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Editor's Preface 

ault tolerance is becoming an 
increasingly important issue 
in the data processing market 
place. Companies of all sizes 
are basing the competitiveness 
of their enterprises on the time­
liness and availability of infor­

mation. These computer-based enterprises require 
a mix of systems that are not only geographically 
distributed but are also fault tolerant. In online 
transaction processing systems, successful fault 
tolerance includes both continuous system avail­
ability and reliably completed transactions. 
Tandem'M systems use both hardware and soft­
ware methods to achieve complete fault tolerance. 

The first two articles in this issue focus on 
the newest Tandem computers, the NonStop'M 
Cyclone'M and the Integrity sr systems. These 
products continue Tandem's development of 
fault-tolerant systems that address emerging com­
puting needs in the data processing marketplace. 

The NonStop Cyclone system is designed for 
high-volume processing, which includes simulta­
neous transaction, query, and batch processing. 
Because large-scale data processing systems are 
moving increasingly toward online databases, 
fault tolerance is a critical requirement. The 
opening article by Chan and Jardine describes 
the methods used to achieve fault tolerance in the 
NonStop Cyclone system. It describes the system 
architecture and its implementation of fault 
detection, fault containment, error recovery, and 
continuous operation from individual component 
failures. 

The move toward UNIX has had an impact on 
all areas of computing, including the need for a 
fault-tolerant UNIX system. The Integrity S2 
system combines the traditional features of fault 
tolerance with a standard implementation of 
UNIX. The article by Norwood discusses the 
Integrity S2 architecture, the NonStop-UX'M 
operating system, and the methods used to 
provide fault tolerance. It describes how triple 
modular redundancy, duplexed components, and 
self-checking circuitry support hardware fault 
tolerance. In addition, the article describes how 
the NonStop-UX operating system has been 
enhanced to increase system performance and 
functionality and improve the robustness of the 
UNIX kernel. 
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A comprehensive security plan is important 
for the complete protection of information. 
There are three forms of on-system protection: 
authentication, which permits the system to 
identify individual users; authorization, which 
restricts access to data files; and auditing, which 
records the actions of users and activities of 
programs. Tandem's Safeguard'M system protec­
tion software extends Guardian 90" operating 
system protection by providing more extensive 
and general authentication, authorization, and 
auditing services. The article by Gaydos de­
scribes the basic elements of Safeguard and 
how they enhance Guardian 90 protection. 

The article by MacKenzie discusses an en­
hancement to the Tandem LAN Access Method 
(TLAM) subsystem that enables the Expand'M 
data communications networking software to 
operate over standard local area network (LAN) 
media. As an additional communication interface 
to Expand, TLAM provides another tool for 
implementing Tandem's open-standards-based 
approach to networking. 

The Pathway transaction processing system 
automatically manages the transaction workflow 
between terminal or devices and the database on 
NonStop systems. The final article, by Yannucci, 
describes the terminal control process (TCP) 
component of Pathway. The TCP provides the 
run-time environment for user-written SCREEN 
COBOL application requesters. Tandem has 
enhanced the TCP to support application request­
ers that require large data address spaces. This 
article discusses the TCP data address space 
limitations in earlier releases of Pathway and 
the enhancements introduced in later releases. 

Finally, this issue includes an index of 
Tandem System Review articles. The index is 
a list of all articles, by subject and product, that 
have been published in this and each previous 
issue. If you would like to order back issues, 
submit the order form on the last page. 

Susan W. Thompson 
Editorial Director 
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Fault Tolerance in the 
NonStop Cyclone System 

ommercial data processing 
systems are moving increas­
ingly toward online databases 
and applications. These 
systems require continuous 
system availability, secure 
transactions, and error-free 

databases. The Tandem'" NonStop'" Cyclone'" 
system is a multiprocessor mainframe designed 
for the highest performance in simultaneous 
transaction, query, and batch processing. It uses 
various hardware and software techniques to 
perform fault detection and recovery, ensuring 
data integrity and continuous system operation 
for critical commercial applications. 

To achieve system-level fault tolerance, the 
NonStop Cyclone system uses Tandem's proven 
system architecture. To achieve fault detection 
within an individual processor, the NonStop 
Cyclone system enhances the methods used by 
the Tandem NonStop VLX'" system. 

This article surveys the methods used to 
achieve fault tolerance in the Tandem NonStop 
Cyclone system. It describes how the following 
design principles of fault-tolerant system opera­
tion apply through various levels of the NonStop 
Cyclone system: 

■ Fault detection by both hardware and software. 

■ Fail-fast and fault-containment designs that 
prevent corruption of user databases by faulty 
subsystems. 

■ High reliability through safe design and error­
recovery features within subsystems. 

■ Continuous system operation achieved through 
mechanisms that recover from individual 
component failures. 
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Nonstop Cyclone System Design 
The NonStop Cyclone system is the most 
powerful of Tandem's fault-tolerant, multi­
processor systems (Chan and Horst, 1989; Horst, 
Jardine, and Harris, 1990). Designed to support 
simultaneous transaction, query, and batch 
processing, NonStop Cyclone systems consist of 
two to sixteen processors loosely coupled by 
dual high-speed busses (the Tandem Dynabus). 
Figure 1 illustrates the NonStop Cyclone system 
architecture. 

I I I I 
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~ Dynabus + 

~ Dynabus+ 

Sections of four processors are interconnected 
by fiber optic cables (the Tandem Dynabus+'") 
and can be physically separated up to 50 meters. 
Each processor has its own memory and controls 
two to four 1/0 channels. Fault detection is 
performed primarily by the hardware, and fault 
recovery is performed by Tandem's message­
based Guardian'" 90 operating system. The 
system can tolerate a single fault in a proce~sor, 
peripheral controller, power supply, or ~oolmg 
system. Failed components can be serviced 
online without disrupting processing. 
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System-Level Fault Tolerance 
The NonStop Cyclone system uses the proven 
system architecture of its predecessors, in which 
all major components of the system are repli­
cated. (See Figure 1.) Guardian 90 manages these 
components and, if one fails, arranges for its 
function to be taken over by another component. 
The replicated components are not merely 
redundant or idle; they operate concurrently to 
enhance system performance while providing 
fault tolerance. 

For example, in normal operation, both 
Dynabusses carry message traffic. If a single 
Dynabus failure occurs, all traffic is routed onto 
the remaining Dynabus. The new Dynabus+, the 
fiber-optic connection between processor sec­
tions, is configured in a dual-ring arrangement, 
allowing tolerance of selected multiple failures. 
Power supply and cooling blower loads are 
distributed so that the effect of a single failure is 
confined to at most a single processor or I/0 
controller. 

1/0 controllers are duplicated, lock-stepped 
microprocessors with self-checking comparison 
circuits. 1/0 controllers are dual-ported to sepa­
rate processors, maintaining a path to the 1/0 
device even when one processor or 1/0 channel is 
down. These replicated devices and busses ensure 
that no single failure will cause the entire system 
or any part of a database to be unavailable. 
Through mirroring, disk drives can also be 
configured to be tolerant of single faults. 

At the software level, operating system pro­
cesses are programmed as process pairs (Bartlett, 
1981; Bartlett et al., 1990). A process pair 
consists of a primary process and a backup 
process, executing in different processors. The 
primary process performs the actual work of the 
process pair, occasionally sending the backup 
process a checkpoint message containing its 

current state. If the primary process fails (for 
example, if the processor in which it is executing 
fails to send its periodic I'm Alive message and is 
declared down), the backup process takes over 
and resumes processing at the point of the last 
checkpoint received. In addition to providing 
tolerance of single hardware faults, the message­
based, process-pair structure of the software also 
provides tolerance of intermittent software faults, 
a feature not provided by hardware-only fault­
tolerant systems. 

Finally, the Tandem Transaction Monitoring 
Facility (TMF'") provides an even greater degree 
of protection and ease of programming (Bartlett 
et al., 1990). TMF allows an application to 
package its computations and database updates 
into atomic units. This protects the integrity of 
the database even in the face of multiple faults 
and prolonged power failures. 

Fault Detection Within a NonStop 
Cyclone Processor 
Once system-level fault tolerance is provided, 
the only requirement at the processor level is that 
the processor halt quickly after detecting a 
failure. This fail-fast principle has two benefits: 

■ It contains the error to the failing processor, 
preventing data corruption. 

■ It minimizes service delays while the backup 
processes take over. 

The duplicate-and-compare method of fault 
detection, used in the Tandem NonStop CLX" 
system (Lenoski, 1989), is not practical to 
implement on a processor as large as the 
NonStop Cyclone. Instead, a variety of hardware 
and software methods are used. Many of these 
methods are used in the NonStop VLX processor, 
although the NonStop Cyclone has much more 
extensive error identification and diagnostic 
capability. 

TANDEM SYSTEMS REVIEW• APRIL 1991 



The NonStop Cyclone uses parity checking 
extensively to detect single-bit errors. Parity is 
propagated through devices that do not alter 
data, such as memories, control signals, busses, 
and registers. Parity prediction is used on 
devices that alter data, such as arithmetic units 
and counters. Predicted parity is based strictly 
on a device's data and parity inputs; it does not 
rely on the device's outputs, which may be 
faulty. Thus, an adder might generate an errone­
ous sum, but the parity that accompanies the 
sum will correspond to the correct result. Parity 
checkers downstream will then detect the error. 

A novel technique similar to recomputation 
with shifted operands (RESO) protects the 
hardware multiplier (Sohi et al., 1989). After 
each multiplication, a second multiplication is 
initiated with the operands exchanged and one 
operand shifted. Microcode compares the two 
results whenever the multiplier is needed again 
or before any data leaves the processor. Unlike 
other implementations of RESO, these checking 
cycles incur almost no performance penalty 
because they occur concurrently with unrelated 
execution steps. 

Within the NonStop Cyclone processor, 
invalid-state checking or the duplication-and­
comparison method is used in sequential logic 
circuits. Checksums protect multiple-word 
transmissions such as the interprocessor bus and 
I/O channel. Watchdog timers and microcode 
polling monitor operations that take many cycles 
to complete. 

If the processor hardware detects a fault from 
which it cannot recover, the processor shuts 
itself down within two clock cycles, before it 
can transmit any corrupt data along the 
interprocessor bus or I/0 channel. The error is 
flagged in one or more of the approximately 300 
error identification registers, allowing quick 
fault isolation to any of the 500 hardware error 
detectors in each processor. (See Figure 2.) 

Figure 2 
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Both the microcode and operating system 
perform numerous consistency checks such as 
invalid instruction detection and address bounds 
checking. Also, the microcode executes proces­
sor diagnostic routines during idle situations. If 
the microcode or operating system detects an 
unrecoverable error, it immediately executes a 
HALT instruction and transmits an error code to 
the Remote Maintenance Subsystem. 
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Fault Recovery Within a Nonstop 
Cyclone Processor 
System-level fault tolerance can be achieved 
without incorporating any fault tolerance 
capabilities within the processors themselves. 
However, each NonStop Cyclone processor has 
numerous online recovery mechanisms that 
allow it to withstand certain types of hardware 
faults. This nearly doubles the calculated mean­
time-to-failure of each processor and dramati­
cally reduces customer service costs. 

As in the NonStop VLX processor, large 
static random-access memory (RAM) arrays, 
such as data and instruction caches, main 
control store, and I/O subsystem control store, 
can recover from intermittent (soft) data errors 
by reloading from alternate copies. For ex­
ample, a soft error in the data cache is corrected 
by refilling the block from main memory. In 
addition, the main control store and caches have 
spare RAMs that automatically replace hard­
failed RAMs (Horst, 1989). (See Figure 3.) 

A single-error-correcting, double-error­
detecting code protects dynamic RAMs in main 
memory. This code incorporates both data and 
address bits, so that addressing failures are 
detected as well as RAM failures. An asynchro­
nous microcode process periodically checks for 
correctable memory errors. These errors are 
logged, and the memory areas are scrubbed by 
Guardian 90. If checksum errors occur, the 
operating system retries interprocessor bus 
packets and 1/0 transfers. 

Diagnostic Facilities 
The NonStop Cyclone diagnostic facilities are 
based on those successfully developed in the 
NonStop VLX system (Allen and Boyle, 1987). 
Each processor has a dedicated microprocessor 
that executes quick diagnostics, scans the initial 
state into the processor, loads bootstrap micro­
code into the writable control stores, and 
initiates system cold load. It can generate and 
collect pseudo-random scan-test signatures for 
quick fault detection and isolation, and it serves 
as the interface to a system-level, fault-tolerant 
maintenance and diagnostic subsystem. 

In addition, the maintenance subsystem has 
an extensive power and environmental monitor­
ing facility. Sensors in all cabinets measure 
power supply voltages, air temperature, and 
cooling blower speeds. 
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The Tandem Maintenance and Diagnostic 
System (TMDS), a collection of software 
processes running in the Guardian 90 environ­
ment, monitors and logs events in a running 
system, supports diagnosis of failures anywhere 
in the system, and optionally dials out to report 
problems to a Tandem customer support center. 
The maintenance and diagnostic subsystem, the 
power and environmental monitoring facility, 
and TMDS software are compatible with 
NonStop VLX systems and allow the integration 
of NonStop Cyclone processor sections into 
existing NonStop VLX systems. 

Conclusion 
As commercial data processing systems move 
increasingly toward critical online databases and 
applications, features such as continuous system 
availability, secure transactions, and error-free 
databases become requirements. The NonStop 
Cyclone system has been developed to provide 
the highest levels of performance, system 
availability, and data integrity for today's 
commercial processing needs. 
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Overview of the NonStop-UX 
Operating System for the 
Integrity S2 

he Tandem" Integrity S2'M 
system combines high avail­
ability and data integrity, two 
traditional features of fault 
tolerance, with a standard 
implementation of the UNIX 
operating system. Integrity S2 

meets current demands for fault-tolerant systems 
co~bined with an industry-standard operating 
environment. 

The fault-tolerant capabilities of the 
Integrity S2 are realized through a combination 
of hardware and software. The hardware sup­
ports fault-tolerant operation through a variety of 
techniques, including triple modular redundancy, 
duplexed hardware, and self-checking circuitry. 

A hierarchical memory architecture takes full 
~dvantage of the reduced instruction set comput­
mg (RISC) processor technology used in the 
Integrity S2. 

The NonStop-UXM operating system, based 
on an AT&T UNIX V.3 kernel, has been enhanced 
in a number of ways to increase system perfor­
mance and functionality, improve the robustness 
of the standard UNIX product, and support fault­
tolerant system operation. Local and global 
memory is managed with a two-tiered design to 
maximize system performance. Additional 
software enhancements provide monitoring and 
diagnostic services to detect faulty components 
and perform appropriate recovery procedures. 

This article describes the components of the 
hardware architecture and key features of the 
NonStop-UX operating system. It explains 
robustness enhancements made to the UNIX 
kem~l. Finally, it discusses online serviceability 
and improvements made to ensure data integrity; 
these include failure detection, isolation, and 
recovery as well as the powerfail shutdown and 
automatic restart procedures activated by 
environmental failures. 
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The Integrity S2 Hardware 
Architecture 

Figure 1 
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The Integrity S2 has a hardware architecture 
designed to support fault tolerance while support­
ing Tandem's implementation of UNIX System V 
operating system. The hardware design uses a 
redundant CPU architecture with a high-speed 
RISC microprocessor at the heart of each CPU. 
System expansion is possible by adding more 
memory or communication devices. Mass storage 
cabinets allow flexible system configuration. The 
fault-tolerant 1/0 system, replicated components 
and data paths, and self-checking circuitry are 
designed to prevent a single hardware failure 
from interrupting data processing. Figure I 
illustrates the components of the Integrity S2 
hardware architecture. 

Memory Memory 

Triple Modular Redundancy 
The Integrity S2 hardware architecture is based 
on triple modular redundancy (TMR). The 
Integrity S2 architecture design uses three CPU 
modules operating as one TMR logical processor. 
The three CPUs execute the same instructions 
then compare and vote on the outputs. This ' 
design expedites isolation of a malfunctioning 
CPU and protects data integrity. 

The most important architectural difference 
between the Integrity S2 and traditional TMR 
architectures is that Integrity S2 uses three 
independently clocked CPUs. While all three 
CPUs execute the same instruction stream, they 
do not necessarily execute the same instruction 
at the same time. 

Each CPU has its own oscillator. If one of the 
CPUs has an oscillator that beats slightly faster 
than the rest, that CPU will move ahead of the 
others in the instruction stream. When an inter­
rupt occurs, all CPUs must see the interrupt at 
the same point in the instruction stream, or the 
CPUs would take different paths in processing 
the interrupts. Therefore, the CPUs are synchro­
nized whenever external interrupts are presented 
to the CPUs. 

I 
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Hierarchical Memory Architecture 
Memory for the Integrity S2 is organized hierar­
chically into local and global memory. Cache and 
disk are the other two components of the memory 
hierarchy, which is controlled by memory man­
agement software. Each CPU module contains 
8 to 64 megabytes of high-speed local memory. 
The CPUs execute primarily from local memory. 
The processors can also access a somewhat 
slower, duplicated global memory by way of the 
reliable system bus (RSB). Global memory can 
be as large as 128 megabytes. 
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Figure 2. 
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Integrating RISC Technology 
The current CPU consists of a 16.67-MHz R2000 
MIPS microprocessor using RISC technology 
and containing 64 kilobytes each of instruction 
and data cache. The hierarchical memory design 
takes full advantage of the RISC processor 
technology. Large caches and fast memories are 
required to keep RISC processors fed at rates 
that are fast enough to keep them from stalling. 
The global memory, used primarily as a fast 
swap device, ensures that the local memory has 
fast access to the active working sets of running 
processes. 

The loose synchronization of the CPUs also 
enables the RISC microprocessors to run at high 
speed. At these high frequencies, it is difficult to 
lockstep multiple CPUs. Loose synchronization 
solves this problem without adversely impacting 
performance. 

Voter Modules 
Two self-checking voter modules connect to and 
monitor the CPU modules. Voting occurs when 
the global memory must be accessed or an 
interrupt needs to be processed. One voter 
compares the output of its CPU with that of the 
other two. If the outputs match, the CPUs are 
operating correctly. As shown in Figure 2, if a 
CPU has output that differs from the other two, 
the voter assumes it is faulty. The malfunction­
ing CPU is outvoted and isolated before it can 
corrupt any permanent data in the global memo­
ries of the system. 

The Integrity S2 hardware design contains 
two boards called the TMR controllers (TMRCs). 
The two voter modules as well as the dual global 
memories reside on the TMRCs, one voter 
module and one memory module to each board. 
One TMRC is designated as the primary con­
troller, and the other is the secondary. Data is 
always read from the primary TMRC. A process 
called the primary-secondary swapper periodi­
cally alternates the assignments of the primary 
and secondary TMRCs. 

System Expansion 
Memory can be increased to 192 megabytes. 
Slots for additional 1/0 controllers, which can 
provide connections for additional disk drives, 
tape drives, and data communication lines, are 
inside the system cabinet. 

Up to four mass storage cabinets (MSC) can 
be added to one system. Each MSC houses seven 
slots for standard 5-1/4-inch small computer 
system interface (SCSI) devices. Alternately, six 
disk drives and one tape drive can be installed. 

Duplexed Components in the Fault-Tolerant 
1/0 Subsystem 
The Integrity S2 1/0 subsystem supports fault 
tolerance by providing redundant paths to 
peripheral and communications controllers. 
There are five major subsystem components: 

■ Dual reliable 1/0 buses (RIOBs). 

■ Dual 1/0 processors (IOPs). 

■ Dual NonStop V+'" buses. 

■ Bus interface modules (BIMs). 

■ Intelligent 1/0 controllers. 
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The dual RIOBs connect the three CPUs, two 
TMRCs, and three RSBs to the 1/0 subsystem. 
Each RIOB supports a bidirectional 32-bit data 
path plus 4-bit parity. 

The dual IOPs, located between the TMRCs 
and the 1/0 controllers, verify data addresses 
from up to eight controllers before transferring 
the data to global memory. The IOPs are con­
nected to the global memory modules, located 
on the TMRCs, through the RIOB. Each of the 
dual IOPs controls a single NonStop V+ bus. 

The NonStop V+ bus is an industry-standard 
VMEbus that has been enhanced with parity and 
other fault detection and isolation properties to 
support a more robust 1/0 subsystem. Dual 
NonStop V+ buses provide a path for data 
transfer between VMEbus controllers and the 
active IOP for those controllers. 

The dual NonStop V+ buses connect through 
BIMs to industry-standard VMEbus controllers. 
The BIMs allow a single controller to interface 
to either of the NonStop V+ buses, although 
only one connection is active at any one time. 
The processor can switch a controller from one 
bus to another if an IOP or a NonStop V+ bus 
fails. Up to eight VMEbus controllers can be 
integrated into the 1/0 subsystem. 

The intelligent 1/0 controllers incorporate 
microprocessors to improve 1/0 performance. 
They manage most of the mass storage and 
communications processing requirements, 
freeing the CPUs to complete other tasks. The 
controllers are connected by way of redundant 
paths to the IOPs. 

Self-Checking Circuitry 
Self-checking designs are used throughout the 
architecture, along with other methods of error 
detection, to increase the fault detection cover­
age. A diagnostic subsystem reports the identifi­
cation and isolation of the errors. Once isolated 
and identified, the user can remove it from the 
system and insert a new one without affecting 
the availability of the system. 

The Integrity S2 Software 
Architecture 
The principal goal of the software architecture 
was to provide a completely standard imple­
mentation of UNIX System V on the Integrity S2 
as well as support the fault-tolerant hardware 
architecture. Additional objectives were to 
provide high availability, data integrity, and 
user serviceability. 

These requirements are not usually asso­
ciated with the UNIX operating system, which 
is known for its tendency to crash. Therefore, 
a simple port of UNIX to operate on the 
Integrity S2 hardware architecture would not 
satisfy all system software requirements. To 
achieve its goals, the NonStop-UX operating 
system contains enhancements to the basic 
implementation of UNIX System V while still 
maintaining System V Interface Definition 
(SVID) compliance. 

Methodology for Extending UNIX to 
Provide Fault Tolerance 
Tandem developers decided to base the 
NonStop-UX operating system on a standard 
implementation of UNIX after analyzing several 
unsuccessful versions of UNIX based on fault­
tolerant hardware. Concluding that standard 
UNIX is not well-suited to a fault-tolerant 
environment, these other vendors rewrote the 
UNIX operating system. However, a proprietary 
version of UNIX can present serious problems 
for users. 
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First, many users have had trouble porting 
UNIX applications to a nonstandard UNIX 
operating system, even one intended to be an 
improvement of standard UNIX. Users are 
reluctant to port a large UNIX application to an 
operating system that deviates in any way from 
the UNIX interface definitions or, worse, does not 
obey UNIX semantics. 

Second, users want to have access to the latest 
UNIX features. Users must wait longer for these 
features if they have to depend on the system 
provider to develop them. True UNIX semantics 
are hard to achieve by transforming another 
operating system into UNIX at the system call or 
library level. Implementing new internal features 
is much more difficult than simply porting the 
new release of UNIX to the hardware platform. 
By offering an emulation of UNIX, one loses one 
of its principal advantages, which is the technol­
ogy of the UNIX operating system itself. 

Third, users demand access not only to the 
UNIX operating system, but also to the UNIX 
software development environment. It is superior 
to development environments found on many 
proprietary systems. Also, it is available on a 
variety of hardware platforms. Finally, compa­
nies find it relatively easy to hire and retain 
developers trained in the UNIX environment. 

Therefore, the NonStop-UX system was not 
designed as a layer that transformed a non-UNIX 
operating system into a SVID-compatible pro­
gramming interface. Tandem chose to provide a 
UNIX implementation on a fault-tolerant hard­
ware design based on the following guidelines: 

■ Start from a good standard port of UNIX 
System V. 

■ Whenever possible, introduce fault-tolerant 
features in a modular manner that are portable 
across releases of the operating system. 

■ Ensure that none of the work to add fault 
tolerance violates existing and emerging stan­
dards, such as X/OPEN or POSIX. 1 

■ Ensure that no user-level application software 
changes are required to take advantage of fault­
tolerant features. 

Figure 3 illustrates the standard and modified 
elements that comprise the Integrity S2 system. 

'X/OPEN and POSIX are two organizations that are defining standards 
important to UNIX. 
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Basic Features of the NonStop-UX 
Operating System 
The NonStop-UX operating system is based on 
the AT&T System V, Release 3 kernel and 
provides excellent portability. It complies with 
the AT&T SVID Issue 2 and passes the System V 
Verification Suite. These tests verify conform­
ance with SVID standards. 

NonStop-UX provides improved system 
performance and networking capabilities. For 
example, NonStop-UX supports the improved 
Berkeley Software Distribution (BSD) Fast File 
System (FFS), which uses the File System 
Switch feature of UNIX System V. FFS allows 
NonStop-UX to have faster file access time. 

A MIPS optimizing compiler system is 
included to maximize RISC processing perfor­
mance. The compiler system translates high­
level languages2 into machine code, optimized 
for the RISC microprocessor. The compiler 
stores data items among 32 registers in the RISC 
chip, making them accessible with the lowest 
number of operations and thus expediting 
program execution. 

NonStop-UX integrates into local and wide 
area networks by supporting networking soft­
ware. The BSD sockets library interface provides 
tools for developing distributed applications. 
The Sun Microsystems Network File System 
(NFS) allows an Integrity S2 system to access 
files and devices on other systems using NFS. 
Transmission Control Protocol/Internet Protocol 
(TCP/IP) and the X Window System are two of 
various protocols supported by NonStop-UX 
that enable communication with other UNIX 
systems. 

Two-Tiered Memory Management 
The two-tiered memory management design 
corresponds to the hierarchical local and global 
memory organization of the hardware architec­
ture. This approach optimizes the demands 
of the RISC microprocessor and supports the 
hardware design. Figure 4 illustrates the 
two-tiered design. 

'Compilers are provided for the following languages: C, FORTRAN, Pascal, 
and COBOL. The C compiler is standard. 

'A hit rate is the probability that a memory reference is stored in the cache. 
A miss occurs when a processor has to go to the next tier to fetch a memory 
reference. 

Figure 4 
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Because the MIPS R2000 microprocessor, like 
all RISC processors, achieves its full perfor­
mance potential when it is fed from memory at 
speeds that match its cycle time, the operating 
system must execute with a high cache hit rate 
and refill the cache quickly on misses.3 Placing 
fast memory on the hierarchy's first tier im­
proves the performance of local memory ac­
cesses. Local memory contains user program 
pages, kernel text, and kernel data. Global 
memory, less often accessed, is on the second 
tier. It contains disk buffer cache, I/0 buffers, 
and user program pages. 
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The CPUs execute from local memory as 
much as possible. When the operating system 
schedules a process, it moves the process into 
local memory to execute. Each of the CPUs 
contains its own local memory, which can be 
accessed independently of the other CPUs. This 
allows rapid access to local memory and helps 
to ensure that the processor can continue to 
execute at relatively high speeds even when it 
encounters a cache miss. 

Global memory is located on the TMR 
controller board. The global memory modules 
contain identical data to protect against TMRC 
and memory failure. Each global access triggers 
the voter modules, which monitor the CPUs, and 
the three independent instruction streams are 
voted. 

The global memory acts as a fast swap 
device, increasing the performance of the 
system under heavy load. Processes that are 
aged first move from local to global memory. If 
needed again, they are quickly swapped back 
into local memory where they execute at full 
speed. Pages that continue to age are eventually 
swapped from global memory to disk. 

The standard UNIX process, vhand, is re­
sponsible for swapping processes from global 
memory to disk. A new process manages 
swapping from local memory to global memory. 
It uses the same type of least-recently-used 
(LRU) scheme as the vhand process. 

A block copy engine, a special-purpose direct 
memory access device, provides hardware 
assistance to move blocks of data across the 
reliable system bus (RSB), which connects the 
CPUs to global memory. The block copy engine 
can copy data much more quickly than the CPU 
can move it. The memory management code 
utilizes the faster block copy engine whenever 
it swaps pages back and forth between local 
and global memory. 

The block copy engine is also used to im­
prove the performance of bcopy() and bzero(), 
two frequently used kernel routines that copy 
and zero data buffers, respectively. The interface 
to the routines is unchanged, but the internals of 
the routine have been modified to make it aware 
of the option of using the block copy engine. 
Because these routines are used throughout the 
kernel, the performance improvement afforded 
by the block copy engine can be significant. 

Fault Tolerance of the 1/0 Subsystem 
The 1/0 subsystem of the Integrity S2 is com­
posed of duplexed components that are checked 
so that they can be isolated in the event of a 
failure. These components provide redundant 
paths within the I/0 subsystem and allow 
integration of VMEbus controllers into the 
Integrity S2 environment. 

The hardware's self-checking logic detects 
any faults and allows isolation of a component 
before the fault corrupts data or other areas of 
the system. When a failure occurs, an interrupt is 
generated and the kernel's error recovery code 
takes the component offline. NonStop-UX is 
also responsible for rerouting any outstanding 
and subsequent I/0 requests by way of an 
alternate path whenever a component has been 
moved offline. 

The dual NonStop V+ bus, a Tandem imple­
mentation of a VMEbus, protects the data paths 
with the addition of parity. The bus interface 
module (BIM) and the NonStop V+ bus combine 
to check parity on data moving across the buses, 
to provide dual-port access to the buses, and 
to enhance fault tolerance by isolating the con­
trollers from one another. Normally, a standard 
VMEbus passes signals through a string of con­
trollers. The Tandem implementation uses a 
radial addressing scheme to route bus signals. 
Each of the controllers has an individual con­
nection to the IOP and appears to be on a com­
pletely separate VMEbus from all the others. 
These changes are transparent to the controllers' 
hardware or firmware. 
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When a VMEbus controller is added to the 
system, the address mapping for that controller 
is kept on both IOPs. If the IOP being used for 
access to that controller is lost, the operating 
system can access the controller at the same 
address by way of the other IOP. This means 
that an IOP can fail while a device driver is in 
the process of accessing a controller, and the 
driver is transparently switched to accessing the 
controller through the other working IOP. This 
can be demonstrated on the system by starting 
up heavy 1/0 workloads and then pulling the 
active IOP. The BIM switches the controller to 
the other NonStop V+ bus and the system 
continues to operate uninterrupted. 

The 1/0 subsystem uses two additional 
methods to preserve data integrity. Disk mirror­
ing and disk checksums safeguard data being 
written to disk or reread from disk. 

Disk Device Mirroring. Mirroring is a technique 
for protecting disk data by writing data to two 
different disk drives at the same time. Figure 5 
illustrates how basic disk mirroring occurs. 

On the Integrity S2, any disk partition can be 
mirrored to any other disk partition of the same 
size. Typically, disk data is written from memory 
to IOP _1, controller_l, disk_l and simultane­
ously to IOP _2, controller_2, disk_2. All impor­
tant data can be mirrored so that it is written to 
two different disk devices accessible through 
two completely separate paths. Mirrored disk 
partitions continue to provide access to data 
even if one disk fails. 

Because writes to the two halves of the 
mirrored devices are done in parallel, the 
performance overhead for the mirroring is 
minimal. With disk mirroring, the performance 
of most applications improves. This improve­
ment occurs because NonStop-UX also imple­
ments read optimization from the different disk 
partitions. Read optimization allows the operat­
ing system to select data from either of the two 
identical halves of a mirrored pair. It works by 
selecting the least busy device or by selecting 

Figure 5 
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the device on which the head is closest to the 
data to be read. As shown in Figure 6, the 
Integrity S2 system implements a number of 
different read optimization algorithms and 
allows any of the algorithms to be selected 
on a partition-by-partition basis. 
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The disk device mirroring software is imple­
mented in a manner independent of the device 
driver. This makes the mirroring software 
available to users who wish to integrate their 
own VME disk controllers and add their own 
standard drivers. 

Disk Checksums. Although most of the I/O 
subsystem consists of self-checking components, 
the off-the-shelf VME controllers used in the 
Integrity S2 are not designed to contain their 
faults with self-checking logic. Therefore, it is 
possible for a controller that fails and corrupts 
data to go undetected in the system. The 

Vernel reliability has 
l\...been improved with 
enhanced error recovery. 

Integrity S2 protects 
itself against such 
failures by generating 
checksums on data that 
is written to disk. The 
checksums are checked 
when the data is reread 

from disk. This technique, called end-to-end 
checksums, ensures that the entire path from 
main memory to disk and back is checked. 
Any failure that compromises data integrity is 
identified. Because the data is mirrored, a correct 
version of the data can always be recovered. 

Robustness Enhancements to UNIX 
As with all standard UNIX implementations, the 
UNIX kernel is a single point of failure on the 
system. Although there are three processors 
executing the instruction stream, it is logically 
a single instruction stream. Therefore, a bug that 
causes the system to panic (shut down) or hang 
causes all three of the processors to panic or 
hang in exactly the same way. 

To ensure the high availability and data integ­
rity of the Integrity S2 system, the reliability 
of the kernel has been improved with a number 
of techniques. Most reliability has been gained 
through the evaluation and correction of many 
of the conditions that cause the kernel to 
panic. For further protection, the kernel is write­
protected against errant or invalid processes. 
These enhancements have been implemented to 
the kernel while still maintaining compliance 
with SVID standards. 

Error Recovery 
UNIX is well known for the many calls to the 
panic() routine interspersed throughout the 
kernel. The panic() routine is often invoked after 
an assertion has been executed to determine if 
a dangerous condition exists. If something is 
amiss, the kernel usually chooses to invoke 
panic(), which flushes the buffer pool and shuts 
down the system. 

Analyzing Panic Calls. Efforts to improve 
kernel reliability began with an extensive 
analysis of the panic conditions and assertions 
of the kernel. A database was created that 
includes information on over 800 panics and 
assertions in a standard System V Release 3 
UNIX kernel. 

A multidimensional value function was 
applied to determine the priority for implement­
ing error recovery routines for the panics. The 
kernel was instrumented to determine how 
frequently the assertions were invoked, and the 
probability that each panic might occur was 
analyzed. These and several other metrics 
allowed prioritization of the list of panics and 
assertions. These tools can be applied to future 
UNIX releases and allow a quick identification 
of new panic conditions, which can be added 
to the database. 
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Choosing the Recovery Mechanism. Usually 
one can construct a recovery routine for an error 
condition. However, it may not always be wise to 
attempt recovery. An assertion that is satisfied is 
an indication that the system has been corrupted 
in some way. Although recovery from the error 
state is possible by, for example, removing a 
corrupted element from a linked list, the original 
cause of the data corruption may still exist. 

This presents system users with a choice. 
Some users may value data integrity over 
availability; others may make the opposite 
choice. A configurable recovery mechanism 
(the /config file system, discussed below) was 
developed to be flexible enough to satisfy both 
sets of users. 

Those users who prefer to preserve data 
integrity can configure the system to allow an 
immediate panic to be invoked after the first 
assertion that indicates a problem. This flushes 
the system state to disk, then enables a quick 
rebooting of the system on a fresh kernel image. 

For those who need to maintain high avail­
ability, error recovery routines are invoked to 
allow the system to continue providing services 
even if it means a user process may be termi­
nated to correct the problem. The system then 
enters a probationary state, where it lives for 
a period of time determined by the user. The 
system can be informed that if a specified 
number of error recoveries are attempted 
during the probationary period, the system is 
too unstable and a shutdown will occur so that 
the system can be quickly rebooted. 

Subscription Services. Subscription services 
allow a subsystem to specify a recovery routine 
and request that the subsystem subscribe to it 
if an error occurs. Subscription services are 
available to any routines in the kernel. Multiple 
subsystem-specific recovery procedures can be 
defined for the same type of failure condition. 

The NonStop-UX Panic Routine. The panic 
capability of the NonStop-UX operating system 
has been enhanced to ensure that data integrity 
is preserved if the system has to be shut down 
and rebooted. When a normal panic routine is 
executed, an attempt is made to flush the buffer 
pool and update the disks to a consistent state. 
This goal is often difficult to achieve because 
the panic routine is executing on a system that 
may have experienced some random memory 
corruption. 

The NonStop-UX panic routine uses as little 
of the kernel as possible when it executes. A 
separate driver routine runs in polled rather than 
interrupt mode and uses data structures set aside 
for this purpose. As much data as possible is 
write-protected during the panic routine's 
execution. Key data structures, such as the 
superblocks, are checked for consistency 
before being written to disk to prevent writing 
corrupted data to the disks. 

APRIL 1991 •TANDEM SYSTEMS REVIEW 19 



Hardware Protection of the Kernel 
Hardware assistance was provided to protect 
portions of memory with write-protect random­
access memory (RAM). The Integrity S2 uses 
special hardware memory-protection circuitry 
to prevent data loss or corruption of the kernel 
resulting from failures. In addition, because it 
is not uncommon for pointers in C to be used 
incorrectly, the write-protect RAM was used to 

A unique feature of the 
Integrity S2 is its online 

serviceability. 

protect kernel text from 
being overwritten. The 
write-protect hardware 
has a small enough 
granularity to be used 
to protect data struc­
tures as well as text, 

although the performance implications of 
write-protecting data often make this approach 
prohibitively expensive. 

If a user process is responsible for a write­
protect violation, the process is terminated. 
In general, processes responsible for errant 
behavior are terminated while the system is 
kept available for the rest of the users. 

Online Service 
The ability to service the Integrity S2 online is 
one of the unique features of the system. One 
can easily service the Integrity S2 without losing 
availability. 

The system's mechanical design facilitates 
the user serviceability of the system. All compo­
nents and cables are accessible from the front. 
When the cabinet doors are opened, a user can 
replace any component without needing any 
tools. The term describing the components, 
customer replaceable units (CRUs), emphasizes 
that the Integrity S2 does not need trained 
service personnel. 

Monitoring the Hardware and 
Software Subsystems 
To facilitate online service, the Integrity S2 uses 
a pseudo-file system, called the /config file 
system, to provide status information for each 
hardware component and software subsystem 
running in the system. The system uses no disk 
space. It is maintained in memory and updated 
as device states and hardware configurations 
change. 

The /config file system consists of one 
hardware and one software directory tree. The 
hardware directory contains files that correspond 
to each CRU in the system. The software direc­
tory contains files corresponding to performance 
statistics or software subsystems such as 
System V interprocess communications and 
the powerfail-autorestart subsystem. 

One can obtain status information by calling 
a stat() routine or by sending an 1/0 control 
(ioctl) ca114 to the files in the /config file system. 
The real object corresponding to the file can also 
be operated on by opening any file and sending 
it an ioctl. The /config file system provides an 
elegant and flexible way to enhance the system's 
user serviceability in a way completely consis­
tent with the UNIX model. 

~An ioctl i~ a UNIX system call used to set certain attributes of l/O devices 
or to override a device's default setting~. 
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Online Reintegration of System Components 
The NonStop-UX operating system allows users 
to remove, replace, and reintegrate any of the 
active components within the Integrity S2 system. 
If any of the boards in the system fail, one can 
repair the system without scheduled downtime. 
CRUs can be replaced online while applications 
are running. The reintegration process is transpar­
ent to applications and system users. 

Reintegration of CPUs. A CPU failure generates 
an event log message. Typically, the system 
administrator is notified of the failure by way of a 
status screen displaying the event log messages. 
The administrator can choose to enable a dial-out 
procedure5 on an event-by-event basis. If enabled, 
the system automatically dials out for assistance 
when specified events occur. 

Soft memory failures are corrected online by 
a software process called the memory scrubber. 
This process eliminates memory errors in 
dynamic random-access memory (RAM) by 
rewriting valid data to the failed address. How­
ever, if a hard memory failure occurs in a CPU, 
the CPU is voted offline and must be replaced. 

The operating system manages the reinte­
gration process of the module. First, the new 
CPU runs its power-on self-test (POST). Then 
the other CPUs receive notification that the new 
CPU has completed its POST. All three CPUs 
use the block copy engine to copy each local 
memory page out to global memory and back 
again. Because two of the CPUs still have valid 
data, that data replaces the bad data in the third 
CPU. Then all CPUs restart from the point in the 
processing stream where they were previously 
executing. This entire process takes approxi­
mately one second on an 8-megabyte local­
memory CPU. 

~The diagnostic system dials out to the Tandem Online Support Center. 

Reintegration of TMRCs. The memory scrub­
ber process also protects both the local and 
global memories from transient soft RAM errors. 
As the scrubber copies data back and forth 
between local and global memory, it can un­
cover latent parity errors. Also, the primary­
secondary swapper periodically swaps the 
primary and secondary TMRC so that the CPUs 
alternately read from both TMRCs and can 
uncover errors specific to one of the modes of 
operation. 

The scrubber cannot correct a hard failure in 
a TMRC. If a global memory error occurs, the 
failed TMRC needs to be replaced. 

Once a new TMRC is installed, the valid data 
from the other TMRC must be copied to it. This 
procedure happens in the background while 
normal processing continues. Data is simply 
read from the primary TMRC and written back 
to both components. One can trade off perfor­
mance with the speed of reintegration by 
varying the block size of the memory copy 
and the time interval between block copies. 

Reintegration of IOPs. When an IOP fails, all 
of the controllers on that IOP are automatically 
switched by way of the BIM to the other IOP. 
Processing continues uninterrupted. When 
an IOP is replaced, the controllers that were 
connected to it are automatically moved back 
to connect with the new IOP. This restores 
balance to the system for both performance 
and fault tolerance. 

The system can switch controllers back and 
forth between the IOPs because the address 
space used by a controller is always reserved on 
both IOPs. The tables that determine the address 
mappings of the VME controllers are kept in 
global memory. 
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Recovery From Environmental 
Failures 
A power failure is the most common environ­
mental failure, but flooding, earthquakes, torna­
does, and other natural disasters can also damage 
a computer system. Failures due to loss of power 
and overheating are the most manageable ones. 
Typically, power failures are transient, lasting at 
most a few minutes. Even a transient power 

failure will cause a non-fault-tolerant system to 
lose availability. If the system is running UNIX, 
chances are that data will also be lost because 
the disks are not kept in a consistent state. 

The Integrity S2 supports continued operation 
through transient power failures. If power is lost 
for longer than a few minutes, data integrity 
is preserved by initiating a powerfail shutdown 
procedure. When power is resumed, an automatic 
restart procedure allows programs to be restarted 
where they had been stopped. 

Powerfail Shutdown Procedure 
Each of the cabinets in the Integrity S2 houses 
two bulk power supplies, which normally distrib­
ute power to the CRUs throughout the cabinet. 
Each cabinet also houses two batteries. If external 
power is lost, the two batteries immediately 
switch in to power the entire system. The batter­
ies are effective for about 8 minutes. 

When power is lost, the two bulk power 
supplies typically transition somewhat asyn­
chronously from a good state to a bad state. The 
analog nature of the power supplies causes 
them to transition back and forth for a few milli­
seconds. A kernel powerfail process is notified 
of all transitions so that it can distinguish be­
tween a failing bulk and an external power loss. 
Once the powerfail process determines whether 
the failure is a permanent or a transient outage, 
the kernel decides which action to take. 

If a single bulk has failed, a message is logged 
to the maintenance subsystem so that the bulk 
can be replaced. The system continues to operate 
in the event of a bulk failure. If power has been 
lost, the shutdown procedure is initiated. Figure 7 
illustrates the steps in this procedure. 

The administrator can mark certain processes 
to be terminated upon power failure, but the 
default action is for all processes to be saved so 
they will restart at exactly the same point in the 
instruction stream when power is resumed. No 
process needs to have special code to survive a 
power failure. 

The system first notifies all system processes 
of the power failure by signalling them. This 
allows users to write applications that catch the 
powerfail signals and perform any necessary 
cleanup before a shutdown. It also allows appli­
cations to perform initialization routines, such 
as password verification, before resuming. 
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The buffer pool is flushed to disk in order to 
ensure that the disks are in a safe and consistent 
state when the system is shut down. Many of the 
VME controllers have memory that maintains 
important state information. This information is 
copied into global memory and written to a 
special powerfail partition on disk. The image 
of memory is then written to the same partition. 

At this point, the kernel powerfail process 
turns off the system. The batteries have been 
sized so that this shutdown procedure can suc­
ceed with only one working battery. Because 
power failures are fairly common in most envi­
ronments, the system considers them expected 
events rather than faults. The Integrity S2 can 
handle a power failure in the presence of a single 
fault, even if that fault is one of the batteries. The 
system can also withstand two consecutive power 
failures, an all too common occurrence. 

Overheating is a second common cause of 
power failures. The Integrity S2 has bulk power 
supplies with internal heat sensors so they can 
notify the kernel if they begin to overheat. The 
Integrity S2 handles overheating with the same 
software technique it uses when managing a 
power failure. 

Automatic Restart Procedure 
When power is restored, the controller states are 
restored from the powerfail partition. The image 
of memory is then restored from disk to both 
local and global memory. Applications can then 
resume processing at the same point where they 
stopped when the power failure occurred. 

A process can choose to catch the signal that is 
delivered when the power is restored. Then the 
application can execute some special logic. For 
example, the application can invoke its own 
security mechanism by prompting the user for a 
password when the power is restored. Power 
failures can last for several hours, and the people 
running certain applications may have left the 
area. Suppose the resumed application was 
waiting for input from a data entry screen. Such 
a security feature could prevent an unauthorized 
person from entering or retrieving data. 

Conclusion 
The NonStop-UX operating system provides a 
standard UNIX System V implementation with 
advanced features that support the fault-tolerant 
hardware, allow system networking, and im­
prove the robustness of the UNIX kernel. Any 
user can perform online service. For environ­
mental failures, the operating system manages 
shutdown and restart procedures to protect data 
integrity. The Integrity S2 is the most successful 
implementation to date to combine the availabil­
ity and reliability of a high-performance fault­
tolerant hardware architecture with a fully 
conforming UNIX environment. 

Peter Norwood joined Tandem in 1983 as a software designer. He 
worked as both a designer and a manager on various portions of the 
Integrity S2 project. Peter holds a BA from Haverford College and an 
MSEE from the University of Texas at Austin. He is currently vice 
president of software development at Tivoli Systems in Austin, Texas. 
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Enhancing System 
Security With Safeguard 

ach computer application is 
unique, with unique security 
requirements. To make a 
computer system secure, 
users need to implement 
their security policy in a 
manner that suits the unique 

requirements of each application. Safeguard'", 
the Tandem'" system protection product, can be 
the foundation of the system's security design. 
Safeguard enhances the security of Tandem 
systems in several areas, including authentica­
tion services, disk file security, protection of 
processes and devices, and auditing. 

This article describes the basic elements of 
Safeguard, discusses the security enhancements 
offered by Safeguard, provides examples of the 
uses of Safeguard, and gives a brief overview 
of the Safeguard environment. The article 
assumes that readers are familiar with the 
security features provided by the Tandem 
Guardian'" 90 operating system. The article 
is based on the C22 release of Safeguard. 

Developing an Application 
Security Plan 
Users should develop the Safeguard configura­
tion as part of a larger security plan, just as they 
would develop an application. Typically, secu­
rity development involves four distinct phases: 
policy statement, assessment, design, and 
implementation. 

Initially, the upper management of an organi­
zation issues a security policy, clearly stating the 
organization's security requirements and its 
degree of commitment to achieving the security 
goals it has outlined. This step plays an impor­
tant role in eliminating organizational barriers 
later on. 

TANDEM SYSTEMS REVIEW• APRIL 1991 



During the assessment phase, a security 
administration team studies the application and 
its environment to identify which users need 
which forms of system access. The team also 
decides which forms of protection are appropri­
ate and documents its conclusions in a security 
assessment report. 

Next, the security team designs the security 
plan, including the Safeguard configuration. If 
possible, the team also tests the design. Finally, 
the team implements the security design, usually 
one part at a time, including provisions for 
addressing any unintended problems that may 
occur. 

Basic Elements of Safeguard 
A computer security system should provide 
three basic forms of protection. Authentication 
permits the system to identify individual users. 
Authorization allows the system to control 
which users are granted which access privileges. 
Auditing provides a way to trace illicit accesses, 
verify that no illicit accesses have occurred, and 
record events to assist in detecting fraudulent 
activity. Moreover, the computer security 
system should be flexible enough to protect the 
system without impairing the everyday work of 
users. 

Safeguard has been designed to achieve these 
goals. For authentication services, Safeguard 
uses the Guardian 90 concept of the individual 
user ID, thereby ensuring full compatibility with 
systems that are not running Safeguard. In 
addition, Safeguard provides its own authoriza­
tion and auditing services. Each functional area 
identified by Safeguard provides the authenti­
cation, authorization, and auditing services 
required by that function. For example, the 
processes function allows the security adminis­
trator to authorize and audit actions involving 

processes. Many Safeguard functions are based 
on Guardian 90 concepts such as disk files, 
users, devices, terminals, and processes. In 
addition, Safeguard introduces three new 
concepts to Guardian 90 systems: 

■ Access control lists (ACLs) can be assigned to 
existing system objects or groups of objects, 
providing both authorization and audit control. 

■ Objecttypes extend ACL functionality by 
allowing the security administrator to control the 
creation of new system objects such as disk files 
and processes. 

■ The Groups feature extends Safeguard's 
protection services to the management of the 
Safeguard system itself. 

Access Control Lists 
Safeguard uses ACLs to form a Lampson model 
of security. A Lampson model is a matrix in 
which subjects (users) form the rows and objects 
form the columns (Dynamic Protection Struc­
tures, 1969). Each entry in the matrix defines the 
types of access allowed for the given subject and 
object. A Safeguard ACL gives a column view of 
the Lampson model, defining which users are 
granted which types of access to an object. 
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Figure 1. 

Subvolume security 
matrix. 
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Figure 1 

User IDs 

SEC.ADM IN 
(1,255) 

APPL.USER1 
(2,1) 

APPL.USER2 
{2,2) 

APPL.DATABASE 
(2,255) 

SUPER.OPER1 
(255,1) 

SUPER.OPER2 
(255,2) 

SUPER.SYSMGR 
(255,100) 

Table 1. 

SUPER.SUPER 
(255,255) 

0.. 
:::, 
f­a: 
~ 
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RW 
EP 
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RW 
EP 
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AW 
EP 
C 

UJ 
LL 
<I: 
(j) 

0 

RW RW 
EP EP 
co co 

$SYSTEM 

C 
C 

(j) 

>­
(j) 

0 

AW 
EP 
C 

RW 
EP 
C 

RW 
EP 
C 

RW 
EP 
co 

::z; 
UJ 
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>­
(j) 
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::z;~ 
wo 
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C C 
RW AW 
EP EP 
C C 
RW RW 
EP EP 
C C 
AW 
EP 
co 

AW 
EP 
co 

-" = no access 

Possible forms of the user list in an access control entry. 

Safeguard user list Description 

140,145 Local user 140,145 only 

A 
a: 
UJ 
I 
f-
0 
V 

----------------------

\*.140, 145 Remote and local user 140,145 only 
- ----------

140,* Local group 140 only 

\*.140,* Remote and local group 140 only 

Any local user 
-------------------------

\*.*,* Any user 

Subvolumes 

f-
0 
:::, 
<I: 

0 

RW 
EP 
C 

RW 
EP 
C 

AW 
EP 
C 

RW 
EP 
co 

$AUDIT 

UJ 
LL 
<I: 
(j) 

0 

RW 
EP 
co 

A 
a: 
UJ 
I 
f-
0 
V 

$TEST 

UJ 
LL 
<I: 
(j) 

0 

RW 
EP 
co 

A 
a: 
UJ 
I 
f-
0 
V 

0 

RW 
EP 
C 

RW 
EP 
C 

RW 
EP 
co 

$DATA 

0 

iri 
0 

0 

RW RW 
EP EP 
C C 

AW RW 
EP EP 
co co 

UJ 
LL 
<I: 
(j) 

0 

AW 
EP 
co 

A 
a: 
UJ 
I 
f-
0 
V 

Figure 1 shows a sample Lampson security 
matrix in a typical production system. In this 
example, the objects are disk volumes, 
subvolumes, and files. Each ACL may contain 
access control entries. Each access control entry 
has three parts: a user or group of users to which 
the entry applies, a list of access authorities, and, 
optionally, the DENY attribute. 

User Lists. Users or groups of users can be listed 
in an access control entry in one of six ways. 
Table 1 shows examples of the six types of 
user lists. 
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Access Authorities. The types of access authori­
ties include read (R), write (W), execute (E), 
purge or stop (P), create or start (C), and owner 
of the object (0). The meaning of each access 
authority may differ depending on the class of 
object being protected. For example, for both the 
disk file and process object classes, Rand W 
mean the authority to open a file or process for 
read and write access and O the authority to alter 
or delete the Safeguard protection for the file. 
However, for disk files, C, P, and E refer to 
create, purge, and execute authorities, whereas 
for processes, C refers to creating a process, P to 
stopping a process, and E has no meaning. 

DENY Attributes. All users but SUPER.SUPER 
are denied access to an object protected by 
Safeguard unless an access control entry specifi­
cally grants access. If the DENY attribute is 
included, the access control entry disallows 
access. Within a single ACL, if more than one 
access control entry refers to a single user ID 
and one of those entries contains the DENY 
attribute, the access is always denied. 

Interpreting ACLs. The security of an object is 
determined by the combination of access control 
entries in that object's ACL. It is also possible in 
Safeguard for several ACLs to protect a single 
object. 

Figure 2 shows a sample ACL with 14 access 
control entries. Each entry contains a user list 
(as described in Table 1), a list of access authori­
ties, and, for three entries, the DENY attribute. 

The ACL in Figure 2 is not typical, but it 
demonstrates all the possible types of access 
control entries. A single user ID can be affected 
by six different entries in an ACL. For example, 
the following entries affect user ID 160,027: 

160,027 
\*.160,027 

160,* 
\*. 160,* 

* * ' 
\*.*,* 

Figure 2 

User ID List 

001,001 
002,255 
160,027 

\*.000,040 
\*.020,033 
\*.160,027 

001,* 
103,* 
160,* 

\* .020,* 
\* .160,* 
\* .244,* 

\* * * 

DENY Attribute Access Authorities 

DENY R 

w 
0 
c,o 

DENY R, E, 0 

W,C 

R 

R,E 

DENY W 

R,E,O 
p 

R, W, E, P, C 

R 

E 

To determine the types of access user ID 
160,027 is allowed in this ACL, one must com­
bine all the access control entries that apply to 
this user ID, remembering that DENY entries 
take precedence. In this ACL, the composite 
security for 160,27 is (R,E,P,C,O). For more 
information on ACLs, see the Safeguard Refer­
ence Manual, the Safeguard User's Guide, and 
The CJO Safeguard Primer, Appendix C. 

Objecttypes 
An objecttype is a class of objects protected by 
Safeguard. Each objecttype has its own unique 
protection characteristics. 

Users. In computer security terminology, users 
are usually called subjects. In Safeguard, users 
are also an objecttype. 
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Figure 3. 

Sample user configuration. 
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Figure 3 

GROUP.USER 
APPL.USER2 

USER-ID 

2,2 
OWNER 

1,255 
LAST-MODIFIED 

23JAN91, 11 :57 
LAST-LOGON 

12MAY91, 12:19 
STATUS 
THAWED 

USER-EXPIRES * NONE 

PASSWORD-EXPIRES 02JUN91, 0:00 
PASSWORD-MAY-CHANGE 13MAY91, 0:00 

PASSWORD-MUST-CHANGE EVERY 30 DAYS 

PASSWORD-EXPIRY-GRACE 
FROZEN/THAWED 

STATIC FAILED LOGON COUNT 

15 DAYS 
THAWED 

45 

AUDIT-ACCESS-PASS = REMOTE 

AUDIT-ACCESS-FAIL = ALL 
AUDIT-MANAGE-PASS= ALL 

AUDIT-MANAGE-FAIL= NONE 

CI-PROG = $SYSTEM.SYS03.TACL 
Cl-NAME = $CM25 
Cl-SWAP= $SWAP 

Cl-CPU = 2 

CI-PRI 150 

CI-PARAM-TEXT = "1" 

Figure 3 shows an example of the Safeguard 
configuration for one user. It lists the settings of 
the authorization parameters for an individual 
user. One can obtain the list by using the INFO 
USER command in SAFECOM, the interactive 
tool for communicating with Safeguard. For a 
complete description of all the parameters listed 
in this figure, see the Safeguard Reference 
Manual and the Safeguard User's Guide. 

Disk Files. The disk file objecttype includes any 
permanent Tandem disk files except optical files 
and SQL objects. In addition to the standard R, 
W, E, P, C, 0 access attributes, each disk file has 
three special attributes: Progid, Clearonpurge, 
and License. 1 

Volumes and Subvolumes. The volume 
objecttype applies to every non-optical disk in 
the system. The subvolume objecttype applies to 
every legal subvolume name on those disks. 

'The attributes Progid, Clearonpurgc, and License apply to Tandem disk files 
on all Guardian 90 systems. For more information, see the File Utility 
Program ( FUP) Manual and the Safeguard Reference Manual. 

The volume and subvolume objecttypes have 
two purposes. They control which users may 
create files on a disk or subvolume, and they 
provide an alternate way to protect disk files. 
Because of the second feature, a disk file can 
be protected simultaneously by a volume, 
subvolume, and disk file protection record. 

Subvolume protection also allows users 
to secure data managed by NonStop" SQL, 
Tandem's distributed relational database man­
agement system. By grouping NonStop SQL 
tables and views in separate subvolumes, users 
have the flexibility of specifying all of the 
functions provided by an ACL for each group 
of NonStop SQL objects. 

Processes and Subprocesses. Safeguard pro­
vides two types of process protection. The first 
type controls which users may open a named 
process for read or write access. This protection 
can be implemented for a process (such as $S), 
a subprocess (such as $S.#PRINT2), or a process 
and subprocess simultaneously. 

The second type of process protection controls 
the creating and stopping of processes. It can be 
implemented for an individual process name, all 
named processes (as a single entity), and all 
unnamed processes (as a single entity). 
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Devices and Subdevices. Device protection is 
similar to the type of protection that controls 
which users may open a named process. Using 
ACLs, the security administrator can control 
which users may open a device or subdevice such 
as a printer, terminal, or communications line. 

Objecttype records. One can also configure an 
objecttype protection record for each of the 
objecttypes mentioned above. The objecttype 
ACL controls who may create protection 
records of that objecttype. For example, the 
OBJECTTYPE USER record determines which 
users may add new user IDs to the system. 

Groups 
A group is a list of user IDs that are granted 
certain Safeguard control capabilities. Safeguard 
allows two groups of users, SECURITY-ADMIN­
ISTRATOR and SYSTEM-OPERATOR. Users in 
the SECURITY-ADMINISTRATOR group may 
make changes to the Safeguard configuration. 
This permits control of certain Safeguard options, 
such as which actions to audit or the decision to 
encrypt user passwords, but does not affect 
control of the settings on individual ACLs. 
SYSTEM-OPERATOR privileges involve manag­
ing the audit trail files themselves (for example, 
managing their location and size). 

Enhancements to User Security 
Safeguard provides valuable enhancements to 
the user ID protection offered by Guardian 90. 
A Guardian 90 system without Safeguard offers 
basic user identification and authentication 
functionality. Safeguard uses the same user name 
and user ID conventions as Guardian 90, thus 
maintaining compatibility, but it offers several 
additional features such as user ID management, 
authentication protection, and password change 
control. 

User ID Management 
Safeguard offers added flexibility in assigning 
user management tasks. A Safeguard ACL con­
trols which users may add new users. Also, each 
user ID is assigned an owner, who is allowed to 
modify or delete that user ID configuration. 

A user ID can be configured with an expira­
tion date, permitting safe use of temporary user 
IDs. In addition, a user ID can become frozen, 
preventing all logons by that user ID. Freezing is 
useful for protecting powerful user IDs (such as 
SUPER.SUPER) that are not needed for day-to­
day use or for temporarily preventing access to 
a certain user ID. 

Authentication Protection 
In Guardian 90, three consecutive failed at­
tempts to log on as one user ID causes the 
process attempting the logon to be suspended 
for 60 seconds. This protects against illicit 
logons through the trial-and-error method. 

Safeguard makes this feature more flexible by 
allowing the security administrator to configure 
the number of attempts and the duration of the 
suspension through the global parameters 
AUTHENTICATE-MAXIMUM-ATTEMPTS and 
AUTHENTICATE-FAIL-TIMEOUT. Thus, one can 
configure a more or less strict penalty for failed 
logons, according to the security policy. 

A third parameter, AUTHENTICATE-FAIL­
FREEZE, provides additional protection. If this 
parameter is set to ON, a user ID will become 
frozen if the number of consecutive failed logon 
attempts for that user ID exceeds AUTHENTI­
CATE-MAXIMUM-ATTEMPTS plus one. This 
parameter sharply limits the total number of 
invalid logon attempts that can be made against 
one user ID. 

Assume, for example, that AUTHENTICATE­
MAXIMUM-ATTEMPTS is 3, AUTHENTICATE­
FAIL-TIMEOUT is 4 minutes and AUTHENTI­
CATE-FAIL-FREEZE is OFF. If three consecutive 
invalid logon attempts are made against a given 
user ID, the process that made the third attempt 
is suspended for four minutes. Thereafter, any 
process that makes an invalid logon attempt 
against that user ID is also suspended for four 
minutes. This continues until a valid logon 
is made for that user ID, when the FAILED­
LOGON-COUNT is reset to 0. 
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Table 2. 

User ID settings in a typical system. 

Password Change. To reduce the risk of pass­
words becoming known to others, passwords 
should be changed periodically. Safeguard 
provides three parameters that, when used 
together, assure frequent password changes. 

---

Function 

Security adm'1nistrator 
-----

Application developers 

---

Database owner 
- -

System operators 

System manager 

For emergency only 

30 

---

Password 
must 

Username UserlD change Status 

SEC.ADMIN 001,255 30 days THAWED 
--

APPL.USER1 002,001 30 days THAWED 
APPL.USER2 002,002 30 days THAWED 

--- --

APPL.DATABASE 002,255 O days FROZEN 

SUPER.OPER1 255,001 30 days THAWED 
SUPER.OPER2 255,002 30 days THAWED 
-- -- ---

SUPER.SYSMGR 255,100 30 days THAWED 
---- -- --

SUPER.SUPER 255,255 O days FROZEN 

Now suppose AUTHENTICATE-FAIL-FREEZE 
is set to ON. After the third consecutive invalid 
logon attempt, the process is suspended. If the 
fourth logon attempt for this user ID is invalid, 
Safeguard automatically freezes the user ID. The 
user ID is frozen even if all logon attempts are 
entered at different terminals. 

Password Change Control 
In Guardian 90, passwords are optional for each 
user, and the password content has no restric­
tions. Safeguard offers significantly enhanced 
password control. 

Password Content. Three parameters control 
the content of a user password. PASSWORD­
ENCRYPT provides one-way Data Encryption 
Standard (DES) encryption of all passwords. 
PASSWORD-MINIMUM-LENGTH forces newly 
entered passwords to contain at least a set 
number of characters. PASSWORD-REQUIRED 
forces all users, including SUPER.SUPER, to 
enter the correct password when logging on to 
another user ID. Tandem recommends using 
these parameters to reduce the risk of users 
illicitly logging on to other user IDs. 

The PASSWORD-MUST-CHANGE parameter 
determines the lifetime of each password. For 
example, if this parameter is set to 30 DAYS and 
the user's password is not changed for 30 days, 
the password expires, and the user may not 
logon again until the password is changed. 

The PASSWORD-MAY-CHANGE parameter 
determines the period of days before the pass­
word expiration date during which a password 
may be changed. Together with PASSWORD­
MUST-CHANGE, this parameter defines a 
password-change window. For example, if 
PASSWORD-MAY-CHANGE is set to 20 DAYS 
and PASSWORD-MUST-CHANGE is 30 DAYS, 
the password may be changed only during the 
20 days before the password expires. (Thus, the 
password cannot be changed for 10 days after 
a password change.) This prevents a user from 
changing the old password to a new password, 
then immediately changing it back to the old 
password. 

PASSWORD-HISTORY specifies the number 
of past passwords saved for each user ID in the 
password history file. Safeguard does not accept 
any new password that matches a password for 
that user ID in the history file. This feature, when 
used with PASSWORD-MAY-CHANGE, prevents 
a user from reusing the same passwords. 

Table 2 shows an example of the user IDs and 
password values in a typical production system. 
It illustrates how the PASSWORD-MUST­
CHANGE and status features might be used, 
assuming PASSWORD-MAY-CHANGE and 
PASSWORD-HISTORY have been implemented 
on a global basis. In Table 2, two user IDs, . 
APPL.DATABASE and SUPER.SUPER, are not m 
daily use by any user and are not needed for 
day-to-day production. Thus, they are kept 
frozen until needed. All other user IDs are 
thawed. Regular changing of passwords is 
enforced through the PASSWORD-MUST­
CHANGE parameter. PASSWORD-MUST­
CHANGE is not applied to the frozen user IDs 
because they offer no risk of an illicit logon. 
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Password Expiration. One can configure 
Safeguard to act as an authentication process at 
selected terminals. If so configured, Safeguard 
warns the user when he or she logs on of an 
impending password expiration. When the 
password has expired, Safeguard allows the 
user to change the password and proceed. Only 
a security administrator can correct an expired 
password on terminals not configured with 
this option. 

Illicit Logon Detection. When Safeguard is 
configured as a terminal authentication process, 
it displays the time of the last logon at each new 
logon. This feature alerts users to unauthorized 
access to their user ID. 

Subvolume-Based Disk File 
Security 
Safeguard offers additional security advantages 
by enhancing Guardian 90 protection of disk files. 
In Guardian 90, every disk file is protected by a 
security string that includes read, write, execute, 
and purge (RWEP) attributes. Guardian 90 has no 
way to control file creation. Safeguard provides 
RWEP protection as well as file creation control 
on a disk volume, subvolume, or individual disk 
file basis. 

With this flexibility, Safeguard offers many 
possible strategies for disk file protection. Be­
cause each strategy has advantages and disadvan­
tages, it is important to select an appropriate 
strategy before designing a Safeguard configura­
tion. This article discusses a subvolume-based 
method of disk file protection because such a 
strategy is easy to manage, protects all the files 
in the system, and aids other system management 
tasks. 

In the subvolume-based approach, the security 
administrator needs to monitor only subvolume 
protection records because disk file records are 
controlled by individuals and disk volume re­
cords are static. Monitoring as few as a dozen 
subvolume records per disk is much easier than 
keeping track of hundreds or thousands of disk 
file records per disk. Also, users tend to change 
subvolume records less often than disk file 
records. 

The subvolume-based approach can protect 
every file by permitting files to be created only 
in subvolumes with a Safeguard protection 
record. Moreover, this approach can make disk 
space management easier by controlling the 
number of subvolumes and associating each 
subvolume with a user ID. This simplifies disk 
space reports from the Tandem Disk Space 
Analysis Program (DSAP) and allows system 
managers to keep unauthorized files off of disks 
where space is critical. 

Subvolume Security 
In the subvolume-based security strategy, 
Safeguard is configured to protect disk files 
according to the following rules: 

1. Safeguard checks to see if a disk file record 
exists for the file being accessed. If so, the 
ACL on that file applies. 

2. If rule 1 yields no record, Safeguard checks 
for a subvolume record and applies that ACL. 

3. If rules I and 2 yield no record, Safeguard 
checks for a volume record and applies that 
ACL. 

4. If rules I through 3 yield no protection 
record and the Safeguard global parameter 
ACL-REQUIRED-DISKFILE is set to ON, 
access to the file is denied. 

In the subvolume-based strategy, the setting 
in the subvolume record (if it exists) overrides 
the setting in the volume record, and the setting 
in the disk file record (if it exists) overrides the 
settings in both the subvolume and volume 
records. 

To apply this strategy one could, for example, 
add a volume record to deny create access to all 
users. Next, one adds a subvolume record for 
each user in the system, granting create access 
for each user only to his or her own subvolume. 
(The subvolume security supercedes the volume 
security.) The subvolume records also determine 
the security of the files. Finally, one adds disk 
file records for files that require different 
security settings than the subvolume record 
settings. 
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Subvolume Security Matrix 
The subvolume-based strategy assumes that one 
can group most disk files into subvolumes with 
identical security requirements. As shown in 
Figure 1, the security administrator can form a 
subvolume security matrix. Each entry in this 
figure shows the desired access authorities (if 
there are any) for a given user ID against a given 
subvolume. Without Safeguard's subvolume 
protection, each disk file would need to be 
listed separately. 

The security administrator gives each sub­
volume listed in Figure l a Safeguard ACL to 
enforce the desired security settings. For sub­
volumes such as $SYSTEM.SYSTEM in which 
i?dividual disk files require unique security set­
tings, Safeguard disk file protection records are 
used in place of subvolume protection records. 

Implementing the Subvolume Strategy 
Although the subvolume-based strategy is a 
relatively simple concept, its implementation can 
be difficult if it does not suit the requirements of 
the application. Therefore, it is important to 
consider several disk file protection strategies 
before choosing one. Information about imple­
menting the subvolume-based strategy and other 
disk file protection strategies (including impor­
tant special considerations) appears in the 
Safeguard User's Guide and The CJO Safeguard 
Primer. 

Protection of Pathway 
Another way in which Safeguard protects the 
system is by protecting the processes that access 
the database. Assume, for example, that an 
application developed by the Tandem Pathway 
transaction processing system executes under its 
own user ID and the database files are secured for 
access only by this user ID (a common configura­
tion). This configuration seems to secure the 
database, but in fact the data is vulnerable to 
unauthorized access. 

Most user-written Pathway servers accept 
OPEN requests from any process or user ID and 
perform any operation if the message is in the 
correct format. This feature is good for flexibility 
but bad for security. It allows the data files to be 
read and modified by any user ID that sends the 
proper messages to the Pathway servers. 

One can counteract the threat of indirect 
database access by using the process name 
protection offered by Safeguard together with 
the Pathway configuration. This is a two-step 
process: 

1. Configure the Pathway process names, giving 
each server and terminal control process 
(TCP) a specific name. 

2. Protect the process names. In Safeguard, 
secure each process name so that only the 
Pathway user ID may start or open any of the 
named processes. 

In Safeguard, one can configure the process 
name protection so that all operators can stop and 
start the Pathway processes. This permits opera­
tors to perform necessary day-to-day functions 
without compromising system security. 
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Auditing With Safeguard 

Safeguard allows the security administrator to 
audit security events on an object-by-object or 
system-wide basis. Moreover, Safeguard distin­
guishes between types of accesses (local versus 
remote, granted versus denied, and read versus 
update). The security administrator can use 
certain options that define the audit's effects 
on system operations. 

Deciding Whether to Audit 
Once the Safeguard configuration has been 
designed, one must decide which objects and 
subjects require auditing. One should consider 
the slight performance penalty that occurs when 
an action is audited and weigh that penalty 
against the loss of potentially valuable audit 
information when an action is not audited. The 
security administrator should make this choice 
in consultation with a system auditor and in 
accordance with the organization's security 
policy. 

The Cost of Auditing. A performance cost is 
associated with writing an audit record to disk, 
but for most systems the cost is negligible 
except during system startup and shutdown. This 
is because the operations that Safeguard audits 
( opens, logons, process starts and stops, file 
creates and purges) are minimized when one 
tunes a system for performance. In a properly 
tuned system, there usually will be little writing 
of Safeguard audit records during normal 
operation. 

The Benefits of Auditing. When tracking a 
possible security breach by using the audit trails, 
one often finds that the most innocuous piece of 
audit information is the key to identifying the 
source of the break-in. Whenever one excludes 
an object from audit, one risks that a vital piece 
of information will not be logged. Therefore, 
a good rule of thumb is to audit every action 
unless there is a good reason not to audit it. 

Audit Service 
The Audit Service adds several features to 
Safeguard. The Recovery feature allows the 
security administrator to define the relative 
importance of auditing to the system as a whole. 
The Recovery feature specifies the action 
Safeguard takes if the system fails to write audit 
(for example, if the audit trail is full). There are 
three Recovery options. 

■ The SUSPEND AUDIT option stops the Audit 
Service and sends error messages, but system 
operation is unaffected. This option is the 
default. 

■ The RECYCLE FILES option tries to write 
over the oldest unreleased audit trail. If this 
fails, Safeguard falls back to the SUSPEND 
AUDIT option. In both cases, Safeguard sends 
error messages. 

■ The DENY GRANTS option sends error 
messages and denies all actions that require 
audit except to members of the SECURITY­
ADMINISTRATOR and SYSTEM-OPERATOR 
groups. 

Most users will prefer one of the first two 
options. One should use the DENY GRANTS 
option only when having a potentially inacces­
sible application is preferable to having a 
running, unaudited system. 
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The Safeguard Environment 
The Safeguard environment consists of a 
NonStop Security Manager Process (SMP), 
a Security Monitor (SMON) process in each 
processor, and a utility for communicating 
with the SMP called SAFECOM. SAFECOM 
is similar to other Tandem utilities such as 
PATHCOM, TMFCOM, or MEASCOM. The 
Safeguard configuration is kept in key-sequenced 
files on disk, and Safeguard audit is written to 
entry-sequenced files. 

Figure 4 shows the interactions among the 
components of Safeguard. The following actions 
take place in the figure: 

1. The SMP ($ZSMP) runs as a NonStop process, 
starts one SMON per CPU ($ZS00, $ZS0 I, 
and so on), sends each SMON a Safeguard 
configuration message, and restarts the SMON 
after a CPU reload. 

2. The SMON receives authorization requests 
from user processes whenever one of these 
procedures is called: OPEN, NEWPROCESS, 
PURGE, CREATE, STOP, or RENAME. 

3. The SMP receives authentication requests from 
user processes if the user process calls the 
procedure VERIFYUSER (to log on). 

4. The SMP receives requests to read or modify 
the Safeguard configuration from SAFECOM 
processes. These messages may also come 
from backup, restore, and password processes. 

5. The SMP and SMON s answer requests based 
on the information contained in the Safeguard 
database. 

6. Depending on the configuration, the SMP and 
SMONs may log individual requests to the 
Safeguard audit trails. 

In addition, a large part of Safeguard is 
embedded within the file system procedures and 
the rest of the Guardian 90 operating system. 
When Safeguard is running, the operating 
system will not complete an OPEN, PURGE, 
STOP, NEWPROCESS, RENAME, CREATE, 
CHANGE PASSWORD, or VERIFYUSER opera­
tion without first receiving an acknowledgment 
from Safeguard. Conceptually, one can view 
Safeguard as an operating system layer between 
the file system and the message system. 
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Figure 5 shows the relationship between 
Safeguard and Guardian 90. In a Tandem system, 
a message to a process must go through file 
system and message system procedures before 
arriving at its destination. When a file system 
request such as an OPEN is issued, Safeguard is 
consulted. If Safeguard rejects the request, it is 
returned to the user without being passed to the 
message system. 

Safeguard users employ the SAFECOM utility 
to configure all the options described in this 
article. SAFECOM is the only utility new 
Safeguard users must learn. Because Safeguard 
operates at a layer below the file system, users 
do not need to change existing applications to 
run Safeguard. 

Conclusion 
Safeguard is a valuable tool for protecting a 
computer system. It offers authorization, authen­
tication, and auditing features that enhance the 
security features of Guardian 90. The Safeguard 
features provide flexible control over system 
users, objects, and events. 

One should remember that Safeguard is a 
security tool. It does not by itself constitute an 
implementation of a security plan. Once a 
security plan has been developed to meet the 
user's unique business requirements, Safeguard 
can play a critical role in implementing that plan. 
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TLAM: A Connectivity 
Option for Expand 

xpand'" data communications 
networking software connects 
Tandem·M systems in a geo­
graphically distributed 
network. Several Expand 
connectivity options support 
Expand services and provide 

connections to a number of networking standards 
and communication media, including 6700/6710 
Fiber Optic Extension (FOX'M/FOXII), leased 
lines, X.25 packet switching, and satellite. 

A recent enhancement to the Tandem LAN 
Access Method (TLAM) subsystem now enables 
Expand software to share access to TLAM and 
operate over standard local area network (LAN) 
media. TLAM is an implementation of the Insti­
tute of Electrical and Electronic Engineers (IEEE) 
802.2 Logical Link Control LAN standard. By 
providing a uniform interface between the 
physical LAN and upper-layer protocol products, 
TLAM eliminates the need to code applications 
for a specific type of LAN and provides another 
tool for implementing Tandem's open-standards­
based approach to networking. 

This enhancement, called Expand over 
TLAM, extends Expand connectivity most 
effectively to facilities where LAN technology 
is already, or is planned to be, installed. With no 
additional network modifications, Expand over 
TLAM is immediately available to connect 
Expand nodes over LAN lines. LAN technology 
and TLAM architecture provide full intercon­
nectivity between system nodes, which simpli­
fies network designs, obsoletes routing hops 
between intermediate nodes, and reduces 
equipment costs. TLAM can connect Expand 
nodes that have requirements not satisfied by 
other connectivity options, and it may offer 
improvements to systems using other types 
of Expand connections. 

This article describes TLAM, the basic 
architecture of Expand, and how the two prod­
ucts relate functionally in an Expand environ­
ment to provide network connectivity. The 
article compares three other Expand connectivity 
options with Expand over TLAM to establish the 
most appropriate contexts for each option. Next, 
it discusses recent Expand enhancements that 
extend the fault tolerance and performance of 
Expand over TLAM. It describes the new fea­
tures of the TLAM subsystem. Finally, the article 
presents Expand over TLAM configuration 
considerations and performance results from 
recent testing. 
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Expand Architecture 
Expand software is an extension of the 
Guardian'M 90 operating system. Within an 
Expand network, any Guardian 90 system is 
referred to as an Expand node. Each node can 
support up to 63 Expand paths to other nodes in 
the network. An Expand path is a logical data 
path between two nodes that is controlled by an 
Expand process. An Expand network can 
accommodate up to 255 Expand nodes. 

Expand connectivity options provide commu­
nication interfaces to the Expand network and 
support Expand operations. Three options 
available prior to TLAM to meet specific net­
working requirements are: 

■ FOX. 

■ Expand NetDirect. 

■ X.25 Access Method (X25AM). 

These connectivity options are illustrated in 
Figure I. 

FOX and Expand NetDirect are direct connec­
tions to Expand nodes. Both X25AM and TLAM 
communicate with Expand NetNAM (Network 
Access Method), which enables an Expand 
network to exchange data with either a target 
LAN or X.25 network. Expand NetNAM directs 
an Expand process to send and receive data 
through a network service provider, an interme­
diate process that completes the connection 
between the Expand process and the target 
network. TLAM and X25AM are both network 
service providers. 

Expand NetNAM is designed so that Expand 
can access standards-based networks (such as an 
IEEE 802.3 LAN or an X.25 network) without 
implementing the necessary protocols within the 
Expand process. Instead, the network service 
providers perform all protocol work required 
to pass the data through the standards-based 

Figure 1 
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/\ \ 
TLAM X25AM 

61xx 
controller 

family 

6204 
controller 

family 

network. However, using a network service 
provider requires data to travel through another 
process at each end of a connection. Compared 
to a direct connection (FOX and NetDirect), 
additional system resources are needed to move 
data between nodes. One must weigh these and 
other considerations when deciding where and 
how to use the different connectivity options. 

The NetNAM connections between Expand 
processes and TLAM ( or X25AM) are configured 
with SYSGEN, Dynamic System Configuration 
(DSC), or the Subsystem Control Facility (SCF). 
For detailed configuration information, see the 
System Generation Manual for Expand, the 
Dynamic System Configuration (DSC) Manual, 
the SCF Reference Manual/or Expand, and the 
Expand over TLAM Install Guide Support Note. 
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Figure 2. 
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Comparing TLAM With Other 
Expand Connectivity Options 
When compared with other Expand connections, 
Expand over TLAM offers similar networking 
capabilities in some situations and superior 
benefits in others. 1 Figure 2 presents a simple 
Expand over TLAM configuration. This con­
figuration is the model to keep in mind when 
comparing Expand over TLAM with the other 
connectivity options. 

The FOX Option 
The FOX connectivity option offers the most 
efficient and powerful way to connect local 
Expand nodes. The Guardian 90 message system 
and Expand combine to enable application and 
system processes to send data directly across 
dedicated optical fibers, bypassing the Expand 
process. FOX is well suited to configurations in 
which several Guardian nodes are located within 
the physical limits of the FOX cable. 2 Computer 
room facilities and clusters of buildings, or small 
"campuses," are good candidates for FOX 
connections. 

The media bandwidth of FOX ( 40 megabits 
per second) is far greater than Expand over 
TLAM or any other connectivity option. There­
fore, FOX connections offer the best throughput 
and response time. The maximum throughput of 
a FOX connection is 4.8 megabits per second. 
However, when comparing it with Expand over 
TLAM, one must weigh the higher cost of FOX 
hardware and consider whether the few technical 
limitations of FOX affect the intended installa­
tion. For example, FOX allows up to 14 nodes on 
a ring. FOX is not yet supported on the CLX'" line 
of processors. Also, a FOX connection is limited 
to the maximum distance of the cable, as it 
cannot be extended with bridge technology. 
Often, FOX and Expand over TLAM satisfy the 
same connectivity requirements for certain 
network designs. When FOX and Expand over 
TLAM are both appropriate options, FOX always 
offers better CPU utilization and response time. 

1 Performance varies with system configuration and host CPU type. 

'The FOX cable distance limit is 1 kilometer for TXP CPUs and 
2 kilometers for Cyclone CPUs. This limit applies to the distance 
between any two nodes in the FOX ring. 
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NetDirect Connectivity 
Expand NetDirect has been the most common 
way to connect Expand nodes. The NetDirect 
option uses low-level Expand protocols that run 
directly over a designated controller (of the 6 JOO 
or 6204 controller family) and modem. Expand 
processes do their own point-to-point protocol 
over dedicated lines. In essence, nodes are 
viewed as having hard-wired connections. 

NetDirect is designed to connect nodes that 
exchange large amounts of data and are located 
beyond the distance limitation of FOX. The 
maximum throughput of a NetDirect connection 
is 205 kilobits per second, 3 which is considered 
a midrange speed. Because NetDirect can use 
leased telephone line technology, there is 
virtually no limit to the distance between nodes. 

Expand over TLAM connections compare 
favorably with NetDirect connections in several 
areas: 

■ The LAN cabling requirements are less com­
plex, more flexible, and less expensive. 

■ Expand over TLAM provides higher maximum 
throughput of bulk data transfers. 

■ The inherent shared bus topology eliminates 
any need for passthrough connections. 

■ A single physical TLAM connection can be 
shared by several Expand connections and with 
products other than Expand. 

'This throughput was measured using Cyclone CPUs, 3604 controllers. and 
RSct49 or V.35 null modems. 

As shown earlier in Figure 2, a simple 
Expand over TLAM configuration consists of a 
LAN cable supporting multiple Expand nodes. 
Among the connected nodes, the Expand 
processes on one node have direct access to all 
the processes running in all other nodes without 
having to wire a separate physical connection 
to each node. Expand nodes can easily be 
connected to the LAN, disconnected, and 
reconnected to another LAN with a minimum 
of cabling, configuration, and expense. 

A single NetDirect connection uses fewer 
CPU cycles and less memory to move data than 
a NetNAM connection. NetNAM requires an 
interprocess hop to reach the network service 
provider. However, because the physical layer 
of TLAM has a greater bandwidth than that of 
NetDirect, Expand over TLAM connections can 
achieve higher throughput. Also, TLAM be­
comes more efficient as it supports more con­
nections, lowering the cost of CPU cycles TLAM 
uses to move each byte of data. 
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Figures 3 and 4 compare the fundamentals of 
NetDirect and Expand over TLAM configura­
tions. Figure 3 shows a common four-node 
NetDirect configuration. Each node is physically 
connected to two other nodes and logically 
connected to the remaining node by way of 
passthrough hops. This network requires a 
minimum of 4 controllers, 8 modems, and 
4 dedicated lines. 

A passthrough hop literally passes data from 
one node through an intermediate node and 
on to the destination node. Routing is done at 
the intermediate node. Passthrough hops are 
necessary because the cost of using NetDirect to 
fully interconnect all nodes is prohibitive. The 
CPU cost of a passthrough hop is roughly the 
same as that of a direct connection. A NetDirect 
connection with one passthrough hop effectively 
doubles the CPU cycles and memory needed to 
move each byte of data from a source to a 
destination node. It also doubles the latency 
introduced by the network, resulting in lower 
throughput and higher response time. 

Figure 4 shows a similar four-node network 
connected with Expand over TLAM. Each node 
has a single TLAM connection that enables 
communication with all other nodes attached to 
the LAN. There are four controllers, one LAN, 
and no passthrough hops. 

The X25AM Option 
X25AM, like Expand over TLAM, can be a 
network service provider. It is an intermediate 
process operating between an Expand process 
and an X.25 network. Like Expand over TLAM, 
X25AM connections are established by the 
NetNAM module of Expand, and in this case 
allow an Expand process to exchange data with 
an X.25 network. X25AM provides several of the 
same advantages as Expand over TLAM. For 
example, all the protocol work required to pass 
data through the X.25 network is performed by 
X25AM, instead of requiring the work to occur 
within the Expand process. 
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One key consideration must be the efficiency 
of the target network. X.25 networks, for ex­
ample, can perform very poorly; there may be 
numerous routing hops to be traversed inside the 
X.25 network. However, an Expand over X25AM 
connection is ideal for low-volume systems 
requiring high connectivity and reliability. An 
X.25 network offers a large number of addresses 
(as many as a sender is authorized to use) and 
charges for each packet sent. Because an X.25 
subscriber does not need to pay to wire dedicated 
lines between numerous addresses, and if the 
amount of data being sent is modest, Expand 
over X25AM can be a very effective choice for 
connecting certain Expand networks. 

Expand Enhancements Extend 
TLAM Potential 
A recent enhancement to Expand called the 
multiline path feature4 extends the value of 
Expand NetNAM. This enhancement provides 
improved fault tolerance and higher performance 
for Expand connections, such as Expand over 
TLAM and X25AM, that are based on Expand 
NetNAM. 

'The T9057 AAZ 1PM for Expand intro<lucc<l the multi line path feature 
enhancement in No,·cmber 1990. 

INODE2 
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Fault Tolerance and Higher Performance 
The multiline path feature for Expand allows 
each Expand process to manage up to eight 
Expand NetNAM connections as one logical 
path. Fault tolerance improves and throughput 
increases when data destined for a peer node 
is allowed to pass through multiple Expand 
connections in parallel. Multiple Expand over 
TLAM connections can exist between two nodes, 
resulting in linear increases in throughput. 

The multiline path feature has another 
important aspect. Each of the eight possible 
Expand connections can now travel a different 
physical route. For example, if so configured, 
the same Expand node can send data by both 
LAN and wide area network (WAN) communi­
cation lines. If one connection fails, Expand 
simply redistributes the load across the other 
connections in the path. Fault recovery is 
confined to the Expand path, requiring no inter­
vention by the application. 

Figure 5 presents a more fault-tolerant 
configuration with more throughput. It shows a 
path with two connections running over separate 
TLAM subsystems and LANs. If one connection 
fails, the Expand process continues to use the 
second connection for that path. 
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As Figure 5 depicts, a path can be configured 
to achieve higher throughput by using multiple 
LANs and multiple TLAM subsystems to process 
data. Twice the throughput is available when 
using two LAN connections rather than one. 
Connecting to more than one LAN or configuring 
more than one TLAM subsystem results in better 
response time and helps to resolve network 
management problems such as queueing delays 
and collisions on heavily used LANs. 

The multiline path feature allows one to 
choose the level of redundancy to be designed 
into a network. If multiple LANs are unavail­
able, a different configuration can still provide 
TLAM fault tolerance. Guardian systems can 
communicate over a single LAN through mul­
tiple Expand over TLAM connections. Like 
Figure 5, each system can have two Expand 
connections associated with two separate TLAM 
subsystems, but they would be sharing a single 
LAN. This modified configuration allows 
recovery if TLAM fails, but not if the LAN fails. 

Figure 6 provides an example of mixing 
Expand connectivity options for additional 
robustness. In Figure 6, a connection using 
NetDirect is added to a path between two 
Expand nodes that are also linked by two 
Expand over TLAM connections. If the LANs 
fail, the NetDirect connection may continue to 
be operational. Even though the quality of the 
service would be degraded, communication is 
still possible until the LAN is again functional. 
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Extending LAN-Based Networks 
Bridges can link together separate LAN-based 
Expand networks into a distributed WAN. Media 
access control (MAC) bridge products make it 
possible to view geographically separate LANs 
as a single physical medium. Bridges can be 
fast; Tl ( 1.544 megabits per second) is a com­
mon speed for data transmission. Bridges are 
transparent to the senders and recipients on the 
linked LANs. Also, bridges used for Expand 
traffic can be shared by other network products: 
for example, networking clients such as Trans­
mission Control Protocol/Internet Protocol 
(TCP/IP) and Open Systems Interconnection 
(OSI) or Multilan"' applications using NETBIOS.5 

In addition to linking LANs, bridges can filter 
frames passed between the LANs they connect. 
The bridge can be configured to accept frames 
destined for particular addresses on the LAN. 
Only those frames are passed through the link. 
Multiple bridges may be used in parallel to 
increase bandwidth between the LANs. By 
allowing only a subset of data to pass through 
each parallel bridge, traffic can be balanced 
across the bridges. 

Two or more geographically separate clusters 
of nodes that need to be connected into a single 
Expand network can make the most practical use 
of bridge technology. Each cluster can be LAN­
based, with bridges transparently linking the 
LANs. Figure 7 shows two Expand sites con­
nected by MAC bridges. 

The capability of bridging separate LANs can 
be used to improve on some existing Expand 
network designs. Suppose a network utilizing a 
dual-site configuration (two FOX rings of four 
systems each) must be linked together. Without 
Expand over TLAM, the two sites would be 
linked with one or more NetDirect lines, possi­
bly funneled through a Tl multiplexer. This 
hardware is costly, offers limited bandwidth, and 
relies on many passthrough hops to route data. 

-- -----

'NETBIOS (Network Ba,ic Input Output Sy,tcm) is a peer-lo-peer standard 
application programming interface. 
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Switching to Expand over TLAM connections 
and bridge technology improves this configura­
tion. A fully interconnected topology is achieved 
by installing a LAN at each site and connecting 
the LANs with a high-speed bridge. Expand 
processes can use the LAN to communicate with 
local and remote nodes with no passthrough 
hops. Improved fault tolerance and enhanced 
throughput can be achieved by adding more 
bridges to the configuration. 
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New Features of the TLAM 
Subsystem 
The TLAM subsystem has been enhanced to act 
as a network service provider.6 Figure 8 illus­
trates the many products, including Expand, 
that TLAM currently supports. 

Network service requires the exchange of 
Network Access Method (NAM) message 
system data units between an Expand process 
and a network service provider. To enable TLAM 
to accomplish this work, three software modules 
were built. These modules comprise a new 
protocol stack in the TLAM 1/0 process (the 
MLAM) and allow the MLAM to process NAM 
system messages. Figure 9 presents a block 
diagram of the enhanced TLAM subsystem. 
The three new software modules are: 

■ The NAM service access point (NAMSAP). 

■ The home grown service control point 
(HGSCP). 

■ The message service access point (MSAP). 

The high-level module, the NAMSAP, ex­
changes messages with the Expand process. The 
middle module, the HGSCP, performs Network 
Layer protocol services. The NAMSAP and 
HGSCP work as a pair, manipulating data in 
sequence as they service an Expand connection. 
The third, lower-level module, the MSAP, 
exchanges data with the TLAM controller. In 
addition, two Distributed System Management 
(DSM) objects, named CONN and MSAP, were 
added to TLAM DSM to give system administra­
tors control over subsystem configuration. 

''Expand over TLAM connectivity requires a CI O or later release of 
Guardian 90. 
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System Design 
When configured with the NetDirect option, an 
Expand process performs, roughly, the work 
of Layers I through 4 of the OSI reference 
model.7 In contrast, when an Expand process is 
configured with the NetNAM option (to use 
TLAM or X25AM), Expand only needs to do the 
work of Layers 3 and 4. The network service 
provider, either TLAM or X25AM, simulates the 
service provided by Layers I and 2 of Expand. 
(Figure 9 depicts the flow of data.) The data 
units, passed between Expand and TLAM by way 
of the NAM message system dialect, approximate 
those passed from Layer 3 to Layer 2 of Expand. 
These data units are designed to fit inside an 
Expand Layer 2 frame. 8 

The NAMSAP. Once passed from Expand, NAM 
messages are delivered to the MLAM, where they 
are routed to a connection's NAMSAP module. 
The NAMSAP handles the service access point 
work associated with the NAM message system 
dialect. This work involves the queueing and 
activation of outbound messages, delivering 
inbound messages, and mapping of NAM inter­
face semantics to HGSCP semantics. 

The HGSCP. When a message is activated 
for transmission to the destination node, the 
NAMSAP passes the message to the connection's 
HGSCP module. The HGSCP provides, roughly, a 
Layer 3 connection-oriented service. Using the 
IEEE 802 Data Link Layer Control type I (LLC 1) 
services of the TLAM controller (MLMux), the 
HGSCP delivers NAM data to the destination 
node. The Layer 3 service connects the local 
NAMSAP to the remote NAMSAP. The HGSCP 
also performs an address resolution protocol that 
frees analysts or operators from managing MAC 
network addresses. 

'OSI Layers I through 4 arc the Physical. Data Link. Network. and 
Transport Layers. respectively. 

·'An Expand Layer 2 data frame has a default si,c of 132 words. 

''The media framesi,e for Ethernet LANs is 1518 bytes. 

The data units passed between the MLAM 
software modules are of two types. The logical 
data units passed between peer protocol entities 
are considered protocol data units (PDUs). The 
data units that travel between a service provider 
and a service consumer are called service data 
units (SDUs). 

The HGSCP handles both types of data units. 
Local and remote HGSCPs pass PDUs, and 
NAMSAP and HGSCP modules pass SDUs. 
When SDUs are larger than the media frame 
size,9 HGSCP segments them on the sending side 
and reassembles them on the receiving side. 

A small amount of duplicate work is per­
formed by the HGSCP and Expand's Layer 3. 
Expand requires that it does its own routing and 
segmentation. The HGSCP does no routing. It 
deals only with a fully interconnected topology. 
HGSCP does segmentation if the segments 
generated by Expand's Layer 3 are not small 
enough to fit into an IEEE 802 LLCl frame. 
Duplication of segmentation can be minimized 
by configuring Expand's framesize small 
enough to fit into an LLC I frame ( eliminating 
HGSCP segmentation), or making the framesize 
large enough to allow HGSCP to do most of the 
segmentation. The latter is more desirable for 
maximizing Expand over TLAM performance. 
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The MSAP. This module provides an environ­
ment in which the HGSCP and NAMSAP mod­
ules can work without knowledge of the lower 
levels of the TLAM subsystem or LLC I ports. 
The MSAP acts primarily as a multiplexer­
demultiplexer. It also contains the code that 
supports the new DSM objects. 

The MSAP performs a number of tasks 
required to link the environment offered by the 
base MLAM modules with the environment 
required by NAMSAP and HGSCP. It routes 
NAM system messages to the appropriate 
instance of NAMSAP as well as manages a pair 
of TLAM ports. The MSAP accumulates out­
bound SDUs from all connections into a single 
outbound LLCl aggregate SDU. The MSAP also 
breaks inbound aggregate SDUs into individual 
LLC I SD Us that are delivered to the appropriate 
instance of HGSCP. 

Data Delivery. The MSAP interfaces with the 
existing lower levels of the TLAM subsystem 
to move data to or from the LAN media. The 

T he subsystem becomes 
more efficient as the 

load increases. 

LLC I module in the 
MLMuxaccepts out­
bound (from the MSAP) 
aggregate SDUs, breaks 
them into individual 
LLCI PDUs, and issues 
them to the LAN hard­

ware. Inbound (from the LLCl module) LLCI 
PDUs from the LAN hardware are bundled into 
aggregate SDUs and forwarded across the I/0 
channel to the MSAP. 

Any of three data forwarding parameters 
triggers the delivery of either outbound or 
inbound aggregate SDUs: time, SDU count, or 
aggregate SDU size. Aggregation of SD Us allows 
the MLAM to use one channel transfer to move 
multiple media data units. This lowers the per­
media-data-unit overhead, as queueing and 
transferring single data units is avoided. The 
result is a subsystem that becomes more efficient 
as the data load increases. However, under light 
loads, the inherent latency that results from 
using these data forwarding parameters causes 
slower response times. 

DSM Objects 
Distributed System Management (DSM) is the 
global system management environment for 
Tandem. It is used to configure systems and 
subsystems (like TLAM), as well as give system 
operators access to statistics and diagnostic 
information. Two DSM objects, CONN and 
MSAP, were added to TLAM DSM to manage 
NAMSAP, HGSCP, and MSAP, the new MLAM 
software modules. 

The CONN (connection) object represents the 
bundled HGSCP and NAMSAP instance-pair that 
services an Expand connection. CONN objects 
are automatically configured. This means that 
one becomes defined when an Expand process 
requests a connection from the MSAP and 
becomes undefined when that connection is 
terminated. There can be up to 64 connections 
associated with a TLAM subsystem. Operators 
can obtain status and statistics information from 
any of those connections. 

The MSAP object represents the MSAP 
module. It is permanently configured, which 
means that the operator cannot add or delete it. 
The operator can use commands to start, stop, 
abort, and alter the MSAP as well as to obtain 
information, status, and statistics. For more 
detailed information on these DSM objects, 
see the SCF Reference Manual for TLAM. 
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Performance Overview 
Elements that influence network performance 
results include data length, physical media 
bandwidth, CPU speed, system latency, and, 
particularly for Expand networks, framesize. 10 

Framesize significantly impacts system consid­
erations because this parameter must be the 
same for all nodes on an Expand network. Nodes 
added later to the network must also use that 
predetermined value. This can impact perfor­
mance as the network size increases or when 
different physical media are installed. 

In general, the TLAM subsystem exhibits 
better performance when processing bulk data 
transfers rather than smaller message-based 
requests. Performance differences can be 
characterized by noting the response times for 
two common system commands used by opera­
tors. These commands, entered at a Tandem 
Application Command Language (TACL'M) 
command interpreter, request file information 
and file transfer, respectively. They are: 

■ FILENAMES \NODEl.$SYSTEM.SYS0I.* 

■ FUP DUP\NODEl.$SYSTEM.SYS0I.*, *, 
SOURCEDATA, PURGE 

The FILENAMES request often takes longer 
than expected for a system attached to a LAN. 
This is due to the message-intensive way that 
this command searches a remote directory. 
However, the impact of many operators from 
different systems doing the same request simul­
taneously creates little difference in response 
time. The FUP DUP command, in contrast, is a 
file utility command used to duplicate and 
transfer files. Response time for this command 
is generally very good, as this command in­
volves Expand over TLAM in a bulk data 
transfer. 

1uFramesizc is an alterable Expand attribute. ll is measured in words rather 
than bytes. 

Expand Over TLAM Configuration 
Considerations 
In Expand over TLAM test configurations, CPU 
costs for a single application message varied 
substantially with framesize. This is true for 
other Expand connectivity options (except FOX). 
However, because the other options are more 
limited by physical media bandwidth than by 
processor speed, Expand over TLAM configura­
tions benefitted most when the framesize value 
was increased. 

Approximately 20 percent of the cost of 
running Expand over TLAM can be eliminated 
by configuring the Expand and TLAM compo­
nents in the same processor. However, this is not 
necessarily recommended because it could 
interfere with load balancing. 

Expand Over TLAM Performance Results 
Performance tests were conducted in a labora­
tory environment using best-case configurations. 
With Cyclone CPUs, maximum throughput for 
a single Expand over TLAM connection was 
measured at 1.3 megabits per second. 

Tests were also run to analyze Expand over 
TLAM performance using more common con­
figurations. Under these conditions, the perfor­
mance of one Expand over TLAM connection 
was compared to that of a four-connection 
NetDirect path. Results indicated that in some 
situations, the throughput of the Expand over 
TLAM connection tripled that of the four­
connection NetDirect path. 
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Expand framesize figured prominently in 
these performance results. The default framesize 
of 132 words (256 user data bytes) increases 
CPU overhead, as many interprocess messages 
must be passed between TLAM and Expand for 
each application request. On both the CLX 700 
and the VLX processors, throughput and mes­
sage costs generally improved when the 
framesize was increased to 516 words. 

On the CLX 700, with a framesize configura­
tion of 132 words, Expand over TLAM provided 

T he framesize parameter I 

figured prominently in I 

peiformance results. I 

equivalent throughput. 
It consumed about 
twice the CPU cycles 
as the four-connection 
NetDirect path. When 
framesize was increased 
to 516 words, through­

put was about double that of the NetDirect 
path. Even so, the CPU cost per message on the 
CLX 700 was still as much as 60 percent more 
than that of a NetDirect connection. 

A VLX processor with a framesize of 
132 words running Expand over TLAM showed 
competitive throughput and a similar trend in 
message costs. Throughput on the VLX was 
equivalent to a NetDirect configuration having 
four lines running at 56 kilobits per second. 

Message costs, about 60 percent more than a 
NetDirect connection, required up to 15 percent 
of a VLX processor. Increasing the framesize 
parameter to 516 words on the VLX improved 
the performance and reduced the message costs. 
Throughput was two to three times higher than 
a NetDirect configuration with four 56-kilobit 
lines. Message costs equalled those of the 
NetDirect connections. 

Performance testing explored the effect of 
adding one or more Expand connections within 
an Expand over TLAM configuration. Perfor­
mance improvements depended on whether the 
additional connections were configured to share 
the same TLAM subsystem or use a separate one. 

A second or third Expand connection config­
ured through the same TLAM subsystem resulted 
in a slight increase in throughput. The capacity 
of a single TLAM connection is shared among all 
connections that use it. However, configuration 
of a second Expand connection through a 
different TLAM subsystem and LAN offered 
twice the throughput of a single TLAM connec­
tion. Configuration of a third Expand connection 
over a third TLAM subsystem and LAN offered 
another I 00 percent additional throughput. This 
linear increase is achieved only with the first 
three connections. 

Tests with CLX 800 CPUs determined that an 
Expand framesize of 2047 words and an applica­
tion message size of 16 kilobytes resulted in a 
single Expand over TLAM connection through­
put of 1.352 megabits per second. Expand over 
TLAM is designed to handle framesizes up to 
32,000 words. It is also designed to be more 
efficient as framesize increases over 750 words 
(1500 bytes) because HGSCP fragments these 
messages into segments that fit into IEEE 802 
LLC I frames. 

Early research indicates that more than 20 
Cyclone systems could communicate through 
one TLAM subsystem. The throughput of each 
Expand connection could equal a 56-kilobit 
NetDirect connection. 
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Conclusion 
Now able to support Expand services, TLAM 
provides an additional connectivity option for 
Expand networks. Enhancements to the TLAM 
subsystem enable it to function as an Expand 
network service provider, passing data between 
the Expand and IEEE 802 LAN networks. Addi­
tionally, the Expand multiline path enhancement 
allows parallelism to be incorporated into LAN­
based networks, which improves both fault 
tolerance and performance. 

Expand over TLAM is ideally suited for 
connecting new Expand networks where clusters 
of Expand nodes are to be installed and where 
IEEE 802 LANs already exist or are required 
for other applications. For situations suited for 
Expand over TLAM, this connectivity option 
offers a cost-effective, simple, relatively high­
speed, and flexible method of connecting 
Expand nodes over LANs. With LAN bridges, 
Expand over TLAM can easily connect geo­
graphically distributed systems into a single 
Expand network. 
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Pathway TCP Enhancements for 
Application Run-Time Support 

he chief component of the 
Tandem"M Pathway transaction 
processing system is the 
terminal control process 
(TCP). The TCP provides the 
run-time environment for 
user-written SCREEN COBOL 

(SCOBOL) application requesters. Tandem has 
enhanced the TCP in order to support application 
requesters that require large data address spaces. 
These enhancements give application developers 
greater flexibility in the design of Pathway 
applications. 

The TCP enhancements were developed to 
further support the emerging client-server model 
between terminals or workstations and Tandem's 
Guardian'" 90 operating system. Also, they allow 
Pathway applications to better exploit Tandem 
hardware products, such as the NonStop'M 
Cyclone'M computer system together with the 
larger I/0 configurations it supports. 

This article describes how the current TCP 
has evolved from earlier versions of the TCP. 
It discusses the TCP data address space limita­
tions in the pre-CI 0 releases of Pathway and 
explains the impact of those limitations on 
Pathway application design. Next, it describes 
the enhancements introduced in the CI0 and Cl I 
releases of Pathway. Finally, the article discusses 
the advantages of using extended memory I/0 
operations, which improve the performance 
and integrity of TCP checkpointing and other 
operations. 

The article assumes that readers are familiar 
with Pathway configuration management and the 
requester-server architecture of Pathway applica­
tions. To be concise, the article omits certain 
details about the implementation of the TCP 
enhancements. This article uses the terms 
terminal task, user task, application task, and 
application thread synonymously. 
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Removing TCP Data Address Figure 1 

Space Limitations 
In the CI O and C 11 releases of Pathway, two 
limitations on TCP data address space were 
removed, allowing the TCP to take full advan-
tage of its extended memory. First, the TCP's 
1/0 buffer pool space (TERMPOOL and 
SERVERPOOL) was moved from the TCP 
process stack segment1 to its extended memory 0 KB 

segment. The size limit of the process stack 
segment ( 128 kilobytes) limited the size of the 
1/0 buffers, which restricted 1/0 operations to 
and from the TCP. Now I/O operations can be as 
large as 32,000 bytes, the interprocess message 
limit of the Tandem Guardian 90 operating 
system.2 Figures I and 2 show the changes in 
memory organization in the TCP. 

Second, the data address space assigned to an 
individual task in the TCP, formerly limited to 
32 kilobytes, can now use as much of the TCP's 
extended memory as the task requires. The 
practical size of a task's data address space is Figure 2 
limited only by the available Guardian 90 disk 
swap space, which supports the TCP's extended 
memory. 

These enhancements allow a single TCP to 
manage a greater number of terminal tasks 
without sacrificing the response times of any 
individual task. The TCP can perform data 
transfers as large as 32,000 bytes to and from 
terminals or intelligent devices and server 0 KB 

processes. The TCP can support application 
tasks that require large and deep call history 
stacks. Finally, each task can include individual 
SCOBOL requesters that require large Working 
Storage data items or large aggregates of Work-
ing Storage space. 

1 A process stack segment i~ the area of main memory that hold:-. the 
information a process needs to perform its work. 

'The size of the Guardian 90 message limit. 32,000 bytes, is slightly 
smaller than the number commonly associated with the term 32 kilohytes 
(32.768 bytes). 

Process stack segment 
0 KB 

TCP global data 

Dedicated checkpoint 
buffer 

TERMPOOL 
Extended segment 

64 KB 

TCP control space 

SERVERPOOL 

128 KB 

Process stack segment 
0 KB 

TCP global data 

Extended segment 
64 KB 

Terminal task 
slots 

TCP control space 

Code area 

128 KB 

UMP cache 

TERMPOOL 

SERVER POOL 

Figure 1. Figure 2. 

Memory organization of' 
the TCP in the pre-C JO 
releases of' Pathway. 

Memory organization of' 
the TCP in the CJO 
release 1if'Pathway. 
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Evolution of the TCP Architecture 
In a Pathway application, a requester is written 
in SCOBOL program code. The TCP interprets 
the SCOBOL-compiled program code, executing 
it as a terminal (user) task running in the TCP's 
process environment. The TCP provides ser­
vices (such as checkpointing) for the terminal 
task, communicating with terminals and intelli­
gent devices as well as server processes. 

A TCP can provide a run-time environment 
for many terminal tasks (requesters) simulta­
neously; thus, the TCP is multithreaded. To 
execute multiple tasks concurrently, the TCP 
must not allow one task to block (impede) 
another task. To accomplish this, the TCP 
must perform all 1/0 operations nowaited. 

Tandem's early processors did not offer 
extended memory. Therefore, the original TCP 
design confined the data address space for the 
entire TCP process to the TCP process stack 
segment. The maximum size of a process stack 
segment is 64K words (128 kilobytes). 

All tasks managed by the original TCP 
(TCPl) contended for a reserved area in the TCP 
process stack segment. When a task was made 
ready to execute, TCPl checked the reserved 
area to see if the task context was present. If 
required, portions of other tasks were swapped 
out, and the current task context was swapped 
in from a disk swap file explicitly maintained 
for that task context. 

TCPl was restructured in the E07 release of 
Pathway (the BOO release of Guardian 90). 
Known as TCP2, the new design used extended 
memory. Task context spaces, the data address 
areas allocated for terminal tasks managed by 
the TCP, were moved from the TCP process 
stack segment to an extended segment. 

By using the extended segment, TCP2 made 
all task context directly accessible as one linear 
space. It eliminated the need to swap portions 
of a task context between the process stack 
segment and an explicit disk swap file. (To. 
manage CPU memory in general, the Guardian 90 
memory manager would continue to swap data, 
when necessary, at the CPU level.) By reducing 
disk I/0 operations, TCP2 simplified task man­
agement and improved TCP performance. The 
architectural enhancements of TCP2 are de­
scribed in detail in Wong, 1984. 

Checkpointing was also improved in TCP2. 
TCPI performed checkpointing of a task context 
by writing explicitly to disk (by writing to the 
backup TCP's copy of the task context swap 
file). This method transferred the task context 
indirectly from the primary TCP to the backup 
TCP. When the task context was moved to the 
extended segment in TCP2, the checkpointing 
method also changed. TCP2 transferred the task 
context directly from the primary process to the 
backup process (Wong, 1984). In the COO release 
of Pathway, support for TCP! was discontinued, 
and TCP2 was called the TCP. 

TCP Limitations in Pre-ClO 
Releases 
Even after the task context spaces were moved 
into extended memory, the TCP continued to 
have certain limitations in the pre-C 10 releases 
of Pathway. Two architectural areas of the TC~ 
restricted the TCP run-time environment: the size 
of buffer pool space and task context space. 

The TCP maintains two buffer pools, one for 
I/0 operations to terminals (TERMPOOL) and 
one for I/0 operations to server processes 
(SERVERPOOL). A limited buffer pool space 
restricts both the number of terminal tasks the 
TCP can support and the amount of data it can 
send to a single terminal or server process. 
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The task context space determines the amount 
of data an application task can access at any 
given moment during its execution. A limited 
task context space restricts the size of Working 
Storage and can influence the complexity of the 
application structure. 

Buffer Pool Space 
In the pre-C 10 releases of Pathway, TERMPOOL 
and SERVERPOOL were left in the TCP process 
stack segment because, at the time, Guardian 90 
could not perform 1/0 to and from extended 
memory. (Facility for performing extended 
l/O became available in the COO release of 
Guardian 90, which introduced file system 
extended 1/0 routines such as READX, WRITEX, 
and WRITEREADX.) Because of other demands 
on the process stack segment, the combined size 
of TERMPOOL and SERVERPOOL had to be 
much smaller than the process stack maximum 
of 64K words ( 128 kilobytes). 

Ideally, users should configure a TCP to 
manage as many tasks as possible while ensuring 
that it is not queueing internally for buffers in 
TERMPOOL and SERVERPOOL. That is, at least 
one task should always be ready to execute. 

Because the TCP is multithreaded and can 
support task execution concurrency, it is possible, 
and desirable, for the TCP to have multiple I/O 
operations outstanding. Therefore, buffer pool 
space must be available so that the TCP can 
support I/O operations for every task in the TCP. 

In the pre-CI 0 releases of Pathway, users had 
to restrict demands on the TCP because of its 
limited buffer pool space. Users could control 
demands on the buff er pools by reducing the 
number of tasks supported by a TCP. This necessi­
tated adding TCPs to their Pathway environment 
to support the required number of tasks. 

The buffer pool space limitation also affected 
the design of SCOBOL requesters. Application 
developers had to work around the I/O limits on 
their SCOBOL requesters to ensure that they did 
not burden the buffer pool space. Otherwise, 
tasks might have to queue for buffer pool space, 
which would degrade task concurrency. 

Task Context Space 
In the original TCP design, the task context 
space was limited to 32 kilobytes (Wong, 1984). 
When the task context space was moved into 
the extended segment, its size remained at 
32 kilobytes. 3 

A portion of the task's slot serves as a pseudo 
stack. The pseudo stack is to a task what the 
process stack segment is to a Guardian 90 
process. By definition, an active task must have 
at least one SCOBOL program unit (PU), the 
executing version of a SCOBOL requester. The 
TCP maintains the local context of each PU in 
the task's pseudo stack. Each PU's Working 
Storage data space resides in the local context 
area of the PU. 

When the task requires nested PU calls 
(successive calls from one PU to another), the 
pseudo stack grows. The amount of PU call 
history that a stack can accommodate depends 
on the stack's size, the maximum being 
MAXTERMDATA. Exceeding MAXTERMDATA 
during a sequence of PU calls can cause the 
pseudo stack to overflow, which can cause the 
task to abort. 

'Users can define the size of the task context space by using 
MAXTERMDA TA. a parameter of the Pathcom SET TCP command. 
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Figure 3 

Figure 3. 

A structured application 
call hierarchy. 
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A 

Menu (root) 
program 

B 

D E 

Working Storage 

Thus, the size of the task context space can 
determine whether or not the task will execute 
successfully. The task may abort if the PU call 
history sequence is too deep or if the Working 
Storage in one or more of the PUs involved in 
the call sequence is too large. Consequently, an 
application's design is constrained by the limits 
of the task context space in which it must 
operate. 

Also, during certain SC0B0L operations such 
as sending data to servers, the TCP performs 
internal operations that add to the use of the 
task's pseudo stack. If the pseudo stack is nearly 
at MAXTERMDATA when the SC0B0L operation 
begins, it can cause the pseudo stack to overflow 
and the task to abort. Therefore, the Working 
Storage space permitted in each PU had to be 
smaller than the 32-kilobyte limit. The limited 
Working Storage space could affect the capabili­
ties of a SC0B0L requester. 

Impact on Application Design 
The 32-kilobyte limit on task context space 
could influence the design of Pathway applica­
tions by restricting the choices available to 
application developers. The limitation could 
make it more difficult to use a structured 
application call hierarchy, which follows the 
application logic naturally but requires a deep 
call history stack. Figure 3 shows a structured 
call history sequence in which the logon pro­
gram calls the menu program, which calls C 

1
, 

which calls C
2

, which calls C
3

• 

One way to cope with the limitation is to 
design the application to be hierarchically.flat. 
In one kind of hierarchically flat design, the root 
program calls all other PUs directly, and control 
always returns to the root program before going 
on to another PU. Developers have devised 
various PU routing schemes to keep an appli­
cation's hierarchy flat. 

There are legitimate reasons to use a flat 
application call sequence. For example, it 
can provide random (dynamic) screen naviga­
tion. However, this method of limiting task 
context space can introduce unnecessary 
complexity into the application's design, 
implementation, and maintenance. 
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Figure 4 

Logan 
program A 

Menu 
program B 

Working Storage (global context) 

Working Storage (local context) 

Figure 4 shows an example of a flat applica­
tion call sequence. To complete its processing, 
program C1 informs the root program (through its 
Linkage Section) that it should call program C, 
the next time it gets control. Program C

1 
exits -

to the root program, which calls program C
2

• 

The same call sequence occurs to execute 
program C

1
• 

The example in Figure 4 economizes on task 
context space by declaring a large Working 
Storage space in the initial (root) PU, which is 
shared by called PUs through references in their 

Root program 

D 

Linkage Sections. The Working Storage in a PU 
can be kept relatively small if global data 
structures are identified in the shared areas of 
the root PU. The PU's Working Storage can be 
limited to local, transitory data. 
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Figure 4. 
A.flat application call 
sequence. Programs such 
as c,. C

2
, and C

3 
use the 

global context (shared 
data area) in the root 
program by references in 
their Linkage Sections. 
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Figure 5 

Logon 
program A 

Menu 
program B 

Root program 

Working Storage (global context) 

Working Storage (local context) 

Figure 5. 

A combination of" struc­
tured andflat application 
call sequences. Called 
proirams use the appli­
rntion global context 
(shared data area) in the 
root program. Programs 
C

2 
and C

3 
also use the 

sub-application global 
context in program Cr 

The application can avoid running out of task 
context space even when it needs to perform 
relatively deep call sequences from one 
SCOBOL PU to another. Figure 5 shows an 
example of this approach, which blends a flat 
call sequence with a hierarchical call sequence. 
The Working Storage in the root program 
contains data structures global to the entire 
appli~ation, and program C

1 
's Working Storage 

contams data structures global to the routines 
performed by programs C

1
, C

2
, and C

1
. With this 

method, the application maintains a call history 
stack smaller than one required by a structured 
hierarchy and minimizes the overall size of the 
task context space. 

D E 

Implementing the Enhancements 
The size limits of the TCP buffer pool space and 
task context space were removed in the CI 0 
release of Pathway. The size limit of the pro­
gram context (Working Storage) for individual 
PU s was removed in the C 11 release of Pathway. 

Removing these limitations allows the TCP to 
support a larger number of tasks requiring large 
I/0 data transfers. Individual SCOBOL request­
ers can use their Working Storage size limit 
potential and can now maintain deep call history 
stacks. Also, application thread design is no 
longer constrained by a limited data address 
space. 

Task Context Space 
In the CI O release of Pathway, the references 
to the task context space for an individual task 
in a TCP were increased from 16-bit to 32-bit 
addressing ranges. A 32-bit value can refer to 
a 2-gigabyte data address space (set by the 
MAXTERMDATA parameter). Thus, changing 

56 TANDEM SYSTEMS REVIEW• APRIL 1991 



the addressing ranges to 32 bits effectively re­
moved the size limit of TCP task context space. 
Because a Guardian 90 disk swap file supports the 
TCP extended segment, the available disk space 
determines the practical size limit of the task 
context space. 

Program Context (Working Storage) 
In the pre-Cl 0 and Cl 0 releases of Pathway, 
SCOBOL programs had to operate within a 
smaller local address space than the 32-kilobyte 
maximum. The practical size limit was approxi­
mately 28 kilobytes. Also, to keep the aggregate 
size of Working Storage data items below the 
32-kilobyte limit, individual Working Storage 
data items had an artificial limit of 12 kilobytes. 
Because Message Section field items map to 
Working Storage data items, the same size limits 
implicitly applied to them. All these limitations 
restricted the design of SCOBOL programs. 

In the C 11 release of Pathway, the SCOBOL 
compiler was changed so that SCOBOL programs 
could support 32-bit addressing ranges to PU con­
text (Working Storage) space. This enhancement 
extends the size limit of an individual 0 1-level 
Working Storage data item from 12,288 bytes 
to 32,000 bytes (the maximum Guardian 90 
interprocess message size). Also, Message 
Section field items have been extended so that 
they can map to the new size limits of Working 
Storage data items. 

Table l shows the evolution of the size limits 
of PU context space and task context space in 
the pre-CI 0, C 10, and C 11 releases of Pathway. 
The numbers in Table I indicate the addressing 
ranges of the data address spaces. 

Figure 6 shows the relationships between 
individual PU context spaces and the task context 
space. The figure shows three call history stacks 
for a task executing in the different Pathway 
releases. The task context comprises a sequence 
of PU calls. PU 

I 
calls PU

2
, which calls PU

3
; the 

call sequence continues until it reaches PU,,. 
In the pre-ClO releases (column a), each 

individual PU context space had a limit of 
32 kilobytes (16-bit addressing range), of which 
the PU could exploit approximately 28 kilobytes. 
However, all the PU context spaces had to fit into 
a task context space of at most 32 kilobytes. 

Figure 6 

16-bit 
range 

Table 1. 

Pre-C10 
(a) 

PU1 
(16-bit offsets} 

PU2 
(16-bit offsets} 

PUn 
( 16-bit offsets) 

32-KB maximum 
task context size 

32-bit 
range 

C10 
(b) 

PU1 
(16-bit offsets) 

PU2 
(16-blt offsets) 

PUn 
( 16-bit offsets) 

2-GB maximum 
task context size 

Addressing ranges for SCOBOL program units (PUs) and task 
context spaces in the pre-C10, C10, and post-C1 O releases of 
Pathway. 

Addressing range values (in bits) 

Pre-C10 C10 Post-C10 

Program unit ($COBOL compiler) 16 

Task context space (TCP) 16 

16 32 
- ---------

32 32 

In the CI0 release (column b), the individual 
PU context space still had a limit of 32 kilo­
bytes, but the task context space could be as 
large as 2 gigabytes (32-bit addressing ranges). 

In the post-CIO releases (column c), the PU 
context space can be as large as 2 gigabytes. 
The task context space also can be as large as 
2 gigabytes. 
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Figure 6. 

Relationship 1Jf program 
unit (PU) size and task 
context size. 
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In each new release of Pathway, the TCP 
continues to support SCOBOL pseudo code 
compiled in the previous releases. However, it 
is recommended that users running a post-ClO 
release of Pathway recompile SCOBOL request­
ers developed in the C IO and pre-C IO releases. 
Existing SCOBOL pseudo code executes more 
efficiently if it is recompiled because it can take 
advantage of the improvements in the post-C 10 
SCOBOL compiler and TCP. (The post-Cl0 
SCOBOL compiler produces 32-bit addressing 
ranges for the TCP's direct access to the Work­
ing Storage in the PU). 

Benefits for 1/0 and Checkpointing 
Operations 
In addition to removing the size limits of TCP 
data address spaces, Tandem has improved 
the efficiency of checkpointing operations 
performed by the TCP. Because of the new 
Guardian 90 I/O capabilities, the TCP can 
perform checkpointing directly from the ex­
tended memory of the primary TCP to the 
extended memory of the backup TCP. The new 
checkpointing method enhances both perfor­
mance and integrity of checkpointing. 

Extended Memory 1/0 
The TCP now performs most 1/0 operations to 
and from extended memory. The TCP uses the 
extended options of the Guardian 90 file 
system routines (such as READX, WRITEX, 
WRITEREADX, and READUPDATEX). Specifi­
cally, the TCP performs the following 1/0 opera­
tions to and from extended memory: terminal 
1/0, server 1/0, SCOBOL pseudo code caching, 
and task context checkpointing. 

Improvements in Checkpointing 
A NonStop TCP process performs checkpointing 
operations to maintain a current backup version 
of the TCP and its tasks. Task context check­
pointing saves the data context of the currently 
executing task in the backup TCP process. 

Both the primary and backup TCPs allocate 
two areas of task context space in extended 
memory: SLOTO and SLOT!. In the primary TCP, 
SLOT0 maintains the current (active) context 
for the task. SLOT! holds a backup copy of 
SLOTO. If necessary, the TCP uses SLOTI to 
restore the current task context to a previous 
state (Wong, 1984 ). 

The TCP performs its checkpointing opera­
tions nowaited. It cannot use Guardian 90 
checkpointing routines such as CHECKPOINT 
and CHECKMONITOR because they are waited. 
Instead, the primary TCP uses the Guardian 90 
WRITEREADX routine to exchange information 
with the backup TCP; the backup TCP uses the 
READUPDATEX and REPLY routines. In this 
type of checkpointing, in which the TCP per­
forms its own 1/0 operation, the backup TCP 
is an active backup process. 
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Figure 7 
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Figure 7 shows the task context check­
pointing method for pre-CI O releases of 
Pathway. First, the primary TCP stages Task J's 
context data from its slot in extended memory 
to the checkpoint buffer in the process stack 
segment. Next, it performs the 1/0 operation, 
sending the task context to the backup TCP. 
The backup TCP receives the task context in 
the checkpoint receive buffer in its process stack 
segment. Finally, the backup TCP stages the 
task context from the process stack segment 
to Task J's slot in extended memory. (Only the 
portion of a slot that is currently in use is 
checkpointed, not the entire slot.) 

Figure 7 also illustrates that the TCP's 
checkpointing facility is single-threaded. That 
is, an in-progress checkpoint must complete 
before another one can begin. In Figure 7, Task 
J's checkpoint must complete before Task L's 
checkpoint can begin. 

As of the CI O release of Pathway, the primary 
TCP transfers task context data directly from its 
source in extended memory to the extended 
memory of the backup TCP. The TCP does not 
have to stage the task context to a buffer in its 

process stack segment before transferring it to 
the backup TCP. If the staging method were 
used, an 1/0 transfer size would be limited to the 
size of the buffer in the process stack segment, 
something less than 32,000 bytes. (The size of 
the staging buffer would depend on other 
storage demands made on the process stack 
segment.) 

In contrast, the new method permits I/0 
transfers of maximum size and eliminates the 
memory move from the extended segment to the 
process stack segment. Similarly, the backup 
TCP receives all checkpoint data in an extended 
memory buffer. It does not have to stage the task 
context to a buffer in the process stack segment 
before moving it to its destination in the ex­
tended segment. This eliminates a second 
memory move (in the backup TCP). All slots are 
of equal size and are allocated and deallocated 
in their entirety. 
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Figure 7. 
TCP task context check­
pointing in the pre-CJO 
releases of Pathway. 
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Figure 8. 

Step I cl{ TCP task 
context checkpointing in 
the CJ0andpost-CJ0 
releases of Pathway. The 
backup TCP allocates the 
extra slot as the check­
point receive buffer. 

Figure 9. 

Step 2. The primary TCP 
sends checkpoint context 
data for Task J to the 
checkpoint receive buffer. 
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Figure 8 
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Figure 8 shows the first step in a task context 
checkpointing operation performed in a CI O ( or 
later) release of Pathway. The TCP maintains a 
pool of slot areas. The backup TCP dynamically 
allocates one of the slots in this pool for its 
checkpoint receive buffer. (The TCP implicitly 
configures one extra slot so that a slot is always 
available for this purpose.) Next, it issues a 
READUPDATEX message and waits for the 
primary TCP to send checkpoint data. 4 

Backup TCP 

Process stack segment 

REAOUPOATEX 

Backup TCP 

Process stack segment 

REAOUPOA TEX '-------------• :~,:; 
REPLY 

Extended segment 

Task J 

Task L 

Task K 

Extended segment 

Task J 

Task L 

Task K 

Figure 9 shows the second step in the task 
context checkpointing operation. The primary 
TCP sends task context data for Task J from its 
extended segment to the checkpoint receive 
buffer. The operation does not involve the 
process stack segment in either TCP. As in 
Figure 7, Task Lis also ready to transfer its task 
context. It waits for Task J's checkpointing 
operation to complete before beginning its own 
checkpointing. 

1If the received checkpoint involves a TCP control checkpoint (one 
involving the TCP task\, own status or activity but not its data context), 
the checkpoint is processed and the checkpoint receive buffer is rew .. cd. 
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Figure 10 
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Figure IO shows the third step in the task 
context checkpointing operation. The backup 
TCP commits the completed task context 
checkpoint to Task J by assigning to it the 
location of the current checkpoint receive buffer. 
The backup TCP deallocates the slot that held 
the old task context for Task J and returns it to 
the slot area pool, making it available for later 
use. Now Task L can perform its task context 
checkpointing operation. 

Because task contexts can now differ vastly in 
size, and because TCP checkpointing is single­
threaded, it is possible that the task context 
checkpointing operations of one task could 
indirectly influence the uniformity of response 
times of its neighboring tasks in a TCP. When 
this issue is a possibility, users should consider 
assigning terminal tasks with similar task 
context sizes to the same TCP. 

Checkpoint Integrity 
The checkpointing method introduced in the CI 0 
release of Pathway significantly improves the 
integrity of task context checkpointing. This is 
especially true when a checkpoint involves 
multiple 1/0 operations. 

Checkpoint messages are prefixed with a 
descriptor containing control information. For a 
task context checkpoint message, the descriptor 
contains the length (in bytes) of the context 
being transferred. The backup TCP can deter­
mine from this length if it will require multiple 
I/0 operations to transfer the task's context. 

Backup TCP 

Process stack segment 

Extended segment 

REAOUPOATEX 

Task L 

Task J 

Task K 

In the pre-CI 0 releases of Pathway, a backup 
TCP receiving a checkpoint that required mul­
tiple I/O operations was vulnerable to task 
context slot contamination. All checkpoints, 
including those that required multiple I/O 
operations, were staged from the checkpoint 
receive buffer in the process stack segment 
directly to the task's live task context space 
(slot area). If the primary TCP failed and a 
multiple I/0 checkpointing operation was not 
completed, the affected backup task context, 
and therefore the task itself, became invalid. 

In the C 10 (and later) releases of Pathway, 
the checkpoint is staged ( concatenated) directly 
into the current checkpoint receive buffer in 
extended memory. The backup TCP does not 
commit the new task context to the task until 
all the I/O operations for the checkpoint have 
completed successfully. The previous version 
of the task context, located in its current slot, 
remains valid until the current checkpoint is 
committed. 
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Figure 10. 

Step 3. The backup TCP 
commits the completed 
checkpoint to Task J. The 
slot that held the old task 
context o_f Task J becomes 
the new checkpoint 
receive buffer. Task L, 
which was waiting, can 
now transfer its task 
context to the backup 
TCP. 
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Backup TCP Is Not an Exact Mirror 
The primary TCP pre-allocates slots consecu­
tively from the slot area pool. The effect is that 
a true primary TCP ( one that has never been a 
backup) always has adjacent slots in extended 
memory for a task's current context space 
(SLOTO) and backup context space (SLOTI). In 
contrast, the backup TCP dynamically assigns 
the slots in extended memory to various tasks 
as their context checkpoints arrive from the 
primary TCP. 

Therefore, the primary and backup TCPs 
do not mirror one another with respect to the 
allocations of their task context spaces. This 
difference has no effect on the operation of the 
TCP. Moreover, this method of allocating slots 
dynamically is the basis of the improved 
integrity of task context checkpointing. 

Conclusion 
In the CI0 and post-CIO releases of Pathway, the 
size limitations of the TCP buffer pool space, 
task context space, and individual SCOBOL 
program unit space have been removed. Remov­
ing these limitations allows the TCP to handle a 
greater number of terminal tasks that require 
large I/O operations while maintaining task 
execution concurrency. In addition, the TCP can 
support large Working Storage data contexts as 
well as applications with deep call history 
stacks. Finally, the TCP has enhanced the 
performance and integrity of its checkpointing 
operations by performing extended memory 
I/O operations between the primary and 
backup TCPs. 
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The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the Tandem 
Journal were published: 

Volume 1, Number I 
Volume 2, Number I 
Volume 2, Number 2 
Volume 2, Number 3 

Fall 1983 
Winter 1984 
Spring 1984 
Summer 1984 

Part no. 83930 
Part no. 83931 
Part no. 83932 
Part no. 83933 

As of this issue, 15 issues of the Tandem Systems Review have been published: 

Volume I, Number I 
Volume I, Number 2 
Volume 2, Number I 
Volume 2, Number 2 
Volume 2, Number 3 
Volume 3, Number 1 
Volume 3, Number 2 
Volume 4, Number I 
Volume 4, Number 2 
Volume 4, Number 3 
Volume 5, Number 1 
Volume 5, Number 2 
Volume 6, Number I 
Volume 6, Number 2 
Volume 7, Number I 

February 1985 
June 1985 
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June 1986 
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March 1987 
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July 1988 
October 1988 
April 1989 
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March 1990 
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April 1991 

Part no. 83934 
Part no. 83935 
Part no. 83936 
Part no. 83937 
Part no. 83938 
Part no. 83939 
Part no. 83940 
Part no. 11078 
Part no. 13693 
Partno. 15748 
Part no. 18662 
Part no. 28152 
Part no. 32986 
Part no. 46987 
Part no. 46988 

The articles published in all 19 issues are arranged by subject below. (Tandem Journal is abbreviated 
as TJ and Tandem Systems Review as TSR.) A second index, arranged by product, is also provided. 

Index by Subject 

Season 
Volume, or month 

Article title Author(s) Publication Issue and year 

Application Development and Languages 

Ada: Tandem's Newest Compiler and Programming Environment R.Vnuk TSR 3,2 Aug. 1987 

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 

Debugging TACL Code L. Palmer TSR 4,2 July 1988 

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 

PATHWAY IDS: A Message-level Interface to Devices M. Anderton, TSR 2,2 June 1986 
and Processes M. Noonan 

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986 

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986 
R. Glascock 

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb.1986 

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985 
J. Zimmerman 

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 
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Article title Author(s) Publication Issue and year number 

Customer Support 

Customer Information Service J. Massucco TSR 3,1 March 1987 83939 

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939 

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939 

Data Communications 

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152 

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932 

Changes in FOX N. Donde TSR 1,2 June 1985 83935 

Introduction to MULTI LAN A.Coyle TSR 4,1 Feb. 1988 11078 

Overview of the MULTILAN Server A. Rowe TSR 4,1 Feb 1988 11078 

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939 

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935 

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988 

Using the MULTILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078 

Data Management 

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935 

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987 

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct.1990 46987 

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968 

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986 

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936 

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936 

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935 

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935 

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935 

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct.1990 46987 

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693 

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935 

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct. 1990 46987 

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152 

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693 

Parallelism in NonStop SOL Release 2 M. Moore,A. Sodhi TSR 6,2 Oct.1990 46987 

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662 

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986 

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152 

Nonstop SQL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693 

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693 

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693 

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693 

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987 
T. Kocher, P. Shah 

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct.1990 46987 

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter1984 83931 

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078 
Group 

The TRANSFER Delivery System for Distributed Applications S.Van Pelt TJ 2,2 Spring 1984 83932 

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934 
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Manuals/Courses 

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935 

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078 

New Software Courses M. Janow TSR 1,2 June 1985 83935 

New Software Courses J. Limper TSR 4,1 Feb.1988 11078 

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936 

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936 

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937 

Operating Systems 

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935 
R. Montevaldo 

Increased Code Space A. Jordan TSR 1,2 June 1985 83935 

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936 

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935 

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935 

Nonstop 11 Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930 

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078 

Overview of the NonStop-UX Operating System for the Integrity S2 P Norwood TSR 7,1 April 1991 46988 

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935 
A Nonshared-memory Approach 

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935 

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935 

Performance and Capacity Planning 

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938 

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936 

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938 

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078 

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936 
Linear Growth 

DP2 Performance J. Enright TSR 1,2 June 1985 83935 

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748 

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938 
A. Tsukerman, S. Uren, 
B.Vaughan 

Getting Optimum Performance from Tandem Tape Systems A.Khatri TSR 2,3 Dec. 1986 83938 

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938 
MEASURE and ENFORM 

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935 

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938 

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938 

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938 

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152 

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938 

Optimizing Sequential Processing on the Tandem Ststem R. Welsh TJ 2,3 Summer 1984 83933 

Pathwal' TCP Enhancements for Aeplication Run-Time Sueeort R. Vannucci TSR 7,1 Al:)ril 1991 46988 

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987 
Workload Support in Nonstop SOL Release 2 

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938 

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938 

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937 
Processing Systems 
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Performance and Capacity Planning 

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938 
A Performance Comparison 

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931 
Processing Applications 

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934 

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930 

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937 

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978 

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662 
Optimization Considerations 

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078 
S. Thompson 

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932 

Peripherals 

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940 

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935 

Data-Encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937 

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937 
H. Thomas 

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935 

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940 

Plated Media Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937 

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940 

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662 

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter1984 83931 

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938 
A Performance Comparison 

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935 

The Model 6VI Voice ln12ut O12tion: Its Design and lm12lementation B.Huggett TJ 2,3 Summer 1984 83933 

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940 

The VS Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935 
On-line Disc Storage 

Processors 

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988 

NonStop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662 
Transaction Processing 

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938 

The High-Performance Non Stop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter1984 83931 
D. Meyer 

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933 
Transaction Processing 

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939 

Security 

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937 

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988 

System Connectivity 

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986 

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152 

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662 

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662 
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System Management 

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938 

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748 

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940 

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748 
R. Schue! 

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935 

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748 
E. Reisner 

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748 

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748 
Subsystem Programmatic Interface 

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748 

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934 

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748 
Management Services 

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748 

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935 

Utilities 

Enhancements to PS MAIL R.Funk TSR 3,1 March 1987 83939 
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3207 Tape Controller 

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935 

5120 Tape Subsystem 

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940 

5200 Optical Storage 

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662 
Optimization Considerations 

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662 

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078 

6100 Communications Subsystem 

The 6100 Communications Subsystem: A New Architecture R.Smith TJ 2,1 Winter1984 83931 

6530 Terminal 

The Model 6VI Voice Input Option: Its Design and Implementation B.Huggett TJ 2,3 Summer 1984 83933 

6600 and TCC6820 Communications Controllers 

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938 
A Performance Comparison 

Ada 

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987 83940 

BASIC 

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932 

C 

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937 

CIS 

Customer Information Service J. Massucco TSR 3,1 March 1987 83939 

CLX 

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662 
Transaction Processing 

COBOL85 

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936 

COMINT(CI) 

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935 

Cyclone 

Fault Tolerance in the Nonstop Clclone Slstem S. Chan, R. Jardine TSR 7,1 April 1991 46988 

DP1 and DP2 

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935 

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936 

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936 

DP2 Highlights K. Carlyle TSR 1,2 June 1985 83935 
L. McGowan 

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935 

DP2 Performance J. Enright TSR 1,2 June 1985 83935 

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935 

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937 
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DSM 

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748 

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748 
R. Schue! 

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748 
E. Reisner 

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748 

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct.1988 15748 
Subsystem Programmatic Interface 

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748 

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748 
Management Services 

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct.1988 15748 

DYNAMITE 

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935 

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935 

ENABLE 

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985 83934 
J. Zimmerman 

ENCOMPASS 

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter1984 83931 

ENCORE 

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter1984 83931 
Processing Applications 

ENSCRIBE 

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986 

FASTSORT 

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938 
A. Tsukerrnan, S. Uren, 
B.Vaughan 

FOX 

Changes in FOX N.Donde TSR 1,2 June 1985 83935 

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934 

FUP 

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct. 1990 46987 

GUARDIAN90 

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935 

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078 

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935 
R. Montevaldo 

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935 

Increased Code Space A. Jordan TSR 1,2 June 1985 83935 

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936 

Message Slslem Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938 

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938 

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935 

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935 

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930 

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078 

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935 
A Nonshared-memory Multiprocessor Approach 

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078 
S. Thompson 

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935 

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935 
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Integrity S2 

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988 

MEASURE 

How to Set Up a Performance Data Base with M.King TSR 2,3 Dec. 1986 83938 
MEASURE and ENFORM 

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938 

MULTILAN 

Introduction to MULTILAN A. Coyle TSR 4,1 Feb. 1988 11078 

Overview of the MULTI LAN Server A. Rowe TSR 4,1 Feb. 1988 11078 

Using the MULTI LAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078 

NetBatch-Plus 

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662 

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986 

NonStopSQL 

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct.1990 46987 

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986 

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986 

Gateways to Non Stop SOL D. Slutz TSR 6,2 Oct. 1990 46987 

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693 

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693 

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152 

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693 

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693 

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693 

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693 

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987 

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987 
Workload Support in Nonstop SOL Release 2 

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078 
Group 

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987 
T. Kocher, P. Shah 

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987 

OSI 

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986 

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662 

PATHFINDER 

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 83930 

PATHWAY 

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932 

PATHWAY IDS: A Message-level Interface to Devices M.Anderton TSR 2,2 June 1986 83937 
and Processes M. Noonan 

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988 

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934 

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932 

PS MAIL 

Enhancements to PS MAIL A.Funk TSR 3,1 March 1987 83939 

SAFEGUARD 

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937 

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988 
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SNAX 

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152 

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932 

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939 

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935 

SPOOLER 

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078 

TACL 

Debugging TACL Code L Palmer TSR 4,2 July 1988 13693 

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986 83936 
R. Glascock 

TAL 

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837 

TLAM 

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988 

TMDS 

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078 

Enhancements to TMDS L White TSR 3,2 Aug. 1987 83940 

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935 

TMF 

Improvements in TMF T Lemberger TSR 1,2 June 1985 83935 

TMF and the Multi-Threaded Requester T Lemberger TJ 1,1 Fall 1983 83930 

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934 

TRANSFER 

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932 

TXP 

The High-Performance Nonstop TXP Processor W Bartlett, T Houy, TJ 2,1 Winter1984 83931 
D. Meyer 

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933 
Transaction Processing 

VB 

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935 
On-line Disc Storage 

VIEWSYS 

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935 

VLX 

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938 

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938 

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939 

XLS 

Data-encoding Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937 

Plated Media Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937 
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Miscellaneous 1 

A Performance Retrospective P.Oleinick TSR 2,3 Dec. 1986 83938 

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987 

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936 

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938 

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938 

Credit-authorization Benchmark for High Performance T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936 
and Linear Growth 

Data-window Phase-margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937 
H. Thomas 

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748 

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938 

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152 

New Software Courses M.Janow TSR 1,2 June 1985 83935 

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078 

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152 

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer1984 83933 

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938 

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938 

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940 

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937 
Processing Systems 

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939 

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940 

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936 

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936 

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937 

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939 

Terminal Connection Alternatives for Tandem Ststems J. Simonds TSR 5,1 Aeril 1989 18662 

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930 

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940 

'This category is composed of articles that contain product information but are not specifically product-related. 
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