Library Coq.Sorting.Permutation
Require Import Relations.
Require Import List.
Require Import Multiset.
Set Implicit Arguments.
Section defs.
Variable A : Set.
Variable leA : relation A.
Variable eqA : relation A.
Let gtA (x y:A) := ~ leA x y.
Hypothesis leA_dec : forall x y:A, {leA x y} + {~ leA x y}.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
Hint Resolve leA_refl: default.
Hint Immediate eqA_dec leA_dec leA_antisym: default.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
Fixpoint list_contents (l:list A) : multiset A :=
match l with
| nil => emptyBag
| a :: l => munion (singletonBag a) (list_contents l)
end.
Lemma list_contents_app :
forall l m:list A,
meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
Proof.
simple induction l; simpl in |- *; auto with datatypes.
intros.
apply meq_trans with
(munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
auto with datatypes.
Qed.
Hint Resolve list_contents_app.
Definition permutation (l m:list A) :=
meq (list_contents l) (list_contents m).
Lemma permut_refl : forall l:list A, permutation l l.
Proof.
unfold permutation in |- *; auto with datatypes.
Qed.
Hint Resolve permut_refl.
Lemma permut_tran :
forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
Proof.
unfold permutation in |- *; intros.
apply meq_trans with (list_contents m); auto with datatypes.
Qed.
Lemma permut_right :
forall l m:list A,
permutation l m -> forall a:A, permutation (a :: l) (a :: m).
Proof.
unfold permutation in |- *; simpl in |- *; auto with datatypes.
Qed.
Hint Resolve permut_right.
Lemma permut_app :
forall l l' m m':list A,
permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
Proof.
unfold permutation in |- *; intros.
apply meq_trans with (munion (list_contents l) (list_contents m));
auto with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m'));
auto with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m));
auto with datatypes.
Qed.
Hint Resolve permut_app.
Lemma permut_cons :
forall l m:list A,
permutation l m -> forall a:A, permutation (a :: l) (a :: m).
Proof.
intros l m H a.
change (permutation ((a :: nil) ++ l) ((a :: nil) ++ m)) in |- *.
apply permut_app; auto with datatypes.
Qed.
Hint Resolve permut_cons.
Lemma permut_middle :
forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m).
Proof.
unfold permutation in |- *.
simple induction l; simpl in |- *; auto with datatypes.
intros.
apply meq_trans with
(munion (singletonBag a)
(munion (singletonBag a0) (list_contents (l0 ++ m))));
auto with datatypes.
apply munion_perm_left; auto with datatypes.
Qed.
Hint Resolve permut_middle.
End defs.
Unset Implicit Arguments.
Index
This page has been generated by coqdoc