
 Advanced search

Linux Journal Issue #30/October 1996

Features

What is Java, Really? by Rudi Cilibrasi
Let's Skip the hype. This article explains what Java is and points
you to the right places if you want to dive in.

Flicker-free Animation Using Java by Paul Buchheit
Currently the most popular use of Java seems to be in building
applets. This article shows you not only how to make an applet,
but how to make it look good.

That First Gulp of Java by Brian Christeson and John D. Mitchell
A relatively new technology, Java has experienced phenomenal
growth. Why? Read on.

News and Articles

My Next Pentium Is A DEC Alpha by Bryan W. Headley
Is a DEC Alpha a solution if you want a really fast Linux system?
Here is one person's experience that may help you decide.

DEC AXP Review by Bryan Phillippe
Faster than a speeding bullet, able to leap tall buildings ... it's
Digital's AXP (aka Alpha) computer.

Columns

Letters to the Editor
From the Publisher The Politics of Freedom
New Column Linux Means Business
Stop the Presses

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/030/0171.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0169.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0148.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0170.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0184.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0188.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0147.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0203.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0190.html

Kernel Korner Network Buffers and Memory Management
Linux Means Business Using Sendmail as a Multi-Platform Mail
Router
Product Review The Java Reference Package from SSC
Take Command apropos
New Products

Directories & References

Consultants Directory
Linux Buyer's Guide Announcement

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/030/1312.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1294.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1294.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0192.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1329.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/5536.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/consult.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/buy.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What is Java, Really?

Rudi Cilibrasi

Issue #30, October 1996

Let's skip the hype. This article explains what java is and points you to the right
places if you want to dive in.

Java conjures up a variety of images for computer users everywhere. Some
picture flying heads and cartoonish figures that wave from web pages. Others
remember segmentation faults and hung Netscapes. Most people are left
staring at the steaming cup-o'-joe icon, having no idea what it all really means.
This article will discuss what exactly Java is, and where it fits in the big picture of
computing.

The Java programming language is roughly similar to C++, Objective C and
Smalltalk, with some features removed and a few features added:

• It is procedural, like C, as opposed to functional like Lisp.

• It is object-oriented, like C++. It supports classes, single class inheritance,
multiple interface inheritance, access protection and exceptions. It does
not support operator overloading or templates (though it may support
template-like constructs in the future).

• All casts are dynamic and safe; it's impossible to cast an object to an
inappropriate type.

• Everything in Java is class-oriented. There is no global scope, there are no
global variables, and there are no explicit function pointers.

• Arrays of arbitrary dimension are supported and act like objects.

• It supports threads and provides synchronization primitives. Threads,
sometimes called lightweight processes, allow several separate execution
paths to run concurrently through a program. Synchronization primitives
ensure that separate tasks are performed in the correct order.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• It supports modules, so it doesn't need a preprocessor. There are no
#include directives as the equivalent functionality is built into the
languagex), no macros, no #define, etc.

• It supports garbage-collection, and there is no support for explicit
deallocation. This simplifies programming dramatically and eliminates all
memory allocation errors.

• All objects implicitly use reference semantics, which roughly means every
object acts like a pointer, but used as if it were a value. All base types (int,
char, etc.) use value semantics.

• Java is safe, meaning it is impossible to: de-reference a pointer outside a
segment; use memory that has been deallocated; or use an object as the
wrong type. A Java program will never cause a segmentation fault
(actually, the Java interpreter does have a few bugs that can result in an
application crashing, but these are being fixed).

Java comes bundled with a standard library called the Java API (Application
Program Interface) that provides:

• Basic file input and output
• Networking, particularly TCP/IP, UDP, and HTTP
• Basic dynamic container classes like Vector, Dictionary, etc.
• Graphics and GUI programming

Another important component of the Java system is the compiler. A Java
compiler translates source files (e.g., Foo.java) into one or more class files (e.g.,
Foo.class). The .class files correspond roughly to the .o (or .obj) files in C, but
there is one crucial difference: while .o files contain machine-specific
instructions, .class files contain only a generic pseudo-assembly-code called
Bytecode that is uniform across all platforms. To enable this, every platform
that supports Java must have a Java runtime that will interpret and execute Java
Bytecode.

The underlying Bytecode to which Java compiles is described under Sun's Java
Virtual Machine (or JVM) specification (java.sun.com/doc/vmspec/html/
vmspec-1.html) A Java runtime emulates a JVM, so that it can run the Java
Bytecode contained within .class files. The JVM is a key component to Java's
ubiquity; rather than require that every individual application support multiple
platforms, developers need only write one version of a program, and are
assured that it will run everywhere. The only program that needs to be ported
across multiple platforms is the Java runtime. Despite Java's youth, most major
platforms are supported.

http://java.sun.com/doc/vmspec/html/vmspec-1.html
http://java.sun.com/doc/vmspec/html/vmspec-1.html

Let's now take a moment to trace the steps involved in letting you see waving
animated characters within your web browser.

• A programmer on the Web somewhere writes a Java program, and
converts .java source files into .class files using a java compiler. This
programmer puts a reference to these .class files within an <APPLET> tag
in her web page.

• You point your browser to her web page, and your browser sees the
<APPLET> tag pointing to the .class files. Your browser then downloads
her .class files over the net.

• Your browser starts up its Java runtime subsystem and begins executing
the .class files that it downloaded.

At this point, you might be wondering what prevents a malicious programmer
from doing horrible things to your computer while the comforting cartoonish
character distracts you from the sound of your hard drive as it's being
reformatted. The answer lies in the Java SecurityManager. This class, a part of
the standard, implements a security policy for all untrusted programs. Here,
untrusted programs are those that are downloaded over the net. In the current
release of Netscape, the SecurityManager that the Java runtime uses does not
allow untrusted Java programs to read or write files, nor does it allow them to
make network connections anywhere except to the host from which the
program came. This, then, forms a sort of sand box in which the Java program
is confined.

Another key facet of the Java security model is the Bytecode Verifier. The
Bytecode Verifier checks all incoming programs to make sure that they satisfy
some basic safety constraints (e.g., every pointer cast is a safe one, there can be
no stack overflows, etc.). This prevents malicious programmers from creating
bad .class files by programming Java Bytecode by hand in an effort to
circumvent the safety features of the Java language. If your Netscape
downloads a .class file that fails to pass the verification stage, it will simply
refuse to run the code.

Most people view Java as the programming language of the Web. Though Java
certainly serves well in this regard, it is actually much more general; it is
appropriate for stand-alone, non-Web programming as well. You can write Java
programs that can be run outside of a web browser, and as trusted programs
they can do everything a C or C++ program might do, such as access the file-
system. In fact, in the Linux development pre-2.0 kernels there is support for
the Java binary format. This support means that you can run Java Bytecode
programs just as you would run ELF- or a.out-format executables from the
command line, without explicitly invoking a Java runtime. The great advantage

of writing programs in Java is that they are immediately portable across a wide
variety of platforms and architectures.

One problem with current Java implementations is speed; performance is many
times slower than C under most current implementations. This is because the
Java Bytecode is interpreted, unlike native assembly code compiled from C
programs which is run directly by the processor. The speed problem is being
mitigated, however, by the development of so-called “Just-In-Time” compilers.
These compilers (which are actually part of the Java runtime system) compile
.class files into native assembly code on the fly. In so doing, they can speed up
Java programs many times. Furthermore, since they only compile classes as
they execute, the typical initial delay associated with traditional compilation is
eliminated. As these compilers mature, we can expect the performance hit
associated with Java to disappear.

At this point, you may want to know how you can become Java-enabled. If you
simply want to run Java applets on your machine, (that is, Java programs
transferred over the Web) you can do so using the latest Netscape beta,
available from www.netscape.com/. If you'd like to begin experimenting with
programming in Java, or running non-browser stand-alone Java programs, you
can do so with the free Linux port of the Java Development Kit (JDK). Point your
browser at java.blackdown.org/java-linux/Information.html to find out where to
get this. If you'd like an alternative to the Java compiler included in the JDK,
there is EspressoGrinder, a drop-in replacement for the JDK compiler.
EspressoGrinder is written in Java, and thus can be run anywhere that a Java
runtime has been ported. You can get it at wwwipd.ira.uka.de/~espresso/. If
you'd like more information on Java, the JDK, and general Java happenings,
check out Sun's site at: www.javasoft.com/java.sun.com/devcorner.html. A Java
FAQ is available from sunsite.unc.edu/javafaq/javafaq.html.

The political and economic significance of Java is enormous, especially for Linux
developers. Because of the high degree of virtualization in the JVM, developers
are free to create their applications on platforms other than those that they
target. Thus, it is now possible to use your Linux system to develop Java
applications that can effortlessly tap into the popularity of Windows, Macintosh,
HP-UX or SGI machines, to name a few. Furthermore, Linux will undoubtedly be
able to reap the benefits of applications written under other platforms for
exactly the same reasons. Overall, we can expect Java to usher in a new era of
software interoperability, empowering developers and users alike on all
platforms.

Rudi Cilibrasi (cilibrar@ugcs.caltech.edu) has been programming computers for
over a decade; he works as a software consultant, specializing in Java, C++, and
Linux.

http://www.netscape.com/
http://java.blackdown.org/java-linux/Information.html
http://wwwipd.ira.uka.de/~espresso/
http://www.javasoft.com/java.sun.com/devcorner.html
http://sunsite.unc.edu/javafaq/javafaq.html
mailto:cilibrar@ugcs.caltech.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Flicker-free Animation Using Java

Paul Buchheit

Issue #30, October 1996

Currently the most popular use of Java seems to be in building Applets. In this
article Paul shows you not only how to make a applet, but how to make it look
good.

If you were awake this past year then you've probably heard of Java. If you were
browsing the World Wide Web with a recent version of Netscape then you've
probably even seen a Java applet or two. A Java applet is a Java program that
interfaces with and endures the security restrictions of a web browser.
Animated displays and games were some of the earliest and most popular uses
for applets, although certainly not their only uses. You may have already
noticed that, despite the popularity of Java animation, many applets don't do
animation very well.

In order to illustrate beginning Java programming and animation techniques, I
wrote a very simple slot machine in Java, its only moving part a lone, spinning
wheel. To start, I will present a slot machine that uses one of the simplest and
(unfortunately) most popular methods of animation. This slot machine won't
look very good, but making it look better is not very difficult, and I'll present
several methods for improving it. The source, images and actual incarnations of
the slot machines described in this article are available at k2.cwru.edu/~ptb/
lslot/. I recommend that you experiment with them as you read this.

This slot machine is composed of two images. The first image--the body of the
slot machine—is really just a decorative so I have chosen our good friend and
potential Linux mascot, Tux. The second image is really a strip of images that
forms the face of the slot machine's wheel (Figure 2). We could load each of
these images separately but that would probably slow down the loading
process and complicate the code. These images are loaded inside the init()

method through a call to getImage(), a method defined in the superclass
Applet.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/030/0169l2.html
http://k2.cwru.edu/~ptb/lslot/
http://k2.cwru.edu/~ptb/lslot/
https://secure2.linuxjournal.com/ljarchive/LJ/030/0169f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0169f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/0169f2.html

If you know C++ (or Java) you might notice that init() functions a lot like a
constructor, i.e. it is used to initialize variables for a newly created object. There
is a big difference however, in that a constructor is called when the class is
instantiated, init() is called when the applet's host is ready to initialize the
applet. Moving the getImage() code discussed above from init() to a constructor
could cause it to break.

When the applet's host finally decides to display the applet it will call paint().
Looking at paint() you should notice that it gets passed a variable g of type
Graphics, it is with this variable g that you will do your drawing. In fact, all the
drawing that an applet ever does is through some instance of Graphics. The
first line of paint(),

g.drawImage(body, 0, 0, this);

will draw the image body at position 0, 0. The fourth argument to drawImage(),
this, specifies an ImageObserver, this is simply a reference to the current
object.

An ImageObserver is an instance of any class that implements the
java.awt.image.ImageObserver interface, meaning that it has been declared to
implement ImageObserver and has a method imageUpdate(). In the following
example, an instance of the class Foo would be a valid ImageObserver.

class Foo extends Object implements ImageObserver
{ ...
 public boolean imageUpdate(Image img, int flags,
 int x, int y, int w, int h) {
 ...
 return true;
 }
}

Interfaces provide a limited, yet safe and usable form of multiple inheritance.
Fortunately, java.awt.Component, an ancestor of the superclass, Applet, is
already an ImageObserver so no code needs to be written here.

If the image is not yet fully loaded the system will make note of the
ImageObserver. Later on when more, but not necessarily all, of the data is
ready, imageUpdate() will get called. By default, the imageUpdate() method for
an applet will call repaint(), which causes the “visual loading” effect where the
image gets painted as the data is loaded.

The next thing that paint() does is create a new Graphics specifically for drawing
the wheel on the slot machine. This is accomplished by a call to
createForWheel(), a method that I added. As mentioned, all drawing is done
using a Graphics, and every Graphics has a rectangle somewhere on screen or
in memory, to which it can draw. If a command such as drawImage() involves

drawing outside this rectangle, the part that extends outside the rectangle is
clipped. This is very useful if we only want to display a portion of an image.

The createForWheel() method creates the new Graphics by a call to the create()

method of the Graphics that was passed to paint(). Four integers are passed to
create() which specify the location and size of the new Graphics's rectangle—in
this case, the position and size of the wheel. Now that we have this new
Graphics we can do things such as:

drawImage(strip, 0, -55, this)

Even though strip is over 500 pixels tall and the specified coordinates put it in
the upper left-hand corner, a nice 55 by 55 pixel square (the size specified when
creating the Graphics) shows up at the position specified for the wheel that
displays rows 55 through 110 of the image strip.

Once the new Graphics is no longer needed, its dispose() method should be
called. This probably seems a little odd since Java has automatic garbage
collection (meaning that memory does not have to be explicitly freed as in C or
C++). The reason for calling dispose() anyway is that Garbage collection is not
immediate and the Graphics could be in possession of limited system
resources.

This slot machine, like most, does not spin its wheel all the time. In fact, its
wheel only spins in response to a mouse button click and then only for a short
time. Looking at the mouseDown() method you can see that it simply creates a
new Thread called “spinning”. When a thread is started it calls the run() method
of the Runnable (another interface) object specified in the thread's constructor.
In this case the object is this applet, this.

The slot machine's exciting spinning action is implemented in run(). The first
thing that run() does is to ask getNewItem() where it's going. The getNewItem()

method just returns a random number from 0 to 5 specifying the stopping item
on the wheel. The run() method then calculates how far, in pixels, the wheel
must travel to get there, including the number of items that should spin past
the front before the wheel stops. After this run() simply loops until the wheel
reaches its destination. Calculate the new position, repaint, sleep, repeat. Once
finished run() just sets spinning to null so that clicking the mouse button again
starts the wheel spinning, and run() returns.

Try the applet! Looks awful, doesn't it? Probably the most obvious defect is the
ugly grey flashing that appears while the wheel is spinning. Fortunately, this
problem is very easy to fix—every time repaint() is called the system
asynchronously calls update(). update() is an inherited method (defined all the
way back in the class java.awt.Component) that draws a rectangle the size of

the applet using the background color and then calls paint(). This rectangle
draw is the source of most of the flicker—since we are going to immediately
draw over the whole region of the applet it is not only annoying but
unnecessary. To fix the flicker, just insert the following method in the space
between createForWheel() and the paint methods (see Listing 1):

public void update(Graphics g) {
 paint(g); }

Now run the applet—doesn't it look much better? However, if you look closely
you might notice that the wheel has a slight black flicker, and the animation is a
little rough. This problem is similar to the previous one—the body of the slot
machine, which just has a black square where the wheel should be, gets drawn
before the wheel graphic. so for an instant there isn't any wheel. One popular
solution for this problem is double buffering: using an off-screen buffer to hold
the image while it is being drawn. Now the part of the body hiding behind the
wheel will never appear.

To add double buffering to our applet, the first thing that you must do is create
a buffer, called (appropriately enough) buffer. Next add an Image instance
variable called buffer into the class and insert into the init() method the line:

buffer = createImage(size().width, size().height);

Now paint() must be modified so that it will first draw into the buffer and then
draw the buffer itself onto the screen. This new paint() should look something
like this:

public void paint(Graphics g) {
 Graphics bufG = buffer.getGraphics();
 bufG.drawImage(body, 0, 0, this);
 Graphics clipG = createForWheel(bufG);
 drawWheel(clipG, currentWheelPos);
 clipG.dispose();

 g.drawImage(buffer, 0, 0, this);
}

Now run the applet—looks much nicer, no more flicker! But it seems awfully
inefficient to redraw the entire area of the applet window when only a small
part is changing, doesn't it? Another easy fix! Simply change the line:

repaint();

found in run() into:

repaint(wheelPosX, wheelPosY, wheelSize, wheelSize);

This new call tells the AWT system to update only the specified rectangle and
leave the rest of the window alone.

https://secure2.linuxjournal.com/ljarchive/LJ/030/0169l1.html

It seems that, as before, we are drawing the body of the slot machine more
often than needed, only this time it's to the buffer instead of the screen. It's
possible to work up a scheme where only the wheel gets repainted to the
buffer, fixing this complaint, but, as you may have already realized, there is a
better way.

This buffer is silly, not only is it starting to get complicated but having some big
Image in memory is a big waste, especially for more complex applets (such as a
big, complex, slot machine). Buffer images have their place but buffering the
whole applet is rarely a good idea. Why not just forget about using repaint and
instead draw the spinning wheel right inside of run()? Good idea. Going back to
the code that we had before adding in that buffer, modify run() as follows:

public void run() {
 // Gets something to spin to.
 int nextItem = getNewItem();
 int pos = currentWheelPos;
 int finalPos = (itemsToSpin + nextItem) *
 wheelSize;
 Graphics g = createForWheel(getGraphics());
 while((spinning != null) && (pos != finalPos))
 {
 pos = findNextPos(pos, finalPos);
 currentWheelPos = pos % stripLen;
 drawWheel(g, currentWheelPos);
 getToolkit().sync();
 try {
 Thread.sleep(delay);
 } catch(InterruptedException e) { }
 }
 g.dispose();
 spinning = null;
}

Now we are simply getting the Graphics that we need to draw the wheel and
calling drawWheel() directly every time we move the wheel. The trick here is to
call

getToolkit().sync();

when we want the drawing to appear. Without the call to sync() the system
would wait until several drawing requests arrive, resulting in jumpy animation.

Finally the slot machine is finished! I think you can see that although the code is
almost identical to that of the first slot machine, the resulting animation is
much smoother.

For more complex animations you will probably want to use a combination of
the methods presented here. For example, let's say you want to create a box
with two balls bouncing around inside. In most cases you will simply have a
drawImage() for each ball, but what happens if the two draws overlap? You may
end up with flicker in the area of intersection. One solution would be to double
buffer the draws whenever the two images intersect.

As usual, if you are having a hard time with some aspect of your applet you can
(hopefully) find an applet that does something similar and look at the source.
The largest collection of Java applets can be found at Gamelan (http://
www.gamelan.com/), you should also find a link to the winners of the Java Cup
International there. Another good place to find applets is the Java Applet Rating
Service (JARS) at www.jars.com/. As the name implies, the Java Applet Rating
Service rates applets based on a number of factors including quality of code (if
the code is freely available).

Paul Buchheit (ptb@po.cwru.edu) is an inmate at Case Western Reserve
University. When he's not busy sleeping, he's awake.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.gamelan.com
http://www.gamelan.com
http://www.jars.com/
mailto:ptb@po.cwru.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

That First Gulp of Java

Brian Christeson

John D Mitchell

Issue #30, October 1996

A relatively new technology, Java has experienced phenomenal growth. Why?
Read on.

When we told a newbie friend that we had just co-authored a book on Java, he
said, “You may be surprised to learn that I've heard of Java.” We weren't. In little
more than a year Java has gone from an obscure back-room project at Sun to
an all but universal topic of interest and speculation in the computing
community—and we would be astonished if it hadn't.

If Java were just another powerful, expressive, object-oriented programming
language, a few developers would have glanced at it, said, “that's nice.” and
gone back to plowing their way through C++ code. If it merely offered a far
more flexible, secure, and transparent way to enrich web page content with
small programs, a few web surfers would have gotten about as excited as they
did over “plug-ins”. If it only provided a more convenient way to distribute large
applications across heterogeneous platforms, a few large companies would
have begun investigating its potential.

Java combines all these features and many more, however, and it is this
extraordinary combination that uniquely qualifies Java to capture the interest
of an entire industry, and to demand significant investment by most of the big
names in that industry: Borland, Intel, Microsoft, Novell, Oracle, SGI, and
Symantec among many others. Even a fairly brief technical overview should
suffice to explain the unprecedented enthusiasm that has greeted Java.

Language Features

Like C++, Java capitalizes on the popularity of the C language, and preserves
much of its compact, expressive character. Unlike C++, it makes no attempt to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

maintain backward compatibility and, for that reason and others, it has many
advantages over its currently popular cousin.

While C++ provides syntax to achieve encapsulation, inheritance,
polymorphism, and other features of object-oriented programming, it also
supports traditional structured (and unstructured) programming. Java does not.
Every Java program we create, even the first “hello world,” is object-oriented,
preventing us from backsliding into old, familiar—and less productive—ways.

The need to support two utterly different types of programming makes C++
needlessly complicated. For example, a parameter can be of either a built-in
type or a class type, and may be passed by value, by reference, or via a pointer:
six possible combinations. In Java, a built-in parameter is always passed by
value, a class-type parameter is always passed by reference: just two
combinations, and no decision required. Much simpler. Furthermore, stronger
typing eliminates many of the implicit type conversions that introduce
unexpected ambiguity.

“Wait! No pointers?” Yup. No pointers. C needed them to support array
processing and a primitive form of call by reference. Java supports true call by
reference (as C++ does) and implements arrays as a built-in type. So, no
pointers. No uninitialized pointers. No forgot-to-check-for-NULL pointers. No
tears-at-midnight-trying-to-find-the-mis-aimed pointers.

Global variables also meet a cruel but well deserved fate. In Java, every datum
is neatly encapsulated, accessible only by operations of the class of which it's a
member. Thus another major source of programming mistakes disappears
entirely. Automatic garbage collection gets rid of yet another: the “memory
leaks” that result when we fail to release memory allocated dynamically.

Java also discards a mechanism that “seemed like a good idea at the time”: the
preprocessor.

Early C compilers avoided multiple parsing passes by supporting forward
declarations of functions and data. Programmers could ensure consistency
among declarations, definitions, and uses by placing the declarations in
separate header files, then directing the preprocessor to “#include” them in
source files. C and C++ implementations have continued this tradition into an
age in which systems are so large that we must pre-compile the header files
themselves to get acceptable rebuilding times—and header-file maintenance
becomes a major task in itself.

In Java, class definitions are not split between header and source files. Simple
“import” statements tell the compiler which classes are needed by the current

source file, and the compiler does the rest. Declaration order becomes
unimportant. This scheme requires a bit more sophistication from the
compiler, but one result of eliminating the preprocessor is that Java programs
generally take less time to build than C++ programs. Another is that the
developer's life becomes much easier.

The C/C++ preprocessor solves problems other than centralization of
declarations, of course, but the Java compiler handles most of these other
problems easily. And one other major problem disappears altogether:

The need to support multiple platforms obliges C and C++ developers to devote
considerable effort to maintaining alternate blocks of code, and using
conditional-compilation directives to ensure that only the correct blocks are
compiled when they rebuild a particular system version.

Java makes all that tedium go away, because the language is independent of
any particular machine architecture. Java programs are fully portable, not only
the source code but the executable code as well, courtesy of the Java Virtual
Machine (JVM).

The Virtual Machine

Most modern languages are “fully compiled.” The compiler generates the
“native code” of a specific target platform, i.e. the machine language
appropriate to a particular operating system running in a particular processor.
Once a program is installed on a user's machine, the operating system executes
its instructions directly—an arrangement that achieves efficiency at the
expense of portability. For example, if you are running Linux on a Pentium-
based PC and creating a C program with GNU's gcc compiler, the resulting
executable will run just fine on your machine and ones like it, but not on a
Pentium running OS/2, and not on a DEC Alpha running Linux.

If you want to distribute your program widely, you will need to recompile it for
a dismaying number of platforms, probably using a number of different
development tools. Oh, and you want to keep supporting your software after
sale, as well? Nice of you—start hiring. Experience has shown that the long-
term effort of maintaining software products on multiple platforms far exceeds
the effort of developing them in the first place. And the costs are proportional
to the effort—better hunt up some heavy financing to pay all those people.

Java eliminates the complexity of cross-platform development and support
through its reliance on a “virtual machine.”

As the word “virtual” implies, a Java compiler's target is a machine that does not
actually exist. Instead of generating the native code of a particular platform, it

produces “bytecode”, a sequence of 8-bit codes that no actual machine can
execute directly. Your program will run, however, and not only on your Linux
box, but on any platform that supports Java—and these days that's the same as
saying “on any popular platform.”

The Run-time System

To execute a Java program, a machine must have a Java Run-time System (JRTS),
an implementation of the JVM for that platform—but that is all it needs to run
any program written in Java. The JRTS executes the bytecode much as an
operating system executes native machine code. Because the run-time system
handles all those nasty machine-specific issues for every program, the program
itself does not have to.

It is a common mistake to confuse the run-time system with the virtual
machine. Even people who should know better sometimes refer to “a program
running on [a particular computer's] virtual machine”—and thereby conceal a
crucial distinction. Part of Java's unique character is that only one piece of
software, the JRTS, knows anything about the particular platform. Programs
themselves remain blissfully ignorant of hardware dependencies—and so do
programmers. They write their code for a machine that does not exist, serenely
confident that doing so makes it portable to any popular platform.

A JRTS loads compiled classes as needed, performs security checks, and
dynamically binds calls to methods. At that point many run-time systems begin
executing the bytecode, interpreting each one as it is encountered. This
continuous interpretation limits execution speed, and is the source of many
early complaints about poor performance. An increasing number of Java
implementations solve this problem by performing a second compilation step,
“just in time.”

Just-in-Time Compilation

Native-code compilers produce fast executables at the expense of portability.
Java compilers that produce bytecode achieve portability at the expense of
speed—if the JRTS interprets each instruction every time it is encountered.

Many run-time systems don't. In place of the interpreter they include a just-in-
time (JIT) compiler. The first time the JRTS loads a portion of bytecode, the JIT
compiler translates it into native code. Thereafter, the run-time system
executes the native code instead of interpreting the bytecode; execution speed
improves dramatically.

It is worth stressing that users get the speed of fully compiled programs
without sacrificing portability. The JIT compiler is part of the JRTS, not the Java

source-code compiler, so all platform-specific knowledge resides only in the
run-time system, on the user's machine, where it belongs. Software developers
continue to compile and distribute the same portable, architecture-neutral
bytecode files.

A second compilation step is not as expensive as it might sound. JIT compilation
is actually quite fast in practice, because the most time-consuming tasks are
completed in the first translation, from original Java source code to bytecode.
JIT-compiled code is currently running 20 to 30 times faster than interpreted
bytecode; this level of performance compares favorably with that of object-
oriented code written in C++. Future improvements could boost this ratio to 50
or more, which would put Java executables on a par with optimized C code.

Security Concerns

Java's virtual-machine concept improves security as well as portability, and at
several levels.

Because a traditional fully compiled program is in native code, it is in an
uncomfortably good position to exploit weaknesses in the operating system or
hardware, and do serious damage. By contrast, Java bytecode is architecture-
neutral, and what it does not know about the platform it cannot exploit. This
“passive protection” is only the beginning, however.

Strong typing, including the addition of a boolean type, the replacement of
pointers with type-safe references, and the elimination of other troublesome
features makes it possible to perform run-time checks that validate a program's
correctness.

In addition, the run-time system's Bytecode Verifier validates each program at
load time, in several ways: It simply rejects any file that does not adhere to the
distinctive bytecode-file format, thus avoiding execution of what might appear
to be valid Java instructions but are not. When satisfied that a file is in the
proper form, the verifier examines the bytecode itself for ill-formed constructs.
It then goes on to search for errors usually not detected before run time, such
as stack overflow.

Another part of the JRTS, the Class Loader, further enhances security by
isolating classes from each other in separate security domains. To guard
against malicious code, it separates classes that are built into the run-time
system itself from classes local to the user's account, and separates both of
these from classes that come from other users and other systems. An ill-
intentioned “foreign class” thus cannot disguise itself as a more trusted class.

Users are understandably concerned that a virus or a Trojan Horse will enter
their systems by way of an applet downloaded from the Internet. To guard
users' systems, run-time systems employ combinations of security features Java
makes possible, above and beyond bytecode verification and class partitioning.
A Web browser or other package typically enables users to select from among
multiple security levels, so that they may deny or limit “untrusted” applets'
access to network connections and local file stores. Clearly visible marks
distinguish windows created by trusted and untrusted applets so that the latter
cannot masquerade as the former.

Much has been made of the risks inherent in downloading executable code
over the notoriously insecure Internet. Experience with “plug-ins” has created
some justified worry, but it is important to learn from Mark Twain's proverbial
cat, and not shy away from a cool stovetop just because we once jumped onto
a hot one. Java is too new for us to dismiss all such concerns blithely, but its
many security features make it much safer than comparable technologies.

Some will not be satisfied with any risk level above zero; for them the only
counsel can be complete abstinence from the pleasures of the Internet. Others
realize that some risk is an inevitable feature of life in this world, and they can
protect themselves by obtaining a Java Run-time System from a reliable vendor,
through means as secure as those they use to acquire other software. Doing so
should bring risks down to a level acceptable by most.

Conclusion

The first uses of any new technology are often relentlessly trivial. If our only
exposure to Java has been cutesy animations and downloaded calculators, it all
too easy to underrate its potential. We hope this brief overview has shown that
Java offers much more than bouncing heads—even though we didn't have the
space to describe the neat way Java separates inheritance of implementation
from inheritance of interface, and its built-in support for multi-threading, and....

Brian Christeson with John Mitchell, co-authored of Making Sense of Java. They
are working on professional courses, other books, a compiler, and consulting/
development projects related to Java, Tcl/Tk, and other languages. Brian
lectures on OO analysis, design, and programming at major companies in the
U.S. and abroad.

John Mitchell with Brian Christeson, Making Sense of Java. They are working on
professional courses, other books, a compiler, and consulting/development
projects related to Java, Tcl/Tk, and other languages. John developed PDA
software in OO assembly language, and writes two columns for JavaWorld
magazine.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

My Next Pentium Is A DEC Alpha

Bryan W. Headley

Issue #30, October 1996

Is a DEC Alpha a solution if you want a really fast Linux system? Here is one
person's experience that may help you decide.

With the propagation of Linux onto non-Intel platforms, we are no longer tied
to PCs for running our favorite *nix. I have been getting very leery of the
“Pentium per 6 months” phenomena we've been seeing the last couple of years
(i.e., whatever you buy is obsolete before you get it home). Each provides
incremental enhancements, but nothing to get too excited about.

My goals were to find a new machine that could run Windows NT well, and
provide me with an interesting platform for Linux work. (Well, someone has to
study the enemy!) Limited to Pentiums, running NT on anything less than 133
MHz would not cut it. Frankly, I'm not expecting anything fun from the Pentium
family until the HP/Intel PA-Risc merger chip is released (the forthcoming P7).
So, it was off to other directions. A quick market survey indicated that DEC
Alphas met my requirements, are competitively priced, and deliver good
performance.

I settled on the DEC Universal Desktop Box (UDB), a.k.a. the Multia. This is a
fairly compact (2.8x12.5x12.5 in) package which includes a 166- or 233-MHz
Alpha, 24MB memory (expandable to 128MB), 256KB cache, Ethernet, floppy,
two serial, one parallel, SCSI-2, sound and video components. The 166-MHz unit
comes with an internal 340MB hard disk, or else a 520MB unit. Expansion is
possible through a PCI card slot and two PCMCIA slots. The video chip supports
multisync monitors from 640x480 to 1280x1024, 60 Hz to 75 Hz refresh rates;
and the sound card is a clone of the Microsoft Sound system.

Extra Goodies

I found that the internal hard disk was too small. Removing it, however, was out
of the question. Digital put in a 2.5" form-factor drive, a size popular in laptops,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

but which are generally IDE drives. I could force a 3.5" SCSI-2 drive in, but who
would want the drive I removed? It's not too bad. I use the internal drive for
boot partitions and swap space, and an external 1GB disk and a CD-ROM drive.

The Multia comes with a three-button PS/2 mouse, but no keyboard. You can
obtain UDBs that support PS/2- or PC/AT-style keyboard connectors. Choose a
keyboard type and a standard Multi-Sync monitor, and you are ready to run.

Alpha motherboards have PCI adaptors. Therefore you have a ready supply of
PC-compatible adaptor cards that can be used with the Multia. For example,
there are drivers for joystick adaptors. Even though the UDB comes with most
of the features you would want anyway, there's no reason why you could not
install a different video card, ISDN controller, etc., as drivers become available.

What makes the UDB special is the lack of frills. Digital, in an effort to keep the
price down, markets the machine without software or licenses, and only about
three pages of “documentation”--a pictorial essay on how to connect external
devices to the connectors, how to open the case and insert RAM, a pointer to
Linux on Alpha homepage (www.azstartnet.com/~axplinux) and information on
how to join the declinux mailing list.

Thanks for the Confusion

Digital decided that they rather liked the “Multia” name. The name therefore
refers to both the Alpha version I am describing to you, as well as an Intel
Pentium version. The boxes look very similar, and target the same market. I
have not seen documentation that refers to the Intel Multia as a UDB, whereas
the names are interchangeable for the Alpha version. Windows NT refers to the
unit as a “Multia”, and the Linux FAQ prefers “UDB”. So take your pick, but be
sure the DEC person knows which one you mean.

Quick Introduction to Alpha Linux

This machine seems perfect for Linux and Windows NT. In fact, DEC, seeing a
market for a low-cost *nix, participated in developing the port with Linus and
the Internet community. The result is a 64-bit Unix that is binary-compatible
with statically-linked DEC Unix (formerly OSF-1) applications. So, the availability
of commercial software is not too big an issue. If you need a program like
Netscape or WordPerfect, get the DEC Unix version. If it is statically linked, it
should run with no problems.

Alpha Linux is interesting in that one of the main repositories of platform-
specific code is kept on gatekeeper.dec.com. [See “Porting Linux to the DEC
Alpha”, by Jim Paradis, in LJ #19—ED] Equally interesting is the fact that a lot of
the platform-specific code is written (and source shared by) DEC engineers.

http://www.azstartnet.com/~axplinux

Where Are We on the Kernel Source Tree?

The DEC Alpha source has been merged back into the generic Linux version
1.3.x. The result is, you can go to Linus' home page and download and build the
linux-pre2.0.10 with full Alpha support. But, there is no support (yet) for
sharable libraries (neither about QMAGIC/ZMAGIC, nor ELF). Plans are afoot to
go to ELF while retaining DEC Unix compatibility via statically-linked binaries.

Available Alpha Distributions

BLADE 0.3 based on 1.3 kernel; freely available

Red Hat 2.1 1.3.57 kernel; commercial distribution; shipping

Craftworks 2.1 1.3.89 kernel; commercial distribution; shipping soon

Of these, BLADE 0.3 is the original stable distribution. The README file at
gatekeeper.dec.com suggests that you go with a commercial distribution
instead. BLADE therefore is basically recent legacy code, albeit freely available.

BLADE, Red Hat, and Craftworks all come with the requisite kernel, compilers,
libraries and utilities you would expect from a baseline Linux distribution. The
commercial distributions, however, come with all the “goodies” you would
expect (and get) from their Intel brethren—such as editors, networking, X-
Windows, TCL/TK, etc.

What differentiates one commercial distribution from the other is the package
mix that each vendor ships with his CDs. Ease of use of the installation
packages has to be weighed in. The documentation is essentially the same for
the Alpha and the Intel versions. Both Red Hat and Craftworks, however, come
with installation instructions. Red Hat adds the Alpha FAQ to the
documentation. Either way, there is little enough unique about the AXP to
require custom documentation.

My UDB came pre-installed with Windows NT and Linux (I had ordered Red Hat
2.1). The vendor, DCG Computers, installed a pre-release of the Craftworks 2.1
package, so I could help them compare and contrast the two versions. Here are
some of my findings.

Distribution Comparison

The Craftworks product is newer than Red Hat 2.1; you get Linux kernel 1.3.89
versus Red Hat's 1.3.57. Both are fairly stable, and of course, you can always
download the latest kernel no matter which package you use.

The DEC DC21030 display controller chip (aka the TGA) is built into the Multia.
The Red Hat 2.1 does not come with an X display driver for this chip, although
Craftworks does. Other video drivers come with the XFree86 port for the Alpha,
including the S3, P9000, and Mach 64 (which both Red Hat and Craftworks
have.) When Red Hat 2.1 was released, you had to buy a PCI video adaptor to
run X on the UDP. In the interim, DEC has released an X server for the TGA,
which Craftworks includes. Craftworks also comes with Lesstif, a Motif 1.2-like
widget library.

The great equalizer is the installation program. Both run reasonably well, but
each has little personality quirks that provide a few minutes' grief. The Red Hat
package will partition your hard disk, make the swap partition (mkswap), but
then forget to make the ext2 partition (mke2fs). Fortunately, you can switch
over to the second virtual terminal and take care of this omission before
continuing the installation process.

The Craftworks install package is somewhat overzealous in enforcing the size of
the swap partition. They want you to have a 32 MB swap. That is fine, but I
made a smaller one with Red Hat previously. The notification/irritation prompt
keeps coming up about the small swap partition. It wouldn't let me do anything
about it, such as kill it, and resize the partitions, but it was very persistent in its
warnings. I finally had to bring up Red Hat's partition editor to delete all
partitions by hand before I could continue. It could understand an empty
partition table, but one that was made incorrectly beforehand could not be
dealt with.

The trials and tribulations provided by the install programs yielded more
amusement than anything else. So, the question is, which distribution would I
use? Well, before I chicken out and tell you that I hand-merged things that I
liked from both distributions (such as: glint from Red Hat, NYS shadow
passwords from Craftworks, the Craftworks X Server, 1.3.89 kernel, etc.) let me
mention to you that not all the candidates have been heard from.

Red Hat is scheduled to release version 3.0.3. I noticed that they have the new X
Server. No doubt their standard packages have been updated to match their
Intel 3.0.3 offerings.

Real Trials and Tribulations

On PCs, the boot ROM attempts to read the initial sector of the primary floppy
drive, or of the primary hard disk. Bootstrapping from that sector, the rest of
the operating system is loaded. This design is fairly limited and the fact that the
DEC moves away from that nonsense is the good news. The SRM Console
Loader for the Multia comes with the ARC loader. ARC is pretty cool, insofar as

you can have multiple operating systems configured (from which you may
choose at boot-time); these systems' boot sector can exist on any partition of
any addressable device, including the floppy disk or CD-ROM. In fact, you can
have vmlinux on the floppy drive and have the root partition be on a hard disk.
This is all the good news.

The bad news is that I am a dangerous fellow. As I mentioned, I had DCG
Computers install Windows NT and Linux together. Unfortunately, too much
space was given to NT (more appropriately, I like to fit 2GB of Linux onto a 1GB
partition). So, there I was, an hour after unpacking everything and firing it up,
readjusting the partition table and trying to keep the ARC loader appraised of
what I was doing. Well, I ended up with ARC knowing of NO operating system,
and the partition table being empty, and I could boot neither NT nor Linux! Now
comes the moment of gravely earned education...

Craftworks comes with the boot and root/installation partition on floppies.
There are instructions on how to reprogram ARC to understand that the floppy
disk has the operating system. Red Hat has the images of these floppies on the
CD-ROM, but you have to find a way to get those downloaded to floppy. A
friend with a PC and CD-ROM drive is useful (definitely, definitely, definitely
make master copies of those floppies after you finish your installation).

ARC was written by Microsoft and DEC. Its specialty is loading operating
systems from file systems it understands, specifically MSDOS FAT partitions.
Once you point to one, you tell it which executable to run in order `to load the
desired operating system. For Windows NT, that would be OSLOADER.EXE. For
Linux, that would be MILO. But, the requirement here is that your loader has to
be found on a FAT file system (it could be in any subdirectory, given whatever
name you'd like). Let me add to the fun by telling you that I initially received the
UDP without the Craftworks CD-ROM and boot diskettes (they came the next
week). Oh, and don't forget the three pages of documentation: none of the
pictures told me what I wanted to know about ARC.

Thankfully, I had Windows NT, and ARC was written to simplify NT support.
There's a menu option called “install NT”, which will install from the CD-ROM.
The Microsoft documentation for any non-Intel platform was sort of humorous,
saying, “see the vendor's documentation for detailed installation instructions
for your platform.” But, then it said to run cd:\system\setupldr. System,
system; what's a system?!?

Thankfully, the Pentium was nearby, and a quick directory of the NT's CD-ROM
yielded that there were several directories, named after risc processors, where
setupldr could be found. One of which is “alpha”... (Insert “D'Oh!” here).

Off to the races I went. Setupldr allowed NT to be installed, which gave me a
nice FAT partition. On that Windows NT partition I placed a copy of MILO. A fun
Saturday, which I stretched out to 4 am Sunday as the result ...

So, could I have moved the Red Hat CD to the Pentium and had it make the
boot floppies? Yes, but if I remained Alpha-centric, I was doomed. Also, I had to
learn ARC, and expected that having Windows NT install itself would educate
me enough to get through it. Which it did; but if you look at something like this
with no background, it looks scary:

LOADIDENTIFIER=Linux
SYSTEMPARTITION=multi(0)disk(0)fdisk(0)
OSLOADER=multi(0)disk(0)fdisk(0)\linload.exe
OSLOADPARTITION=multi(0)disk(0)fdisk(0)
OSLOADFILENAME=\milo
OSLOADOPTIONS=

Which, if I look at SYSTEMPARTITION, tells me that the system partition can be
found off the Multia, off of the floppy disk controller, on floppy disk 0. As
opposed to my current Linux setup:

LOADIDENTIFIER=Linux
SYSTEMPARTITION=scsi(0)disk(0)rdisk(0)partition(1)
OSLOADER=scsi(0)disk(0)rdisk(0)partition(1)\linload.exe
OSLOADPARTITION=scsi(0)disk(0)rdisk(0)partition(1)
OSLOADFILENAME=\udb.arc
OSLOADOPTIONS=boot sdb1:vmlinux.gz root=/dev/sdb1

Which says that I should go to the SCSI controller, a SCSI hard disk, raw hard
disk 0, partition 1. Do you notice that this looks like a hierarchical file system?
And so it does, except that it is describing the controller/hardware path to get
to the boot code.

After the Storm the Calm

Of course, I caused my own disaster, but that makes the repairing much more
rewarding (you have that relief factor). After the first weekend of fun, what
could I do for amusement? Porting over some of my favorite utilities would be
fun. Both Red Hat and Craftworks take some of the fun out by already porting
over the Apache Web Server and browsers, but I could still have some fun by
moving other stuff over. So, the next question is, “What do you have to know to
port code to Alpha Linux?”

Porting Hints

X-Windows applications that use IMakefiles basically configure themselves out
of the box. GNU software that uses autoconf/configure to figure out what
system it is running on tends to get confused. The machine configuration string
that it synthesizes looks like alpha-unknown-linuxaout. This is confusing
because it is an alpha that is not running DEC Unix, nor is it Linux running on an

Intel system. What to do? Well, I usually put in the following code segment into
configure:

alpha-dec-osf3*)
 machine=alpha opsys=decosf3-1
 ;;
 ## We're Alpha Linux

 alpha-*-linux*)
 machine=alpha_linux opsys=linux_axp
 ;;

 ## Altos 3068
 m68*-altos-sysv*)
 machine=altos opsys=usg5-2
 ;;

But that means I have to write a ./src/m/alpha_linux.h (which I would make by
blending alpha.h, and removing anything cd DEC Unix specific), and ./src/s/

linux_axp.h (which would be made from linux.h, minus instructions on how to
make sharable libraries). None of that is too difficult. Later releases of most
software will come with pre-built configuration files as autoconf gets updated,
and developers begin to use the new version.

The other issue you get involved with is the fact that several programs publicly
available assume 32-bit addresses and 32-bit ints. Linux for the Alpha is a 64-bit
operating system, with 64-bit addresses. Frequently, this provides harmless
warnings about adding 32-bit offsets to 64-bit pointers.

Then there are the programs that attempt to override the definition of
operating system calls. System calls that have been standardized to take
parameters like size_t (but is being redefined for unsigned int) will cause
complaints from the compiler.

The really insidious things, though, are those programs that do bitwise
manipulations without regard to portability. Generally, I've learned to become
suspicious of any program that isn't packaged with autoconf/IMakefile, which
runs only on one platform (e.g., it runs on Linux; you tell us if it runs on Solaris,
BSD, HPUX, etc).

The Future Looks Bright

Many packages compile out of the box. With ELF support comes the ability to
port the Java JDK over. Sun, HP, and other notables are releasing their 64-bit
processors to the marketplace. And while everyone argues what the 64-bit
standard for Unix will be, we will already have been there, and have moved on
to more interesting projects.

Bryan W. Headley (bheadley@interaccess.com) has been working with Unix
since 1978 except for an interruption by that interloper, MS-DOS. A Unix

https://secure2.linuxjournal.com/ljarchive/LJ/030/0170s1.html
mailto:bheadley@interaccess.com

applications developer by day, he becomes a Linux hacker by night. There isn't
a compiler or kernel that he doesn't find worth playing with.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

DEC AXP Review

Bryan Phillippe

Issue #30, October 1996

Faster than a speeding bullet, able to leap tall buildings... it's Digital's AXP (aka
Alpha) Computer!

The Alpha computer I played with for this review was loaned to SSC by DCG
Computers, Inc. of Londenderry, NH. DCG can be reached via e-mail at
sjg@dcginc.com or by a visit to their web site at www.dcginc.com. DCG's goal is
to produce affordable computers based on Digital's Alpha Technology. The
loaned AXP was a model EV5-333Mhz with 64 MB of RAM, a 1 GB hard drive and
a quad speed CD ROM. DCG markets it for about $7,100.

My first hands on experience with the AXP was trying to fix it—always a good
way to start. The AXP EB164 had arrived, and had been mysteriously “broken”
during a second boot attempt. Evidently, the first boot had worked fine, but
someone in the office had changed a BIOS setting, rebooted and
“Kaboom...Alpha bits.” Now, although everything appeared normal, the system
would not even display the BIOS information. The hardware was functional,
and the cards, SIMMs and cables were properly seated.

The system I wanted to install was Craftworks Linux, and since no one would
'fess up to changing the BIOS setting, much less to what it had been changed, I
called Craftwork's Tech Support. The Tech Support people were friendly and
helpful, and even gave me the answer to the problem—always a plus—the BIOS
of the AXP has hard coded operating-system-dependent boot logic, i.e., the AXP
only knows how to boot DEC Unix and Windows NT. The “someone” had set the
BIOS switch to DEC Unix from NT, a perfectly reasonable thing to do
considering the options. Wrong! For a Linux installation, the switch must start
out set to NT, then you create and format a super tiny MS-DOS FAT partition (as
partition 1), make it bootable and install the AXP equivalent of [cw]loadlin[ecw]
in it. This hack will you get you booted okay, but it would be nice to have a Linux
option to begin with.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sjg@dcginc.com
http://www.dcginc.com

After the initial boot problems were fixed, so was the AXP, and we started the
installation of Craftworks 2.1 version of Linux. Due to the special AXP BIOS
feature and the fact that MS-DOS was involved in some way, the installation
was something other than “smooth and refreshing”. One unsuccessful
installation was caused by veering from the suggested partition size values. The
second installation went fine, as I used all the suggested sizes and followed all
the steps as given.

After completing the installation, I was able to boot the AXP from its own drive
and log in seconds later. It was incredibly fast—RISC fast—333Mhz fast—faster
than a speeding bullet fast (well, almost)! Using the AXP was a lot of fun—no
waiting on your prompt to come back, it was always there. The AXP was so fast
(see below) and performed so well, it was like a dream, then our next stumbling
block appeared. Following a kernel build of 4-5 minutes, I typed [cw]make
clean.[ecw]. Shortly after make began execution, the script died with a
segmentation fault. Following this failure, many of the regular, previously
working utilities (e.g., ps, finger, telnet, inetd, init) began failing. The only fix I
found was to reboot. Everything would run fine for hours, even through
concurrent compiles of GhostScript and the kernel, but as soon as I would run
the make clean script, everything would quit working. Through various
experiments, I found that any embedded rm command would cause a
segmentation fault, after which the system was totally unstable. I further found
that this problem was a bug in the version of Linux that I was using. The
problem went away with an upgrade of the kernel to a later version (1.3.89).

Our systems administrator, Liem Bahneman, ran a lot of benchmarks, including
dhrystone 1.1, iozone (HDD performance), bonnie (HDD performance), and
Byte UNIX benchmarks. Unfortunately, none yielded accurate results due to a
known flaw with math in the C library (libm) as ported to Linux/AXP at that time.
Another “benchmark” he ran was a render of a povray animation (i.e., ray
tracing). To quote Liem, “From my estimates, the same 72-frame, 320X240
animation render that took 13 hours on a Sparc20 would have taken
approximately 4 hours on the AXP as tested. This is an estimate, because the
render could not complete due to math faults.”

I then installed Red Hat's version 3.0.3 of Linux finding it quite similar to
Craftworks. Again, installation required the use of MILO (similar in functionality
to LILO) and a DOS FAT partition. Following the guidelines carefully, I had it up
and running quickly with no problems. Well after all, I was now an expert,
having done it once before. Red Hat for the AXP looks and feels like Red Hat for
the x86 except, of course, it's much faster. Red Hat's version of Linux did not
have the embedded rm bug described above.

With Linux becoming more robust every day, the AXP running Linux will be a
solid network daemon/file server. Especially since math-intensive applications
are no longer flawed by a libm bug (this bug has now been fixed), and all
“speed-matters” applications are math-intensive. If you are shopping for the
high-end performance offered by the AXP, this is the machine for you.

Bryan Phillippe (bryan@terran.org) is a 21-year-old Linux enthusiast who also
enjoys the company of his fiancee, rollerblading and street-style snowboarding.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bryan@terran.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #30, October 1996

Readers sound off.

On with the Masquerade

I read with interest Chris Kostick's article in Linux Journal July 1996 (Issue 27). I
was a bit disappointed that he concentrated on 1.2.x kernels and didn't
mention the advantages of using a 1.3.85+ or pre2.x kernel, and that he didn't
explain the use of ipfwadm. For instance, although many ICMP packet
programs do not work, with recent kernels ICMP support has been added for
some programs such as traceroute (ping still does not, and probably never will
work).

I was also bothered by his insistence that you couldn't pass remote X clients to
a masqueraded server. I was sure you could, because I remembered doing it!
Using ssh (a secure rlogin variant available at http://www.cs.hut.fi/ssh/) to
connect to a remote host from the masqueraded server, your X display
environment variable is automatically set, and “X11 connection forwarding
provides secure X11 sessions !”

So you can pass X clients through a masquerading machine if you initiate a
connection from the masqueraded machine using ssh.

—Daniel Morrison daniel@hartco.ca

The Author Responds

At the time I wrote the article, 1.3.57 was the latest “stable” release. The 60's
were available but most of them were to be avoided. I was using 1.3.56 so
that's what I based the article on, pointing out that 1.2.x kernels were
compatible.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.cs.hut.fi/ssh
mailto:daniel@hartco.ca

Actually, ping could work. ICMP echo request/echo reply messages can be
masqueraded for. The key is the identifier field in the ICMP message. The
problem is matching replies that come back from the external networks to the
originator. The masquerading would function as shown in Figure 1.

The masquerading machine will have to maintain a cache that will map the
originating IP_Addr+ID --> ID numbers of the requests originating from the
Masq host. The ID numbers start at a value that should not conflict with 'real'
ICMP echos from the Masq host. I chose 60000 to keep in concert with the
masquerading port numbers. The ICMP code within the kernel would also have
to be modified so as not to conflict with internal ID numbers never exceeding
59999.

Matching the replies is a matter of checking the cache for the return mapping,
and sending the ICMP echo reply to the original host.

There are other protocol details not discussed here, and I haven't looked at all
of the nuances of the protocol so I leave the theory of whether it would really
work up for discussion.

I didn't consider passing X (or any other protocol) encapsulated the same as
sending the real thing. Therefore because the X client has to identify the
address of the server in the DISPLAY variable or -display argument, and the
server's address is hidden, it won't work.

—Chris Kostick ckostick@csc.com

Virus Cleaners May Like DOS

Thanks again for another great issue of the Linux Journal. On the day it arrives
all activity in the house (on my part anyway) stops until I have read it from front
to back.

I would like to make a comment on Michael Johnson's article Serving Two
Masters. The “Recovery Recipe” that Michael presents was something that I had
to discover the hard way myself a month or two ago. The situation had nothing
to do with Win95, although it did involve a dual boot PC. This PC runs both
Linux and DOS/Win3.1 (thank you LILO), and in one of the DOS sessions I

https://secure2.linuxjournal.com/ljarchive/LJ/030/ltefig.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/030/ltefig.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/030/ltefig.large.jpg
mailto:ckostick@csc.com

managed to acquire a virus that infected the MBR. No problem says I—I'll just
use McAfee Virus Clean, and all will be back to normal. Virus Clean worked fine,
but all of a sudden LILO was gone. It appears that (at least with McAfee) the
process of cleaning a boot sector virus just restores the DOS flavour MBR. I was
not brave enough to re-infect my PC with the same virus to see if other virus
cleaning programs act the same way, but I would suspect that they do (as most
do not take periodic copies of the MBR to restore from).

I found the second edition of Æleen Frisch's book Essential System
Administration (published by O'Reilly) absolutely invaluable in this effort. If you
are a Linux user—run, don't walk and get this book!! Make sure that it is the
second edition though as the first edition does not really deal with Linux.

—Kris Boyle kboyle@synapse.net

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:kboyle@synapse.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Politics of Freedom

Phil Hughes

Issue #30, October 1996

In much the same way that the various political parties in the United States
want to define what democracy really is, software politicians want to define
what free software really is.

I like say it's back, but the reality is that it never went away. In much the same
way that the various political parties in the United States want to define what
democracy really is, software politicians want to define what free software
really is.

While the majority of the users of free software (whether it be GPLed, public
domain, BSD licensed or any of the other free classes of software) are happy to
use it and appreciate that it exists, there is a minority who have their own
political agenda. And the one at the top of the minority list is Richard M.
Stallman (commonly known as RMS), creator of the Free Software Foundation.

Most Linux users are aware of the GNU project of the Free Software
Foundation the people who have made a huge contribution to the Linux effort
through the creation of programs like Emacs and gcc. But not many people
know that the GNU project was supposed to turn out a complete Unix-like
operating system, including a kernel called The Hurd.

RMS approached Linux Journal almost two years ago and told us that we
should refer to what we call Linux as GNU/Linux. While we all recognize the
contribution that the GNU project has made, we declined to make this change,
as it is our job to report what is happening, not to create news (something that
many other magazines along with newspapers and TV news programs could
learn from).

Stallman's latest idea is to rename Linux as Lignux. (I would have included
particulars from the opinion RMS wrote, but it is under a copyright that allows
verbatim copying only, and it is longer than the space allotted here. The gist of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

his stated opinion is that the GNU project has been working for 12 years to
make something like what Linux is today, that Linux is based on GNU, and that
the GNU project was built from other free software including X Windows, TeX
and BSD network utilities. He then concludes that these components together
make up what is called the GNU system.

Using this same logic we could say that we have combined the GNU system, the
Linux kernel and other free software to produce what is called the Linux
system. If fact, we do say it.

What Went Wrong?

Perhaps RMS is frustrated because Linus got the glory for what RMS wanted to
do. Linus managed to get more people working together for free to produce a
commercial-grade finished product. While Linux didn't start out to be put under
GPL license teRMS, Linus decided that was the right thing to do. Rms should see
this as a serious conversion—it's like Linus found religion. Linux isn't a threat or
a competitor; it is RMS's biggest success.

What's All the Fuss About?

Or, put another way, why am I taking up all this space to discuss this matter?
Because a split between FSF-supporters and Linux-supporters just doesn't
benefit anyone in the free software community. It doesn't benefit any
consumers of software—free or otherwise. In fact, it only benefits companies
like Microsoft.

I have been a supporter of the Free Software Foundation for years: SSC
continues to sell FSF books (none of which have ever been profitable for us, but
have helped the FSF), and I have little disagreement with what RMS has to say.
However, I do have a problem when he feels that everyone has to believe
exactly the same things he does. I want Bill Gates to yield to the pressure of a
successful free software movement and make his software freely available,
rather than let him watch the infighting in the free software community over
which type of free software is best.

I see two driving forces that have made Linux a success: it's good, and it
exemplifies the right attitude. While the BSD crowd has been busy with
infighting, and the Free Software Foundation has been trying to define what
'free' really is, the Linux community has been writing code and building a
complete and successful package.

This attitude is what has made commercial vendors see Linux as a viable
platform for their products. We've seen you can't go wrong if you buy IBM and
then you can't go wrong if you buy Microsoft. Neither of these may have been

the best answer, but both were safe answers. Linux is becoming successful in
commercial markets, because once again, it offers a safe answer.

While I don't have a formula that will make all this go away (so we can get back
to development on the best operating system around that just happens to
contain software from various sources including the Free Software Foundation),
I would like to offer one final opinion; this one is from Darin Johnson's Usenet
posting, where he says, heck, you can do whatever you want with my posting. I
think it offers another way to look at what is happening:

Finally, to quote someone I think we all know: “Umm, this discussion has gone
on quite long enough, thank you very much. It doesn't really matter what
people call Linux, as long as credit is given where credit is due (on both sides).
Personally, I'll very much continue to call it Linux.”

Relax, Linus—so will we.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Column: Linux Means Business

Phil Hughes

Issue #30, October 1996

Introducing 'Linux Means Business' column.

It has been called to my attention that we didn't introduce the Linux Means
Business column that first appeared in Linux Journal issue number 26, June
1996. So without further delay, here is a belated introduction.

Anyone who has used Linux needs little convincing that it is a real software
product: it's a complete system; it's reliable; it's available from multiple sources;
and it's documented.

However, the Linux operating system has a problem—it's free. That one fact
means some people will not take it seriously. When reading the Usenet
newsgroups, I continue to see people concerned with questions like “Is Linux
good enough to do my task?” or “How can I convince my boss that Linux is
real?”

While our (occasional) Linux in the Real World column has touched on many
places where Linux offered a solution, it has tended to be more of an example
of how one technical person managed to use Linux as a base to do something
fairly unique for them. These columns contain good information. With LMB,
however, we want to address different issues—what might be considered
ordinary business problems.

For example, in this issue, LMB covers how a large corporation has used Linux
to reduce the complexities of their electronic mail handling system. This
solution did not require any add-on software, only the configuring of a Linux
system to do the task at hand. This sort of article can offer a solution to two
different issues: the job addressed in the article as well as the job of convincing
management that Linux is a viable software system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

When we came up with the idea for the column, Gena Shurtleff sent out a
query to Usenet looking for articles. Response has been overwhelming;
therefore, we are planning a future issue of Linux Journal that will focus on
articles in which Linux has been installed as a solution to a particular problem.
This issue will include both the Linux Means Business and the Linux in the Real
World articles. If you have a story to contribute, send it to us via e-mail at
info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Let's Talk About the Competition

Phil Hughes

Issue #30, October 1996

It isn't about Linux. Or is it?

I had planned to write this column about what has been happening with Linux
since 2.0 was released. I was going to cover the updates, as of today, to Linux
2.0.7. But, I forgot—updates in a stable chain are uninteresting, as they are just
bug fixes.

Fortunately, three pieces of news caught my eye, and I now had topics that are
both current and of interest. But, it isn't about Linux. Or is it?

Where is UnixWare Headed?

First, for newcomers to the Unix racket, UnixWare is a product of Unix Systems
Labs (USL). AT&T sold USL to Novell and last year Novell sold USL to SCO. So,
UnixWare is what remains of what many considered “Real Unix” from AT&T.

In the ITbits newsletter published by Implements, Inc., Norton Greenfeld
comments that the UnixWare Technology Group (UTG) is being dissolved. SCO
(the guys who now own UnixWare) will form an internal group to take its place.
What's wrong with this? UTG was reasonably independent, and its decisions
had to do with the entire Unix industry. Independence is no longer the case, as
SCO has just put themselves in the position of being on all sides of any
decisions. For later reference, note that a little company in Redmond named
Microsoft owns a reasonably-sized chunk of SCO.

On to Windows NT

I just received a release (called an alert) to journalists and analysts from Tim
O'Reilly of O'Reilly & Associates titled NT Workstations 4.0: Bad News for Web
Servers. The title immediately got my attention, but it turns out that rather than
a warning that NT Workstations 4.0 will destroy your web site, it was a call for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

political action. The gist of the alert is that this new version of NT is designed to
limit performance so that you can't use it as a web server. This means you will
have to purchase NT Server (for $999 instead of only $290 for NT Workstations)
if you want to run a web server. Tim goes on to quote web site developer Bob
Denny: “When I first started developing web servers in 1994, nearly all web
serving was done on the Unix platform. Considering that companies such as
O'Reilly & Associates, Netscape and half a dozen more, pushed hard in the fight
to legitimize NT vs. Unix as a web server platform over the last 18 months,
Microsoft's actions are pretty extreme.”

What Does This Have to Do with Linux?

In case you haven't caught on to where I am going with this—it isn't where Tim
was going. He thinks this is bad; I think this is an opportunity. A few days ago I
was talking to a vendor of Alpha systems running Linux. He told me that even
Digital was surprised at the number of systems he was selling. Many of these
systems are for web servers.

Linux people, now is the time to strike. Linux is a great operating system for
web servers. Our own web server is a 486DX4/100-based Linux system. Our site
has grown in popularity to around 80,000 hits a day, and the server continues
to perform flawlessly. By the time you read this we should have the secure
version of the Apache server running on it.

For a higher-powered web server an Alpha-based Linux system offers more
performance at a lower cost than NT. In other words, everything that NT can do
can also be done by this system.

We have a chance to show the big guys that we know what we are doing. Selling
a Unix-like platform to the Internet community isn't hard. After all, the Internet
grew up on such platforms.

When MS-DOS was the $100 answer against the $1000 Xenix answer, people
were picking MS-DOS. Note that I am ignoring capabilities and performance.
Capabilities and performance seem to seldom enter into mass marketing
efforts anyway. (Remember Beta VCRs offered superior performance at the
same cost.)

Today the game is different. While Microsoft is trying to get $1000 out of your
pocket, Linux offers a much less expensive alternative that generally performs
as well or better.

Remember DR DOS?

DR DOS is/was the MS-DOS-like system that was developed by Digital Research.
It was bought by Novell, had a significant following for a while and then faded
away over the last two years.

Well, Caldera just acquired DR DOS from Novell, where “just” means July 24.
What does this have to do with Linux? A lot. Aside from the fact that Caldera is a
Linux company, part of the DR DOS package was a lawsuit (filed on July 23)
against Microsoft.

Microsoft is accused of “illegal conduct ... calculated and intended to prevent
and destroy competition in the computer software industry.” Of particular
interest to the Linux community are the deals that Microsoft has cut to get
OEMs to include MS-DOS with the computer. While I doubt anyone reading this
is very excited about having DR DOS as an alternative to MS-DOS on their new
system, this action could open the way for other operating systems (for
example, Linux) being more widely available. (For more information, check out
www.caldera.com/news/pr001.html.)

A Call to Action

What do I want you to do? Sell Linux. By that I mean talk to your boss who is
considering setting up a web server. Talk to your ISP. Point them to some
examples. (www.ssc.com is our web server, but don't stop there. Our ISP,
running Linux systems can be found at www.aa.net/. And there are certainly
more.)

There may be a lot of copies of software by Microsoft out there, but Linux is a
significant influence on the Internet and now is a good time for us to make sure
it stays that way.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.caldera.com/news/pr001.html
http://www.ssc.com
http://www.aa.net/
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Network Buffers and Memory Management

Alan Cox

Issue #30, October 1996

Writing a network device driver for Linux is fundamentally simple—most of the
complexity (other than talking to the hardware) involves managing network
packets in memory.

The Linux operating system implements the industry-standard Berkeley socket
API, which has its origins in the BSD Unix developments (4.2/4.3/4.4 BSD). In
this article, we will look at the way the memory management and buffering is
implemented for network layers and network device drivers under the existing
Linux kernel, as well as explain how and why some things have changed over
time.

Core Concepts

The networking layer is fairly object-oriented in its design, as indeed is much of
the Linux kernel. The core structure of the networking code goes back to the
initial networking and socket implementations by Ross Biro and Orest
Zborowski respectively. The key objects are:

• Device or Interface: A network interface is programming code for sending
and receiving data packets. Usually an interface is used for a physical
device like an Ethernet card; however, some devices are software only,
e.g., the loopback device used for sending data to yourself.

• Protocol: Each protocol is effectively a different networking language.
Some protocols exist purely because vendors chose to use proprietary
networking schemes, while others are designed for special purposes.
Within the Linux kernel each protocol is a separate module of code which
provides services to the socket layer.

• Socket: A socket is a connection in the networking that provides Unix file I/
O and exists as a file descriptor to the user program. In the kernel each
socket is a pair of structures that represent the high level socket interface
and the low level protocol interface.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• sk_buff: All the buffers used by the networking layers are sk_buffs. The
control for these buffers is provided by core low-level library routines that
are available to all of the networking system. sk_buffs provide the general
buffering and flow control facilities needed by network protocols.

Implementation of sk_buffs

The primary goal of the sk_buff routines is to provide a consistent and efficient
buffer-handling method for all of the network layers, and by being consistent to
make it possible to provide higher level sk_buff and socket handling facilities to
all of the protocols.

A sk_buff is a control structure with a block of memory attached. Two primary
sets of functions are provided in the sk_buff library. The first set consists of
routines to manipulate doubly linked lists of sk_buffs; the second of functions
for controlling the attached memory. The buffers are held on linked lists
optimised for the common network operations of append to end and remove
from start. As so much of the networking functionality occurs during interrupts
these routines are written to use atomic memory. The small extra overhead
that results is well worth the pain it saves in bug hunting.

We use the list operations to manage groups of packets as they arrive from the
network, and as we send them to the physical interfaces. We use the memory
manipulation routines for handling the contents of packets in a standardised
and efficient manner.

At its most basic level, a list of buffers is managed using functions like this:

void append_frame(char *buf, int len)
{
 struct sk_buff *skb=alloc_skb(len, GFP_ATOMIC);
 if(skb==NULL)
 my_dropped++;
 else
 {
 skb_put(skb,len);
 memcpy(skb->data,data,len);
 skb_append(&my_list, skb);
 }
}
void process_queue(void)
{
 struct sk_buff *skb;
 while((skb=skb_dequeue(&my_list))!=NULL)
 {
 process_data(skb);
 kfree_skb(skb, FREE_READ);
 }
}

These two fairly simplistic pieces of code actually demonstrate the receive
packet mechanism quite accurately. The append_frame() function is similar to
the code called from an interrupt by a device driver receiving a packet, and
process_frame() is similar to the code called to feed data into the protocols. If

you look in net/core/dev.c at netif_rx() and net_bh(), you will see that they
manage buffers similarly. They are far more complex, as they have to feed
packets to the right protocol and manage flow control, but the basic operations
are the same. This is just as true if you look at buffers going from the protocol
code to a user application.

The example also shows the use of one of the data control functions, skb_put().
Here it is used to reserve space in the buffer for the data we wish to pass down.

Let's look at append_frame(). The alloc_skb() function obtains a buffer of len

bytes (Figure 1), which consists of:

• 0 bytes of room at the head of the buffer
• 0 bytes of data, and
• len bytes of room at the end of the data.

The skb_put() function (Figure 4) grows the data area upwards in memory
through the free space at the buffer end, and thus reserves space for the
memcpy(). Many network operations that send data packets add space to the
start of the frame each time a send is executed, so that headers can be added
to the packets. For this reason, the skb_push() function (Figure 5) is provided so
that the start of the data frame can be moved down through memory, if
enough space has been reserved to leave room for completing this operation.

Figure 1 “After alloc_skb”

Figure 2 “After skb_reserve”

Figure 3 “An sk_buff Containing Data”

Figure 4 “After skb_put has been Called on the Buffer”

Figure 5 “After an skb_push has Occurred on the Previous Buffer”

Immediately after a buffer has been allocated, all the available room is at the
end. Another function, skb_reserve() (Figure 2), can be called before data is
added. This function allows you to specify that some of the space should be at
the beginning of the buffer. Thus, many sending routines start with code that
looks like:

 skb=alloc_skb(len+headspace, GFP_KERNEL);
 skb_reserve(skb, headspace);
 skb_put(skb,len);
 memcpy_fromfs(skb->data,data,len);
 pass_to_m_protocol(skb);

https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f4.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f5.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f3.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f4.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f5.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f2.html

In systems such as BSD Unix, you don't need to know in advance how much
space you will need, as it uses chains of small buffers (mbufs) for its network
buffers. Linux chooses to use linear buffers and save space in advance (often
wasting a few bytes to allow for the worst case), because linear buffers make
many other operations much faster.

Linux provides the following functions for manipulating lists:

• skb_dequeue() takes the first buffer from a list. If the list is empty, a NULL

pointer is returned. This function is used to pull buffers off queues. The
buffers are added with the routines skb_queue_head() and
skb_queue_tail().

• skb_queue_head() places a buffer at the start of a list. As with all the list
operations, it is atomic.

• skb_queue_tail() places a buffer at the end of a list and is the most
commonly used function. Almost all the queues are handled with one set
of routines queuing data with this function and another set removing
items from the same queues with skb_dequeue().

• skb_unlink() removes a buffer from whatever list contains it. The buffer is
not freed, merely removed from the list. To make some operations easier,
you need not know what list the buffer is in, and you can always call
skb_unlink() for a buffer which is not in any list. This function enables
network code to pull a buffer out of use even when the network protocol
has no idea who is currently using the buffer. A separate locking
mechanism is provided, so that a buffer currently in use by a device driver
can not be removed.

• Some more complex protocols, like TCP, keep frames in order, and re-
order their input as data is received. Two functions, skb_insert() and
skb_append(), exist to allow users to place sk_buffs before or after a
specific buffer in a list.

• alloc_skb() creates a new sk_buff and initializes it. The returned buffer is
ready to use but assumes you will fill in a few fields to indicate how the
buffer should be freed. Normally this is done by skb->free=1. A buffer can
be flagged as not freeable by kfree_skb() (see below).

• kfree_skb() releases a buffer, and if skb->sk is set, it lowers the memory
use counts of the socket (sk). It is up to the socket and protocol-level
routines to increment these counts and to avoid freeing a socket with
outstanding buffers. The memory counts are very important, as the kernel
networking layers need to know how much memory is tied up by each
connection in order to prevent remote machines or local processes from
using too much memory.

• skb_clone() makes a copy of a sk_buff, but does not copy the data area,
which must be considered read only.

• Sometimes a copy of the data is needed for editing, and skb_copy()

provides the same facilities as skb_clone, but also copies the data (and
thus has a much higher overhead).

Figure 6 Flow of Packets

Higher Level Support Routines

The semantics of allocating and queuing buffers for sockets also involve flow
control rules and for sending a whole list of interactions with signals and
optional settings such as non blocking. Two routines are designed to make this
easy for most protocols.

The sock_queue_rcv_skb() function is used to handle incoming data flow control
and is normally used in the form:

 sk=my_find_socket(whatever);
 if(sock_queue_rcv_skb(sk,skb)==-1)
 {
 myproto_stats.dropped++;
 kfree_skb(skb,FREE_READ);
 return;
 }

This function uses the socket read queue counters to prevent vast amounts of
data from being queued to a socket. After a limit is hit, data is discarded. It is up
to the application to read fast enough, or as in TCP, for the protocol to do flow
control over the network. TCP actually tells the sending machine to shut up
when it can no longer queue data.

On the sending side, sock_alloc_send_skb() handles signal handling, the non-
blocking flag and all the semantics of blocking until there is space in the send
queue, so that you cannot tie up all of memory with data queued for a slow
interface. Many protocol send routines have this function doing almost all the
work:

 skb=sock_alloc_send_skb(sk,....)
 if(skb==NULL)
 return -err;
 skb->sk=sk;
 skb_reserve(skb, headroom);
 skb_put(skb,len);
 memcpy(skb->data, data, len);
 protocol_do_something(skb);

Most of this we have met before. The very important line is skb->sk=sk. The
sock_alloc_send_skb() has charged the memory for the buffer to the socket. By
setting skb->sk, we tell the kernel that whoever does a kfree_skb() on the buffer
should credit the memory for the buffer to the socket. Thus, when a device has
sent a buffer and freed it, the user is able to send more.

https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f6.html

Network Devices

All Linux network devices follow the same interface, but many functions
available in that interface are not needed for all devices. An object-oriented
mentality is used, and each device is an object with a series of methods that are
filled into a structure. Each method is called with the device itself as the first
argument, in order to get around the lack of the C++ concept of this within the
C language.

The file drivers/net/skeleton.c contains the skeleton of a network device driver.
View or print a copy from a recent kernel and follow along throughout the rest
of the article.

Basic Structure

Figure 7 Structure of a Linux Network Device

Each network device deals entirely in the transmission of network buffers from
the protocols to the physical media, and in receiving and decoding the
responses the hardware generates. Incoming frames are turned into network
buffers, identified by protocol and delivered to netif_rx(). This function then
passes the frames off to the protocol layer for further processing.

Each device provides a set of additional methods for the handling of stopping,
starting, control and physical encapsulation of packets. All of the control
information is collected together in the device structures that are used to
manage each device.

Naming

All Linux network devices have a unique name that is not in any way related to
the file system names devices may have. Indeed, network devices do not
normally have a file system representation, although you can create a device
which is tied to the device drivers. Traditionally the name indicates only the
type of a device rather than its maker. Multiple devices of the same type are
numbered upwards from 0; thus, Ethernet devices are known as “eth0”, “eth1”,
“eth3” etc. The naming scheme is important as it allows users to write programs
or system configuration in terms of “an Ethernet card” rather than worrying
about the manufacturer of the board and forcing reconfiguration if a board is
changed.

The following names are currently used for generic devices:

• ethn Ethernet controllers, both 10 and 100Mbit/second

• trn Token ring devices

https://secure2.linuxjournal.com/ljarchive/LJ/030/1312f7.html

• sln SLIP devices and AX.25 KISS mode

• pppn PPP devices both asynchronous and synchronous

• plipn PLIP units; the number matches the printer port

• tunln IPIP encapsulated tunnels

• nrn NetROM virtual devices

• isdnn ISDN interfaces handled by isdn4linux (*)

• dummyn Null devices

• lo The loopback device

(*) At least one ISDN interface is an Ethernet impersonator—the Sonix PC/
Volante driver behaves in all aspects as if it was Ethernet rather than ISDN;
therefore, it uses an “eth” device name. If possible, a new device should pick a
name that reflects existing practice. When you are adding a whole new physical
layer type, you should look for other people working on such a project and use
a common naming scheme.

Certain physical layers present multiple logical interfaces over one media. Both
ATM and Frame Relay have this property, as does multi-drop KISS in the
amateur radio environment. Under such circumstances, a driver needs to exist
for each active channel. The Linux networking code is structured in such a way
as to make this manageable without excessive additional code. Also, the name
registration scheme allows you to create and remove interfaces almost at will
as channels come into and out of existence. The proposed convention for such
names is still under some discussion, as the simple scheme of “sl0a”, “sl0b”,
“sl0c” works for basic devices like multidrop KISS, but does not cope with
multiple frame relay connections where a virtual channel can be moved across
physical boards.

Registering a Device

Each device is created by filling in a struct device object and passing it to the
register_netdev(struct device *) call. This links your device structure into the
kernel network device tables. As the structure you pass in is used by the kernel,
you must not free this until you have unloaded the device with void

unregister_netdev(struct device *) calls. These calls are normally done at boot
time or at module load/unload.

The kernel will not object if you create multiple devices with the same name, it
will break. Therefore, if your driver is a loadable module you should use the
struct device *dev_get(const char *name) call to ensure the name is not already
in use. If it is in use, you should pick another name or your new driver will fail. If
you discover a clash, you must not use unregister_netdev() to unregister the
other device using the name!

A typical code sequence for registration is:

int register_my_device(void)
{
 int i=0;
 for(i=0;i<100;i++)
 {
 sprintf(mydevice.name,"mydev%d",i);
 if(dev_get(mydevice.name)==NULL)
 {
 if(register_netdev(&mydevice)!=0)
 return -EIO;
 return 0;
 }
 }
 printk(
"100 mydevs loaded. Unable to load more.\n");
 return -ENFILE;
}

The Device Structure

All the generic information and methods for each network device are kept in
the device structure. To create a device you need to supply the structure with
most of the data discussed below. This section covers how a device should be
set up.

Naming

First, the name field holds a string pointer to a device name in the formats
discussed previously. The name field can also be " " (four spaces), in which case
the kernel automatically assigns an ethn name to it. This special feature should
not be used. After Linux 2.0, we intend to add a simple support function of the
form dev_make_name("eth") for this purpose.

Bus Interface Parameters

The next block of parameters is used to maintain the location of a device within
the device address spaces of the architecture. The irq field holds the interrupt
(IRQ) the device is using, and is normally set at boot time or by the initialization
function. If an interrupt is not used, not currently known or not assigned, the
value zero should be used. The interrupt can be set in a variety of fashions. The
auto-irq facilities of the kernel can be used to probe for the device interrupt, or
the interrupt can be set when loading the network module. Network drivers
normally use a global int called irq for this so that users can load the module
with insmod mydevice irq=5 style commands. Finally, the IRQ field can be set
dynamically using the ifconfig command, which causes a call to your device that
will be discussed later on.

The base_addr field is the base I/O space address where the device resides. If
the device uses no I/O locations or is running on a system without an I/O space
concept, this field should be set to zero. When this address is user settable, it is

normally set by a global variable called io. The interface I/O address can also be
set with ifconfig.

Two hardware-shared memory ranges are defined for things like ISA bus
shared memory Ethernet cards. For current purposes, the rmem_start and
rmem_end fields are obsolete and should be loaded with 0. The mem_start and
mem_end addresses should be loaded with the start and end of the shared
memory block used by this device. If no shared memory block is used, then the
value 0 should be stored. Those devices that allow the user to to set the
memory base use a global variable called mem, and then set the mem_end

address appropriately themselves.

The dma variable holds the DMA channel in use by the device. Linux allows
DMA (like interrupts) to be automatically probed. If no DMA channel is used or
the DMA channel is not yet set, the value 0 is used. This option may have to
change, since the latest PC boards allow ISA bus DMA channel 0 to be used by
hardware boards and do not just tie it to memory refresh. If the user can set
the DMA channel, the global variable dma is used.

It is important to realise that the physical information is provided for control
and user viewing (as well as the driver's internal functions), and does not
register these areas to prevent them being reused. Thus, the device driver must
also allocate and register the I/O, DMA and interrupt lines it wishes to use,
using the same kernel functions as any other device driver. [See the recent
Kernel Korner articles on writing a character device driver in issues 23, 24, 25,
26 and 28, or visit the new Linux Kernel Hackers' Guide at www.redhat.com:
8080/HyperNews/get/khg.html, for more information on the necessary
functions—ED]

The if_port field holds the physical media type for multi-media devices such as
combo Ethernet boards.

Protocol Layer Variables

In order for the network protocol la

yers to perform in a sensible manner, the device has to provide a set of
capability flags and variables that are also maintained in the device structure.

The mtu is the largest payload that can be sent over this interface, i.e., the
largest packet size not including any bottom layer headers that the device itself
will provide. This number is used by the protocol layers such as IP to select
suitable packet sizes to send. There are minimums imposed by each protocol. A
device is not usable for IPX without a 576 byte frame size or higher. IP needs at

http://www.redhat.com:8080/HyperNews/get/khg.html
http://www.redhat.com:8080/HyperNews/get/khg.html

least 72 bytes and does not perform sensibly below about 200 bytes. It is up to
the protocol layers to decide whether to co-operate with your device.

The family is always set to AF_INET and indicates the protocol family the device
is using. Linux allows a device to be using multiple protocol families at once,
and maintains this information solely to look more like the standard BSD
networking API.

The interface hardware type field is taken from a table of physical media types.
The values used by the ARP protocol (see RFC1700) are used by those media
that support ARP, and additional values are assigned for other physical layers.
New values are added whenever necessary both to the kernel and to net-tools,
the package containing programs like ifconfig that need to be able to decode
this field. The fields defined as of Linux pre2.0.5 are:

From RFC1700:
ARPHRD_NETROM NET/ROM™ devices
ARPHRD_ETHER 10 and 100Mbit/second Ethernet
ARPHRD_EETHER Experimental Ethernet (not used)
ARPHRD_AX25 AX.25 level 2 interfaces
ARPHRD_PRONET PROnet token ring (not used)
ARPHRD_CHAOS ChaosNET (not used)
ARPHRD_IEE802 802.2 networks notably token ring
ARPHRD_ARCNET ARCnet interfaces
ARPHRD_DLCI Frame Relay DLCI
Defined by Linux:
ARPHRD_SLIP Serial Line IP protocol
ARPHRD_CSLIP SLIP with VJ header compression
ARPHRD_SLIP6 6bit encoded SLIP
ARPHRD_CSLIP6 6bit encoded header compressed SLIP
ARPHRD_ADAPT SLIP interface in adaptive mode
ARPHRD_PPP PPP interfaces (async and sync)
ARPHRD_TUNNEL IPIP tunnels
ARPHRD_TUNNEL6 IPv6 over IP tunnels
ARPHRD_FRAD Frame Relay Access Device
ARPHRD_SKIP SKIP encryption tunnel
ARPHRD_LOOPBACK Loopback device
ARPHRD_LOCALTLK Localtalk apple networking device
ARPHRD_METRICOM Metricom Radio Network

Those interfaces marked unused are defined types but without any current
support on the existing net-tools. The Linux kernel provides additional generic
support routines for devices using Ethernet and token ring.

The pa_addr field is used to hold the IP address when the interface is up.
Interfaces should start down with this variable clear. pa_brdaddr is used to hold
the configured broadcast address, pa_dstaddr is the target of a point to point
link, and pa_mask is the IP netmask of the interface. All of these can be
initialized to zero. The pa_alen field holds the length of an address (in our case
an IP address), and should be initialized to 4.

Link Layer Variables

The hard_header_len is the number of bytes the device needs at the start of a
network buffer passed to it. This value does not have to equal the number of

bytes of physical header that will be added, although this number is usually
used. A device can use this value to provide itself with a scratch pad at the start
of each buffer.

In the 1.2.x series kernels, the skb->data pointer will point to the buffer start,
and you must avoid sending your scratch pad. This also means that for devices
with variable length headers you need to allocate max_size+1 bytes and keep a
length byte at the start so that you know where the header actually begins (the
header should be contiguous with the data). Linux 1.3.x makes life much
simpler. It ensures that you have at least as much room as you requested, free
at the start of the buffer. It is up to you to use skb_push() appropriately, as we
discussed in the section on networking buffers.

The physical media addresses (if any) are maintained in dev_addr and
broadcast respectively and are byte arrays. Addresses smaller than the size of
the array are stored starting from the left. The addr_len field is used to hold the
length of a hardware address. With many media there is no hardware address,
and in this case, this field should be set to zero. For some other interfaces, the
address must be set by a user program. The ifconfig tool permits the setting of
an interface hardware address. In this case it need not be set initially, but the
open code should take care not to allow a device to start transmitting before an
address has been set.

Flags

A set of flags is used to maintain the interface properties. Some of these are
“compatibility” items and as such are not directly useful. The flags are:

• IFF_UP The interface is currently active. In Linux, the IFF_RUNNING and
IFF_UP flags are basically handled as a pair, existing as two items for
compatibility reasons. When an interface is not marked as IFF_UP, it can
be removed. Unlike BSD, an interface that does not have IFF_UP set will
never receive packets.

• IFF_BROADCAST The interface has broadcast capability. There will be a
valid IP address for the interface stored in the device addresses.

• IFF_DEBUG Indicates debugging is desired. Not currently used.
• IFF_LOOPBACK The loopback interface (lo) is the only interface that has

this flag set. Setting it on other interfaces is neither defined nor a very
good idea.

• IFF_POINTOPOINT This interface is a point to point link (such as SLIP or
PPP). There is no broadcast capability as such. The remote point to point
address in the device structure is valid. Normally, a point to point link has
no netmask or broadcast, but it can be enabled if needed.

• IFF_NOTRAILERS More of a prehistoric than an historic compatibility flag.
Not used.

• IFF_RUNNING See IFF_UP

• IFF_NOARP The interface does not perform ARP queries. Such an interface
must have either a static table of address conversions or no need to
perform mappings. The NetROM interface is a good example of this. Here
all entries are hand configured as the NetROM protocol cannot do ARP
queries.

• IFF_PROMISC If it is possible, the interface will hear all of the packets on
the network. This flag is typically used for network monitoring, although it
can also be used for bridging. One or two interfaces like the AX.25
interfaces are always in promiscuous mode.

• IFF_ALLMULTI Receive all multicast packets. An interface, that cannot
perform this operation but can receive all packets, will go into
promiscuous mode when asked to perform this task.

• IFF_MULTICAST Indicates that the interface supports multicast IP traffic,
which is not the same as supporting a physical multicast. AX.25 for
example supports IP multicast using physical broadcast. Point to point
protocols such as SLIP generally support IP multicast.

The Packet Queue

Packets are queued for an interface by the kernel protocol code. Within each
device, buffs[] is an array of packet queues for each kernel priority level. These
are maintained entirely by the kernel code, but must be initialized by the device
itself on boot up. The intialization code used is:

int ct=0;
while(ct<DEV_NUMBUFFS)
{
 skb_queue_head_init(&dev->buffs[ct]);
 ct++;
}

All other fields should be initialized to 0.

The device gets to select the queue length it needs by setting the field dev-

>tx_queue_len to the maximum number of frames the kernel should queue for
the device. Typically this is around 100 for Ethernet and 10 for serial lines. A
device can modify this dynamically, although its effect will lag the change
slightly.

Network Device Methods

Each network device has to provide a set of actual functions (methods) for the
basic low level operations. It should also provide a set of support functions that

interface the protocol layer to the protocol requirements of the link layer it is
providing.

Setup

The init method is called when the device is initialized and registered with the
system, in order to perform any low level verification and checking needed. It
returns an error code if the device is not present, if areas cannot be registered
or if it is otherwise unable to proceed. If the init method returns an error, the
register_netdev() call returns the error code, and the device is not created.

Frame Transmission

All devices must provide a transmit function. It is possible for a device to exist
that cannot transmit. In this case, the device needs a transmit function that
simply frees the buffer passed to it. The dummy device has exactly this
functionality on transmit.

The dev->hard_start_xmit() function is called to provide the driver with its own
device pointer and network buffer (a sk_buff) for transmitting. If your device is
unable to accept the buffer, it should return 1 and set dev->tbusy to a non-zero
value. This action will queue the buffer to be retried again later, although there
is no guarantee that a retry will occur. If the protocol layer decides to free the
buffer that the driver has rejected, then the buffer will not be offered back to
the device. If the device knows the buffer cannot be transmitted in the near
future, for example due to bad congestion, it can call dev_kfree_skb() to dump
the buffer and return 0 indicating the buffer has been processed.

If there is space the buffer should be processed. The buffer handed down
already contains all the headers, including link layer headers, necessary and
need only be loaded into the hardware for transmission. In addition, the buffer
is locked, which means that the device driver has absolute ownership of the
buffer until it chooses to relinquish it. The contents of a sk_buff remain read-
only, with the exception that you are guaranteed that the next/previous
pointers are free, so that you can use the sk_buff list primitives to build internal
chains of buffers.

When the buffer has been loaded into the hardware or, in the case of some
DMA driven devices, when the hardware has indicated transmission is
complete, the driver must release the buffer by calling dev_kfree_skb(skb,

FREE_WRITE). As soon as this call is made, the sk_buff in question may
spontaneously disappear, and the device driver should not reference it again.

Frame Headers

It is necessary for the high level protocols to append low level headers to each
frame before queuing it for transmission. It is also clearly undesirable that the
protocol know in advance how to append low level headers for all possible
frame types. Thus, the protocol layer calls down to the device with a buffer that
has at least dev->hard_header_len bytes free at the start of the buffer. It is then
up to the network device to correctly call skb_push() and to put the header on
the packet using the dev->hard_header() method. Devices with no link layer
header, such as SLIP, may have this method specified as NULL.

The method is invoked by giving the buffer concerned, the device's pointers, its
protocol identity, pointers to the source and destination hardware addresses
and the length of the packet to be sent. As the routine can be called before the
protocol layers are fully assembled, it is vital that the method use the length
parameter, not the buffer length.

The source address can be NULL to mean “use the default address of this
device”, and the destination can be NULL to mean “unknown”. If as a result of
an unknown destination, the header can not be completed, the space should
be allocated and any bytes that can be filled in should be filled in. The function
must then return the negative of the bytes of header added. This facility is
currently only used by IP when ARP processing must take place. If the header is
completely built, the function must return the number of bytes of header
added to the beginning of the buffer.

When a header cannot be completed the protocol layers will attempt to resolve
the necessary address. When this situation occurs, the dev->rebuild_header()

method is called with the address at which the header is located, the device in
question, the destination IP address and the network buffer pointer. If the
device is able to resolve the address by whatever means available (normally
ARP), then it fills in the physical address and returns 1. If the header cannot be
resolved, it returns 0 and the buffer will be retried the next time the protocol
layer has reason to believe resolution will be possible.

Reception

There is no receive method in a network device, because it is the device that
invokes processing of such events. With a typical device, an interrupt notifies
the handler that a completed packet is ready for reception. The device allocates
a buffer of suitable size with dev_alloc_skb(), and places the bytes from the
hardware into the buffer. Next, the device driver analyses the frame to decide
the packet type. The driver sets skb->dev to the device that received the frame.
It sets skb->protocol to the protocol the frame represents, so that the frame
can be given to the correct protocol layer. The link layer header pointer is

stored in skb->mac.raw, and the link layer header removed with skb_pull() so
that the protocols need not be aware of it. Finally, to keep the link and protocol
isolated, the device driver must set skb->pkt_type to one of the following:

• PACKET_BROADCAST Link layer broadcast
• PACKET_MULTICAST Link layer multicast
• PACKET_SELF Frame to us
• PACKET_OTHERHOST Frame to another single host

This last type is normally reported as a result of an interface running in
promiscuous mode.

Finally, the device driver invokes netif_rx() to pass the buffer up to the protocol
layer. The buffer is queued for processing by the networking protocols after the
interrupt handler returns. Deferring the processing in this fashion dramatically
reduces the time interrupts are disabled and improves overall responsiveness.
Once netif_rx() is called, the buffer ceases to be property of the device driver
and can not be altered or referred to again.

Flow control on received packets is applied at two levels by the protocols. First,
a maximum amount of data can be outstanding for netif_rx() to process.
Second, each socket on the system has a queue which limits the amount of
pending data. Thus, all flow control is applied by the protocol layers. On the
transmit side a per device variable dev->tx_queue_len is used as a queue length
limiter. The size of the queue is normally 100 frames, which is large enough
that the queue will be kept well filled when sending a lot of data over fast links.
On a slow link such as a slip link, the queue is normally set to about 10 frames,
as sending even 10 frames is several seconds of queued data.

One piece of magic that is done for reception with most existing devices, and
one that you should implement if possible, is to reserve the necessary bytes at
the head of the buffer to land the IP header on a long word boundary. The
existing Ethernet drivers thus do:

skb=dev_alloc_skb(length+2);
if(skb==NULL)
 return;
skb_reserve(skb,2);
/* then 14 bytes of ethernet hardware header */

to align IP headers on a 16 byte boundary, which is also the start of a cache line
and helps give performance improvements. On the SPARC or DEC Alpha these
improvements are very noticeable.

Optional Functionality

Each device has the option of providing additional functions and facilities to the
protocol layers. Not implementing these functions will cause a degradation in
service available via the interface, but will not prevent operation. These
operations split into two categories—configuration and activation/shutdown.

Activation and Shutdown

When a device is activated (i.e., the flag IFF_UP is set), the dev->open() method
is invoked if the device has provided one. This invocation permits the device to
take any action such as enabling the interface that is needed when the
interface is to be used. An error return from this function causes the device to
stay down and causes the user's activation request to fail with an error
returned by dev->open()

The dev->open() function can also be used with any device that is loaded as a
module. Here it is necessary to prevent the device from being unloaded while it
is open; thus, the MOD_INC_USE_COUNT macro must be used within the open
method.

The dev->close() method is invoked when the device is ready to be configured
down and should shut off the hardware in such a way as to minimise machine
load (e.g., by disabling the interface or its ability to generate interrupts). It can
also be used to allow a module device to be unloaded after it is down. The rest
of the kernel is structured in such a way that when a device is closed, all
references to it by pointer are removed, in order to ensure that the device can
be safely unloaded from a running system. The close method is not permitted
to fail.

Configuration and Statistics

A set of functions provide the ability to query and to set operating parameters.
The first and most basic of these is a get_stats routine which when called
returns a struct enet_statistics block for the interface. This block allows user
programs such as ifconfig to see the loading of the interface and any logged
problem frames. Not providing this block means that no statistics will be
available.

The dev->set_mac_address() function is called whenever a superuser process
issues an ioctl of type SIOCSIFHWADDR to change the physical address of a
device. For many devices this function is not meaningful and for others it is not
supported. In these cases, set this function pointer to NULL. Some devices can
only perform a physical address change if the interface is taken down. For
these devices, check the IFF_UP flag, and if it is set, return -EBUSY.

The dev->set_config() function is called by the SIOCSIFMAP function when a
user enters a command like ifconfig eth0 irq 11. It then passes an ifmap

structure containing the desired I/O and other interface parameters. For most
interfaces this function is not useful, and you can return NULL.

Finally, the dev->do_ioctl() call is invoked whenever an ioctl in the range
SIOCDEVPRIVATE to SIOCDEVPRIVATE+15 is used on your interface. All these
ioctl calls take a struct ifreq, which is copied into kernel space before your
handler is called and copied back at the end. For maximum flexibility any user
can make these calls, and it is up to your code to check for superuser status
when appropriate. For example, the PLIP driver uses these calls to set parallel
port time out speeds in order to allow a user to tune the plip device for his
machine.

Multicasting

Certain physical media types, such as Ethernet, support multicast frames at the
physical layer. A multicast frame is heard by a group of hosts (not necessarily
all) on the network, rather than going from one host to another.

The capabilities of Ethernet cards are fairly variable. Most fall into one of three
categories:

• No multicast filters. The card either receives all multicasts or none of
them. Such cards can be a nuisance on a network with a lot of multicast
traffic, such as group video conferences.

• Hash filters. A table is loaded onto the card giving a mask of entries for
desired multicasts. This method filters out some of the unwanted
multicasts but not all.

• Perfect filters. Most cards that support perfect filters combine this option
with 1 or 2 above, because the perfect filter often has a length limit of 8 or
16 entries.

It is especially important that Ethernet interfaces are programmed to support
multicasting. Several Ethernet protocols (notably Appletalk and IP multicast)
rely on Ethernet multicasting. Fortunately, most of the work is done by the
kernel for you (see net/core/dev_mcast.c).

The kernel support code maintains lists of physical addresses your interface
should be allowing for multicast. The device driver may return frames matching
more than the requested list of multicasts if it is not able to do perfect filtering.

Whenever the list of multicast addresses changes, the device drivers dev-

>set_multicast_list() function is invoked. The driver can then reload its physical
tables. Typically this looks something like:

if(dev->flags&IFF_PROMISC)
 SetToHearAllPackets();
else if(dev->flags&IFF_ALLMULTI)
 SetToHearAllMulticasts();
else
{
 if(dev->mc_count<16)
 {
 LoadAddressList(dev->mc_list);
 SetToHearList();
 }
 else
 SetToHearAllMulticasts();
}

There are a small number of cards that can only do unicast or promiscuous
mode. In this case the driver, when presented with a request for multicasts has
to go promiscuous. If this is done, the driver must itself set the IFF_PROMISC

flag in dev->flags.

In order to aid the driver writer, the multicast list is kept valid at all times. This
simplifies many drivers, as a reset from an error condition in a driver often has
to reload the multicast address lists.

Ethernet Support Routines

Ethernet is probably the most common physical interface type that can be
handled. The kernel provides a set of general purpose Ethernet support
routines that such drivers can use.

eth_header() is the standard Ethernet handler for the dev-hard_header routine,
and can be used in any Ethernet driver. Combined with eth_rebuild_header() for
the rebuild routine it provides all the ARP lookup required to put Ethernet
headers on IP packets.

The eth_type_trans() routine expects to be fed a raw Ethernet packet. It
analyses the headers and sets skb->pkt_type and skb->mac itself as well as
returning the suggested value for skb->protocol. This routine is normally called
from the Ethernet driver receive interrupt handler to classify packets.

eth_copy_and_sum(), the final Ethernet support routine is internally quite
complex, but offers significant performance improvements for memory
mapped cards. It provides the support to copy and checksum data from the
card into a sk_buff in a single pass. This single pass through memory almost
eliminates the cost of checksum computation when used and improves IP
throughput.

Alan Cox has been working on Linux since version 0.95, when he installed it in
order to do further work on the AberMUD game. He now manages the Linux
Networking, SMP, and Linux/8086 projects and hasn't done any work on
AberMUD since November 1993.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Sendmail as a Multi-Platform Mail Router

Tom Lowery

Issue #30, October 1996

See how one company uses a Linux system and sendmail to handle e-mail
routing between incompatible systems.

Is e-mail the wave of the future? No way. It's a mission-critical, gotta-have
application today. Survey those business cards you've been collecting from
associates lately. Odds are most of them are sporting Internet e-mail
addresses. In the April 1996 issue of Microsoft Magazine, Bill Gates said, “[E-
mail] is probably the most mission-critical application for Microsoft in terms of
running the company. If we had to pick one application that would keep
running no matter what, E-mail would absolutely be it.” People want fast,
reliable, written communications with people in their own company as well as
with others across the Net.

My job is to keep e-mail running smoothly for my company. A user recently
complained to me because it took a whole 12 minutes for her e-mail message
to be delivered. People have ever-growing expectations about what e-mail
should do for them.

Providing e-mail in a homogeneous environment is simple. If a shop consists
entirely of Linux workstations, e-mail is practically automatic. The same is true
for all other major variants of Unix. No special gateways are required to
connect to the Internet since the e-mail protocol spoken, SMTP, is the same
across the board. SMTP stands for Simple Mail Transport Protocol and has
been the de facto standard for Internet mail transmission for years. Exchanging
mail is almost as simple with non-SMTP commercial packages, as long as
everyone in the company uses the same one. The situation is more complex
when several incompatible systems are in use. Getting mail to flow seamlessly
between them and additionally the Internet can pose a lot of problems. In this
article I will explain how Caliber Technology solved these problems quickly and
inexpensively with Linux and sendmail.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Caliber System, through its operating units RPS, Viking Freight, Caliber Logistics,
Roberts Express and Caliber Technology, is a value added provider of
transportation, logistics, and information services. Caliber Technology provides
integrated information services to customers, Caliber companies and other
interested users.

The Problem

The Caliber companies operate in vastly different computing environments:
IBM mainframes, AS/400s, HP/UX midrange systems, Novell and NT LANs,
Tandem minicomputers and more. The e-mail platforms in use include
Microsoft Mail, Lotus cc:Mail, Tandem PS Mail, IBM OV/400, TAO/Emc2 and
Microsoft Exchange. Unfortunately these mail systems are generally not
compatible with each other. We have plans to migrate all the Caliber companies
to compatible e-mail platforms, but the migration effort will take at least two
years. The good news is gateways are available for all these systems. The
function of a mail gateway is to translate messages from one format to
another. Some gateways translate messages from one proprietary format to
another: for example, from Lotus cc:Mail to Microsoft Mail and vice versa.
Other gateways translate messages between a proprietary format and a
standard format. An example here would be cc:Mail to and from SMTP. The two
most common standard formats are SMTP and X.400. X.400 is the CCITT/ISO
standard and is supported by many commercial networks. Since Caliber's goal
was to have all its internal mail systems conversing with each other and with
the Internet, SMTP was the obvious choice as the common language.

Here's where it gets complicated. Like many companies, Caliber Technology
uses non-obvious login names for its mainframe and LAN systems. In a typical
Unix environment, my login name might be tlowery.

But in Caliber's multi-platform environment my login name is, say, xyz123. This
was a legacy decision to provide better security. There are too many IDs and
they're too ingrained in our systems to let us change them, even if we wanted
to. The problem is, most of the gateways we use do not allow the SMTP e-mail
name to differ from the local login ID. There's just no way to specify that in the
configuration. In other words, my Internet mail address would have to be
xyz123@calibersys.com. We found this distasteful for obvious reasons; Actually,
it's even worse. The gateways add their network host name to the address for
outbound mail. My address would really be xyz123@gateway1.calibersys.com.
So the first problem to solve is to convert, for outbound messages, the private
gateway-based addresses to the public Internet addresses, for example from
xyz123@gateway1.calibersys.com to tlowery@calibersys.com.

Solving that problem creates another one. The calibersys.com e-mail domain is
made up of several mail systems. If mail is coming inbound from the Internet to
tlowery@calibersys.com, how is the decision made to send it to gateway1 (say,
Microsoft Mail) rather than gateway2 (TAO/Emc2)? Some system along the way
has to look up tlowery and decide to send the message to gateway1. At Caliber,
we accept mail for calibersys.com, logistics.calibersys.com, shiprps.com,
vikingfreight.com and roberts.com and perform name lookups for all of them.

Like many companies, our internal TCP/IP network is connected to the Internet
via a commercial firewall. We purchased the firewall long before deciding to
provide Internet mail service to all the Caliber companies. In a way, it can be
thought of as a legacy system with some of its own drawbacks. Although our
firewall can solve either the first or second problem, it can't solve both at the
same time. According to our firewall vendor, we were their first customer who
needed name mapping and gateway hiding for multiple domains, all at the
same time. Commercial X.500-based directory systems can be purchased to tie
everything together elegantly; the problem is cost. It doesn't make much sense
to plunk down $200,000 for a solution that, we hope, won't be needed two
years from now. With no quick fix from the firewall vendor in sight and hoards
of users beating down my door for inter-company and Internet mail, I sat down
and studied sendmail to see if it offered any answers. Luckily it does.

The solution we have in place today can be seen in Figure 1. Any mail message,
including those to or from the Internet, that travels from one system to another
travels through a central hub. For added reliability, there are actually two hubs.
One serves as the primary; the other is a backup in case the primary fails. The
sole purpose of these hubs is to hide the e-mail addressing details from users.
Let's look at an example.

First, let's say I at tlowery@calibersys.com want to send a message to Jane at
jdoe@vikingfreight.com. Both the sender and recipient addresses exist inside
the Caliber firewall, so the message will not be sent to the Internet. My mailbox
name on Microsoft Mail is xyz123 and the SMTP gateway for Microsoft Mail is
called gateway1. When the message leaves my mail system, it looks like this:

From: xyz123@gateway1.calibersys.com
To: jdoe@vikingfreight.com

The message is routed to mhub, our primary address mapping hub. First it
looks up xyz123@gateway1.calibersys.com. When it finds a match, that address
is changed to tlowery@calibersys.com. It then looks at jdoe@vikingfreight.com.
There are three possible gateways for vikingfreight.com, gateway1, gateway2

and gateway3, corresponding to Tandem PS Mail, Microsoft Exchange and TAO/
Emc2, respectively. The hub looks up the address and sees that Jane's mailbox
(jdoe) is on PS Mail and is called vft1100. So mhub changes

jdoe@vikingfreight.com to vft1100@gateway1.vikingfreight.com. The message
header now looks like this:

From: tlowery@calibersys.com
To: vft1100@gateway1.vikingfreight.com

The hub then hands the message off to gateway1.vikingfreight.com for delivery
to Jane's mailbox. Now let's take a look a closer look at the hub.

The primary mail hub is a Compaq Proliant 1500 with a 133 MHz Pentium
processor. The backup hub is a Dell OptiPlex with a 75 MHz Pentium. Both are
running Linux Slackware version 3.0. The decision to run Linux was an easy
one. I wanted a solid, dependable solution at the lowest possible cost—that
meant Intel-based hardware and Linux. I've used Linux for various projects over
the last three years and have never experienced a kernel crash. I can't say that
for all the commercial operating systems I've used. The crucial piece of
software for this project is sendmail, available for virtually all Unix variants. I
knew if Linux didn't work out, I could swap in a Sun, IBM or HP workstation
without having to make software changes. The risk of using Linux as the initial
platform was very small. In the four months since the project went live, I'm
happy to say that we've had zero problems with it. Now it's time to discuss the
nitty-gritty details. Two primary pieces make the hub work: DNS and sendmail.
I'll discuss each in turn.

Enter DNS

What follows is a brief introduction to DNS. If you're already familiar with it feel
free to skip the next few paragraphs.

DNS stands for Domain Name System. Its job is to keep track of each
computer's name on the network. Programs that communicate with other
computers require the numerical address of that computer. If all the program
has is a name, it gives that name to DNS and asks for the corresponding
address. For example, the mail hub has to get the address for
gateway1.calibersys.com before it can deliver mail to it. The hub asks DNS for
the address and is told something like 11.22.33.44. As soon as the hub has that
address, it can contact gateway1 to deliver the mail. The DNS configuration files
are filled with lines like these:

mhub.calibersys.com. IN A 12.34.56.78
mhub2.calibersys.com. IN A 12.34.66.88
gateway1.vikingfreight.com. IN A 12.12.12.12

The first column is the name the machine goes by. The second column, IN, isn't
important for our discussion. The third column, A, indicates that this is an
address record. It just means this line maps a name to an address. The fourth
column holds the address of the machine named in column one. In addition to

looking up names and giving back addresses, DNS can also indicate that one
computer accepts mail for another. When computer A accepts mail for
computer B, A is called a Mail Exchanger for B. Whenever sendmail tries to
deliver mail to a given machine, it first looks for a mail exchanger. If no mail
exchanger is found, it then looks for a regular address. Let's look at an
example:

calibersys.com. IN MX 10 mhub.calibersys.com.
vikingfreight.com. IN MX 10 mhub.calibersys.com.
shiprps.com. IN MX 10 mhub.calibersys.com.
roberts.com. IN MX 10 mhub.calibersys.com.

These lines tell sendmail that any mail addressed to calibersys.com,
vikingfreight.com, shiprps.com or roberts.com should be sent to
mhub.calibersys.com. That's how mail addressed to jdoe@vikingfreight.com is
routed to the hub. The first column can be thought of as a machine name.
There doesn't have to be an actual computer using this name; think of it as a
pseudo-machine for e-mail purposes. It's what you would see to the right of the
@ symbol in an e-mail address. Again, we don't care about the IN for this
discussion. The MX in the third column tells DNS that this is a mail exchanger
record. Next comes the priority. A machine can have several mail exchangers,
each with a different priority. I'll discuss that in a moment. Finally, the last
column is the name of the machine acting as the mail exchanger. Any machine
acting as a mail exchanger must be a real machine and must have a
corresponding address record. Now let's talk about multiple exchangers.
Remember that this project involves two hubs, a primary and a secondary, The
primary machine is mhub.calibersys.com, the secondary is
mhub2.calibersys.com. Both are listed in DNS. Remember that the number 10
above referred to priority. The lower the number, the higher the priority. Let's
say that we see the following lines in the DNS configuration file in addition to
the ones above:

calibersys.com. IN MX 20 mhub2.calibersys.com.
vikingfreight.com IN MX 20 mhub2.calibersys.com.
shiprps.com. IN MX 20 mhub2.calibersys.com.
roberts.com. IN MX 20 mhub2.calibersys.com.

sendmail would first try to send any mail destined for vikingfreight.com to
mhub, since 10 represents a higher priority than 20. If that failed, it would then
try to send the mail to mhub2, the backup hub. After either hub receives the
message, it looks up jdoe@vikingfreight.com and converts that address to
vft1100@gateway1.vikingfreight.com. It would then look up
gateway1.vikingfreight.com. It does not have a mail exchanger record listed for
it, but it does have an address record. This means that gateway1 accepts its
own mail. Using DNS this way to route mail for a domain, e.g.,
mycompany.com, to an actual computer where the mail is stored, e.g.,
mail.mycompany.com, is commonplace. What's different here is the address
mapping. To see how that's done, we need to look at sendmail.cf.

On to sendmail

sendmail.cf is the configuration file for sendmail. So what exactly is sendmail?
sendmail is the Swiss Army knife of mail systems. Officially it's known as a
message transfer agent, or MTA. There are a few different flavors; Linux
Slackware 3.0 comes with the one known as Berkeley V8. Users typically don't
interact with it directly. (That task is left to a mail user agent or MUA such as
elm or pine.) sendmail runs in the background, silently routing mail from one
computer to another. It was written in the 1970's and 1980's by Eric Allman at
U.C. Berkeley. Because of Eric's flexible design, sendmail is still the most widely
used MTA on the Internet. It's standard issue software with just about any Unix-
based operating system. All that flexibility comes at the price of complexity.
sendmail is probably the most complex of all the Unix utilities. I'll cover some of
sendmail's features and how they can be used to solve our address mapping
problems, but a complete discussion of sendmail is beyond the scope of this
article. For more information see the resource box. The Caliber mail hub makes
heavy use of three sendmail mechanisms: macros, classes, and database
lookups. All these are specified in the configuration file, sendmail.cf. sendmail
macros are similar to C language macros. A primary difference is that the
macro name can only be one character long. For example,

DG gateway1.vikingfreight.com

defines the macro G as gateway1.vikingfreight.com. Its C language equivalent
would be:

 #define G gateway1.vikingfreight.com

The macro is invoked later by specifying a dollar sign followed by the macro
name, e.g., $G. Anywhere the symbol $G appears, gateway1.vikingfreight.com

would be substituted in its place. Classes are very similar to macros. The
difference is that they can expand to one of many different values. For
example,

CU xyz123 abc789 def444

defines the class U with three values. Alternatively, sendmail can read the
values from an external text file:

FU /etc/mail/users

This ability is handy if you want to define a class with a large number of values.
The class is invoked by specifying a dollar sign, then an equal sign, then the
class name, e.g., $=U. I'll explain a little later how classes are useful. The third
mechanism exploited by the mail hub is the database lookup. sendmail can
consult external databases and swap the lookup key with the value found in the

database. A few different database formats are supported; we use GNU dbm
databases. The records in these databases have only two fields. The lookup key
is the first field. Everything following that is considered a value field. A dbm
database with four records could look like this:

xyz123 tlowery
ft1100 jdoe
bc789 asmith
def444 bjones

If sendmail consults the database looking for abc789, it will find the value of
asmith and substitute that value in place of abc789 in the e-mail address.

That covers the basic mechanisms. Now let's look at the configuration file itself.
sendmail.cf if filled with lines like this one:

R$=U@$G $:$(mapdb $1 $)@$K

These lines are known as rules. The rules are grouped together in subroutines,
each of which is called by sendmail to perform a certain task. These
subroutines are called sets. It's a terse programming language based on
regular expression pattern matching. Each rule examines an e-mail address
and may alter it. Rules have two parts, the left-hand-side (LHS) and right-hand-
side (RHS), separated by one or more tab characters. The LHS is a pattern;
sendmail tries to match the current address with this pattern. If the address
matches the pattern, sendmail will rewrite the address based on what the RHS
says. If there is no match, the RHS is ignored. Now let's look at the LHS of our
sample rule, left to right:

R$=U@$G

The R simply states that this is a rule. All rules start with the letter R. The next
three characters, $=U, are a class reference. Given the class definition above,
$=U will match xyz123, abc789 or def444 successfully. If the address begins
with any other string, the match will fail. The next character is a literal @. That
character must appear in the address for a match to happen. The following two
characters, $G, are a macro reference. The macro expands to:

gateway1.calibersys.com

The address xyz123@gateway1.calibersys.com would match the pattern and
the RHS would be invoked. tza555@gateway1.calibersys.com would not match
since tza555 is not a member of the U class. Likewise,
xyz123@gateway2.calibersys.com would not match since
gateway2.calibersys.com is not the value of the G macro. Now let's move on to
the RHS to see how an address is rewritten. The RHS of our sample rule is this:

$:$(mapdb $1 $)@$K

The first two characters, $: tell sendmail to only invoke this RHS once. By
default, sendmail will invoke the RHS repeatedly as long as the result still
matches the LHS. Following that is the string,

$(mapdb $1 $)

which performs the database lookup, tells sendmail to look for a database
named mapdb and search for the first item from the LHS. $2 would search for
the second item and so on. The first match from our LHS was xyz123. sendmail
then searches for that string and finds tlowery, so it replaces xyz123 with
tlowery in the address. The next character in the RHS, @, is a literal. It's written
to the new address following tlowery. Next comes $K, a macro reference. Let's
assume the macro K was defined like so:

DK calibersys.com

sendmail will place calibersys.com after @ in the new address, completing the
rewriting process.

From this we see how a private address of xyz123@gateway1.calibersys.com

can be converted to a public address of tlowery@calibersys.com. The recipient
of the message will never know the original sender address was not the public
address. Switching from public to private can be accomplished in a similar
manner. This discussion of address mapping has only scratched the surface;
sendmail's flexibility can help the e-mail administrator solve virtually any mail
routing task.

The Result

The mail routing hub has been in operation at Caliber for about three months,
and in that time it has routed over 48,000 messages. Given current traffic
statistics, I expect it to handle about 600,000 messages during its first year.
Fortunately, the few problems we've experienced have been due to
configuration problems. It's too easy to leave out a period here or a dollar sign
there. Linux and sendmail have performed flawlessly.

In a perfect world this solution wouldn't be needed. If the Caliber companies
used only one common e-mail platform, there would be no need to look up
mailbox names and route messages to the right gateway. But many large
companies have a number of legacy systems that won't be going away any time
soon. Those are exactly the types of environments where tools like sendmail
work best. Due to network logistics and geography, we will still be using some
of our legacy mail systems until 1998. In the meantime, our Linux e-mail hub

will continue chugging through messages, routing them between disparate
platforms and helping us meet increasing user expectations.

Sidebar: DNS and Sendmail Resources

Tom Lowery (tlowery@calibersys.com) is Project Manager of E-Mail and
Groupware Development at Caliber Technology.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/030/1294s1.html
mailto:tlowery@calibersys.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Java Class Reference Package

Dave Dittrich

Issue #30, October 1996

These reference cards are not introductory overviews of the Java language, like
the vast majority of Java books on the shelves today.

Publisher: Specialized Systems Consultants (SSC)

ISBN: 0-916151-95-6

Price: $7.00

Reviewer: Dave Dittrich

Back in the mid 80s, when I first pulled a Unix workstation—an Intergraph
InterPro, running System V Unix—out of a closet at Boeing and began to teach
myself Unix system administration, I needed something to help me remember
shell command options. The first reference I bought was the System V
command reference from Specialized Systems Consultants. It sits in my desk
drawer to this day, and still sees daylight every time I'm confronted with the
question, “What option is it that I need to use with the foobar command on a
System V system?” This reference card cost me about $5, if I remember
correctly, which is about the same price it goes for today, ten years later.

That SSC has produced a Java class library reference isn't a big surprise. These
references are the backbone of their publishing business, which now extends
to Linux documentation, CD-ROM software collections, Linux and WWW
magazines—even t-shirts! With the new “Internet runs on dog years” world that
Java exists in, I seriously doubt if these cards will have the same shelf life as my
System V reference, but System V isn't the same as it was back then, either. I'm
sure many will find them equally useful just the same.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Before trying to assess these new Java reference cards, I think it's helpful to
consider what these references are and are not, and just who is likely to use
them.

These reference cards are not introductory overviews of the Java language, like
the vast majority of Java books on the shelves today. They do not include
tutorials or introductory text for each package, like O'Reilly & Associates' Java in
a Nutshell. They are not API documentation, like The Java API (both volumes)
from Addison-Wesley. I don't see them as being “competitors” with anything
else out there right now (except, perhaps, the Java API hypertext pages
themselves, which are a bit awkward to use sometimes). So what are they, and
how well do they do their job?

The Java reference cards—one for the java.applet, java.awt, and java.util
packages, and another for the java.lang, java.io, and java.net packages—are a
concise, classified (no pun intended) listing of the methods and important
constants associated with each class in these packages. No more and no less
(well, at least not that much less).

Together, the two references cover 38 panels. Although not stated explicitly,
they use a syntax somewhat similar to Unix man pages, where optional
parameters are surrounded by square brackets. For example, rather than list
two lines for each method signature, like this:

BufferedInputStream(InputStream dest);BufferedInputStream(InputStream
dest, int buffersize);

they include just one line, like this:

BufferedInputStream(InputStream dest [,int buffersize]);

While this syntax is not exactly what you'll find in other books on Java, you get
used to it quickly, and most people will probably appreciate the brevity it
contributes to the listings.

Each package makes up its own section, with classes within the package in their
own graphic box. This makes for a clear delineation between classes within
each package. The box titles include only the class name. For example, just the
title Class heads a box in the JAVA.LANG section (I'm not sure why they're
YELLING), rather than being explicitly labeled java.lang.Class as the compiler will
expect. In practical use it can be hard to determine exactly what you need to
import to use this class in your code. When you are thirteen pages into the card
and find the Color class, you have to backtrack page by page to find that Color

is in the JAVA.AWT package and know to add import java.awt.Color; (or the

more general import java.awt.*;) into your code. (This is a pretty minor gripe. If
it really bothers you, you can always just write in the package name with a pen).

Carefully going through some of the class descriptions also brought out what
appear to be a few errors of omission and one parameter mix up. For example,
in the Component section of JAVA.AWT, missing methods are: checkImage(),
getPeer(), location(), prepareImage(), size(), and toString(). The repaint() method
has the maxWait parameter at the end of the list, when it should be at the
beginning. Since most of these methods involve the complicated image
producer/consumer mechanism, or are accessory functions more interesting to
people programming layout managers than those just building a simple GUI,
the omissions may not matter to the majority of Java coders. Missing from
Label is addNotify(), but the 1.0.2 JDK API documentation itself says about this
method, “Most applications do not call this method directly.”

More glaring is the lack of two entire packages, java.awt.image and
java.awt.peer. Granted, these two packages are more interesting to people
doing quite complicated graphics programming, or coding new AWT peers for
window managers other than the already supported Windows, Macintosh and
Motif, but they are still part of the JDK class library that a programmer may use.
The image producer/consumer paradigm is quite confusing and is sometimes
criticized as such in Java books, but if the programmer is forced to also have
handy a copy of Java in a Nutshell to get the whole API picture, many will
probably opt to just go with the book.

The author, Randy Chapman, is intimately familiar with the JDK through his
work with the Linux port, and I know him from his working days in the
Academic Computer Center at the University of Washington to be a very careful
and thorough programmer. I am not sure if the omissions are due to working
with an older API or if the idea was to simplify things for the average
programmer or perhaps just the result of time pressures. (He is, after all, still a
student with educational demands high on his priority list. I won't fault him for
that.) Since it isn't stated explicitly, I will assume that the aim is to simplify the
card and conclude that the target audience will be the beginning to
intermediate programmer who sticks to coding “average” Java applications or
applets and not the kind of Java fanatics who think triple tall espressos should
be purchased in pairs. (These people would prefer to write Perl scripts to
extract this information directly from the JDK source code tree and run the
results through nroff!)

Overall, these cards are quite handy to have lying next to your keyboard and
will prove to be well worth the small price that SSC charges for them. I wish
more books had this high a usefulness-to-price ratio.

Dave Dittrich (dyittrich@cac.washington.edu) works at the University of
Washington in Client Services, Computing & Communications. Visit his web
page at: http://www.washington.edu/People/dad/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dyittrich@cac.washington.edu
http://www.washington.edu/People/dad
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

apropos, whatis and makewhatis

David Bandel

Issue #30, October 1996

Tools to help you find the appropriate command.

This month's column looks at three very useful and related commands,
apropos, whatis and makewhatis. To understand why these commands are so
valuable, it helps to grasp the underlying philosophy that continues to guide
evolving versions of Unix, including Linux. That philosophy remains one of
creating small, portable, specialized programs that perform one task well, and
that can receive input from, and redirect output to, other programs.

This philosophy has created a proliferation of small, powerful, but extremely
limited programs. Just do a directory listing of /usr/bin, and you'll see what I
mean. And that's not all of them. You could sit down and run every one of them
to see what they do. Or you could begin reading the hundreds of man pages
available describing these commands. No matter which method you use to
learn the commands, in the end, you'd still probably forget most of them due to
the sheer volume. So how do you know which of the hundreds of programs
available can do the job for you? Or which of the commands will be best suited
to your particular needs? apropos and whatis come to the rescue.

Apropos, as defined by the dictionary, means “apt; relevant; suited to the
occasion, though not strictly belonging to the subject under consideration.”
These definitions, particularly the last one, are totally apropos. apropos will list
programs with a one line synopsis of each program based on a keyword
search. whatis is similar, but even more constrained; i.e., the actual command
is given as the argument, rather than a keyword, so there is less output.

makewhatis

Before we look at how apropos can help us, we need to ensure that the
database apropos uses exists and is up-to-date. Enter makewhatis. This
command creates the whatis database files used by both apropos and whatis.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

They are located in each ../man directory and catalog the manual files in each
of the individual cat? and man? subdirectories.

To create the whatis database files, you need to invoke makewhatis as the root
user. Non-privileged users normally do not have write permission in the ../man

directories to create the whatis database files. A second clue to the nature of
makewhatis is its location. makewhatis is usually found in the /usr/sbin

subdirectory, indicating its classification as a system administration program.
Ordinarily only root's PATH environment variable contains the sbin directories.
makewhatis may be invoked by root's crontab file and run on a recurring basis,
and you may wish to include it if it isn't already there. But that is beyond the
scope of this article. If you can log in only as a non-privileged user, or are sure
your whatis database files exist, you may want to skip ahead to the next
section. If you begin to see <keyword>: nothing appropriate, you'll need to have
your system administrator run makewhatis.

Running makewhatis for the first time will take several minutes, so be patient
(go have a cup of coffee). Run by itself, makewhatis will create the whatis
database file in /usr/man. To ensure that all the man locations are cataloged,
use the -w switch. This will read the file /etc/man.config and use the man paths
it specifies. Or you may add paths following the -w switch and they will be used
as well. If you are want to know which paths will be cataloged, type man --path,
and you will see where /etc/man.config believes your manuals are. If you have
other paths, they should be added to your man.config file.

Another makewhatis option is -c. This switch, when used alone, will catalog only
the ../man/cat entries listed in man.config. Other cat subdirectories may be
added following the -c switch, and they will also be cataloged.

You may, however, want only to update the whatis databases with newly added
commands. Use the -u switch to update the database files. This switch reads
the time of the whatis database file and adds those manual pages created or
updated since.

If you want to know what makewhatis is doing, add the -v switch, and you will
see each man directory entered and each command as it is added to the list.
Each switch used with makewhatis should be separated by a space and
preceded by a hyphen; the switches cannot be combined. makewhatis does
have one weakness: if your system does not have sufficient RAM and virtual
memory, makewhatis will fail. If you get an error message—and you are
running makewhatis as root—add more swap space and try again.

Using apropos

To search the whatis database on your system, just type:

apropos \keyword

inserting your criteria as the keyword for the search. Let's try one out. I've
never used my CD-ROM player for anything more than mounting a data disk
and accessing files, but I'd like to play some music while I'm working (or playing
xtetris because it doesn't have music accompaniment, etc.). So I type:

apropos cdrom

and I see:

xplaycd (1) - X based audio cd player for cdrom drives (END)

apropos uses the less pager unless your PAGER environment variable says
otherwise. To exit this screen, press q. To scroll, use the up and down arrow
keys, or the space bar to go down a screen at a time.

Now I'm not sure, but I believe other programs for accessing the CD exist on my
system. Yes, this will work, but how about a choice? Let's try again. This time, I'll
try with just CD:

apropos cd

survey says:

Tcl_AsyncCreate, Tcl_AsyncMark, Tcl_AsyncInvoke, Tcl_AsyncDelete
(3) - handle asynchronous events
cd (3) - Change working directory
curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin,
dupwin, wsyncup, syncok, wcursyncup, wsyncdown (3) - create curses
windows
eject (1) - eject CD-ROM disc from drive
mcd (1) - change MSDOS directory
rexecd (8) - remote execution server
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush,
tcflow, cfgetospeed, cfget
ispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp (2)
 - get and set terminal attrib
utes, line control, get and set baud rate, get and set terminal
foreground process group ID
tin, rtin, cdtin, tind (1) - A Netnews reader
cda (1) Compact disc digital audio player utility
wm2xmcd (1) - workman-to-xmcd CD database file converter
xmcd (1) - CD digital audio player utility for X11/Motif
xplaycd (1) - X based audio cd player for cdrom drives

Now we have a problem. We can be overwhelmed with inappropriate items. If
this didn't give you a long listing, try giving cat as a keyword for apropos. You'll
get pages of output. (Read on to find out why.)

If you look, you can see that we got what we wanted, and a whole lot more.
How can we narrow it down? Can we put two keywords on the apropos
command line? Yes. Unfortunately, the keywords are logical ORed and not
ANDed together, making the output even longer. But if we scan the listing, it

appears most of the commands we're interested in contain the term audio. We
could try "apropos audio". But let's search the previous list instead. Type:

apropos cd | grep -i audio

Our reward:

cda (1) - Compact disc digital audio player
utility xmcd (1 - CD digital audio player utility
for X11/Motif xplaycd (1) - X based audio cd
player for cdrom drives

Now, that's more like it! We can try these programs to see which we like best.
And we know they have manual pages to help us out.

A good exercise for the reader might be to use “mail” as a keyword (this will
return a very long list), then grep the list for audio to see which programs might
help you e-mail sound files.

A slightly less obvious, but identical command for apropos exists. The
command man -k <keyword> is synonymous, though not as mnemonic.

whatis

Finally, let's take a look at whatis. We've been accessing the whatis database
files during the apropos (aka man -k) searches. Let's try our cd search using
whatis instead.

whatis cd

Now we get:

cd (3) - Change working directory

So what's the difference? Why only one entry? Think of the whatis database as
columnar and containing two columns. The left column contains the program
name (the command used to invoke the program) and the right side contains
the first line of the manual's program synopsis. apropos searches both columns
using the keyword as a regular expression to find all occurrences of the
keyword. These occurrences may be embedded in the command word or the
words of the synopsis. For example, apropos cat returns lines containing the
word catalog, category, duplicate, application, etc. whatis, on the other hand,
searches only the left hand column, which contains only the program name.
This feature is helpful if you know the name of a command, but not its function.

Drawbacks

These commands do have limitations. If a command has no corresponding
manual page, it will not be listed in the database. makewhatis does not include
a manual page, at least not on the author's system. If a synopsis does not
contain a keyword you have chosen to search on, it will not show up. As with all
tools, you may need to compare the results of several different searches or
grep long search results to find the best program for your needs.

Summary

Now you have the tools to help find commands you may not use often, but are
worthwhile knowing. Using apropos and whatis sure beats reading through all
the manual pages. A newbie to Linux will find a lot of directory manipulation
help with the dir keyword. So put apropos to work and search and learn!

David Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux, but begrudgingly works with Windows and those “real”
Unix boxes like DEC 5000s and Suns. When he's not working, he can be found
hacking his own system or enjoying the view of Seattle from 2,500 feet up in an
airplane. He welcomes your comments, criticisms, witticisms, and will be happy
to further obfuscate the issue.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dbandel@ix.netcom.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #30, October 1996

Java Generic Library, Web ToolKit, InvisibleWeb & Offline Proxy Server and
more.

Java Generic Library

ObjectSpace,Inc. announced its Java Generic Library (JGL) is now available free
for commercial use. JGL is a comprehensive set of 14 reusable containers and
70 algorithms for Java and is completely compatible with Sun Microsystems'
Java Developer's Kit (JDK). The release includes full source code, on-line HTML
documentation, examples, tutorial and a suite of performance benchmarks. JGL
can be downloaded from www.objectspace.com.

Contact: ObjectSpace, Inc. 14881 Quorum Drive, Suite 400, Dallas, TX 75240,
Phone: 214-934-2496, FAX: 214-663-9100, E-mail: jgl@objectspace.com, URL:
www.objectspace.com.

Web ToolKit

ObjectSpace, Inc. also announced the release of Web<ToolKit>, a new ANSI/ISO
compatible C++ class library for producing dynamic and interactive HTML World
Wide Web pages. It supports HTML page creation using a set of C++ classes
representing HTML elements, including test, links, graphics, tables, forms,
frames and widgets. Software for UNIX platforms will be available for a cost of
$475.

Contact: ObjectSpace, Inc., 14811 Quorum Dr., Suite 400, Dallas, TX 75240,
Phone: 214-934-2496, Fax: 214-663-9100, E-mail: info@objectspace.com, URL:
www.objectspace.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.objectspace.com
mailto:jgl@objectspace.com
http://www.objectspace.com
mailto:info@objectspace.com
http://www.objectspace.com

InvisibleWeb & Offline Proxy Server

Innovative Software now offers the first two Linux ports of products for Internet
users. The first port is the Offline Proxy Server that allows the user to switch
between an “online” and “offline mode.” When in offline mode, it doesn't try to
contact remote servers when a document is available on the local disk; in
online mode it is transparent. The second port is the InvisibleWeb, a command-
line tool that allows you to automate the process of downloading documents
from a WWW site. The two products can be used separately or together. Free
evaluation copies of both products can be downloaded from: www.isg.de/
visualweb/invisible_e.html.

Contact: Innovative Software GmbH, Kaiserstrasse 65, 60329 Frankfurt am
Main, Phone: +49-69-236929, Fax: +49-69-236930, E-mail: lkv@barbar.isg.de
URL: www.isg.de/visualweb.

Internet and Intranet/Web Server with Cyrix 166MHz chip

Datacomm Technologies announced the availability of Internet/Intranet
Servers, Interserve-6150 and 6166, constructed using fast 6x86 CPU(s) from
Cyrix Corporation, a Texas chip manufacturer. Interserve-6150 and 6166 are
multi-user/multi-tasking web servers with a true 32-bit operating sytem. For the
Internet both servers provide Netscape Navigator 2.0, complete integration of
DNS/NIS, HTTP, SMTP, FTP, SNMP, PPP/SLIP, NNTP, WAIS, Gopher and more.
For Intranet services both servers provide the ability to act as Netware 3.x/4.x
client, with auto-mounted volumes, Enterprise wide bakup utilty and printing,
drag & drop administration tools and more. These servers run under Linux
using Caldera.

Contact: Datacomm Technologies, 1617 S. Norton Ave., Los Angeles, CA, 90019,
Phone: 800-607-9640, 213-737-5599, E-mail: micro_x@earthlink.net

ARDI Executor 2

ARDI announced the release of Executor 2 on CD-ROM now in beta release. The
CD contains Executor/DOS, Executor/Linux and Executor/NEXTSTEP as well as a
sample of Macintosh freeware, demoware and shareware. Executor 2 allows
serious Macintosh applications and games to run under Linux. During the beta
testing, the Executor2 CD is available for $149. Beta CD licensees will
automatically be sent the complete Executor 2 CD when it is ready. Price of
finished release will be $249.

Contact: ARDI, 1650 University Blvd. NE, Suite 4-101, Albuquerque, NM 87102,
Phone: 505-766-9115, FAX: 505-766-5153, E-mail: info@ardi.com , URL:
www.ardi.com.

http://www.isg.de/visualweb/invisible_e.html
http://www.isg.de/visualweb/invisible_e.html
mailto:lkv@barbar.isg.de
http://www.isg.de/visualweb
mailto:micro_x@earthlink.net
mailto:info@ardi.com
http://www.ardi.com

TowerEiffel Release 2.0

Tower Technology Corporation announced the availability of TowerEiffel
Release 2.0. TowerEiffel is a full object-oriented life-cycle development
environment for building reusable frameworks, applications and systems. It is
available for many Unix platforms, including Linux. Two versions will be
available: the Professional version at a price of $995 for Linux, and an
introductory Lite version for a price of $325.

Contact: Tower Technology Corp., Austin, Texas, Phone: 512-452-9455, E-mail:
may@twr.com , URL: www.twr.com.

Debian Linux 1.1

Software in the Public Interest announced the release of Debian Linux 1.1, a
free-software Linux system. The Debian 1.1 system includes 474 software
packages, including the Linux 2.0 kernel and all-ELF executables. A complete list
with descriptions can be found at www.debian.org/debian/FTP. Debian allows
the entire system, or any individual component, to be up-graded in place
without reformatting, without losing custom configuration files, and (in most
cases) without rebooting the system. Debian Linux 1.1 can be retrieved from
ftp://ftp.debian.org/debian/Debian-1.1/.

Contact: Software in the Public Interest, E-mail: bruce@pixar.com, URL:
www.debian.org.

COS/Print

OSM (Open Systems Management) announced the release of COS/Print, a
network-aware spooling and printer management package for Unix platforms
including Linux. COS/Print provides full control over print jobs, queues and
printers, plus multiple levels of security. It is available as a stand-alone product
for $400 or as part of OSM's COSMOS systems management printer package.

Contact: Open Systems Management Inc., 1111 Third Avenue, Suite 2500,
Seattle, WA 98101, Phone: 206-583-8373, Fax: 206-292-4965, E-mail:
mike@osminc.com

Tecplot 7.0

Amtec Engineering has announced the release of Tecplot version 7.0. Tecplot
provides engineers and scientists with the broadest set of tools available for
visualizing and plotting large amounts of data. This new release features a new
graphical user interface, animation and page layout. Tekplot offers a wide
variety of viewing options, including wire-mesh plots, contour lines, vector

mailto:may@twr.com
http://www.debian.org/debian/FTP
mailto:bruce@pixar.com
http://www.debian.org
mailto:mike@osminc.com

fields and XY plots, all easily annotated and customized. Tecplot runs on most
Unix workstations (under Motif) including Linux. Single-user pricing ranges
from $995 to $3,195, depending on the platform and the license type.

Contact: Amtec Engineering, Inc., P.O.Box 3633, Bellevue,WA 98009-3633,
Phone: 206-827-3304, Fax: 206-827-3989, E-mail: mike@amtec.com , URL:
www.amtec.com.

VanillaSearch

Thought Inc. announced the release of their new product VanillaSearch, a new
Java based pattern matching search class derived from Perl and grep syntax.
VanillaSearch provides an extremely powerful unicode pattern-matching search
capability, using industry standard English or programmer defined foreign
language META characters. VanillaSearch is available for students and non-
commercial use for $49.00; for commercial use for $495 for the binary code
only and $995 for both binary and source code.

Contact: Thought Inc., 2222 Leavenworth St. Suite 304, San Francisco, CA 94133.
Phone: 415-928-4229, FAX: 415-567-9945, E-mail: info@thoughtinc.com, URL:
www.thoughtinc.com

Liquid Reality Developers Kit

Dimension X has released a beta version of their Liquid Reality developers kit.
Liquid Reality is the first platform independent implementation of VRML 2.0
coded entirely in Java. The toolkit includes support for 3-D sound, compatibility
with multi-user servers, an open API, 250 classes to support 3-D content
creation, Java classes, access to ICE, a low level high speed 3D graphics engine
and the ability to create VRML2.0 applets that do not have to be installed on the
desktop. The beta version can be downloaded free from the Dimension X web
site, www.dimensionx.com.

Contact: Dimension X, 181 Fremont St., Ste. 120, San Francisco, CA 94105,
Phone: 415-243-0900, E-mail: megan@dimensionx.com, URL:
www.dimensionx.com.

Accelerated OpenGL Solution for Linux

X inside, Inc. announced a software implementation of OpenGL for Linux.
OpenGL is a software package developed by Silicon Graphics for the rendering
of 3D objects. Product features include support for seven operating systems,
over 400 graphics cards and chip sets, 4bpp and 8bpp color index mode,
support for 8bpp, 15bpp, 15bpp and 224bpp rgb mode, direct rendering to the

mailto:mike@amtec.com
http://www.amtec.com
mailto:info@thoughtinc.com
http://www.thoughtinc.com
http://www.dimensionx.com
mailto:megan@dimensionx.com
http://www.dimensionx.com

frame buffer and loadable X-server extension to Accelerated X. This product is
available for under $350 per seat.

Contact: X Inside, Inc., 1801 Broadway, Suite 1710, Denver, Colorado 80202,
Phone: 800-946-7433, Fax: 303-298-1406, E-mail: sales@xinside.com , URL:
www.xinside.com.

Tactician Plus

Spire Technolgies is now a distributor for Tactician Plus. Tactician Plus lets you
query multiple databases, analyze data and display results in striking graphics.
It has a consistent user interface across DOS, Unix and VMS environments,
supporting both character and Motif GUI for X-terminals. Spire also distributes
WordPerfect for Linux, a spreadsheet, a firewall server and backup/restore
software solutions. For price information, contact Spire directly.

Contact: Spire Technologies, Inc., 311 N. State St., P.O.Box 1970, Orem, Utah
84059, Phone: 801-226-3355, Fax: 801-224-3847, URL: www.spire.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:sales@xinside.com
http://www.xinside.com
http://www.spire.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Consultants Directory

This is a collection of all the consultant listings
printed in LJ 1996. For listings which changed
during that period, we used the version most
recently printed. The contact information is left as
it was printed, and may be out of date.

ACAY Network Computing Pty Ltd
Australian-based consulting firm specializing in: Turnkey Internet
solutions, firewall configuration and administration, Internet connectivity,
installation and support for CISCO routers and Linux.

Address:
Suite 4/77 Albert Avenue, Chatswood, NSW, 2067, Australia
+61-2-411-7340, FAX: +61-2-411-7325
sales@acay.com.au
http://www.acay.com.au

Aegis Information Systems, Inc.
Specializing in: System Integration, Installation, Administration,
Programming, and Networking on multiple Operating System platforms.

Address:
PO Box 730, Hicksville, New York 11802-0730
800-AEGIS-00, FAX: 800-AIS-1216
info@aegisinfosys.com
http://www.aegisinfosys.com/

American Group Workflow Automation
Certified Microsoft Professional, LanServer, Netware and UnixWare
Engineer on staff. Caldera Business Partner, firewalls, pre-configured
systems, world-wide travel and/or consulting. MS-Windows with Linux.

Address:
West Coast: PO Box 77551, Seattle, WA 98177-0551
206-363-0459
East Coast: 3422 Old Capitol Trail, Suite 1068, Wilmington, DE
19808-6192
302-996-3204
amergrp@amer-grp.com
http://www.amer-grp.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@acay.com.au
http://www.acay.com.au
mailto:info@aegisinfosys.com
http://www.aegisinfosys.com/
mailto:amergrp@amer-grp.com
http://www.amer-grp.com

Bitbybit Information Systems
Development, consulting, installation, scheduling systems, database
interoperability.

Address:
Radex Complex, Kluyverweg 2A, 2629 HT Delft, The Netherlands
+31-(0)-15-2682569, FAX: +31-(0)-15-2682530
info@bitbybit-is.nl

Celestial Systems Design
General Unix consulting, Internet connectivity, Linux, and Caldera
Network Desktop sales, installation and support.

Address:
60 Pine Ave W #407, Montréal, Quebec, Canada H2W 1R2
514-282-1218, FAX 514-282-1218
cdsi@consultan.com

CIBER*NET
General Unix/Linux consulting, network connectivity, support, porting and
web development.

Address:
Derqui 47, 5501 Godoy Cruz, Mendoza, Argentina
22-2492
afernand@planet.losandes.com.ar

Cosmos Engineering
Linux consulting, installation and system administration. Internet
connectivity and WWW programming. Netware and Windows NT
integration.

Address:
213-930-2540, FAX: 213-930-1393
76244.2406@compuserv.com

Ian T. Zimmerman
Linux consulting.

Address:
PO Box 13445, Berkeley, CA 94712
510-528-0800-x19
itz@rahul.net

InfoMagic, Inc.
Technical Support; Installation & Setup; Network Configuration; Remote
System Administration; Internet Connectivity.

Address:
PO Box 30370, Flagstaff, AZ 86003-0370

mailto:info@bitbybit-is.nl
mailto:cdsi@consultan.com
mailto:afernand@planet.losandes.com.ar
mailto:76244.2406@compuserv.com
mailto:itz@rahul.net

602-526-9852, FAX: 602-526-9573
support@infomagic.com

Insync Design
Software engineering in C/C++, project management, scientific
programming, virtual teamwork.

Address:
10131 S East Torch Lake Dr, Alden MI 49612
616-331-6688, FAX: 616-331-6608
insync@ix.netcom.com

Internet Systems and Services, Inc.
Linux/Unix large system integration & design, TCP/IP network
management, global routing & Internet information services.

Address:
Washington, DC-NY area,
703-222-4243
bass@silkroad.com
http://www.silkroad.com/

Kimbrell Consulting
Product/Project Manager specializing in Unix/Linux/SunOS/Solaris/AIX/
HPUX installation, management, porting/software development including:
graphics adaptor device drivers, web server configuration, web page
development.

Address:
321 Regatta Ct, Austin, TX 78734
kimbrell@bga.com

Linux Consulting / Lu & Lu
Linux installation, administration, programming, and networking with IBM
RS/6000, HP-UX, SunOS, and Linux.

Address:
Houston, TX and Baltimore, MD
713-466-3696, FAX: 713-466-3654
fanlu@informix.com
plu@condor.cs.jhu.edu

Linux Consulting / Scott Barker
Linux installation, system administration, network administration,
internet connectivity and technical support.

Address:
Calgary, AB, Canada
403-285-0696, 403-285-1399
sbarker@galileo.cuug.ab.ca

mailto:support@infomagic.com
mailto:insync@ix.netcom.com
mailto:bass@silkroad.com
http://www.silkroad.com/
mailto:kimbrell@bga.com
mailto:fanlu@informix.com
mailto:plu@condor.cs.jhu.edu
mailto:sbarker@galileo.cuug.ab.ca

LOD Communications, Inc
Linux, SunOS, Solaris technical support/troubleshooting. System
installation, configuration. Internet consulting: installation, configuration
for networking hardware/software. WWW server, virtual domain
configuration. Unix Security consulting.

Address:
1095 Ocala Road, Tallahassee, FL 32304
800-446-7420
support@lod.com
http://www.lod.com/

Media Consultores
Linux Intranet and Internet solutions, including Web page design and
database integration.

Address:
Rua Jose Regio 176-Mindelo, 4480 Cila do Conde, Portugal
351-52-671-591, FAX: 351-52-672-431
http://www.clubenet.com/media/index.html/

Perlin & Associates
General Unix consulting, Internet connectivity, Linux installation, support,
porting.

Address:
1902 N 44th St, Seattle, WA 98103
206-634-0186
davep@nanosoft.com

R.J. Matter & Associates
Barcode printing solutions for Linux/UNIX. Royalty-free C source code and
binaries for Epson and HP Series II compatible printers.

Address:
PO Box 9042, Highland, IN 46322-9042
219-845-5247
71021.2654@compuserve.com

RTX Services/William Wallace
Tcl/Tk GUI development, real-time, C/C++ software development.

Address:
101 Longmeadow Dr, Coppell, TX 75109
214-462-7237
rtxserv@metronet.com
http://www.metronet.com/~rtserv/

Spano Net Solutions
Network solutions including configuration, WWW, security, remote

mailto:support@lod.com
http://www.lod.com/
http://www.clubenet.com/media/index.html/
mailto:davep@nanosoft.com
mailto:71021.2654@compuserve.com
mailto:rtxserv@metronet.com
http://www.metronet.com/~rtserv/

system administration, upkeep, planning and general Unix consulting.
Reasonable rates, high quality customer service. Free estimates.

Address:
846 E Walnut #268, Grapevine, TX 76051
817-421-4649
jeff@dfw.net

Systems Enhancements Consulting
Free technical support on most Operating Systems; Linux installation;
system administration, network administration, remote system
administration, internet connectivity, web server configuration and
integration solutions.

Address:
PO Box 298, 3128 Walton Blvd, Rochester Hills, MI 48309
810-373-7518, FAX: 818-617-9818
mlhendri@oakland.edu

tummy.com, ltd.
Linux consulting and software development.

Address:
Suite 807, 300 South 16th Street, Omaha NE 68102
402-344-4426, FAX: 402-341-7119
xvscan@tummy.com
http://www.tummy.com/

VirtuMall, Inc.
Full-service interactive and WWW Programming, Consulting, and
Development firm. Develops high-end CGI Scripting, Graphic Design, and
Interactive features for WWW sites of all needs.

Address:
930 Massachusetts Ave, Cambridge, MA 02139
800-862-5596, 617-497-8006, FAX: 617-492-0486
comments@virtumall.com

William F. Rousseau
Unix/Linux and TCP/IP network consulting, C/C++ programming, web
pages, and CGI scripts.

Address:
San Francisco Bay Area
510-455-8008, FAX: 510-455-8008
rousseau@aimnet.com

Zei Software
Experienced senior project managers. Linux/Unix/Critical business
software development; C, C++, Motif, Sybase, Internet connectivity.

mailto:jeff@dfw.net
mailto:mlhendri@oakland.edu
mailto:xvscan@tummy.com
http://www.tummy.com/
mailto:comments@virtumall.com
mailto:rousseau@aimnet.com

Address:
2713 Route 23, Newfoundland, NJ 07435
201-208-8800, FAX: 201-208-1888
art@zei.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:art@zei.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Announcing the Linux Buyer's Guide

With the Linux market growing at such a phenomenal rate, it is often
hard to locate the Linux product you are looking for. Often Linux users
aren't even aware of many of the products available for Linux. The
solution? Linux Journal's annual Linux Buyer's Guide.

The 1997 Linux Buyer's Guide will be a complete listing of Linux
hardware, software and reference materials. With easy-to-read cross-
referencing, complete listings of all Linux vendors, and helpful Linux
buying information, the Linux Buyer's Guide will be an excellent resource
for all Linux users.

The annual Linux Buyer's Guide will be a free thirteenth issue to all Linux
Journal subscribers. If you are not yet subscribed, make sure to do so now
to ensure the arrival of your copy of the 1997 Linux Buyer's Guide. (E-
mail info@linuxjournal.com or call 206-782-7733 for Linux Journal
subscription information.) The 1997 Linux Buyer's Guide will have a
newsstand date of late February 1997.

If you have a product or service you would like listed in the 1997 Linux
Buyer's Guide, please call 206-782-7733 and request that a free listing
form be sent to you. Or, visit our Linux Buyer's Guide WWW site: http://
www.ssc.com/lj/guide.html.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ssc.com/lj/guide.html
http://www.ssc.com/lj/guide.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/030/toc030.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News and Articles
	Columns
	Directories & References
	What is Java, Really?
	Rudi Cilibrasi

	Flicker-free Animation Using Java
	Paul Buchheit

	That First Gulp of Java
	Brian Christeson
	John D Mitchell
	Language Features
	The Virtual Machine
	The Run-time System
	Just-in-Time Compilation
	Security Concerns
	Conclusion

	My Next Pentium Is A DEC Alpha
	Bryan W. Headley
	Extra Goodies
	Thanks for the Confusion
	Quick Introduction to Alpha Linux
	Where Are We on the Kernel Source Tree?
	Available Alpha Distributions
	Distribution Comparison
	Real Trials and Tribulations
	After the Storm the Calm
	Porting Hints

	DEC AXP Review
	Bryan Phillippe

	Letters to the Editor
	Various
	On with the Masquerade
	The Author Responds
	Virus Cleaners May Like DOS

	The Politics of Freedom
	Phil Hughes
	What Went Wrong?
	What's All the Fuss About?

	New Column: Linux Means Business
	Phil Hughes

	Let's Talk About the Competition
	Phil Hughes
	Where is UnixWare Headed?
	On to Windows NT
	What Does This Have to Do with Linux?
	Remember DR DOS?
	A Call to Action

	Network Buffers and Memory Management
	Alan Cox
	Core Concepts
	Implementation of
sk_buffs
	Higher Level Support Routines
	Network Devices
	Basic Structure
	Naming
	Registering a Device
	The Device Structure
	Naming
	Bus Interface Parameters
	Protocol Layer Variables
	Link Layer Variables
	Flags
	The Packet Queue
	Network Device Methods
	Setup
	Frame Transmission
	Frame Headers
	Reception
	Optional Functionality
	Activation and Shutdown
	Configuration and Statistics
	Multicasting
	Ethernet Support Routines

	Using Sendmail as a Multi-Platform Mail Router
	Tom Lowery
	The Problem
	Enter DNS
	On to sendmail
	The Result

	Java Class Reference Package
	Dave Dittrich

	apropos, whatis and makewhatis
	David Bandel
	makewhatis
	Using apropos
	whatis
	Drawbacks
	Summary

	New Products
	LJ Staff
	Java Generic Library
	Web ToolKit
	InvisibleWeb & Offline Proxy Server
	Internet and Intranet/Web Server with Cyrix
166MHz chip
	ARDI Executor 2
	TowerEiffel Release 2.0
	Debian Linux 1.1
	COS/Print
	Tecplot 7.0
	VanillaSearch
	Liquid Reality Developers Kit
	Accelerated OpenGL Solution for Linux
	Tactician Plus

	Consultants Directory
	Announcing the Linux Buyer's Guide

