
T A N D E M

SYSTEMS REVIEW

Fault-Tolerant NonStop Cyclone

NonStop-UX Operating System

Safeguard • TLAM

Pathway TCP Enhancements

Index

\l'FII ilJ'll

Volume 7, Number 1, April 1991

Editorial Director
Susan W Thompson
Editor
Anne Lewis
Associate Editor
Steven Kahn
Technical Advisors
Mark Anderton
Terrye Kocher
Mike Noonan
Assistant Editor
Sarah Rood
Electronic Publishing
Marcy Cross
Cover Art
Niklas Hallin
Illustrations
Cynthia Moore
Circulation
Christina Cary

The Tandem Systems Review is published
by Tandem Computers Incorporated.

Purpose: The Tandem Systems Re)·iew
publishes technical information about
Tandem software releases and products.
Il~ purpose is to help programmer­
analysts who use our computer systems
to plan for. install, use, and tune Tandem
product~.

Subscription additions and
changes: As of the March 1990 issue.
customer subscriptions to the Tandem
Systems Review must be approved by
a Tandem representative. Complete the
..,ub~criber portion of the order fom1
at the back of this copy and send the
form lo your local Tandem sales office.
Anyone who doe.<, not have a Tandem
representative should fill out the
sub~criber portion and follow the
instructions on the form.

Comments: The editor:;, welcome
suggestions for content and format.
Please send them to the Tandem
Sntems Review. LOC 216-05. 18922
Forge Drive, Cupertino. CA 95014.

Tandem Computers Incorporated makes
no representation or warranty that the
information contained in this publication
is applicable to ~ystems configured
differently than those systems on which
the information ha~ been developed and
tested. It also assumes no responsibility
for errors or omis-;ions that may occur in
this publication.

Copyright © 1991 Tandem Computers
Incorporated. All rights re~erved.

No part of thi_., document may he
reproduced in any form. including
photocopy or translation to another
language, without the prior written
consent of Tandem Computers
Incorporated.

CLX, Cyclone, Dynabm,+. Expand.
FOX. Guardian, Guardian 90, Integrity.
Integrity S2. Multi Ian. NonStop.
NonStop-UX. NonStop V+. Safeguard,
TACL. Tandem, the Tandem logo. TMF.
and VLX are trademarks and service
marks of Tandem Computers
Incorporated. protected through use
and/or registration in the United State.<,
and many foreign countries.

MIPS is a registered trademark of MIPS
Computer Systems, Inc. NFS is a
trademark of Sun Micro~ystems, Inc.
UNIX is a registered trademark of
UNIX Systems Laboratories, Inc .. in the

USA and other countries. X Window
System is a trademark of the

Massachusetts Institute of Technology.

TANDEM SYSTEMS REVIEW

2

4

10

24

36

50

63

Editor's Preface

Fault Tolerance in the NonStop Cyclone System
Scott Chan, Robert Jardine

Overview of the NonStop-UX Operating
System for the Integrity S2
Peter Nmwood

Enhancing System Security With Safeguard
Craig Gaydos

TLAM: A Connectivity Option for Expand
Kirk MacKenzie

Pathway TCP Enhancements for Application
Run-Time Support
Robert Vannucci

Index

2

Editor's Preface

ault tolerance is becoming an
increasingly important issue
in the data processing market
place. Companies of all sizes
are basing the competitiveness
of their enterprises on the time­
liness and availability of infor­

mation. These computer-based enterprises require
a mix of systems that are not only geographically
distributed but are also fault tolerant. In online
transaction processing systems, successful fault
tolerance includes both continuous system avail­
ability and reliably completed transactions.
Tandem'M systems use both hardware and soft­
ware methods to achieve complete fault tolerance.

The first two articles in this issue focus on
the newest Tandem computers, the NonStop'M
Cyclone'M and the Integrity sr systems. These
products continue Tandem's development of
fault-tolerant systems that address emerging com­
puting needs in the data processing marketplace.

The NonStop Cyclone system is designed for
high-volume processing, which includes simulta­
neous transaction, query, and batch processing.
Because large-scale data processing systems are
moving increasingly toward online databases,
fault tolerance is a critical requirement. The
opening article by Chan and Jardine describes
the methods used to achieve fault tolerance in the
NonStop Cyclone system. It describes the system
architecture and its implementation of fault
detection, fault containment, error recovery, and
continuous operation from individual component
failures.

The move toward UNIX has had an impact on
all areas of computing, including the need for a
fault-tolerant UNIX system. The Integrity S2
system combines the traditional features of fault
tolerance with a standard implementation of
UNIX. The article by Norwood discusses the
Integrity S2 architecture, the NonStop-UX'M
operating system, and the methods used to
provide fault tolerance. It describes how triple
modular redundancy, duplexed components, and
self-checking circuitry support hardware fault
tolerance. In addition, the article describes how
the NonStop-UX operating system has been
enhanced to increase system performance and
functionality and improve the robustness of the
UNIX kernel.

TANDEM SYSTEMS REVIEW• APRIL 1991

A comprehensive security plan is important
for the complete protection of information.
There are three forms of on-system protection:
authentication, which permits the system to
identify individual users; authorization, which
restricts access to data files; and auditing, which
records the actions of users and activities of
programs. Tandem's Safeguard'M system protec­
tion software extends Guardian 90" operating
system protection by providing more extensive
and general authentication, authorization, and
auditing services. The article by Gaydos de­
scribes the basic elements of Safeguard and
how they enhance Guardian 90 protection.

The article by MacKenzie discusses an en­
hancement to the Tandem LAN Access Method
(TLAM) subsystem that enables the Expand'M
data communications networking software to
operate over standard local area network (LAN)
media. As an additional communication interface
to Expand, TLAM provides another tool for
implementing Tandem's open-standards-based
approach to networking.

The Pathway transaction processing system
automatically manages the transaction workflow
between terminal or devices and the database on
NonStop systems. The final article, by Yannucci,
describes the terminal control process (TCP)
component of Pathway. The TCP provides the
run-time environment for user-written SCREEN
COBOL application requesters. Tandem has
enhanced the TCP to support application request­
ers that require large data address spaces. This
article discusses the TCP data address space
limitations in earlier releases of Pathway and
the enhancements introduced in later releases.

Finally, this issue includes an index of
Tandem System Review articles. The index is
a list of all articles, by subject and product, that
have been published in this and each previous
issue. If you would like to order back issues,
submit the order form on the last page.

Susan W. Thompson
Editorial Director

APRIL 1991 •TANDEM SYSTEMS REVIEW 3

4

Fault Tolerance in the
NonStop Cyclone System

ommercial data processing
systems are moving increas­
ingly toward online databases
and applications. These
systems require continuous
system availability, secure
transactions, and error-free

databases. The Tandem'" NonStop'" Cyclone'"
system is a multiprocessor mainframe designed
for the highest performance in simultaneous
transaction, query, and batch processing. It uses
various hardware and software techniques to
perform fault detection and recovery, ensuring
data integrity and continuous system operation
for critical commercial applications.

To achieve system-level fault tolerance, the
NonStop Cyclone system uses Tandem's proven
system architecture. To achieve fault detection
within an individual processor, the NonStop
Cyclone system enhances the methods used by
the Tandem NonStop VLX'" system.

This article surveys the methods used to
achieve fault tolerance in the Tandem NonStop
Cyclone system. It describes how the following
design principles of fault-tolerant system opera­
tion apply through various levels of the NonStop
Cyclone system:

■ Fault detection by both hardware and software.

■ Fail-fast and fault-containment designs that
prevent corruption of user databases by faulty
subsystems.

■ High reliability through safe design and error­
recovery features within subsystems.

■ Continuous system operation achieved through
mechanisms that recover from individual
component failures.

TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 1

Cyclone
CPU
and

memory

1/0 1/0

D:nabus X

D nabus Y

/\

\/

/\

\/
-

Cyclone
CPU
and

memory

110 1/0

I--

->-

/\

\/

/\

\/

Cyclone
CPU
and

memory

1/0 1/0

-+-

Nonstop Cyclone System Design
The NonStop Cyclone system is the most
powerful of Tandem's fault-tolerant, multi­
processor systems (Chan and Horst, 1989; Horst,
Jardine, and Harris, 1990). Designed to support
simultaneous transaction, query, and batch
processing, NonStop Cyclone systems consist of
two to sixteen processors loosely coupled by
dual high-speed busses (the Tandem Dynabus).
Figure 1 illustrates the NonStop Cyclone system
architecture.

I I I I

Cyclone
CPU
and

memory

1/0 1/0

~ Dynabus +

~ Dynabus+

Sections of four processors are interconnected
by fiber optic cables (the Tandem Dynabus+'")
and can be physically separated up to 50 meters.
Each processor has its own memory and controls
two to four 1/0 channels. Fault detection is
performed primarily by the hardware, and fault
recovery is performed by Tandem's message­
based Guardian'" 90 operating system. The
system can tolerate a single fault in a proce~sor,
peripheral controller, power supply, or ~oolmg
system. Failed components can be serviced
online without disrupting processing.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 1.
NonStop Cyclone system
architecture.

5

6

System-Level Fault Tolerance
The NonStop Cyclone system uses the proven
system architecture of its predecessors, in which
all major components of the system are repli­
cated. (See Figure 1.) Guardian 90 manages these
components and, if one fails, arranges for its
function to be taken over by another component.
The replicated components are not merely
redundant or idle; they operate concurrently to
enhance system performance while providing
fault tolerance.

For example, in normal operation, both
Dynabusses carry message traffic. If a single
Dynabus failure occurs, all traffic is routed onto
the remaining Dynabus. The new Dynabus+, the
fiber-optic connection between processor sec­
tions, is configured in a dual-ring arrangement,
allowing tolerance of selected multiple failures.
Power supply and cooling blower loads are
distributed so that the effect of a single failure is
confined to at most a single processor or I/0
controller.

1/0 controllers are duplicated, lock-stepped
microprocessors with self-checking comparison
circuits. 1/0 controllers are dual-ported to sepa­
rate processors, maintaining a path to the 1/0
device even when one processor or 1/0 channel is
down. These replicated devices and busses ensure
that no single failure will cause the entire system
or any part of a database to be unavailable.
Through mirroring, disk drives can also be
configured to be tolerant of single faults.

At the software level, operating system pro­
cesses are programmed as process pairs (Bartlett,
1981; Bartlett et al., 1990). A process pair
consists of a primary process and a backup
process, executing in different processors. The
primary process performs the actual work of the
process pair, occasionally sending the backup
process a checkpoint message containing its

current state. If the primary process fails (for
example, if the processor in which it is executing
fails to send its periodic I'm Alive message and is
declared down), the backup process takes over
and resumes processing at the point of the last
checkpoint received. In addition to providing
tolerance of single hardware faults, the message­
based, process-pair structure of the software also
provides tolerance of intermittent software faults,
a feature not provided by hardware-only fault­
tolerant systems.

Finally, the Tandem Transaction Monitoring
Facility (TMF'") provides an even greater degree
of protection and ease of programming (Bartlett
et al., 1990). TMF allows an application to
package its computations and database updates
into atomic units. This protects the integrity of
the database even in the face of multiple faults
and prolonged power failures.

Fault Detection Within a NonStop
Cyclone Processor
Once system-level fault tolerance is provided,
the only requirement at the processor level is that
the processor halt quickly after detecting a
failure. This fail-fast principle has two benefits:

■ It contains the error to the failing processor,
preventing data corruption.

■ It minimizes service delays while the backup
processes take over.

The duplicate-and-compare method of fault
detection, used in the Tandem NonStop CLX"
system (Lenoski, 1989), is not practical to
implement on a processor as large as the
NonStop Cyclone. Instead, a variety of hardware
and software methods are used. Many of these
methods are used in the NonStop VLX processor,
although the NonStop Cyclone has much more
extensive error identification and diagnostic
capability.

TANDEM SYSTEMS REVIEW• APRIL 1991

The NonStop Cyclone uses parity checking
extensively to detect single-bit errors. Parity is
propagated through devices that do not alter
data, such as memories, control signals, busses,
and registers. Parity prediction is used on
devices that alter data, such as arithmetic units
and counters. Predicted parity is based strictly
on a device's data and parity inputs; it does not
rely on the device's outputs, which may be
faulty. Thus, an adder might generate an errone­
ous sum, but the parity that accompanies the
sum will correspond to the correct result. Parity
checkers downstream will then detect the error.

A novel technique similar to recomputation
with shifted operands (RESO) protects the
hardware multiplier (Sohi et al., 1989). After
each multiplication, a second multiplication is
initiated with the operands exchanged and one
operand shifted. Microcode compares the two
results whenever the multiplier is needed again
or before any data leaves the processor. Unlike
other implementations of RESO, these checking
cycles incur almost no performance penalty
because they occur concurrently with unrelated
execution steps.

Within the NonStop Cyclone processor,
invalid-state checking or the duplication-and­
comparison method is used in sequential logic
circuits. Checksums protect multiple-word
transmissions such as the interprocessor bus and
I/O channel. Watchdog timers and microcode
polling monitor operations that take many cycles
to complete.

If the processor hardware detects a fault from
which it cannot recover, the processor shuts
itself down within two clock cycles, before it
can transmit any corrupt data along the
interprocessor bus or I/0 channel. The error is
flagged in one or more of the approximately 300
error identification registers, allowing quick
fault isolation to any of the 500 hardware error
detectors in each processor. (See Figure 2.)

Figure 2

A_Bus

I
Parity

checker

B_Ctrl

I
Invalid-state

checker

A_Bus_Err __ B_Ctrl_Err

7 ~ ~Scanpathto
diagnostic
processor

- Scan path to --·r-- diagnostic f processor

Freeze CPU

Both the microcode and operating system
perform numerous consistency checks such as
invalid instruction detection and address bounds
checking. Also, the microcode executes proces­
sor diagnostic routines during idle situations. If
the microcode or operating system detects an
unrecoverable error, it immediately executes a
HALT instruction and transmits an error code to
the Remote Maintenance Subsystem.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 2.
NonStop Cyclone error
identification registers.

7

Figure 3.

NonStop Cyclone spare
RAM mechanism.

8

Figure 3

RAM
1

2:1

RAM
2

2:1

Write data

•••

z

Spare
select

RAM Spare
K RAM

2:1
c_... _ ___,__-i__ X:K+1

c_... _____ --4-__ cfeooder

Parity
1-------+--- cheek

Read data

Fault Recovery Within a Nonstop
Cyclone Processor
System-level fault tolerance can be achieved
without incorporating any fault tolerance
capabilities within the processors themselves.
However, each NonStop Cyclone processor has
numerous online recovery mechanisms that
allow it to withstand certain types of hardware
faults. This nearly doubles the calculated mean­
time-to-failure of each processor and dramati­
cally reduces customer service costs.

As in the NonStop VLX processor, large
static random-access memory (RAM) arrays,
such as data and instruction caches, main
control store, and I/O subsystem control store,
can recover from intermittent (soft) data errors
by reloading from alternate copies. For ex­
ample, a soft error in the data cache is corrected
by refilling the block from main memory. In
addition, the main control store and caches have
spare RAMs that automatically replace hard­
failed RAMs (Horst, 1989). (See Figure 3.)

A single-error-correcting, double-error­
detecting code protects dynamic RAMs in main
memory. This code incorporates both data and
address bits, so that addressing failures are
detected as well as RAM failures. An asynchro­
nous microcode process periodically checks for
correctable memory errors. These errors are
logged, and the memory areas are scrubbed by
Guardian 90. If checksum errors occur, the
operating system retries interprocessor bus
packets and 1/0 transfers.

Diagnostic Facilities
The NonStop Cyclone diagnostic facilities are
based on those successfully developed in the
NonStop VLX system (Allen and Boyle, 1987).
Each processor has a dedicated microprocessor
that executes quick diagnostics, scans the initial
state into the processor, loads bootstrap micro­
code into the writable control stores, and
initiates system cold load. It can generate and
collect pseudo-random scan-test signatures for
quick fault detection and isolation, and it serves
as the interface to a system-level, fault-tolerant
maintenance and diagnostic subsystem.

In addition, the maintenance subsystem has
an extensive power and environmental monitor­
ing facility. Sensors in all cabinets measure
power supply voltages, air temperature, and
cooling blower speeds.

TANDEM SYSTEMS REVIEW• APRIL 1991

The Tandem Maintenance and Diagnostic
System (TMDS), a collection of software
processes running in the Guardian 90 environ­
ment, monitors and logs events in a running
system, supports diagnosis of failures anywhere
in the system, and optionally dials out to report
problems to a Tandem customer support center.
The maintenance and diagnostic subsystem, the
power and environmental monitoring facility,
and TMDS software are compatible with
NonStop VLX systems and allow the integration
of NonStop Cyclone processor sections into
existing NonStop VLX systems.

Conclusion
As commercial data processing systems move
increasingly toward critical online databases and
applications, features such as continuous system
availability, secure transactions, and error-free
databases become requirements. The NonStop
Cyclone system has been developed to provide
the highest levels of performance, system
availability, and data integrity for today's
commercial processing needs.

References
Allen, J. and Boyle, R. 1987. The VLX: A Design for Serviceabil­
ity. Tandem Systems Review. Vol. 3, No. I. Tandem Computers
Incorporated. Part no. 83939.

Bartlett, J. 1981. A NonStop Kernel. Proceedings of the Eighth
Symposium on Operating System Principles.

Bartlett, J. et al. 1990. Fault Tolerance in Tandem Computer
Systems. Tandem Technical Report 90.5. Tandem Computers
Incorporated. Part no. 40666.

Chan, S. and Horst, R. December 1989. Parallelism in the
Instruction Pipeline. High Performance Systems.

Horst, R. 1989. Reliable Design of High-speed Cache and Control
Store Memories. Proceedings of the Nineteenth International
Symposium on Fault Tolerant Computing.

Horst, R., Jardine, R., and Harris, R. 1990. Multiple Instruction
Issue in the NonStop Cyclone Processor. Seventeenth International
Symposium on Computer Architecture. Also Tandem Technical
Report 90.6. 1990. Tandem Computers Incorporated. Part no.
48007.

Lenoski, D. 1989. NonStop CLX: Optimized for On-line
Transaction Processing. Tandem Systems Review. Vol. 5, No. I.
Tandem Computers Incorporated. Part no. 18662.

Sohi, G. et al. 1989. A Study of Time-Redundant Fault Tolerance
Techniques for High-Performance Pipelined Computers.
Proceedings of'the Nineteenth International Symposium on Fault
Tolerant Computing.

Note
A shorter version of this paper was previously published as
Tandem Technical Report 90.7 (part no. 48008) and in the
proceedings of the Spring Conference of the Institute of
Electronic, Information, and Communication Engineers,
Chuo University, Tokyo, Japan, March 1990.

Scott Chan was Project Lead Engineer for the Nonstop Cyclone
processor. He joined Tandem after graduating from Stanford
University in 1982 and has contributed to the Nonstop TXP,
Nonstop VLX, and several other Tandem processor designs.

Robert Jardine joined Tandem in 1984 to work on the Nonstop
Cyclone processor design and microcode. His prior experience
included 12 years of design and implementation of compilers,
operating systems, and processor microcode. He is currently
contributing to the design of future Tandem products.

APRIL 1991 •TANDEM SYSTEMS REVIEW 9

Overview of the NonStop-UX
Operating System for the
Integrity S2

he Tandem" Integrity S2'M
system combines high avail­
ability and data integrity, two
traditional features of fault
tolerance, with a standard
implementation of the UNIX
operating system. Integrity S2

meets current demands for fault-tolerant systems
co~bined with an industry-standard operating
environment.

The fault-tolerant capabilities of the
Integrity S2 are realized through a combination
of hardware and software. The hardware sup­
ports fault-tolerant operation through a variety of
techniques, including triple modular redundancy,
duplexed hardware, and self-checking circuitry.

A hierarchical memory architecture takes full
~dvantage of the reduced instruction set comput­
mg (RISC) processor technology used in the
Integrity S2.

The NonStop-UXM operating system, based
on an AT&T UNIX V.3 kernel, has been enhanced
in a number of ways to increase system perfor­
mance and functionality, improve the robustness
of the standard UNIX product, and support fault­
tolerant system operation. Local and global
memory is managed with a two-tiered design to
maximize system performance. Additional
software enhancements provide monitoring and
diagnostic services to detect faulty components
and perform appropriate recovery procedures.

This article describes the components of the
hardware architecture and key features of the
NonStop-UX operating system. It explains
robustness enhancements made to the UNIX
kem~l. Finally, it discusses online serviceability
and improvements made to ensure data integrity;
these include failure detection, isolation, and
recovery as well as the powerfail shutdown and
automatic restart procedures activated by
environmental failures.

TANDEM SYSTEMS REVIEW• APRIL 1991

The Integrity S2 Hardware
Architecture

Figure 1

CPU

Memory
I

I I I
Voter

TMRC

CPU CPU

Memory Memory

I
I I I I
Voter

TMRC

The Integrity S2 has a hardware architecture
designed to support fault tolerance while support­
ing Tandem's implementation of UNIX System V
operating system. The hardware design uses a
redundant CPU architecture with a high-speed
RISC microprocessor at the heart of each CPU.
System expansion is possible by adding more
memory or communication devices. Mass storage
cabinets allow flexible system configuration. The
fault-tolerant 1/0 system, replicated components
and data paths, and self-checking circuitry are
designed to prevent a single hardware failure
from interrupting data processing. Figure I
illustrates the components of the Integrity S2
hardware architecture.

Memory Memory

Triple Modular Redundancy
The Integrity S2 hardware architecture is based
on triple modular redundancy (TMR). The
Integrity S2 architecture design uses three CPU
modules operating as one TMR logical processor.
The three CPUs execute the same instructions
then compare and vote on the outputs. This '
design expedites isolation of a malfunctioning
CPU and protects data integrity.

The most important architectural difference
between the Integrity S2 and traditional TMR
architectures is that Integrity S2 uses three
independently clocked CPUs. While all three
CPUs execute the same instruction stream, they
do not necessarily execute the same instruction
at the same time.

Each CPU has its own oscillator. If one of the
CPUs has an oscillator that beats slightly faster
than the rest, that CPU will move ahead of the
others in the instruction stream. When an inter­
rupt occurs, all CPUs must see the interrupt at
the same point in the instruction stream, or the
CPUs would take different paths in processing
the interrupts. Therefore, the CPUs are synchro­
nized whenever external interrupts are presented
to the CPUs.

I

I I
I

!OP

BIM

VME
I

BIM

VME

1 1

Hierarchical Memory Architecture
Memory for the Integrity S2 is organized hierar­
chically into local and global memory. Cache and
disk are the other two components of the memory
hierarchy, which is controlled by memory man­
agement software. Each CPU module contains
8 to 64 megabytes of high-speed local memory.
The CPUs execute primarily from local memory.
The processors can also access a somewhat
slower, duplicated global memory by way of the
reliable system bus (RSB). Global memory can
be as large as 128 megabytes.

APRIL 1991 •TANDEM SYSTEMS REVIEW

I

I I
IOP

Figure 1.

The Integrity S2 hardware
architecture uses a triple
modular redundant design
with replicated compo­
nents and data paths.

11

Figure 2.

The voter modules com­
pare CPU output and vote
all writes to global mem­
ories. CPU failures are
reliably detected, and the
voter modules isolate any
errant CPU.

12

Figure 2

2+2--4 2+2=5

I I J
I

Voter

TMRC

Memory

Integrating RISC Technology
The current CPU consists of a 16.67-MHz R2000
MIPS microprocessor using RISC technology
and containing 64 kilobytes each of instruction
and data cache. The hierarchical memory design
takes full advantage of the RISC processor
technology. Large caches and fast memories are
required to keep RISC processors fed at rates
that are fast enough to keep them from stalling.
The global memory, used primarily as a fast
swap device, ensures that the local memory has
fast access to the active working sets of running
processes.

The loose synchronization of the CPUs also
enables the RISC microprocessors to run at high
speed. At these high frequencies, it is difficult to
lockstep multiple CPUs. Loose synchronization
solves this problem without adversely impacting
performance.

Voter Modules
Two self-checking voter modules connect to and
monitor the CPU modules. Voting occurs when
the global memory must be accessed or an
interrupt needs to be processed. One voter
compares the output of its CPU with that of the
other two. If the outputs match, the CPUs are
operating correctly. As shown in Figure 2, if a
CPU has output that differs from the other two,
the voter assumes it is faulty. The malfunction­
ing CPU is outvoted and isolated before it can
corrupt any permanent data in the global memo­
ries of the system.

The Integrity S2 hardware design contains
two boards called the TMR controllers (TMRCs).
The two voter modules as well as the dual global
memories reside on the TMRCs, one voter
module and one memory module to each board.
One TMRC is designated as the primary con­
troller, and the other is the secondary. Data is
always read from the primary TMRC. A process
called the primary-secondary swapper periodi­
cally alternates the assignments of the primary
and secondary TMRCs.

System Expansion
Memory can be increased to 192 megabytes.
Slots for additional 1/0 controllers, which can
provide connections for additional disk drives,
tape drives, and data communication lines, are
inside the system cabinet.

Up to four mass storage cabinets (MSC) can
be added to one system. Each MSC houses seven
slots for standard 5-1/4-inch small computer
system interface (SCSI) devices. Alternately, six
disk drives and one tape drive can be installed.

Duplexed Components in the Fault-Tolerant
1/0 Subsystem
The Integrity S2 1/0 subsystem supports fault
tolerance by providing redundant paths to
peripheral and communications controllers.
There are five major subsystem components:

■ Dual reliable 1/0 buses (RIOBs).

■ Dual 1/0 processors (IOPs).

■ Dual NonStop V+'" buses.

■ Bus interface modules (BIMs).

■ Intelligent 1/0 controllers.

TANDEM SYSTEMS REVIEW• APRIL 1991

The dual RIOBs connect the three CPUs, two
TMRCs, and three RSBs to the 1/0 subsystem.
Each RIOB supports a bidirectional 32-bit data
path plus 4-bit parity.

The dual IOPs, located between the TMRCs
and the 1/0 controllers, verify data addresses
from up to eight controllers before transferring
the data to global memory. The IOPs are con­
nected to the global memory modules, located
on the TMRCs, through the RIOB. Each of the
dual IOPs controls a single NonStop V+ bus.

The NonStop V+ bus is an industry-standard
VMEbus that has been enhanced with parity and
other fault detection and isolation properties to
support a more robust 1/0 subsystem. Dual
NonStop V+ buses provide a path for data
transfer between VMEbus controllers and the
active IOP for those controllers.

The dual NonStop V+ buses connect through
BIMs to industry-standard VMEbus controllers.
The BIMs allow a single controller to interface
to either of the NonStop V+ buses, although
only one connection is active at any one time.
The processor can switch a controller from one
bus to another if an IOP or a NonStop V+ bus
fails. Up to eight VMEbus controllers can be
integrated into the 1/0 subsystem.

The intelligent 1/0 controllers incorporate
microprocessors to improve 1/0 performance.
They manage most of the mass storage and
communications processing requirements,
freeing the CPUs to complete other tasks. The
controllers are connected by way of redundant
paths to the IOPs.

Self-Checking Circuitry
Self-checking designs are used throughout the
architecture, along with other methods of error
detection, to increase the fault detection cover­
age. A diagnostic subsystem reports the identifi­
cation and isolation of the errors. Once isolated
and identified, the user can remove it from the
system and insert a new one without affecting
the availability of the system.

The Integrity S2 Software
Architecture
The principal goal of the software architecture
was to provide a completely standard imple­
mentation of UNIX System V on the Integrity S2
as well as support the fault-tolerant hardware
architecture. Additional objectives were to
provide high availability, data integrity, and
user serviceability.

These requirements are not usually asso­
ciated with the UNIX operating system, which
is known for its tendency to crash. Therefore,
a simple port of UNIX to operate on the
Integrity S2 hardware architecture would not
satisfy all system software requirements. To
achieve its goals, the NonStop-UX operating
system contains enhancements to the basic
implementation of UNIX System V while still
maintaining System V Interface Definition
(SVID) compliance.

Methodology for Extending UNIX to
Provide Fault Tolerance
Tandem developers decided to base the
NonStop-UX operating system on a standard
implementation of UNIX after analyzing several
unsuccessful versions of UNIX based on fault­
tolerant hardware. Concluding that standard
UNIX is not well-suited to a fault-tolerant
environment, these other vendors rewrote the
UNIX operating system. However, a proprietary
version of UNIX can present serious problems
for users.

APRIL 1991 •TANDEM SYSTEMS REVIEW 13

Figure 3

UNIX kernel

Tandem hardware
support code

Figure 3.

The NonStop-UX
operating system provides
fault-tolerant capabilities
through modular exten­
sions to the kernel while
maintaining full compli­
ance with the SVID
application inte,face.

14

Application program

UNIX standard

Fault-tolerant
hardware platform

First, many users have had trouble porting
UNIX applications to a nonstandard UNIX
operating system, even one intended to be an
improvement of standard UNIX. Users are
reluctant to port a large UNIX application to an
operating system that deviates in any way from
the UNIX interface definitions or, worse, does not
obey UNIX semantics.

Second, users want to have access to the latest
UNIX features. Users must wait longer for these
features if they have to depend on the system
provider to develop them. True UNIX semantics
are hard to achieve by transforming another
operating system into UNIX at the system call or
library level. Implementing new internal features
is much more difficult than simply porting the
new release of UNIX to the hardware platform.
By offering an emulation of UNIX, one loses one
of its principal advantages, which is the technol­
ogy of the UNIX operating system itself.

Third, users demand access not only to the
UNIX operating system, but also to the UNIX
software development environment. It is superior
to development environments found on many
proprietary systems. Also, it is available on a
variety of hardware platforms. Finally, compa­
nies find it relatively easy to hire and retain
developers trained in the UNIX environment.

Therefore, the NonStop-UX system was not
designed as a layer that transformed a non-UNIX
operating system into a SVID-compatible pro­
gramming interface. Tandem chose to provide a
UNIX implementation on a fault-tolerant hard­
ware design based on the following guidelines:

■ Start from a good standard port of UNIX
System V.

■ Whenever possible, introduce fault-tolerant
features in a modular manner that are portable
across releases of the operating system.

■ Ensure that none of the work to add fault
tolerance violates existing and emerging stan­
dards, such as X/OPEN or POSIX. 1

■ Ensure that no user-level application software
changes are required to take advantage of fault­
tolerant features.

Figure 3 illustrates the standard and modified
elements that comprise the Integrity S2 system.

'X/OPEN and POSIX are two organizations that are defining standards
important to UNIX.

TANDEM SYSTEMS REVIEW• APRIL 1991

Basic Features of the NonStop-UX
Operating System
The NonStop-UX operating system is based on
the AT&T System V, Release 3 kernel and
provides excellent portability. It complies with
the AT&T SVID Issue 2 and passes the System V
Verification Suite. These tests verify conform­
ance with SVID standards.

NonStop-UX provides improved system
performance and networking capabilities. For
example, NonStop-UX supports the improved
Berkeley Software Distribution (BSD) Fast File
System (FFS), which uses the File System
Switch feature of UNIX System V. FFS allows
NonStop-UX to have faster file access time.

A MIPS optimizing compiler system is
included to maximize RISC processing perfor­
mance. The compiler system translates high­
level languages2 into machine code, optimized
for the RISC microprocessor. The compiler
stores data items among 32 registers in the RISC
chip, making them accessible with the lowest
number of operations and thus expediting
program execution.

NonStop-UX integrates into local and wide
area networks by supporting networking soft­
ware. The BSD sockets library interface provides
tools for developing distributed applications.
The Sun Microsystems Network File System
(NFS) allows an Integrity S2 system to access
files and devices on other systems using NFS.
Transmission Control Protocol/Internet Protocol
(TCP/IP) and the X Window System are two of
various protocols supported by NonStop-UX
that enable communication with other UNIX
systems.

Two-Tiered Memory Management
The two-tiered memory management design
corresponds to the hierarchical local and global
memory organization of the hardware architec­
ture. This approach optimizes the demands
of the RISC microprocessor and supports the
hardware design. Figure 4 illustrates the
two-tiered design.

'Compilers are provided for the following languages: C, FORTRAN, Pascal,
and COBOL. The C compiler is standard.

'A hit rate is the probability that a memory reference is stored in the cache.
A miss occurs when a processor has to go to the next tier to fetch a memory
reference.

Figure 4

8 to 64 MB of
local memory
(CPU modules)

Bio 128 MB of
global memory
(TMRCs)

Kernel

User program pages

User program pages

1/0 staging area

Disk buffer

Because the MIPS R2000 microprocessor, like
all RISC processors, achieves its full perfor­
mance potential when it is fed from memory at
speeds that match its cycle time, the operating
system must execute with a high cache hit rate
and refill the cache quickly on misses.3 Placing
fast memory on the hierarchy's first tier im­
proves the performance of local memory ac­
cesses. Local memory contains user program
pages, kernel text, and kernel data. Global
memory, less often accessed, is on the second
tier. It contains disk buffer cache, I/0 buffers,
and user program pages.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 4.

Block copy
engine
transfers

Disk

For optimum performance,
system memory is organ­
ized in a two-tier hierarchy.

15

16

The CPUs execute from local memory as
much as possible. When the operating system
schedules a process, it moves the process into
local memory to execute. Each of the CPUs
contains its own local memory, which can be
accessed independently of the other CPUs. This
allows rapid access to local memory and helps
to ensure that the processor can continue to
execute at relatively high speeds even when it
encounters a cache miss.

Global memory is located on the TMR
controller board. The global memory modules
contain identical data to protect against TMRC
and memory failure. Each global access triggers
the voter modules, which monitor the CPUs, and
the three independent instruction streams are
voted.

The global memory acts as a fast swap
device, increasing the performance of the
system under heavy load. Processes that are
aged first move from local to global memory. If
needed again, they are quickly swapped back
into local memory where they execute at full
speed. Pages that continue to age are eventually
swapped from global memory to disk.

The standard UNIX process, vhand, is re­
sponsible for swapping processes from global
memory to disk. A new process manages
swapping from local memory to global memory.
It uses the same type of least-recently-used
(LRU) scheme as the vhand process.

A block copy engine, a special-purpose direct
memory access device, provides hardware
assistance to move blocks of data across the
reliable system bus (RSB), which connects the
CPUs to global memory. The block copy engine
can copy data much more quickly than the CPU
can move it. The memory management code
utilizes the faster block copy engine whenever
it swaps pages back and forth between local
and global memory.

The block copy engine is also used to im­
prove the performance of bcopy() and bzero(),
two frequently used kernel routines that copy
and zero data buffers, respectively. The interface
to the routines is unchanged, but the internals of
the routine have been modified to make it aware
of the option of using the block copy engine.
Because these routines are used throughout the
kernel, the performance improvement afforded
by the block copy engine can be significant.

Fault Tolerance of the 1/0 Subsystem
The 1/0 subsystem of the Integrity S2 is com­
posed of duplexed components that are checked
so that they can be isolated in the event of a
failure. These components provide redundant
paths within the I/0 subsystem and allow
integration of VMEbus controllers into the
Integrity S2 environment.

The hardware's self-checking logic detects
any faults and allows isolation of a component
before the fault corrupts data or other areas of
the system. When a failure occurs, an interrupt is
generated and the kernel's error recovery code
takes the component offline. NonStop-UX is
also responsible for rerouting any outstanding
and subsequent I/0 requests by way of an
alternate path whenever a component has been
moved offline.

The dual NonStop V+ bus, a Tandem imple­
mentation of a VMEbus, protects the data paths
with the addition of parity. The bus interface
module (BIM) and the NonStop V+ bus combine
to check parity on data moving across the buses,
to provide dual-port access to the buses, and
to enhance fault tolerance by isolating the con­
trollers from one another. Normally, a standard
VMEbus passes signals through a string of con­
trollers. The Tandem implementation uses a
radial addressing scheme to route bus signals.
Each of the controllers has an individual con­
nection to the IOP and appears to be on a com­
pletely separate VMEbus from all the others.
These changes are transparent to the controllers'
hardware or firmware.

TANDEM SYSTEMS REVIEW• APRIL 1991

When a VMEbus controller is added to the
system, the address mapping for that controller
is kept on both IOPs. If the IOP being used for
access to that controller is lost, the operating
system can access the controller at the same
address by way of the other IOP. This means
that an IOP can fail while a device driver is in
the process of accessing a controller, and the
driver is transparently switched to accessing the
controller through the other working IOP. This
can be demonstrated on the system by starting
up heavy 1/0 workloads and then pulling the
active IOP. The BIM switches the controller to
the other NonStop V+ bus and the system
continues to operate uninterrupted.

The 1/0 subsystem uses two additional
methods to preserve data integrity. Disk mirror­
ing and disk checksums safeguard data being
written to disk or reread from disk.

Disk Device Mirroring. Mirroring is a technique
for protecting disk data by writing data to two
different disk drives at the same time. Figure 5
illustrates how basic disk mirroring occurs.

On the Integrity S2, any disk partition can be
mirrored to any other disk partition of the same
size. Typically, disk data is written from memory
to IOP _1, controller_l, disk_l and simultane­
ously to IOP _2, controller_2, disk_2. All impor­
tant data can be mirrored so that it is written to
two different disk devices accessible through
two completely separate paths. Mirrored disk
partitions continue to provide access to data
even if one disk fails.

Because writes to the two halves of the
mirrored devices are done in parallel, the
performance overhead for the mirroring is
minimal. With disk mirroring, the performance
of most applications improves. This improve­
ment occurs because NonStop-UX also imple­
ments read optimization from the different disk
partitions. Read optimization allows the operat­
ing system to select data from either of the two
identical halves of a mirrored pair. It works by
selecting the least busy device or by selecting

Figure 5

Figure 6

Kernel

Mirror driver

Disk driver

l l

Algorithm 0 Algorithm 1

! ! Writes ! ! Writes

! A
B ! A ! B

Reads from Reads from
disk A only first half of A

second half of B

the device on which the head is closest to the
data to be read. As shown in Figure 6, the
Integrity S2 system implements a number of
different read optimization algorithms and
allows any of the algorithms to be selected
on a partition-by-partition basis.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 5.

Disk mirroring provides
data integrity by pro­
tecting against disk and
disk controller failure.

Algorithm 2

! ! Writes

! A ! B

Reads least busy

Figure 6.

Read optimization of mir­
rored disks is a technique
used to improve system
performance.

17

The disk device mirroring software is imple­
mented in a manner independent of the device
driver. This makes the mirroring software
available to users who wish to integrate their
own VME disk controllers and add their own
standard drivers.

Disk Checksums. Although most of the I/O
subsystem consists of self-checking components,
the off-the-shelf VME controllers used in the
Integrity S2 are not designed to contain their
faults with self-checking logic. Therefore, it is
possible for a controller that fails and corrupts
data to go undetected in the system. The

Vernel reliability has
l\...been improved with
enhanced error recovery.

Integrity S2 protects
itself against such
failures by generating
checksums on data that
is written to disk. The
checksums are checked
when the data is reread

from disk. This technique, called end-to-end
checksums, ensures that the entire path from
main memory to disk and back is checked.
Any failure that compromises data integrity is
identified. Because the data is mirrored, a correct
version of the data can always be recovered.

Robustness Enhancements to UNIX
As with all standard UNIX implementations, the
UNIX kernel is a single point of failure on the
system. Although there are three processors
executing the instruction stream, it is logically
a single instruction stream. Therefore, a bug that
causes the system to panic (shut down) or hang
causes all three of the processors to panic or
hang in exactly the same way.

To ensure the high availability and data integ­
rity of the Integrity S2 system, the reliability
of the kernel has been improved with a number
of techniques. Most reliability has been gained
through the evaluation and correction of many
of the conditions that cause the kernel to
panic. For further protection, the kernel is write­
protected against errant or invalid processes.
These enhancements have been implemented to
the kernel while still maintaining compliance
with SVID standards.

Error Recovery
UNIX is well known for the many calls to the
panic() routine interspersed throughout the
kernel. The panic() routine is often invoked after
an assertion has been executed to determine if
a dangerous condition exists. If something is
amiss, the kernel usually chooses to invoke
panic(), which flushes the buffer pool and shuts
down the system.

Analyzing Panic Calls. Efforts to improve
kernel reliability began with an extensive
analysis of the panic conditions and assertions
of the kernel. A database was created that
includes information on over 800 panics and
assertions in a standard System V Release 3
UNIX kernel.

A multidimensional value function was
applied to determine the priority for implement­
ing error recovery routines for the panics. The
kernel was instrumented to determine how
frequently the assertions were invoked, and the
probability that each panic might occur was
analyzed. These and several other metrics
allowed prioritization of the list of panics and
assertions. These tools can be applied to future
UNIX releases and allow a quick identification
of new panic conditions, which can be added
to the database.

18 TANDEM SYSTEMS REVIEW• APRIL 1991

Choosing the Recovery Mechanism. Usually
one can construct a recovery routine for an error
condition. However, it may not always be wise to
attempt recovery. An assertion that is satisfied is
an indication that the system has been corrupted
in some way. Although recovery from the error
state is possible by, for example, removing a
corrupted element from a linked list, the original
cause of the data corruption may still exist.

This presents system users with a choice.
Some users may value data integrity over
availability; others may make the opposite
choice. A configurable recovery mechanism
(the /config file system, discussed below) was
developed to be flexible enough to satisfy both
sets of users.

Those users who prefer to preserve data
integrity can configure the system to allow an
immediate panic to be invoked after the first
assertion that indicates a problem. This flushes
the system state to disk, then enables a quick
rebooting of the system on a fresh kernel image.

For those who need to maintain high avail­
ability, error recovery routines are invoked to
allow the system to continue providing services
even if it means a user process may be termi­
nated to correct the problem. The system then
enters a probationary state, where it lives for
a period of time determined by the user. The
system can be informed that if a specified
number of error recoveries are attempted
during the probationary period, the system is
too unstable and a shutdown will occur so that
the system can be quickly rebooted.

Subscription Services. Subscription services
allow a subsystem to specify a recovery routine
and request that the subsystem subscribe to it
if an error occurs. Subscription services are
available to any routines in the kernel. Multiple
subsystem-specific recovery procedures can be
defined for the same type of failure condition.

The NonStop-UX Panic Routine. The panic
capability of the NonStop-UX operating system
has been enhanced to ensure that data integrity
is preserved if the system has to be shut down
and rebooted. When a normal panic routine is
executed, an attempt is made to flush the buffer
pool and update the disks to a consistent state.
This goal is often difficult to achieve because
the panic routine is executing on a system that
may have experienced some random memory
corruption.

The NonStop-UX panic routine uses as little
of the kernel as possible when it executes. A
separate driver routine runs in polled rather than
interrupt mode and uses data structures set aside
for this purpose. As much data as possible is
write-protected during the panic routine's
execution. Key data structures, such as the
superblocks, are checked for consistency
before being written to disk to prevent writing
corrupted data to the disks.

APRIL 1991 •TANDEM SYSTEMS REVIEW 19

Hardware Protection of the Kernel
Hardware assistance was provided to protect
portions of memory with write-protect random­
access memory (RAM). The Integrity S2 uses
special hardware memory-protection circuitry
to prevent data loss or corruption of the kernel
resulting from failures. In addition, because it
is not uncommon for pointers in C to be used
incorrectly, the write-protect RAM was used to

A unique feature of the
Integrity S2 is its online

serviceability.

protect kernel text from
being overwritten. The
write-protect hardware
has a small enough
granularity to be used
to protect data struc­
tures as well as text,

although the performance implications of
write-protecting data often make this approach
prohibitively expensive.

If a user process is responsible for a write­
protect violation, the process is terminated.
In general, processes responsible for errant
behavior are terminated while the system is
kept available for the rest of the users.

Online Service
The ability to service the Integrity S2 online is
one of the unique features of the system. One
can easily service the Integrity S2 without losing
availability.

The system's mechanical design facilitates
the user serviceability of the system. All compo­
nents and cables are accessible from the front.
When the cabinet doors are opened, a user can
replace any component without needing any
tools. The term describing the components,
customer replaceable units (CRUs), emphasizes
that the Integrity S2 does not need trained
service personnel.

Monitoring the Hardware and
Software Subsystems
To facilitate online service, the Integrity S2 uses
a pseudo-file system, called the /config file
system, to provide status information for each
hardware component and software subsystem
running in the system. The system uses no disk
space. It is maintained in memory and updated
as device states and hardware configurations
change.

The /config file system consists of one
hardware and one software directory tree. The
hardware directory contains files that correspond
to each CRU in the system. The software direc­
tory contains files corresponding to performance
statistics or software subsystems such as
System V interprocess communications and
the powerfail-autorestart subsystem.

One can obtain status information by calling
a stat() routine or by sending an 1/0 control
(ioctl) ca114 to the files in the /config file system.
The real object corresponding to the file can also
be operated on by opening any file and sending
it an ioctl. The /config file system provides an
elegant and flexible way to enhance the system's
user serviceability in a way completely consis­
tent with the UNIX model.

~An ioctl i~ a UNIX system call used to set certain attributes of l/O devices
or to override a device's default setting~.

20 TANDEM SYSTEMS REVIEW• APRIL 1991

Online Reintegration of System Components
The NonStop-UX operating system allows users
to remove, replace, and reintegrate any of the
active components within the Integrity S2 system.
If any of the boards in the system fail, one can
repair the system without scheduled downtime.
CRUs can be replaced online while applications
are running. The reintegration process is transpar­
ent to applications and system users.

Reintegration of CPUs. A CPU failure generates
an event log message. Typically, the system
administrator is notified of the failure by way of a
status screen displaying the event log messages.
The administrator can choose to enable a dial-out
procedure5 on an event-by-event basis. If enabled,
the system automatically dials out for assistance
when specified events occur.

Soft memory failures are corrected online by
a software process called the memory scrubber.
This process eliminates memory errors in
dynamic random-access memory (RAM) by
rewriting valid data to the failed address. How­
ever, if a hard memory failure occurs in a CPU,
the CPU is voted offline and must be replaced.

The operating system manages the reinte­
gration process of the module. First, the new
CPU runs its power-on self-test (POST). Then
the other CPUs receive notification that the new
CPU has completed its POST. All three CPUs
use the block copy engine to copy each local
memory page out to global memory and back
again. Because two of the CPUs still have valid
data, that data replaces the bad data in the third
CPU. Then all CPUs restart from the point in the
processing stream where they were previously
executing. This entire process takes approxi­
mately one second on an 8-megabyte local­
memory CPU.

~The diagnostic system dials out to the Tandem Online Support Center.

Reintegration of TMRCs. The memory scrub­
ber process also protects both the local and
global memories from transient soft RAM errors.
As the scrubber copies data back and forth
between local and global memory, it can un­
cover latent parity errors. Also, the primary­
secondary swapper periodically swaps the
primary and secondary TMRC so that the CPUs
alternately read from both TMRCs and can
uncover errors specific to one of the modes of
operation.

The scrubber cannot correct a hard failure in
a TMRC. If a global memory error occurs, the
failed TMRC needs to be replaced.

Once a new TMRC is installed, the valid data
from the other TMRC must be copied to it. This
procedure happens in the background while
normal processing continues. Data is simply
read from the primary TMRC and written back
to both components. One can trade off perfor­
mance with the speed of reintegration by
varying the block size of the memory copy
and the time interval between block copies.

Reintegration of IOPs. When an IOP fails, all
of the controllers on that IOP are automatically
switched by way of the BIM to the other IOP.
Processing continues uninterrupted. When
an IOP is replaced, the controllers that were
connected to it are automatically moved back
to connect with the new IOP. This restores
balance to the system for both performance
and fault tolerance.

The system can switch controllers back and
forth between the IOPs because the address
space used by a controller is always reserved on
both IOPs. The tables that determine the address
mappings of the VME controllers are kept in
global memory.

APRIL 1991 •TANDEM SYSTEMS REVIEW 21

Figure 7.

Thisfiow chart illustrates
the steps taken by the
kernel in response to a
power outa[?e.

22

Figure 7

Powerfail
confirmed

l
Flush diSk

butters

Reboo,p1/
Terminate
processes

~"'""""

l
Shutdown

Notify process
of power failure

j
Wait for
cleanup

l
Suspend

processes

j
Save stale

Recovery From Environmental
Failures
A power failure is the most common environ­
mental failure, but flooding, earthquakes, torna­
does, and other natural disasters can also damage
a computer system. Failures due to loss of power
and overheating are the most manageable ones.
Typically, power failures are transient, lasting at
most a few minutes. Even a transient power

failure will cause a non-fault-tolerant system to
lose availability. If the system is running UNIX,
chances are that data will also be lost because
the disks are not kept in a consistent state.

The Integrity S2 supports continued operation
through transient power failures. If power is lost
for longer than a few minutes, data integrity
is preserved by initiating a powerfail shutdown
procedure. When power is resumed, an automatic
restart procedure allows programs to be restarted
where they had been stopped.

Powerfail Shutdown Procedure
Each of the cabinets in the Integrity S2 houses
two bulk power supplies, which normally distrib­
ute power to the CRUs throughout the cabinet.
Each cabinet also houses two batteries. If external
power is lost, the two batteries immediately
switch in to power the entire system. The batter­
ies are effective for about 8 minutes.

When power is lost, the two bulk power
supplies typically transition somewhat asyn­
chronously from a good state to a bad state. The
analog nature of the power supplies causes
them to transition back and forth for a few milli­
seconds. A kernel powerfail process is notified
of all transitions so that it can distinguish be­
tween a failing bulk and an external power loss.
Once the powerfail process determines whether
the failure is a permanent or a transient outage,
the kernel decides which action to take.

If a single bulk has failed, a message is logged
to the maintenance subsystem so that the bulk
can be replaced. The system continues to operate
in the event of a bulk failure. If power has been
lost, the shutdown procedure is initiated. Figure 7
illustrates the steps in this procedure.

The administrator can mark certain processes
to be terminated upon power failure, but the
default action is for all processes to be saved so
they will restart at exactly the same point in the
instruction stream when power is resumed. No
process needs to have special code to survive a
power failure.

The system first notifies all system processes
of the power failure by signalling them. This
allows users to write applications that catch the
powerfail signals and perform any necessary
cleanup before a shutdown. It also allows appli­
cations to perform initialization routines, such
as password verification, before resuming.

TANDEM SYSTEMS REVIEW• APRIL 1991

The buffer pool is flushed to disk in order to
ensure that the disks are in a safe and consistent
state when the system is shut down. Many of the
VME controllers have memory that maintains
important state information. This information is
copied into global memory and written to a
special powerfail partition on disk. The image
of memory is then written to the same partition.

At this point, the kernel powerfail process
turns off the system. The batteries have been
sized so that this shutdown procedure can suc­
ceed with only one working battery. Because
power failures are fairly common in most envi­
ronments, the system considers them expected
events rather than faults. The Integrity S2 can
handle a power failure in the presence of a single
fault, even if that fault is one of the batteries. The
system can also withstand two consecutive power
failures, an all too common occurrence.

Overheating is a second common cause of
power failures. The Integrity S2 has bulk power
supplies with internal heat sensors so they can
notify the kernel if they begin to overheat. The
Integrity S2 handles overheating with the same
software technique it uses when managing a
power failure.

Automatic Restart Procedure
When power is restored, the controller states are
restored from the powerfail partition. The image
of memory is then restored from disk to both
local and global memory. Applications can then
resume processing at the same point where they
stopped when the power failure occurred.

A process can choose to catch the signal that is
delivered when the power is restored. Then the
application can execute some special logic. For
example, the application can invoke its own
security mechanism by prompting the user for a
password when the power is restored. Power
failures can last for several hours, and the people
running certain applications may have left the
area. Suppose the resumed application was
waiting for input from a data entry screen. Such
a security feature could prevent an unauthorized
person from entering or retrieving data.

Conclusion
The NonStop-UX operating system provides a
standard UNIX System V implementation with
advanced features that support the fault-tolerant
hardware, allow system networking, and im­
prove the robustness of the UNIX kernel. Any
user can perform online service. For environ­
mental failures, the operating system manages
shutdown and restart procedures to protect data
integrity. The Integrity S2 is the most successful
implementation to date to combine the availabil­
ity and reliability of a high-performance fault­
tolerant hardware architecture with a fully
conforming UNIX environment.

Peter Norwood joined Tandem in 1983 as a software designer. He
worked as both a designer and a manager on various portions of the
Integrity S2 project. Peter holds a BA from Haverford College and an
MSEE from the University of Texas at Austin. He is currently vice
president of software development at Tivoli Systems in Austin, Texas.

APRIL 1991 •TANDEM SYSTEMS REVIEW 23

24

Enhancing System
Security With Safeguard

ach computer application is
unique, with unique security
requirements. To make a
computer system secure,
users need to implement
their security policy in a
manner that suits the unique

requirements of each application. Safeguard'",
the Tandem'" system protection product, can be
the foundation of the system's security design.
Safeguard enhances the security of Tandem
systems in several areas, including authentica­
tion services, disk file security, protection of
processes and devices, and auditing.

This article describes the basic elements of
Safeguard, discusses the security enhancements
offered by Safeguard, provides examples of the
uses of Safeguard, and gives a brief overview
of the Safeguard environment. The article
assumes that readers are familiar with the
security features provided by the Tandem
Guardian'" 90 operating system. The article
is based on the C22 release of Safeguard.

Developing an Application
Security Plan
Users should develop the Safeguard configura­
tion as part of a larger security plan, just as they
would develop an application. Typically, secu­
rity development involves four distinct phases:
policy statement, assessment, design, and
implementation.

Initially, the upper management of an organi­
zation issues a security policy, clearly stating the
organization's security requirements and its
degree of commitment to achieving the security
goals it has outlined. This step plays an impor­
tant role in eliminating organizational barriers
later on.

TANDEM SYSTEMS REVIEW• APRIL 1991

During the assessment phase, a security
administration team studies the application and
its environment to identify which users need
which forms of system access. The team also
decides which forms of protection are appropri­
ate and documents its conclusions in a security
assessment report.

Next, the security team designs the security
plan, including the Safeguard configuration. If
possible, the team also tests the design. Finally,
the team implements the security design, usually
one part at a time, including provisions for
addressing any unintended problems that may
occur.

Basic Elements of Safeguard
A computer security system should provide
three basic forms of protection. Authentication
permits the system to identify individual users.
Authorization allows the system to control
which users are granted which access privileges.
Auditing provides a way to trace illicit accesses,
verify that no illicit accesses have occurred, and
record events to assist in detecting fraudulent
activity. Moreover, the computer security
system should be flexible enough to protect the
system without impairing the everyday work of
users.

Safeguard has been designed to achieve these
goals. For authentication services, Safeguard
uses the Guardian 90 concept of the individual
user ID, thereby ensuring full compatibility with
systems that are not running Safeguard. In
addition, Safeguard provides its own authoriza­
tion and auditing services. Each functional area
identified by Safeguard provides the authenti­
cation, authorization, and auditing services
required by that function. For example, the
processes function allows the security adminis­
trator to authorize and audit actions involving

processes. Many Safeguard functions are based
on Guardian 90 concepts such as disk files,
users, devices, terminals, and processes. In
addition, Safeguard introduces three new
concepts to Guardian 90 systems:

■ Access control lists (ACLs) can be assigned to
existing system objects or groups of objects,
providing both authorization and audit control.

■ Objecttypes extend ACL functionality by
allowing the security administrator to control the
creation of new system objects such as disk files
and processes.

■ The Groups feature extends Safeguard's
protection services to the management of the
Safeguard system itself.

Access Control Lists
Safeguard uses ACLs to form a Lampson model
of security. A Lampson model is a matrix in
which subjects (users) form the rows and objects
form the columns (Dynamic Protection Struc­
tures, 1969). Each entry in the matrix defines the
types of access allowed for the given subject and
object. A Safeguard ACL gives a column view of
the Lampson model, defining which users are
granted which types of access to an object.

APRIL 1991 •TANDEM SYSTEMS REVIEW 25

Figure 1.

Subvolume security
matrix.

26

Figure 1

User IDs

SEC.ADM IN
(1,255)

APPL.USER1
(2,1)

APPL.USER2
{2,2)

APPL.DATABASE
(2,255)

SUPER.OPER1
(255,1)

SUPER.OPER2
(255,2)

SUPER.SYSMGR
(255,100)

Table 1.

SUPER.SUPER
(255,255)

0..
:::,
f­a:
~
(j)

0

RW
EP
C

RW
EP
C

AW
EP
C

UJ
LL
<I:
(j)

0

RW RW
EP EP
co co

$SYSTEM

C
C

(j)

>­
(j)

0

AW
EP
C

RW
EP
C

RW
EP
C

RW
EP
co

::z;
UJ
f­
(j)
>­
(j)

0

::z;~
wo
O>
ZC!l
<i::::l
f- (j)

0

AW RW
EP EP
C C
RW AW
EP EP
C C
RW RW
EP EP
C C
AW
EP
co

AW
EP
co

-" = no access

Possible forms of the user list in an access control entry.

Safeguard user list Description

140,145 Local user 140,145 only

A
a:
UJ
I
f-
0
V

*.140, 145 Remote and local user 140,145 only
- ----------

140,* Local group 140 only

.140, Remote and local group 140 only

Any local user

.,* Any user

Subvolumes

f-
0
:::,
<I:

0

RW
EP
C

RW
EP
C

AW
EP
C

RW
EP
co

$AUDIT

UJ
LL
<I:
(j)

0

RW
EP
co

A
a:
UJ
I
f-
0
V

$TEST

UJ
LL
<I:
(j)

0

RW
EP
co

A
a:
UJ
I
f-
0
V

0

RW
EP
C

RW
EP
C

RW
EP
co

$DATA

0

iri
0

0

RW RW
EP EP
C C

AW RW
EP EP
co co

UJ
LL
<I:
(j)

0

AW
EP
co

A
a:
UJ
I
f-
0
V

Figure 1 shows a sample Lampson security
matrix in a typical production system. In this
example, the objects are disk volumes,
subvolumes, and files. Each ACL may contain
access control entries. Each access control entry
has three parts: a user or group of users to which
the entry applies, a list of access authorities, and,
optionally, the DENY attribute.

User Lists. Users or groups of users can be listed
in an access control entry in one of six ways.
Table 1 shows examples of the six types of
user lists.

TANDEM SYSTEMS REVIEW• APRIL 1991

Access Authorities. The types of access authori­
ties include read (R), write (W), execute (E),
purge or stop (P), create or start (C), and owner
of the object (0). The meaning of each access
authority may differ depending on the class of
object being protected. For example, for both the
disk file and process object classes, Rand W
mean the authority to open a file or process for
read and write access and O the authority to alter
or delete the Safeguard protection for the file.
However, for disk files, C, P, and E refer to
create, purge, and execute authorities, whereas
for processes, C refers to creating a process, P to
stopping a process, and E has no meaning.

DENY Attributes. All users but SUPER.SUPER
are denied access to an object protected by
Safeguard unless an access control entry specifi­
cally grants access. If the DENY attribute is
included, the access control entry disallows
access. Within a single ACL, if more than one
access control entry refers to a single user ID
and one of those entries contains the DENY
attribute, the access is always denied.

Interpreting ACLs. The security of an object is
determined by the combination of access control
entries in that object's ACL. It is also possible in
Safeguard for several ACLs to protect a single
object.

Figure 2 shows a sample ACL with 14 access
control entries. Each entry contains a user list
(as described in Table 1), a list of access authori­
ties, and, for three entries, the DENY attribute.

The ACL in Figure 2 is not typical, but it
demonstrates all the possible types of access
control entries. A single user ID can be affected
by six different entries in an ACL. For example,
the following entries affect user ID 160,027:

160,027
*.160,027

160,*
. 160,

* * '
.,*

Figure 2

User ID List

001,001
002,255
160,027

*.000,040
*.020,033
*.160,027

001,*
103,*
160,*

* .020,*
* .160,*
* .244,*

* * *

DENY Attribute Access Authorities

DENY R

w
0
c,o

DENY R, E, 0

W,C

R

R,E

DENY W

R,E,O
p

R, W, E, P, C

R

E

To determine the types of access user ID
160,027 is allowed in this ACL, one must com­
bine all the access control entries that apply to
this user ID, remembering that DENY entries
take precedence. In this ACL, the composite
security for 160,27 is (R,E,P,C,O). For more
information on ACLs, see the Safeguard Refer­
ence Manual, the Safeguard User's Guide, and
The CJO Safeguard Primer, Appendix C.

Objecttypes
An objecttype is a class of objects protected by
Safeguard. Each objecttype has its own unique
protection characteristics.

Users. In computer security terminology, users
are usually called subjects. In Safeguard, users
are also an objecttype.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 2.
A sample access control
list (ACL).

27

Figure 3.

Sample user configuration.

28

Figure 3

GROUP.USER
APPL.USER2

USER-ID

2,2
OWNER

1,255
LAST-MODIFIED

23JAN91, 11 :57
LAST-LOGON

12MAY91, 12:19
STATUS
THAWED

USER-EXPIRES * NONE

PASSWORD-EXPIRES 02JUN91, 0:00
PASSWORD-MAY-CHANGE 13MAY91, 0:00

PASSWORD-MUST-CHANGE EVERY 30 DAYS

PASSWORD-EXPIRY-GRACE
FROZEN/THAWED

STATIC FAILED LOGON COUNT

15 DAYS
THAWED

45

AUDIT-ACCESS-PASS = REMOTE

AUDIT-ACCESS-FAIL = ALL
AUDIT-MANAGE-PASS= ALL

AUDIT-MANAGE-FAIL= NONE

CI-PROG = $SYSTEM.SYS03.TACL
Cl-NAME = $CM25
Cl-SWAP= $SWAP

Cl-CPU = 2

CI-PRI 150

CI-PARAM-TEXT = "1"

Figure 3 shows an example of the Safeguard
configuration for one user. It lists the settings of
the authorization parameters for an individual
user. One can obtain the list by using the INFO
USER command in SAFECOM, the interactive
tool for communicating with Safeguard. For a
complete description of all the parameters listed
in this figure, see the Safeguard Reference
Manual and the Safeguard User's Guide.

Disk Files. The disk file objecttype includes any
permanent Tandem disk files except optical files
and SQL objects. In addition to the standard R,
W, E, P, C, 0 access attributes, each disk file has
three special attributes: Progid, Clearonpurge,
and License. 1

Volumes and Subvolumes. The volume
objecttype applies to every non-optical disk in
the system. The subvolume objecttype applies to
every legal subvolume name on those disks.

'The attributes Progid, Clearonpurgc, and License apply to Tandem disk files
on all Guardian 90 systems. For more information, see the File Utility
Program (FUP) Manual and the Safeguard Reference Manual.

The volume and subvolume objecttypes have
two purposes. They control which users may
create files on a disk or subvolume, and they
provide an alternate way to protect disk files.
Because of the second feature, a disk file can
be protected simultaneously by a volume,
subvolume, and disk file protection record.

Subvolume protection also allows users
to secure data managed by NonStop" SQL,
Tandem's distributed relational database man­
agement system. By grouping NonStop SQL
tables and views in separate subvolumes, users
have the flexibility of specifying all of the
functions provided by an ACL for each group
of NonStop SQL objects.

Processes and Subprocesses. Safeguard pro­
vides two types of process protection. The first
type controls which users may open a named
process for read or write access. This protection
can be implemented for a process (such as $S),
a subprocess (such as $S.#PRINT2), or a process
and subprocess simultaneously.

The second type of process protection controls
the creating and stopping of processes. It can be
implemented for an individual process name, all
named processes (as a single entity), and all
unnamed processes (as a single entity).

TANDEM SYSTEMS REVIEW• APRIL 1991

Devices and Subdevices. Device protection is
similar to the type of protection that controls
which users may open a named process. Using
ACLs, the security administrator can control
which users may open a device or subdevice such
as a printer, terminal, or communications line.

Objecttype records. One can also configure an
objecttype protection record for each of the
objecttypes mentioned above. The objecttype
ACL controls who may create protection
records of that objecttype. For example, the
OBJECTTYPE USER record determines which
users may add new user IDs to the system.

Groups
A group is a list of user IDs that are granted
certain Safeguard control capabilities. Safeguard
allows two groups of users, SECURITY-ADMIN­
ISTRATOR and SYSTEM-OPERATOR. Users in
the SECURITY-ADMINISTRATOR group may
make changes to the Safeguard configuration.
This permits control of certain Safeguard options,
such as which actions to audit or the decision to
encrypt user passwords, but does not affect
control of the settings on individual ACLs.
SYSTEM-OPERATOR privileges involve manag­
ing the audit trail files themselves (for example,
managing their location and size).

Enhancements to User Security
Safeguard provides valuable enhancements to
the user ID protection offered by Guardian 90.
A Guardian 90 system without Safeguard offers
basic user identification and authentication
functionality. Safeguard uses the same user name
and user ID conventions as Guardian 90, thus
maintaining compatibility, but it offers several
additional features such as user ID management,
authentication protection, and password change
control.

User ID Management
Safeguard offers added flexibility in assigning
user management tasks. A Safeguard ACL con­
trols which users may add new users. Also, each
user ID is assigned an owner, who is allowed to
modify or delete that user ID configuration.

A user ID can be configured with an expira­
tion date, permitting safe use of temporary user
IDs. In addition, a user ID can become frozen,
preventing all logons by that user ID. Freezing is
useful for protecting powerful user IDs (such as
SUPER.SUPER) that are not needed for day-to­
day use or for temporarily preventing access to
a certain user ID.

Authentication Protection
In Guardian 90, three consecutive failed at­
tempts to log on as one user ID causes the
process attempting the logon to be suspended
for 60 seconds. This protects against illicit
logons through the trial-and-error method.

Safeguard makes this feature more flexible by
allowing the security administrator to configure
the number of attempts and the duration of the
suspension through the global parameters
AUTHENTICATE-MAXIMUM-ATTEMPTS and
AUTHENTICATE-FAIL-TIMEOUT. Thus, one can
configure a more or less strict penalty for failed
logons, according to the security policy.

A third parameter, AUTHENTICATE-FAIL­
FREEZE, provides additional protection. If this
parameter is set to ON, a user ID will become
frozen if the number of consecutive failed logon
attempts for that user ID exceeds AUTHENTI­
CATE-MAXIMUM-ATTEMPTS plus one. This
parameter sharply limits the total number of
invalid logon attempts that can be made against
one user ID.

Assume, for example, that AUTHENTICATE­
MAXIMUM-ATTEMPTS is 3, AUTHENTICATE­
FAIL-TIMEOUT is 4 minutes and AUTHENTI­
CATE-FAIL-FREEZE is OFF. If three consecutive
invalid logon attempts are made against a given
user ID, the process that made the third attempt
is suspended for four minutes. Thereafter, any
process that makes an invalid logon attempt
against that user ID is also suspended for four
minutes. This continues until a valid logon
is made for that user ID, when the FAILED­
LOGON-COUNT is reset to 0.

APRIL 1991 •TANDEM SYSTEMS REVIEW 29

-- -

Table 2.

User ID settings in a typical system.

Password Change. To reduce the risk of pass­
words becoming known to others, passwords
should be changed periodically. Safeguard
provides three parameters that, when used
together, assure frequent password changes.

Function

Security adm'1nistrator

Application developers

Database owner
- -

System operators

System manager

For emergency only

30

Password
must

Username UserlD change Status

SEC.ADMIN 001,255 30 days THAWED
--

APPL.USER1 002,001 30 days THAWED
APPL.USER2 002,002 30 days THAWED

--- --

APPL.DATABASE 002,255 O days FROZEN

SUPER.OPER1 255,001 30 days THAWED
SUPER.OPER2 255,002 30 days THAWED
-- -- ---

SUPER.SYSMGR 255,100 30 days THAWED
---- -- --

SUPER.SUPER 255,255 O days FROZEN

Now suppose AUTHENTICATE-FAIL-FREEZE
is set to ON. After the third consecutive invalid
logon attempt, the process is suspended. If the
fourth logon attempt for this user ID is invalid,
Safeguard automatically freezes the user ID. The
user ID is frozen even if all logon attempts are
entered at different terminals.

Password Change Control
In Guardian 90, passwords are optional for each
user, and the password content has no restric­
tions. Safeguard offers significantly enhanced
password control.

Password Content. Three parameters control
the content of a user password. PASSWORD­
ENCRYPT provides one-way Data Encryption
Standard (DES) encryption of all passwords.
PASSWORD-MINIMUM-LENGTH forces newly
entered passwords to contain at least a set
number of characters. PASSWORD-REQUIRED
forces all users, including SUPER.SUPER, to
enter the correct password when logging on to
another user ID. Tandem recommends using
these parameters to reduce the risk of users
illicitly logging on to other user IDs.

The PASSWORD-MUST-CHANGE parameter
determines the lifetime of each password. For
example, if this parameter is set to 30 DAYS and
the user's password is not changed for 30 days,
the password expires, and the user may not
logon again until the password is changed.

The PASSWORD-MAY-CHANGE parameter
determines the period of days before the pass­
word expiration date during which a password
may be changed. Together with PASSWORD­
MUST-CHANGE, this parameter defines a
password-change window. For example, if
PASSWORD-MAY-CHANGE is set to 20 DAYS
and PASSWORD-MUST-CHANGE is 30 DAYS,
the password may be changed only during the
20 days before the password expires. (Thus, the
password cannot be changed for 10 days after
a password change.) This prevents a user from
changing the old password to a new password,
then immediately changing it back to the old
password.

PASSWORD-HISTORY specifies the number
of past passwords saved for each user ID in the
password history file. Safeguard does not accept
any new password that matches a password for
that user ID in the history file. This feature, when
used with PASSWORD-MAY-CHANGE, prevents
a user from reusing the same passwords.

Table 2 shows an example of the user IDs and
password values in a typical production system.
It illustrates how the PASSWORD-MUST­
CHANGE and status features might be used,
assuming PASSWORD-MAY-CHANGE and
PASSWORD-HISTORY have been implemented
on a global basis. In Table 2, two user IDs, .
APPL.DATABASE and SUPER.SUPER, are not m
daily use by any user and are not needed for
day-to-day production. Thus, they are kept
frozen until needed. All other user IDs are
thawed. Regular changing of passwords is
enforced through the PASSWORD-MUST­
CHANGE parameter. PASSWORD-MUST­
CHANGE is not applied to the frozen user IDs
because they offer no risk of an illicit logon.

TANDEM SYSTEMS REVIEW• APRIL 1991

Password Expiration. One can configure
Safeguard to act as an authentication process at
selected terminals. If so configured, Safeguard
warns the user when he or she logs on of an
impending password expiration. When the
password has expired, Safeguard allows the
user to change the password and proceed. Only
a security administrator can correct an expired
password on terminals not configured with
this option.

Illicit Logon Detection. When Safeguard is
configured as a terminal authentication process,
it displays the time of the last logon at each new
logon. This feature alerts users to unauthorized
access to their user ID.

Subvolume-Based Disk File
Security
Safeguard offers additional security advantages
by enhancing Guardian 90 protection of disk files.
In Guardian 90, every disk file is protected by a
security string that includes read, write, execute,
and purge (RWEP) attributes. Guardian 90 has no
way to control file creation. Safeguard provides
RWEP protection as well as file creation control
on a disk volume, subvolume, or individual disk
file basis.

With this flexibility, Safeguard offers many
possible strategies for disk file protection. Be­
cause each strategy has advantages and disadvan­
tages, it is important to select an appropriate
strategy before designing a Safeguard configura­
tion. This article discusses a subvolume-based
method of disk file protection because such a
strategy is easy to manage, protects all the files
in the system, and aids other system management
tasks.

In the subvolume-based approach, the security
administrator needs to monitor only subvolume
protection records because disk file records are
controlled by individuals and disk volume re­
cords are static. Monitoring as few as a dozen
subvolume records per disk is much easier than
keeping track of hundreds or thousands of disk
file records per disk. Also, users tend to change
subvolume records less often than disk file
records.

The subvolume-based approach can protect
every file by permitting files to be created only
in subvolumes with a Safeguard protection
record. Moreover, this approach can make disk
space management easier by controlling the
number of subvolumes and associating each
subvolume with a user ID. This simplifies disk
space reports from the Tandem Disk Space
Analysis Program (DSAP) and allows system
managers to keep unauthorized files off of disks
where space is critical.

Subvolume Security
In the subvolume-based security strategy,
Safeguard is configured to protect disk files
according to the following rules:

1. Safeguard checks to see if a disk file record
exists for the file being accessed. If so, the
ACL on that file applies.

2. If rule 1 yields no record, Safeguard checks
for a subvolume record and applies that ACL.

3. If rules I and 2 yield no record, Safeguard
checks for a volume record and applies that
ACL.

4. If rules I through 3 yield no protection
record and the Safeguard global parameter
ACL-REQUIRED-DISKFILE is set to ON,
access to the file is denied.

In the subvolume-based strategy, the setting
in the subvolume record (if it exists) overrides
the setting in the volume record, and the setting
in the disk file record (if it exists) overrides the
settings in both the subvolume and volume
records.

To apply this strategy one could, for example,
add a volume record to deny create access to all
users. Next, one adds a subvolume record for
each user in the system, granting create access
for each user only to his or her own subvolume.
(The subvolume security supercedes the volume
security.) The subvolume records also determine
the security of the files. Finally, one adds disk
file records for files that require different
security settings than the subvolume record
settings.

APRIL 1991 •TANDEM SYSTEMS REVIEW 31

32

Subvolume Security Matrix
The subvolume-based strategy assumes that one
can group most disk files into subvolumes with
identical security requirements. As shown in
Figure 1, the security administrator can form a
subvolume security matrix. Each entry in this
figure shows the desired access authorities (if
there are any) for a given user ID against a given
subvolume. Without Safeguard's subvolume
protection, each disk file would need to be
listed separately.

The security administrator gives each sub­
volume listed in Figure l a Safeguard ACL to
enforce the desired security settings. For sub­
volumes such as $SYSTEM.SYSTEM in which
i?dividual disk files require unique security set­
tings, Safeguard disk file protection records are
used in place of subvolume protection records.

Implementing the Subvolume Strategy
Although the subvolume-based strategy is a
relatively simple concept, its implementation can
be difficult if it does not suit the requirements of
the application. Therefore, it is important to
consider several disk file protection strategies
before choosing one. Information about imple­
menting the subvolume-based strategy and other
disk file protection strategies (including impor­
tant special considerations) appears in the
Safeguard User's Guide and The CJO Safeguard
Primer.

Protection of Pathway
Another way in which Safeguard protects the
system is by protecting the processes that access
the database. Assume, for example, that an
application developed by the Tandem Pathway
transaction processing system executes under its
own user ID and the database files are secured for
access only by this user ID (a common configura­
tion). This configuration seems to secure the
database, but in fact the data is vulnerable to
unauthorized access.

Most user-written Pathway servers accept
OPEN requests from any process or user ID and
perform any operation if the message is in the
correct format. This feature is good for flexibility
but bad for security. It allows the data files to be
read and modified by any user ID that sends the
proper messages to the Pathway servers.

One can counteract the threat of indirect
database access by using the process name
protection offered by Safeguard together with
the Pathway configuration. This is a two-step
process:

1. Configure the Pathway process names, giving
each server and terminal control process
(TCP) a specific name.

2. Protect the process names. In Safeguard,
secure each process name so that only the
Pathway user ID may start or open any of the
named processes.

In Safeguard, one can configure the process
name protection so that all operators can stop and
start the Pathway processes. This permits opera­
tors to perform necessary day-to-day functions
without compromising system security.

TANDEM SYSTEMS REVIEW• APRIL 1991

Auditing With Safeguard

Safeguard allows the security administrator to
audit security events on an object-by-object or
system-wide basis. Moreover, Safeguard distin­
guishes between types of accesses (local versus
remote, granted versus denied, and read versus
update). The security administrator can use
certain options that define the audit's effects
on system operations.

Deciding Whether to Audit
Once the Safeguard configuration has been
designed, one must decide which objects and
subjects require auditing. One should consider
the slight performance penalty that occurs when
an action is audited and weigh that penalty
against the loss of potentially valuable audit
information when an action is not audited. The
security administrator should make this choice
in consultation with a system auditor and in
accordance with the organization's security
policy.

The Cost of Auditing. A performance cost is
associated with writing an audit record to disk,
but for most systems the cost is negligible
except during system startup and shutdown. This
is because the operations that Safeguard audits
(opens, logons, process starts and stops, file
creates and purges) are minimized when one
tunes a system for performance. In a properly
tuned system, there usually will be little writing
of Safeguard audit records during normal
operation.

The Benefits of Auditing. When tracking a
possible security breach by using the audit trails,
one often finds that the most innocuous piece of
audit information is the key to identifying the
source of the break-in. Whenever one excludes
an object from audit, one risks that a vital piece
of information will not be logged. Therefore,
a good rule of thumb is to audit every action
unless there is a good reason not to audit it.

Audit Service
The Audit Service adds several features to
Safeguard. The Recovery feature allows the
security administrator to define the relative
importance of auditing to the system as a whole.
The Recovery feature specifies the action
Safeguard takes if the system fails to write audit
(for example, if the audit trail is full). There are
three Recovery options.

■ The SUSPEND AUDIT option stops the Audit
Service and sends error messages, but system
operation is unaffected. This option is the
default.

■ The RECYCLE FILES option tries to write
over the oldest unreleased audit trail. If this
fails, Safeguard falls back to the SUSPEND
AUDIT option. In both cases, Safeguard sends
error messages.

■ The DENY GRANTS option sends error
messages and denies all actions that require
audit except to members of the SECURITY­
ADMINISTRATOR and SYSTEM-OPERATOR
groups.

Most users will prefer one of the first two
options. One should use the DENY GRANTS
option only when having a potentially inacces­
sible application is preferable to having a
running, unaudited system.

APRIL 1991 •TANDEM SYSTEMS REVIEW 33

Figure 4

Figure 4.

SAFECOM

j
Safeguard

manager process
$ZSMP

l
Safeguard
database

Overview of'Saf'eguard
processes.

34

User
processes

File system
procedures

j
Safeguard monitors (SMONs)

$ZS00 $ZS01 $ZS02

l
Safeguard
audit trails

$ZS03

The Safeguard Environment
The Safeguard environment consists of a
NonStop Security Manager Process (SMP),
a Security Monitor (SMON) process in each
processor, and a utility for communicating
with the SMP called SAFECOM. SAFECOM
is similar to other Tandem utilities such as
PATHCOM, TMFCOM, or MEASCOM. The
Safeguard configuration is kept in key-sequenced
files on disk, and Safeguard audit is written to
entry-sequenced files.

Figure 4 shows the interactions among the
components of Safeguard. The following actions
take place in the figure:

1. The SMP ($ZSMP) runs as a NonStop process,
starts one SMON per CPU ($ZS00, $ZS0 I,
and so on), sends each SMON a Safeguard
configuration message, and restarts the SMON
after a CPU reload.

2. The SMON receives authorization requests
from user processes whenever one of these
procedures is called: OPEN, NEWPROCESS,
PURGE, CREATE, STOP, or RENAME.

3. The SMP receives authentication requests from
user processes if the user process calls the
procedure VERIFYUSER (to log on).

4. The SMP receives requests to read or modify
the Safeguard configuration from SAFECOM
processes. These messages may also come
from backup, restore, and password processes.

5. The SMP and SMON s answer requests based
on the information contained in the Safeguard
database.

6. Depending on the configuration, the SMP and
SMONs may log individual requests to the
Safeguard audit trails.

In addition, a large part of Safeguard is
embedded within the file system procedures and
the rest of the Guardian 90 operating system.
When Safeguard is running, the operating
system will not complete an OPEN, PURGE,
STOP, NEWPROCESS, RENAME, CREATE,
CHANGE PASSWORD, or VERIFYUSER opera­
tion without first receiving an acknowledgment
from Safeguard. Conceptually, one can view
Safeguard as an operating system layer between
the file system and the message system.

TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 5 shows the relationship between
Safeguard and Guardian 90. In a Tandem system,
a message to a process must go through file
system and message system procedures before
arriving at its destination. When a file system
request such as an OPEN is issued, Safeguard is
consulted. If Safeguard rejects the request, it is
returned to the user without being passed to the
message system.

Safeguard users employ the SAFECOM utility
to configure all the options described in this
article. SAFECOM is the only utility new
Safeguard users must learn. Because Safeguard
operates at a layer below the file system, users
do not need to change existing applications to
run Safeguard.

Conclusion
Safeguard is a valuable tool for protecting a
computer system. It offers authorization, authen­
tication, and auditing features that enhance the
security features of Guardian 90. The Safeguard
features provide flexible control over system
users, objects, and events.

One should remember that Safeguard is a
security tool. It does not by itself constitute an
implementation of a security plan. Once a
security plan has been developed to meet the
user's unique business requirements, Safeguard
can play a critical role in implementing that plan.

References
Dynamic Protection Structures. 1969. Proceedings, AF/PS.
Vol. 35, pp. 27. Fall Joint Computer Conference.

File Utilit_v Progmm (FUP) Manual. 1990. Tandem Computers
Incorporated. Part no. 21664.

Safeguard Reference Manual. 1991. Tandem Computers Incorpo­
rated. Part no. 26191.

Safeguard User'.\ Guide. 1991. Tandem Computers Incorporated.
Part no. 26 I 90.

The C/0 Safeguard Primer. 1989. Support Note S89030. Tandem
Computers Incorporated. Available from Tandem representatives
upon request.

Figure 5

Acknowledgments

User
processes

File system

Safeguard

Message system

Device drivers

I would like to thank Safeguard development and product
management staff for their responsiveness and eagerness to help
at all times; the European account analysts who have patiently
worked with me to resolve Safeguard questions; and the members
of Tandem's Security Special Interest Group, whose ideas,
suggestions, and feedback provided a large portion of the material
in this article.

Craig Gaydos is the Operating System section manager of the
European Systems Support Group (ESSG). He has been with
Tandem since 1984, originally as an account analyst and more
recently as an ESSG specialist.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 5.

Safeguard as a layer of
the operating system.

35

36

TLAM: A Connectivity
Option for Expand

xpand'" data communications
networking software connects
Tandem·M systems in a geo­
graphically distributed
network. Several Expand
connectivity options support
Expand services and provide

connections to a number of networking standards
and communication media, including 6700/6710
Fiber Optic Extension (FOX'M/FOXII), leased
lines, X.25 packet switching, and satellite.

A recent enhancement to the Tandem LAN
Access Method (TLAM) subsystem now enables
Expand software to share access to TLAM and
operate over standard local area network (LAN)
media. TLAM is an implementation of the Insti­
tute of Electrical and Electronic Engineers (IEEE)
802.2 Logical Link Control LAN standard. By
providing a uniform interface between the
physical LAN and upper-layer protocol products,
TLAM eliminates the need to code applications
for a specific type of LAN and provides another
tool for implementing Tandem's open-standards­
based approach to networking.

This enhancement, called Expand over
TLAM, extends Expand connectivity most
effectively to facilities where LAN technology
is already, or is planned to be, installed. With no
additional network modifications, Expand over
TLAM is immediately available to connect
Expand nodes over LAN lines. LAN technology
and TLAM architecture provide full intercon­
nectivity between system nodes, which simpli­
fies network designs, obsoletes routing hops
between intermediate nodes, and reduces
equipment costs. TLAM can connect Expand
nodes that have requirements not satisfied by
other connectivity options, and it may offer
improvements to systems using other types
of Expand connections.

This article describes TLAM, the basic
architecture of Expand, and how the two prod­
ucts relate functionally in an Expand environ­
ment to provide network connectivity. The
article compares three other Expand connectivity
options with Expand over TLAM to establish the
most appropriate contexts for each option. Next,
it discusses recent Expand enhancements that
extend the fault tolerance and performance of
Expand over TLAM. It describes the new fea­
tures of the TLAM subsystem. Finally, the article
presents Expand over TLAM configuration
considerations and performance results from
recent testing.

TANDEM SYSTEMS REVIEW• APRIL 1991

Expand Architecture
Expand software is an extension of the
Guardian'M 90 operating system. Within an
Expand network, any Guardian 90 system is
referred to as an Expand node. Each node can
support up to 63 Expand paths to other nodes in
the network. An Expand path is a logical data
path between two nodes that is controlled by an
Expand process. An Expand network can
accommodate up to 255 Expand nodes.

Expand connectivity options provide commu­
nication interfaces to the Expand network and
support Expand operations. Three options
available prior to TLAM to meet specific net­
working requirements are:

■ FOX.

■ Expand NetDirect.

■ X.25 Access Method (X25AM).

These connectivity options are illustrated in
Figure I.

FOX and Expand NetDirect are direct connec­
tions to Expand nodes. Both X25AM and TLAM
communicate with Expand NetNAM (Network
Access Method), which enables an Expand
network to exchange data with either a target
LAN or X.25 network. Expand NetNAM directs
an Expand process to send and receive data
through a network service provider, an interme­
diate process that completes the connection
between the Expand process and the target
network. TLAM and X25AM are both network
service providers.

Expand NetNAM is designed so that Expand
can access standards-based networks (such as an
IEEE 802.3 LAN or an X.25 network) without
implementing the necessary protocols within the
Expand process. Instead, the network service
providers perform all protocol work required
to pass the data through the standards-based

Figure 1

Expand process

NetNAM NetDirect

/\ \
TLAM X25AM

61xx
controller

family

6204
controller

family

network. However, using a network service
provider requires data to travel through another
process at each end of a connection. Compared
to a direct connection (FOX and NetDirect),
additional system resources are needed to move
data between nodes. One must weigh these and
other considerations when deciding where and
how to use the different connectivity options.

The NetNAM connections between Expand
processes and TLAM (or X25AM) are configured
with SYSGEN, Dynamic System Configuration
(DSC), or the Subsystem Control Facility (SCF).
For detailed configuration information, see the
System Generation Manual for Expand, the
Dynamic System Configuration (DSC) Manual,
the SCF Reference Manual/or Expand, and the
Expand over TLAM Install Guide Support Note.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Guardian 90
message system

FOX
controller

Figure 1.

The connectivity options
available for Expand.

37

Figure 2.

A simple representation
o{two Guardian 90 nodes
connected by way rij'
TLAM. $PATH! and
$PATH2 are Expand
processes.

38

Figure 2

\NODE1

$PATH2

\
TLAM

I IEEE 802 LAN

INODE2 I
TLAM

\
$PATH1

Comparing TLAM With Other
Expand Connectivity Options
When compared with other Expand connections,
Expand over TLAM offers similar networking
capabilities in some situations and superior
benefits in others. 1 Figure 2 presents a simple
Expand over TLAM configuration. This con­
figuration is the model to keep in mind when
comparing Expand over TLAM with the other
connectivity options.

The FOX Option
The FOX connectivity option offers the most
efficient and powerful way to connect local
Expand nodes. The Guardian 90 message system
and Expand combine to enable application and
system processes to send data directly across
dedicated optical fibers, bypassing the Expand
process. FOX is well suited to configurations in
which several Guardian nodes are located within
the physical limits of the FOX cable. 2 Computer
room facilities and clusters of buildings, or small
"campuses," are good candidates for FOX
connections.

The media bandwidth of FOX (40 megabits
per second) is far greater than Expand over
TLAM or any other connectivity option. There­
fore, FOX connections offer the best throughput
and response time. The maximum throughput of
a FOX connection is 4.8 megabits per second.
However, when comparing it with Expand over
TLAM, one must weigh the higher cost of FOX
hardware and consider whether the few technical
limitations of FOX affect the intended installa­
tion. For example, FOX allows up to 14 nodes on
a ring. FOX is not yet supported on the CLX'" line
of processors. Also, a FOX connection is limited
to the maximum distance of the cable, as it
cannot be extended with bridge technology.
Often, FOX and Expand over TLAM satisfy the
same connectivity requirements for certain
network designs. When FOX and Expand over
TLAM are both appropriate options, FOX always
offers better CPU utilization and response time.

1 Performance varies with system configuration and host CPU type.

'The FOX cable distance limit is 1 kilometer for TXP CPUs and
2 kilometers for Cyclone CPUs. This limit applies to the distance
between any two nodes in the FOX ring.

TANDEM SYSTEMS REVIEW• APRIL 1991

NetDirect Connectivity
Expand NetDirect has been the most common
way to connect Expand nodes. The NetDirect
option uses low-level Expand protocols that run
directly over a designated controller (of the 6 JOO
or 6204 controller family) and modem. Expand
processes do their own point-to-point protocol
over dedicated lines. In essence, nodes are
viewed as having hard-wired connections.

NetDirect is designed to connect nodes that
exchange large amounts of data and are located
beyond the distance limitation of FOX. The
maximum throughput of a NetDirect connection
is 205 kilobits per second, 3 which is considered
a midrange speed. Because NetDirect can use
leased telephone line technology, there is
virtually no limit to the distance between nodes.

Expand over TLAM connections compare
favorably with NetDirect connections in several
areas:

■ The LAN cabling requirements are less com­
plex, more flexible, and less expensive.

■ Expand over TLAM provides higher maximum
throughput of bulk data transfers.

■ The inherent shared bus topology eliminates
any need for passthrough connections.

■ A single physical TLAM connection can be
shared by several Expand connections and with
products other than Expand.

'This throughput was measured using Cyclone CPUs, 3604 controllers. and
RSct49 or V.35 null modems.

As shown earlier in Figure 2, a simple
Expand over TLAM configuration consists of a
LAN cable supporting multiple Expand nodes.
Among the connected nodes, the Expand
processes on one node have direct access to all
the processes running in all other nodes without
having to wire a separate physical connection
to each node. Expand nodes can easily be
connected to the LAN, disconnected, and
reconnected to another LAN with a minimum
of cabling, configuration, and expense.

A single NetDirect connection uses fewer
CPU cycles and less memory to move data than
a NetNAM connection. NetNAM requires an
interprocess hop to reach the network service
provider. However, because the physical layer
of TLAM has a greater bandwidth than that of
NetDirect, Expand over TLAM connections can
achieve higher throughput. Also, TLAM be­
comes more efficient as it supports more con­
nections, lowering the cost of CPU cycles TLAM
uses to move each byte of data.

APRIL 1991 •TANDEM SYSTEMS REVIEW 39

Figure 3

\NODE1 \NODE2

$PATH3 $PATH2 $PATH1 $PATH4

\NODE3 INODE4

$PATH1 $PATH4 $PATH2 $PATH3

Figure 4

\NODE1 \NODE2

$PATH3 $PATH3

$PATH2 $PATH4 $PATH1 $PATH4

' / ' /

TLAM

\NODE3

TLAM

$PATH1

$PATH2

Figure 3.

These .frnir Guardian 90
systems use Expand
Net Direct.

"' $PATH4

Figure 4.

\NODE4

$PATH1

These four Guardian 90
systems use Expand over
TLAM to create a full_,,
interconnected network.

TLAM

TLAM

$PATH2

LAN

"' $PATH3

Figures 3 and 4 compare the fundamentals of
NetDirect and Expand over TLAM configura­
tions. Figure 3 shows a common four-node
NetDirect configuration. Each node is physically
connected to two other nodes and logically
connected to the remaining node by way of
passthrough hops. This network requires a
minimum of 4 controllers, 8 modems, and
4 dedicated lines.

A passthrough hop literally passes data from
one node through an intermediate node and
on to the destination node. Routing is done at
the intermediate node. Passthrough hops are
necessary because the cost of using NetDirect to
fully interconnect all nodes is prohibitive. The
CPU cost of a passthrough hop is roughly the
same as that of a direct connection. A NetDirect
connection with one passthrough hop effectively
doubles the CPU cycles and memory needed to
move each byte of data from a source to a
destination node. It also doubles the latency
introduced by the network, resulting in lower
throughput and higher response time.

Figure 4 shows a similar four-node network
connected with Expand over TLAM. Each node
has a single TLAM connection that enables
communication with all other nodes attached to
the LAN. There are four controllers, one LAN,
and no passthrough hops.

The X25AM Option
X25AM, like Expand over TLAM, can be a
network service provider. It is an intermediate
process operating between an Expand process
and an X.25 network. Like Expand over TLAM,
X25AM connections are established by the
NetNAM module of Expand, and in this case
allow an Expand process to exchange data with
an X.25 network. X25AM provides several of the
same advantages as Expand over TLAM. For
example, all the protocol work required to pass
data through the X.25 network is performed by
X25AM, instead of requiring the work to occur
within the Expand process.

40 TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 5

\NODE1

$PATH2

$CONN2A $CONN2B

TLAM1 TLAM2

LAN1

LAN2

One key consideration must be the efficiency
of the target network. X.25 networks, for ex­
ample, can perform very poorly; there may be
numerous routing hops to be traversed inside the
X.25 network. However, an Expand over X25AM
connection is ideal for low-volume systems
requiring high connectivity and reliability. An
X.25 network offers a large number of addresses
(as many as a sender is authorized to use) and
charges for each packet sent. Because an X.25
subscriber does not need to pay to wire dedicated
lines between numerous addresses, and if the
amount of data being sent is modest, Expand
over X25AM can be a very effective choice for
connecting certain Expand networks.

Expand Enhancements Extend
TLAM Potential
A recent enhancement to Expand called the
multiline path feature4 extends the value of
Expand NetNAM. This enhancement provides
improved fault tolerance and higher performance
for Expand connections, such as Expand over
TLAM and X25AM, that are based on Expand
NetNAM.

'The T9057 AAZ 1PM for Expand intro<lucc<l the multi line path feature
enhancement in No,·cmber 1990.

INODE2

$PATH1

$CONN1A $CONN1B

TLAM1 TLAM2

Fault Tolerance and Higher Performance
The multiline path feature for Expand allows
each Expand process to manage up to eight
Expand NetNAM connections as one logical
path. Fault tolerance improves and throughput
increases when data destined for a peer node
is allowed to pass through multiple Expand
connections in parallel. Multiple Expand over
TLAM connections can exist between two nodes,
resulting in linear increases in throughput.

The multiline path feature has another
important aspect. Each of the eight possible
Expand connections can now travel a different
physical route. For example, if so configured,
the same Expand node can send data by both
LAN and wide area network (WAN) communi­
cation lines. If one connection fails, Expand
simply redistributes the load across the other
connections in the path. Fault recovery is
confined to the Expand path, requiring no inter­
vention by the application.

Figure 5 presents a more fault-tolerant
configuration with more throughput. It shows a
path with two connections running over separate
TLAM subsystems and LANs. If one connection
fails, the Expand process continues to use the
second connection for that path.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 5.
These two Guardian 90
systems use multiple
Expand over TLAM
connections and two
parallel LANs to increase
throughput and fault
tolerance.

41

Figure 6

\NODE1

$CONN2A

TLAM1

LAN1

LAN2

Figure 6.

ExtrafLwlt tolera11ce is
huilt into this configura­
tion with the additional
Erpand NetDirect
co11nectio11. The two
Guardian 90 nodes can
use NetDirect if the
Expand m·er TLAM
co11nectio11s fl1il.

42

\NODE2

$PATH2 $PATH1

$CONN2B $CONN2C $CONN1A $CONN1B $CONN1C

TLAM2 NetDirect TLAM1 TLAM2 Ne!Direct

v v

Dedicated leased line
Modem ---------------,~----------- Modem

As Figure 5 depicts, a path can be configured
to achieve higher throughput by using multiple
LANs and multiple TLAM subsystems to process
data. Twice the throughput is available when
using two LAN connections rather than one.
Connecting to more than one LAN or configuring
more than one TLAM subsystem results in better
response time and helps to resolve network
management problems such as queueing delays
and collisions on heavily used LANs.

The multiline path feature allows one to
choose the level of redundancy to be designed
into a network. If multiple LANs are unavail­
able, a different configuration can still provide
TLAM fault tolerance. Guardian systems can
communicate over a single LAN through mul­
tiple Expand over TLAM connections. Like
Figure 5, each system can have two Expand
connections associated with two separate TLAM
subsystems, but they would be sharing a single
LAN. This modified configuration allows
recovery if TLAM fails, but not if the LAN fails.

Figure 6 provides an example of mixing
Expand connectivity options for additional
robustness. In Figure 6, a connection using
NetDirect is added to a path between two
Expand nodes that are also linked by two
Expand over TLAM connections. If the LANs
fail, the NetDirect connection may continue to
be operational. Even though the quality of the
service would be degraded, communication is
still possible until the LAN is again functional.

TANDEM SYSTEMS REVIEW• APRIL 1991

Extending LAN-Based Networks
Bridges can link together separate LAN-based
Expand networks into a distributed WAN. Media
access control (MAC) bridge products make it
possible to view geographically separate LANs
as a single physical medium. Bridges can be
fast; Tl (1.544 megabits per second) is a com­
mon speed for data transmission. Bridges are
transparent to the senders and recipients on the
linked LANs. Also, bridges used for Expand
traffic can be shared by other network products:
for example, networking clients such as Trans­
mission Control Protocol/Internet Protocol
(TCP/IP) and Open Systems Interconnection
(OSI) or Multilan"' applications using NETBIOS.5

In addition to linking LANs, bridges can filter
frames passed between the LANs they connect.
The bridge can be configured to accept frames
destined for particular addresses on the LAN.
Only those frames are passed through the link.
Multiple bridges may be used in parallel to
increase bandwidth between the LANs. By
allowing only a subset of data to pass through
each parallel bridge, traffic can be balanced
across the bridges.

Two or more geographically separate clusters
of nodes that need to be connected into a single
Expand network can make the most practical use
of bridge technology. Each cluster can be LAN­
based, with bridges transparently linking the
LANs. Figure 7 shows two Expand sites con­
nected by MAC bridges.

The capability of bridging separate LANs can
be used to improve on some existing Expand
network designs. Suppose a network utilizing a
dual-site configuration (two FOX rings of four
systems each) must be linked together. Without
Expand over TLAM, the two sites would be
linked with one or more NetDirect lines, possi­
bly funneled through a Tl multiplexer. This
hardware is costly, offers limited bandwidth, and
relies on many passthrough hops to route data.

-- -----

'NETBIOS (Network Ba,ic Input Output Sy,tcm) is a peer-lo-peer standard
application programming interface.

Figure 7

LAN

\NODE1

>----- Bridge --z...._ Bridge _

\NODE2

- Bridge --z...._ Bridge _

\NODE3

\NODE4

Switching to Expand over TLAM connections
and bridge technology improves this configura­
tion. A fully interconnected topology is achieved
by installing a LAN at each site and connecting
the LANs with a high-speed bridge. Expand
processes can use the LAN to communicate with
local and remote nodes with no passthrough
hops. Improved fault tolerance and enhanced
throughput can be achieved by adding more
bridges to the configuration.

APRIL 1991 •TANDEM SYSTEMS REVIEW

LAN

\NODE5

\NODE6

\NODE7

\NODES

Figure 7.

Expand over TLAM.
coupled with one or more
bridges, allows two
geographically separate
sites to operate as one
fully interconnected
network.

43

Figure 8

TCP/IP

Expand

Figure 8.

One or more of these
networking products can
simultaneously share a
TLAM subsystem.

Figure 9.

This block diagram
illustrates the software
components used in an
Expand over TLAM
connection.

44

OSI

Figure 9

NETBIOS
applications

(DOS file server)

TLAM subsystem

Tandem
65XX

applications

/
SPI

applications
(SCF}

IEEE 802 LAN

Expand process (configured
with NAM option)

Layer4

Layer3

NAM Interface

TLAM subsystem I

NAM message system
dialect

NAMSAP

HG SCP (Layer 3)

MSAP

LLC1 module (Layer 2)

LAN chip {Layer 1)

lMLAM 1/0 J process

.... 1/0 channel

JMLMux
controller

New Features of the TLAM
Subsystem
The TLAM subsystem has been enhanced to act
as a network service provider.6 Figure 8 illus­
trates the many products, including Expand,
that TLAM currently supports.

Network service requires the exchange of
Network Access Method (NAM) message
system data units between an Expand process
and a network service provider. To enable TLAM
to accomplish this work, three software modules
were built. These modules comprise a new
protocol stack in the TLAM 1/0 process (the
MLAM) and allow the MLAM to process NAM
system messages. Figure 9 presents a block
diagram of the enhanced TLAM subsystem.
The three new software modules are:

■ The NAM service access point (NAMSAP).

■ The home grown service control point
(HGSCP).

■ The message service access point (MSAP).

The high-level module, the NAMSAP, ex­
changes messages with the Expand process. The
middle module, the HGSCP, performs Network
Layer protocol services. The NAMSAP and
HGSCP work as a pair, manipulating data in
sequence as they service an Expand connection.
The third, lower-level module, the MSAP,
exchanges data with the TLAM controller. In
addition, two Distributed System Management
(DSM) objects, named CONN and MSAP, were
added to TLAM DSM to give system administra­
tors control over subsystem configuration.

''Expand over TLAM connectivity requires a CI O or later release of
Guardian 90.

TANDEM SYSTEMS REVIEW• APRIL 1991

System Design
When configured with the NetDirect option, an
Expand process performs, roughly, the work
of Layers I through 4 of the OSI reference
model.7 In contrast, when an Expand process is
configured with the NetNAM option (to use
TLAM or X25AM), Expand only needs to do the
work of Layers 3 and 4. The network service
provider, either TLAM or X25AM, simulates the
service provided by Layers I and 2 of Expand.
(Figure 9 depicts the flow of data.) The data
units, passed between Expand and TLAM by way
of the NAM message system dialect, approximate
those passed from Layer 3 to Layer 2 of Expand.
These data units are designed to fit inside an
Expand Layer 2 frame. 8

The NAMSAP. Once passed from Expand, NAM
messages are delivered to the MLAM, where they
are routed to a connection's NAMSAP module.
The NAMSAP handles the service access point
work associated with the NAM message system
dialect. This work involves the queueing and
activation of outbound messages, delivering
inbound messages, and mapping of NAM inter­
face semantics to HGSCP semantics.

The HGSCP. When a message is activated
for transmission to the destination node, the
NAMSAP passes the message to the connection's
HGSCP module. The HGSCP provides, roughly, a
Layer 3 connection-oriented service. Using the
IEEE 802 Data Link Layer Control type I (LLC 1)
services of the TLAM controller (MLMux), the
HGSCP delivers NAM data to the destination
node. The Layer 3 service connects the local
NAMSAP to the remote NAMSAP. The HGSCP
also performs an address resolution protocol that
frees analysts or operators from managing MAC
network addresses.

'OSI Layers I through 4 arc the Physical. Data Link. Network. and
Transport Layers. respectively.

·'An Expand Layer 2 data frame has a default si,c of 132 words.

''The media framesi,e for Ethernet LANs is 1518 bytes.

The data units passed between the MLAM
software modules are of two types. The logical
data units passed between peer protocol entities
are considered protocol data units (PDUs). The
data units that travel between a service provider
and a service consumer are called service data
units (SDUs).

The HGSCP handles both types of data units.
Local and remote HGSCPs pass PDUs, and
NAMSAP and HGSCP modules pass SDUs.
When SDUs are larger than the media frame
size,9 HGSCP segments them on the sending side
and reassembles them on the receiving side.

A small amount of duplicate work is per­
formed by the HGSCP and Expand's Layer 3.
Expand requires that it does its own routing and
segmentation. The HGSCP does no routing. It
deals only with a fully interconnected topology.
HGSCP does segmentation if the segments
generated by Expand's Layer 3 are not small
enough to fit into an IEEE 802 LLCl frame.
Duplication of segmentation can be minimized
by configuring Expand's framesize small
enough to fit into an LLC I frame (eliminating
HGSCP segmentation), or making the framesize
large enough to allow HGSCP to do most of the
segmentation. The latter is more desirable for
maximizing Expand over TLAM performance.

APRIL 1991 •TANDEM SYSTEMS REVIEW 45

The MSAP. This module provides an environ­
ment in which the HGSCP and NAMSAP mod­
ules can work without knowledge of the lower
levels of the TLAM subsystem or LLC I ports.
The MSAP acts primarily as a multiplexer­
demultiplexer. It also contains the code that
supports the new DSM objects.

The MSAP performs a number of tasks
required to link the environment offered by the
base MLAM modules with the environment
required by NAMSAP and HGSCP. It routes
NAM system messages to the appropriate
instance of NAMSAP as well as manages a pair
of TLAM ports. The MSAP accumulates out­
bound SDUs from all connections into a single
outbound LLCl aggregate SDU. The MSAP also
breaks inbound aggregate SDUs into individual
LLC I SD Us that are delivered to the appropriate
instance of HGSCP.

Data Delivery. The MSAP interfaces with the
existing lower levels of the TLAM subsystem
to move data to or from the LAN media. The

T he subsystem becomes
more efficient as the

load increases.

LLC I module in the
MLMuxaccepts out­
bound (from the MSAP)
aggregate SDUs, breaks
them into individual
LLCI PDUs, and issues
them to the LAN hard­

ware. Inbound (from the LLCl module) LLCI
PDUs from the LAN hardware are bundled into
aggregate SDUs and forwarded across the I/0
channel to the MSAP.

Any of three data forwarding parameters
triggers the delivery of either outbound or
inbound aggregate SDUs: time, SDU count, or
aggregate SDU size. Aggregation of SD Us allows
the MLAM to use one channel transfer to move
multiple media data units. This lowers the per­
media-data-unit overhead, as queueing and
transferring single data units is avoided. The
result is a subsystem that becomes more efficient
as the data load increases. However, under light
loads, the inherent latency that results from
using these data forwarding parameters causes
slower response times.

DSM Objects
Distributed System Management (DSM) is the
global system management environment for
Tandem. It is used to configure systems and
subsystems (like TLAM), as well as give system
operators access to statistics and diagnostic
information. Two DSM objects, CONN and
MSAP, were added to TLAM DSM to manage
NAMSAP, HGSCP, and MSAP, the new MLAM
software modules.

The CONN (connection) object represents the
bundled HGSCP and NAMSAP instance-pair that
services an Expand connection. CONN objects
are automatically configured. This means that
one becomes defined when an Expand process
requests a connection from the MSAP and
becomes undefined when that connection is
terminated. There can be up to 64 connections
associated with a TLAM subsystem. Operators
can obtain status and statistics information from
any of those connections.

The MSAP object represents the MSAP
module. It is permanently configured, which
means that the operator cannot add or delete it.
The operator can use commands to start, stop,
abort, and alter the MSAP as well as to obtain
information, status, and statistics. For more
detailed information on these DSM objects,
see the SCF Reference Manual for TLAM.

46 TANDEM SYSTEMS REVIEW• APRIL 1991

Performance Overview
Elements that influence network performance
results include data length, physical media
bandwidth, CPU speed, system latency, and,
particularly for Expand networks, framesize. 10

Framesize significantly impacts system consid­
erations because this parameter must be the
same for all nodes on an Expand network. Nodes
added later to the network must also use that
predetermined value. This can impact perfor­
mance as the network size increases or when
different physical media are installed.

In general, the TLAM subsystem exhibits
better performance when processing bulk data
transfers rather than smaller message-based
requests. Performance differences can be
characterized by noting the response times for
two common system commands used by opera­
tors. These commands, entered at a Tandem
Application Command Language (TACL'M)
command interpreter, request file information
and file transfer, respectively. They are:

■ FILENAMES \NODEl.$SYSTEM.SYS0I.*

■ FUP DUP\NODEl.$SYSTEM.SYS0I.*, *,
SOURCEDATA, PURGE

The FILENAMES request often takes longer
than expected for a system attached to a LAN.
This is due to the message-intensive way that
this command searches a remote directory.
However, the impact of many operators from
different systems doing the same request simul­
taneously creates little difference in response
time. The FUP DUP command, in contrast, is a
file utility command used to duplicate and
transfer files. Response time for this command
is generally very good, as this command in­
volves Expand over TLAM in a bulk data
transfer.

1uFramesizc is an alterable Expand attribute. ll is measured in words rather
than bytes.

Expand Over TLAM Configuration
Considerations
In Expand over TLAM test configurations, CPU
costs for a single application message varied
substantially with framesize. This is true for
other Expand connectivity options (except FOX).
However, because the other options are more
limited by physical media bandwidth than by
processor speed, Expand over TLAM configura­
tions benefitted most when the framesize value
was increased.

Approximately 20 percent of the cost of
running Expand over TLAM can be eliminated
by configuring the Expand and TLAM compo­
nents in the same processor. However, this is not
necessarily recommended because it could
interfere with load balancing.

Expand Over TLAM Performance Results
Performance tests were conducted in a labora­
tory environment using best-case configurations.
With Cyclone CPUs, maximum throughput for
a single Expand over TLAM connection was
measured at 1.3 megabits per second.

Tests were also run to analyze Expand over
TLAM performance using more common con­
figurations. Under these conditions, the perfor­
mance of one Expand over TLAM connection
was compared to that of a four-connection
NetDirect path. Results indicated that in some
situations, the throughput of the Expand over
TLAM connection tripled that of the four­
connection NetDirect path.

APRIL 1991 •TANDEM SYSTEMS REVIEW 47

Expand framesize figured prominently in
these performance results. The default framesize
of 132 words (256 user data bytes) increases
CPU overhead, as many interprocess messages
must be passed between TLAM and Expand for
each application request. On both the CLX 700
and the VLX processors, throughput and mes­
sage costs generally improved when the
framesize was increased to 516 words.

On the CLX 700, with a framesize configura­
tion of 132 words, Expand over TLAM provided

T he framesize parameter I

figured prominently in I

peiformance results. I

equivalent throughput.
It consumed about
twice the CPU cycles
as the four-connection
NetDirect path. When
framesize was increased
to 516 words, through­

put was about double that of the NetDirect
path. Even so, the CPU cost per message on the
CLX 700 was still as much as 60 percent more
than that of a NetDirect connection.

A VLX processor with a framesize of
132 words running Expand over TLAM showed
competitive throughput and a similar trend in
message costs. Throughput on the VLX was
equivalent to a NetDirect configuration having
four lines running at 56 kilobits per second.

Message costs, about 60 percent more than a
NetDirect connection, required up to 15 percent
of a VLX processor. Increasing the framesize
parameter to 516 words on the VLX improved
the performance and reduced the message costs.
Throughput was two to three times higher than
a NetDirect configuration with four 56-kilobit
lines. Message costs equalled those of the
NetDirect connections.

Performance testing explored the effect of
adding one or more Expand connections within
an Expand over TLAM configuration. Perfor­
mance improvements depended on whether the
additional connections were configured to share
the same TLAM subsystem or use a separate one.

A second or third Expand connection config­
ured through the same TLAM subsystem resulted
in a slight increase in throughput. The capacity
of a single TLAM connection is shared among all
connections that use it. However, configuration
of a second Expand connection through a
different TLAM subsystem and LAN offered
twice the throughput of a single TLAM connec­
tion. Configuration of a third Expand connection
over a third TLAM subsystem and LAN offered
another I 00 percent additional throughput. This
linear increase is achieved only with the first
three connections.

Tests with CLX 800 CPUs determined that an
Expand framesize of 2047 words and an applica­
tion message size of 16 kilobytes resulted in a
single Expand over TLAM connection through­
put of 1.352 megabits per second. Expand over
TLAM is designed to handle framesizes up to
32,000 words. It is also designed to be more
efficient as framesize increases over 750 words
(1500 bytes) because HGSCP fragments these
messages into segments that fit into IEEE 802
LLC I frames.

Early research indicates that more than 20
Cyclone systems could communicate through
one TLAM subsystem. The throughput of each
Expand connection could equal a 56-kilobit
NetDirect connection.

48 TANDEM SYSTEMS REVIEW• APRIL 1991

Conclusion
Now able to support Expand services, TLAM
provides an additional connectivity option for
Expand networks. Enhancements to the TLAM
subsystem enable it to function as an Expand
network service provider, passing data between
the Expand and IEEE 802 LAN networks. Addi­
tionally, the Expand multiline path enhancement
allows parallelism to be incorporated into LAN­
based networks, which improves both fault
tolerance and performance.

Expand over TLAM is ideally suited for
connecting new Expand networks where clusters
of Expand nodes are to be installed and where
IEEE 802 LANs already exist or are required
for other applications. For situations suited for
Expand over TLAM, this connectivity option
offers a cost-effective, simple, relatively high­
speed, and flexible method of connecting
Expand nodes over LANs. With LAN bridges,
Expand over TLAM can easily connect geo­
graphically distributed systems into a single
Expand network.

References
Drnamic System Configuration (DSC) Manual. 1990. Tandem
Computers Incorporated. Part no. 31219.

Expand m·er TLAM Install Guide. 1991. Tandem Computers
Incorporated. Support Note S90013A. Available from Tandem
representatives upon request.

Expand Reference Manual. 1990. Tandem Computers Incorpo­
rated. Part no. 22242.

SCF Reference Manual for Expand. 1990. Tandem Computers
Incorporated. Part no. 18 I 00.

SCF Reference Manual.for TLAM. 1990. Tandem Computers
Incorporated. Part no.31419.

SCF Reference Manual for TLAM, Update I. 1990. Tandem
Computers Incorporated. Part no. 46512.

System Generation Manual.for Expand. 1990. Tandem
Computers Incorporated. Part no. 32496.

Acknowledgments
I would like to thank the reviewers of this article for providing
their technical expertise. Special thanks go to John Friedenbach,
John Marsh. and Mike Noonan.

Kirk MacKenzie joined Tandem in 1983 as a networking software
engineer. He graduated in 1983 with a master's degree in computer
science from California State University at Chico. Kirk has worked
eight years in networking product development.

APRIL 1991 •TANDEM SYSTEMS REVIEW 49

50

Pathway TCP Enhancements for
Application Run-Time Support

he chief component of the
Tandem"M Pathway transaction
processing system is the
terminal control process
(TCP). The TCP provides the
run-time environment for
user-written SCREEN COBOL

(SCOBOL) application requesters. Tandem has
enhanced the TCP in order to support application
requesters that require large data address spaces.
These enhancements give application developers
greater flexibility in the design of Pathway
applications.

The TCP enhancements were developed to
further support the emerging client-server model
between terminals or workstations and Tandem's
Guardian'" 90 operating system. Also, they allow
Pathway applications to better exploit Tandem
hardware products, such as the NonStop'M
Cyclone'M computer system together with the
larger I/0 configurations it supports.

This article describes how the current TCP
has evolved from earlier versions of the TCP.
It discusses the TCP data address space limita­
tions in the pre-CI 0 releases of Pathway and
explains the impact of those limitations on
Pathway application design. Next, it describes
the enhancements introduced in the CI0 and Cl I
releases of Pathway. Finally, the article discusses
the advantages of using extended memory I/0
operations, which improve the performance
and integrity of TCP checkpointing and other
operations.

The article assumes that readers are familiar
with Pathway configuration management and the
requester-server architecture of Pathway applica­
tions. To be concise, the article omits certain
details about the implementation of the TCP
enhancements. This article uses the terms
terminal task, user task, application task, and
application thread synonymously.

TANDEM SYSTEMS REVIEW• APRIL 1991

Removing TCP Data Address Figure 1

Space Limitations
In the CI O and C 11 releases of Pathway, two
limitations on TCP data address space were
removed, allowing the TCP to take full advan-
tage of its extended memory. First, the TCP's
1/0 buffer pool space (TERMPOOL and
SERVERPOOL) was moved from the TCP
process stack segment1 to its extended memory 0 KB

segment. The size limit of the process stack
segment (128 kilobytes) limited the size of the
1/0 buffers, which restricted 1/0 operations to
and from the TCP. Now I/O operations can be as
large as 32,000 bytes, the interprocess message
limit of the Tandem Guardian 90 operating
system.2 Figures I and 2 show the changes in
memory organization in the TCP.

Second, the data address space assigned to an
individual task in the TCP, formerly limited to
32 kilobytes, can now use as much of the TCP's
extended memory as the task requires. The
practical size of a task's data address space is Figure 2
limited only by the available Guardian 90 disk
swap space, which supports the TCP's extended
memory.

These enhancements allow a single TCP to
manage a greater number of terminal tasks
without sacrificing the response times of any
individual task. The TCP can perform data
transfers as large as 32,000 bytes to and from
terminals or intelligent devices and server 0 KB

processes. The TCP can support application
tasks that require large and deep call history
stacks. Finally, each task can include individual
SCOBOL requesters that require large Working
Storage data items or large aggregates of Work-
ing Storage space.

1 A process stack segment i~ the area of main memory that hold:-. the
information a process needs to perform its work.

'The size of the Guardian 90 message limit. 32,000 bytes, is slightly
smaller than the number commonly associated with the term 32 kilohytes
(32.768 bytes).

Process stack segment
0 KB

TCP global data

Dedicated checkpoint
buffer

TERMPOOL
Extended segment

64 KB

TCP control space

SERVERPOOL

128 KB

Process stack segment
0 KB

TCP global data

Extended segment
64 KB

Terminal task
slots

TCP control space

Code area

128 KB

UMP cache

TERMPOOL

SERVER POOL

Figure 1. Figure 2.

Memory organization of'
the TCP in the pre-C JO
releases of' Pathway.

Memory organization of'
the TCP in the CJO
release 1if'Pathway.

APRIL 1991 •TANDEM SYSTEMS REVIEW 51

52

Evolution of the TCP Architecture
In a Pathway application, a requester is written
in SCOBOL program code. The TCP interprets
the SCOBOL-compiled program code, executing
it as a terminal (user) task running in the TCP's
process environment. The TCP provides ser­
vices (such as checkpointing) for the terminal
task, communicating with terminals and intelli­
gent devices as well as server processes.

A TCP can provide a run-time environment
for many terminal tasks (requesters) simulta­
neously; thus, the TCP is multithreaded. To
execute multiple tasks concurrently, the TCP
must not allow one task to block (impede)
another task. To accomplish this, the TCP
must perform all 1/0 operations nowaited.

Tandem's early processors did not offer
extended memory. Therefore, the original TCP
design confined the data address space for the
entire TCP process to the TCP process stack
segment. The maximum size of a process stack
segment is 64K words (128 kilobytes).

All tasks managed by the original TCP
(TCPl) contended for a reserved area in the TCP
process stack segment. When a task was made
ready to execute, TCPl checked the reserved
area to see if the task context was present. If
required, portions of other tasks were swapped
out, and the current task context was swapped
in from a disk swap file explicitly maintained
for that task context.

TCPl was restructured in the E07 release of
Pathway (the BOO release of Guardian 90).
Known as TCP2, the new design used extended
memory. Task context spaces, the data address
areas allocated for terminal tasks managed by
the TCP, were moved from the TCP process
stack segment to an extended segment.

By using the extended segment, TCP2 made
all task context directly accessible as one linear
space. It eliminated the need to swap portions
of a task context between the process stack
segment and an explicit disk swap file. (To.
manage CPU memory in general, the Guardian 90
memory manager would continue to swap data,
when necessary, at the CPU level.) By reducing
disk I/0 operations, TCP2 simplified task man­
agement and improved TCP performance. The
architectural enhancements of TCP2 are de­
scribed in detail in Wong, 1984.

Checkpointing was also improved in TCP2.
TCPI performed checkpointing of a task context
by writing explicitly to disk (by writing to the
backup TCP's copy of the task context swap
file). This method transferred the task context
indirectly from the primary TCP to the backup
TCP. When the task context was moved to the
extended segment in TCP2, the checkpointing
method also changed. TCP2 transferred the task
context directly from the primary process to the
backup process (Wong, 1984). In the COO release
of Pathway, support for TCP! was discontinued,
and TCP2 was called the TCP.

TCP Limitations in Pre-ClO
Releases
Even after the task context spaces were moved
into extended memory, the TCP continued to
have certain limitations in the pre-C 10 releases
of Pathway. Two architectural areas of the TC~
restricted the TCP run-time environment: the size
of buffer pool space and task context space.

The TCP maintains two buffer pools, one for
I/0 operations to terminals (TERMPOOL) and
one for I/0 operations to server processes
(SERVERPOOL). A limited buffer pool space
restricts both the number of terminal tasks the
TCP can support and the amount of data it can
send to a single terminal or server process.

T A N D E M SYSTEMS REVIEW• APRIL 1991

The task context space determines the amount
of data an application task can access at any
given moment during its execution. A limited
task context space restricts the size of Working
Storage and can influence the complexity of the
application structure.

Buffer Pool Space
In the pre-C 10 releases of Pathway, TERMPOOL
and SERVERPOOL were left in the TCP process
stack segment because, at the time, Guardian 90
could not perform 1/0 to and from extended
memory. (Facility for performing extended
l/O became available in the COO release of
Guardian 90, which introduced file system
extended 1/0 routines such as READX, WRITEX,
and WRITEREADX.) Because of other demands
on the process stack segment, the combined size
of TERMPOOL and SERVERPOOL had to be
much smaller than the process stack maximum
of 64K words (128 kilobytes).

Ideally, users should configure a TCP to
manage as many tasks as possible while ensuring
that it is not queueing internally for buffers in
TERMPOOL and SERVERPOOL. That is, at least
one task should always be ready to execute.

Because the TCP is multithreaded and can
support task execution concurrency, it is possible,
and desirable, for the TCP to have multiple I/O
operations outstanding. Therefore, buffer pool
space must be available so that the TCP can
support I/O operations for every task in the TCP.

In the pre-CI 0 releases of Pathway, users had
to restrict demands on the TCP because of its
limited buffer pool space. Users could control
demands on the buff er pools by reducing the
number of tasks supported by a TCP. This necessi­
tated adding TCPs to their Pathway environment
to support the required number of tasks.

The buffer pool space limitation also affected
the design of SCOBOL requesters. Application
developers had to work around the I/O limits on
their SCOBOL requesters to ensure that they did
not burden the buffer pool space. Otherwise,
tasks might have to queue for buffer pool space,
which would degrade task concurrency.

Task Context Space
In the original TCP design, the task context
space was limited to 32 kilobytes (Wong, 1984).
When the task context space was moved into
the extended segment, its size remained at
32 kilobytes. 3

A portion of the task's slot serves as a pseudo
stack. The pseudo stack is to a task what the
process stack segment is to a Guardian 90
process. By definition, an active task must have
at least one SCOBOL program unit (PU), the
executing version of a SCOBOL requester. The
TCP maintains the local context of each PU in
the task's pseudo stack. Each PU's Working
Storage data space resides in the local context
area of the PU.

When the task requires nested PU calls
(successive calls from one PU to another), the
pseudo stack grows. The amount of PU call
history that a stack can accommodate depends
on the stack's size, the maximum being
MAXTERMDATA. Exceeding MAXTERMDATA
during a sequence of PU calls can cause the
pseudo stack to overflow, which can cause the
task to abort.

'Users can define the size of the task context space by using
MAXTERMDA TA. a parameter of the Pathcom SET TCP command.

APRIL 1991 •TANDEM SYSTEMS REVIEW 53

Figure 3

Figure 3.

A structured application
call hierarchy.

54

Logon
program

A

Menu (root)
program

B

D E

Working Storage

Thus, the size of the task context space can
determine whether or not the task will execute
successfully. The task may abort if the PU call
history sequence is too deep or if the Working
Storage in one or more of the PUs involved in
the call sequence is too large. Consequently, an
application's design is constrained by the limits
of the task context space in which it must
operate.

Also, during certain SC0B0L operations such
as sending data to servers, the TCP performs
internal operations that add to the use of the
task's pseudo stack. If the pseudo stack is nearly
at MAXTERMDATA when the SC0B0L operation
begins, it can cause the pseudo stack to overflow
and the task to abort. Therefore, the Working
Storage space permitted in each PU had to be
smaller than the 32-kilobyte limit. The limited
Working Storage space could affect the capabili­
ties of a SC0B0L requester.

Impact on Application Design
The 32-kilobyte limit on task context space
could influence the design of Pathway applica­
tions by restricting the choices available to
application developers. The limitation could
make it more difficult to use a structured
application call hierarchy, which follows the
application logic naturally but requires a deep
call history stack. Figure 3 shows a structured
call history sequence in which the logon pro­
gram calls the menu program, which calls C

1
,

which calls C
2

, which calls C
3

•

One way to cope with the limitation is to
design the application to be hierarchically.flat.
In one kind of hierarchically flat design, the root
program calls all other PUs directly, and control
always returns to the root program before going
on to another PU. Developers have devised
various PU routing schemes to keep an appli­
cation's hierarchy flat.

There are legitimate reasons to use a flat
application call sequence. For example, it
can provide random (dynamic) screen naviga­
tion. However, this method of limiting task
context space can introduce unnecessary
complexity into the application's design,
implementation, and maintenance.

TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 4

Logan
program A

Menu
program B

Working Storage (global context)

Working Storage (local context)

Figure 4 shows an example of a flat applica­
tion call sequence. To complete its processing,
program C1 informs the root program (through its
Linkage Section) that it should call program C,
the next time it gets control. Program C

1
exits -

to the root program, which calls program C
2

•

The same call sequence occurs to execute
program C

1
•

The example in Figure 4 economizes on task
context space by declaring a large Working
Storage space in the initial (root) PU, which is
shared by called PUs through references in their

Root program

D

Linkage Sections. The Working Storage in a PU
can be kept relatively small if global data
structures are identified in the shared areas of
the root PU. The PU's Working Storage can be
limited to local, transitory data.

APRIL 1991 •TANDEM SYSTEMS REVIEW

E

Figure 4.
A.flat application call
sequence. Programs such
as c,. C

2
, and C

3
use the

global context (shared
data area) in the root
program by references in
their Linkage Sections.

55

Figure 5

Logon
program A

Menu
program B

Root program

Working Storage (global context)

Working Storage (local context)

Figure 5.

A combination of" struc­
tured andflat application
call sequences. Called
proirams use the appli­
rntion global context
(shared data area) in the
root program. Programs
C

2
and C

3
also use the

sub-application global
context in program Cr

The application can avoid running out of task
context space even when it needs to perform
relatively deep call sequences from one
SCOBOL PU to another. Figure 5 shows an
example of this approach, which blends a flat
call sequence with a hierarchical call sequence.
The Working Storage in the root program
contains data structures global to the entire
appli~ation, and program C

1
's Working Storage

contams data structures global to the routines
performed by programs C

1
, C

2
, and C

1
. With this

method, the application maintains a call history
stack smaller than one required by a structured
hierarchy and minimizes the overall size of the
task context space.

D E

Implementing the Enhancements
The size limits of the TCP buffer pool space and
task context space were removed in the CI 0
release of Pathway. The size limit of the pro­
gram context (Working Storage) for individual
PU s was removed in the C 11 release of Pathway.

Removing these limitations allows the TCP to
support a larger number of tasks requiring large
I/0 data transfers. Individual SCOBOL request­
ers can use their Working Storage size limit
potential and can now maintain deep call history
stacks. Also, application thread design is no
longer constrained by a limited data address
space.

Task Context Space
In the CI O release of Pathway, the references
to the task context space for an individual task
in a TCP were increased from 16-bit to 32-bit
addressing ranges. A 32-bit value can refer to
a 2-gigabyte data address space (set by the
MAXTERMDATA parameter). Thus, changing

56 TANDEM SYSTEMS REVIEW• APRIL 1991

the addressing ranges to 32 bits effectively re­
moved the size limit of TCP task context space.
Because a Guardian 90 disk swap file supports the
TCP extended segment, the available disk space
determines the practical size limit of the task
context space.

Program Context (Working Storage)
In the pre-Cl 0 and Cl 0 releases of Pathway,
SCOBOL programs had to operate within a
smaller local address space than the 32-kilobyte
maximum. The practical size limit was approxi­
mately 28 kilobytes. Also, to keep the aggregate
size of Working Storage data items below the
32-kilobyte limit, individual Working Storage
data items had an artificial limit of 12 kilobytes.
Because Message Section field items map to
Working Storage data items, the same size limits
implicitly applied to them. All these limitations
restricted the design of SCOBOL programs.

In the C 11 release of Pathway, the SCOBOL
compiler was changed so that SCOBOL programs
could support 32-bit addressing ranges to PU con­
text (Working Storage) space. This enhancement
extends the size limit of an individual 0 1-level
Working Storage data item from 12,288 bytes
to 32,000 bytes (the maximum Guardian 90
interprocess message size). Also, Message
Section field items have been extended so that
they can map to the new size limits of Working
Storage data items.

Table l shows the evolution of the size limits
of PU context space and task context space in
the pre-CI 0, C 10, and C 11 releases of Pathway.
The numbers in Table I indicate the addressing
ranges of the data address spaces.

Figure 6 shows the relationships between
individual PU context spaces and the task context
space. The figure shows three call history stacks
for a task executing in the different Pathway
releases. The task context comprises a sequence
of PU calls. PU

I
calls PU

2
, which calls PU

3
; the

call sequence continues until it reaches PU,,.
In the pre-ClO releases (column a), each

individual PU context space had a limit of
32 kilobytes (16-bit addressing range), of which
the PU could exploit approximately 28 kilobytes.
However, all the PU context spaces had to fit into
a task context space of at most 32 kilobytes.

Figure 6

16-bit
range

Table 1.

Pre-C10
(a)

PU1
(16-bit offsets}

PU2
(16-bit offsets}

PUn
(16-bit offsets)

32-KB maximum
task context size

32-bit
range

C10
(b)

PU1
(16-bit offsets)

PU2
(16-blt offsets)

PUn
(16-bit offsets)

2-GB maximum
task context size

Addressing ranges for SCOBOL program units (PUs) and task
context spaces in the pre-C10, C10, and post-C1 O releases of
Pathway.

Addressing range values (in bits)

Pre-C10 C10 Post-C10

Program unit ($COBOL compiler) 16

Task context space (TCP) 16

16 32
- ---------

32 32

In the CI0 release (column b), the individual
PU context space still had a limit of 32 kilo­
bytes, but the task context space could be as
large as 2 gigabytes (32-bit addressing ranges).

In the post-CIO releases (column c), the PU
context space can be as large as 2 gigabytes.
The task context space also can be as large as
2 gigabytes.

APRIL 1991 •TANDEM SYSTEMS REVIEW

32-bit
range

Post-C10
(c)

PU1
(32-bit offsets)

PU2
(32-bit offsets)

PUn
(32-bit offsets}

2-GB maximum
task context size

Figure 6.

Relationship 1Jf program
unit (PU) size and task
context size.

57

58

In each new release of Pathway, the TCP
continues to support SCOBOL pseudo code
compiled in the previous releases. However, it
is recommended that users running a post-ClO
release of Pathway recompile SCOBOL request­
ers developed in the C IO and pre-C IO releases.
Existing SCOBOL pseudo code executes more
efficiently if it is recompiled because it can take
advantage of the improvements in the post-C 10
SCOBOL compiler and TCP. (The post-Cl0
SCOBOL compiler produces 32-bit addressing
ranges for the TCP's direct access to the Work­
ing Storage in the PU).

Benefits for 1/0 and Checkpointing
Operations
In addition to removing the size limits of TCP
data address spaces, Tandem has improved
the efficiency of checkpointing operations
performed by the TCP. Because of the new
Guardian 90 I/O capabilities, the TCP can
perform checkpointing directly from the ex­
tended memory of the primary TCP to the
extended memory of the backup TCP. The new
checkpointing method enhances both perfor­
mance and integrity of checkpointing.

Extended Memory 1/0
The TCP now performs most 1/0 operations to
and from extended memory. The TCP uses the
extended options of the Guardian 90 file
system routines (such as READX, WRITEX,
WRITEREADX, and READUPDATEX). Specifi­
cally, the TCP performs the following 1/0 opera­
tions to and from extended memory: terminal
1/0, server 1/0, SCOBOL pseudo code caching,
and task context checkpointing.

Improvements in Checkpointing
A NonStop TCP process performs checkpointing
operations to maintain a current backup version
of the TCP and its tasks. Task context check­
pointing saves the data context of the currently
executing task in the backup TCP process.

Both the primary and backup TCPs allocate
two areas of task context space in extended
memory: SLOTO and SLOT!. In the primary TCP,
SLOT0 maintains the current (active) context
for the task. SLOT! holds a backup copy of
SLOTO. If necessary, the TCP uses SLOTI to
restore the current task context to a previous
state (Wong, 1984).

The TCP performs its checkpointing opera­
tions nowaited. It cannot use Guardian 90
checkpointing routines such as CHECKPOINT
and CHECKMONITOR because they are waited.
Instead, the primary TCP uses the Guardian 90
WRITEREADX routine to exchange information
with the backup TCP; the backup TCP uses the
READUPDATEX and REPLY routines. In this
type of checkpointing, in which the TCP per­
forms its own 1/0 operation, the backup TCP
is an active backup process.

TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 7

Primary TCP

Process stack segment

Dedicated
checkpoint

/ buffer

WAITEREAD

ACK/NAK

Backup TCP

READUPDATE

REPLY

Process stack segment

Dedicated
checkpoint

Extended segment Extended segment

Task J I Memory move

buffer \

Memory move Task J

Task K

,
Task L

X

" ,

Figure 7 shows the task context check­
pointing method for pre-CI O releases of
Pathway. First, the primary TCP stages Task J's
context data from its slot in extended memory
to the checkpoint buffer in the process stack
segment. Next, it performs the 1/0 operation,
sending the task context to the backup TCP.
The backup TCP receives the task context in
the checkpoint receive buffer in its process stack
segment. Finally, the backup TCP stages the
task context from the process stack segment
to Task J's slot in extended memory. (Only the
portion of a slot that is currently in use is
checkpointed, not the entire slot.)

Figure 7 also illustrates that the TCP's
checkpointing facility is single-threaded. That
is, an in-progress checkpoint must complete
before another one can begin. In Figure 7, Task
J's checkpoint must complete before Task L's
checkpoint can begin.

As of the CI O release of Pathway, the primary
TCP transfers task context data directly from its
source in extended memory to the extended
memory of the backup TCP. The TCP does not
have to stage the task context to a buffer in its

process stack segment before transferring it to
the backup TCP. If the staging method were
used, an 1/0 transfer size would be limited to the
size of the buffer in the process stack segment,
something less than 32,000 bytes. (The size of
the staging buffer would depend on other
storage demands made on the process stack
segment.)

In contrast, the new method permits I/0
transfers of maximum size and eliminates the
memory move from the extended segment to the
process stack segment. Similarly, the backup
TCP receives all checkpoint data in an extended
memory buffer. It does not have to stage the task
context to a buffer in the process stack segment
before moving it to its destination in the ex­
tended segment. This eliminates a second
memory move (in the backup TCP). All slots are
of equal size and are allocated and deallocated
in their entirety.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Task K

Task L

Figure 7.
TCP task context check­
pointing in the pre-CJO
releases of Pathway.

59

Figure 8.

Step I cl{ TCP task
context checkpointing in
the CJ0andpost-CJ0
releases of Pathway. The
backup TCP allocates the
extra slot as the check­
point receive buffer.

Figure 9.

Step 2. The primary TCP
sends checkpoint context
data for Task J to the
checkpoint receive buffer.

60

Figure 8

Primary TCP

Figure 9

Extended segment

Task J

Task K

Task L

Primary TCP

Extended segment

Task J

Task K

Task L

Process stack segment

Process stack segment

WRlTEREAOX ..
ACK/NAK

Figure 8 shows the first step in a task context
checkpointing operation performed in a CI O (or
later) release of Pathway. The TCP maintains a
pool of slot areas. The backup TCP dynamically
allocates one of the slots in this pool for its
checkpoint receive buffer. (The TCP implicitly
configures one extra slot so that a slot is always
available for this purpose.) Next, it issues a
READUPDATEX message and waits for the
primary TCP to send checkpoint data. 4

Backup TCP

Process stack segment

REAOUPOATEX

Backup TCP

Process stack segment

REAOUPOA TEX '-------------• :~,:;
REPLY

Extended segment

Task J

Task L

Task K

Extended segment

Task J

Task L

Task K

Figure 9 shows the second step in the task
context checkpointing operation. The primary
TCP sends task context data for Task J from its
extended segment to the checkpoint receive
buffer. The operation does not involve the
process stack segment in either TCP. As in
Figure 7, Task Lis also ready to transfer its task
context. It waits for Task J's checkpointing
operation to complete before beginning its own
checkpointing.

1If the received checkpoint involves a TCP control checkpoint (one
involving the TCP task\, own status or activity but not its data context),
the checkpoint is processed and the checkpoint receive buffer is rew .. cd.

TANDEM SYSTEMS REVIEW• APRIL 1991

Figure 10

Primary TCP

Extended segment

Task J

Task K

Task L

Process stack segment

Figure IO shows the third step in the task
context checkpointing operation. The backup
TCP commits the completed task context
checkpoint to Task J by assigning to it the
location of the current checkpoint receive buffer.
The backup TCP deallocates the slot that held
the old task context for Task J and returns it to
the slot area pool, making it available for later
use. Now Task L can perform its task context
checkpointing operation.

Because task contexts can now differ vastly in
size, and because TCP checkpointing is single­
threaded, it is possible that the task context
checkpointing operations of one task could
indirectly influence the uniformity of response
times of its neighboring tasks in a TCP. When
this issue is a possibility, users should consider
assigning terminal tasks with similar task
context sizes to the same TCP.

Checkpoint Integrity
The checkpointing method introduced in the CI 0
release of Pathway significantly improves the
integrity of task context checkpointing. This is
especially true when a checkpoint involves
multiple 1/0 operations.

Checkpoint messages are prefixed with a
descriptor containing control information. For a
task context checkpoint message, the descriptor
contains the length (in bytes) of the context
being transferred. The backup TCP can deter­
mine from this length if it will require multiple
I/0 operations to transfer the task's context.

Backup TCP

Process stack segment

Extended segment

REAOUPOATEX

Task L

Task J

Task K

In the pre-CI 0 releases of Pathway, a backup
TCP receiving a checkpoint that required mul­
tiple I/O operations was vulnerable to task
context slot contamination. All checkpoints,
including those that required multiple I/O
operations, were staged from the checkpoint
receive buffer in the process stack segment
directly to the task's live task context space
(slot area). If the primary TCP failed and a
multiple I/0 checkpointing operation was not
completed, the affected backup task context,
and therefore the task itself, became invalid.

In the C 10 (and later) releases of Pathway,
the checkpoint is staged (concatenated) directly
into the current checkpoint receive buffer in
extended memory. The backup TCP does not
commit the new task context to the task until
all the I/O operations for the checkpoint have
completed successfully. The previous version
of the task context, located in its current slot,
remains valid until the current checkpoint is
committed.

APRIL 1991 •TANDEM SYSTEMS REVIEW

Figure 10.

Step 3. The backup TCP
commits the completed
checkpoint to Task J. The
slot that held the old task
context o_f Task J becomes
the new checkpoint
receive buffer. Task L,
which was waiting, can
now transfer its task
context to the backup
TCP.

61

62

Backup TCP Is Not an Exact Mirror
The primary TCP pre-allocates slots consecu­
tively from the slot area pool. The effect is that
a true primary TCP (one that has never been a
backup) always has adjacent slots in extended
memory for a task's current context space
(SLOTO) and backup context space (SLOTI). In
contrast, the backup TCP dynamically assigns
the slots in extended memory to various tasks
as their context checkpoints arrive from the
primary TCP.

Therefore, the primary and backup TCPs
do not mirror one another with respect to the
allocations of their task context spaces. This
difference has no effect on the operation of the
TCP. Moreover, this method of allocating slots
dynamically is the basis of the improved
integrity of task context checkpointing.

Conclusion
In the CI0 and post-CIO releases of Pathway, the
size limitations of the TCP buffer pool space,
task context space, and individual SCOBOL
program unit space have been removed. Remov­
ing these limitations allows the TCP to handle a
greater number of terminal tasks that require
large I/O operations while maintaining task
execution concurrency. In addition, the TCP can
support large Working Storage data contexts as
well as applications with deep call history
stacks. Finally, the TCP has enhanced the
performance and integrity of its checkpointing
operations by performing extended memory
I/O operations between the primary and
backup TCPs.

References
Wong, R. 1984. A New Design for the PATHWAY TCP. Tandem
Journal. Vol. 2, No. 2. Tandem Computers Incorporated. Part no.
83932.

Acknowledgments
Special thanks are due to Mike Noonan for his many thoughtful
contributions to this article.

--~ ----~

Robert Vannucci works in the Pathway software development group
and has been at Tandem eight years. He is responsible for the
enhancements described in this article and has been a key developer
of intelligent device support (IDS) for the TCP.

TANDEM SYSTEMS REVIEW• APRIL 1991

Tandem Systems Review Index April 1991

The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the Tandem
Journal were published:

Volume 1, Number I
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Part no. 83930
Part no. 83931
Part no. 83932
Part no. 83933

As of this issue, 15 issues of the Tandem Systems Review have been published:

Volume I, Number I
Volume I, Number 2
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3
Volume 3, Number 1
Volume 3, Number 2
Volume 4, Number I
Volume 4, Number 2
Volume 4, Number 3
Volume 5, Number 1
Volume 5, Number 2
Volume 6, Number I
Volume 6, Number 2
Volume 7, Number I

February 1985
June 1985
February 1986
June 1986
December 1986
March 1987
August 1987
February 1988
July 1988
October 1988
April 1989
September 1989
March 1990
October 1990
April 1991

Part no. 83934
Part no. 83935
Part no. 83936
Part no. 83937
Part no. 83938
Part no. 83939
Part no. 83940
Part no. 11078
Part no. 13693
Partno. 15748
Part no. 18662
Part no. 28152
Part no. 32986
Part no. 46987
Part no. 46988

The articles published in all 19 issues are arranged by subject below. (Tandem Journal is abbreviated
as TJ and Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject

Season
Volume, or month

Article title Author(s) Publication Issue and year

Application Development and Languages

Ada: Tandem's Newest Compiler and Programming Environment R.Vnuk TSR 3,2 Aug. 1987

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984

Debugging TACL Code L. Palmer TSR 4,2 July 1988

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983

PATHWAY IDS: A Message-level Interface to Devices M. Anderton, TSR 2,2 June 1986
and Processes M. Noonan

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986
R. Glascock

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb.1986

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985
J. Zimmerman

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983

Writing a Command Interpreter D. Wong TSR 1,2 June 1985

APRIL 1991 •TANDEM SYSTEMS REVIEW

Part
number

83940

83932

83932

13693

83837

83930

83937

83937

83936

83936

83934

83930

83935

63

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Customer Support

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Data Communications

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Introduction to MULTI LAN A.Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server A. Rowe TSR 4,1 Feb 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MULTILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

Data Management

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct.1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct.1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct. 1990 46987

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in NonStop SOL Release 2 M. Moore,A. Sodhi TSR 6,2 Oct.1990 46987

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SQL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct.1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter1984 83931

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The TRANSFER Delivery System for Distributed Applications S.Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

64 TANDEM SYSTEMS REVIEW APRIL 1991

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Manuals/Courses

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

New Software Courses M. Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb.1988 11078

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Operating Systems

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop 11 Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the NonStop-UX Operating System for the Integrity S2 P Norwood TSR 7,1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935

Performance and Capacity Planning

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B.Vaughan

Getting Optimum Performance from Tandem Tape Systems A.Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem Ststem R. Welsh TJ 2,3 Summer 1984 83933

Pathwal' TCP Enhancements for Aeplication Run-Time Sueeort R. Vannucci TSR 7,1 Al:)ril 1991 46988

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems

APRIL 1991 •TANDEM SYSTEMS REVIEW 65

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Performance and Capacity Planning

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

Peripherals

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

Data-Encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935

The Model 6VI Voice ln12ut O12tion: Its Design and lm12lementation B.Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VS Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

Processors

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

NonStop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

The High-Performance Non Stop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

Security

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

System Connectivity

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

66 T A N D E M SYSTEMS REVIEW APRIL 1991

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

System Management

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Utilities

Enhancements to PS MAIL R.Funk TSR 3,1 March 1987 83939

A P R l L 9 9 •TANDEM SYSTEMS REVIEW 67

Index by Product

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

3207 Tape Controller

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 Tape Subsystem

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 Optical Storage

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 Communications Subsystem

The 6100 Communications Subsystem: A New Architecture R.Smith TJ 2,1 Winter1984 83931

6530 Terminal

The Model 6VI Voice Input Option: Its Design and Implementation B.Huggett TJ 2,3 Summer 1984 83933

6600 and TCC6820 Communications Controllers

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

Ada

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987 83940

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

Cyclone

Fault Tolerance in the Nonstop Clclone Slstem S. Chan, R. Jardine TSR 7,1 April 1991 46988

DP1 and DP2

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

68 T A N D E M SYSTEMS REVIEW APRIL 199

Season
Volume, or month Part

Article title Author(s) Publication Issue and~ear number

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct.1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct.1988 15748

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter1984 83931
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerrnan, S. Uren,
B.Vaughan

FOX

Changes in FOX N.Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

FUP

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct. 1990 46987

GUARDIAN90

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Message Slslem Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935

A P R I L 991•TANDEM SYSTEMS REVIEW 69

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Integrity S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Performance Data Base with M.King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MULTILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTI LAN Server A. Rowe TSR 4,1 Feb. 1988 11078

Using the MULTI LAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

NetBatch-Plus

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NonStopSQL

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct.1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

Gateways to Non Stop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices M.Anderton TSR 2,2 June 1986 83937
and Processes M. Noonan

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PS MAIL

Enhancements to PS MAIL A.Funk TSR 3,1 March 1987 83939

SAFEGUARD

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

70 TANDEM SYSTEMS REVIEW APRIL 1991

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TMF

Improvements in TMF T Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester T Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W Bartlett, T Houy, TJ 2,1 Winter1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

VB

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937

APRIL 1991 •TANDEM SYSTEMS REVIEW 71

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Miscellaneous 1

A Performance Retrospective P.Oleinick TSR 2,3 Dec. 1986 83938

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Credit-authorization Benchmark for High Performance T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
and Linear Growth

Data-window Phase-margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

New Software Courses M.Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer1984 83933

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Terminal Connection Alternatives for Tandem Ststems J. Simonds TSR 5,1 Aeril 1989 18662

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

'This category is composed of articles that contain product information but are not specifically product-related.

72 T A N D E M SYSTEMS REVIEW APRIL 1991

TANDEM SYSTEMS REVIEW ORDER FORM

Use this form to request or renew a subscription, change subscription information, or order back copies.

□ If you are a Tandem customer, complete Part A of this form and send it to your Tandem representative.
Your request is subject to approval.

□ For other subscribers, complete Part A of the form and send it to the address below. You will receive an
invoice for the subscription and back copies that you order. The cost is $40 for a one-year subscription
and $15 for each back issue.

Part A. To be completed by the subscriber.

Subscription Information

□ New subscription

□ Subscription renewal

□ Update to subscription information
Subscription number: _______ _
Your subscription number is in the upper right
comer of the mailing label.

COMPANY

NAME

JOB TITLE

DIVISION

ADDRESS

COUNTRY

TELEPHONE NUMBER (include all codes for U.S. dialing)

Title or position:

[] President/CEO
D Director/VP information services
D MIS/DP manager
D Software development manager
[] Programmer/analyst
D System operator
[] End user
D Other: ______________ _

Your association with Tandem:

D Tandem customer
D Third-party vendor
D Consultant
[] Other: _____________ _

Back Order Requests
Number •
ofcopie, Tandem Systems Review
__ Vol. I, No. I, Feb. 1985 -- Vol. 5, No. I, April 1989

__ Vol. I, No. 2, June 1985 -- Vol. 5, No. 2, Sept. 1989

__ Vol. 2, No. I, Feb. 1986 -- Vol. 6, No. I, March 1990

__Vol. 2, No. 2, June 1986 -- Vol. 6, No. 2, Oct. 1990

__ Vol. 2, No. 3, Dec. 1986

__ Vol. 3, No. I, March 1987

__ Vol. 3, No. 2, Aug. 1987

__ Vol. 4, No. I, Feb. 1988

__ Vol. 4, No. 2, July 1988

__ Vol. 4, No. 3, Oct. 1988

Tandem Journal
__ Vol. I, No. I, Fall 1983

__ Vol. 2, No. I. Winter 1984

__ Vol. 2, No. 2. Spring 1984

__ Vol. 2, No. 3, Summer 1984

Tandem Application Monographs
__ Developing TMF-Protected Application Software, 3/83

__ Designing a Tandem Word Processor Interface, 3/83

__ Application Database Design in a Tandem
Environment, 8/83

__ Capacity Planning for Tandem Computer Systems, 10/84

__ Sociable Systems: A Look at the Tandem Corporate
Network, 5/85

Tandem customers should send this form to
their Tandem representative.

Other subscribers send this form to:
Tandem Computers, Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

4/91

Part B. To be completed by the Tandem representative.

Subscription Processing
Please complete this portion of the form to approve your customer's subscription. Your department will be
charged $40 per year per subscription. Incomplete requests will be returned for resubmittal.

Back Order Processing
If your customer requests back issues, you must order them through Courier. The menu sequence is:

Marketing Information _. Literature Orders _. Tandem Systems Review _. Back Orders

Your department will be charged $15 for each back issue.

NAME

TITLE

LOC

CUSTOMER NUMBER

SIGNATURE

Send completed approvals to:

Tandem Computers Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

Comments:

DEPARTMENT NUMBER

TELEPHONE NUMBER

SYSTEM NUMBER

Process back order requests through Courier.

For our tracking purposes, please indicate the
date you submitted the back order request:

TANDEM SYSTEMS REVIEW CUSTOMER SURVEY

The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for publication.
Postage is prepaid when mailed in the U.S. Customers outside the U.S. should send their replies to their
nearest Tandem sales office.

1. How useful is each article in this issue?

Fault Tolerance in the NonStop Cyclone System
01 rJ Indispensible 02 [7 Very 03 [J Somewhat 04 C Notatall

Overview of the NonStop-UX Operating System for the Integrity S2
05 [7 Indispensiblc 06 D Very 07 =-:-1 Somewhat 08 [J Not at all

Enhancing System Security With Safeguard
09 u Indispensible IO [] Very 11 D Somewhat 12 D Notatall

TLAM: A Connectivity Option for Expand
13 LJ lndispensible 14 D Very 15 C Somewhat 16 D Notatall

Pathway TCP Enhancements for Application Run-Time Support
17 D Indispensible 18 ::::J Very 19 rJ Somewhat 20 ::::J Not at all

2. I specifically would like to see more articles on (select one):

21 D Overview discussions of new products and enhancements. 22 D Performance and tuning information.

23 [7 High-level overviews on Tandem's approach to solutions.

25 D Technical discussions of product internals.

26 C Other

3. Your title or position:

27 D President, VP, Director

30 D MIS manager

28 D Systems analyst

31 D Software developer

24 D Application design and customer profiles.

29 D System operator

32 D End user

33 D Other·~------------------------------------

4. Your association with Tandem:

34 C Tandem customer

18 '7 Other

5. Comments

35 D Tandem employee 36 u Third-party vendor 37 D Consultant

--

-- ------------------
NAME

--- -------
COMPA~Y ~AME

ADDRESS

----- ----- -- --

► FOLD

► FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 216-05

CUPERTINO, CA. U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l111l1l1ll111111ll1l11ll1l11l11l11ll1111l1l1ll11I

► FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

► FOLD

~TANDEM
Tandem Computers Incorporated
19333 Valko Parkway
Cupertino, CA 95014-2599

Part No. 46988

MARC BRANDIFINO
LOC NUN 50-00
NEW YORK NY DISTRICT

400110 4/91 Printed in USA

