Qt/Embedded is source-code compatible with Qt 2.1, any application
that works with Qt 2.1 can be built with Qt/Embedded. In fact, a version of KDE
has already been tested with Qt/Embedded. It's unlikely that all the current KDE
and Qt applications will begin showing up on embedded devices. However,
certain applications, such as the Qt version of the Mozilla browser, are obvious
candidates for an embedded device.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

KDE's success has been an asset to Troll Tech. It certainly can't hurt the future
of Qt/Embedded to have a growing number of open-source developers around
the world familiar with Qt development.

M Fle Edt Viw Go Help

éﬁni‘..ué Abour e

e P———— j
R Type ina hoyword @t’ ON-LINE REFERENCE D
ICTr

QTextBrowser Class Reference

QT eCodec
QTextDecoder A rch text baowses with siaple savigation. Mot
Mociade <grestimwse: b
Inhersts QT et Viey

t of all member functions
Public Members

0

QTextBrewser (QWidget * parent=0, const char * name~0

QTextBrowser ()

el 1o cat@amera (romet T0vma B namg |

Qt Screenshot

The Qt/Embedded API will be identical to the existing APl used in Qt 2.1,
allowing applications to be portable from UNIX and Windows desktops to
embedded systems. Developers can use either Qt or X11 to develop their
application, allowing them to leverage a huge base of desktop tools. The
application can be deployed on the target system simply by rebuilding with Qt/
Embedded.

Qt/X11's original license caused many concerns in Linux and Open Source
communities due to its restrictions on commercial usage. Qt did not meet the
official open-source definition, preventing KDE from being included in some
Linux distributions. In response, Troll Tech developed the Q Public License
(QPL), a new, less-restrictive license that qualifies as open source. The new
license has been a significant factor in the success of both Qt and KDE.

Qt/Embedded application programmers will need to purchase a Development
Kit license under terms similar to the Qt Professional Edition. There will also be
a run-time license for each device in which Qt/Embedded is installed.

If you're an open-source developer, the licensing terms might not sound very
inviting to you. Learning from past licensing problems, Troll Tech hasn't
forgotten the open-source developer. Although details have not been finalized,

https://secure2.linuxjournal.com/ljarchive/LJ/075/4023f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4023f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4023f1.large.jpg

Troll Tech plans to make available a free edition of the Development Kit that
will make it possible to write open-source applications for use on devices with
Qt/Embedded already installed.

Up until now, talking about Qt in the Linux community meant Qt/X11. With Qt/
Embedded on the way, Linux developers have more options. Linux has
continued to garner interest in the embedded systems market, and an
advanced GUI toolkit such as Qt will make Linux that much more attractive.

The general release of Qt/Embedded is targeted for the third quarter of this
year, with OEMs receiving pre-releases earlier. At the time of publication, Troll
Tech had not yet announced pricing details for the run-time licenses or the
Developer Kit.

Resources

email: cknudsen@radix.net

Craig Knudsen (cknudsen@radix.net) lives in Fairfax, VA and telecommutes full-
time as a web engineer for ePresence, Inc. of Red Bank, NJ. When he's not
working, he and his wife Kim relax with their two Yorkies, Buster and Baloo.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4023s1.html
mailto:cknudsen@radix.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

The Montréal 2000 Linux Expo April 10-12

Marcel Gagné

Issue #75, July 2000

LS's French chef visits Montréal April 10-12 for more than the food.

Quick—those people who have attended a science-fiction convention, put up
your hand. Go ahead, admit it—this is a friendly crowd. SF convention goers
have a term that describes conventions like the Montréal Linux Expo: Relaxcon.
This term refers to a quiet convention, one where you can basically just relax
and chat with people. While this is great for fans wanting to get close to their
idols, businesses and exhibitors spending several thousand dollars for a booth
may have other ideas—even in the world of free software. Don't get me wrong.
On Tuesday, day one of the show, the place was hopping and you could feel the
excitement at the Palais des Congrés. All in all, it was a fairly successful opening
day, especially considering the weather. Wednesday, however, was a different
matter. The general consensus from the vendors | spoke to on Wednesday was
that day two might just as well have not happened, considering the number of
people in attendance. For those of you who missed the show, let me try to
paint you a picture.

Ah yes, the weather. We arrived in Montréal during what was probably the
worst snowstorm of the winter. We left Mississauga with the sun shining and
temperatures of 10 degrees Celsius. Around Brockville (about two-thirds of the
way there), things got ugly as the blizzard set in. Our six-hour trip turned into
the ten-hour drive from hell. Attendance may have been light due to the great
dump of snow, but | certainly don't think the weather can be blamed for
everything. The organizers expected 6000. One Montréal newspaper estimated
slightly over 4500. Another paper, this one in Ottawa, cynically proclaimed,
“barely 300 there for the key speeches”. I'll step out on a limb, double that
number for the key speeches, and guesstimate 2500 to 3000 attendees.

Each of the keynotes was held on the first day of the Expo, Tuesday. The
notables were Corel's Michael Cowpland, Red Hat's Bob Young, MandrakeSoft's
Jacques Le Marois, SUSE's Dirk Hohndel, Oracle Corp., Jon “maddog” Hall and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Eric S. Raymond. Linuxconf author Jacques Gélinas introduced the last two
speakers, while Jean-Claude Guédon, professor of comparative literature at the
University of Montréal and author of the book La Planéte Cyber (Cyber Planet),
moderated and introduced the keynotes.

Linux aficionados have already heard much of what was said in the keynotes,
but there were some comments worth noting. Professor Guédon pointed out
that his part in this Expo was partly that of an interested observer, a chronicler
of a new direction in the history of the high-tech world—the Linux revolution.
He suggested that “a Linux company is a bit like a scientist, because a scientist
is a kind of intellectual entrepreneur.” This fit well with Eric Raymond's speech
on the value of peer review in any intellectual enterprise. He explained to the
audience that pseudo-sciences like alchemy took the next evolutionary step
toward true science only when the work of the scientist (the source) was finally
opened to public scrutiny and peer review (the open model of which Linux and
GNU are the poster children). Based on the centuries of success of this
approach, Mr. Raymond said he did not know what the future held, but he
could tell us with near absolute certainty that “You ain't seen nothin' yet!”

Red Hat's Bob Young made an interesting analogy comparing closed-source
software to the feudal system, where serfs paid for a plot of land for the
privilege of working on it. He pointed out that with certain closed-software
distributions, you might even risk going to jail for improving it, which would
require that you somehow gained access to this highly guarded source or
intellectual property. Whatever your motives, you still lose.

SuSE's CTO, Dirk Hohndel, likened the competition in the Linux marketplace to
a friendly battle of wits, with companies smiling at each other while they try to
outsmart each other. The great thing about Linux, he said, could be summed
up in these points:

* Itis a dream come true.
* It actually works.
* It's fun to be part of.

Jon “maddog” Hall, one of the legends of Linux and the Open Source
movement, gave a talk entitled “Life in the Elevator”. Unfortunately, it was
delayed by hardware problems, and Mr. Hall called for recess while he hunted
down his own notebook. The premise of his speech is that you enter the
elevator at the bottom floor of a high-rise. Inside this elevator is a person with
whom you have one minute to chat. In that one minute, they can ask any
question about Linux (for instance, “What is it with the penguin, anyway?"). Mr.
Hall had 15 questions in all. In that minute-long ride, you have to be able to

answer any of 15 questions he presented. After each answer, Mr. Hall would
declare, “And that's another minute.”

In some ways, that forced recess was a lucky break for me. In those few
minutes, | caught up with Dirk Hohndel before he moved on to his next
engagement. | must tell you | was already impressed with Mr. Hohndel's
presentation, professionalism and support for his colleagues (and competitors)
during his keynote address. In stopping for an informal chat, he proved
genuine. After a brief introduction, | asked him what he has been up to and
where SuSE was going.

“We are very happy with SuSE's position in the marketplace,” he told me. “With
the release of our SUSE 6.4, we've achieved a 95% first-time install success.” He
explained that this was partly due to SuSE's new YaST2 graphical installation
tool. “Automatic hardware detection has become extremely simple.” For the 5%
or so of installs that might miss something, SuSE still offers the old text-based
install with more configuration options. Release 6.4 also includes a preview of
XFree86 4.0, though it is not the default configuration. Mr. Hohndel said that, as
one of the developers on the project, he feels this next step in X technology is
important and should get as much exposure as possible.

When | asked about the future at SUSE, Mr. Hohndel said, “We are
concentrating on two areas primarily: the desktop and enterprise computing.”
SUSE feels that the desktop is extremely important to Linux's success and as
such was an early supporter of the KDE project and continues to be supportive
of KDE2. In fact, four of the developers on the KDE project now work at SuSE.
Still, before KDE, you need X. Here's a sneak peek at the future of the desktop
from SuSE. Their new graphical configuration tool for X, named SaX2, is the
next evolutionary step in simple, dynamic X setup and configuration. With Sax2,
SUSE hopes to make the dreaded task of X configuration and tweaking a thing
of the past.

On the enterprise side, SUSE is increasingly providing services to Fortune 100
companies with data centers and support. (SUSE has their own support
organization.) They are developing technology partnerships in a number of
areas. Mr. Hohndel mentioned one such partnership with SGI, where they are
building a framework dedicated to bringing high-availability clustering to the
Linux world. “This is the kind of support that large companies want to see
developed in Linux,” he said.

The main show floor had quite a variety of exhibitors, from Linux organizations
to Linux companies and other things in between (and, of course, Linux Journal).
There was a great concentration of knowledge (special thanks to the Red Hat
folks for answering a niggling question regarding parallel-port weirdness in a

6.1 install), and one or two companies that didn't seem to understand that they
were, in fact, selling Linux products. “Oh, no, this isn't Linux at all. It is a Linux
server that offers ” Okay, whatever.

All'in all, Linux Expo Montréal was great fun and | thoroughly enjoyed myself,
but | think it could have been much better. Wise and infallible in the ways of
marketing | am not, but | do have some ideas as to what went wrong. It wasn't
such a large Expo that visitors couldn't wander through most displays in a day.
Combine this with the fact that the only other free items on the program, the
keynotes, were all bundled into a three-hour session on the first day, and |
think we begin to see the problem. Simply put, if you were there on the first
day, why bother coming back unless you had dropped the big bucks to attend?

Another problem can be best summed up anecdotally.

One of the things | did on my visit was deliver a computer to my parents, a
computer running Linux with a K desktop. My parents are complete computer
newbies, but | am convinced that Linux will be as easy for them to use as “that
other OS". Not only that, it will be more reliable (read fewer support calls for
me). Anyway, after the show, | stopped at a local bookstore (Camelot.ca, which
happened to have a booth at the Expo under Addison Wesley's banner). While
waiting at the checkout with my father's Linux reference book in hand, a
university student stood in front of me paying for a Shockwave book. He looked
over at me, saw the book, and asked me about Linux (note to Jon Hall—include
checkouts at malls in next talk). | explained that | had been at Linux Expo.

“l didn't know there was a Linux Expo in town. When and where is it?” he asked.

“Actually, today is the last day, at the Palais des Congrés,” | said. It was already
two o'clock.

“That's too bad. | would have liked to have gone. How did you find out about it?”

This guy is working with computers in a university. It occurs to me that the
university computer-science crowd would have been a perfect target audience.
Microsoft and IBM know this well and do their best to make sure university
computer-science graduates know about their products. Why couldn't the Sky
Events people figure that one out? Where did all the advertising go? | was
invited, as were others who are already among the converted, but what about
the people who are still discovering Linux, who may want to learn more? Who
else did they miss in this way?

Sky Events is already advertising next year's Montréal Linux Expo. Heading
down the escalators as | left the show, | noticed banners proudly proclaiming

Linux Expo 2001—more or less same penguin-time, same penguin-channel. |
hope Sky Events will take the lessons from this year's conference and turn next
year's event into an even more exciting presentation. Linux Expo in Montréal
was great fun, and there is no better place in North America to eat than
Montréal (trust me, gentle readers, the food is amazing). It would have been
nice, however, to see more faces there.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. In real life,
he is president of Salmar Consulting Inc., a systems integration and network
consulting firm. He is also a pilot, writes science fiction and fantasy and edits
TransVersions, a science fiction, fantasy and horror magazine. He loves Linux
and all flavors of UNIX and will even admit it in public.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Medusa DS9 Security System

Robert Dobozy

Issue #75, July 2000

It's not a panacea, it's not perfect, but it is a very interesting piece of software.

* Authors: Marek Zelem, Milan Pikula and Martin Ockajak
* E-mail (mailing list): medusa@medusa.fornax.sk

URL: http://medusa.fornax.sk/

* Price: Free, released under GNU GPL

* Reviewer: Robert Dobozy

Imagine a perfectly secured Linux box. With the newest patches, with Tripwire
running every night, with log analyzer connected to another computer using a
serial line which will call you by phone when something suspicious occurs—
sounds good? Now imagine a new bug in Sendmail or ftpd, hundreds of
relatively unknown users using many better- or worse-written setuid programs.
Hmmm. Can you sleep well? You can say, “I have monitoring scripts, so I'll be
informed by phone when somebody gains root access.” But you could just cry
when some stupid vandal immediately executes rm -fr /. It's too late, especially
if you are away and cannot sit in front of your computer and have a look at
what happened. Or you can say, “I'm making a regular backup of my system, so
I'll restore it.”

Making backups is a laudable activity, but will you restore every week, when
every week somebody finds a new bug before you can fix it? Well, it seems you
have to disconnect your computer from the Internet, shut it down and pray
your data will be safe. No, don't panic! | have something for you. Its name is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://medusa.fornax.sk

Medusa DSO. It's not a panacea, it's not perfect, but it is a very interesting piece
of software.

What is Medusa DS9 and How Does it Work?

In the Slovak language, “medusa” means “jellyfish”. Like jellyfish, Medusa can
sting an enemy with its tentacles. In Greek mythology, Medusa was one of the
three Gorgon monsters. Anybody who got a glimpse of her face became
petrified. Medusa is a security system which can extend the overall security of
your Linux system. Medusa consists of two parts. The first is a set of small
patches to the Linux kernel, and the second is a user-space security deemon
(authorization server) called Constable.

You may ask, “Why do | need a security system such as Medusa?” The answer
depends on many factors. If you have a machine at home, you'll probably not
need it. If you have a well-known and frequently used Internet server, you may
have use for it. Why? Because the UNIX security scheme seems to be
insufficient nowadays. Yes, it's really simple (like the whole UNIX principle), but
it has many limitations. Just to mention two of them: you have no system rights
at all as an ordinary user, and all rights to the whole system as root. So, when
somebody breaks in using any network deemon, he can do anything he likes
inside, e.g., graphics subsystem or low-level disk operations.

Another problem connected with this is that any program which wants to use a
socket with a number less than 1024 must have root privileges. In those ancient
days of 4.1aBSD systems, this seemed to be a good idea; now, when combined
with the limitations of BSD TCP/IP stack and buffer overflow problems, our
computers are living in hard times. While Medusa cannot change those things,
it tries to eliminate their impact.

The basic idea behind Medusa is really simple. Before execution of certain
operations, the kernel asks the authorization server (Constable) for
confirmation. The authorization server then permits, forbids or changes the
operation. The authorization server and kernel talk to each other through the
special device: /dev/medusa. In this way, an administrator can create his own
security model, which can complete or override the original UNIX model. | have
told you the principle is simple; however, the actual implementation is a bit
complicated. If you are interested in how, see Resources.

In 1995, the authors of Medusa were administrators of university machines.
Since there were many users, someone often cracked a machine and used it as
a base for nasty activities. Instead of taking part in a never-ending race with
crackers and their exploits, they decided to achieve better security in a different
way. In 1996, an ancient preliminary version, old Medusa, was born. After more
development, a new generation called Medusa DS9 appeared in July 1998.

Some Usage Examples

Constable is driven by its configuration file, which is usually /usr/local/etc/
constable.conf. Here you can specify all the security settings you need. This
configuration file can be considered a simple program. It has functions,
conditions, events, blocks, etc., and is very similar to C. Constable is event-
driven. When any event (syscall, VFS operation, signal) occurs, an appropriate
action is executed. In the first example, we will protect one file against deletion.
The Constable configuration is in Listing 1. Now, when someone tries to delete
this file, Medusa returns the messages shown at the bottom of Listing 1.
Hmmm; it seems as though the /tmp/delme file is undeletable, even by root.

Listing 1

Of course, it's not too useful to have one undeletable file. So, have a look at
Listing 2, in which we will set a booby trap for every non-root user who tries to
run the ifconfig program. This configuration is still not too useful, but does
show how you can redirect execution of any program to something else. Thus,
you can protect some sensitive programs against execution by some users. You
can also redirect any file operation (access, unlink, read) to another file. For
example, users who are coming to one machine from the network can have a
different passwd and shadow file than local users.

Listing 2

In order to make Medusa really usable, we have to go deeper inside its
functionality and configuration. Medusa uses the concept of virtual spaces.
That means you can assign any process or file (inode) to one or more virtual
spaces. Processes in one virtual space cannot see, change or influence
processes or files in another virtual space. So, you can quite easily separate a
few critical parts of your system from other parts. For example, you can have
your Sendmail and FTP damons in virtual space number one and other system-
critical files (such as the /etc directory, kernel and user home directories) in
virtual space number two. Even if somebody exploits the FTP deemon, he can
do nothing, other than look at ftpd configuration files and the content of your
public FTP directory if Medusa is properly configured.

In Listing 3, we will create two virtual spaces, one for the whole file system and
another for the /tmp directory. Then we will protect the file /tmp/delme against
deletion. When somebody tries to delete this file, he will be “fired” from the /
tmp virtual space and will not be able to access any file in the /tmp directory or
its subdirectories (even if they are mounted from another disk). This example
can easily be modified to disallow this user from seeing the entire file system
(by setting vss to 0). Keyword vss changes the virtual space a process can see.
Virtual-space variables are usually modified by numbers in binary format (Ob)

https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l2.html

which sets individual bits of those variables (10 binary is 2 in decimal). As you
can see from the listing, you can make comments as in C programming using //
or /* */ characters.

Listing 3

Except for virtual spaces, information on operations, which have to be
confirmed by the security deemon, can be stored for each process and file.
Actions for a file can be access, creation or deletion; for a process, they can be
fork, exec, signals and so on. For operations you don't care about, the control
system works the same as without Medusa installed. For operations you want
to control (such as unlink in the first example), the system asks the security
demon. Now we will monitor and control execution of suid programs, as
shown in Listing 4. We will disallow execution of suid programs (like su and
ping) for users who connect using the TELNET protocol. It can be easily
modified to control ssh connections too, so a locally logged-in user can su to
root, for example.

Listing 4

You can now ask, “What if somebody does write and compile his own TELNET
demon?”’ The answer is, of course, that this configuration of Constable will
allow him to run suid programs. To be 100% sure, you can monitor system
calls. It can be done by keyword to syscall. In the variable action, there is a
syscall number stored (102 is socketcall), and in variables trace1 to trace5 there
are parameters specified for this syscall. This configuration (see Listing 5)
monitors every process that starts to use a network because the socketcall,
syscall 102, must be used to do it, either with incoming or outgoing
connections. The Ipeek keyword reads data from the given address (trace2, the
second socketcall parameter) and stores it into the variable $x. This example
also shows the usage of user-defined variables. When a network connection is
used, a function named doit will be called. If another syscall is called, the trace
for this syscall is switched off. By default, the trace is switched on for all
syscalls. To switch it off, you can use the trace_off keyword.

Listing 5

We are now coming to the most advanced feature of Medusa. You can force
execution of any code in the context of any program. To simplify that process,
there is a special library called Mlibc developed and included with Medusa.
Mlibc (which stands for Medusa or Mini libc) is a small library, providing
declaration of many standard functions, structures, macros and constants.
When you link your “force” code with Mlibc, you'll get a program which can be
executed inside a controlled process, as if it were compiled as an integral part

https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l5.html

of it. In Listings 6 and 7, we forced execution of the exit function when any
program tried to delete our well-known /tmp/delme file. The principle is simple;
first, we will compile the “force” code (exitme.c) using

gcc -02 -c -0 exitme.o exitme.c
Then we will link it with Mlibc:

1d -r -0 exitme exitme.o mlibc.o

After that, we will force execution of this code in the Constable configuration
file in the event of unlinking of the /tmp/delme file.

Listing 6
Listing 7

Remember, don't use these to create your own impregnable Linux castle. They
are truly just examples.

Among other nice features, Medusa knows and supports POSIX capabilities, so
you can monitor and alter capabilities according to your needs.

Installation

What Next?

The Medusa development team is working heavily on it. They want to make
Medusa a bit more object-oriented. That means you'll be better able to handle
system objects to set their properties. They want to port it to other platforms
(currently, only Linux/Intel is supported) and create a front end which will allow
the administrator to create and configure security schemes more easily.

Medusa was not tested extensively on multiprocessor systems, but those who
tried it didn't report any serious problems. Medusa needs a bit more detailed
and better documentation. Constable configuration scripts can be truly
complicated, so some form of automatic configurator will probably appear in
future versions. You can write your own front end to Medusa, which can create
the needed security model and implement it by using Constable configuration.

Medusa is a very interesting system, not only with security functionality. It will
probably never appear in the official kernel, but can be used as an add-on

package to increase the security of your Linux system.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811l7.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/3811s1.html

Good/bad

Robert Dobozy (robo@idata.sk) is a SAP R/3 Technical consultant. He has
worked with Linux since 1995, and is the co-founder and current president of
the Slovak Linux Users' Group (SKLUG). All his free time is spent with his 20-
month-old daughter and programming, mostly in Perl and PHP.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3811s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Cygwin: For Windows NT

Daniel Lazenby

Issue #75, July 2000

Cygwin is a port of GNU development tools to Windows NT. This port also
brings a Linux/UNIX environment to the Windows platform.

Version 1.0

For Windows NT

Cygwin™ — a complete UNIX/Linux environment
for the Windows platform

UNIX/Linux shell environment and portability layer
enabling delivery of Open Source projects to Windows*

« With the latest award winning GNUPro™ development tools
* Getting Started Guide @ CYGNUS

« Manufacturer: Cygnus Solutions

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f3.large.jpg

E-mail: info@cygnus.com

URL: http://www.cygnus.com/
Price: $99 US
* Reviewer: Daniel Lazenby

During 1999, Cygnus released products such as Cygnus Insight, Source-
Navigator and Code Fusion. These tools focused on providing a better-
integrated, Linux-based development and debugging environment. Cygnus
recently added another tool to the Cygnus development tool chest, named
Cygwin. With Cygwin, Cygnus takes a step in a slightly different direction.
Cygwin is a port of GNU development tools to Windows NT. This port also
brings a Linux/UNIX environment to the Windows platform.

You might ask, why would | want it? What does this do for me? The answer is, “it
depends.” Are you a developer who wants to bring your Linux/UNIX open-
source projects to Windows platforms? Do you want to develop open-source
Windows applications? Or are you a Linux/UNIX administrator with the
responsibility of also administering Windows NT workstations and servers?
Cygwin can support all three situations.

Shells and Power Tools

Once Cygwin is installed, an administrator has the same shell interface on both
Windows and Linux/UNIX platforms. Many traditional Linux/UNIX shell
commands are included with the product. In the two default directories /bin
and /contrib/bin, | counted about 300 commands and basic Linux/UNIX tools.
(In this context, I am calling a command such as wc a tool.)

In addition to NT's GUI administrator interface are several console NT
administrative commands. These include a series of “net...” commands that
may be used to stop, start, pause and resume services. For example, these
commands can be used with printers, print queues and shared items. There are
also commands to change certain user account attributes. The command net
send is used to send a message globally or to a specific user. A set of TCP/IP-
related commands is also available.

The ability to intermix the Windows console commands, like those above, and
Linux/UNIX commands in the same program is the result of Cygwin's
integration with Windows. Jointly, these commands, tools, Linux/UNIX
programs and shell scripts may be used to manage a Windows platform. | did
have to play a little with escapes and quotations to get the Windows commands
to execute properly from within bash scripts.

http://www.cygnus.com

Several open-source Internet d<\#230>mons are included in the Cygwin
product. telnetd and ftpd are examples of the included inetd d<\#230>mons.
Capabilities such as rlogin are also provided. Combined, these tools make it
possible to do system administration of Windows platforms remotely. Some
inetd d<\#230>mons duplicate Windows commands. | kept getting a syntax
error on a couple of commands, until | used “which” to learn the command's
real location. A slight change in Windows pathing corrected my syntax problem.

Most administrators have a favorite scripting language and set of power tools.
Cygwin scripting languages include bash, ksh and tcsh. Power tools such as
Perl, Tcl/Tk, awk and sed are included. | also found both the vim and xemacs
editors. | got a strange behavior with xemacs, though. The xemacs file-open
menu option caused a dialog box to appear momentarily. All other xemacs
menu options seemed to behave normally, as did the traditional Ctrl keyboard
commands.

Cygwin does not automatically build a POSIX-compliant directory structure.
Therefore, the library you need may be in a different location. | had to make
pathing edits to a couple of the supplied awk scripts. Constructing a POSIX
directory structure and properly linking to directories should reduce pathing
edits.

Familiar GNU Tools
simwin.c - Source Window H=E3
Ee Bun Veew Control Preference: Help
000 e SA8EOM-IE | exnoizie 130 & & &t
- 0x4012F0 <WinMain>: push Zebp 2
- Ox4012F1 <MinMHain+1>: nov 2esp,%ebp
- 0xh4012F3 <MinMaine3>: sub $0x70,%esp -
- 0x4012Fd <WinMain+13>: push $0x30
= OxH012FF <MinMain+15>: push $0x0
= 0x401301 <MinMain+17>: lea OxFFFFFFaf(2ebp) ,%eax
- 0x401304 <MinHain+20>: push 2eax
- 0x401305 <MinMain+21>: call x401620 <{menset)
- Ox40130a <WinMain+26>: add $oxc,%esp
- 0x40130d <WinMain+29>: nov OxFFFFFF9c(Zebp) ,%eax
- Ox401310 <WinMain+32>: nov Zeax, 0xFFFFFFCB(Zebp)
s Bx401313 <WinMain+35>: novl SBxSD,BxFFFFFFaB(tebp)
- Ox40131a <WinMain+42>: novl $Bx3,9xffffffa‘l(2ehp)
- 0x401321 <WinMain+49>: novl SBxhﬂ1B7B,0xFFFFFFaB(2ebp) ,i
- 126 HWND hwndHain; /+ Handle for main window. =/ Jr |
i b f 4 MSE nsg; /* Min32 message structure. =/
128 WNDCLASSEX wndclass; /= window class structure. =/
129 chars szMainWndClass = -Testwin';
- SN /* name of main window class =/
131 I*
132 #* Create window class for main window.
133 =/ =
134
135 /# Initialize entire structure to zero. %/
136 nemset (&wndclass, 0, sizeof(WNDCLASSEX));
137 _'l
JProgram is unning.
{simwin.c > |winMain > |SRcensH w| |

https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f1.large.jpg

Figure 1. Source Window

Cygwin contains eleven GNUPro tools optimized for Intel Pentium processors.
These tools include GNUPro compilers, linkers, assembler and comparison
tools. The Cygnus Insight Visual debugging tool is also included in the package.
Insight was formerly known as GDBTk. Figure 1 is a screen capture of the
Insight debugger's Source Window. The October 1999 issue of Linux Journal
contains a review of GDBTK.

Cygwin may be used to develop both console and GUI-based applications. The
cygwin.dll portability library makes it possible to write and compile Windows
applications with GNU tools. This library also supports the ability to port Linux/
UNIX open-source projects to Windows. A sizable subset of UNIX SVR4, BSD and
POSIX APIs have been integrated into Cygwin. These APIs make it possible to
develop traditional Linux/UNIX programs on a Windows platform. Combined,
these features and tools provide a standard Linux/UNIX GNU development
environment on a Windows platform.

Using Cygwin to compile a console-mode C application on a 300MHz Pentium I
with 64MB of RAM produced a timely response. A couple of Perl and awk
scripts also performed well.

e N = |
3] plloley 53 @5

NOOS |

Simple Sample Window

Click Here

Figure 2. Sample Window

Simwin.c contains code for a simple no-frills window. Compiling from the
command line performed well. Issuing the simwin.exe command at the bash

https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/3813f2.large.jpg

shell prompt caused the sample window to appear on the desktop as though it
belonged there (see Figure 2). Resource files and DLLs are required to compile
more robust Windows applications. Cygwin includes the capability to use
custom resource and DLL files. The documentation briefly highlights building
and linking to DLL and resource files. | am not a Windows developer, therefore,
| was not able to exercise some of Cygwin's Windows compiling features
seriously.

The documentation says Cygwin uses standard Windows APIs. According to the
documentation, use of standard Windows APIs means Cygwin will keep
functioning whenever Windows is upgraded to the next release.

As with the other Cygnus tools, Cygwin is under the GPL. Be sure to review the
various licensing terms and conditions before distributing your applications. All
programs or applications developed with these tools must be open source. This
does not mean you can never use the tools to develop commercial applications,
however. Contact Cygnus for information regarding licensing if you want to do
commercial work.

Installation and Setup

Cygwin requires at least a Pentium processor with 32MB of RAM and 100MB
free disk space. The supported operating system is NT 4.0 with at least Service
Pack 3. Plan to allot more than 100MB for this product. Install Shield suggested
300MB would be required for the basic product and contributed files. When
source code was also selected, the storage requirement went up into the 1GB+
range. On my system, | selected the basic product and contributed files. They
appear to use about 140MB of disk space.

Cygnus uses the very reliable Install Shield to install Cygwin. Install Shield
properly installed and registered Cygwin with my Windows system. Pay heed to
installation instructions. Cygwin should not be installed in any directory with
spaces in the directory or path names. Once installed, traditional Linux/UNIX
escaping, quoting or tabbing is necessary to get to directories with spaces in
their names.

After installation, several steps are required to set up the Cygwin environment.
A few of the tasks that need to be done include creating mount points for
existing disk drives and directories; establishing the desired POSIX Cygwin
directory structure; establishing environment variables; establishing and
verifying file and path naming conventions; and customizing the shell.

Security

Platform security is an area requiring a few moments of attention. Maintaining
platform and file system security is important, and maintaining security on
platforms containing business data is critical.

Cygwin has two security-related options: NT Extended Attributes (ntea) and NT
Security (ntsec). Ntea can work with both FAT and NTFS file systems. The NTFS
file system is required by the ntsec option. Enabling the ntea option permits NT
file permissions to behave like UNIX file permissions. This option works best
with NTFS file systems. It does work with FAT file systems. After using ntea a
while with the FAT file system, one can expect a major performance hit.

NT can reproduce the POSIX security model. Enabling the ntsec option will
cause file ownership and permissions, and process privileges to be treated in a
UNIX-like manner. For processes, this means one can start a process with the
group owner being the administrator. Anyone who is a member of the
administrator group may send signals to the process. Normally, only the ID
creating the process has permission to send signals to the process. Proper
function of ntsec requires both /etc/passwd and /etc/group files. Using supplied
tools, these files may be generated from the NT security files.

I am not sure how adding Cygwin to an NT platform impacts maintenance of a
desired security posture. Once fully integrated, altering an established NT
security posture with Cygwin seems possible. | do have one general question:
are two sets of security reviews and corrective actions now required, one for NT
and one for Linux/UNIX (Cygwin)? | believe the Cygnus documentation should
include some discussion or clarification related to which NT/Cygwin security
attributes take precedence.

Documentation and Support

A couple of sections in the manual provide concise information and guidance
on Cygwin functions. Much of the rest is a collection of facts about the product.
These facts have been organized to appear as though they are providing
guidance. One example is the “Setting up Cygwin” topic. This topic presents
eight bullet items, pointing to various pages. Each set of pages discusses
aspects of setting up Cygwin, so one must go to eight different places in the
manual to read about the Cygwin environment. This technique is used several
times throughout the manual. | found the process of piecing information
together tiresome. | never got the feeling | had seen all the information |
needed to configure Cygwin properly.

On-line documentation includes man pages, Texinfo and HTML pages. Some
man pages are no longer actively maintained. Instead, one should use the

Texinfo source. Texinfo is the authoritative information source for many
traditional man pages. Cygwin has complete control over the HTML files
distributed with the product. Cygnus suggested the HTML files are the more
accurate source of information at the time the product is shipped. Therefore,
the HTML documentation should be consulted first.

The web-based FAQ is not very big, however, the few minutes it takes to browse

this FAQ are worth the time. It provides an itemized list of implemented ANSI C
and POSIX.1 API calls. All of the compatible APIs are also listed in the local on-
line and printed documentation.

The Cygnus documentation is considerate of individuals who have Windows
experience. References to Linux/UNIX and Linux/UNIX programming for the
non-Linux/UNIX-initiated are provided.

Product installation support is available. Once the installation support ends,
assistance may be obtained from the Cygwin mailing list,
cygwin@sourceware.cygnus.com. Another source of information is the
sourceware.cygnus.com/cygwin web site.

The Good and the Bad

Daniel Lazenby (d.lazenby@worldnet.att.net) first encountered UNIX in 1983
and discovered Linux in 1994.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3813s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Understudy

Daniel Allen
Issue #75, July 2000
Understudy is a software-based server clustering utility that implements load

balancing and failover protection for Linux (Red Hat, Debian and Slackware),
Solaris, Cobalt, FreeBSD and Windows NT.

Manufacturer: Polyserve Software

E-mail: info@polyserve.com

URL: http://www.polyserve.com/

* Price: under $1000 US, including support
* Reviewer: Daniel Allen

Every host on a network has down time, from the coolest RaQ to the lowest NT
486. The job of keeping down time to a minimum falls to the system
administrator. Various solutions are available, spanning the range of needs and
budgets. One way is to use high-availability servers with Fiber-Channel RAID
arrays, multiple redundant CPUs and power supplies and a transaction-
oriented file system. The servers can be arranged behind $50,000 load-
balancing and failover systems to swap out servers automatically upon failure.

A solution at the other end of the cost spectrum is running a backup server
which is manually switched with the primary server when necessary. In this
scenario, if a server fails unexpectedly, it can be many minutes or hours before
the poor system administrator can make the switch. This solution is both
inelegant and widely used in company networks.

A third way is “server clustering”, or making multiple servers appear to users as
if they were the same server, for fault-tolerance and load-balancing purposes.
Very interesting efforts are underway to offer completely Linux-based server
clustering solutions. These include the open-source Linux Virtual Server, and
other work being done by the High Availability Linux Project. These projects
show great promise, and they may be the right answer for sites wishing to be

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.polyserve.com

close to the bleeding edge. However, small businesses need fully supported
solutions that do not require substantial modification to their existing, possibly
heterogeneous, networks. This is the gap which Polyserve hopes to fill with
Understudy. As you will see below, | think it does the job nicely.

Understudy is a software-based server clustering utility that implements load
balancing and failover protection for Linux (Red Hat, Debian and Slackware),
Solaris, Cobalt, FreeBSD and Windows NT. It supports between two and ten
heterogeneous servers in a cluster, all of which must be located on the same
DNS subnet. Polyserve hopes to release a newer version soon that circumvents
the single subnet requirement. A cluster of servers can provide any service,
including web, mail, news or file sharing.

When a server goes down, it is marked inactive within the cluster and another
server takes its place in seconds. When the server comes back up, it is
immediately reintegrated into the cluster. By using Understudy in conjunction
with a load-rotation scheme called “round robin DNS”, a site can also provide
simple load balancing. Load balancing requires one additional IP address for
each server in the cluster. Simple failover requires only one IP address for a
“virtual host”, which is how users see the cluster.

Installation

Installation of the Red Hat Linux version was simple. After reading the release
notes, | wouldn't expect major difficulties on other platforms. Understudy
provides a “quick-start” white paper on their web site which is recommended
reading, along with the white papers on web server specifics and on round
robin DNS. They are easily understood if you have ever configured a web server
or changed your DNS configuration.

| downloaded the RPM for the free 30-day trial and ran rpm as root to install it.
After installing files, Understudy started its demon and reminded me to assign
a password for the administration tool, which | did. | repeated this process on
each of the four servers that would make up the cluster.

Configuration: A Tour

The four servers were administered remotely, so | could not run the graphical
local administration tool, which requires X on the server. However, Polyserve
also offers a graphical remote administration tool, available for either Red Hat
or Windows 98/NT. | downloaded and installed the RPM on my local Debian
system using Alien, the Debian RPM manager. There were no serious problems,
although | needed to modify the startup script it created to properly point to
the copy of the Java Runtime Environment (1.1.7) and the libraries it also

installed. It filed everything away in /usr/local/polyserve with a startup scriptin
/usr/bin.

File Cluster Server Log Help
Cluster status

@ Cluster
ﬁ] Server server] —===--- .com OK

Figure 1.

Next, | set up my first cluster with failover protection using a pair of servers.
This requires a single “virtual host”, which is simply an unattached IP address in
the same subnet as the real hosts. This was a straightforward process,
following the instructions in the Quick Start Guide. Firing up the graphical
administration tool, it prompted me for a cluster IP and password. | supplied
the IP of the first server and was presented with the main window (Figure 1).
The main box, titled “Cluster status”, listed the name of the server | supplied,
with the reassuring status of “OK”. The menus include “File”, “Cluster”, “Server
Log” and “Help”. “Cluster” has the most interesting choices: “Add Server”, “Add
Virtual Host”, “Add Service Monitor to Selected Host”, “Delete Selected Item”
and “Update Selected Virtual Host". | chose “Cluster --> Add Server” and was
prompted for a server name or IP. [filled in my second server. Voila: the
“Cluster status” told me both servers were okay. So far, so good.

Now, to add my first “virtual host”. This requires adding a new host in your DNS
tables (such as in /var/named on your DNS server):

virtuall 60 IN A 150.1.1.1

This simply adds a new host name with a Time To Live (TTL) of 60 seconds with
its Address.

| added this new line with an appropriate IP address for my subnet, and
restarted the named deemon. Back in the administration tool, | selected “Add
Virtual Host". It prompted me for the name or IP of the virtual host, and listed
selection boxes to determine which real server was to be the primary server
and which was to be the backup. | entered my information.

| |Understudy Console [connected to = com]|_ [[F7]
File Cluster Server Log Help
Cluster status

@ Cluster

= Eﬂ Server serverl —=—=—==-- .com QK
@) virtual Host [196.196.196.197] (primary) Active
= Eﬂ Server serverz,—=-—--- .com OK

ﬁ Virtual Host [196.196.196.197] (backup) Inactive

Figure 2.

At this point, the Cluster status looked a bit more interesting (Figure 2). It listed
both real servers, and subheadings described that the first server was Active for
the virtual host, and the second server was Inactive. | tried to telnet to the
virtual host. It connected me to the first server. | went back to the
administration tool and deleted the virtual host. | re-added it, but this time,
decided that the second server would be the primary server for this virtual

host. The display reflected the change immediately. | telnetted to the virtual
host. Sure enough, it connected me to the second server.

What's happening behind the scenes is something like this: Understudy runs as
a deemon on each server. The IP address of the virtual host is automatically
aliased to the primary server. A small amount of traffic is constantly passed
between the real hosts, via broadcast ARP messages. Through the deemon,
each host knows which is acting as primary. When the primary server goes
down, the backup immediately reassigns the virtual host's IP address to itself. It
continues to listen, so it can release the IP address when the primary server
comes back up.

Note that Understudy will not allow you to use an IP address already assigned
or aliased to a real host as a virtual host. | imagine that otherwise it would be
easy to “hijack” the IP address of someone else's host in your subnet.

File Cluster Server Log Help
Cluster status

@ Cluster

B ﬁ] Server server] —====== .com OK
=
@ FTP {port 21) Up
¥ HTTP (port 83) Down
= @] Server serverz ————-=-- .com OK
B @ virtual Host (196.196.196.197] (backup) Active
@@ FTP (port 21) Up
@ HTTP (port 83) Up

Figure 3.

Next, | set up a “service monitor” (Figure 3). This allowed me to choose
particular ports to monitor, such as for mail, web, FTP or TELNET. If the active
server does not respond at that port, the inactive server will step in. | selected
HTTP, and the Cluster Status reported that the web server was up on both real
servers. | verified, using Lynx, that requests to the virtual host went to the
primary server, unless a service it was monitoring was down, in which case
requests went to the backup server. In all cases, Lynx showed the URL of the
virtual host name, as expected.

For the next test, | set up round robin DNS. Round robin DNS is a feature built
in to name servers such as BIND (versions 4.9 and up). Round robin allows
servers to share loads transparently by rotating between any number of IPs for
a given host name. The only problem is that no correction is made if one or
more servers go down, so out of every cycle of requests, some are sentto a
dud server. With Understudy, this is no longer a problem. You can set up round
robin DNS for a number of virtual hosts, where each virtual host has a different
primary. If any server is down, its requests are sent to the next secondary. Full
examples for doing this are available in the Understudy documentation. These
instructions were reasonably clear and easy to follow. At the conclusion of a
couple hours of work, | had a fully redundant set of servers with no interruption
to existing services on the servers.

One final function of the administration tool is a server log, which accesses
daemon messages for each server in a cluster. This brings me to a minor
complaint: the logs are somewhat difficult to parse. It would be nice to see an
integrated cluster log, providing a summary of the server logs.

Security

The instruction manual states that all messages between the remote console
and the servers are signed for security. The remote console will work with a
firewall, and the servers will record a message to the log if somebody tries to
“replay” internal UDP messages to try to confuse the servers.

Use in the Wild

To use Understudy in a production environment, you will want to configure any
services (such as web, FTP, mail, TELNET) to respond to the virtual IP addresses

(as well as the real IP addresses). There are complete instructions on adding the
Virtual Hosts to your Apache or Microsoft IIS web servers.

Understudy does not automatically mirror information from one server to
another, although Polyserve has stated that is a goal for a future version. You
should think about whether servers will need to have up-to-the-second data
copies, and plan accordingly. Some database applications might require extra
hardware, such as a RAID array connected to multiple servers. | would visit the
Linux High Availability web site, at http://linux-ha.org/, for LAN mirroring ideas.

Pricing and Support

Understudy can be downloaded and demoed free for 30 days, during which
time technical support via e-mail is also free. It is trial-ware; during the trial
period, the daemon will turn itself off after two hours of use, requiring you to
restart the deemon. A permanent license with a service contract costs a little
under $1000. Without the service contract, the price is roughly half as much.
Polyserve has various support options, so you should contact them for a
complete listing. | have good things to say about their customer service. Owing
to network problems related to the Understudy software (but not the fault of
the software), | spent a fair amount of time talking with Polyserve's support
staff on the phone. They were technically competent and very helpful in
pointing me toward a good solution to my problems.

The documentation is downloaded from the site in PDF form. It is complete and
useful, although the product manual shows a few signs of poor editing. Unlike
the white papers, the manual incorrectly states that you can use it with only
two servers, not ten.

http://linux-ha.org

For further help, there is also a six-page help facility which describes the
program's operation. For some reason, on my computer the help pages kept
throwing Java exceptions. However, the information was still accessible, and
they were minor distractions. These were the only bugs | found in the program.

Conclusion

Understudy should be a godsend for the beleaguered system administrator,
server farm or ISP that needs to have services up 24/7 through reboots, failures
and planned outages. One strong point in favor of this software is its ability to
work in any network with all kinds of hosts. Even if your backup server is a
33MHz 486, Understudy can keep your network limping along until you can fix
the primary server. It seems to be a good solution for those who cannot afford
$10,000 to $50,000 for a dedicated failover and load-balancing server, or simply
are not willing to pay a $2000 license for each server in the cluster.

The Good; The Bad

Daniel Allen (da@coder.com) discovered UNIX courtesy of a 1200-baud modem,
a free local dialup and a guest account at MIT, back when those things existed.
He has been an enthusiastic Linux user since 1995. He is President and co-
founder of Prescient Code Solutions, a software consulting company located in
Ithaca, New York.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4032s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

The System Logging Demons, syslogd and klog

Michael A. Schwarz

Issue #75, July 2000

Take command of your log files by learning to handle those pesky logging
daemons.

Most UNIX-like systems since the early days of BSD (and Linux certainly falls in
this category) have provided an API for application programs to send log
messages to the system, where they can be centrally handled at the discretion
of the system operator. Prior to the creation of this facility, each application
program would handle log messages in its own way. Some would write to
STDERR, some would write to a file, some would write to a pipe, and some
would offer all these options or more.

As the number and complexity of applications on a system grows, so, too, does
the complexity of the system administrator's job. Applications and their
messages vary widely in their significance to certain audiences. If a number of
applications are considered “critical” and their status is the system
administrator's responsibility, he does not want to search to find out where and
how every critical application logs its status. That's where syslogd comes in.

syslogd

BSD added an API for logging to the standard library. Linux also offers it. This
API consists of three function calls:

#include <syslog.h>

void openlog(char *ident, int option, int facility)
void syslog (int priority, char *format, ...)

void closelog(void)

An application that wishes to use syslogd for logging uses these calls. A brief
introduction to the use of this APl can be found in the sidebar “Using the syslog
APl in Applications”. The one critical thing to know is that all messages from this
API have, at a minimum, a “facility” and a “priority”.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Using the syslog API in Applications

Facilities include LOG_AUTHPRIV, LOG_CRON, LOG_KERN, LOG_DAEMON and so
forth. These serve to identify the “system” of origin. Note that it is not the
“program” of origin. For example, many different programs make up UUCP, but
they all log as LOG_UUCP. The program name can be a component of a log
message, but this has nothing to do with the facility. Some programs will log as
more than one facility. For example, telnetd might log failed logins as
LOG_AUTHPRIV, but it might log other messages as LOG_DAEMON. “Priorities”
specify the “severity level” or “level of attention” the message merits. We'll
discuss these concepts at greater length throughout this piece.

Our primary focus here is the tool that handles messages sent via this API.
While syslogd was originally developed for 4.2BSD, we are going to cover the
version that ships with most Linux distributions today, specifically syslogd
version 1.3-3. The syslogd utility normally reads a configuration file at startup to
determine how messages are to be handled. This file, normally /etc/syslog.conf,
tells syslogd what to do with messages. Much of the rest of this document will
describe how to use syslog.conf to customize logging on your system.

Listing 1

The syslog.conf file follows the more or less ubiquitous UNIX convention of
using the pound sign (#) as a comment character. We'll use the sample
syslog.conf file in Listing 1 for the rest of our discussion. This is the “out-of-the-
box” syslog.conf from my Red Hat 6.1 laptop. | use other distributions
personally, primarily Debian and SuSE, but Red Hat seems to be the most
popular. Let's understand what this file is doing.

The Selector

“Rules” in syslog.conf are a single line which consists of two parts. The first is a
“selector”, which specifies the set of messages on which the rule is to act. The
second is an action, which specifies what is to be done with messages that
match the selector.

The selector is further divided into a “facility” and a “priority”. Yes, these match
the terms mentioned above in the brief description of the syslog API. The
facilities and levels have numeric values and you can use them in the
syslog.conf file, but it is strongly advised that you do not. Symbolic values are
supported, and if the syslog APl is ever changed, the numeric values might
change, whereas one would expect that the symbolic names would be kept in
alignment with any such change. So, be safe and use the symbolic names.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4036s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4036l1.html

The symbolic facility names are auth, authpriv, cron, daemon, kern, lpr, mail,
mark, news, security (same as auth), syslog, user, uucp and local0 through
local7. The security keyword is deprecated in favor of the auth keyword. The
mark keyword is internal and should not be used by applications; the syslogd
program can be set to produce a mark periodically, which provides a means to
tell if you aren't getting messages, because none are being generated or
because syslogd has died. The rest of them correspond to the major
subsystems on your Linux box.

The priority keywords are debug, info, notice, warning, warn (same as warning),
err, error (same as err), crit, alert, emerg and panic (same as emerg). The
keywords error, warn and panic are deprecated and should no longer be used.

A selector consists of a facility and a priority separated by a period (.) character.
Thus, mail.crit would select all critical messages from the mail facility.

The default behavior of the BSD syslog system is for all messages of the
specified or higher priority to be handled by the action. The Linux syslogd does
the same by default. It does have a number of extensions, however.

You may use the asterisk (*) character to indicate all facilities or all priorities
(depending on whether it appears before or after the period). Thus, the
authpriv.* line in the example sends all messages from the authentication
facility, no matter what priority, to /var/log/secure. You may use the special
priority none to indicate that no messages from a given facility rule are to be
acted upon by the action.

You may specify multiple facilities with the same priority in a single rule by
listing the facilities separated by commas (,) before the period. Thus, the
uucp,news.crit line sends all critical and above priority messages from the mail
and news facilities to /var/log/spooler.

You may specify multiple selectors for a single action by listing them separated
by the semicolon character. Each subsequent selector may override the
previous. Thus, the *.info;mail.none;news.none;authpriv.none rule would send
all messages above info priority from all facilities (because of the *) to /var/log/
messages, except messages from mail, news or authentication facilities
(because of the none keyword and because rules are applied in order, left to
right).

More than one rule may apply to a message! It is important to understand that
a message will be sent to all actions with matching selectors. It is not as if a
message, once matched, is gobbled up. That means you can store a single
message to multiple actions if it is matched by multiple selectors.

There are more priority selection extensions. First, remember that the default is
to select messages of the stated or higher priority. You may also reverse the
sense with the exclamation mark. So, for example, a rule such as

*.lerr /var/log/routine

would send all messages not at err or above to /var/log/routine (a file meant for
“routine” messages, apparently).

You can also restrict the selection to an exact priority instead of to a given
priority and higher with the equals sign (=). Thus, the news.=crit rule out of our
example would send only critical messages from the news facility to /var/log/
news.crit.

Table 1

At this point, you may be a little foggy on what, precisely, these various
priorities are meant to denote. Let's shed a little light on that issue by looking at
the “Priorities” table.

A classic problem in designing software is trying to figure out an empirical way
to tell the difference between a condition you would report as crit vs. alert. In
fact, it is sometimes even more difficult to decide when you should use notice
vs. warn. You won't find total agreement between packages on what level of
message falls where. One difficulty lies in trying to decide who will read the log.
An emerg to a business unit might be only a warn to a network administrator.

There's no one good answer to this problem. At least, by creating a uniform
method for handling program messages, we avoid a proliferation of different
reporting systems, and some conventions have emerged with time. Because we
are able to match a message to more than one action, we can output messages
to targeted audiences. For example, we could report all auth messages to the
security department's home directory, but the system administrator might
choose to receive only those of “crit” or above. The syslogd lets us do this.

The Actions

There are some drawbacks to using the “out-of-the-box” Red Hat syslog.conf
file. Notably, all “actions” are basically to write to local files. The syslogd deemon
can do much more than that. Let's take a look at actions next.

Actions may send messages to any of these destinations:

« Aregular file: this is what you see in our example. This is simply the name
of a file to which the message is appended.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4036t1.html

* A named pipe: named pipes, or FIFOs (First-In, First-Out), are a simple
form of inter-process communication supported by Linux and many other
operating systems. You create a named pipe with the mkfifo command; a
FIFO appears in the file system. You tell syslogd it is writing to a FIFO
instead of a file by putting a pipe character (|) in front of the FIFO name.
Take a look at the man pages for mkfifo, both the command and the
system call, and the man page for “fifo”, which is a description of the
special file. You read and write FIFOs with the normal file system calls. A
description of FIFO programming is beyond our scope, although | can
highly recommend the excellent book UNIX Network Programming by W.
Richard Stevens, from Prentice-Hall.

« Aterminal or console: if you specify a tty device (such as /dev/console),
syslogd is smart enough to figure out that it is a device, not a file, and
treat it accordingly. This can be fun if you have a dumb terminal—you can
send all your messages to /dev/ttyS1 (for example) and get all your
messages on the terminal screen while you work on your console. This is
state-of-the-art 1970 technology—I love glass teletypes!

« Aremote machine: now this is the true power. Let's assume you have
many Linux boxes on a network. Do you want to log in to each to check
their logs for certain conditions? Of course you don't, and you don't have
to. Optionally, the syslogd listens on the network for messages as well.
Just put an at sign (@) followed by the host name:

*.crit @sol.nOzes.ampr.org

This last will send all critical and above messages from all facilities to
sol.n0zes.ampr.org, which will then apply its own syslog.conf file to save them.
Syslogd will not forward a message received from the network to another host:
in other words, you get one and only one hop. This may be overridden with
switches when syslogd is invoked. It seems like a reasonable thing to do, since
even the possibility of circular message routing would be enough to scare the
dickens out of any network administrator.

This capability has obvious advantages for centralized logging and log scanning
for security violations and so forth. It also has obvious deficiencies. It is hard to
maintain a complete log when your network is down. Take advantage of the
fact that you can route messages to more than one action by making sure every
message finds its way to a file before you send it to remote logger.

A List of Users

One feature that newer users of Linux may not be aware of is console
messaging. This isn't used very much any more, thanks to talk and irc and other
much more interactive “chat” mechanisms with much cleaner user interfaces.
You can, however, send a text message to any user logged in to your system

with the “write” command. This is an unpopular facility for several reasons.
First, in today's windowed environments, a user probably has many “terminals”
active and it is hard to know which one to write to. Second, if they are in the
middle of some intense full-screen activity (such as editing a large file with vi)
and you blast a bunch of text at them that confuses their editor and screws up
their screen, they will not like you very much. Most Linuxes | have seen default
their users to messaging being off. This facility uses the same ability to write to
a user's console to send messages directly to their screen. Just put a comma-
separated list of user names as the action. Save this for truly critical stuff. You
might turn this on to try it, but | bet you will turn it off again before too long.

Everyone Logged In

There is a similar method, called wall or write-to-all. This lets you send a text
message to every user logged in to the system. The superuser can do this
whether you choose to accept messages or not. This is how shutdown sends its
warning messages. You can have syslogd send a message to everyone by this
mechanism by specifying an asterisk (*) as the action. Save this one for the
most dire of dire messages, if you must use it. This should be used for warning
of an impending crash—anything less is probably overkill.

klogd

At this point, you may be asking what klogd has to do with any of this. The
answer to that is simple. The kernel can't call the syslog API. There are many
reasons for this. The core reason, and the simplest to understand, is that Linux
actually provides two completely separate APIs. The more familiar one is the
“standard library” used by user-space applications; this is the one that uses
syslog. The other APl is normally not used by applications: this is the kernel API
code that runs as part of the kernel. This code needs services similar to those
offered by the applications programming interface, but for numerous technical
(and a few aesthetic) reasons, it is not possible for kernel code to use the
application's API. For this reason, the kernel has its own entirely separate
mechanism for generating messages. The klog daemon, klogd, is an application
process that ties the kernel messaging system to syslogd. Actually, it can also
dispatch kernel messages to files, but most configurations use the klogd
default, which is to prepare kernel messages, and in essence, resubmit them
through syslog.

There is quite a bit more to klogd if you wish to delve into the depths, but for
the purposes of this article, it is sufficient to know that klogd feeds kernel
messages to syslogd, where they appear to be coming from the kern facility.

syslogd provides a powerful and simple mechanism for managing messages
from multiple applications in a highly configurable manner. Its ability to

“demultiplex” the message stream makes using the syslog APl an appealing
option for applications developers, and | would encourage you to consider
using that APl in your own programs.

syslogd Switches

Signals

B, &
Michael Schwarz (mschwarz@sherbtel.net) is a consultant with Interim
Technology Consulting in Minneapolis, Minnesota. He has 15 years of
experience writing UNIX software and heads up the open-source SASi project.
He has been using Linux since he downloaded the TAMU release in 1994, and
keeps the SASi project at http://alienmystery.planetmercury.net/.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4036s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4036s3.html
http://alienmystery.planetmercury.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Using Linux at Left Field Productions

David Ashley

Issue #75, July 2000

One programmer's experiece developing a Gameboy emulator on Linux.

Left Field Productions, Inc. is a game developer in Westlake Village, California,
which concentrates on the console market, specifically the Nintendo N64 and
Gameboy systems. Their web page is at http://www.left.com/. | joined Left Field
in September of 1998 to do Gameboy programming. Since that time, Linux has
been used on the company-wide network offering various services, all running
on a lowly Pentium 90 with 16MB of RAM and a single 6.4GB hard drive. The
machine is known by all as “the Linux box".

The company uses 10BaseT for all networking. The Linux box also provides the
main gateway to the Internet. It is running the named name server, and the
Apache web server for company internal web pages. The Linux box has dual
mechanisms for connecting to the Internet: one through ISDN, the other
through a conventional 56K modem. ISDN is the preferred method, but during
occasional outages, it is necessary to downgrade to the modem.

The Linux box provides public Samba services, making storage area available
for file backups and exchange among the artists and programmers. The
fetchpop program was used to pull mail off our ISP and forward it to individual
accounts on the Linux box. When some problems with fetchpop arose, mostly
due to the lack of a timeout feature during mail retrieval, | replaced it with
fetchmail, which we are still using. Periodically, employees' preferred desktop
mail client connects to the Linux box to retrieve their mail and send any
outgoing mail off to the Internet. Sendmail also provides outgoing mail service.

The Linux box has enjoyed up times of more than 60 days. The few times it has
been rebooted were due to planned outages for power utility service, and
upgrades such as adding a new hard drive. As far as | know, there has never
been a system crash. | think it is sometimes rebooted unnecessarily by some of
the other Linux-literate employees, as it can be more convenient than

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.left.com

specifically restarting a single task after modifying a configuration file.
Employees with lots of DOS/Windows experience have a kind of “when in
doubt, reboot” philosophy.

When [first started at Left Field, we used a free assembler/linker combination
for generating the code for the Gameboy ROM images, and we used
commercial painting and graphic arts programs for art generation. The tools for
converting and compressing graphics files were all developed in-house. We
used Win32-based machines for everything. On my Pentium 11 400 machine, a
complete rebuild, where all source files are assembled and then linked, would
take from 30 seconds to 2 minutes, depending on the project. We were working
on a basketball game called Kobe Bryant 3 on 3 and a Disney title called Beauty
and the Beast, A Boardgame Adventure.

Once the ROM image was generated, we could download it to the Nintendo
debugger system for testing, or more frequently, we would run it on a
Gameboy emulator. The emulator was very usable, but it had quite a
personality and was temperamental at best. | found if | exited the emulator and
reloaded it a few times, it would invariably crash the system. Also, it was
unusable for testing the sound aspects of the games—the quality of its sound
emulation was painful to hear. The emulator was actually a DOS program
working with an extender, and knew nothing about the Windows 95 windowing
environment. | think legacy is the most likely cause for its instability.

After finishing up these first two projects, | found myself with some free time
before the next project began in earnest. | had long been thinking of writing our
own emulator because of my dissatisfaction with the emulator we were using—
the frequent crashes and inability to get the source in order to repair it
ourselves was quite frustrating. So, within a couple of months of starting at Left
Field, | began some minor work writing an emulator for the Gameboy CPU. All
my programming was done in C. | installed the public-domain DJGPP compiler
and used it under DOS. In fact, | was able to significantly speed up build times
by using the MAKE utility from DJGPP, replacing the Watcom MAKE we had been
using.

Unfortunately, the demands of the project caused me to stop work on the
emulator before | could even test it. Then, about a year later, | had some free
time again and was able to get back to the code. This time, | chose to move
away from Win32/DOS and switch to gcc under Linux—a move that made the
programming infinitely more enjoyable. Surprisingly, there were only a few
mistakes in the emulation code, and in a short time, | had the CPU “working”. It
appeared to be behaving correctly. The next step was to emulate the video
hardware of the Gameboy. For display output, | chose to use the SDL library,
which is a multi-platform gaming library. One of the supported platforms is

Win32, so the benefit there was that any code | wrote could be used by other
employees who were still running Windows. | was using SDL under an X
Window System environment. After some solid work, | had the video emulation
working quite well, and it was a joy to see ROM images actually work.

Finally, I had to add the sound-emulation code. This proved to be the easiest
task, and after a short time, the emulator was producing quite accurate and
acceptable sound, again using the SDL library. With a simple recompile using a
cross compiler, an .EXE executable could be built. The emulator worked under
Win32 as well. There were a few quirks related to sound under Windows 95
that had to be worked out. Windows proved incapable of servicing the audio
interrupts at the 64Hz rate | had been using without problems under Linux. |
had to compromise and lower the rate to 32Hz so Windows could keep up. |
never determined whether the problem was in SDL's Win32 code or in
Windows itself.

The assembler/linker we had been using offered a version for Linux, but |
wasn't happy with it. The Linux source wasn't as up to date as the DOS version
—the two versions were based off different source trees, and it was clear the
DOS version had priority. My options were to use the older Linux version or
port the DOS code to Linux. | chose instead to abandon the assembler and
write my own. Using core code that originated from my own ACC C-like
compiler, | managed to create an assembler with a syntax similar enough to the
assembler we had been using. | took the opportunity to make changes in
syntax when it was convenient. | knew how the assembler was going to be
used, and some features weren't important, so | never implemented them.

In the end, my own assembler reported lines-per-minute assembly rates over
30 times faster than the old assembler. With the small source files, assembling
each was practically instantaneous. The next part | needed was the linker.
Again, | began with the ACC code and modified it to suit. Linking was also much
faster than before.

Now, to test the assembler/linker combination, | took our game source trees
and made the necessary syntax modifications in the source files. | used the
Beauty and the Beast code, and spent about four hours going through all the
files to get something without linker errors. Naturally, the resulting ROM image
didn't work, but after a day of hunting for bugs in all parts of the system, | got a
ROM image that actually came up on the emulator looking like the real game—
very encouraging.

In a project like this, debugging problems can be tricky. When no single part has
really been tested, a bug can be anywhere; thus, | found myself frequently
hunting in the wrong places for bugs. Sometimes, | was surprised to find the

assembler actually did something right, and the emulator was to blame—and
vice versa.

In testing the ROM images with the emulator, it became apparent | needed
some debugging functions built into the emulator. Even before beginning work
on the assembler, | had added disassembly capability to the emulator. Doing so
had been very helpful in finding bugs in the emulator. After | had the assembler
working, | added some nice features like symbolic debugging, break points,
expression evaluation, memory viewing and instruction execution history. For
text display and entry, | added a scrollback buffer, name completion and tcsh-
style line editing.

Bugs became more and more rare, and were easier and easier to find. It was
clear the new system was completely viable for developing, and an in-house
suite of tools offered very strong advantages that we would never get by using
outside software. For example, any desired feature could be added easily, since
the source was ours. For portability, | had written everything in standard C. One
thing | kept in mind was that at any moment | might have to retreat from Linux
and switch back to DOS, and | wanted the tools to work there as well. The
assembler and linker compiled perfectly with DJGPP.

| was pleased to note build times were reduced to almost nothing. A complete
rebuild that had taken 30 seconds before took three seconds now, on the same
machine. It must be noted that those times reflect two different operating
systems as well as two different assembler/linker pairs, so an actual breakdown
of how the speedup was occurring can't be made. | never bothered to do a
detailed analysis; | was happy just to be using the new system.

On the other hand, my emulator, written in pure C, placed significantly more
demands on the CPU than the DOS emulator we had been using. The author
probably had hand-coded x86 code sprinkled liberally throughout. | also
assumed this was the source of most of the crashes caused by that emulator.

To complete the Linux Gameboy development environment, | had to port the
various tools used for converting graphics files and dealing with data files in
general. Some | had created myself, and these ported almost without
modification because | had used DJGPP as the C compiler. The only change
required was related to the DOS custom of having CR/LF (carriage return/line
feed) as the end of a line, rather than the UNIX-style LF only. DJGPP header files
define the flag O_BINARY which must be used when opening a file, to specify
that CR/LF should not be converted. Under Linux, O_BINARY is not defined, so
compiler errors would result. The solution was to place the three lines

#ifndef O_BINARY
#define O_BINARY 0
#endif

early in the source files, so the source would work without change under both
DJGPP and gcc/Linux.

The main graphics manipulation tools had been written by someone else at the
company, and | had to make more extensive changes to get them to compile
under gcc/Linux. There was the O_BINARY problem as before, but in addition,
some of the programs did wild-card expansion in the program itself. The DOS
shell doesn't do wild-card expansion, so DOS programs must provide that
service for themselves. Unfortunately, the functions for performing this were
nonstandard C and so wouldn't carry over. In the end, | hacked out those
sections of the code and relied on standard UNIX shell wild-card expansion to
do the job. Also, the header file “windows.h” was included frequently, and that
dependence had to be removed as well as the structures and system calls in
the code that required it.

Another problem which came up is the DOS/Win32 standard practice of file
names being case insensitive. Under UNIX, case is significant, so errors popped
up in source files where a file such as “Elmer.h"” was being requested, when the
file in the directory was actually elmer.h (or even worse, ELMER.H). Also
throughout the code, programs would create an output file with an extension
and the extension would be in upper case, so I'd generate files with names such
as “cpaused.CHR". To me, this was jarring and unattractive, so | modified all the
files to produce lower case extensions. This required another round of changes
when the wrong file name was being referred to, and error messages were
appearing.

In the end, | managed to mirror on Linux every tool we had under DOS/Win32.
Developing code under Linux was vastly more enjoyable than under DOS/
Win32, mostly because it was faster and more stable. There is also something
very rewarding about using your own tools in any work. In total, from start to
finish, the time to bring everything up on Linux, as well as writing the new
emulator, took about three to four weeks.

Shortly after the next project began taking form, one of the artists asked if he
could do builds himself, as he wanted to tinker with animation frames and see
how they looked in actual use. Rather than go to the trouble of getting all the
tools set up on his machine, as a quick solution | copied the source tree to a
directory path that my machine had been making public with Samba. The
directory /d on my machine appeared as //dave/d on the network. | set up a
simple script to check for the existence of the ROM image file. If the file wasn't
there, it would do a rebuild. So, to get a new ROM image, the artist would copy
over the modified data files, then delete the ROM image and wait a moment for

the new build to appear magically. With Linux's excellent disk caching, | was
usually unaware of when this happened.

One final problem caused me some worry. | was currently the only person
actually using Linux as a development platform. What would happen if one of
the other programmers wanted to contribute to the project? | didn't want to
force my Linux preference onto anyone else, so | had to be able to deal with
this. Already, all our tools had equivalent Linux/DOS versions, so that wasn't a
problem. The problem would be from multiple programmers merging code
changes to the same source tree. Under Win32, we had been using Microsoft
Visual Source Safe for that. Although | suspected there must be a Linux client
for talking to Source Safe, | never looked. Instead, | studied how to use CVS
(Concurrent Versions System), the traditional source-code revision-control
system used in a vast array of open-source projects. After experimenting with
CVS and learning enough about its quirks, | found it performed at least as well
as Source Safe. It conveniently handles the end-of-line problem by storing the
source files in the repository in UNIX format and adding/removing the CR as
needed when dealing with a Win32/DOS client. I'm using CVS on the command
line, and | prefer that to mouse clicks; CVS seems faster at updating the
modified files.

Even though I'm the only programmer on the current project, | am checking my
code changes into the network CVS server, just to get into the habit of doing so,
as well as to provide an additional level of backup and modification history. As
you might have guessed, the CVS server is running on the Linux box.

Related URLs

email: dash@xdr.com

David Ashley (dash@xdr.com) has been working with computers and
electronics for over 24 years. He has written several free games for Linux,
including Scavenger, XBomber and Sdlshanghai. He pays his bills by working at
Left Field Productions, Inc. of Westlake Village, California, doing game
programming for Nintendo consoles. Having recently become a father, he is
finding himself with less and less time for his addiction—programming in Linux.
He tells us, “All opinions expressed in this article are my own and do not
represent the opinions or official policy of Left Field Productions, Inc.”

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3828s1.html
mailto:dash@xdr.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Getting the NT Out—And the Linux In

David C. Smith

Issue #75, July 2000

An overview of configuring Linux using Samba to replace the services provided
from Windows NT servers.

You have probably been hearing many rumors lately about Linux in the
corporate environment. I've been hearing “Linux is great, but it's not ready for
production” and “l wouldn't trust my business to Linux.” Lately, with all the
press Linux has been getting, it's time to set the record straight. Being a
longtime UNIX user, | jumped on the Linux bandwagon several years ago. | have
used Linux in a production environment and know plenty of people who are
doing the same.

There are many web, mail and database servers currently used in production
systems, with more being added all the time. Linux success stories range from
Linux being used at NASA, to being used for creating movie effects. So, is Linux
ready for a prime time production environment? You bet! Is Linux ready to
replace Windows NT Servers for your corporate LANs? Yep! I'll walk you through
building a Linux server that is going to be more stable, faster, easier to maintain
and costs less.

In setting up a Linux file and print server, you will find more configuration and
customization than | will be using in this simple scenario. To learn more about
the different options and configurations, see the Resources section at the end
of this article.

SMB Background

Windows machines use a protocol called Server Message Block (SMB) to
perform file and print sharing as a network service. The SMB protocol defines
how clients talk to servers to request printers, files, security validation and
more. SMB has been around for a long time, and has some limitations that
require a bit of thought. SMB requests and responses are based on local

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

broadcasts for a NetBIOS name, which is usually the server name. This presents
a problem to (routed) environments in which routers separate networks, like
the Internet, because broadcasts do not pass through routers. This created a
need for translation from NetBIOS names to IP addresses. Microsoft
implemented this solution as the Windows Internet Name Service (WINS).

SMB is also used for directory services. Most users think of the directory
services as the “Network Neighborhood” feature on their desktops. It's a bit
more than that, but enough to start. It's important to keep track of which
machines are on a network and the services they provide. Nodes do this by
electing a “Browse Master” that keeps track of which computers are on the
network. When SMB machines boot, they broadcast their name and service
information for all to hear. The elected browse master keeps a database of
these names and will respond to requests from local machines. This browse
master can be updated from other browse masters on different networks and
can share its own information.

Windows NT Services

First, let's take a look at a sample Windows NT network and see what services
are being provided (Figure 1). AWindows NT server has been configured as a
file and print server. Users log in to the Windows NT server, using their Client
for Microsoft Networks service with their network credentials. Once the user
has been validated, a logon batch file is executed that assigns a user's home
directory, various network drives and printers. The NT server also keeps track
of which computers are on the network and the services they provide; clients
can use this information in the Network Neighborhood.

Laser nnter D _

Workstation e]
f Workstation
Shares | | Ethermet——
Wlndows NT
Server

This Windows NT Senrver provides the — ‘ D \

fallowing services for our sample network. E
Waorkstation i
File and Print Sharing. Workstation

Comain Authinication.

Netwark Brovse Master,

WINS - Ncthios Name Scrvices.

DHCP - Dynamic IFP Address Allocation.

The Linux Side of the House

Linux can use SMB to communicate with Windows and DOS-based clients using
a package named Samba. The Samba suite was originally created by Andrew
Tridgell, and is now developed by the Samba team. The Samba suite is currently
running on somewhere around forty different platforms spanning the globe.
Samba's main server deemons are smbd and nmbd, which are pronounced
“SMB-Dee” and “NMB-Dee”. smbd provides file, print and authentication
services to Windows and DOS clients, and nmbd provides NetBIOS name
resolution and browsing services (rfc1001/1002). Using these packages, Linux
can easily provide the same services as our NT scenario.

Building a SAMBA Server

Get the samba-latest.tar.gz file from the SAMBA site and unpack it to a
temporary directory using

tar -xvzf samba-latest.tar.gz

Change to this directory, and review the README files for any special
information. After familiarizing yourself with the documentation, begin the
install with the following commands:

cd source
/configure

make

make install

Once the make install is complete, smbd and nmbd should be ready for
configuration.

In reading the Samba documentation, you will find many different ways to
configure smbd and nmbd. The Samba suite has extensive features that allow
Linux to integrate and complement NT servers and services, but we are going
to configure our Linux server to replace the NT server shown in Figure 1.
Specifically, we are going to configure Samba to validate users and run our
login batch file, provide file and print shares, and provide network-browsing
services.

Begin by editing the smbd initialization file, smb.conf. By default, it is located in
/usr/local/samba/lib/smb.conf, but is sometimes found at /etc/smb.conf. |
would like to stress that there are many features which can be configured in
the smb.conf file, and | am starting with only the basics.

Global Parameters

security = user is the default security setting for Samba 2.x. This configures
Samba to require a user to provide authentication to access the server. To
understand how Samba works with NT domains and servers, see “Security =
Domain” in the Samba documentation.

iworkgroup = MyGroup controls which workgroup your server will appear to be
in when queried by clients.

encrypt passwords = Yes controls whether encrypted passwords will be
negotiated with the client. Windows NT 4SP3+ and Windows 98 will expect an
encrypted password by default.

min passwd length = 6 sets the minimum length in characters of a plaintext
password that smbd will accept when performing UNIX password changing.

smb passwd file = /etc/smbpasswd sets the path to the encrypted smbpasswd
file. By default, the path to the smbpasswd file is compiled into Samba. | always
add this to reduce confusion.

logon script = STARTUP.BAT specifies the batch file (.bat) or NT command file
(.cmd) to be downloaded and run on a machine when a user successfully logs
in. The file must contain the DOS-style cr/If (carriage return/line feed) line
endings.

If domain logons = Yes is set to true, the Samba server will serve Windows
95/98 domain logons for the workgroup it is in. For more details on setting up
this feature, see the file DOMAINS.txt in the Samba documentation.

domain master = Yes enables WAN-wide (wide area network) browse list
collation. Setting this option causes nmbd to claim a special domain-specific
NetBIOS name that identifies it as a domain master browser for its given
workgroup. Local master browsers in the same workgroup on broadcast-
isolated subnets will give this nmbd their local browse lists, and will then ask
smbd for a complete copy of the browse list for the entire WAN. Browser clients
will then contact their local master browser and will receive the domain-wide
browse list, instead of just the list for their broadcast-isolated subnet.

preferred master = Yes is a Boolean parameter which controls whether nmbd is
a preferred master browser for its workgroup.

Setting Up Network Shares

That's it for our global parameters. We can now move on to creating network
shares. By setting up a [homes] section, our server can create home-directory
mappings on the fly:

[homes]

comment = Home Directories
read only = No

create mask = 0750
browseable = No

Now let's create some shares for users to access. The share definition should
include the path, who can access the share (valid or invalid) and whether the
share is writeable. By default, if no valid user or group is defined, the share is
open to any client, so keep this in mind when creating your shares. In the apps
share, | chose to create the UNIX group all_users containing just my local users.

[apps] _
comment = Apps Directory

path = /shares/apps

valid users = @all_users

read only = No

[project1]

comment = Project 1 Directory

path = /shares/proj1

valid users = dcsmith kholmes joe katie redpup
read only = No

Last, | set up my netlogon home. This will be set to the relative path for my
netlogon scripts. In this example, my login script is located at /etc/netlogon/
STARTUP.BAT.

[netlogon]
path = /etc/netlogon

The full Samba configuration script is shown in Listing 1.

Listing 1

https://secure2.linuxjournal.com/ljarchive/LJ/075/3476l1.html

Samba D&mons

The next step is to start the Samba deemons. After checking everything out, you
will probably want to add this to your system startup procedures.

/usr/local/samba/bin/smbd -D -s
/usr/local/samba/1lib/smb.conf
/usr/local/samba/bin/nmbd -D

Troubleshooting

If everything went well, both smbd and nmbd were started successfully. If not,
start troubleshooting by reading the log files at /var/adm/logs and review the
FAQs from the Samba site.

Troubleshooting utilities, located in the Samba bin directory, are testparm,
which will parse your smb.conf for errors, smbstatus, and nmblookup for
NetBIOS name issues.

Setting Up the Samba Password File

Now it's time to add your users and passwords to your smbpassword file. One
item to note is that users must have a UNIX account password as well. There
are many options regarding passwords, such as remote password sync and NT
domain and pass-through authentication, to help you with larger
administration issues. In our case, user accounts are on our local Linux box.
This command will create a SMB account and then prompt you to change your
password.

/usr/local/samba/bin/smbpasswd -a testuser

You should now be able to log in as testuser and get authenticated from your
Windows machines and access network shares. Great fun, eh? Once you get up
and running, you will want to use some of the tools and utilities that Samba
provides. One of the more useful utilities available is SWAT, a web-based
administration tool that helps monitor and configure almost all Samba
configurations. If SWAT is not available on your system, you can find it and
more on the Samba home page.

Wrapping it Up

Hopefully, | provided you with enough information and inspiration to build
Linux file and print servers. While | am not recommending that you dash out
and replace your production NT servers, give Linux servers a chance. I'll bet
you'll find them more stable and reliable, and they make remote administration
much easier. The Samba team is constantly making Samba a better product
with more and better features and utilities. As Linux solutions become more

and more of a reality, | believe you will find that Linux file and print servers are
an efficient, cost-saving tool—that will make both you and your department
budget happy.

Resources

<>
email: dcsmith@duderman.com

David Smith (dcsmith@duderman.com) lives in Springfield, VA. He works at
TimeBridge Technologies, where he manages customer networks as the
Engineering Manager. When not working, he is either at a baseball game or
waiting for the baseball season to start.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/075/3476s1.html
mailto:dcsmith@duderman.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Linux System Calls

Moshe Bar

Issue #75, July 2000

How to use the mechanism provided by the IA32 architecture for handling
system calls.

This article aims to give the reader, either a kernel novice or a seasoned
programmer, a better understanding of the dynamics of system calls in Linux.
Wherever code sections are mentioned, | refer to the 2.3.52 (soon to be 2.4)
series of kernels unless otherwise noted.

The Linux Kernel in Brief

The most widespread CPU architecture is the IA32, a.k.a. x86, which is the
architecture of the 386, 486, the Pentiums |, Pro, Il and Ill, AMD's competing K6
and Athlon lines, plus CPUs from others such as VIA/Cyrix and Integrated
Device Technologies. Because it is the most widespread, it will be taken as the
illustrative example here. First, | will cover the mechanisms provided by the
IA32 type of CPU for handling system calls, and then show how Linux uses
those mechanisms. To review a few broad terms:

A kernel is the operating system software running in protected mode and
having access to the hardware's privileged registers. The kernel is not a
separate process running on the system. It is the guts of the operating
system, which controls the scheduling of processes to achieve
multitasking, and provides a set of routines, constantly in memory, to
which every user-space process has access.

« Some operating systems employ a microkernel architecture, wherein
device drivers and other code are loaded and executed on demand and
are not necessarily always in memory.

* A monolithic architecture is more common among UNIX implementations;
it is the design employed by classic designs such as BSD.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Linux kernel is mostly a monolithic kernel: i.e., all device drivers are part of
the kernel proper. Unlike BSD, a Linux kernel's device drivers can be “loadable”,
i.e., they can be loaded and unloaded from memory through user commands.

Basically, multitasking is accomplished in this way: the kernel switches control
between processes rapidly, using the clock interrupt (and other means) to
trigger a switch from one process to another. When a hardware device issues
an interrupt, the interrupt handler is found within the kernel. When a process
takes an action that requires it to wait for results, the kernel steps in and puts
the process into an appropriate sleeping or waiting state and schedules
another process in its place.

Besides multitasking, the kernel also contains the routines which implement
the interface between user programs and hardware devices, virtual memory,
file management and many other aspects of the system.

Kernel routines to achieve all of the above can be called from user-space code
in a number of ways. One direct method to utilize the kernel is for a process to
execute a system call. There are 116 system calls; documentation for these can
be found in the man pages.

System Calls and Event Classes on the IA32

A system call is a request by a running task to the kernel to provide some sort
of service on its behalf. In general, the kernel services invoked by system calls
comprise an abstraction layer between hardware and user-space programs,
allowing a programmer to implement an operating environment without having
to tailor his program(s) too specifically to one single brand or precise specific
combination of system hardware components. System calls also serve this
generalization function across programming languages; e.g., the read system
call will read data from a file descriptor. To the programmer, this looks like
another C function, but in actuality, the code for read is contained within the
kernel.

The IA32 CPU recognizes two classes of events needing special processor
attention: interrupts and exceptions. Both cause a forced context switch to a
new procedure or task.

Interrupts

Interrupts can occur at unexpected times during the execution of a program
and are used to respond to signals; they are signals that processor attention is
needed from hardware. When a hardware device issues an interrupt, the
interrupt handler is found within the kernel. Next month, we will discuss
interrupts in more detail.

Two sources of interrupts are recognized by the IA32: maskable interrupts, for
which vectors are determined by the hardware, and non-maskable interrupts
(NMI Interrupts, or NMls).

Exceptions

Exceptions are either processor-detected or issued (thrown) from software.
When a procedure or method encounters an abnormal condition (an exception
condition) it can't handle, it may throw an exception. Exceptions of either type
are caught by handler routines (_exception handlers_) positioned along the
thread's procedure or method invocation stack. This may be the calling
procedure or method, or if that doesn't include code to handle the exception
condition, its calling procedure or method and so on. If one of the threads of
your program throws an exception that isn't caught by any procedure (or
method), then that thread will expire.

An exception tells a calling procedure that an abnormal (though not necessarily
rare) condition has occurred, e.g., a method was invoked with an invalid
argument. When you throw an exception, you are performing a kind of
structured “go to” from the place in your program where the abnormal
condition was detected to a place where it can be handled. Exception handlers
should be stationed at program-module levels in accordance with how general
a range of errors each is capable of handling in such a way that as few
exception handlers as possible will cover as wide a variety of exceptions as are
going to be encountered in field application of your programs.

An Example of Exceptions as Objects from Java

In Java, exceptions are objects. In addition to throwing objects whose class is
declared in java.lang, you can throw objects of your own design. To create your
own class of throwable objects, you need to declare it as a subclass of some
member of the Throwable family. In general, however, the throwable classes
you define should extend class Exception--they should be “exceptions”. Usually,
the class of the exception object indicates the type of abnormal condition
encountered. For example, if a thrown exception object has class
illegalArgumentException, that indicates someone passed an illegal argument
to a method.

When you throw an exception, you instantiate and throw an object whose class,
declared in java.lang, descends from Throwable, which has two direct
subclasses: Exception and Error. Errors (members of the Error family) are
usually thrown for more serious problems, such as OutOfMemoryError, that
may not be easy to handle. Errors are usually thrown by the methods of the
Java APl or the Java Virtual Machine. In general, code you write should throw
only exceptions, not errors.

The Java Virtual Machine uses the class of the exception object to decide which
catch clause, if any, should be allowed to handle the exception. The catch
clause can also get information on the abnormal condition by querying the
exception object directly for information you embedded in it during
instantiation (before throwing it). The Exception class allows you to specify a
detailed message as a string that can be retrieved by invoking getMessage on
the exception object.

Vectors

Each IA32 interrupt or exception has a number, which is referred to in the 1A32
literature as its vector. The NMI interrupt and the processor-detected
exceptions have been assigned vectors in the range 0 through 31, inclusive. The
vectors for maskable interrupts are determined by the hardware. External
interrupt controllers put the vector on the bus during the interrupt-
acknowledge cycle. Any vector in the range 32 through 255, inclusive, can be
used for maskable interrupts or programmed exceptions.

The startup_32 code found in /usr/src/linux/boot/head.S starts everything off at
boot time by calling setup_idt. This routine sets up an IDT (Interrupt Descriptor
Table) with 256 entries, each four bytes long, total 1024 bytes, offsets 0-255. It
should be noted that the IDT contains vectors to both interrupt handlers and
exception handlers, so “IDT” is something of a misnomer, but that's the way it
is.

No interrupt entry points are actually loaded by startup_32, as that is done only
after paging has been enabled and the kernel has been relocated to
0xC000000. At times, mostly during boot, the kernel must be loaded into
certain addresses, because the underlying BIOS architecture demands it. After
control is passed to the kernel exclusively, the Linux kernel can put itself
wherever it wants. Usually this is very high up in memory, but below the 2GB
limit.

When start_kernel (found in /usr/src/linux/init/main.c) is called, it invokes
trap_init (found in /usr/src/linux/kernel/traps.c). trap_init sets up the IDT via the
macro set_trap_gate (found in /usr/include/asm/system.h) and initializes the
interrupt descriptor table as shown in the “Offset Descriptionis” table.

Offset Descriptions

Table 1

At this point, the interrupt vector for the system calls is not set up. It is
initialized by sched_init (found in /usr/src/linux/kernel/sched.c). To set interrupt
0x80 to be a vector to the _system_call entry point, call:

https://secure2.linuxjournal.com/ljarchive/LJ/075/4048t1.html

set_system_gate (0x80, &system_call)

The priority of simultaneously seen interrupts and exceptions is shown in the
sidebar “Runtime Priority of Interrupts”.

Runtime Priority of Interrupts

The System Call Interface

The Linux system call interface is vectored through a stub in libc (often glibc)
and is exclusively “register-parametered”, i.e., the stack is not used for
parameter passing. Each call within the libc library is generally a syscallX macro,
where Xis the number of parameters used by the actual routine. Under Linux,
the execution of a system call is invoked by a maskable interrupt or exception
class transfer (e.g., “throwing” an exception object), caused by the instruction in
0x80. Vector 0x80 is used to transfer control to the kernel. This interrupt vector
is initialized during system startup, along with other important vectors such as
the system clock vector. On the assembly level (in user space), it looks like
Listing 1. Nowadays, this code is contained in the glibc2.1 library. 0x80 is
hardcoded into both Linux and glibc, to be the system call number which
transfers control to the kernel. At bootup, the kernel has set up the IDT vector
0x80 to be a “call gate” (see arch/i386/kernel/traps.c:trap_init):

Listing 1
set_system_gate(SYSCALL_VECTOR, &system_call)

The vector layout is defined in include/asm-i386/hw_irqg.h.

Not until the int $0x80 is executed does the call transfer to the kernel entry
point _system_call. This entry point is the same for all system calls. It is
responsible for saving all registers, checking to make sure a valid system call
was invoked, then ultimately transferring control to the actual system call code
via the offsets in the _sys_call_table. It is also responsible for calling
_ret_from_sys_call when the system call has been completed, but before
returning to user space.

Actual code for the system_call entry point can be found in /usr/src/linux/
kernel/sys_call.S and the code for many of the system calls can be found in /
usr/src/linux/kernel/sys.c. Code for the rest is distributed throughout the
source files. Some system calls, like fork, have their own source file (e.g., kernel/
fork.c).

https://secure2.linuxjournal.com/ljarchive/LJ/075/4048s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4048l1.html

The next instruction the CPU executes after the int $0x80 is the pushl %eax in
entry.S:system_call. There, we first save all user-space registers, then we range-
check %eax and call sys_call_table[%eaXx], which is the actual system call.

Since the system call interface is exclusively register-parametered, six
parameters at most can be used with a single system call. %eax is the syscall
number; %ebx, %ecx, %edx, %esi, %edi and %ebp are the six generic registers
used as paramO0-5; and %esp cannot be used because it's overwritten by the
kernel when it enters ring O (i.e., kernel mode).

In case more parameters are needed, some structure can be placed wherever
you want within your address space and pointed to from a register (not the
instruction pointer, nor the stack pointer; the kernel-space functions use the
stack for parameters and local variables). This case is extremely rare, though;
most system calls have either no parameters or only one.

Once the system call returns, we check one or more status flags in the process
structure; the exact number will depend on the system call. creat might leave a
dozen flags (existing, created, locked, etc.), whereas a sync might return only
one.

If no work is pending, we restore user-space registers and return to user space
via iret. The next instruction after the iret is the user-space popl %ebx
instruction shown in Listing 1.

More Complex System Calls

Some system calls are more complex then others because of variable-length
argument lists. Examples of a complex system call include open and ioctl.
However, even complex system calls must use the same entry point; they just
have more overhead for parameter setup. Each syscall macro expands to an
assembly routine which sets up the calling stack frame and calls _system_call
through an interrupt, via the instruction int $0x80. For example, the setuid
system call is coded as

_syscallil(int, setuid,uid_t, uid)

which expands to the assembly code shown in Listing 2.
Listing 2

The User-Space System Call Code Library

The user-space call code library can be found in /usr/src/libc/syscall. The hard-
coding of the parameter layout and actual system call numbers is not a

https://secure2.linuxjournal.com/ljarchive/LJ/075/4048l2.html

problem, because system calls are never really changed; they are only
“introduced” and “obsoleted”. An obsoleted system call is marked with the old_
prefix in the system call table for entry.S, and reference to it is removed from
the next glibc. Once no application uses that system call anymore, its slot is
marked “unused” and is potentially reusable for a newly introduced system call.

Tracing System Calls

If a user wishes to trace a program, it is equally important to know what
happens during system calls. Thus, the trace of a program usually includes a
trace through the system calls as well. This is done through SIGSTOP and
SIGCHLD ping-ponging between parent (tracing process) and child (traced
process). When a traced process is executed, every system call is preceded by a
sys_ptrace call. This makes the traced process send a SIGCHILD to the tracing
process each time a system call is made. The traced process immediately
enters the TASK_STOPPED state (a flag is set in the task_struct structure). The
tracing process can then examine the entire address space of the traced
process through the use of _ptrace, which is a multi-purpose system call. The
tracing process sends a SIGSTOP to allow execution again.

How to Add Your Own System Calls

Adding your own system calls is actually quite easy. Follow this list of steps to
do so. Remember, if you do not make these system calls available on all the
machines you want your program to run on, the result will be non-portable
code.

* Create a directory under the /usr/src/linux/ directory to hold your code.

* Put any include files in /usr/include/sys/ and /usr/include/linux/.

 Add the relocatable module produced by the link of your new kernel code
to the ARCHIVES and the subdirectory to the SUBDIRS lines of the top-
level Makefile. See fs/Makefile, target fs.o for an example.

« Add a #define __NR_xXx to unistd.h to assign a call number for your
system call, where xx, the index, is something descriptive relating to your

system call. It will be used to set up the vector through sys_call_table to
invoke your code.

« Add an entry point for your system call to the sys_call_table in sys.h. It
should match the index (xx) you assigned in the previous step.

« The NR_syscalls variable will be recalculated automatically.

* Modify any kernel code in kernel/fs/mm/, etc. to take into account the
environment needed to support your new code.

* Run make from the top source code directory level to produce the new
kernel incorporating your new code.

At this point, you must either add a syscall to your libraries, or use the proper
_syscalln macro in your user program in order for your programs to access the
new system call. The 386DX Microprocessor Programmer's Reference Manual is
a helpful reference, as is James Turley's Advanced 80386 Programming
Techniques.

Linux/IA32 Kernel System Calls

A list of Linux/IA32 kernel system calls can be found, with the listings, in the
archive file ftp.linuxjournal.com/pub/Ilj/listings/issue75/4048.tgz. Note: these
are not libc “user-space system calls”, but real kernel system calls provided by
the Linux kernel. Information source is GNU libc project, http://www.gnu.org/.

email: moshe@moelabs.com

Moshe Bar (moshe@moelabs.com) is an Israeli system administrator and OS
researcher who started learning UNIX on a PDP-11 with AT&T UNIX Release 6
back in 1981. He holds an M.Sc. in computer science. His new book Linux
Kernel Internals will be published this year. You may visit Moshe's web site at
http://www.moelabs.com/.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/075/4048.tgz
http://www.gnu.org
mailto:moshe@moelabs.com
http://www.moelabs.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Voice Recognition Ready for Consumer Devices

Linley Gwennap

Issue #75, July 2000

This looks like the year that voice recognition finally reaches the mainstream.

This looks like the year that voice recognition finally reaches the mainstream.
Motorola unveiled “Mya, the 24-hour talking Internet” at the Oscars. Tellme.com
and other startups are deploying voice portals that accept speech commands
and read web content over a standard telephone. The latest Jaguar allows
drivers to adjust the climate and sound systems using their voice.

Most of these services run on remote servers or PCs where plenty of
processing power is available. But the Jaguar example is telling: CPU
performance has reached the point that even an inexpensive embedded
processor can perform useful voice recognition. Over the next few years, voice
will become a common interface in a variety of non-PC devices, many of which
will be running Linux.

Until recently, voice recognition required each user to train the system to
recognize his or her particular speech patterns. Like most other software,
however, voice recognition improves given faster processors and more
memory. Recent products reduce training time dramatically. Speaker-
independent software eliminates training entirely. To achieve highly accurate
speaker-independent recognition with moderate processing requirements,
designers must limit the context and vocabulary of the application. For
example, a car needs to recognize only a few dozen words, including

" u

“temperature”, “radio”, and the numbers needed to select a station.

Lernout & Hauspie (http://www.lhsl.com/), a leading supplier of voice software,
supplies speech engines for applications as simple as these, as well as far more
complex ones. According to Klaus Schleicher, a director of product
management at L&H, the simplest speech engine provides speaker-
independent recognition of up to 100 words, but requires less than 200K of
memory. L&H offers a more-powerful speech engine that can recognize up to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.lhsl.com

1,000 words, again without training. This engine requires 2MB of memory and
can run on a 200MHz processor. This hardware costs a bit more, but is still
easily obtainable for $30 today, and that price will drop over time. The larger
vocabulary is suitable for applications such as a TV set-top box that can be
programmed by speaking the name of a show or a hand-held PDA that can
manage calendars and address books via voice.

Composing arbitrary text, such as an e-mail message, requires a much larger
vocabulary. For this purpose, L&H has a speech engine with a 20,000-word
vocabulary—twice as large as the average adult's. This engine requires some
training, but only about five minutes per user. Even this large vocabulary
doesn't require a full-blown PC or server; the company has demonstrated it
using a 200MHz StrongArm processor and 32MB of memory. This speech
engine could be incorporated into a webpad, allowing users to compose e-mail
and other documents without using a keyboard.

One problem is that these speech engines are still not 100% reliable. The
smaller the vocabulary, the smaller the error rate—after all, there are fewer
words to confuse. In addition, a “command and control” application has natural
opportunities to seek clarification. For example, if the user says “Turn off the
TV”in a noisy room, the system might respond “l didn't understand that; please
try again” or “Do you want the TV off?” In these limited-domain applications, the
software actually interprets the voice input to determine its meaning, in this
case, to turn off the TV. One possible interpretation of the input phonemes
might be “turnips are meaty”, but the software would quickly discard this
possibility as irrelevant in the context of controlling the television. This
intelligent interpretation is called natural language processing (NLP). The
combination of good voice recognition and a well-programmed NLP back end
can produce a reliable system.

A working example is MIT's Jupiter system, a conversation interface for weather
information built by the university's Spoken Language Systems group. You can
call it (1-888-573-8255, but it is often busy) and ask about the weather
anywhere in the U.S. or around the world. It uses a 500MHz Pentium Il PC
running Linux, but it hasn't been optimized to reduce CPU overhead. Jupiter
has a vocabulary of about 2,000 words and is very usable. Text dictation,
however, has a much larger vocabulary and an unbounded content domain: an
e-mail message could have any subject matter, even turnips. NLP for this
application is much harder and generally limited to putting nouns and verbs in
the right places. After dictating a few hundred words into even the best speech
engine, a user is likely to have to go back and correct at least a dozen errors.

Thus, for applications where a keyboard is available and the user can type
reasonably well, typing is likely to be the most efficient interface for the

foreseeable future. But L&H's Schleicher says, “the human voice is the most
natural user interface for communication and computing on a variety of
devices.” For command and control applications in cars, information
appliances, set-top boxes and even PCs, voice recognition is an excellent
interface. The hardware just needs the right programming—and the sound of
your voice.

Linley Gwennap (linleyg@linleygroup.com) is the founder and principal analyst
of The Linley Group (http://www.linleygroup.com/), a technology analysis firm in
Mt. View, California. He is a former editor-in-chief of Microprocessor Report.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linleygroup.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

An Appetite for Discovery

Marcel Gagné

Issue #75, July 2000

Looking at the skies for stars and aliens can both be done on Linux systems.

Ah, it is a beautiful night, non? Welcome, mes amis. Sit down and Francois will
get you a glass of wine. | must tell you, mes amis, that this month's special issue
on Science and Engineering has your chef feeling rather pensive this evening.

Some say that science has become rather dry lately. | find this idea difficult to
understand as we stand on the threshold of unraveling the human genetic
code, as new extra-solar planets are discovered on an almost daily basis, as
human spacecraft orbit distant asteroids or gather cometary dust. If science
has become boring, then | would suggest it is the presentation of science that
has become dry. It's time to put some excitement back into the study of life, the
universe and everything else for that matter. You are running Linux on your
computer, non? Then it is time for you, mes amis, to join the search for
knowledge.

Linux's scalable nature and multi-user UNIX roots make it an ideal platform for
scientific work. Now everyone can have a workstation for data collection and
analysis, mathematical and statistical modeling, and magnifique visualizations
and simulations. Even better, Linux's open source means that scientists and
engineers don't have to wait for some company to create the tools they need.
Add to that Linux's network-ready and network friendly design, and you have
the best environment not only for research, but for collaboration with your
peers. Scientists have been using UNIX machines for years precisely for these
reasons. With Linux, things have gotten even better. When the going gets tough
and more horsepower is needed than can be generated by a single machine,
Linux is still the answer with low-cost Beowulf clusters.

No longer do we, the general public, have to watch science take place in the
shadowy temples of distant laboratories. With the power of Linux, everyone
can be a participant. Proof of Linux's prowess in the scientific world is as easy

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

to find as a trip to the SAL web site (Scientific Applications on Linux) at
sal.kachinatech.com/index.shtml.

For instance, you could start a collection of meteorological data for your area.
Using a program like Kweather, you can monitor daily weather events in your
area such as temperature highs and lows or precipitation. Kweather lets you
graph the results so you can track patterns over time. Are we truly experiencing
a warming trend? Memory is fragile, as | am often reminded when | comment
on the 14-foot-high snowbanks of my childhood. With Kweather and disciplined
observation, you can know for sure. For your copy of Kweather, pay a visit to
J<\#252>rgen Hochwald's web site at www.privat.kkf.net/~juergen.hochwald/
linux/kweather/e index.html.

But why, mes amis, would we want to concern ourselves merely with the world
around us when an infinite number of other worlds seek to capture our curious
imaginations, yet another click of the mouse away? Besides being an aficionado
of wine, good food and heavenly sauces, your humble chef is also an amateur
astronomer. Ah, the mysteries of the universe! Francois! More wine, please.

And so, the next item on our menu comes to us courtesy of Aaron Worley, who
brings us Hitchhiker 2000 (HH2000). This wonderful program is a solar system
simulator, a digital orrery (Marcel's Collins defines it as a “mechanical model of
the solar system in which the planets can be moved at the correct relative
velocities around the sun”). Aaron calls his site “The Hitchhiker's Guide to the
Solar System”.

HH2000 is educational, surely; but mostly, the program is just plain fun. The
idea is that you have a camera mounted on your celestial body of choice, any
planet or any moon in the solar system. You can choose comets and asteroids
as well. HH2000 comes with a healthy database of objects and the means to
add more by way of .CSV-format files (comma-separated values). The effects
are great, too. Depending on your angle of view, which you can change by
dragging your mouse around the view screen, you'll notice the planets' night
side is realistically in shadow. Using the center mouse button (with my two-
button mouse, the right button did the job), you can zoom in or out by dragging
the mouse pointer up or down. With a single click, you can flip the viewing from
local orbit to deep space to an orbital view.

This eye on the sky uses OpenGL or Mesa libraries (I used Mesa) for 3-D effects,
both of which can be a little resource-hungry at times. For maximum effect, you
might want something punchier than my 150MHz Pentium notebook. Still, even
under this environment, | found Hitchhiker to be plenty acceptable, which
brings us to requirements. HH2000 is built on GNOME libraries, so you'll either
need to be running GNOME or have the libraries loaded. If you are like Francois

http://sal.kachinatech.com/index.shtml
http://www.privat.kkf.net/~juergen.hochwald/linux/kweather/e_index.html
http://www.privat.kkf.net/~juergen.hochwald/linux/kweather/e_index.html

and me, you probably have both desktop environments loaded already. Before
you can start exploring, you will likely need one other piece of software (aside
from OpenGL or Mesa). Download the gtkglarea libraries as well, and compile
them. You will find links to all these pieces on the Hitchhiker 2000 web site (see
Resources). Finally, pick up the HH2000 code. Binaries for glibc2.0 systems are
available, as is source code. With my Red Hat 6.2 system, | compiled the
program from source. The steps are simple:

tar -xvfz hh2000-0.3-0.tar.gz
cd hh2000-0.3-0
./configure
make
make install

Running the program is done by typing hh2000. Now, sit back and enjoy the
ride. Careful on that gas pedal.

For the truly serious astronomer, Elwood Downey brings us our next item, and
what a masterpiece this is. XEphem is a star-charting package that pretty much
does it all. You start by identifying your location (in my case, Toronto, Ontario)
and clicking “Update”. XEphem loads the appropriate latitude and longitude
information for your chosen city. If you need to be more accurate than “next
door is okay”, it is possible to enter that information manually as well. Want to
see what portion of the moon will be visible April 30, 2007? You can change the
date through the calendar interface, click “Update” once again, then select
“View"” and “Moon”. The major planets are available at a click, as is a solar
system view, which can be animated and its angle of viewing changed.

Every program like XEphem needs a star chart. For many amateur astronomers
like myself, the planets are there as a warmup to the real meat of observing,
namely the stars and deep sky objects. XEphem comes through with a fantastic
star chart that allows you to define many viewing options. For instance, you can
activate constellation lines, labels, define the types of objects you would like to
see (galaxies, open clusters, double stars, etc.) or the minimum display
brightness for these objects. XEphem also lets you center in on an object and
zoom in with a simple slide control.

Exploring with XEphem is almost too much fun (as your humble chef discovered
while trying to finish this article). Mais, qu'est-ce que c'est? That open cluster
just below Cepheus looks interesting. Would you like to see what it looks like
through a very powerful telescope? Center the object, click on “View Image” and
let the Space Telescope Science Institute and the Hubble Space Telescope give
you a close-up! Quite honestly, mes amis, the features are just too numerous to
mention. Here's another bonus. Next time your friends who run that other
operating system tell you about all the great software you can't run on Linux,

show them XEphem. Then watch their faces when you tell them they can't have
it for the other OS.

- "
== |
- Control Llocate Telescope History Help

Retrieve Digitized Sky Survey Image from ...
sTSel | (S0 | I cospressed

FITS Header: 1985-12-17 06:23:00

SIMPLE = T /FITS header |
EITPIX = 16 /No.Bits per pi |~
NAXIS = 2 /No.dinensions

NAXIS1 = 706 /Llength X axis

NAXIS2 706 /length ¥ axis
EXTEND = T/
DATE - '26/04/00 ' /oate of FITS F
ORIGIN = "CASE -~ STScI " /Origin of FIIS 1/
I‘)—-1 Scrolled text ared cortainirg FITS File header
=
|
Gray scale: JInverse Wide| Narrow||

0.50
vHist £q O Caana [. \

oot TRV EINAT oy —_—

Figure 1. M31—A XEphem Celestial Close-up

XEphem is a commercial product, but it is also available as a free download. |
will tell you that the download version is still fairly spectacular. The CD-ROM
(commercial version), however, comes with much more, including the full
Hubble Guide Star Catalog (not included in the download), a huge number of
additional deep sky objects, a full printed manual, and pre-built binaries for
various platforms. While you can connect to the Internet when you want
additional information such as a close-up (as in the previous paragraph), you
may find it well worth the price.

If you want to build XEphem yourself, you will also need either Motif or the
freeware LessTif from the Hungry Programmers (do they know Chez Marcel is
open, | wonder?). It is available at http://www.lesstif.org/ for download. Building
LessTif is a matter of downloading lesstif-current.tar.gz from the web site and
following these now-familiar steps:

tar -xvfz lesstif-current.tar.gz
cd lesstif-current
./configure
make
make install

Next, you need to download your copy of XEphem. At the time of this writing,
the latest version was xephem-3.2.3.tar.gz. Building XEphem is a little different
than the usual “configure” and “make”. Here are the steps:

https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f1.large.jpg
http://www.lesstif.org

tar -xzvf xephem-3.2.3.tar.gz
cd xephem-3.2.3/1libastro
. /xmkmf
make
cd ../GUI/xephem
. /xmkmf
make
make install

Happy Stargazing

Finally, why not join in the greatest adventure of them all: SETI, the Search for
Extraterrestrial Intelligence? Your Linux system is ideally suited to this task.
Since you are running a true multi-user system, it is possible to have a
setiathome process running in the background (reniced so it doesn't draw too
heavily on your system resources). Who knows? You may be the one who
decodes the first signal from a distant civilization, like California—I joke,
seulement, non? Nevertheless, visit the SETI@home pages, register as a SETI
explorer, download your client and do your part in exploring what may be
humankind's most exciting new frontier. [You can join the Linux Journal Reader
Group too.]

There is no compiling or linking to do. You simply download the client and
untar it. For instance, | downloaded the 2.4 version of the client. After untarring
the bundle, | renamed the directory (you will see why) and ran the client from
there.

tar -xvf setiathome-2.4.i386-pc-1linux-gnu-glibc2.1.tar
mv setiathome-2.4.1i386-pc-linux-gnu-glibc2.1
setiathome
cd setiathome

./setiathome

You can also launch the program from a crontab (as | do) and just leave it
running in the background. Here is my crontab entry:

0 * * * * c¢d /root/setiathome; ./setiathome\
-graphics<\n> -nice 19 > /dev/null 2> /dev/null

Currently, SETI@home runs with a text-only client, but the latest version also
comes with an experimental “screensaver mode” program called xsetiathome.
The -graphics option in the crontab above is required if you wish to use this
experimental “xsetiathome” GUI front end. Even before this GUI feature was
added, Linux SETI users were creating their own GUI clients to give setiathome
a friendlier face. One of my favorites is still TKSETI from Rick Macdonald. You
can download TKSETI from www.cuug.ab.ca/~macdonal/tkseti/tkseti.html. One
of the things | like about it is the ability to check my progress against my other
friends who run SETI@home. At this moment, Chef Marcel's lovely wife, Sally, is
way ahead, but Francgois is way behind.

http://www.cuug.ab.ca/~macdonal/tkseti/tkseti.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f2.large.jpg

OO il b b A A S D R e e s O O ©

) SETIGhome

o Sesrgh Tor Extratemestria 1€

Averago CPU Tine [ITBIL N 45 Win 16,5 860
| Your Top Spike | [iSGIESSSANI
| Date Found | [IINDEUIGGIIGAGEIS IS

TKEETI Heb Page SETIGHOne Web Page

Figure 2. Keeping Tabs on SETI@home with TKSET]

Oui, mes amis, it is that time again. | hope you enjoyed the items on today's
menu and that you will find yourselves exploring other tasty avenues on your
own. In the meantime, it is a clear night and Chef Marcel has the telescope set
up out back. If you wish to join me, Francois will pour you a final glass of wine
and we will savor the Chablis while we search the heavens. Join me again next
time at Chez Marcel. Bon Appétit!

Resources

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. In real life,
he is president of Salmar Consulting Inc., a systems integration and network
consulting firm. He is also a pilot, writes science fiction and fantasy and edits
TransVersions, a science fiction, fantasy and horror magazine. He loves Linux

https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/075/4086s1.html

and all flavors of UNIX and will even admit it in public. You can discover many
things from his web site at http://www.salmar.com/.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/toc075.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Press Releases with Mason

Reuven M. Lerner

Issue #75, July 2000

To learn more about building dynamic web sites, Mr. Lerner presents an
application for reading the news using Mason and MySQL.

Last month, we took an initial look at Mason, a template system that sits on top
of mod_perl and allows us to create fast-executing dynamic web sites built out
of small components.

This month, we will look at a simple application built in Mason—a system to
display the latest press releases on a corporate site. Of course, such a system
could be tailored in a number of ways, including an on-line newspaper or other
publication in which information changes on a regular basis. In creating this
small site, we will see some of the steps involved in working with Mason.

Creating the Database

The core element of our news system will be a relational database. | will use
MySQL in these examples, although any relational database system should
work fine.

| created a new MySQL database called “atfnews” on my MySQL server and
assigned privileges so that the user atfnews can connect using the password
“atfpass”. | then created the following two tables:

CREATE TABLE Categories (
category_id SMALLINT UNSIGNED AUTO_INCREMENT,
category_name VARCHAR(25) NOT NULL,
PRIMARY KEY(category_id),
UNIQUE(category_name)

r

CREATE TABLE Articles (
article_id MEDIUMINT UNSIGNED AUTO_INCREMENT,
category_id SMALLINT UNSIGNED NOT NULL,
posting_date TIMESTAMP NOT NULL,
headline VARCHAR(30) NOT NULL,
body TEXT NOT NULL,
PRIMARY KEY(article_id),

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

UNIQUE(category_id, headline)

14

As you can probably tell from their names, the Categories table contains a list
of category ID numbers and names. The Articles table contains several more
pieces of information, including an article ID, the category ID into which an
article should be placed, the date and time at which the article was posted, the
article's headline and its body. We ensure no two articles in a given category
have the same headline with a UNIQUE clause at the end of our CREATE TABLE
statement.

The posting_date column takes advantage of MySQL's TIMESTAMP data type.
This type automatically inserts the time and date of the latest INSERT or
UPDATE to a given row. In this way, we can easily determine when news stories
were added to the database, without having to enter or keep track of the
information ourselves.

In order for our news system to work, we will need to create at least two
different sets of components. One set will allow users to enter news items into
the database (i.e., perform INSERTS), and the second will make it possible to
retrieve items from the database (i.e., perform SELECTS). In a production
setting, we would probably want to restrict posting access to a selected number
of users. This would be possible with a standard .htaccess file, which allows
users to restrict access to individual files or directories, or with a more
sophisticated system that stores user information in a database.

Structuring the Components

One of Mason's strong points is its use of components. Components are
actually Perl subroutines, cleverly disguised in the form of HTML files with some
Perl thrown in. (Mason's parser performs the underlying magic that turns
components into subroutines.) This structure means that repeated functionality
can be packaged into one component, then invoked from within other
components.

Listing 1

For example, Listing 1 contains a component called “database-connect.comp”.
This component returns a value, rather than producing HTML output. Its
purpose is to connect to a database server and return a database handle,
typically called $dbh. By centralizing this connection code, we can easily move
our site from one server to another, changing only the relevant $host, $user,
$password and $database variables as necessary.

Once database-connect.comp has been configured, any component on our
system can receive a valid database handle with the following code:

https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l1.html

<%init>
my $dbh = $m->comp(database-connect.comp);
</%init>

The above code takes advantage of Mason's object-oriented interface, using the
predefined $m object to invoke another component.

By placing the assignment inside of <%init>, we ensure that the component will
connect to the database before anything else occurs within the component.
However, this also means we are creating a new lexical variable ($dbh) with
each invocation of the component.

It would be slightly more elegant to perform the above assignment within a
<%once> section, creating $dbh a single time and keeping the value around.
However, <%once> sections are executed outside of the Mason component
context, meaning they cannot invoke methods on $m. Moreover, <%once>
sections are invoked before new Apache child processes are created, which a
$dbh object might not like. Thus, it is common to define $dbh in a <%once>
section, but to perform the assignment in <%init>:

<%once>
my $dbh;
</%once>
<%init>
$dbh = $m->comp(database-connect.comp);
</%init>

The plain-vanilla mason.pl (or “handler.pl”, as the Mason documentation
describes it) configuration file that comes with the Mason distribution is almost
good enough for this system to work. We need to load only Apache::DBI, a
wrapper module that works with DBI within the mod_perl environment,
ensuring that database connections are created and dropped only as
necessary.

In order to load Apache::DBI, we need to put a use Apache::DBI statement in
mason.pl, which is loaded with a PerlRequire statement in httpd.conf. In order
to save some memory, we insert a PerIModule Apache::DBI line into httpd.conf.
This ensures the module is loaded into memory before Apache splits into
numerous child processes. The module might still require a fair amount of
memory, but at least that memory will be shared among all Apache processes
rather than requiring each one to have its own copy.

Adding Categories

The first step toward making our news system work is to allow users to create
new categories. Each news story in our simple system will be placed in precisely
one category, much as each story in a newspaper is printed in only one section.

If we were to use the CGI model for creating a database editor, we would need
to create an HTML form, pointing its <Form> action to the URL of a CGlI
program. That CGI program would then need to retrieve the HTML form
elements, connect to the database and perform an INSERT.

Listing 2

With Mason, all this becomes much easier because of the relationship between
HTML form elements and variables. We will still need two different
components, one that presents the form and another that acts on the form's
contents. The first component, add-category-form.html (see Listing 2), is a
normal HTML form, with a single text field and a “submit” button. The only
difference between this form and its non-Mason counterpart is the action
attribute in the <Form> tag. In Mason, even a file with an .html suffix is a
program and can thus receive input from an HTML form.

Listing 3

The component that handles the input and inserts a new row into the
Categories table is called add-category.html (see Listing 3). As is often the case
with Mason components, you must first look at the component's final sections
(<%once>, <%init> and <%args>) in order to understand what is happening.

In the case of add-category.html, our <%once> section merely defines $dbh, as
described above. The <%init> section performs two actions. First, it defines
$dbh based on the returned value from “database-connect.comp”. Once the
database connection has been established, the <%init> section goes on to
INSERT the user's input into the database. Notice how we use DBI's
placeholders, shown here as a question mark in the list of VALUES, to avoid
potential problems with quoted strings within our SQL query.

The placeholder is filled in with the value of $new_category_name, a scalar
variable defined in <%args>:

<%args>
$new_category_name
</%args>

By defining it there, we indicate that add-category.html must receive an HTML
form element new_category_name when it is invoked. We could have given
new_category_name a default value; however, this value is crucial to the
functioning of add-category.html and must be mandatory.

Depending on whether the SQL INSERT succeeds, the scalar variable
$successful_insert is set to true or false. This value is then used in the large if-
else statement, to produce HTML that reflects the success or failure of the

https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l3.html

INSERT shown at the beginning of Listing 3. Notice how $DBI::errstr, the
standard DBI error message, is available from within our component.

Adding News
Listing 4

Once we have added one or more categories, we can begin to insert news
items into the system. Unlike add-category-form.html, add-news-form.html
(Listing 4) will need to connect to the database and cannot be a simple HTML
form. This is because we want to present the user with a <select> list of current
categories. In order to create this list dynamically, we will need to connect to
the database and perform a simple SELECT. Other than that, the HTML form is
relatively straightforward. We will use a table to organize the titles and form
elements, but it consists of three basic elements: a headline, the body text and
a category <select> list.

| decided to do this in a relatively inefficient (but easy to understand) way, using
an SQL ORDER BY clause to retrieve names in alphabetical order. In order to
keep track of the two different values (ID and name), | put them into the
@categories array:

while ($row_ref = $sth->fetchrow_arrayref)

my ($id, $name) = @$row_ref;
push @categories, {id => $id,
name => $name};

}

We can then iterate through @categories, placing the category ID as the “value”
attribute (which will be submitted to the add-news.html component), but
displaying the name of the category:

<select name="category_id">

% foreach my $category (@categories) {
<option value="<% $category->{id} %>">
<% $category->{name} %>

% 3}

</select>

Listing 5

The component that adds news, add-news.html (Listing 5), is almost identical to
add-category.html, except it inserts three values rather than just one: the
category ID, the headline and the body of the article. If the submission is
successful, we tell the user that the article has now been placed in the
database.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l5.html

Retrieving News

While we could retrieve the news directly into a top-level component, it is easier
for us to create a generic component that retrieves any number of articles from
any category. In this way, we can use this “get-news.comp” component in a
number of different high-level components, retrieving the number and type of
articles that interest us.

Listing 6

Listing 6, get-news.comp, is fairly straightforward, returning a list of articles to
the caller. It builds the article list much as we built the category list in add-news-
form.html, retrieving each of the articles:

while ($row_ref = $sth->fetchrow_arrayref)

{
my ($headline, $body, $posting_date) =
@$row_ref;
push @articles, {headline => $headline,
body => $body,
posting_date => $posting_date};
}

return @articles;

We take advantage of MySQL's LIMIT clause to restrict the retrieval to only as
many articles as the user is interested in receiving. Also, we retrieve the articles
in reverse order of their arrival, so that the article with the latest timestamp will
come first. This ensures whenever we retrieve the latest five articles, they will
indeed be the newest:

my $sql = "SELECT headline, body, posting_date ";
$sql .= "FROM Articles ";
$sql .= "WHERE category_id = ?";
$sql .= "ORDER BY posting_date DESC ";
$sql .= "LIMIT ?";
Printing the News

get-news.comp returns the latest news into an array. But, of course, users are
interested in reading news, not looking at a Perl array. For that reason, we'll
define two more top-level components: one to choose the category and
number of articles we wish to read and one to display them.

Listing 7

First, we will create a component view-stories-form.html (Listing 7), which lets
us choose a category and maximum number of stories to display. This
component repeats the paradigm of creating a <select> list from a Perl array. It
then invokes view-stories.html (Listing 8), a simple component which does
nothing but iterate through the stories returned by get-news.comp, placing
them in a nicely formatted page of HTML.

https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/075/4066l7.html

Listing 8
Conclusion

As you can see, the amount of effort and code necessary to create this site was
fairly modest. And while this is a relatively simple site, it does work—and it
represents one way in which Mason and databases can be used together to
create a dynamic site in a minimum amount of time. True, we ended up writing
a number of components; but at least two of them are reusable if we decide to
expand the site in the future, and thus will reduce the amount of work and
debugging we'll have to do at that time.

With a bit more work, we could add personalization to this site, allowing users
to read only news that is new to them and in only the categories that interest
them.

As | indicated last month, Mason has increasingly become my too