August 1991

| . Melodies
A FC \I%deogrlmel” For Your Programs
gé Page 36
Watch for New

Zenith Data Systems Products
Coming in Future lssues

The Official Zenith Data Systems Magazine

REM

A PC Video Primer

DaVid R. VIt coevovoessssosssessesessessessessesssssessessessessessseseesesseeseeses s

Assembly Language — Part 10

Pat Swayne ...

N

ENABLE Revisited — Part 6

GEOIEE P ERWOO . i i v siieitismss

17

On the Leading Edge
T Ve e . |
Learning C by Computer — Part 2
Tom Bing ...

.26

The World of WP5.0 and Its Wonders
Part V

T T = Tt = S S

.29

August 1991

dl

The Official Zenith Data Systems Users Magazine

Adding a 2.88 MB 3.5" Floppy Drive
to Your Computer
Ban Bbbed s umussnsiasmensniiasma S
Melodies for Your Programs
o T L Lo NG { ¢
Getting the Most From Your Computer
Part 3

JORN LEWIS ..o sessessassessssaesssssens

e G

Introduction to C++
Ninth Installment
Lynwood H. WIlSOMeeieeeeessissssssesssssassssssssssssss

45

Advertising

LS SOFEWATE ...t e e 25
FBE Research Co., INC....ooeeeeeeeeeeeeeereeeereresceeeeeeeeseseeeses e 31
WS EIOCHIONIES ..o ve s s e e 16
QUIKDALA, INC. ..o es e 32

Resources

Software Price List...causmnnamensseims 9,

Renewal FOrm e eeeeeeeeeeeeeeeeenennnnns 4
Classified AdS .ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn

®é-

Software Engineer
Pat Swayne
(616) 982-3463

Managing Editor
Jim Buszkiewicz
(616) 982-3837

Secretary
Lisa Cobb
(616) 982-3463

Production Coordinator
Lori Lerch
(616) 982-3794

COMT1 Bulletin Board ZUG
(616) 982-3956 Software Orders
(Modem Only) (616) 982-3463
Contributing Editor Printer
William M. Adney Imperial Printing

St. Joseph, Ml

Contributing Editor

Advertising Robert C. Brenner

Rupley's Advertising Service
Dept. REM, 240 Ward Avenue
P.O. Box 348

St. Joseph, MI 49085-0348
(616) 983-4550

To Locate your Nearest:

Dealerccoevvreeesecsnnnne. 1-800-523-9393
Service Center.................. 1-800-777-4630
U.S. APO/FPO &
Domestic All Others
Initial $22.95 $37.95"
Renewal $19.95 $32.95"
* U.S. Funds

Limited back issues are available at $2.50, plus
10% shipping and handling-minimum $1.00 charge.
Check ZUG Product List for availability of bound
volumes of past issues. Requests for magazines
mailed to foreign countries should specify mailing
method and include appropriate, additional cost.

Send Payment to: Zenith Users' Group

P.O. Box 217
Benton Harbor, MI 490230217
(616) 982-3463

Although itis a policy to check material placed
in REMark for accuracy, ZUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in
REMark, which describe hardware modifications,
are not supported by Zenith Data Systems Com-
puter Centers.

ZUG is provided as a service to its members
for the purpose of fostering the exchange of ideas
to enhance their usage of Zenith Data Systems
equipment. As such, little or no evaluation of the
programs or products advertised in REMark, the
Software Catalog, or other ZUG publications is
performed by Zenith Data Systems, in general, and
Zenith Users' Group, in particular. The prospective
user is hereby put on notice that the programs may
contain faults, the consequence of which Zenith
Data Systems, in general, and ZUG, in particular,
can not be held responsible. The prospective user
is, by virtue of obtaining and using these programs,
assuming full risk for all consequences.

REMark is a registered trademark of the Zenith
Users' Group, St. Joseph, Michigan.

Copyright (c) 1991, Zenith Users' Group

PRODUCT NAME

ACTION GAMES
ADVENTURE

ASCIRITY

AUTOFILE (280 ONLY)
BHBASIC SUPPORT PKG
CASTLE

CHEAPCALC

CHECKOFF

DEVICE DRIVERS

DISK UTILITIES

DUNGEONS & DRAGONS
FLOATING POINT PKG
GALACTIC WARRIORS
GALACTIC WARRIORS
GAMES 1

HARD SECT SUPPORT PKG
HDOS PROG. HELPER

HOME FINANCE

HUG DISK DUP UTILITY

HUG SOFTWARE CATALOG
HUGMAN & MOVIE ANIM
INFO SYS AND TEL. & MAIL SYS
LOGBOOK

MAGBASE

MISCELLANEOUS UTILITIES
MORSE CODE TRANSCEIVER
MORSE CODE TRANSCEIVER
PAGE EDITOR

PROGRAMS FOR PRINTERS
REMARK VOL 1 ISSUES 1-13
RUNOFF

SCICALC

SMALL BUISNESS PACKAGE
SMALL-C COMPILER

SOFT SECTOR SUPPORT PKG
STUDENT'S STATISTICS PKG
SUBMIT (280 ONLY)

TERM & HTOC

TINY BASIC COMPILER

TINY PASCAL

UDUMP

UTILITIES

UTILITIES BY PS

VARIETY PACKAGE

WHEW UTILITIES

XMET ROBOT X-ASSEMBLER
280 ASSEMBLER

280 DEBUGGING TOOL (ALDT)

ADVENTURE

BASIC-E

CASSINO GAMES
CHEAPCALC

CHECKOFF

COPYDOS

DISK DUMP & EDIT UTILITY
DUNGEONS & DRAGONS
FAST ACTION GAMES
FUN DISK |

FUN DISK Il

GAMES DISK

GRADE

HRUN

HUG FILE MANAGER & UTILITIES

HUG SOFTWARE CAT UPDT #1
KEYMAP CPM-80

MBASIC PAYROLL
NAVPROGSEVEN

SEA BATTLE

UTILITIES BY PS

UTILITIES

X-REFERENCE UTIL FOR MBASIC %12‘31- 37]

ZTERM

OPERATING
PART NUMBER SYSTEM
H8 - H/Z-89/90

885-1220-{37] CPM
885-1010 HDOS
885-1238-(37] CPM
885-1110 HDOS
885-1119-[3 HDOS
885-8032-(3 HDOS
885-1131-[37] HDOS
885-8010 HDOS
885-1105 HDOS
885-1213-(3 CPM
885-1093-[3 HDOS
885-1063 HDOS
885-8009-37] HDOS
885-8009- Iaq CPM
885-1029-(3 HDOS
885-1121 HDOS
885-8017 HDOS
885-1070 HDOS
885-1217-(37] CPM
885-4500 VARIOUS
885-1124 HDOS
885-1108-(37] HDOS
885-1107-[3 HDOS
885-1249-(3 CPM
335-103& HDOS
885-80 HDOS
335»3031 [3;] CPM
835-1079 HDOS

HDOS
835-4001 N/A
885-1025 HDOS
885-8027 HDOS
885-1071-(37] HDOS
885-1134 HDOS
885-1127-(37] HDOS
885-8021 HDOS
885-8006 HDOS
885-1207-(37) CPM
885-1132-{37] HDOS
885-1086-(37] HDOS
885-8004 HDOS
885-1212-(37] CPM
885-1126 HDOS
885-1135-(37] HDOS
885-1120-[37] HDOS
885-1229-(37] CPM
885-1078-[37] HDOS
885-1116 HDOS

H8 - H/Z-89/90 - H/Z-100 (Not PC)

885-1222-(37) CPM
885-1215-{37] CPM
885-1227-(37] CPM
885-1233-{37] CPM
885-8011-[37] CPM
885-1235-(37] CPM
885-1225-{37] CPM
885-1209-(37] CPM
885-1228-[37] CPM
885-1236-{37] CPM
885-1248-(37] CPM
885-1206-{37] CPM
885-8036-{37] CPM
885-1223-(37] CPM
885-1246-[37] CPM
885-4501 VARIOUS
885-1230-(37] CPM
885-1218-[37] CPM
885-1219-[37] CPM
885-1211-{37] CPM
885-1226-[37] CPM
885-1237-{37] CPM

CPM

3003-{37 CPM

Software

DESCRIPTION PRICE
GAME 20.00
GAME 10.00
AMATEUR RADIO 20.00
DBMS 30.00
UTILITY 20.00

ENTERTAINMENT 20.00
SPREADSHEET 20.00
CHKBK SOFTWARE 25.00

uTiuTY 20.00
UTILITY 20.00
GAME 20.00
UTILITY 18.00
GAME 20.00
GAME 20.00
GAMES 18.00
uTiLTY 30.00
uTiuTy 16.00
BUSINESS 18.00
UTILITY 20.00
PROD TO 1982 9.75
ENTERTAINMENT 20.00
DBMS 30.00
AMATEUR RADIO 30.00
MAGAZINE DB 25.00
uTiLITYy 20.00

AMATEUR RADIO 20.00
AMATEUR RADIO 20.00

uTILITY 25.00
UTILITY 20.00
1978 TO DEC '80 20.00
TEXT PROCR 35.00
uTiLTY 20.00
BUSINESS 75.00
LANGUAGE 30.00
uTiuTy 20.00
EDUCATION 20.00
uTIiLTY 20.00
COMMUN & UTIL 20.00
LANGUAGE 25.00
LANGUAGE 20.00
UTILITY 35.00
UTILITY 20.00
UTILITY 20.00
UTILITY & GAMES 20.00
UTILITY 20.00
UTILITY 20.00
uTiLITY 25.00
uTiLTy 20.00
GAME 10.00
LANGUAGE 20.00
GAME 20.00

SPREADSHEET 20.00
CHKBK SOFTWARE 25.00

UTILITY 20.00
uTiuTy 30.00
GAMES 20.00
GAME 20.00
GAMES 20.00
GAMES 35.00
GAMES 20.00
GRADE BOOK 20.00
HDOS EMULATOR 40.00
uTILITY 20.00
PROD 198370 1985 9.75
UTILITY 20.00
BUSINESS 60.00
FLIGHT UTILITY 20.00
GAME 20.00
uTiuTy 20.00
UTILITY 20.00
uTiLITY 20.00

COMMUNICATIONS ~ 20.00

August 1991

- ®
This Software Price List contains all
o products available for sale. For a de-
tailed abstract of these products, refer

to the Software Catalog, Software Cata-

OPERATING log Update #1, or previous issues of
PRODUCT NAME PART NUMBER SYSTEM DESCRIPTION PRICE REMark.
H/Z-100 (Not PC) Only
CARDCAT 885-3021-37 MSDOS BUSINESS 20.00
CHEAPCALC 885-3006-37 MSDOS UTILITY 20.00 ra N
CHECKBOOK MANAGER 885-3013-37 MSDOS BUSINESS 20.00 .
CP/EMULATOR 885-3007-37 MSDOS CPM EMULATOR 20.00 Now Available!
BBﬁGN & DRAGONS (ZBASIC) %mg; HE%@ 83'&2 gg'% ZUG soffware s howavailable on &
ETCHDUMP 885.3005.37 MSDOS UTILITY 00 disks. justbput’a 90" at th;e end of tlhe
EZPLOT I 885.3049.37 MSDOS PRINTER PLOT UTIL 25,00 pantnumbec (Le,, 8856014 90). Ao
GAMES (ZBASIC) 885-3011-37 MSDOS GAMES 20.00 add $3.00 to the purchase price of the
GAMES CONTEST PACKAGE ~ 885-3017-37 MSDOS GAMES 25.00 software (i.e., $20.00 +$3.00=$23.00).
GAMES PACKAGE Il 885-3044-37 MSDOS GAMES 25.00
GRAPHIC GAMES (ZBASIC) 885-3004-37 MSDOS GAMES 20.00 \ J
GRAPHICS 885-3031-37 MSDOS UTILITY 20.00
HELPSCREEN 885-3039-37 MSDOS UTILITY 2000
HUG Bréenn PRINT SPOOLER gg;ﬁgg ax;go . UTILITY 20.00 f \
KEYMA! -3046- UTILITY 20.00 ;
KEYMAP 885-3010-37 MSDOS UTILITY g | FAPTOFOWNERS. .. doatiedlel |
KEYMAP CPM-85 885-1245-37 CPM UTILITY 20.00 out! All of ZUG's MS-DOS software is
MATHFLASH 885-8030-37 MSDOS EDUCATION 20.00 | available on 3-1/2" micro-floppies too! |
o malo M meMel, 2R | ok uesaon |
-8042- N } -
SCICALC 885-8028-37 MSDOS UTILITY my | 29200 petoonbes borbesbndl i
SKYVIEWS 885-3015-37 MSDOS ATRONOMY UTILITY 20.00 5-1/4" floppy, just add a "-37".
SMALL-C COMPILER 885-3026-37 MSDOS LANGUAGE 30.00 \ /
SPELLS 885-3035-37 MSDOS SPELLING CHECKER 2000 @ ™ — — — e e e e
SPREADSHEET CONTEST PKG 885-3018-37 MSDOS VARIOUS SPRDST ~ 25.00
TREE-ID 885-3036-37 MSDOS TREE IDENTIFIER ~ 20.00
USEFUL PROGRAMS | 885-3022-37 MSDOS UTILITIES 30.00
UTILITIES 885-3008-37 MSDOS uTIiLITY 20.00 Make the no-hassle connection with
ZPC I 885-3037-37 MSDOS PC EMULATOR 60.00 your modem today! HUGMCP doesn't
ZPC UPGRADE DISK 885-3042-37 MSDOS UTILITY 20.00 give you long menus to sift through like
= H/Z-100 and PC Compatibles some modem packages do. With
885- M ILI !
BOTH SIDES PRINTER UTILITY 885-3048 MSDOS UTILITY 20.00 not the software. Order HUG P/N
CXREF 885-3051 MSDOS UTILITY 17.00 835-30533-37 today, and see if it isn't
DEBUG SUPPORT UTILITIES 885-3038 MSDOS uTiuTy 20.00 the easiestto-use modem software
giﬁg i gggﬁ mg% :ﬂ:'dg 3% available. They say it's so easy to use,
HEPCAT 885.3045 MSDOS UTILITY 500 they dldl:l'tl even need to look at the
HUG EDITOR 885-3012 MSDOS TEXT PROCESSOR 20.00 manual. “It's the only modem software
HUG MENU SYSTEM 885-3020 MSDOS UTILITY 20.00 that | use, and I'min charge of the HUG
uﬂgﬁgEWME CAT UPD #1 332_%; ug% 2202119"3%&%3 33?0 bulletin board!" says Jim Buszkiewicz.
88 MMUNI) :
ICT 8080 - 8088 TRANSLATOR 885-3024 MSDOS UTILITY 20,00 HUGMCP runs on ANY Heath/Zenith
MAGBASE 885-3050 VARIOUS MAG DATABASE 25.00 computer that's capable of running
MATT 885-8045 MSDOS MATRIX UTILITY 20,00 Ms-Dos!
MISCELLANEOUS UTILITIES 885-3025 MSDOS UTILITIES 20,00
PS' PC 82100 UTILITIES 885-3052 MSDOS UTILITIES 20.00
REMARK VOL 8 ISSUES B4-95 885-4008 N/A 1987 25.00
REMARK VOL 9 ISSUES 96-107 885-4009 NJA 1988 25.00
REMARK VOL 11 1SSUES 120-131 885.4011 NA 190 %00
-4011 /A 1]
SCREEN DUMP 8853043 MSDOS UTILITY 30.00 FORSFSTNa 'NIF%HTIL%NA y
UTILITIES Il 885-3014 MSDOS UTILITY 20.00 or » Masteruard, mei-
Z100 WORDSTAR CONNECTION 885-3047 MSDOS uTILITY 20.00 can Express phone orders, telephone the
PC Compatibles Zenith Users' Group directly at (616) 982-
oL e jers grgme g [s s he par mmbary
CLAVIER 885-6016 MSDOS ENTERTAINMENT 20,00 dasc"pm“{ss}'a"".f“am? ’aad"rg"q”l“*
CP/EMULATOR Il & ZEMULATOR 885-6002 MSDOS CPM&ZIOOEMUL 20.00 PROCESIING. By mal, Sanc yolr oiuer, pats
DUNGEONS & DRAGONS 885-6007 MSDOS GAME 20.00 10% postage and handling ($1.00 mini-
Eﬁ%’g I gss_-gg; 3 ug%g EE%EFA&L}?(T uTIL g.% mum charge, up to a maximum of $5.00) to:
HAM HELP 885-6010 MSDOS AMATEUR RADIO 20.00 ff““h U;?Lsggzrg.uo%r io\'qgfﬂ?’ B‘:C"L';g
KEYMAP 885-6001 MSDOS uTILITY 20.00 arbor, MI - VISA, Master
LAPTOP UTILITIES 885-6014 MSDOS UTILITIES 20,00 and American Express require minimum
S me 0 U e, B[] S0 hoCOD
I s 12 ‘ - iD-

- SCREEN SAVER PLUS 885 MSDOS UTILITIES 20.00 i g:;sl_?mscgﬁarfm& g° gg; mp
SKYVIEWS 885-6005 MSDOS ASTRONOMY UTIL 20.00 n? Call Lisa Cobb at (616) 882-3463.
TCSPELL 885-8044 MSDOS SPELLING CHECKER 20.00
ULTRA RTTY 885-6012 MSDOS AMATEURRADIO 20.00
YAUD (YET ANOTHER UTILDSK) 885-6015 MSDOS UTILITIES el ————————|

August 1991 3

LZENITH

data systems
Groupe Bull

REMark Magazine Subscription
& ZLink/COM1 Bulletin Board Information

Your subscription entitles you to receive REMark, our monthly magazine containing articles
specific to Zenith Data Systems computer and generally to other PC Compatible computers. All
articles in REMark are submitted by readers like you. We welcome YOUR articles, and will pay you
for any we accept!

AREMark subscription also allows you full access to the ZLink-COM 1 bulletin board system (COM]1,
for short) described in detail in the brochure. There are many, many megabytes of free and
shareware software available for downloading to registered COM1 users. Full access also lets you
order products from the “Bargain Centre” section of COM1. The money you can save in the
Keyboard Shopping Club will pay for decades of REMark subscriptions.

Last, but definitely not least, your subscription puts you in touch with thousands of other Zenith
Data System computer users, from whom invaluable information can be exchanged.

REMark subscriptions, currently $22.95, can be obtained in one of three ways. First, by ordering one
onthe COM1 bulletin board (see the Keyboard Shopping Club section); second, by phone with VISA,
MasterCard, or American Express; and third, through the US Mail using a credit card, money order
or check made payable to: Zenith Data Systems. Our address is:

Zenith Data Systems Users' Group
P.O. Box 217

Benton Harbor, MI 49023-0217
(616) 982-3463

Once you receive your ID number, registration on the COM1 BBS is NOT automatic. It requires that
you log on, enter your first name and last name EXACTLY as they appear on your REMark mailing
label, and then enter your ID number as your password. The FIRST time you access the board, you
must elect to start a NEW ACCOUNT and answer the various questions. Once you've done this, our
automated scanner will compare the system'’s database against the subscription database. If you
made no mistakes, you will be verified and given full access, within 24 hours.

Onceyou'vebeen authorized as a full member, several important things happen. First, you're given
full downloading privileges of up to one megabyte per day. Secondly, you’ll have full access to the

message boards. And finally, you'll be able to take full advantage of the Bargain Centre product
savings.

Detach this form, enclose your check, money order or credit card information (no cash please).

REMark Subscription / Renewal Form

New Member: [:l Yes [:l No Credit Card #
ID Number: Exp. Date
Address Change? D

Renew New
Name: U.S. Bulk Mail [(J19.95 []22.95
Address: U.S. First Class [J32.95 []37.95
City, State, Zip: APO/FPO (J32.95 []37.95

Surface Overseas

Daytime Phone #: () Air Printed Overseas [(Js2.95 []57.95

Daid R, Veit
Teckuico Whiter
Zeuitk Doto Systems

HISTORY

When the original IBM PC was intro-
duced in 1981, it was equipped with a
video subsystem that was capable of dis-
playing hi-resolution monochrome text
only. For those first PC users in the dawn of
the PC era, it was more than adequate. But
over the next ten years as
PC hardware and applica-
tion software have under-
gone vast improvement,
users have demanded
more from their machines,
and video quality was no
exception. During this
time, a variety of video
adapters have been intro-
duced, all designed to sat-
isfy PC user’s growing de-
mands. Some have gone
on to become industry
standards, while a flurry of
others have failed to gain
popular acceptance and
have either disappeared
entirely or serve as the
basis for proprietary dis-
play systems.

It was during this first
decade that the PC was
undergoing a process of
vast acceptance by the
computing public, and
consequently, the PC in-
dustry was experiencing
tremendous growth. Part of the reason all
of this was happening was that the industry
had embraced the original IBM PC archi-
tecture and had accepted it as a defacto
standard. Subsequent IBM machines, the
PC/XT and PC/AT, were also embraced
and accepted as “standard”. The video
solutions within these IBM machines sur-
vived and have become part of the ac-
cepted PC architecture that is followed to
this day. The IBM video solutions that have
become widely accepted standards are as
follows:

MDA - Monochrome Display Adapter
CGA - Color Graphics Adapter

EGA - Enhanced Graphics Adapter
VGA - Video Graphics Array

Similar to the MDA architecture, but

with additional graphics capabilities that
the IBM did not have, and widely accepted
by industry is the:

HGC - Hercules Graphics Card

IBM hasintroduced other video adapt-
ers, including the Professional Graphics
Controller (PGC) and the 8514/A hi-reso-

lution adapter, but these did not gain wide
acceptance in the industry. The Extended
Graphics Adapter (XGA) is now a new-
comer to the video arena, but at the mo-
ment, it is confined for use in IBM’s PS/2
MicroChannel Architecture machines only.

There are other on-going attempts at
standardizing video architectures, but all
of them fall short in that they cannot re-
place the original architecture as originally
defined by IBM. At present, there is no
getting around the fact that all IBM-com-
patible Industry-Standard Architecture (1SA)
PCs must have an IBM-compatible video
adapter present in the machine. Other
video architectures that have strong back-
ing these days are the Texas Instruments
Graphics Architecture (TIGA) and a VGA

~ A PC Video Printer

extension called SuperVGA as proposed
by the Video Electronics Standards Asso-
ciation (VESA), a consortium of companies
organized for the purpose of promoting
standardization within the PC video indus-

try.

MONITOR BASICS

The display moni-
tors used in today’s
computer systems are
specialized devices
capable of displaying
digital data informa-
tion that is stored in a
video buffer. The
computer’s video dis-
play adapter is used
as a source to drive
the display by provid-
ing data from the
video data buffer and
all control signals re-
quired by the moni-
tor.

Resolution

One of the most
important qualities of
a monitor is the de-
gree of resolution that
information can be
displayed on the
screen. Resolution
tells us how many dis-
crete picture elements (commonly called
pixels or pels) are to be resolved by the
monitor. For example, all VGA analog
monitors are capable of displaying data at
a 640H x 480V format. This means each
line of information is 640 pixels wide (hori-
zontal resolution), and the monitor is dis-
playing 480 lines (vertical resolution), with
each line one pixel high. The monitor can
display lines of information only as fast as
its line rate. This line rate is also known as
the horizontal refresh rate because it is the
rate at which the electron gun(s) will stop
and retrace horizontally from the far right
edge of the screen back to the far left edge
of the screen in preparation for the next
line. The monitor will also refresh the screen
at some particular vertical refresh rate,

August 1991

which is the rate at which the monitor will
retrace vertically from the lower right cor-
ner of the display up to the upper left
corner. This is also known as the frame
refresh rate.

Vertical Resolution

A monitor’s vertical resolution is the
number of lines that will be seen on the
screen. The maximum theoretical number
of lines can be calculated by dividing the
horizontal refresh rate (lines per second)
by the vertical refresh rate (display frames
per second). For a typical analog monitor

used in VGA systems:
31.47 kHz (lines/sec.)
= 52 lines/ frame

60 Hz (frames/sec.)

The VGA analog monitor utilizes a 60
Hz frame rate only in modes requiring a
640x480 resolution. While displaying 525
lines seems possible in the above calcula-
tion, that could only be possible if the
monitor could display all 525 lines and
then perform a vertical retrace to start
again at the top of the screen without any
time elapsing. Instead, we can display only
480 lines because the time it would take to
display the other 45 lines (i.e., 525 - 480) is
used to perform the monitor’s vertical re-
trace operation.

Horizontal Resolution

A monitor’s horizontal resolution is
the number of discrete picture elements
that can be generated across each of the
display lines. The rate at which these pixels
are displayed on the screen is called the
pixel rate, sometimes called the dot rate.
This rate must be very accurate and is
usually controlled by a crystal oscillator.
The theoretical maximum number of pixels
per line can be calculated by dividing the
pixel rate by the line rate. For a typical VGA
analog monitor system:

25.175 MHz (pixels/sec.)
= B00 pixels/line

31.47 kHz (lines/sec.)
Like the calculation for vertical resolu-

tion, this 800 pixels/line maximum is really
impossible. The typical VGA mode will
have 640 pixels per line, with the time
allotted for the remaining 160 pixels (i.e.,
800 - 640) used for the monitor’s horizon-
tal retrace operations.

Monitor Types

There are several types of computer
monitors in use today, and they are gener-
ally classified by the type of input signal
accepted. Monitors can be classifed as
color or monochrome, and will fall into
one of three major categories: composite,
digital, and analog.

COLOR MONITORS

Color monitors contain three electron
guns, one for each of the three primary
colors: red, green, and blue. The face of the
tube is also coated with special phosphors

which are arranged in a repeatable pattern
of red, green, and blue phosphors. Each of
these electron guns are then controlled in
such a fashion as to send an electron
stream at the phosphor groups on the face,
causing them to glow and emit color. The
red gun will excite the red phosphors, the
green gun the green phosphors, and simi-
larly the blue gun will excite the blue
phosphors.

Monochrome Monitors

Monochrome monitors operate simi-
lar to the color monitors except that they
contain only one electron gun. The face of
the tube is also coated with a single color
phosphor material, instead of groups of
red, green, and blue phosphors. The elec-
tron gun will send an electron stream at the
face and excite the phosphors, just like in
the color monitor. Common phosphor
colors formonochrome monitors are white,
amber, and green.

Composite Monitors

Composite monitors accept a com-
posite signal, an analog-type signal that has
all color or monochrome data information,
plus all control signal information encoded
on one signal line. Composite monitors
have only two lines: onessignal line and one
ground line. These monitors are still in use,
but very few are sold new these days. The
technology is simply outdated. The pur-
pose of having composite video output on
a video card was so that one could use a
very inexpensive monitor, with electronics
similar to a television set. The original IBM
CGA and compatible video adapters are
the only adapters that have the capability
to drive a composite monitor.

Digital Color and
Monochrome Monitors

Digital monitors, also called direct-
drive monitors, accept individual TTL-level
signals for each of the required colors. The
number of colors that a digital monitor can

display is dependent on the number of
input color lines. For example, the Color
Display used in Color Graphics Adapter
(CGA) systems has one line for each of the
colors: red, green, blue, plus one for inten-
sity. These four lines are capable of display-
ing colors from a palette of 16 color com-
binations (i.e., 2* = 16). Likewise, a mono-
chrome monitor has only a single color
input line and needs only to be on or off to
display its two colors.

Analog Color and
Monochrome Monitors

Analog monitors came on to the scene
when higher color depth and resolution
were required. It has three analog input
color lines, one each for red, blue, and
green. The color displayed is determined
by the voltage applied to each of the color
lines, not simply by the “on” or “off” state
of the color lines as in digital monitors. For
example, if the voltage on any particular
color line increases, the intensity of that
color will likewise increase. The number of
colors an analog monitor can potentially
display is practically infinite, because each
of the color input lines can have its voltage
level (i.e, intensity) varied to some level to
achieve a desired color. The primary ad-
vantage of this type of setup is that virtually
any color combination is possible by vary-
ing the signal strength of each of these
color lines. In reality, things are a little
different. Typically, a 6-bit digital-to-analog
converter (DAC) will control the voltage
level for each of the three primary color
lines. So, instead of an infinite number of
possible intensity levels for each of the
lines, the DACs will limit each color to one
of 64 discrete levels (2° = 64). With three
DACs, the system is then capable of select-
ing colors from a palette of 262,144 colors
(i.e, 21*'81=262,144 = 256K). Monochrome
systems are similar except that they have
only one “color”. Its six-bit DAC would
therefore generate 64 (i.e., 2¢ = 64) “col-
ors”, seen as shades of gray on a mono-

Horis. Vert. Monitor
Adapter| Pixel Clock Refresh Refresh TYPe Resolution
MDA 16.257 MHz 18.43 KHz| 50 Hz MD, ECD 720x350
HGC 16.257 MHz 18.43 KHz| 50 Hz MD, ECD 720x350
CGA 14.318 MHz 15.75 KHz| 60 Hz cD, ECD 640x200
EGA 16.257 MH:z 21.85 KHz| 60 Hz ECD 640x350
14.318 MHz 15.75 KHz| 60 Hz cD 640x200
16.257 MHz 18.43 KHz| 50 Hz MD 720x350
VGA 25.175 MH:z 31.47 KHz| 70 He Analog 640x350
25.175 MHz 31.47 KHz| 70 Hz Analog 640x400
25,175 MHz 31.47 KHz| 60 Hz Analog 640x480
25.175 MH:z 31.47 KHz| 70 Hz Analog 720x400
Monitor legend: MD = IBM Monochrome Display or egquivalent
CD = IBM Color Display or equivalent
ECD = IBM Enhanced Color Display or equivalent
Analeg = IBM VGA Analog display or esquivalent
Figure 1

August 1991

chrome monitor.

Interlaced and Non-Interlaced Monitors

When IBM introduced its 8514/A hi-
resolution graphics adapter in 1987, it re-
quired use of an “interlaced” monitor. [t is
the only video adapter in common use
today that requires use of an interlaced
display.

Most computer monitors will display
all horizontal scan lines every time the
entire display frame is refreshed. For ex-
ample, if there are 768 lines of resolution,
the monitor will be driven to display all 768
lines before a frame refresh. This is normal,
“non-interlaced” operation. Interlaced
monitors take another approach by alter-
nately displaying all even-numbered scan
lines on one frame refresh, and then all
odd-numbered scan lines on the following
frame refresh. This interlacing technique
requires two frame refreshes to get all of
the information to the screen instead of the
usual onerefresh. Asin ourexample above,
even-numbered lines 0,2,4,...764,766 are
displayed during one frame, and then odd-
numbered lines 1,3,5,..765,767 are dis-
played on the following frame. A higher
resolution requires a much higher line rate,
but a smaller line rate can be used if an
interlacing technique is utilized. This tech-
nique is also used to compensate for hard-
ware thatis simply inadequate (read: cheap)
for the task it is required to perform. Inter-
laced displays generally have a slightly
higher frame refresh rate than non-inter-
laced displays in order to keep the resul-
tant display flicker to a tolerable minimum.
Another technique used to reduce display
flicker in interlaced displays is for the dis-
play to utilize long-persistence phosphors
that will glow for a slightly longer period of
time than “normal” medium-persistence
phosphors when excited by the electron
beam.

IBM-Compatible Display Monitors

There are several types of “standard”
monitors that are used with IBM video
adapters. Each of these monitors were
introduced by IBM and were designed to
operate with a specified adapter (See Fig-
ure 1).

ADAPTER BASICS

All popular display adapters for PC-
compatible computers are considered
“dumb” adapters because they have no
on-board processing capabilities. All video-
related operations are handled by the sys-
tem processor. The MDA, Hercules, CGA,
EGA, VGA, and SuperVGA adapters are in
this “dumb- adapter” class. There are other
display adapters available that do have on-
board processing capability, but these are
limited to some of the newer adapters that
provide extra horsepower for handling
higher color and pixel resolutions, and
graphic intensive applications such as Mi-

crosoft Windows 3.0 and CAD packages.
This wouldinclude adapters based on Texas
Instruments” 34010 and 34020 graphics
processors or TIGA software interface, and
IBM’s 8514/A and XGA adapters.

The primary purpose of any PC-com-
patible video adapter is to store, manipu-
late, and send data to the display. The
manner in which it does these tasks will
differ among adapter types.

Alphanumeric Data Format

All PC display adapters handle text
operationin a similar manner. A video data
buffer, usually implemented with a block of
dual-ported video RAM, is used to store
information on each character to be dis-
played on the screen. Each character to be
displayed uses two bytes of video memory
to describe it. One byte describes the
actual character with an ASCII code (00-
FFh). A second byte describes the actual
character’s attributes. Depending on the
adapter type, these attributes are intensity,
blinking, and normal or reverse video.

To get characters onto the screen, the
adapter’s CRT controller circuitry reads the
contents of a pair of video memory loca-
tions: one is the character’s ASCIl code,
the other its attributes. The ASCII code is
then translated by an on-board character
generator containing the dot patterns nec-
essary to generate each character. These
patterns are sent off to a shift register
where they can be fed to the video display
one dot at a time. On the way out, a special
video logic circuit can modify the dot
stream according to the character’s de-
sired attributes.

The actual size of the characters seen
on the screen differs among the adapter
types. Since different adapters have differ-
ent display resolution capabilities, one can
quickly calculate the size of the “cell” or
“block” reserved for each character’s dot
pattern. For example, the VGA utilizes a
720 x 400 pixel resolution when in its
default text mode. The resultant 80 column
x 25 lines of text indicate that each cell is 9
pixels wide and 16 pixels high (9 x 16 cell).

MDA video mode:
Video Resolution Text Char |# Display| Video
Mode | Type k Colors Scheme | Cell Pages Buffer
7 text | 720 x 350 mono | 80 x 25 | 9x14 8 B8000Oh
CGA video modes:
Text Char |# Display| Video
Mode| Type |Resolution| Colors| Scheme | Cell Pages Buffer
0 | text | 320x200 16 40 x 25 8x8 8 B800Oh
1 | text | 320x200 16 40 x 25 8x8 8 B8000h
2 text | 640x200 16 80 x 25 8x8 8 B8000h
3 | text | 640x200 16 80 x25 8x8 8 B8000h
4 APA | 320x200 4 40 x 25 8x8 1 B8000Oh
5 APA | 320x200 4 40 x 25 8x8 1 B800Oh
6 APA | 640x200 2 80 x 25 8x8 1 B8000h
EGA video modes:
Text | Char|Display| Video
Mode|Type |[Displ.|Resolution|Colors| Scheme| Cell| Pages | Buffer
0 |text | CD 320x200 16 40x25 |8x8 8 B8000h
0 |text | ECD 320x350 16 40x25 |8x14 8 B800Oh
1 |text | CD 320x200 16 40x25 |8x8 8 B8000h
1 [text | ECD 320x350 16 40x25 |8x14 8 B8000Oh
Figure 2 (Cont'd.)

August 1991

2 |text | CD 640x200 16 80x25 |8x8 8 B8000ONh
2 |text | ECD 640x200 16 80x25 |8x14 8 B8000Oh
3 |text (o)) 640x200 16 80x25 (8x8 8 B800Ch
3 |text | ECD 640x200 16 80x25 |8x14 8 B8000h
4 |APA |CD/ECD| 320x200 4 40x25 |8x8 - | B8000h
S |APA |CD/ECD| 320x200 4 40x25 |Bx8 1 B8000h
6 |[APA |CD/ECD| 640x200 2 80x25 (8x8 1 B800Oh
7 |text (MD 720x350 Mono | 80x25 |9x14 8 B000Oh
D |APA |CD/ECD| 320x200 16 40x25 |8x8 2/4/8 | A000Oh
E |APA |CD/ECD| 640x200 16 80x25 |8x8 1/2/4 | ACDOOh
F |APA |MD 640x350 Mono | 80x25 |9x14 1/2 A0000h
10 |APA ECD 640x350 L] 80x25 |8x14 1/2 A0000h
Legend:
MD = IBM Monochrome Display or equivalent
CD = IBM Color Display or equivalent
ECD = IBM Enhanced Color Display or equivalent
1/2/4= 64K/128K/256K video memory installed
2/4/8= 64K/128K/256K video memory installed
VGA video modes:
Colors/ Text | Char|Display| Video
Mode(Type | Emul.|Resolution|Palette | Scheme| Cell| Pages | Buffer
0,1 |text | CGA 320x200 16/256K | 40x25 |8xB 8 B8000h
0,1 |text | EGA 320x350 |[16/256K | 40x25 |8x14 8 B800Oh
0,1 |text | VGA 360x400 16/256K | 40x25 [9x16 8 B800OOh
2,3 |text | CGA 640x200 |16/256K | 80x25 |8x8 8 B800Oh
2,3 [text | EGA 640x350 |16/256K | 80x25 |Bx14 8 B8000N
2,3!|text | VGA 720x400 [16/256K | 80x25 |9x16 8 B800Oh
4,5 | APA | CGA 320x200 4/256K | 40x25 [8x8 1 B800Oh
6 | APA | CGA 640x200 2/256K | 80x25 |8x8 1 B8000Oh
7 |text | MDA 720x350 MDA Mono| 80x25 |9x14 -] BO0OOOh
7! |text VGA 720x400 |VGA Mono| 80x25 |9x16 8 B0O0OOh
D |APA EGA 320x200 16/256K 40x25 |8x8 8 A0000Oh
E |APA EGA 640x200 16/256K BOx25 |8x8 4 A0000h
F |[APA EGA 640x350 Mono 80x25 [8x14 2 A0000Oh
10 |APA 640x350 16/256K | 80x25 [Bx14 2 A0000h
11 |APA VGA 640x480 2/256K | 80x30 |8x16 1 A0000h
12 |APA VGA 640x480 16/256K BOx30 |(8x16 1 A0000h
13 |APA VGA 320x200 256/256K| 40x25 |Bx8 1 A0C0OOh
Legend:

Mode 3! = power-on default mode when color monitor attached
Mode 7! = power-on default mode when mono monitor attached

Figure 2

Typically, the character’s dot pattern will
utilize only a portion of the cell, leaving
several pixels unused on all sides to en-
hance the character’s readability.

Graphics Data Format

Data in the video buffer can also rep-
resent graphical images on the screen.
However, graphics-oriented operating
modes utilize video memory in a different
manner than do text modes. Video mem-
ory is used to store color information for
individual pixels on the screen, and a de-
fined mapping scheme provides a correla-
tion between any particular pixel on the
screen and a location in video memory. To
display graphicalimages on the screen, the
computer’s processor will work with the
video adapter and simply read sequential
video memory locations, translate the color
information into a form suitable for send-
ing to the display, and then send the infor-
mation out to the screen for viewing.

The method at which color informa-
tion is stored for each pixel is dependent
on the number of colors possible for each
pixel. For example, 4 bits are needed to
store a unique number that represents one
of 16 possible colors (24 = 16). In similar
fashion, 8 bits are needed to uniquely
identify one color from a selection of 256.

Video Modes

The PC world has several video adapt-
ers thatare thought of as “standard”. These
standard adapters support numerous video
modes, each having a mix of text and
graphics modes, all with slightly different
flavors in terms of resolution capabilities,
color depth, character cell size, number of
display pages, and starting address of the
video memory buffer. Each adapter’s oper-
ating modes are shown in Figure 2.

Adapter Hardware Components

AllPCcompatible video adapters have
specific functional components:

Video Buffer — Also known as “video
memory”, information to be displayed on
the screen is stored here in a block of RAM
that is mapped into the host processor’s
memory allocation map. The CPU mem-
ory area utilized for a video buffer is in the
range AOOOh - BFFFFh, with the exact size
and starting point dependent on adapter
and operating video mode.

The size of this video buffer is also
important as it determines how many col-
ors can be displayed on the screen, and
how many display pages can be stored. For
example, standard VGA systems have
256Kb of video memory and VGA mode
12h allows for a 640x480 resolution with
16 colors. Storing color information for
one pixel requires 4 bits, or 2 pixels per
byte. Simple arithmetic tells us that 153,600
bytes of video memory are required to
store one display page of information while
in this mode. Displaying at 640x480 with

August 1991

256 colors, a common “extended-VGA”
mode (not IBM-compatible), would then
require 300Kb because storing color infor-
mation for one pixel requires 8 bits, twice
that of standard VGA mode 12h, and be-
yond the 256K capability in standard VGA
systems.

Example: Minimum memory required
for 640H x 480V resolution:

16 color: 640 x 480 pixels x (1 byte/
2 pixels) = 153,600 bytes = 150K

256 color: 640 x 480 pixels x (1 byte/
1 pixel) = 307,200 bytes = 300K

Cathode Ray Tube Controller (CRTC)
— The CRTC is the source of all horizontal
and vertical timing signals required by the
monitor.

Character Generator — A character
generator takes the ASCll code of an alpha-
numeric character and translates it into a
series of dots that can be sent out to the
display screen. The generator contains dot
patterns for every character that can be
displayed. This character generator is in a
non-accessible ROM for MDA, HGC, and
CGAsystems, and in video memory (down-
loaded from the ROM BIOS and/or from
application programs) in EGA and VGA
systems.

Attribute Decoder — Before “dots”
orignating from the character generator
are sent to the monitor for display, they can
be modified with character attributes such
as brightness, underlining, and blinking
functions.

Video Signal Generator — There are
three types of signals sent to the monitor,
depending on the type of adapter and
monitor being utilized. They are compos-
ite, digital, and analog. Each adapter has
the capability to output signals as shown:

Adapter Output
MDA Digital
Hercules Digital
CCA Digital, Composite
EGA Digital
VGA Analog
ADAPTER TYPES

There are several types of video adapt-
ers used in IBM-compatible PCs, with vary-
ing degrees of resolutions, colors, and fea-
tures. Next is an overview of the architec-
ture and capability of each of the industry
standard video adapters, plus a few non-
standard ones as well.

Monochrome Display Adapter (MDA)
The Monochrome Display Adapter
(MDA) was first introduced with the origi-
nal IBM-PC. As its name implies, it was
intended to work with the Monochrome
Display, a single-color display found in
offices everywhere. Its primary advantage
is that it's a very low cost solution for
displaying crisp, clear text. For most busi-
ness and academic applications, this is
adequate. However, it is limited in that it
cannot display any graphics other than the

Address:

B000:0000 |char(0) attribute(0) char (4F) attribute(4F)

B0O00:00A0 |char(50) attribute(50)

BO00:0F00 |char(780) |attribute(780)|... |char(7CF) |attribute(7CF)
Figure 3

crude “block” graphics that are part of the
standard alphanumeric character set.

The heart of the MDA is a 6845 CRT
controller and 4K bytes of dual-ported
static RAM. The 6845 is a programmable
device used primarily to handle the timing
and control signals for the display system.
The static RAM, more commonly called
video RAM or video memory, is used as a
buffer to store information on each charac-
ter to be displayed on the screen. Since
both the 6845 and the host CPU can
access the video RAM (although notat the
same time) the memory is considered to
have two output ports, hence the term
dual-port. This video memory contains
character information that must be trans-
lated to a form more suitable for display on
the screen.

From a programmer’s view, the MDA
looks like four I/O ports and a 4K byte
block of memory starting at host address
B000:0000. See Figure 3. With an 80 col-
umn x 25 line display, there are 2000
display locations that need to be described
in memory. The video memory is set up in
such a fashion that the first 2000 even-
address memory locations contain the
ASCIl character code, while the odd-ad-
dress memory locations contain the attrib-
utes of the characters. Therefore, 4000 of
the 4096 bytes available are used to de-
scribe the contents of one display screen.
Each display screen is known as one dis-
play page, so the MDA’s 4K video memory
supports only one display page.

One additional feature of the original
MDA card was the inclusion of a parallel
printer port. This option was added so that
only one PC backplane slot was used to
handle both video and printer functions.

Color Graphics Adapter (CGA)
IBM’s first bit-mapped color adapter
forthe PC was their Color Graphics Adapter

(CGA). It can operate in 40 or 80 column’

x 25 line text mode or in one of three bit-
mapped graphics modes. The basic hard-
ware architecture is very similar to the
MDA'’s, with a 6845 CRT controller and
16K bytes of video memory.

Forty column text modes are available
but are rarely used in PC operations any-
more, and were never taken seriously by
the computerindustry, anyway. They were
initially offered so thata television could be
used in place of a computer monitor.

Functional operation of 80 column x

25 line text is essentially identical to that of
the MDA. The methods used to store
character information in memory and to
translateitinto a form thatcan be displayed
are the same.

One importantdifference in text mode
is the utilization of an 8 x 8 character cell.
This smaller cell size reduces the readabil-
ity of the text considerably. The characters
within the cell typically use a 7 x 7 portion
of the 8 x 8 cell leaving only one pixel for
spacing. For this reason alone, many seri-
ous computer users will not use a CGA for
text-based applications. The MDA is a far
better choice.

The CGA’s memory organization for
text modes is similar to the MDA with two
major differences: one is that the CGA has
16K of video memory versus 4K in the
MDA, and its starting address is at
B800:0000 rather than at BO00:0000. The
manner in which character information is
stored is the same as for the MDA. Four
thousand bytes (4000) are needed to store
one page of text information. With 16K
available, four display pages are possible.

The CGA also has three graphics
modes from which to choose. They are,
appropriately enough, low, medium, and
high-resolution. The low resolution mode
is 160 x 200 pixels. Oddly enough, CGA
originator IBM does not support this mode.
That is of litle concern because no one
really cares about this mode anyway, and
few, if any CGA clone manufacturers sup-
port this mode either. It may allow for 16
colors, but the resolution is so low, that it is
practically useless.

The medium resolution graphics mode
is 320 x 200 pixels, with four simultaneous
colors allowed. This mode is generally a
compromise between resolution and color
depth. Itis probably the most popular CGA
graphics mode, butit certainly is nothing to
write home about.

The high resolution graphics mode is
640 x 200 pixels, but it only has 2-color
capability. These two colors can be se-
lected through the 6845’s Color Select
register.

The memory organization for CGA
graphics modes is relatively simple and
straightforward, similar to MDA, but cer-
tainly unique to CGA. Pixel information for
all even-numbered display raster lines is
stored in memory starting at location
B800:0000 and information for odd-num-
bered raster lines starts at address

August 1991

B800:2000H. Simply, the lower 8K is for
even lines, the upper 8K for odd lines.

Video output from a CGA can be sent
to one of three different types of displays.
A 2-wire composite output connector al-
lows the connection of a monochrome or
color composite display that follows the
NTSC standard. A similar composite-type
output is available for a special demodula-
tor for use with a television. These two
methods are rarely used. The most useful,
and popular, method is to connect a TTL
monitor that is specially designed to oper-
ate with the CGA.

One of the most annoying problems
associated with CGA has already been
mentioned, that of text being difficult to
read. Equally annoying is the obnoxious
problem of “flicker” and “snow”, The flicker
is due essentially to the slow processing
speed of the original PC and XT class of
machines and shows up when the display
screen is being scrolled while in high-reso-
lution, 80-column text mode. The problem
of “snow” is due to the CPU updating
video memory during periods of time when
the CRT controller is also accessing video
memory for screen refresh. If memory is
updated only during the display’s vertical
retrace periods, when the CRT controller is
not accessing the memory, then snow
could be eliminated. However, this retrace
period is generally too short for a page of
video memory to be completely updated
when the CGA is installed in a slow PC or
XT class of machine. One method at get-
tingaround thisannoyanceis to turn off the
display’s electron beam for the time neces-
sary for the CPU to update the video
memory for the entire display screen. This
method eliminates the “snow” but it essen-
tially robs Peter to pay Paul because it
reintroduces our first problem: flicker.

From the progammer’s view, the CGA
looks like five I/O ports and a 16K byte
block of memory starting at B800:0000.

Hercules Graphics Card (HGC)
Hercules Computer Technology, Inc.
was one of the companies that took advan-
tage of IBM's mistake in not having graph-
ics capability on the MDA. If a customer
wanted graphics, they had to purchase not
only a CGA, but also a new display, be-
cause the CGA output was not compatible
with the original Monochrome Display.
On top of additional financial outlays to get
graphics, the customer had to put up with
some really terrible text quality in the CGA.
The originators of Hercules had a bet-
ter idea that was so good at its time that it
too, became a standard in a PC world
dominated by IBM. The beauty of the
Hercules Graphics Card (HGC) was its
absolute emulation of the original IBM
MDA card while operating in text mode,
plus the added advantage of providing hi-
resolution monochrome pixel graphics. The
HGC was designed to take advantage of

the user’s existing monochrome display
system and it even included a parallel
printer port, just like the original MDA. The
makers of the HGC also managed to get
the support of Lotus Development Corpo-
ration in having the extremely popular
Lotus 1-2-3 speadsheet package utilize HGC
graphics.

Since the functionality of the HGC is
so similar to the MDA, it should be no
surprise that a 6845 CRT controller is util-
ized. But instead of putting a mere 4K or
16K of video memory on board, a full 64K
was installed. This amount of memory al-
lowed for 16 display pages while in text
mode, and for two display pages while in
graphics mode.

The 64K of memory was unusual in
that it exceeded the memory space nor-
mally allocated for monochrome display
systems. Instead, it was arranged as two
banks of 32K, one situated at BO00:0000,
the other at B800:0000. This second bank
conflicted with the memory space nor-
mally used by the CGA and later, the EGA
and VGA. To prevent any problems in the
eventa CGA and a HGC were co-installed
into the same PC, the HGC had a provision
so that at boot-up it would allow access to
only the first 32K memory bank at
B000:0000. Using only this first half of
memory is what Hercules calls its HALF
graphics mode. When both banks are ac-
cessible, using a full 64K, it was considered
to be in FULL graphics mode.

The HGC can be accessed using the
same four I/O ports as the MDA, plus it has
one extra |/O port peculiar to HGC, and
through 64K of memory starting at
B000:0000. The HGC has defined two
additional bits in the CRT Control Port
(03B8H) and there is also an additional
Configuration port at 03BFH. A bit in the
CRT Control Port determines whether the
card operates in text or graphics mode,
another bit selects the active display page
while in graphics mode. The configuration
port allows the user to enable or disable
the second graphics page. Turning off the
second page frees up the 32K memory
block at B800:0000 and allows the user to
co-install an EGA or CGA board.

Enhanced Graphics Adapter (EGA)

In 1984, IBM introduced its Enhanced
Graphics Adapter (EGA). This video solu-
tion was widely welcomed as it provided a
superior solution for MDA and CGA users
alike. The primary intent of the EGA was to
provide higher resolution and greater color
depth, emulate the MDA and CCA, and to
eliminate the need for two standards: MDA
for text and CGA for color and graphics.
Using the EGA allowed a user to get by
with one video adapter for all existing text
and graphics modes, plus it added a few
higher resolution modes, and it allowed
the user to continue using existing display
monitors. Note that the EGA can emulate

the MDA and CGA. The MDA and CGA
use 6845 CRT controllers while the EGA
does not. The problem this poses is that
software thatdirectly manipulates the MDA
and CGA register set stands a very good
chance of NOT running on the EGA.

With the increase in display resolution
capability to 640 x 350 pixels, the existing
text modes were enhanced. An 8x14 char-
acter block size was chosen, with the ac-
tual character typically using a 7x9 matrix
within the block. This brought about a
drastic improvement in text quality when
the EGA emulates any of the CGA text
modes (0-3). Emulation of the MDA in
mode 7 did not change, however. It still
utilized a 720 x 350 pixel resolution and a
9x14 character block.

EGA graphics were also greatly en-
hanced, both in functionality and in com-
plexity. The increased resolution capability
allowed for four new video modes, three
color and one monochrome. The color
modes take advantage of the increased
resolution and color capabilities inherent
to the EGA while the monochrome mode
was IBM's attempt at establishing a mono-
chrome graphics standard. Note thatin this
attempt at establishing their own mono-
chrome graphics standard, IBM has virtu-
ally ignored the Hercules standard. Most
manufacturers of EGA clones however do
notignore the fact that HGC compatibility
is an important feature and have likewise
included HGC graphics capability in their
board products.

IBM also designed the EGA so that it
would play on any standard IBM monitor,
whetheritbe the old, original Monochrome
Display (MD), the Color Display (CD), or
the newer Enhanced Color Display (ECD).
This feature precluded the necessity for
users to go out and buy a new display. The
Monochrome Display could be used to
display MDA compatible text mode 7 or
the new, high-resolution monochrome
graphics mode OFH. The Color Display can
be used to display any of the existing CGA-
level modes 0-6. The Enhanced Color Dis-
play is necessary to utilize any of the
enhanced color modes introduced by the
EGA (modes ODH, OEH, and 10H).

One of the unique features of the EGA
architecture is its implementation of video
memory within the confines of the PC
memory allocation map. The EGA was
designed to accomodate anywhere from
64K to 256K of video memory. And with
the advent of higher display resolutions
and greater color depth, more physical
memory was needed than was available in
the PC’s memory allocation. IBM came up
with a novel method of storing video infor-
mation in several “banks” of physical
memory and then bank-switched a section
of this physical memory into an available
PC memory space as needed. The EGA is
able to “see” four banks, or planes, of

Continued on Page 35

10

August 1991

This is the tenth installment in my hit-
or-miss series on assembly language.
Those of you who have been following the
series should be familiar with the 8086
instruction set, and you should be able to
write simple programs that can read the
keyboard and/or output to the screen. In
this article, | will discuss how to read and
write disk files.

Disk I/O Methods

In MS-DOS, there are three different
ways provided to read and write disk files.
These are the FCB method, the file handle
method, and the I/O redirection method.
The FCB (File Control Block) method is a
carry-over from the old CP/M 8-bit oper-
ating system, and it was the only method
available in version 1 of MS-DOS. How-
ever, since the introduction of MS-DOS 2
and more versatile disk I/O methods, the
FCB method has become obsolete, and
we will not discuss it here. We may discuss
file control blocks in connection with
other tasks in the future, however, be-
cause there are a few things that are best
done with them.

The file handle method is the one most
commonly used these days. This method
allows files to be specified using complete
paths, whereas the FCB method only
works with file names.

Disk Operations Using 1/0 Redirection
The I/O redirection method is the easi-
est one to work with, so it is the first
method I will discuss. This method uses the
ability of MS-DOS to redirect the standard
input and output devices (the keyboard
and screen) to other "devices", or files. In
other words, the MS-DOS functions that
you have already learned for inputting
from the keyboard and writing to the
screen can be used to read and write files.
To illustrate how easy it is to read and
write disk files using 1/O redirection, sup-
pose MS-DOS had no COPY command
and you had to write your own. Figure 1
shows a program that can do the job.
Call the assembly language file

Part 10
Disk 1/0O

Pat Swayne
ZUG Software Engineer

CS:CODE, DS: CODE, ES: CODE, S5: CODE

;CHECK DEVICE STATUS
;ANY CHARACTER?
;IF NOT,

;GET CHARACTER, NO ECHO

;OUTPUT CHARACTER

JEXIT

CODE SEGMENT
ASSUME
ORG 100H
START: MOV AH, OBH
INT 21H
OR AL, AL
Jz DONE
MOV AH, 8
INT 21H
MoV DL, AL
MOV AH,2
INT 21H
JMP START
DONE: INT 20H
CODE ENDS
END START
Figure 1. XFER, a simple file copy program.

EXIT

XFER.ASM, and assemble it to XFER.COM.
To use it to copy files, enter

XFER <{source »destination

The source and destination can be any
valid path, as long as the file name is
included in each path, and you include the
< and > symbols. This program does not
do "wild cards", and it cannot be used to
copy from the CON device (the keyboard)
to a file because of the status check which
is used to check for the end of afile. If you
experiment with XFER, you will find that it
is slower than the COPY command. In
fact, it is a rather inefficient way to copy.
files, not only because of the overhead
involved in I/O redirection, but because it
only copies one character at a time. If your
system has a disk cache, that will speed
things up. If you are still using MS-DOS
version 2, be prepared to wait a L-O-N-G
time for the program to work. Another
problem with XFER is that it does not
preserve the date/time stamp of the origi-
nal file. The copy will be stamped with the
current date and time. Actually, a file copy
program is a comparatively difficult pro-
gram to write, if it is to be as versatile as

the DOS COPY command.

Another somewhat serious problem
with XFER is that if the source file contains
a byte with the number 3 in it (the value
3, not the ASCII character 3), XFER will
stop copying and exit when it reaches that
byte. That is because 3 is the ASCII value
of Control-C, and the I/O functions used
in XFER are set up to exit to MS-DOS when
a Control-C is detected. This problem is
fixed if function 3Fh is used for input. The
companion function 40h can be used for
output. Figure 2 shows a version of XFER
that uses these functions.

This version of XFER not only fixes the
Control-C problem, but it can also be used
to copy from the CON device to a file.

You may be thinking that the I/O redi-
rection method of working with files is not
good for much, but actually it does serve
well for one type of program - the filter. A
filter is a program that reads text or other
data, alters it somehow, and writes it back
out. For example, there are filters that
convert tabs to spaces and spaces to tabs.
In fact the first version of XFER actually is
a filter that converts tabs to spaces. If you
entered the source code for it using tab
characters instead of spaces between the

August 1991

11

i1STD INPUT HANDLE
DX,OFFSET BUFFER ;PUT CHARACTER HERE
;READ ONE CHARACTER

;READ A CHARACTER
;ANYTHING READ
;IF NOT, EXIT

;STD OUTPUT HANDLE

;WRITE CHARACTER

; EXIT
;BUFFER CHARACTERS HERE

CCDE SEGMENT
ASSUME CS:CODE,DS:CODE, ES:CODE, SS:CODE
ORG 100H
START: MOV BX,0
MOV
MOV CX,1
MOV AH, 3FH
INT 21H
OR AX,AX
JZ DONE
MOV CX.,1
MOV AH,40H
MOV BX,1
INT 21H
JMP START
DONE: INT 20H
BUFFER LABEL BYTE
CODE ENDS
END START

Figure 2. A version of XFER that uses functions 3F and 40.

CODE SEGMENT
ASSUME CS:CODE,DS:CODE, ES:CODE, S5: CODE
ORG 100H
START: MOV BX,0 ;STD INPUT HANDLE
MoV DX,OFFSET BUFFER ;PUT CHARACTER HERE
MOV CX,1 ;READ ONE CHARACTER
MOV AH, 3FH
INT 21H iREAD A CHARACTER
OR AX, AX ;ANYTHING READ
Jz DONE ;IF NOT, EXIT
AND BYTE PTR BUFFER,7FH ;STRIP HIGH BIT
MOV cX,1
MOV AH, 40H
MOV BX,1 ;STD OUTPUT HANDLE
INT 21H ;WRITE CHARACTER
JMP START
DONE : INT 20H JEXIT
BUFFER LABEL BYTE ;BUFFER CHARACTERS HERE
CODE ENDS
END START

Figure 3. STRIP, a simple filter program.

columns, try copying it with the first XFER
and then examine the copy with a pro-
gram that can distinguish between tab
characters and spaces (some word proces-
sors can do that, or you can use the D
(dump) command of DEBUG).

By adding one line of code to the
second XFER program, you can change it
into a filter that strips the high bit from
characters in the input file. The modified
program is shown in Figure 3.

Call this modified version of the file
STRIP.ASM, and assemble it to
STRIP.COM. Make sure that the output
name you specify is not the same as the
input name, or on a different drive/direc-
tory, when you run this program.

One thing you can do to greatly im-
prove the efficiency of a program like
STRIP is to buffer the input and output. In
other words, make it read and write more

than one byte at a time. For a filter like
STRIP, which outputs the same number of
bytes that it inputs, buffering is fairly easy
to do. Figure 4 shows a version of STRIP
that buffers input and output.

Enter this program as STRIP2.ASM,
and assemble it to STRIP2.COM. STRIP2
assumes that you have at least 64k of free
memory in your computer. If you do not
have that much, the program will probably
"crash" if you try to strip a large file. To
compare the speed of the two STRIP ver-
sions, try running a file about 8k in size
through each version.

It is relatively easy to add buffering to
a program that does not add or subtract
bytes from a file as it processes it, but a
filter that does add or subtract bytes, such
as a tabs to spaces filter, is more difficult
to program with buffering. With this type
of program, you need two buffers - one to

hold the input, and one to hold the output.
I find that using a large buffer for input, and
a smaller buffer for output (1k for example)
works fine for these programs, as does
having two moderately sized buffers (16k
for example). If you would like to study the
source code for some two buffer filter
programs, get my "Yet Another Ultilities
Disk", ZUG p/n 885-6015.

The Handle Method

The handle method of file I/O is like
the I/O redirection method when func-
tions 3F and 40 are used, except that
additional work must be done. The file
must be "opened" before it can be read or
written, and "closed" after the operation.
To illustrate the handle I/O method, | have
written a "real" little program called
OneCopy, which is listed following this
article. Type in the listing as OC.ASM, and
assemble it to OC.COM. OC is used to
copy files from one floppy disk to another
using only one floppy drive. To use OC,
enter

oc filename

where filename is the name of the file or
files you want to copy. You can use wild
card characters (* and ?) to specify more
than one file to copy. You can also specify
a path. OC will prompt you with "Insert
source, press Enter...". Insert the disk con-
taining the file(s) to copy and press Enter.
OC will read the first file to copy into
memory, and prompt with "Insert destina-
tion, press Enter...". Remove the disk con-
taining the file, and replace it with the disk
you want to copy to and press Enter. OC
will copy the file to the disk, and prompt
for the source disk again. If there are more
files to copy, it will continue this process
until all files are copied. OC only uses 64k
of memory for itself and the buffer space
for copying files, so if you are copying a
large file, it may prompt you to insert the
source and destination several times for a
single file. OC lists the name of each file
on the screen as it copies it.

If OC finds the same path on the des-
tination disk that you specified on the
source disk, it will put the copied file(s)
there. If it cannot find the path, it will put
the file(s) in the root directory of the des-
tination disk. If a file with the same name
as one your are copying already exists on
the destination disk, OC will prompt with
"File exists, delete?". If you type Y, the file
will be deleted and replaced with the new
one. If you type N, OC will go on to the
next file (if any), or quit. If OC encounters
a problem trying to write out a file, it will
print an error message and go on to the
next file, or quit.

Here is an explanation of how OC
works. Before the start of the program are
some labels defined using ORG state-
ments. The first one, ZERO is defined be-
cause of a quirk in the MS-DOS assembler

12

August 1991

CODE SEGMENT
ASSUME CS:CODE,DS:CODE, ES : CCDE, SS: CODE
ORG 0
ZERO LABEL NEAR
ORG 100H
START: MOV SP,OFFSET START ;PUT STACK HERE
CPYLP: MOV BX, 0 ;STD INPUT HANDLE
MOV DX,OFFSET BUFFER ;PUT DATA HERE
MoV CX,ZERO-BUFFER ;READ BUFFER FULL
MoV AH, 3FH
INT 21H ;READ A CHARACTER
OR AX,AX ;ANYTHING READ
Jz DONE ;IF NOT, EXIT
MOV SI,OFFSET BUFFER ;POINT TC BUFFER
MoV CX, AX ;COUNT TO CX
STRLP: AND BYTE PTR [SI],7FH ;STRIP HIGH BIT
INC s1
LOOP STRLP
MOV CX, AX ;GET COUNT AGAIN
MOV AH, 40H
MoV BX, 1 :STD OUTPUT HANDLE
INT 21H ;WRITE DATA
JMP CPYLP ;COPY REST OF FILE
DONE: INT 20H ;EXIT
EVEN
BUFFER LABEL BYTE ;BUFFER DATA HERE
CODE ENDS
END START
Figure 4. A version of STRIP that uses 1/O buffering.

and its clones. The second label, ARG, is
the location of any arguments that you
type after the program name when you
run the program. When you run a program
in MS-DOS, those "command line argu-
ments" are placed at location 80h in the
program segment prefix (PSP), a 256-byte
block of memory that MS-DQOS creates for
each program it runs. In a .COM file, the
PSP is always the first 256 bytes before the
beginning of the program and so the com-
mand line arguments are always at ORG
80H.

The location 80h in the PSP is also an
area called the "default DTA". DTA stands
for Disk Transfer Address, and if we were
using the FCB method of file I/O, the DTA
would be the area where data read from
a file would be placed, or where data
written to a file would be expected. It also
happens to be the place where data is
placed when you use the MS-DOS func-
tion for searching for file names in a direc-
tory. The actual file name is stored at 1Eh
bytes offset from the start of the DTA, so
we have a label SNAME defined at that
location.

Notice in the first line of the program
that the stack pointer is set to the label
START. Normally in a .COM file, the stack
pointer is at the top of the 64k segment of
memory that MS-DOS gives to the .COM
file. OC needs to use all of the space above
itself for data, so that is why the stack is
placed at the label START, where it will
grow downwards.

The next few lines of the program

check the command line for an argument.
The first byte of the command line argu-
ment stored at ARG is a count of the
characters in the argument, with the actual
argument following. OC checks this
count, and if itis zero, it displays a message
explaining how to use the program. If the
count is not zero, OC skips over any
spaces at the beginning of the argument
and copies the remainder to an area called
BA.PATH. If you look through the rest of
the program, you will not find a label called
BA.PATH, but you will find a label called
BA, and below that another label, PATH.
Before the label PATH is an assembler
directive that may be new to you, STRUC.
This is the directive for setting up a data
structure, and it allows you, among other
things, to reserve memory space in a data
area without actually reserving space in
your program. If | had simply had

PATH DB 80 DUP (?)
BUFFER DB ?

in the program without the STRUC direc-
tive, it would have created a .COM file 81
bytes longer than it currently does. The
assembler would have placed the bytes
defined in the DB statements in the pro-
gram, even though they are just "garbage"
bytes that will be overwritten when the
program is run. You can think of the period
in the compound label BA.PATH as a plus
sign. The value of the label BA, which is
determined by its place in the program, is
added to the value of the label PATH,

which is determined by its place in the
structure, not the program. Actually, the
label PATH has a value of zero, so we
could have used BA by itself, but the value
of the other label in the structure, BUFFER,
has a value of 80. So when you see
BA.BUFFER later in the program, you will
know that it has the value, or address, of
BA plus 80.

After the argument is copied to
BA.PATH, it is scanned for the characters
"" and "\", so the program can determine
if a drive name and/or path is specified
before the actual file(s) to copy. OC needs
this information so it can copy files into the
root directory of the destination if the
source directories do not exist. When the
argument is copied to BA.PATH, it is ter-
minated with a zero. A string of text that
is terminated with a zero is called ASCIZ
text, and many of the newer MS-DOS
functions (since 2.0) require an argument
in ASCIZ text.

OC prepares to enter the main copy
loop by prompting for the source disk and
searching for the file or the first file (if wild
cards were specified) to copy. In MS-DOS,
there are two sets of directory search func-
tions — an old set that uses FCB's, and a
newer set that uses ASCIZ strings. | will
only use the newer set here. In each set
there are two functions, a search first func-
tion and a search next function. If the
search string contains wild cards, the
search first function will find the first
matching directory entry and store infor-
mation about it at the DTA location, as |
pointed out previously. The search next
function will find the next and subsequent
matching entries each time it is used. So
at the label MAINLP, the search first func-
tion is used the first time through the loop,
and the search next function is used every
other time. The search next function is
loaded into the AH register at the label
DONE, just before the jump back to
MAINLP.

If OC does not find a matching entry
the first time through the loop, it indicates
"File not found," and exits. If it does not find
an entry any other time through, it just
exits. A memory location called FTFLG
(First Time Flag) is used to indicate when
the first time through the directory search
is done.

If a matching directory entry is found,
the file name is copied to two places. It is
copied to the end of the complete path
that the user specified, and it is also copied
to another area that just includes the user-
specified drive, if any. Then OC displays
the file that is about to be copied and
enters the file copy loop.

In the file copy loop, OC opens the file
by using the supplied path with the spe-
cific file name copied to the end of it as
the required ASCIZ string. The open func-
tion returns a handle number in AX, which
is copied to the BX register for use in the
"read" and other functions. Then OC uses

August 1991

13

a special function sometimes called LSEEK
that positions a pointer which determines
where MS-DOS will start reading from or
writing to a file. It uses the value in a
location called PASSCNT multiplied by the
size of the file buffer to locate this pointer.
Of course, the first time through,
PASSCNT will contain a zero (it was ze-
roed one line below the label GOTFIL), so
the pointer will be at the beginning of the
file. Next, OC reads the date and time from
the file using a special function for that and
stores the information for placement in the
destination file, so that it will have the
same date and time as the source. Then
OC reads as much of the file as will fit into
its buffer.

After OC reads in a "chunk" of the file,
it closes it. This step would not be neces-
sary in a normal file copy utility, but this
program has to write the output file onto
another disk in the same drive as the
source. All kinds of damage could be done
if it did not close files after each read and
write operation.

When OC has finished reading from
the source and closed the file, it prompts
the user to change disks. Then it attempts
to open a file for writing using the user’s
path with the specific name at the end. If
this is not successful, it tries again using the
string containing just the file name and the
drive, if any. In this way the copy will be
successful whether a duplicate path exists
on the destination drive or not. You will
also notice that OC uses two different
functions in its attempts to open the des-
tination file. The "open" function will be
successful only if the file already exists on
the destination disk. Otherwise, the "cre-
ate" function must be used. If a file is larger
than OC’s buffer, it will have to make more
than one "pass” to copy it. It will use the
create function on the first pass, and the
open function on subsequent passes. The
pass counter at PASSCNT is used to keep
track of the copy passes, and to position
the file pointer for each pass.

Rather than determining how big a file
is before it copies it, OC just loops back
through the copy loop for at least a second
time on every file. If the second attempt to
read from the file returns a byte count of
zero, then OC knows that it has com-
pleted that file and goes back to the main
loop, where the search next function will
determine if there are any more files to
copy.

If there are any errors in attempting to
open or write to the destination file, OC
will quit the attempt on that file and display
an error message. This is rather simple
error handling that could be improved on
a bit.

After OC writes each piece of the file
it is copying to the destination, it sets the
date and time using the information ob-
tained from the source file. Notice that the
same function is used to read and set the
date and time. The value in the AL register

determines what the function will do.
Following the main part of the program
are a few subroutines for prompting for
disk insertions, and showing the name of
the file OC is currently working on. Then
there is the data area, which contains the
text messages used in the program, and
the flags, counters, and storage areas.
Although this program works, and is
somewhat useful, there are some signifi-
cant improvements that could be made to
it. The copy buffer could be made to use
all available memory, not just a 64k seg-
ment. Reading into and writing from this
enlarged buffer would involve manipula-
tion of the segment registers. Another im-

copy all the files that will fit into the buffer
before it has you swap disks. If you are
copying a hundred 1k files, swapping disks
all those times could get old fast. The
program would have to keep track of the
beginning and end of each file in memory,
and it would have to store the names,
dates and times of all of the files. If you
would like to try these changes, send me
what you come up with, and if yours is the
best version | will print it in REMark, give
you credit, and perhaps something else for
your effort.

This concludes this installment on as-
sembly language. I'm not sure what | will
cover in the next one, so if you have ideas,

provement would be to have the program | let me know. %
§ ONECOPY PROGRAM
: BY P. SWAYNE, ZUG SOFTWARE ENGINEER
CODE SEGMENT
ASSUME CS:CODE,DS:CODE, ES: CODE, SS: CODE
ORG 0
ZERO LABEL NEAR
ORG 80H
ARG LABEL BYTE ;COMMAND LINE ARGUMENT
ORG 8OH+1EH
SNAME ~ LABEL BYTE ;SEARCH NAME
ORG 100H
; PROCESS COMMAND LINE
START: MOV SP,OFFSET START ;PUT STACK HERE
CLD ;CLEAR DIR. FLAG
MOV SI,CFFSET ARG ;POINT TO USER ARG
LODSB ;GET CHARACTER COUNT
OR AL,AL ;ANY ARGUMENT?
Jz EXPL ;IF NOT, EXPLAIN PGM.
MOV CL,AL
XOR CH,CH ;COUNT TO CX
S0s: cMP BYTE PTR (SI],' * ;SPACE?
JNZ NOTSP :NO
INC sI
LOOP SOS ;ELSE, SKIP SPACES
EXPL: MOV DX,OFFSET EXPMSG
MOV AH,9
INT 21H ;EXPLAIN PROGRAM
INT 20H ;AND EXIT
NOTSP: MOV BX, CX ;COUNT TO BX
MOV DI,OFFSET BA.PATH
PUSH DI
REP MOVSB ;COPY ARGUMENT TO HERE
XOR AL,AL
STOSB ;PUT ZERO AT END
POP DI
MOV SI,DI ;SAVE POINTER IN SI
ADD DI,BX ;POINT TO END OF PATH
MOV AL,":" ;SEARCH FOR THIS
MOV CX,BX iGET COUNT
STD ; SEARCH BACKWARDS
REPNZ SCASB ;LOOK FOR ":"
CLD ;FIX DIR. FLAG
JNZ NODRV ;NO DRIVE
MOV AL, [DI]
MOV DNAME, AL ;ELSE, FIX DEST. NAME
MOV BYTE PTR DNAME+1,':’
INC DI
INC DI
MoV FNAME, DI ;MARK DESTINATION PATH

14

August 1991

NCDRV:

NOPTH:

MAINLP:

NOTFT:

GOTFIL:

CPYNAM:

CPYLP:

CPYLPL:

Mov
ADD
MOV
MOV
STD
REPNZ
CLD
JNZ
INC
INC
MOV

DI,SI ;FIX POINTER
DI,BX ;PNT. TC END OF PATH
AL; F\ ;SEARCH FOR THIS
CX,BX +GET COUNT
; SEARCH BACKWARDS
SCASB ;LOOK FOR "\"
;FIX DIR. FLAG
NOPTH ;NO PATH
DI ;POINT PAST \ OR
DI
FNAME, DI +SET UP POINTER

LOOK FOR FILES TC COPY

CALL
MOV
XOR
MOV

INSSRC ;ASK FOR SOQURCE DISK
AH, 4EH ;SEARCH FOR FIRST
CX,CX ;NO ATTRIBUTES

DX,OFFSET BA.PATH ;PCINT TO PATH

MAIN COPY LOOP

INT
JNC
CMP
JNZ
MOV
MOV
INT
INT

FOUND A

MOV
MoV
MoV
PUSH
MOV
MOV
REP
POP
MOV
CMP
JINZ
ADD
MoV
REP
MoV
MOV
INT
CALL
JMP

21H ;SEARCH FOR FILE
GOTFIL iWE HAVE IT

BYTE PTR FTFLG,0 ;FIRST TIME DONE?
NOTFT iNO

DX,OFFSET NOFIL

AH,9

21H ;ELSE, SAY "NO FILE"
20H

FILE, COPY IT

BYTE FTR FTFLG,1 ;FIRST TIME DONE
BYTE PTR PASSCNT,0 ;CLEAR PASS COUNT
SI,COFFSET SNAME ; POINT TO SRCH NAME
51

DI, FNAME ;PUT IT HERE

CX,13

MOVSB ;COPY NAME INTO PATH
51

DI,.OFFSET DNAME ;COPY HERE, TOO
BYTE PTR DNAME+1,':"' ;GOT DRIVE?
CPYNAM i NO

DI,2 ;ELSE, SKIP OVER IT
CX,13

MOVSE

DX,OFFSET COPYING

AH, 9

21H i SAY "COPYING..."
SHOPTH iSHOW FILE

CPYLP1 ;COPY THE FILE

FILE COPY LOOP

CALL
MoV
MOV
INT
MOV
MOV
XOR
MOV
MUL
MOV
MOV
MOV
INT
MoV
INT
MOV

INSSRC iASK FOR SOURCE DISK
DX,OFFSET BA.PATH ;POINT TO PATH
AX,3DOOH

21H ;OPEN SOURCE FILE
BX, AX iHANDLE TO BX

AL, PASSCNT iGET PASS COUNT

AH, AH ;IN AX

DX, ZERO-BA.BUFFER

DX ;CALCULATE FILE POS.
CX,DX

DX, AX ;CX:DX = POSITION
AX,4200H

21H ; POSITION FILE PNTR
AX,5700H

21H ;GET SRCE DATE/TIME
TIME, CX ; SAVE THEM

REOCPEN:

TRYCR:

OPNDCK:

DONEJ :
OK2WRT:

WRTCK:

CLOK:

DONE :

MOV
MOV
MOV
MOV
INT

PUSH

MOV
INT
POP
OR
JZ
MOV

CALL

MOV
MOV
INT
MoV
JNC
CMP
JNZ
MOV
JMP
MOV
XOR
INT
MoV
JNC
JMP
CMP
JNZ
MoV
MOV
INT
MOV
INT
AND
CMP
Jz

MOV
INT
JMP
MOV
MOV
INT
MoV
XOR
MOV
MUL
MOV
MOV
MOV
INT
MOV
MOV
MOV
INT
JNC
JMP
MOV
MOV
MOV
INT
MoV
INT
JNC
JMP
INC
JMP
MOV
JMP

DATE, DX
DX,OFFSET BA.BUFFER ;FUT DATA HERE
CX,ZERO-BA.BUFFER ;READ BUFFER FULL

AH, 3FH

21H ;READ FRCM THE FILE
AX

AH, 3EH

21H ;CLOSE FILE

AX

AX, AX ;ANYTHING READ
DONEJ ;IF NOT, EXIT
BYTES, AX :SAVE BYTES READ
INSDST ;ASK FOR DESTINATION
DX,0OFFSET BA.PATH ;POINT TO PATH
AX,3D0O1H

21H ;OPEN DESTINATION
BX, AX +HANDLE TO BX
OPNDOK ;OPENED OK

AX,3 ;BAD PATH?

TRYCR ;NO, TRY CREATING
DX,OFFSET DNAME ;GET NAME W/O PATH
RECPEN ;AND TRY AGIAN

AH, 3CH

CX,CX

21H ;CREATE NEW FILE
BX,AX ;HANDLE TO BX
QOKZWRT

WRTERR ;WRITE ERRCE

BYTE PTR PASSCNT,0 ;FIRST PASS?
OK2WRT ;NO, OK TO WRITE
DX, OFFSET EXISTS

AH,9

21H ;ESLE, SAY "EXISTS"
AH, 1

21H ; INPUT A KEY

AL, 5FH ;CAPITALIZE

AL,'Y"' + IS IT "¥¥W?

OK2WRT ;YES

AH, 3EH

21H ;ELSE, CLOSE FILE
DONE +TRY NEXT FILE
DX,OFFSET CRLF

AH, 9

21H s PRINT CRLF

AL, PASSCNT ;GET PASS COUNT

AH, AH ;IN AX

DX, ZERO-BA.BUFFER

DX ;CALCULATE FILE POS.
CX,DX

DX, AX ;CX:DX = POSITION
AX,4200H

21H ;POSITION FILE PNTR
CX,BYTES ;GET BYTE COUNT
DX,OFFSET BA.BUFFER ;DATE IS HERE
AH, 40H

21H ;WRITE DATA

-WRTOK

WRTERR sWRITE ERROR
CX,TIME

DX,DATE ;GET TIME AND DATE
AX,5701H

21H ;SET THEM ON OUTPUT
AH, 3EH

21H ;CLOSE FILE

CLOK

WRTERR ;WRITE ERROR
PASSCNT ; INCR PASS COUNT
CPYLP ;COPY REST OF FILE
AH,4FH +GET SRCH NEXT FUNC.
MAINLP ; LOOK FOR MORE FILES

August 1991

15

WRTERR: MOV DX, OFFSET WERMSG PTHDN: RET
MoV AH,9
INT 21H ;SAY "WRITE ERROR" ; DATA AREA
CALL SHOPTH
MOV DX,OFFSET CRLF EXPMSG DB 13,10, ‘OneCopy version 1.0',13,10
MoV AH,9 DB 'To use this program, enter’
INT 21H ;PRINT CRLF DB 13,10,10
JMP DONE ;DO NEXT FILE DB * oCc <file>',13,10,10
DB ‘where <file> is the name of the’
; SUBROUTINES DB ' file to copy.’
: PROMPT FOR SOURCE CRLF DB 13,10,4%*
COPYING DB 13,10, ‘Copying $*
INSSRC: MOV DX, OFFSET INSSMSG NOFIL DB 13,10, 'File not found.’,13,10,'S$’
INSCOM: MOV AH,9 EXISTS DB 13,10, ‘File exists, delete? §’
INT 21H ; ASK FOR SOURCE INSSMSG DB 13,10, 'Insert source, press’
WFCR: MOV AH,8 DB ' Enter...S’
INT 21H ;GET A KEY INSDMSG DB 13,10, 'Insert destination, press’
CMP AL, 13 ;CR? DB ‘ Enter...$’
JNZ WFCR WERMSG DB 13,10, 'Error writing file $*
RET DNAME DB *A; FILENAME.EXE’, 0
FNAME DW OFFSET BA.PATH ;FILE NAME POINTER
;] PROMPT FOR DESTINATION FTFLG DB 0 FIRST TIME FLAG
BYTES DW 0 ;BYTES READ
INSDST: MOV DX,OFFSET INSDMSG PASSCNT DB 0 ; PASS COUNT
JMP INSCOM ;ASK FOR DESTINATION TIME DW 0 ;SAVED FILE TIME
DATE DW 0 ;SAVED FILE DATE
: SHOW PATH EVEN
BA:
SHOPTH: MOV SI,OFFSET BA.PATH ;POINT TO PATH BUFF STRUC
SHOPTH1 : LODSE ;GET A CHARACTER PATH DB 80 DUP (?)
CR AL, AL ;END OF PATH? BUFFER DB ? ;BUFFER DATA HERE
Jz PTHDN BUFF ENDS
MoV DL, AL
MoV AH, 2 CODE ENDS
INT 21H ; SHOW CHARACTER END START
JMP SHOPTH1
‘\JF\I’ :EEE; IEEE I II!|:lrl‘[:,'lr.l .Iit:::EE;
(513) 376-4348 =**** Sjnce 1975 ****x (513) 427-0287
1106 State Route 380, Xenia, Ohio 45385
You AND THE ALPS ASPI600 PRINTER.
COSTS VERY UTTLE,
‘I’QUR BlG IDEAS. JAMS NOT AT ALL
S he ik or Do, vour rold
h\ * 300 cps draft speed positicn.
), * Wide carriage B S e et s % o
* 24 pin printing *C:DW:::MM“M
* Front panel controis portability.
* Printer stand in buik-in
ALPS Allegro 500XT™ Built by papular demand. - Lot O
SPECIAL ATTENTION:
Z-315 EMS Kit for 2-159 $ 10.00 Federal Government Offices
Z-417 H D Controller Z-248 $100.00 We stock ALL ALPS Printer Models and we stock
Z-317 H D Controller Z-150 $ 75.004 ALPS PARTS and RIBBONS for all ALPS modeis
ZCM-1400-1 Swivel Base for 1490 S 5.0018 including your P2000’s and ASP-1000"s
CB-4364-39 Diagnostics for 184 $ 5.00
ENABLE 2.0 Word Processing $99.00: *222GOVERNMENT DISCOUNTS OFFERED****
We are lookin ood dealers.
Quantities limited to stock on hand ALPS Authonzed Dlsg'lb rgr and Service Center
16 August 1991

Fnable Revisited

Part &ix

Database - A Beginning

In the last article, | briefly covered the
advanced graphing capability of Enable.
Advanced graphing is available for the
spreadsheet while the basic graphing ca-
pability is available for both the
spreadsheet and database. This article will
cover the Enable database. This is one of
the strongest areas of Enable and | have
used it extensively.

The Enable database provides you with
the ability to create database applications
with a minimum amount of effort. | cre-
ated a menu-driven database for a military
hospital with special functions to track
both patient's and medical technician’s
time in a pressure chamber. | wrote the
output forms to match the paper forms in
use. | created this whole application which
consisted of four databases, three menus
with the appropriate options, and forms in
less than two hours.

| also wrote an application for a tool
and die company, which they use to man-
age their entire operation, in about 200
hours. This again is completely menu
driven with some of the users of the sys-
tem having minimum computer knowl-
edge. This application handles all
operations from quotes to orders, job
cards to payroll, and invoicing to packing
lists.

In this article, | will move through the
capabilities of the Enable database and
show you some of the powerful tools
available. | will use some parts of the tool
and die application to illustrate these func-
tions.

Before starting to design a database for
any purpose, you must first think through
your requirement. The time you spend
working through this step will save you
time later. It is a lot easier to add another
field to a database before records have
been added. Think of the amount of time
and effort it would take to add another
field and then add the data to a 1000-
record database.

When | teach database, the design
step is a foot stomper and then some. |
stress this step to all of my students. The

George Elwood
1670 N. Laddie Court
Beavercreek, OH

way | design database applications is to
decide what outputs | am going to need.
| then start designing the databases. Be-
cause Enable is easy to use, | seldom use
only one database for an application.
Enable’s multiple database functions make
this task easy to accomplish. | lay out the
fields | will need and the sizes | feel will be
sufficient to meet the requirements on
paper and wait sometime to check for
changes. | then review the database and |
almost always make changes.

Another way to accomplish this review
is to work with several people. | host the
Dayton Enable Users Group. One of the
members had a requirement for a
database to control a warehouse function.
It was a small operation but had several
unique Air Force requirements. Working
in a brainstorming session, the entire
database and field requirements were de-
fined in less than an hour. Many people
provided helpful hints and suggestions to
speed up this process. Again, the applica-
tion consisted of several individual
databases linked together.

Enable OA’s database has been im-

proved over earlier versions. The number
of records in a database is now limited
only to disk space. | am aware of one
Enable database with several hundred
thousand records, which resides on two
650Meg Hard Drives.

The database function now supports
MEMO fields. Unlike dBase, the MEMO
field is limited only by disk space. The
information inserted in the memo field is
maintained in an ASCIl format so it is
simpler to access. Enable’s database infor-
mation file is fully compatible with dBase
1. Itis also possible to make the database
information dBase |l compatible if desired.
This compatibility means that the database
could have been created with one of the
dBase products and then used with En-
able. You could work with the database
with Enable and still use the basic file with
the dBase product.

Unlike dBase and some of the other
database programs on the market,
Enable’s database is made up of two parts.
The first part, the .$BF file, holds the field

parameters, and the .BDF file holds the
actual records. This is the part that is com-

ENABLE/OA {tm}
Select an option with the cursor and (4]

Press [Esc] if you change your mind and [F1] if you need help.

|I Help HeH Return to DOS |
I Word Processing Spreadsheet/Graghics Telecom [DBMS/Graphics

Build

II Design

Interact

Database-Def inition

Input-Fora

Figure One - Enable Main Menu Screen

August 1991

patible with dBase. The part that makes
Enable powerful is the database definition.
This file contains the Enable detailed pa-
rameter information about the fields.
Many functions that you must program to
accomplish in dBase can be easily com-

DATABASE DEFINITION

Enter the name you have assigned to the database or are now
assigning to the database, MNote that within Enable you have
two files which together form a database.

pleted during the construction of the defi-
nition file.

After you have designed your
database on paper, it is time to move to
the keyboard. After entering Enable, select
(U)se system, (D)BMS/Graphics, (D)esign,
and (D)atabase Definition. Enable will now
display the first of the database screens. In
this first screen, you are prompted for the
name of the database you wish to create
or modify.

If you are creating a new database,
Enable will prompt you to RETYPE or LIST
the directory or create a new file. The
default is New File. Note that Enable dis-
plays information on how it creates
database files. You are now on your way

The database definition
Database 4 | Database file and the database
Definition Records records file alvays have
the same name, but use
name . SBF name . DBF different "extensions"
t 1

File not found. Your choices:

> Select this option to create a new database definition.

Figure Two - Definition Screen

Def inition of database C:\ENJBB\REMARKG

Enter the database name:

List Dir Re-enter

F1B=Henu

tain a running total of Total Fields, Real

DATABASE DEFINITION

Enter database description:
Enter the name of the default input forn: (EULIHIEENEGEGE
Enter the name of the default report forn: [ITTEEGE

Fields, Total Length, and Real Length. We
will watch these numbers grow as fields
are added. Also displayed on this screen is
a summary of the field information. For this
example, we will create a simple database
that is designed to contain family informa-
tion.

There are two methods for defining
fields, Quick or Detailed. For the first field,
the QUICK method will be used. The field
will contain the first name of the person,
This is a text field. For the name type in

database.
database.

> Do not enter special characters or blanks.

11 Definition of database C:\ENIBHNREMARKG

Figure Three - Screen Two, Database Definitions

> Report forms are used to display or print selected data from your
> Enter the name of the report form you will use most of ten with this

> A full drive and directory path may be supplied plus an extension.

FNAME and press (ENTER). Enable will
now display the QUICK input screen. The
first choice is the QUICK or DETAILED
definition selection. Because this field is
not indexed and has no special require-
ments, the QUICK method will meet our
needs. After selecting
the Quick method, the next option is the
type data. You can select Integer or Deci-
mal for numbers. If you select decimal, you

F18=Menu

to creating a definition that will help during
the input of records.

After selecting New file, Enable will
now move to the second option screen in
the definition file. This screen permits you
to input a short description. As noted on
the bottom of the screen, this is only dis-
played or printed when the definition is
selected. The next option is the name of
a defaultinput form. This can be any name
you desire although is normally the name
of the database. Next is the name of the

Field Name

Total Flds:8

Fld Pictures
Req Rept Edit

Data Data Min Max Dec
Source Type Len Len Pt.
END

Index Dup
File Keys

Real Flds:8 Total Len:8 Real Len:8

default report form. Again, this can be any
name you wish. When you finish this input, II

Enter the ficld nane: [NNNEEEE

Enable then moves to the screen you will
use to create the fields.

Enable permits you to enter up to 254
fields in the database. Each field can con-
tain up to 254 characters. The field name
can be up to 10 characters long and con-
tain letters, numbers, UNDERSCORE and
COLON.

As you enter fields, Enable will main-

> Enter the name of each field in your database, one at a time,
pressing [(-1] after each one.

Next you will be asked for specific information about the field.
Your responses will be summarized in the table above.

N N N

Press [Esc] to return to page one.

1 Definition of database C:\ENIBH\REHARKG
Figure Four - Field Definition Screen

To review, change or delete a field, press [1] for additional prompts.

F18=Menu

18

August 1991

After finishing this screen you are

What method do you wish to use? Detailed
Select the data type: Integer Decimal
Enter the maximum length of the text field:

moved to the second screen. For the cur-
rent field definition you only need enter
the type and length of the field. The last
screen permits you to define the look of
the output in a report and an error mes-
sage, if desired. Pressing (RETURN) will
display the field summary screen again.
Using these procedures, enter the rest
of the personnel data. STREET is a quick
text field while the CITY can be a detailed
field with an index, or quick. The next field
is STATE. This is one of the unique field

database using defaults for field definitions.

must be completed.

incomplete or contradictory field definition.

Defining field FNAHE for Database C:\EN3IBB\REMARKG

Figure Five - Quick Field Screen

> The "Quick" method allows you to quickly and easily create a

> To insure a valid field definition, the entire sequence of questions

> Using [ESC] or [END] to escape from the sequence may result in an

identifiers available in Enable.

For the state definition select detailed.
The first page is defined as required. The
field may be indexed if required. On the
second page of the definition select
*Other." Enable will display additional op-
tions, one of which is State-Code. The
information displayed on the bottom of
the screen indicates that Enable will now
accept only the two letter State code. You

are then prompted for a Columnar head-

Do you wish to copy an existing field definition? Mo
Is this an indexed field? No [

> Enter the name of the index file!

> Are duplicates allowed in this indexed field?

Is this a required field?]} Yes

What method do you wish to use? Quick

No I8

Source of data: [NITIIS] Another database Derived System

ing if you wish to use something other than
STATE. The error message block permits
you to enter a message that will display on
the status line if an incorrect entry is made.
As an example, for the state code you
could insert "You must enter the two letter
postal code”.

The next field is ZIP code. Again, this
is one of Enable’s unique field types. Select
detailed definition and Other on the sec-
ond page. Like the State-Code, Enable has
a Zip-Code definition. Selecting this op-
tion permits you to select either five or

and editing criteria for fields in your database.

must be completed.

incomplete or contradictory field definition.

Figure Six - Screen One, Detailed Report

> The "Detailed" method allous you to specify field attributes

? To insure a valid field definition, the entire sequence of questions

> Using [ESC] or [END] to escape from the sequence may result in an

nine digit ZIP Codes. See Figure Eight.
After ZIP code comes the employee
phone number.

From the ZIP code field, you remem-
ber that there is a detailed definition for
Phone-Number. Selecting this option, En-
able will prompt you for the format of the
number. See Figure Nine for these options.
Enable uses the State-Code, Zip Code and

are then prompted for the number of dec-

imal positions. The text option permits you
to specify the number of positions the field
will occupy. Logic will prompt for a "Y"es
or "T"rue. After responding to the length,
Enable will now return to the field sum-
mary screen.

The next field to add will be the last
name. Because this field will be indexed,
the DETAILED definition method must be
used. Indexing will permit you to find a
record in one second or less. For DE-
TAILED definitions, Enable will display the
first of three screens. On the third line,
select "Yes" for "indexed." Enable will
prompt you for the name of the index file

Select the data type: Numeric

Your choices:

Columnar report heading: [
L T

Other JLEN
Date Time NENLEWTNE Zip-Code Phone-No.

Text Logical

and if duplicate entries are permitted. In
most database programs, you would be
required to enter this data as a separate
program in the input screen. Enable per-
mits you to specify if the field is required
and then where the data will come from.
See Figure Six for the screen display.

> Enable will accept only the correct two-letter U.S. Postal Service
state codes.

Figure Seven - Detailed State Definition

August 1991

19

Your choices: Date Time State-Code Phone-No.

How many numbers in this zip code? §

Select the data type: Numeric Text Logical Memo

> Select either the 5-digit or the hyphenated 9-digit U.S. Postal
Service format.

Figure Eight - Zip Code Definition

rename the fields or redefine the displayed
parameters of the fields. To do this simply
move to the field, move the highlighted
bar to the area you wish to redefine using
the right or left cursor keys and press the
space bar. Enable will display acceptable
values.

After you have completed the
database definition, press F10 to display
the Top Line menu options. You may now
print the database definition from this
menu. The printed definition is very com-
plete and is in fact an over kill. Select Save
and then press F10 and accept Quit. En-
able OA has been improved in this area.
Earlier versions of Enable could crash at
this point if you had modified the database
definition if it already had data in it. Now
Enable simply tells you that the definition
was changed and asks if you wish to move
the old data into the new definition.

Figure 11 is the screen display that
Enable presents. If you select the COPY

Area Code of the telephone number.

When you enter data in the database,
Enable checks the data and will display an Select the data type!
error if the ZIP code does not exist in the .

State. It also checks the area code of the Toisichaloeet Wi

area code does not exist in the State, an

error message will be displayed on the Enter the minimun length of the phone edit picture:

Status line of the screen.

The next field in this database is em-
ployee number. It is a quick Integer field.
The reason for this will be covered later.
The last field in this database is the RE-

Time

Numer ic

State-Code Zip-Code TNTSTN
phone number with the State-Code. If the Enter the edit picture for the phone nunber:

Text Logical Memo

MARKS field. This is a MEMO field and is
selected from the Quick definition menu. Boansls’. o
The Memo field takes up ten positions in ol

> Enter the format Enable should use to display telephone numbers.
AAR-NRN-NNNN/ 000

the database, and is used as a pointer to Use “CC" for country code,

the file with the actual data. "N" for each digit of the phone number and
"X" for each digit of the extension number.

Figure Ten shows the database field

summary screen. This screen displays Uss €): /N~ to separate elements.
eight fields in the definitions. This screen

shows the total number of fields, both real . : e

and total, and the lengths. It is possible to Figure Nine - Telephone Definition

“aAA" for the area code,

Field Name Data Data Min Max Dec Index Dup Fld Pictures
Source Type Len Len Pt. File Keys Req Rept Edit

LNANE Keyboard Text 8 15 ¥ Y N ¥
STREET Keyboard Text 8 38
city Keyboard Text 8 28
STATE Keyboard Othr 2 2 N N
ZIP Keyboard Othr 18 18 N N
PHONE Keyboard Othr 12 12 N N N Y
EMPNBR Keyboard Num 8 4
REMARKS Keyboard Memo 8 18

Total Flds:9 Real Flds:9 Total Len:118 Real Len:118

Figure Ten - Definition Summary Screen

command, Enable has a built-in macro that
will generate the new database. At this
screen, simply select YES and Enable will
start the process. It will create a temporary
database which is then copied into the
new definition. You are permitted to
change the way the data goes into the new
definition. Enable will display a screen that
matches the old database with the new
database. You can change the name in the
new database if desired. See Figure 12 for
the screen display.

You have now completed a basic En-
able database definition file. You can now
input data by using the basic capability of
Enable. This is accomplished by typing
(U)se system, (D)BMS/Graphics,
(I)nteract, and (A)dd and typing in the
name of the database. In the next article,
we will create an input screen that will
display data from other databases and
create a output report.

Continued to Page 35

20

August 1991

ey

On the Leading Zdge

William M. Adney
P.O. Box 531655

Grand Prairie, TX 75053-1655

| am beginning to receive more and
more letters with questions about mem-
ory, specifically about some of the “new”
terminology that is finding its way into the
manuals. To help you understand what
some of these new terms (UMBs and HMA)
are all about, | have included a complete
description of them in this article, as well as
a review of the four kinds of memory.

| also recently received an upgrade
notice for Lotus 1-2-3 which | found was at
least interesting and more than a little
disappointing. As you will see, one thing
you should always do is read the fine print
in upgrade notices and license agreements.
Let's begin by first taking a look at what the
HMA and UMBs really are.

tween O KB and 640 KB. Although this kind
of memory is frequently called RAM, that
can be confusing because virtually all of
today’s computers with CPUs ranging from
the 80286 on up to the 80486 are adver-
tised as having at least 1 MB of RAM
(normally using either 1 MB RAM chips or
more often a 1 MB SIMM). More on that
when we take a look at memory for 80286
and newer computers.

And because the 8088 has an address
space of one megabyte (1024 KB), the
memory between 640 KB and 1024 KB is
the second kind of memory. It is reserved
for the ROMSs, such as the system and
video ROMs, and RAMfor

960 KB to 1024 KB was reserved for the
system ROM. Keep in mind that these
were the original definitions for the use of
memory between 640 KB and 1024 KB,
and many of you probably know that the
actual usage of these memory blocks has
changed in the last few years.

When | mention such things as mem-
ory blocks being defined as 64 KB chunks
of memory, | usually get at least one letter
asking why. The most complete answer
involves a rather complex discussion of the
evolution of the CPU used, but suffice it to
say that it is really based on the address
capability of the 8-bit CPUs, such as the
8080 and 8085, which allowed a maxi-

mum of 64 KB of memory. When

More on Memory

the 8088 was originally
developed, it used

Given a 20-bit ad-
that: miuieh More on Memory: UMBs and HMA, iges, hus
S A System Configuration, Lotus 1-2-3 Upgrade, s S
kinds of Speaking of Software Upgrades ited to the 1
memory, MB address

you may have
noticed that there

space that| previ-
ously mentioned. How-

seem to be all kinds of new

names for types of memory, such as HMA
and UMBs, if you have been reading about
new software. Although there are appar-
ently some new acronyms that refer to
memory, it turns out that the memory they
describe has actually been around for years.
Unfortunately, these terms are beginning
to appear in some documentation, such as
the ZDS MS-DOS 4.0 User’s Reference,
and there has been no real description of
how these new terms relate to what most
users are familiar with. But before we jump
into what the HMA and UMBs are, let’s
review a few things that | have mentioned
before, most recently in last May’s column.

Memory for 8088-based Computers

For 8088-based computers, there are
three kinds of memory. The first is the
conventional memory that mostusers know
about, and it is defined as memory be-

various add-on boards, such as video cards.

This reserved memory was discussed
in more detail in my February 1990 col-
umn, but it generally works out this way. It
is divided into 64 kilobyte “chunks” which
are BLOCKS of memory. Each memory
block was originally defined and reserved.
by IBM for some specific purpose. The first
block from 640 KB to 704 KB is reserved
for EGA video RAM. The second block
from 704 KB to 768 KB is reserved for
MDA and CGA video. The third block from
768 KB to 832 KB is reserved for miscella-
neous expansion, such as the hard drive
ROM and EGA ROM. The fourth and fifth
blocks from 832 KB to 960 KB were origi-
nally reserved by IBM and eventually used
for program cartridges for the PC Jr., which
explains why the PC Jr. only had slots for
two cartridges. And the sixth block from

ever, it is much easier to con-
sider the memory addresses of the various
blocks of memory in hexadecimal, such as
the very first (i.e., lowest) memory block
from 0000:0000H to 0000:FFFFH. If one
converts FFFFH to decimal, that becomes
65,535, and if you count the “zero” ad-
dress (which you mustdo), you have a total
of 65,536 possible addresses. Divide that
by 1024 bytes per kilobyte, and you will
find the result is exactly 64 KB. That's
perhaps the easiest explanation as to why
64 KB is a memory block.

Although | strayed away from the dis-
cussion about the second kind of memory
in an attempt to describe how it works, the
important point is that each of these 64 KB
chunks of memory from 640 KB to 1024
KB are called Upper Memory Blocks or
UMB:s. In other words, the second kind of
memory consists of UMBs, whichis just the
six 64 KB memoryblocks mentioned above.

August 1991

21

The third kind of memory available on
an 8088-based system is expanded mem-
ory, which allows one to “expand” mem-
ory beyond the original 640 KB conven-
tional memory limit. Expanded memory,
frequently called EMS (for Expanded
Memory Specification), is based on an add-
on board containing RAM chips and must
be “initialized” by installing the expanded
memory device driver (in CONFIG.SYS)
provided by the manufacturer of thatboard.
For 8088-based systems, such as the Z-150
series, one MUST use the expanded
memory device driver furnished by the
board’s manufacturer. And | will again note
that the EMM.SYS device driver provided
with various versions of ZDS MS-DOS will
NOT work for this because | continue to
get letters about “bugs” in EMM.SYS when
a user finds it does not work with an add-
on board in a Z-150 or other 8088-based
system. This is NOT a bug, and there is
simply no way to get EMM.SYS to work in
a Z-150, period.

In summary, there are three possible
kinds of memory in an 8088-based com-
puter: conventional memory from 0 KB to
640 KB, UMBs from 640 KB to 1024 KB,
and expanded memory which is used to
expand memory beyond the original 640
KB limit. Conventional memory and UMBs
are an integral part of the design of these
systems, and expanded memory must be
added if needed. | should also note that
adding expanded memory is a waste of
money UNLESS you have at least one
program (such as VDISK.SYS) or applica-
tion which can use it effectively.

Memory for 80286 and
Newer Computers

The 80286 and newer computers also
have the same three kinds of memory that
8088-based computers do, but thereis one
quirk involving the UMBs for today’s com-
puters that have at least 1 MB of contigu-
ous RAM installed using either 1 MB RAM
chips or 1 MB or larger SIMMs. That quirk
allows you to configure part of the 1 MB of
RAM as expanded memory without having
to add any additional hardware to your
computer as | have mentioned before. On
my SupersPort 3865X for example, | can
define expanded memory in the SETUP,
install the EMM.SYS device driver, and |
have about 256 KB of expanded memory
that can be accessed by the Quattro Pro
3.0 spreadsheet program that | frequently
use. This trick does not work on the Z-241,
Z-248, or any of the old IBM ATs because
their original conventional memory was
512 KB because 512 Kb RAM chips were
installed.

Why does this work on systems with a
1 MB of RAM? Well, the key is that even
though older systems had a 1 MB address
space, not all of that was Random Access
Memory (RAM). As | said earlier, some of
that was reserved for ROMs, such as the

hard drive ROM and video ROMs. Some
of the “extra” RAM (from 640 KB to 1024
KB) available on 1 MB systems can be used
for other things, such as expanded mem-
ory, so long as there is no address conflict
with existing ROMs and video RAM. That's
why the amount of expanded memory you
can get is limited, but you still get some
“free” expanded memory on these current
systems. And regardless of what kind of
memory we are talking about (either RAM
or ROM), the 64 KB chunks of memory
from 640 KB to 1024 KB are still called
UMBs. When your system actually works
with this “upper memory area”, one part of
a UMB may be a ROM address space, and
another part of that same UMB may be a
RAM address space. The resolution and
arbitration of these memory addresses are
defined in the system, although an ex-
panded memory device driver like
EMM.SYS figures out how much “free”
RAM space is available for its use. For
example, the highest UMB (from 960 KB to
1024 KB) is NOT available because it is
reserved for the system ROM. And be-
cause current Zenith Data Systems com-
puters use additional UMBs to load ROM
into RAM (because it's RAM is faster than
ROM), that memory space is also not
available. ZDS calls the technique of load-
ing ROM into RAM “slushware”, although
you will occasionally see the term “shadow
ROM” which is basically the same thing.
Now let’s look at the fourth kind of mem-
ory that is only available on 80286 and
newer computers.

Extended memory. Extended memory
is the memory that BEGINS at 1024 KB (1
MB). For that reason, it is not possible to
have extended memory on an 8088-based
computer because 1024 KB is the address
limit for the 8088 CPU. Only 80286 and
newer computers can access memory be-
yond 1 MB. However, you may see a new
term which identifies a specific part of
extended memory.

The FIRST 64 KB memory block (from
1024 KB to 1088 KB) in extended memory
is called the High Memory Area or HMA.
Although | have occasionally seen refer-
ences which indicate that HMA is “any
memory” above 1 MB, that is not correct;
it is only the first memory block. Since
many of you may be interested in why, let’s
digress a moment to look at the reason.

The 80286 CPU has two modes: the
Real Mode and the 286 Protected Mode.
The Real Mode was intended to EXACTLY
emulate the 8088 CPU, which may occa-
sionally be referred to as the “8088 Mode”.
As a side note, the 8088 CPU has only one
mode, which is why you can only run
Windows 3.0 in the Real Mode on an
8088-based system. The 286 Protected
Mode, frequently referred to as just the
Protected Mode, is required to access all of
the 80286’s advanced features, such as
additional memory and other enhance-

ments. But the most interesting part of this
discussion centers on how Intel designed
the Real Mode emulation for the 80286
CPU.

How you describe the 80286's Real
Mode emulation depends on your per-
spective. One way is to say that the 80286
has a “bug” which does not specifically
emulate the 8088. As | mentioned earlier,
the 8088 has a 20-bit address bus that
allows it to directly address EXACTLY 1 MB
of main memory, and any attempt to ac-
cess memory beyond the 1 MB boundary
would cause a wrap-around to the begin-
ning of memory. Despite the fact that Intel
designed the 8088 (and the 80286), the
80286 Real Mode did not emulate that
wrap-around feature. Unfortunately, that
became obvious when IBM released the
original 80286 AT computer, and it would
not always run software that was designed
for the 8088. Without going into all the
technical details, suffice it to say that the
reason is that some programmers took
advantage of the 8088’s wrap-around “fea-
ture” (apparently to save some program
code), which was notavailable in the 80286
Real Mode.

Even if you don’t remember it, per-
haps you can imagine the flap that oc-
curred when it was discovered that the
new IBM AT was apparently not “software
compatible” with the original PC. To be fair
to IBM, that was not their fault because
programmers took advantage of the 8088’s
wrap-around feature that Intel’s 80286 CPU
did not emulate. And to be fair to Intel, |
don’t really consider the “problem” a bug
because there is virtually no way they
could have anticipated that programmers
would take advantage of such a low-level
CPU hardware capability, which was not
documented or “approved” by Intel. As
I’'ve said before, a programmer is taking a
fairly big risk in relying on “undocumented”
features or capabilities, especially for hard-
ware, since there is absolutely no guaran-
tee that the next generation of hardware
will include those same features or capa-
bilities. This kind of problem is the reason
that | do not recommend attempting to
exceed the design capabilities of a any
computer or software. Unfortunately, |
believe that this kind of problem will con-
tinue to occur because programmers will
attempt to save time (in coding a program)
or improve program speed by using hard-
ware features that may or may not be
“standard” or “approved”. In any case,
IBM was forced to find a hardware solution
to the apparent problem of 8088-software
incompatibility on the AT.

In technical terms, what actually hap-
pened was that the 80286 was not always
sending out a logical zero signal on the
A20 line when it should have been to
correctly emulate the 8088 in Real Mode.
If the A20 line sends a logical one, itis able
to access memory above 1 MB (extended

22

August 1991

memory), which explains why the A20 line
MUST be zero to correctly emulate the
8088. In case you are unfamiliar with the
terminology, the “A20 line” is the 20th
memory address line, beginning at zero,
that is generated by the 80286 and later
CPUs.

To fix the problem, IBM had to make
a slight change to the AT’s design to force
the A20 line to a logical zero in Real Mode,
even when the 80286 CPU was trying to
hold a logical one. That allowed all of the
old 8088-based software which used the
wrap-around effect to run on the AT.

But there is a more interesting ending
to this story: itis the basis for QuarterDeck
Office Systems’ DESQview multitasking
program that | mentioned in a previous
column. DESQview was the first program
to utilize the HMA by controlling the state
of the A20 line, and the company has
always claimed they invented the program-
ming technology which made the HMA
usable. It's interesting to note that Micro-
soft finally decided to really use that tech-
nology because reports on MS-DOS 5.0
indicate it is taking advantage of this fea-
ture for 80286 and newer computers by
managing the state of this A20 line. That
allows you to use the HMA for DOS itself
so long as the CPU is in the Real Mode,
assuming that you have some extended
memory installed of course. Perhaps you
will find that explains why | went into so
much detail as to what is going on with the
A20 line and the HMA.

Asyou can see, memory management
is a tricky business. If it is not done exactly
in the correct way, strange problems oc-
cur: programs won’t run, the computer
freezes, or other unpredictable things can
happen. And even if you are not particu-
larly interested in the technical details, |
hope that you now understand what the
four kinds of memory are, how they are
used, and what they can be used for.

Memory from 0 KB to 640 KB is called
conventional memory. Memory from 640
KB to 1024 KB (1 MB) consists of six blocks
called UMBs. Expanded memory is used to
“expand” memory capacity beyond the
conventional memory limit (that’s a hard-
ware limitation, NOT a DOS limitation) of
640 KB. Extended memory is memory that
is above 1 MB, and the HMA is the first 64
KB block of extended memory.

System Configuration

Even if you understand what all these
different kinds of memory are and how
they are generally used, you may still not
be sure how to configure your computer’s
memory to the best advantage. As usual, |
will caution you that itis a waste of money
to add memory that your programs cannot
use, so be sure to check your software
manuals before you buy anything. | will
assume that you already have 640 KB of
conventional memory.

For systems that have 1 MB of RAM
(80286 and later systems), you can get
some “free” expanded memory by install-
ing the EMM.SYS device driver in the
CONFIG.SYS file as | have mentioned in
previous articles. In most cases, you will
also have to use the ROM-based SETUP
program to configure that memory as ex-
panded (usually shown as EMS on the
menu) memory. Whether or not this helps
depends on what program you are using.
Quattro Pro for example, will automati-
cally detect and use expanded memory if
it’s available. If you don’t have any pro-
grams that can use expanded memory,
then even setting this up is a waste of time
and conventional memory space because
the EMM.SYS device driver requires a small
amount of conventional memory to map
the UMBs.

For 80286 and later systems, it seems
best to configure all additional memory
above 1 MB as extended memory, regard-
less of whether you need expanded
memory or extended memory. Programs
such as Windows 3.0 seem to prefer ex-
tended memory, and of course DOS 5.0
apparently can use the HMA to reduce
conventional memory requirements and
allow you to use that conventional mem-
ory space for other programs. That is be-
coming more important as the DOS itself
becomes larger and could prevent the use
of an application that requires a lot of
conventional memory, especially if you
use one or more memory-resident pro-
grams (TSRs).

Now if you have an 80286 or later
system and need expanded memory, |
have found it is easiest to use Quarter-
deck’s QRAM (foran80286) or QEMM386
(for an 80386) to “convert” extended
memory to expanded memory. If you have
aZ-241 or Z-248 with a ZDS memory card
(which is for extended memory only), then
you will need a product like QRAM if you
need expanded memory as | mentioned in
the May column. Again, buying additional
memory for a computer is a waste of
money unless you have a specific program
that can use it or requires it, such as Win-
dows 3.0.

For 8088 systems, the only way to add
additional memory beyond 640 KB is to
buy a third-party expanded memory card,
but be sure you have at least one program
that can use expanded memory; otherwise
it is a waste of time and money.

Lotus 1-2-3 Upgrade

I recently received an upgrade offerin
the mail for Lotus 1-2-3 Release 2.3 for
DOS. While that may not seem to be
particularly newsworthy, there were a
couple of things in the offer that caught my
attention, especially since | have never
owned a copy of Lotus 1-2-3 for DOS. For
starters, the address on the mailer was all
messed up, and it's a tribute to the Postal

Service that the thing even got delivered at
all because my business and street names
were misspelled to the point that even |
had some difficulty recognizing them. As a
first impression, that made for a very poor
one. It looked like very sloppy work in
getting (or translating) a mailing list that
was most certainly not part of the normal
Lotus software registration.

When | opened the mailer, it offered a
“special price” on the upgrade of $119.00
instead of the usual $150.00. That also
included a “Free Offer” of SQZ! and Out-
line in addition to the new features in the
release. So far as | could tell, it looked like
most of the new features were basically
similar to those included in Quattro Pro 3.0
that | reported on last time. Itis interesting
to note that this version of 1-2-3 also in-
cludes a file viewer that allows you to look
at a file, but the display of the file viewer
looks virtually identical to that provided by
Software Bridge and Outside In that | re-
ported on lasttime. So far, everything is just
about what one might expect in an up-
grade offer. That is, until one reads the fine
print on the upgrade request form itself.

Perhaps | was more than a little curi-
ous as to why | received an upgrade offer
for software that| don’thave, but | read the
contents of the mailer quite thoroughly.
And | found a couple of what | thought
were real surprises in the offer. The firstwas
on the back of the Upgrade Request form
under the Mail Order heading which asked:
“Please enclose one original 1-2-3 System
Disk or the title page of the 1-2-3 Reference
Manual for each upgrade ordered.” Many
manufacturers have the same requirement,
so that is no particular surprise until |
considered the fact that | did not own a
copy of 1-2-3 and obviously had never
registered one. And because | do not own
a copy of 1-2-3, | was not prepared for the
next item.

QOutrageous. That's the only word |
can think of to describe one of the sen-
tences under the “License Agreement”
which reads: “Within 90 days of receiving
your upgrade, you must destroy all your
remaining 1-2-3 disks, both originals and
backups.” Surely you jest! (I never jest and
don’t call me Shirley!). One would have to
be a fool to do that with any software
because sometimes upgrades don’t always
work the way you expect, and there are
new bugs that prevent you from doing
things that you have always been able to
do before. For example, a bug in the
memory management software in Release
3 prevented 1-2-3 from LOADING and
running on virtually all Heath and Zenith
Data Systems computers as | reported last
year. On the other hand, you really MUST
destroy all of the old original disks and
backups or you will be in violation of the
terms of the license agreement. Looks like
a Catch 22 situation to me.

So far as I'm concerned, these kinds of

August 1991

23

antics with license agreements are the
major reason that | have never been fond
of Lotus 1-2-3, aside from the fact that the
earliest versions were copy protected so
that backups could not be made. And
although | have occasionally had to use 1-
2-3 when a client has asked for some help,
| have always found 1-2-3 is far more
difficult for me to use than other spread-
sheets, although 1-2-3 experts seem to
have no problem. Today, | have found that
Quattro Pro is a much better choice in
terms of cost, capability, and the Borland
“No Nonsense” license agreementrequire-
ments.

From a user perspective, | don’t think
the Lotus license agreementis very realistic
or reasonable, and | would not recom-
mend any software that has those kinds of
terms. Unfortunately, it is usually not pos-
sible to read a license agreement before
one buys software, which is the reason |
have included this information in this ar-
ticle. Fortunately, these kinds of terms are
becoming quite rare since most manufac-
turers have recognized that users have
serious reservations about buying software
that have onerous requirements like this.
As a matter of practice, | keep all my old
versions of production software because |
never know when | might need it to read a
very old file created with it. And | have had
to reload an old version occasionally just to
be able to access a file because the file
format has changed considerably in the
latest versions. For that reason, | do NOT
recommend the Lotus 1-2-3 Release 2.3
upgrade; Quattro Pro 3.0 is a far better
choice because it is cheaper and has more
features, especially in the expanded macro
language.

Speaking of Software Upgrades

As | was writing about the restrictive
Lotus 1-2-3 upgrade, | also began thinking
about another related question. Why is it
that many people continue to use “old”
(and sometimes inferior) and outdated
software? In this sense, | think this applies
even to currently available product up-
grades, such as the latest Lotus 1-2-3 ver-
sion | mentioned earlier. It also applies to
Windows and Windows’ applications, not
to mention those of us who stubbornly stay
with DOS instead of using OS/2.

Take OS/2 for example. When OS/2
was originally released a few years ago,
there was a lot of ink about all the advan-
tages that it had, such as multitasking. Even
today, some people think that OS/2 is the
answer to a lot of problems despite the fact
that there is still very little OS/2-specific
software that you can find. In short, it has
not been very well supported by the soft-
ware developers, probably because there
has not been much user demand for it.
Although a number of recent articles indi-
cate that IBM is going to provide consid-
erably more backing (which means they

are going to try to push sales) for OS/2
version 2.0, that will probably notbe enough
to convince 40 million or so PC users to
change over to OS/2. There also seems to
be a persistent rumor that IBM will code
0S/2 in such a way that it will only run on
IBM computers, and that is a stupid and
shortsighted point of view if it is true.

What about Windows 3.0? Even
though there are reliable reports that mil-
lions and millions of copies of Windows
3.0 have been sold, | have yet to see much
Windows use by any major company, let
alone individual users. True, many compa-
nies and users (like me) have purchased
Windows 3.0, but buying it isn’t enough. It
is quite clear to me that Windows still has
a number of problems that must be re-
solved, and even though | have Windows
3.0, | don’t use it very much.

What about other software upgrades,
such as Lotus 1-2-3 or DOS? In many of the
companies | visit, a large number of them
aresstillrunninga DOS versionof 3.10r 3.2,
and more than a few are still using a version
1.x of Lotus 1-2-3. I've even asked a few
users why they don’t upgrade their 1-2-3
version, and most respond that it's too
much trouble and costs too much. Besides,
their version does all they need to do. I've
even asked some users why they don't
change from 1-2-3 to Quattro Pro, which
has more features (including a color dis-
play) and is cheaper than 1-2-3. The an-
swers | get most often include something
like “Quattro Pro is not compatible with 1-
2-3" (which is not true), or “it will take too
much time to learn that new software”
(which | also disagree with). Quattro Pro
can read 1-2-3 files (and macros) directly,
and if one wants to stay with the 1-2-3
command structure, one can always change
the Quattro menus to conform. But for
those users who have taken the time to
change over to Quattro Pro, | consistently
hear them say that the Quattro menus are
much easier to use than the ones in 1-2-3.

Many of the letters | receive indicate
that a number of members are still using a
DOS version 2.x, even though ZDS MS-
DOS 4.0 has been available for over a year,
notto mention that Microsoft released MS-
DOS 5.0 in June.

So why do people continue to use old
and outdated software? | think a good part
of the answer lies in human nature. We
tend to stay with what we feel comfortable
with, whether it’s an old car, easy chair or
computer software. Does cost have some-
thing to do with it? Are new features and
enhancements important? So far as com-
puter software is concerned, | think there is
more to it than that.

Improved technology, whether it's part
of software or hardware, is no longer a
“guaranteed sale” like it used to be, no
matter who the vendor is. Even IBM has
had two specific demonstrations of that
fact. The firstis OS/2 thatl mentioned. And

the second is the PS/2 series computers
with the Micro Channel Architecture (MCA)
that was intended to be next step beyond
the Industry Standard Architecture (ISA).
Compared to original projections, sales of
both have been dismal for a variety of
reasons, including cost. Indeed, the obvi-
ous success of Windows 3.0 may be more
due to the fact thatitruns under DOS, even
though it has some costly hardware re-
quirements.

| think there are several different parts
in the answer to this question. The first, as
| indicated earlier, is that people tend to
resist change. That's part of the old “If it
ain’t broke, don’t fix it” approach, which |
personally subscribe to in many, but notall,
cases. Many new software features and
enhancements simply aren’t needed by
many users, so there is little incentive to
spend the money for an upgrade and go
through the hassle of installing it. As most
of you have probably noticed, | write about
software from the perspective of the new
features and enhancements that | have
personally found useful, and | frequently
ignore things that | don’t have any use for.
For example, | personally have no need for
a word processor that has the capability to
create newspaper-like columns, although |
recognize that some users do. And | doubt
that all that many users do. On the other
hand, | have a need for a word processor
that can generate a Table of Contents and
an Index, which is something that many
users do not need. Like most of you, |
usually buy software that meets a specific
need | have, such as Software Bridge and
Outside In that | mentioned in the May
issue. While not everyone has a need to
convert a file from one format to another,
| have noticed that more and more users
need some kind of software for that be-
cause they may use one set of software at
work and another set of software at home.

There is little doubt that another part
of the answer is cost versus perceived
value. Why spend any money on some-
thing just for the sake of having the up-
grade when there may be nothing new that
you can use in that upgrade? For example,
I am currently using ZDS MS-DOS 4.0 with
DESQview for multitasking, so why would
| upgrade to MS-DOS 5.0 when it is re-
leased by Zenith Data Systems. | have
found that multitasking generally helps me
work faster, so | expect to upgrade to ZDS
MS-DOS 5.0 in the hopes that it will work
even better than the version 4.0 in combi-
nation with DESQview. That also assumes
that Zenith Data Systems will continue
their previous policy of sending out up-
grade notices to registered MS-DOS users
with an upgrade price of $49. If that
changes, then | will have to reconsider, but
| will probably get the upgrade anyway so
| can give you a report on what | found. For
me, the value of a better approach is worth
the costif it can save time for me in the long

24

August 1991

run. And of course that means | expect to
use it in a “production” mode, which also
means the software MUST be reliable.
That's another part of the answer.

| use my computer primarily as a tool
for makinga living. | spend most of my time
writing consulting reports, various articles,
and books. Software that | use in my pro-
duction system must be reliable and pre-
dictable. | read a number of publications to
help me make judgments on what to buy
and when to buy it. And when | find a good
program that is reliable, you will generally
find some comments about it in this col-
umn. For me, reliability is key because | just
can't afford the time to “recover” from
software problems.

One test of reliability that | use is to
generally stay away from many x.0 ver-
sions of software. Of course that depends
on the software vendor. For example, |
decided to buy ZDS MS-DOS 4.0 and
Borland’s Quattro Pro 3.0 because my past
experience has indicated both vendors
carefully test software before it is released.
That's not to say that the software is always
free of bugs, butitis reliable. Still, | perform
testing on even that software before | use
it consistently on my production system,
just so | know where any problem areas
might be.

Not all vendor’s x.0 versions are that
reliable. Even though a vendor may be
reputable and well known, that is no guar-
antee of reliability. IBM, for example, has
had considerable problems with x.0 re-
leases of PC-DOS. In certain circumstances,
both PC-DOS 2.0 and 4.0 would clobber a
hard drive, which resulted in considerable
problems. As | recall, PC-DOS 2.0 would
clobber a hard drive if a BASIC program
bombed for some reason. And version 4.0
seemed to have considerable problems
with partitioning and accessing high-ca-
pacity hard drives. The last time | checked,
there were something like six patch disks
that were issued by IBM for correction of
various problems in PC-DOS 4.0.

Many of you may recall the problem
(mentioned in one of my columns last year)
that Lotus 1-2-3 version 3.0 did not run on
ZDS (laptops and desktops) and AST com-
puters because of a bug in the memory
management routine in that version. Lotus
blamed that bug on the computer manu-
facturers, and | have never seen anything
printed that acknowledged the problem
was really in their memory manager. | think
software reliability is key, and | think that's
another part of the answer as to why many
people don’t upgrade software. Problem
reports like these tend to cause consider-
able worry, sometimes about the wrong
things. | remember a couple of letters that
| received about the 1-2-3 version 3.0
problem because users thought it was a
ZDS computer problem instead of a bugin
1-2-3. That's the reason | checked into the
problem quite thoroughly before | origi-

nally wrote about it.

Inertia (Ifitain't broke, don’tfixit), cost
versus perceived value, and reliability. |
think those are the major issues surround-
ing whether or not users upgrade or buy
new software. Perhaps these thoughts will
help you decide whether or not you want
to upgrade to a new software version or
stay with the one you are currently using.

Powering Down

| hope that this article helps answer
most of the remaining questions about
memory and memory usage. | have tried to
make this article complete with respect to
the introduction of some of these “new”
terms, even though you have seen some of
this information before.

For help in solving specific computer
problems, be sure to include the exact
model number of your system (from the
back of the unit or series from the Owner’s
Manual), the ROM version you are using
(use CTRL-ALT-INS to find it, except for the
eaZy PC), the DOS version you are using
(including both version and BIOS numbers
from the VER command), and a list of ALL
hardware add-ons (including brand and
model number)installed in your computer.
The list of hardware add-ons should specifi-
cally include memory capacity

anything in this column, or about Zenith
Data Systems or Heath computers in gen-
eral, be sure to include a self-addressed,
stamped envelope (business size preferred)
if you would like a personal reply to your
question, suggestion, commentor request.

Products Discussed

Powering Up (885-4604)

Zenith Users’ Group

P.O.Box 217

Benton Harbor, Ml 490220217
(616) 982-3463 (ZUG Software only)

$12.00

Quattro Pro 3.0 $247.50
Borland International

4585 Scotts Valley Drive

Scotts Valley, CA 95066

(800) 255-8008 (Except California)

(800) 742-1133 (California only)

(800) 237-1136 (Canada only)

Manifest $60.00
QRAM 80.00
QEMM386 100.00
DESQview 130.00
DESQview386 220.00

Quarterdeck Office Systems
150 Pico Boulevard

Santa Monica, CA 90405
(213) 392-9701 %

(either added to an
existing board or
on any add-on
board), all other
internal add-on
boards (e.g., mo-
dem, bus mouse or
video card), the
brand and model
of the CRT monitor
you have, and the
brand and model
of the printer with
the type of inter-
face (i.e., serial or
parallel) you are
using. Also be sure
to include a listing
of the contents of
the AUTOEXEC-
.BAT and CON-
FIG.SYSfiles unless
you have thor-
oughly checked
them out for poten-
tial problems (e.g.,
TSR conflicts). If the
problem involves
any application
software, be sure
to include the

"What Did | Change?"

Answer that question by using Directory Compare.
Compare date/size of files in any two directories. Public
Domain (source included). Send only $5.00 shipping &
handling. For PC or Z100 (specify diskette size)

"Can | Improve My Screen Prints?"

Yes - with EGAD Graphics & Text Screen Print PC's and
now also for the Z-100 series.

* Prints IN COLOR on color printers, or uses black,
white and six gray tones on most other printers
Print any part of the screen - crop box pops up when
Shift-PrtSc (PC) or Shift-F12 (Z-100) pressed;

use arrow keys to select region.

Enlarge graphics 1-4 times

Supports Super VGA, VGA, EGA, and CGA

SET program selects printer colors, other options.

Supports most dot matrix, laser, and ink jet printers

(including Epson, NEC-8023, MPI, Okidata, HP, etc.)
EGAD for PC’s, Order # 270 $35.00 postpaid. Specify
3.5" or 5.25" diskette.
EGAD for Z-100, Order # 271 $35.00 postpaid.

name and version
number of the pro-
gram you are run-
ning when the
problem appears.

If you have
questions about

LS Software (formerly Lindley Systems)
8139 E. Mawson Rd., Mesa AZ 85207
(602) 380-9175. Call/Write for Free Catalog

August 1991

25

Part 2: Learn C Now

So you want to learn C programming?
And the Microsoft C compileris your choice
(or your boss')? What's more, you think
learning would be easier if you had a real
compiler to experiment with? Take heart!
Has Microsoft got a book for you. It's titled
"Learn C Now", by Augie Hansen, and it's
published by Microsoft Press. The book is
more than along commercial for Microsoft
C; itwill enable you to get started in almost
any C environment. The compiler supplied
on disk with the book has its limitations,
chiefly that it will not save compiled pro-
grams to disk. Nevertheless, it's a good
tutorial on the C language, in general, and
a good introduction to the Microsoftline of
C compilers, in particular.

Part 1 of this series covered the Master
C book and disk set from the Waite Group
Press. You can run the Master C tutorial
program without referring to the book at
all. Learn C Now has a different approach;
the book and the software are about equally
important in learning the material. Its tuto-
rial is in a program called LEARNC.COM,
and it's a good introducion to all the book
topics except one: graphics programming,.
Still, you're cheating yourself if you rely
totally on the program and never open the
book. For instance, the book explains the
function of the example programs sup-
plied with the compiler. It also suggests
program changes which will shed light on
debugging and program logic.

What You Get

The book is a 367-page paperback.
Three 5-1/4", 360K disks are sealed in a
pouch in the back cover. The software
consists of the Learn C compiler, LC.EXE,
the LEARNC.COM program mentioned
earlier, header files, and example C pro-
grams. |'ll refer to LEARNC.COM as "the
tutorial” in this article. All the programs and

Tam Biug

Canolyn Drive
Swywa, GA 30080

source code take up about 1.04 MB of disk
space. You need a machine with at least
one floppy disk drive. If the computer's
onlydiskisasingle floppy, itshouldbea 1.2
MB or 1.44 MB drive. Dual 360K floppies
or one 360K floppy and a hard drive will
also work. MS-DOS 2.0 or later is the
required operating system. Even if your
machine has the newer 3-1/2" disks, it
should be possible to install Learn C Now;
all it takes is a copy of the original disks in
3-1/2" format. Installation uses the DOS
COPY command; the files on the disks are
not encrypted or compressed. There are
clearinstructions in the book for setting up
the software on a floppy-only machine, but

itwillbe a lot more fun and less hassle with

a hard drive. You can run the program on
either a monochrome, color or LCD dis-
play, but some of the multiple-choice an-
swer lists don't show up well on an LCD
display. | recommend using a color EGA or
VGA monitor. I've run the tutorial on a
good VGA-quality LCD display (a Super-
sPort 386E). However, a color monitor
enhances the program'simpactand educa-
tional value.

LEARNC.COM, the tutorial, is quite a
program. It uses character graphics and
some clever animation techniques to ac-
quaint you with the Learn C compiler.
What you see in LEARNC.COM is what
you get in the Learn C compiler (LC.EXE).
The tutorial starts with the basics. You even

C Language Programming Topics

{ Programeing Concepts

Statements
4 Decision and Iteratiom
{ The C Preprocessor

4 Arrays
{ Pointers and Indlrection

File Input and Output

4 Elesents: Data and InputOutput
4 Operators, Expressions, and

4 Building Blocks: Functions

Structures, Inions, and Bitflelds

To select a lessom,
press the highlighted
letter assoclated with
your cholce.

Return to the Main Menmu
Quit (return to DAS)

P St : SRt e L S e S
Figure 1. Programming Topics Menu.

26

August 1991

L P :
I Template | : @mryy
¢ struct bytes { .
* unsigned char low: ¢ e s = :ata.:m-:iwh
¢ unsigned char high; « 4 GRIA-DyvE G
[H .
L4 €
« Union word { & data. word
. unsigned short word;
struct bytes byte: .
R .
[] * €
~ \]
. .
Declaration .
by union word data: .
. .
> v
Figure 2. Sample Illustration from "Learn C Now" Book.

get a tour of the keyboard, if you wish; the
tutorial explaining the use of each option.
The editor features of the compiler are
described thoroughly enough to give even
a novice computer user confidence. The
tutorial understands two kinds of keyboard
input, which | call "navigation" and "con-
trol". Navigation means making selections
to work through a lesson in the order in
which it is presented. For instance, the
program will promptyou to press a key and
then show you the resulting action taken
by the compiler. It usually uses the space-
bar to move to the next step in a lesson, or
a single letter to select a specific lesson
from the main menu. The other kind of
input is control, or "Let's do something
else". By pressing the 'Ctrl' key along with
one other key, the user can either step
back through earlier screens, return to the
main menu, or exit to DOS before the
current lesson is finished.

There is also a lesson titled "Overview
of C Programming", giving a summary of
the C language (reasons for using it, etc.)
and detailing some limitations of the Learn
C compiler — for instance, it can't create
.OB] files or place compiled programs
anywhere but in memory. It also has to
have all components of a C source pro-
gram (except header files) in a single file.
Full-feature compilers don'thave these limi-
tations; but then, most of them aren't pack-
aged with a $39.95 book.

The "C Programming Lessons" selec-
tion contains a menu of topics which cor-
respond to the chapters in the book (Figure
1). Chapter 13 on graphics programming
does not have a counterpart in the tutorial;
there are, however, sample graphics pro-
grams to run. The "Pointers and Indirec-
tion" lesson in the tutorial corresponds to
Chapters 9 and 10 of the book. The book
and tutorial go hand-in-hand; the book is a

useful reference, but its contents really
"come alive" when you load and run the
example programs with the Learn C com-
piler.

The book is a well-designed text. Con-
trasting type fonts distinguish descriptive
material from sample programs. The clear
black and white illustrations are simple and
easy to read, illuminating the difficult points
without getting in the way. Figure 2 is a
typical example. The depictions of pro-
gram screens are very legible, appearing in
black letters on a white background. This
style is quite different from screen displays
in the Master C book, which appear as
hard-to-read photos of PC screens.

Chapters 2 through 13 usually begin
with a general description or definition of

the topic, followed by examplesin the form

of C statements or entire programs. Areas

where special care is required are explained

thoroughly. Chapters 2 through 12 all end

with questions on the material. Six appen-

dices provide details on the following top-

ics:

A: C Language Keywords

B: C Language Operators

C: Preprocessor Directives and Pragmas

D: Learn C Standard Library

E: Characters and Attributes

F: C Programming Traps and Tips
Appendix F is followed by a glossary,

answers to selected questions and exer-

cises, and a very detailed index.

Chapter Highlights

The following summary attempts to
tell what is noteworthy about each chap-
ter. Chapter 1 describes the "look and feel"
of the compiler and lists each command
used by the editor. Chapter 2 shows how
to break down a process to be programmed
into simple tasks and introduces an ele-
mentary C program. Chapter 3 tells how
objects in memory are stored, accessed,
and referenced. Chapter 4 clearly explains
arithmetic and logical operators and their
precedence, i.e., the order in which the
compiler processes them in a statement.
Chapter 5 covers if, for, while, and other
program keywords that control program
flow, with examples and explanations of
common errors. Chapter 6 covers the C
preprocessor, citing examples and pitfalls
of macro definition.

Functions are the heart of C program-
ming. The coverage of functions in Chap-
ter 7 is the core of this book. "Call by value"
is used when you don't want to change the
values of variables in the calling program;
otherwise, "call by reference" is used. The

(T

“BANNER

-

-y

 |ainclude cstdio.h>

Sdefine WIDTH 72
#def ine ROWS 4

Line()
i

int x:

for (x = 8 x <= WIDTH; +x)
rutclur(’-'):

putchar('\n’);

-3

BEe Froyram Li: Lo <Nowe -

I by

« Print a message zurrounded by a border. lse
« functions to drau the elements of the border.

am uol compi led?

FL Help
Fi

| Topic: | putchar Shift+F1jf
I

| Floee e dp

LRIV

Figure 3. Selecting the Help Menu Option.

August 1991

27

i aearch i v by
Writes the sl
(stdout).

<stdlo.h>
Int putchar(int c);

the character written.

int x:
for (x = B: x <= WIDTH: +x)

putchar(’=');
putchar(*\n’);

int y:

for @y = B8: y <= hOWS: +wy)

vongram Lz |

.'

ngle character 73] the standard

C:\LEARN_CNEXAMPLES\B €

printf (VeNENENEAENENENEAEN ')

A re. Ir-t:

Figure 4. Results of Help Selection.

book and the tutorial clearly distinguish
between these two concepts, saving the
beginning programmer a lot of grief.

Chapter 8 covers arrays, particularly
character arrays and strings, and shows
how they are initialized. The idea of point-
ers is a very difficult topic in C, well worth
the extended coverage in Chapters 9 and
10. The relationship between pointers, ar-
rays, and strings is shown by appropriate
examples. Pointers are shown being used
as function arguments in order to return
more than one value to the calling pro-
gram. There is an ingenious example that
walks the reader through a simple addition
problem using both simple integers and
pointers. Chapter 11 uses some real-world
programming problems to explain struc-
tures, unions, and bitfields. The idea of a
union is admittedly an exotic concept for a
programmer who has come from a lan-
guage that doesn't allow that sort of thing.
Unions allow you to access an area of
memory as either an integer, a floating-
point number, a character array, etc. A
typical use of a union is to determine the
byte order used by your computer to rep-
resent integers. To me, that would have
been a more realistic example than the
UNION_2 program given in the book.
However, it might also have been harder
for beginning programmers to understand.

Chapter 12 on file I/O explains how
text and binary files are distinguished in
MS-DOS and the use of the Ctrl-Z as an
end-of-file indicator in text files. There is
also a discussion of file access types (read,
write, append, etc.) and the way these are
used with new or existing files.

Chapter 13 on graphics describes some
of the library routines used to write to the
screen on a pixel (rather than character)
basis. It's useful as a way of showing how
the C graphics library recognizes the fea-

tures and limitations of video hardware.
Graphics is one area not covered by the
Master C package featured in the previous
article. However, | believe the professional
C programmer would be well advised to
use a tested and proven off-the-shelf library
of graphics routines, especially if standard
(CGA, EGA, or VGA) video displays are to
be used.

The 'Debug' Menu Option

The advanced debugging capabilities
of the Microsoft and Borland C compilers
have greatly lightened the programmer's
load infinding and fixing program errors. In
the olden days, programmers would add
"printf" statements at each point in the
program where the value of a variable was
to be displayed. This technique is time-
consuming, since all those diagnostic printfs
have to be taken out when the problem is
fixed. Also, since code is being added,
there is a tendency to create new errors as
well as pinpoint old ones. The choiceson
the Debug submenu point to a better
method; the programmer can name vari-
ables whose values are to be displayed and
specify the statements at which they are to
be printed out, but without adding any
source code statements. There is an excel-
lentexample (pages 206-210) of the use of
the Debug option to fix a problem in the
'reverse.c' program supplied on the disks.
Even aggregate data objects like structures
can be displayed, as well as integer or
floating-point variables. Programmers who
experiment with Debug in the Learn C
compiler will not be intimidated by the
Codeview debugger in Microsoft C which
inspired it.

On-Line Help
Pressing F1 or Alt-H displays the Help
submenu. At this point, either general or

topical help can be chosen. The general
help screens show C operator precedence,
an extended ASCII chart, and so on. The
topical screens let the user specify a key-
word, such as a function name or C re-
served word. For instance, if the user has
opened the "banner.c" program for editing
orcompiling, he or she may need a descrip-
tion of the "putchar" function. The user
places the cursor in the word "putchar” on
the screen and presses F1. This causes the
"Help" submenu to come up with "putchar”
already entered in the "Topic" field (Figure
3). The help system hunts up its reference
to that topic and prints a condensed defini-
tion of the term just below the menu bar
(Figure 4). The help screens in Master Care
elaborate and provide a detailed reference
for students working through the Master C
lessons. The help screens for Learn C Now
are simpler and more like what is available
on a "real" C compiler.

Master C or Learn C Now?

Choosing between these twoisa tough
call. Unless you're chomping at the bit to
go ahead and learn C++, either one of
them will be a good introduction to the C
language. Master C came outin 1990, after
the ANSI C standard was finalized; in Learn
C Now, it is referred to as the "proposed"
ANSI standard, because Learn C Now was
published in 1988. Consequently, Master
C has a little more detail on ANSI changes.
Master C has a more sophisticated ques-
tion-and-answer technique. Learn C Now
simply explains why a choice was right or
wrong. Master C attempts to help a student
who is close to the right answer to zero in
on it, requiring him or her to repeat mate-
rial not yet mastered. However, Learn C
Now is closer in "look and feel" to what the
aspiring Turbo C or Microsoft C program-
mer will be using. Competitive marketing
of these two teaching packages is making
the choice even harder; some Learn C
Now books come with a discount offer to
encourage you to buy Quick C, and Mix
Software is offering Master C bundled with
their C compiler. The Master C book says
that if you already have Quick C, you can
install Master C as one of Quick C's menu
options. If you find thick textbooks intimi-
dating, and you learn better from com-
puter courseware that can be used by
itself, perhaps Master C is for you. If you
know you will be using a Microsoft C
compiler, Learn C Now will help you ease
into that environment. Each of these two
packages has helped me solidify my C
knowledge.

What Next?

Part 3 in this series will cover the Turbo
C++ Disk Tutor offered by Borland/
Osborne/McGraw-Hill. Keep watching this

space. ¥

28

August 1991

The World of WP5.0 and Its Wonders

Salli Brackett
2201 Sycamore, #123
Antioch, CA 94575

The tab function seems to give a lot of
people fits. This article is designed to dis-
solve the mystery surrounding the tab func-
tion. The article is in three parts: an expla-
nation of the tab edit menu, tips on setting
up several tab stops for data involving
numbers, and a sample table of numbers
for input.

When you start working with tabs,
you feel that you have really gone ‘down
the rabbit hole with Alice’. First of all, think
of the tab ruler line in the edit menu
(sample below) as the ruler line on a type-
writer. To set tabs on a typewriter, you
space to the position you want and press a
tab set key. In the same manner, you can
place the cursor on the tab ruler line and
type a letter. To make it simpler yet, just
type in the number of the column you wish
and press ENTER. The advantage to
WordPerfect’s tab ruler line is that you
have choices of types of tabs.

Type <the starting column>, <the interval
space> (i.e., 12,4). This means the first tab
starts on column 12, and the interval be-
tween each tab is 4 columns (spaces). The
default is 0,5.

To use the method in this article, you
need to change the ‘Pos’ display on your
status line to units of measure (columns
and lines). Press Shift-F1, u (in WP5.1, press
e, u), d, u, s, u, F7. When using the units of
measure method, keep in mind that with
the default of Courier 10 pitch, on 8-'2" x
11" paper, there are 85 characters (col-
umns), 66 lines, and one inch = 10 charac-
ters. These figures will change as you use
different fonts. To determine the correct
figures with different fonts, see the lastline
in the Tab Math Table. Once you have
these figures, place them on a post-it and
putiton your computer for easy reference.

All these figures may seem like a lot to
memorize, but try calculated tabs or figur-

ing out what the equivalentof 1 lineisin 1"
You end up working with the decimal form
of inches. For tabbing, you can not use the
math method.

The sample for our practice is on the
next page. | calculated these tab stops by
using the process described in the Tab
Math Table. Since this sample needs deci-
mal tabsin columns 2-5, | needed an added
calculation for the numbers to line up
properly.

Take the longest number and count
the digits to the left of the decimal, includ-
ing commas, spaces and the $ sign. In the
above sample, columns 2-5 have 6 charac-
ters to the left of the decimal (if there is no
decimal, the decimal is assumed at the end
of each number). Now you want to add this
number (6) to the column number created
from your calculations.

Before starting the following exercise,
let’s calculate our columns based on the

Left Tabs — Standard tabs. Justifies on
the left of the tab stop (L).

Decimal Tabs — Tabs center on a
decimal (D).

Center Tabs — You can place a center
tab in the tab edit ruler line (C). (You also
can use the left tab and then center — Shift
F6.)

Dot Leader Tabs — Tabs that put dots
in front of the tab stop. Type in the number
of columns you wish, press ENTER, type a
period (.). The L on the column will high-
light.

Right Tabs — Justifies on the right of
the tab stop (R).

If you wish tabs set at equal intervals:

Tab Stop Sample A

11+20+4=35
2 The 1st tab stop (35) +
length of column (9) +

35+9+4=48
3 The 2nd tab stop (48) +
length of column (9) +

48+9+4=61
4 The 3rd tab stop (61) +
length of column (9) +

61+9+4=74

1 The beginning of the column
1 is the left margin (11) + the
length of the column (20) +
spaces between columns (4).

spaces between columns (4).

spaces between columns (4).

spaces between columns (4).

Figure 1

Sample B

The length of the column (20) +
the spaces between column (4).
20 +4 =24

The 1st tab stop (24) + length
of column (9) + spaces between
columns (4). 24 +9 + 4 =37

The 2nd tab stop (37) + length
of column (9) + spaces between
columns (4). 37 +9+4=50

The 3rd tab stop (50) + length
of column (() + spaces between
columns (4). 50 _9+4=63

August 1991

29

Tab Math Table. This may seem like a
tedious exercise, but trust me, it is a fool-
proof method of spacing each column
properly the first time. No more guessing
or adjusting. The example is based on
Heivetzca 12 pt type.

. The longest entry in column 1 is 20
characters and the other 4 columns
need 9 characters each.

. The total is 56.

. The I/r margins are 11 and the width of
the line is 94. 94 - 22 = 72.

4. Results of #3 are 72 and results of #2 are

56.72-56=16.

5. There are 5 columns, therefore divide
result of #4 by 4, 16/4 = 4.

6. Now we figure the tab stops. Sample A
is WP50 (or absolute Tabsin WP51) and
Sample B is WP51 relative tabs (see
Figure 1).

7. A double check: Remember | said this
was foolproof. You can check your
math by the following method. Take the
last tab stop and add the width of the
column. In our example the width of the
last column is 9. In Sample A, the result
should be the right margin, 83. (The
right margin is obtained by subtracting
the width of the margin (11) from the
total length of the line (94). In Sample B,
the resultshould be the same. Since you
didn’t use the left margin in your calcu-
lation, add it now. 63 +9 + 11 = 83. |
recommend using a calculator even for
the simple math. This will save you
having to redo the exercise due to a
mistake in arithmetic.

8. Remember earlier, | mentioned how to
calculate for decimal tabs. Since, in this
case, we need decimal tabs for columns
2-5, you need to add 6 to each tab stop
(6 being the total number of characters
to the left of the decimal).

Wk

Therefore:

Tab Stops Sample A Sample B
1 35+46=41 24+6=30
2 48+6=54 37+6=43
3 61+6=67 50+6=56
4 74+6=80 63+6=69

Be sure and change your units to 4.2
units, have a clear screen, press RETURN
four times and begin the exercise. If you are
using WP51 and want to use Relative Tabs,
in the Tab Edit Menu, press t(ype) and
select Relative Tabs.

1. Press Shift-F8, I(ine), t(ab).
2. Cursor to the 0 column on the tab line.
3. Press Ctrl-End (EOL key) to delete exist-

Product January February March Total
Apple Pie 5344.25 5487.65 6001.50 16,833.40
Bear Claw 2567.80 2010.36 1989.50 6,567.66
Chocolate Eclair 3558.22 -500.01 2775.12 5,833.33
Linertore 1783.15 776.75 765.43 3,325.33
Strawberry ShortCake 981.00 865.40 115.50 1,961.90
Truffled Delight 3229.25 3005.22 3004.04 9,238.51

TOTAL 17,463.67 11,645.37 14,651.09 43,760.13

Figure 3
ing tabs. underline/tabs as above. Press underline,

4. Type in the first tab stop as in #8 above,
then type d for decimal tab.

5. Repeat number 4 for all the numbers.

6. After completing number 5, Press F7
twice.

7. Typein the columns as shown in Figure
2 using the TAB key.

8. You now need different tabs for your
headings. To copy the tab set code to
the beginning of the document, do the
following:

Place the cursor on

type first heading, tab, type second head-
ing, tab, type third.

The default works without underlining
between tab stops.

This is a heading

Align Tab (Ctrl F6)

The align tab key uses the present tab
settings. This key can be used with all
numbers (ones with decimal points or not).
You do not need to set special tabs.

heading two

tab set code (with re- January
veal codes, the tab set February
code should be high- March

lighted), press DEL, y,
F1, r. (You just re-

$ 5,620 January $5,620.00

265 February 265.00

3,623 March 3,623.00
Figure 4

placed the code you deleted, but the
code now can be restored at another
position in the document.)

Place the cursor at the top of the
document, press F1, r. (You now have a
duplicate of the original tab code. You
can now edit this code.

Make sure the cursor is to the right of
the tab set code. Go to the tab set menu
(Shift-F8, 1,(line) t(ab)), replace the D’s
with c for center tab and press F7 twice.

9. Type in the headings: Product, January,

March, and Total.

10. Remember to put the tabs back to the
default (0,5) immediately after your
table.

TIP: If you use tab tables a great deal, |

recommend creating a macro for the de-

fault tabs.

Your finished product should look like
the one in Figure 3. Following are some
added features for using tabs.

Underline Spaces/Tabs
You can have the underline key work
on the spaces between tabs. Press Shift-F8,
of(ther), u(nderline). Type y, y. Press F7.
This is a heading heading two
The above was created changing

Apple Pie 5344.25
Bear Claw 2567.80
Chocolate Eclair 3558.22
Linertore 1783.15
Strawberry ShortCake 981.00

Truffled Delight 3229.25

TOTAL

5487.65 6001.50 16,833.40
2010.36 1989.50 6,567.66
-500.01 277512 5,833.33
776.75 765.43 3,325.33
865.40 115.50 1,961.90
3005.22 3004.04 9,238.51

17,463.67 11,645.37 14,651.09 43,760.13
Figure 2

Following the sample in Figure 4, tab
over 3 or 4 tabs and type in 'January'. Tab
Align (CTRL F6) several times and type in
the first number of your list. The numbers
will all move to the left. To line up the
successive numbers with the first, press tab
align until the cursor lines up with the
decimal point or the space after the last
digit in the number.

If a tab align is not lined up, delete all
the tab aligns on that line and re-enter
them.

If you wish the numbers to line up on
the comma instead of the decimal:

Press Shift-F8, o(ther), d(ecimal). Type
, (comma). Press F7 twice.

January 300,000
February 2500,000
March 256,000

To put an underline under the last
number in a column:

Tab (the tab key) to just short of the
column in question. Space over to the
point you wish the underline to start. Press
underline (F8). Using the spacebar, create
your underline. Under the ~“F8 menu,
Ia(ppearance], there is also a double under-
ine.

I do hope this has eliminated some of
the mystery of tabs. If you have any specific
questions or problems, don’t hesitate to
write me. Happy tabbing!!

30

August 1991

If you are using a 12 pitch font, |
recommend that you change the default
to 12, 5. Explanation: For a standard 1"
left margin with a 12 pitch font, the text
starts on column 12. If you have tabs
every 5, startingat 0, the second tabis 10,
the third is 15. Therefore, with a starting
margin of 12, your first tab should be 17,
not 15.

5.1 has solved this problem with the
use of relative (relative to the margin) and
absolute (absolute to the edge of the
paper) tabs. When using the default (rela-
tive) tabs, the tab stops change with the
margins. So, if the left-hand margin is 10,

the tabs are 5, 10, 15, etc. If the left-
margin is 12, the tab stops are 12, 17, 22,
etc.

If you determine your table stops by
eyeballing on the screen, not using the
math method described in the Tab Math
Table, you must remember to subtract
the size of the lefthand margin to each
tab stop.

For example, if your tab positions
from the screen were 25 and 42 witha 12
pitch font, you would have to make tab
stops of 13 and 30; and using 10 pitch,
the tab stop would be 15 and 32.

Suggestion 1

If you have text with indented paragraphs, such as in a text with items like 1., 2.,
A., or B., to get the proper spacing with the indent key, change the space interval of

your tabs to 4.

Suggestion 2

1. Determine the length of each column:

1st column = 4; 2nd column = 30; 3rd column =12
2. Add length of columns: 4 +30+ 12 =46
3. Onan 8-1/2" x 11" piece of paper, the length of the paper is:

10 pitch 12 pitch 12 pitch (proportional)
85 (spaces) 102 (spaces) 87.5 (spaces)*
When using a 1" left/right margin, the margins are:
10 pitch 12 pitch Proportional
10 12 11
Subtract pmargins from length of paper.
85 102 87.5
-20 24 -22
65 78 65.5

The results are the total columns (spaces) you can use for the text and the spaces

between columns.

4. Subtract results of #2 from results of #3.

65 78
46 46
19 32

65.5
46
19.5

The results are the total columns (spaces) available for spaces between columns.
5. Divide results of #4 by the # of columns minus one.

3 columns-1=2

19/2=9 32/2=16

20/2 =10

The results are the spaces between columns.

* The width of paper in proportional space is determined by the typestyle used. To
determine the width, check the Paper Size (Shift-F8, p(age)). Round off all calculations.
** The left/right margins are determined by the typestyle being used. To determine
the margins, check I/r margins (Shift-F8, I(ine)).

Tab Math Table %

f/_ If you hunger for Computer news. \

HEMarke .
]
!

Dinner is Served!

Quality Enhancements!

EaZy PC Products

EZM-128: Expand 512K base memory to
640K. Simple, plug-in installation. $95.00
EZCLOCK: Calendar/Clock. Piggy-back
add-on for EZM-128. $35.00

No Slot Clock/Calendar

FBE SmartWatch: Automatic date/time
on bootup. Installs under BIOS/Monitor
ROM. Ten year battery. Works with all
Heath/Zenith MSDOS computers. For
PC’s $32.00, Z-100 $33.00 Module: $25.00

HfZ-148Expansions

ZEX-148: Adds one full-size and one half-
size expansion card slot. $79.95

ZP-148: PAL chip expands existing 640K
memory to 704K. CGA/MDA only! $19.95

ConfigurationControl

CONFIG MASTER: Menu-select active
CONFIG.SYS during bootup. Software for
PC/Z-100 MSDOS. $29.95

H/Z-150 Items (Not for '157, "158, "159)
VCE-150: Eliminate video card. Install
EGA or VGA card. All plug in. Includes
circuit board, SRAM and RM-150. $49.95
ZP640 PLUS: PAL chip to expand stand-
ard memory card to 640/704K with 2 banks
of 256K RAM chips (not included). $19.95
ULTRA-PAL: Three PAL chips: MR150
for 704K + 512K RAM Disk: MRI150T
for 640K + 512K RAM Disk; LIMI150 for
640K + 512K (32 pages) of simulated v3.2
Lotws/Intel/Microsoft Expanded Memory.
With software. Install on standard memory
card. No soldering. Needs 45 256K RAM
chips (not included) for maximum mem-
ory configuration. $39.95

COMS3: Change existing COM2 10 COM3.
Put internal MODEM at COM2. Don't
lose serial port. With software, $29.95

H/Z-100 Modifications

ZMF100A: Expand "old" motherboard
(p/n 181-4917 or less) using 256K RAM
chips (not included). No soldering. $65.00
ZRAM-205: Put 256K RAM chips on your
Z-205 board. Get 256K plus 768K RAM
disk. Contact us for data sheet before
ordering. Without RAM chips. $39.00

H/Z-89 Add-Ons

HB89PIP: Parallel printer 2 port interface
card. With software. $50.00 Cable $24.00
SLOT4: Add fourth expansion slot to right-
side accessory bus. $39.95

Order by mail, FAX, telephone, or see your dealer.
UPS/APO/FPO shipping included, VISA/MasterCard.
WA residents add 8.1% 1ax. Hours: M-F 9-5 PST.

We rewmn all calls left on our answering machine!

rB:
FBE Research Company, Inc.

P.O. Box 68234, Seattle, WA 98168
206-246-9815 Voice/FAX IgchTone

August 1991

31

QUIKDATA - 15 YEARS OF H/Z SUPPORT!

YOUR H/Z ENHANCEMENT EXPERTS!

ACCELERATE YOUR PC/XT/AT!
From Sota Technologies, Inc., the fastest and most proven way to
give new life to your H/Z PC/XT computer, giving it -AT compatible
speeds! Turn your turtle into a -286 rabbit with a 12.5 Mhz 80286 or
%OAS(BJEI E16Mhz SX accelerator board. Complete with 16K on-board

The EXP12 286i is the effective solution, makin aour
H/Z150/160/150/158/159 series of computers, or any general PC/XT
computer faster, in many cases, than a standard IBM AT type
computer! You won't e your stop watch!

EXP-12 - $275

EXP386 - $449 Much faster 16Mhz 80386 SX version

For r H/Z241 or 248 we have the MicroWay 20Mhz 386SX
accelerator which plugs into a slot and cables to the CPU. Run
enhanced mode software such as Windows V3. 32K Cache with
optional 32K add-on for 64K cache. Landmark 27, Norton S| 22.4.
Cable extra, specify which is needed.

MWFCACHE - $450 20Mhz 386SX Accelerator card

MWCLCC - 395 LCC interconnect cable

MWCPLCC - $95 PLCC interconnect cable

MWCA32 - $65 32K Cache add-on option

387SX20 - $149 Optional 20Mhz coprocessor

MEMORY UPGRADES

Note: All memory upgrades come without memory chips. 150ns 256K
DRAMs are $1.79 as of this printing.

Z150MP - $17 Wil allow you to your H/Z150/160 to up to
704K on the main memory board, using up to 18 256K DRAM chips.

EAZYRAM - $89 Upgrades EaZy PC from 512 to 640K

ZMF100 - 355 Will allow you to u your H/Z110120 (old
motherboards; with p/n less than 181-4918) to 768K system RAM.
Requires 27 256K DRAM chins,

ZA0OMP - $55 Similar to ZMF100 above, but for new motherboards
with p/n 181-4918 or greater.

3MB RAM BOARD for Z241/248 computers is an excellent memory
card. Will backfill your 512 to 640K, and provide both extended and
expanded RAM; all can coexist. Uses 100ns M256-10 RAM chips, 36
per megabyte desired. Minimum of 18 DRAM chips required ($1.95
each).

EVATRD - $119

724812, 22861 P RAM UPGRADE Z605-1 consists of 2MB SIMM 80ns
RAM kits to upgrade your H/Z systems.
Z605-1 - $149

2386/20, Z386/25, Z386/33, 2386 EISA 2MB SIMM 80ns UPGRADE to
add increments of 2MB to these systems. Two required.
ZA3600ME - $89

ZA3800MK - $349 4 megabyte SIMM upgrade for Z386/20, /25, /33,
/33E. Must have 4-1 meg SIMMs installed first.

FLOPPY DRIVE SAMPLE
MF501 - $§71 5" 360K DS/DD drive
MF504 - $79 96 TPl 1.2 meg AT/Z100 drive
MF353 - $79 720K 3.5" drive in 5" frame
MF355 - $85 1.4 meg 3.5" AT drive in 5" frame
TM100-2R - $69 40tk DS reburb (H8/89/2100 PC type)
Also other drives and full line for older systems

ADD AN EXTERNAL HARD DRIVE TO ANY LAPTOP

OR PC DESKTOP with our EXPORT hard drive. Plugs into a
parallel port (do not lose the port) to give you an affordable way to
easimdd a hard drive to your coméw:er. Fast!

EWl - $495 20Mb unit IN40 - $625 40Mb unit

ANY DRIVE IN YOUR PC/XT/AT
With the CompatiCard, you can install up to four additional drives, of
anz type in your F'C/)(TyAT computer. Add a 1.2 meg 5" floppy, or a
1.44 meg 3.5" floppy, or ang other drive, includinlg 8" to your system.
The CompatiCard lCCAR) will handle up to four drives, and the
CompatiCard Il (CCARD2) will handle up to 2 drives. CCARD4 has
boot ROM to allow it to be used as primary boot controller in systems
that allow you to remove floppy controller in some systems. Also
handles 2.8MB 3.5" floppy drives. Additional cables and external

enclosures may be required.
CARDZ - §79 C - $99 CCARD4 - 3125

ADD ANY FLOPPY TO ANY LAPTOP OR PC WITH A

PARALLEL PORT easily and inexpensively. With Backpack, you
simply connect the external unit to your parallel printer port (do not
lose printer function), install software, and away you go! No
expansion boxes needed for laptops, and no slots required. Too easy
to be true, but it is. Want a 2.8mb/1.4mb/720K floppy on your
MinisPort? Want to add a 1.2 meg to your laptop? Want to add an
additional drive to your desktop? Plug it in and go. 2.8MB 3.5" version
will read and write 2.8 meg, 1.4 meg, and 720K format. 1.2 meg version
will read 1.2 meg and 360K and write 1.2 meg format.
BPACK238 - $31 BPACK1.4 - $269

BPACK1.2 - $269 BPACK360 - $269

8-BIT/Z100
We carry a full line of replacement boards, parts and er su|
!orﬂlerZBQMandzwo.WealsohavesnmeHaht;u’?wds .
We continue to fully support and carry a full ine of hardware and
software products for the H8/H89/90 and Z100 computers including
almost the full ine of Software Toolworks items. Other items we camry
include diskettes of all types, printers, modems, hard drives, elc.

WINCHESTER UPGRADE KITS
PCW20 - $239 Complete MFM winchester setup for a H/Z150, 148,
158, 159, 160, PC etc. Includes 21 meg formatted half-height Segate
ST-124 37ms drive, controller, cable set, doc.
ST-124 - $195 Bare drive only

PCW30 - $295 32 meg with 28ms Segate ST-138-1.
ST-138 - $249 Bare drive only

PCW40 - $319 42 meg with 28ms Segate ST-251-1.
ST-251-1 - $269 Bare drive only

PCWB0 - $595 80 meg with Segate ST-4096 full size drive.
ST-4096 - $549 Bare drive only

We also have the DTC controllers ($59) and daughter board
expansions ($65) to place a hard drive in the H/Z148 computers.

WDCON - $59 PC/XT hard drive controller board
WDATCONF - 395 1:1 interleave HD/floppy controller for AT's

OTHER STUFF

Quikdata also carries BIOS ROM upgrades and batteries for most H/Z
PC/XT/AT computers, spike protection filters, backup power supplies,
tape backup units, modems, printers, cables and ribbons, disk cﬁ'ives
and diskettes of all types, external hard drive and floppy drive
enclosures, cables and connectors, laptop batteries, CMOS batteries,
video monitors and video cards, memory cards, memory chips and
ICs, joysticks, accessory cards, serial and bus mouse, a variety of
useful and most popular software and much more! Need a PCD('I%'AT

? Tell us what you want and we will quote you a price on
one of our custom assembled QD computers made up to your exact
specifications!

Call or write in to place your order, inquire about any products, or
request our free no oblilg_lation catalog. VISA and Master Card
accepted, pick up 2% S&H. We also ship UPS COD and accept
purchase orders to rated firms (add 5% to all items for POs). RII
orders under $100 add $4 S&H. Phone hours: 9AM-4:30PM Mon-Thu,
9AM-3PM Friday. Visit our bulletin board: (414) 452-4345, FAX: (414)

QUIKDATA, INC.

2618 PENN CIRCLE
SHEBOYGAN, WI 53081-4250
(414) 452-4172

Adding a 2.88SMB
3.5" Floppy Drive
to Your Computer

How would you like to be able to store
the contents of eight 5-1/4", 360K floppies
on one disk. That is almost 3 megabytes of
file space that you can slide into your
pocket. Interested? Read on!

New Extra High-Density
(2.88 MB) Floppy Drives
Many still think you can’t use high-
density 3.5" diskettes on an 8-bit computer,
such as the IBM PC-XT or their clones. This
is not true. A number of third party vendors
offer hardware that connect a 3.5" high-
density 1.44 Mb drive to any IBM or com-
patible computer. One such vendor whose
products | have used for several years is
MicroSolutions. Their newest products are
the CompatiCard IV, Megamate and Back-
pack systems. Each of these supports a new
extra high-density 2.88 MB 3.5" floppy
drive. The drive uses a new 4 M-byte raw
capacity 3.5" diskette that formats to more
than 2.88 M-byte of storage. Toshiba pio-
neered the barium ferrite medium for these
new diskettes that are now licensed for
manufacture by 3M. The disks are expen-
sive right now, from over $10 per diskette
suggested list to under $8 per disk at some
dealers. Prices should drop as usage in-
creases. If you are considering adding a
3.5" drive to your PC, | strongly recom-
mend going with this new 2.88 M-byte
drive over a 1.44 M-byte drive to provide
for the future. Evenif you don‘tuse the 2.88
M-byte disks now because of the high cost,
you will be able to in the future when costs
come down. Other reasons to buy an extra
high capacity drive are:
e It offers twice the storage capacity on
the same physical size diskette, allowing
larger file sizes to be backed up from

Ron Siebers
9334 Wentlock Road
Woodbury, MN 55125-3420

hard drives.

e It offers 1 M-byte/second data transfer
rate, twice as fast as 1.44 M-byte drives.

e It will still read, write and format the
720K and 1.44 M-byte diskettes without
any problems.

e [BM introduced a new computer this
past June with a 2.88 MB 3.5" floppy
drive, creating a new drive standard for
PC’s you buy in the future.

e The just released DOS 5.0 will support
formatting for this new standard.

e The additional cost for the capability of
doubled storage capacity is only about
$45 more than the 1.44 Megabyte ver-
sion.

CompatiCard, Megamate or Backpack?
Microsolutions offers three ways to
add drives to your computer. The
CompatiCard is an 8-bit short slot card that
fitsin any 8-bitor 16-bitISA or EISA buss slot
(but not MCA or Microchannel slot com-
puters). It can replace the original dual or
four floppy controller used on any IBM PC,
XT or their clones. In these computers you
won'’t lose a slot. The IBM AT, and most
clone 286 and 386 computers including

Zenith Data Systems have a dual hard/dual |

floppy controller card, so you musthave an
unused slot available for the CompatiCard.
The CompatiCard IV can connect up to
four floppy drives of any size or density to
a computer. These can be four internal
drives or two internally mounted and two
external drives. The products provide the
following upgrade capabilities for older
PC’s:
e Add one or two 3.5" high-density exter-
nal drives to a dual floppy IBM PC or XT
without a hard drive to provide larger

floppy disk storage to run larger pro-
grams and provide compatibility with
3.5" drives in newer computers.

e Add one or two 3.5" high-density exter-
nal drives to an IBM PC, XT, AT or
compatible to provide larger backup
capability for hard drive files and com-
patibility with 3.5" drives in newer com-
puters.

e Add one to four more floppy drives to
any 286 or 386 computer that only
allows two floppy drives.

e Addan extra high-density 2.88 MB drive
to any of the preceding scenarios.

The CompatiCard has address jump-
ers thatallow it to be configured as the only
drive controller oras a 2nd, 3rd or 4th drive
controller. DMA channel and BIOS ad-
dress selection are also provided. Version
IV of the CompatiCard adds two important
capabilities to previous versions. The firstis
support for the new Extra High-Density
(2.88 MB) floppy drives. The second is the
ability to check any of the four drives you
can connectto the controllerforabootable
disk and boot from it. The card can supply
its own ROM BIOS on bootup and a jumper
activates the floppy drive boot check.

InPC’sand XT’s, use the CompatiCard
to replace the original controller, connect-
ing the original two internal drives as be-
fore and an added external 3.5" drive via
the rear connector. You can order the
CompatiCard alone if you want to add
drives you already have or those you can
buy cheaper separately. It comes with a
software driver that is called from a line
added to your CONFIG.SYS file. It also
includes a formatting program you use in
place of the DOS FORMAT.COM and a
utility program that allows you to use a pop-

August 1991

33

Table 1
Floppy Disk Sizes/Densities

Drive 3M Disk
Size Unformatted Size/3M Disk Label Formats To Color
5.25" 500 KB Double-Sided, Double-Density 360K Black

1.6MB Double-Sided, High-Density 1.2 MB Black
3.5" 1 MB Double-Sided, Double-Density 720 KB Lt. Gray

2 MB Double-Sided, High-Density 1.44 MB Black

4 MB Double-Sided, Extra High-Density 2.88 MB Dk. Gray

up format menu and to format in the back-
ground while you use another program.
Many programs in their current versions
can no longer fit on the 360K floppies and
are therefore unusable on dual floppy PC’s
thatdo nothave a hard drive. Adding a hard
drive, such as a Plus Systems Hardcard, is
more expensive than adding a CompatiCard
and a 3.5" drive. A high-density and cer-
tainly the extra high-density drive would
provide enough storage on one floppy to
run some programs that normally require a
hard drive from floppies. In an AT or older
286 clone, CompatiCard can allow the
addition of a 3.5" drive, either internally as
a second floppy drive or externally as a
third drive.

One important note aboutadding 3.5"
drives to IBM computers. You should ob-
tain a device driver called DASDDRVR.SYS

may need to upgrade to a larger power
supply in a PC or XT that still uses the
original 65 Watt power supply, if you install
the Megamate system. You have to add the
current draw of the CompatiCard also.
Most clones like Zenith Data Systems have
a larger power supply. If it is 100 watts or
higher, you probably don’t need more.
Backpack is Microsolutions’ external
drive system that connects to the parallel
printer port on any IBM PC or compatible.
Relax, you can still connect and use your
printer on the same port via a parallel
connector on the rear of the Backpack. The
benefit of this system is that you don’t need
a slot for the CompatiCard. The controller
electronics and power supply for the drive
are built into the drive cabinet and provide
external operation, but only for one drive.
Another benefit of the Backpack is you can

computers thathave a hard/floppy drive
controller, | leave the internal drives
connected. This maintains the drive A:
and B: designations you are probably
used to. If you transfer them to the
CompatiCard, itis extra work and DOS
assigns the next drive ID after your hard
drive designation (usually D: & E:).

. Reinstall the computer cover.

. Connect Megamate or other external
drive to the connector on the
CompatiCard bracket.

8. Run install (some versions) or copy the
software to a COMPCARD or UTILITY
directory on your hard drive.

9. Add the statement “Device=MM-
DRIVER.SYS” to CONFIG.SYS or what-
ever driver your chosen product pro-
vides.

10. Reboot the computer. You should be
able to select the new drive(s) and
format a disk.

MicroSolutions provides software,
some of which is mandatory and some of
which is optional. The device driver name
varies, depending on which of the three
products you choose. The Megamate uses
MMDRIVER.SYS. You must copy this file to
the root directory or a subdirectory and call
it in CONFIG.SYS. MMFORMAT must be
used to format disks in any of the

~ o

from IBM, copy it into the root directory
and call it from a “DEVICE=" line in
CONFIG.SYS. This is necessary to assure
compatibility between 3.5" disks formatted
in drives added to older IBM computers
and those in newer clone computers. Fail-
ing to do this will result in 3.5" disks format-
ted in IBM computers to sometimes give a
“drive read failure” followed by the dreaded
“Abort, Retry, Ignore” message in a clone.
This frequently happens to those using an
IBM at work and taking work home to use
on their Zenith Data Systems computer.
Reformatting the 3.5" disks with this driver
in effect corrects whatever clone compat-
ibility problem exists.

The Megamate system consists of a
CompatiCard IV and your choice of floppy
drive in an external cabinet. You can order
a Megamate with any of the drive sizes and
densities shownin Table 1. The drive comes
in a very small cabinet with a short cable
that attaches to the 37-pin connector on
the end of the CompatiCard IV. The drive
gets its power from the computer card buss

through the cable and CompatiCard. Al-

though the drive only draws 4 watts, you

disconnect it and take it to other comput-
ers forhard drive backup on floppies. Again,
your choice of drive size and density are
the same as discussed for the Megamate.

Installation

Installing either the CompatiCard or
the Megamate requires the following se-
quence based on my experiences:

1. Read manualand set CompatiCard jump-
ers. The default jumper settings are for
controller 1, the only hard drive or floppy
controller card in the computer. If the
CompatiCard is to be the second, you
need to change some jumpers.

2. Remove the computer cover.

3. Remove the blank slot plate and install
the CompatiCard.

4. Installthe added internal floppy (if used).
See the floppy manual for any jumpers.
Remember that the drive on the end of
the cable (after the twisted wires) is the
first drive. If you connect a second drive
to the middle connector, DOS assigns it
as a second drive on that cable. Be sure
the cable stripe is on the left.

5. Connect internal drives (if used). On

. Table 2 L o More information on these products is available from:
MicroSolutions Drive Pricing The Manufacturer A Dealer
Floppy Drive Product MicroS List Quikdata MicroSolutions Quikdata Inc.
CompatiCard IV (controller only) $149.00 $125.00 132 W. Lincoln Highway2618 Penn Circle
3.5" 2.88 MB drive in 54" mount $199.00 $159.00 DeKalb, IL 60115 Sheboygan, WI 53082-4250
Megamate (1.44 MB) $295.00 $250.00 (815) 756-3411 (414) 452-4172
Megamate 2.88 MB $395.00 $295.00
backpack 360K, 1.2 MB or 1.44 MB $349.00 $269.00 use it as a | MicroSolutions’ drives. You still use DOS’
backpack 2.88 MB $425.00 $305.00 shared back- | format for drives controlled by the original
2.88 MB Toshiba Floppy Disk (ea) $ 9.95 $ 7.40 up drive. Us- | floppy controller. Since the computer hard-
ers can easily | ware and, therefore, DOS do not know

about the added drives, format will give an
error message if you try to use it on an
added drive. BACKFMT.COM is an op-
tional TSR program that allows you to
format floppies in the background while
you use other programs.

MicroSolutions’ format program for
the added drives works a bit different than
DOS’s Format. The manual describes the
command options. As is normal for high-
density drives, if you just say MMFORMAT
E:, the format program assumes that you
are formatting a disk that matches the drive
density. MMFORMAT assumes you have a
2.88 MB disk in the Extra High-Density
drive. Toformata 1.44 MB disk in this drive,
you must specify the density by number.
The correctcommand is “MMFORMATE:/
1.4". The usual DOS switches still apply, /
S for system files, /V for volume label, etc.
To format a 720K disk with a volume label,
use “MMFORMAT E:/720/V".

Pricing

If all of this has been of interest to you,
you probably want to know “how much?”,
See Table 2. 3%

34

August 1991

Continued from Page 10
memory that can be individually switched
into a portion of the PC’s memory map
and, thus, be made available to the host
CPU. For example, when 256K of memory
is installed, there are four separate 64K
banks. Toimplementa 16-color EGA mode,
4 bits are necessary to identify a desired
color. This pixelplane method, as it is
sometimes called, stores each of the four
required bits in the four separate planes,
with one bit in each of the four planes.
The actual programming of the EGA,
especially for the graphics modes, is much
more complex than either the MDA or
CGA. Entire books have be devoted to
explain this subject, so | will not attempt to
try here.

Video Graphics Array (VGA)

When IBM introduced its line of PS/2
MicroChannel Architecture computers in
1987, they also introduced a new video
subsystem called the Video Graphics Ar-
ray, or VGA. The architecture of the VGA
is very similar to the previous EGA with
three major differences: new modes were
added to support higher resolution and
color depth, there was a switch from digital
signal output to analog signal output, and
256Kb of video memory is installed.

The VGA’s maximum resolution was
increased from 640x350 in the EGA to
640x480. This increase in resolution not
only allowed for greater graphics resolu-

tion, it also improved the readability of
standard text operations. In the VGA, the
character block size was increased to 9 x
16 pixels, up from the EGA’s 8 x 14,

On the graphicsside, three new modes
were added: 11H, 12H, and 13H. By far
the most popular mode utilized is 12H, a
640 x 480 resolution with 16 simultaneous
colors allowed.

Like the EGA, the VGA is also a com-
plex device and is not a trivial task to
program. For those inclined to VGA pro-
gramming, the subject is addressed by
many books in your local bookstore.

SuperVGA

Within a year after the VGA was intro-
duced, various video board manufacturers
were able to duplicate IBM VGA function-
ality in their products and soon a flood of
VGA clones hit the market. Many of these
video vendors began to add extra features
and additional operating modes to help
differentiate their products from their com-
petitors. The most popular was to add a
capability for greater resolution and color
depth.

The problem with having a multitude
of vendors producing SuperVGA video
boards was that these boards tended to be
proprietary in nature, and almost always
required special software drivers for a par-
ticular software application (i.e., Windows,
AutoCAD) to work correctly with the video
hardware. In the absence of IBM providing

Continued from Page 20

changing the definition.
before doing the Copy, select 'NO'.

F

Perform COPY cammand to make existing records campatible?
This will allow the existing records to be used with the current
ini It is recamended that the database be backed up before

As the database and definition are now incampatible, the simplest way
to obtain a backup is to use COPY or BACKUP in DOS. Once this is done,
again use Enable and re-enter the Database Definition for this database.
It is necessary to save the definition again (even though nothing more
been changed) in order to trigger the auto-copy function when you Quit.

Figure 11

g

Figure 12
£ *

a lead for everyone else to follow, the
various video equipment vendors finally
realized the need to band together in an
attempt to standardize technical aspects of
SuperVGA. This group is known as the
Video Electronics Standards Association
(VESA).

Other IBM Video Adapter Types

Outside of the above mentioned video
adapters, several others have reached the
marketplace, some have been mildly suc-
cessful, others have been total flops. IBM
has been the primary contributor to PC
video solutions (no surprise here), but they
have also introduced other video solutions
that are not really considered “standards”.
This includes the 8514/A, the Memory
Controller Gate Array (MCGA), a Profes-
sional Graphics Card (PGC), and the Ex-
tended Graphics Array (XGA).

34010/TIGA

One type of video solution that has
remained independent of IBM’s way are
adapters based on Texas Instruments’
34010 or 34020 line of graphics-oriented
processors. These adapters are specialized
co-processor cards that operate independ-
ently of the primary video solution (i.e.,
VGA), the system BIOS, and the operating
system. Their specialty is almost always
high-resolution graphics, higher color depth,
and overall faster graphics operation. Some
of the manufacturers of 340x0-based video
cards utilize proprietary software to run
(GEM and DGIS), but those that utilize the
Texas Instruments Graphics Architecture
(TIGA) software interface standard are gain-
ing popularity very quickly. TIGA’s major
advantage is that application software re-
quirements allowing a particular program
to communicate with the video hardware
are greatly reduced compared to all other
non-PC-compatible video solutions. Zenith
Data Systems has determined that a TIGA-
based 34010 board is the best solution for
all of its video requirements beyond VGA.

*

\

ZENITH Z-100 COMPUTERS, dual
floppy drives, used, complete, in op-
erational condition. 15 to sell $150.00
each plus shipping. Call Frank Esposito
(407) 657-2287.

-)

August 1991

35

h 1

| use the bell or beeps from the PC’s
speaker often in my programs. They signal
completion of a process, an error, termina-
tion of a program, prompt for input, or just
to get attention.

I like to put ‘bells and whistles’ in my
programs, so the first time that | heard a
musical tune from a PC, it occurred to me
that a melody at appropriate times in a
program would be more pleasing than the
normal beeps.

There is no magictoit. In fact, itis quite
simple. All the hardware is builtin — the PIT
(programmable interval timer) chip 8253
(8254 on the AT), the PPI (programmable
peripheral interface) chip 8255
(MC146818,RT/CMOS on the AT), and of
course, the speaker. Thisis all the hardware
needed to make sounds or produce atune.

The PPI contains three 8-bit registers,
A, B, and C. Each register is connected to
the CPU (central processing unit — 8088,
80286, 80386, etc.) through a port. These
ports are labeled, using hexadecimal, 60h,
61h, and 62h, respectively. Ports 60h and
62h are read only. Port 61h is read/write
and the one we're going to use.

Here’s the function of each bit of port
61h:

Bit Function definition

Robert Moon
P.O. Box 2045

ChMelodies for Four Rrograms

Ponte Vedra, FL 32004-2045

Bits 0 and 1 control the speaker, so
they are the bits of interest. Sending a 3 to
port 61h will turn the speaker on. Sending
a 0 will turn it off. Since this port controls
other devices as well, the safe way is to get
the current port settings, OR it with a 3 to
turn the speaker on, then restore the origi-
nal settings to turn the speaker off.

The PIT contains three independent
16-bit counters. Counter 1 controls the
system clock, counter 2 controls the
speaker, and counter 3 controls memory
refresh. The output of counter 2 is ANDed
with the speaker data from bit 1 of port
61h. Bit 0 of port 61h provides a gate for
counter 2, which enables counting. There
are also ports associated with the PIT. Port
42h is read/write that allows loading and
reading the contents of counter 2. Port 43h
accesses the control word, an 8-bitregister,
which is write only. This control word reg-
ister accepts information for programming
the operation of each counter. Figure 1
shows the control word format.

Now we have to program the PIT so
that it is set up in the correct state for
producing a tune.

The BCD bit chooses either a 16-bit
binary counter or a binary coded decimal

counter. We want the binary counter, so a

0 will go into BCD. There are six modes in
which the counter can operate. We want
the counter to generate square waves,
which is mode three. Therefore, a 1 will go
into MO and M1, and a 0 will go into M2.
We will send the frequency information in
two bytes. The counter will have to read
two bytes. To do this, a 1 is put into both
RLO and RL1. The least significant byte is
sent first. We will use counter 2,s0a 0 is
needed in SCOand a 1in SC1. After setting
the appropriate bits, our control word will
be 10110110 binary or 0b6é hex. This byte
will be sent to port 43h.

The frequency of the square wave is
determined by the count down value, the
divisor. The counter divides this divisor
value into the PIT clock frequency of
1193182 Hz to produce the desired fre-
quency. We get the divisor by dividing the
clock frequency by the desired frequency.
There is a reciprocal relationship between
the countdown value (the divisor) and the
frequency. We then send this two byte
divisor to port 42h. The low order byte is
sent first, then the high order byte. The
speaker is then turned on and pulsed at this
frequency. The sound generated will con-
tinue until the speaker is turned off.

We musthave some means to time the

0 Timer 2 gate speaker’s on period
1 Speaker data Bit Function Definition and then turn it off
2 Read RAM size or read spare key 0 (BCD) Binary coded decimal, yes or no after the specified
3 Cassette motor off 1,23 (MOM1,M2) Counter mode of operation duration. We will
4 Enable RAM 4,5 (RLO,RL1) Read/load specification use the time of day
5 Enable I/O channel check 6,7 (5C0,5C1) Select counter clock to set up a
6 Enable kbd clock signal Fi 1 delay loop. First,
7 Enable kbd or enable sense sw’s ‘gure we’ll get the current
36 August 1991

time of day using DOS int 21h, function
2ch. Then we’ll add our delay values to the
current time. This will be the time at which
the speaker should be turned off. Now,
we’ll just keep checking the current time
until the time is up. And that's when we turn
the speaker off.

Well, we know how to manipulate the
hardware to get the PC to make sounds.
Now we must learn something about mu-
sic so that we can get it to play a melody.

A melody is a succession of tones that
make up a pleasing tune. Melodies are
constructed from the eight tones on a
scale. A scale is a pattern of ascending or
descending tones within an octave. These
are natural tones and are designated by the
first seven letters of the alphabet and be-
gins over again at every eighth tone. This is
because the eighth tone, or octave, is just
twice the frequency of the original tone.
Goingup one octave precisely doubles the
frequency. Going down one octave pre-
cisely halves the frequency. Each group of
seven steps plus the octave, or 8th step, is
built on a uniform model of ratios. The ratio
of the frequency of Ato B, Cto D, and F to
G is roughly equal and is considered to be
a whole step. The frequency ratio of E to F
and B to C is only half as large and, there-
fore, is considered to be a half step.

To make a scale of half-steps or semi-
tones, the whole step tones are sharpened
orflattened, producing five additional tones
called accidentals. The symbol for a sharp
is similar to the number or pound sign (#).
The symbol for a flat is similar to a lower
caseb, see Figure 2. The symbols follow the
letter, when spoken or written, as F# (F
sharp) or Gb(G flat), but will precede the
note on the staff. The black keys of a piano
produces the accidentals, the white keys
the naturals.

The result is twelve semi-tones called

tone sounds. Tones can last from fractions
of a second to many seconds.

To keep the program smaller and sim-
pler, we will control only the pitch and
duration. Music is written using a system of
notation that has evolved through centu-
ries of invention and experimentation. There
is a certain group of fundamental symbols
now in use that make up our present day
system. These symbols are notes, staff, and
clefs.

A note, see Figure 3, is a written sym-
bol used to indicate the pitch and duration
of a musical tone.

The staff, see Figure 4, is a group of five

notes rests
Whole o -
Hai d -
Quarter J Py
Eighth Jﬁ : /
Sixteenth A ¥
Thirty-second ﬁ ¥
Sixty-fourth .h g

Figure 3

parallel lines enclosing four spaces. The
staff is cut into segments by vertical lines,
called bars. The space between bars is
called = measure. The end of a piece of
music is rnarked by a double bar.

The clefis asign at the beginning of the

X6 Sharp
t\ Natural|
b Flat
Figure 2

S +
—

—
—

Figure 4

an equal tempered chromatic scale.

The characteristics of sound are pitch,
loudness, timbre, and duration.

Pitch is the regular or even frequency
of sound. The piano has a frequency range
from 27Hz to 4186Hz, spanning over seven
octaves. Loudness is the intensity of sound.
It depends on the amplitude of the tone.

Timbre refers to the harmonic content
or overtones. Overtones make it possible
to identify different instruments. It's. the
basis of their quality.

Duration is the length of time that a

staff. Clefs help us by giving the position of
one note. This enables us to work out the
other notes.

The most common is the G or treble
clef, see Figure 5, which gives the position
of the note G (in the one-lined octave) on
the second line of the staff. Another clef
often seen is the F or bass clef, see Figure
6, showing the position of F (in the small
octave) on the fourth line. The lines are
counted from the bottom.

Pitch is shown by the position of the
note on a line

F] orspace. When

' 4 itbecomes nec-
- elss;ry to hin-
clude pitches

S that are above
U or below the
Figure 5 staff, ledger

lines can be
added. In Figure 4, the ledger lines are the
two short lines shown above and below the
staff.

Duration is
indicated by the
shape of the
note. This rep-
resentation is
relative to the
speed or tempo
that the melody is played. A dot following
the note extends the duration by one half.
Two dots will extend it by three quarters.

There can be periods of silence in
music. These periods are known as Rests,
see Figure 3. Rests are counted the same as
the notes they replace.

Music has different levels of loudness
or volume. But, unfortunately, we can’t
vary the volume of the PC'’s speaker. How-
ever, | did have to attentuate the signal
going to the speaker of my computer. It
was causing distortion by being overdriven.
A 10k potentiometer placed between the
output connection and the speaker permit-
ted adjustment to eliminate the distortion.
This pot could be replaced by fixed resis-
tors.

Sharps and flats may be written into
music as they are needed. To save unnec-
essary writing, the essential sharps or flats
may be placed at the beginning of a piece
of music immediately after the clef sign on
the proper line or space, see Figure 7.

This arrangement of the accidentals at
the beginning of a piece is called the key
signature. An accidental in the key signa-
ture affects all notes of that letter-name, at
all octaves, thoughout the piece, unless
changed by another accidental or natural
symbol.

The meter, or time signature, see Fig-
ure 7, follows the clef on the staff. It is
shown as two numbers, written one above
the other, such as 4/4, spoken ‘four four’.
The upper number indicates the number of
notes and the lower number the type of
note.

In 4/4 time, there are four quarter note

L *

'7{.

Figure 6

Np

A
X
&

> 1

Figure 7

beats to a measure or bar. There are three
beats to a bar in 3/4 (three four) time, two
beatsin 2/4 (two four) time. 4/4 is common
time (sometimes shown as a large letter C),
3/4 is waltz time, and 2/4 is march time.

The meter signature refers to the num-
ber of beats to a bar. In the case of four four
time, this can be four quarter notes, two
half notes, or one whole note.

Music can be played fast or slow. The
speed or tempo at which a piece of music
is played depends upon how the beats,
which are regularly occurring pulses, are
counted and how the musician feels about
it. The composer can, and often does, give

August 1991

37

an indication of how he intended it to be
played.

We will use the number of beats in a
minute to indicate tempo. There are four
beats in a whole note, two in a half note,
one in a quarter note, one-half in an eighth
note, one-fourth in a sixteenth note, one-
eighth in a thirty-second note, and one-
sixteenth in a sixty-fourth note.

This has been an extremely brief intro-
duction to music notation, but should en-
able you to translate a simple music score
into the data format required by the pro-
gram. See the melody format in Figure 8.

Three procedures make up the pro-

added to the ones in your program. Only
the equates that would be used for your
particular melodies need be included. The
formatted melody in the table is the old
English love song “Greensleeves”.

We will use a shorter piece as an
example for translating a music score to the
program format. Figure 9 is the score for
“Swanee River”.

We will try a tempo of 120 beats per
minute, ‘T",Q120. The tempo can be ad-
justed if it doesn’t sound ‘right’ after play-
ing. The first note is in the L1 octave, so, the
entry is ‘O’,L1. By the shape, we see that it
is a half note H and the position indicates

(TEMPO—Q48,Q60,Q80,Q120,Q240,Q480,Q720,Q960,Q1200)

X’ (end of tune),

fr!

‘0’ (OCTAVE—CA,GR,5M,L1,L2,L3,L4)
‘R (REST-W,H,Q,,5,T,Y,)

DURATION (W,H,Q,1,5,T,Y, dots are represented as *’)
NOTE (C,C@,D,D@,E,F,F@,G,C@ A AR,B;
the accidentals are indicated by the suffix of @)

Figure 8

gramin Listing 1: PLAY, TONE, and DELAY.
Your program will point to the desired
tune, then call PLAY. PLAY fetches bytes
from the note table and processes the data
to obtain the frequency and duration of the
note. PLAY will then call TONE, which will
setup the timer for the required frequency,
turn on the speaker, and call DELAY. DE-
LAY will add this duration to the time and
return when that time expires. Tone will
then turn off the speaker and return to
PLAY.

In Listing 1, the procedure MAIN is
used only to test the three procedures and
the melody format. The code there, with
the exception of the provision for repeti-
tion and exit, would be in your program at
the appropriate place to play an appropri-
ate tune. The data would be included in
your data segment. The equates would be

there is an eighth note C —1,C. The remain-
ing two notes in the first measure are also
eighth notes—E and D, respectively, |E,I,D.

The second measure starts on a ledger
line. It is a quarter note C. The next note is
also a quarter note C, but in a different
octave. This is the L2 octave. We will enter
thatas—‘0O’,L2 then Q,C. Nextis an eighth
note A in the L1 octave, the entry is —
‘O’,L1,1,A. The last note is in the L2 octave,
a quarter note C. There is a dot following
this note so this entry is written
‘0’,L2,Q,"",C. The symbol for a dotimme-
diately follows the duration. To signal the
end of the melody we put ‘X’ as the last
entry.

Figure 10 shows the data table for
‘Swanee River'.

There was no rest in this short piece,
but as an example a quarter rest period is
entered as ‘R’,Q , whenever it occurs, just
like a note.

You can have a melody to indicate an
error, a different one for completion, and
yet another to alert for some response.
Perhaps a really great one for an attaboy.

w—— 1 1
] e
Figure 9
SWANEE_NOTE db T,Q120
db ‘O’,L1H,ELDICILELD
db Q!Cf’O'!Lzl'QfCJ’O,!L]!I!AI'O'!thQi".’!C
db X’
Figure 10

an E note; therefore, this entry is H,E. Next
is an eighth note D and the entry is |,D.
Then we have a ledger line and the note

Sure beats the plain old 1000Hz tone.

74

Listing 1

F These procedures will produce a melody
H using the PC's speaker and timer 2

i written by Robert Moon, 17 Jan 91

7 copyright (c) 1991 Robert Moon

TITLE Meledy

.MODEL SMALL o

;Equates

;Pitch table. Frequencies are for the bottom octave
C equ 33 Pt o

ce equ 35 ;C sharp or D flat

D equ 37 iD

D& equ 39 ;D sharp or E flat

E equ 41 ;E

F equ 44 +F

F@& equ 46 ;F sharp or G flat

G equ 49 ;G

Ga egu 52 ;G sharp or A flat

A equ 55 A

A@ equ 58 ;A sharp or B flat

August 1991

él19s ¢ 1I1q SI! yog'Te

qyEtesm odwsl Byl 299! OdWAL'TE

yq oz1az! uq‘yq

¥e 0l1ag! xe'xe

uoTIBRIND IS8 Syl 199! [T8] 12

uoTieInp 1s81 ayl o1 Jutod ‘saj! 18
ucTIEeINp 830U Byl s,3T ‘ON‘ 1534 ON
é1sa1 e a1 sSIY ¥, '[1s)13d 814q

Azjua axsu o3 Jutog! 1s

17 91018 puy! T8 "3AVLI0

8aAe100 8yl 189! [1S8] 'Te

ayBtem aaelso ayl o3l autod ‘sai! s
ON¢ JAYLIO ON

¢abuer aaeio0 ue 211 SI! L0, '[1s]1ad @1fq

AIjua 3Ixsau o1 3utog’ 1s

1T aAes puy! Te'0dWal

1T 389! (1s)313d s1Ag'Te

odwsl aya o3 3juted ‘'sax! 1s

ON ! OdW3L ON

dodwal 3T sSIY LI, (1s8)13d 81fq

atnb usyr! LIX3 AVId

Jjuswalels Ixau Iaao dum[os ‘siow s,8I18Ul ‘ON! S+8
éaunl Jo pug! LX,‘(1s]I13d 814qg

ieau doid

asal
ACW
10X
IOX
ADW
ouTt
aul
dwo
:IAYIO0 ON
out
AQW
AOW
ouTt
aufl
dwa
10dW3.L ON
out
ADW
AOW
out
aufl
dwo
durl
aul
dwa
T EION

Avld

81gel1 syl woij eiep Buisn suny ® Aeld!

X

2'0'21°.0,'8°I'Y' L' I TTL,0,.'a'0 R T8 IS T .., D 2T L0,
Ve 0N I'V'O'ED'I'®3'S'®D’ 4., TI'VII'E'S'TT W0, D" e, ' T2 .0,
g's'¥'s'9'0’'8’'1I'T7'.0,'a'0'3'I'®3'S‘3 4., "T'A'TD'D"2T" .0,
¥'I'3'0'en’'1'g’'d’'Y'I'en’'s'y .., 'I'Y'I'17°,0,'2'0"2T1" .0, 'E'S'Y’'S
9'0'g’'1'171',0,'A’'0'A'I'OA ST L., 1A' TDO T O YT TT

080° .1,

10,240, "'T'21°.,0,
I'D'I'D’'.a, 027" .0,
T',+,'0'@D'I'E'0O'V'I'®D'S'Y’ ,u, 'I'Y'I'TT".O,

3aco”

apos alow awog!

HooT MOWLS”®

EaIe Woels!

ap
qe
qae
qp
qp
ap
ap
ap
ag
qp 310N N¥©

aunil ayl I0] a[gel Sajou pPUue ‘saABID0 ‘UcTIRINg’

abessaw uteby! 5.0, & uteby,

odwsay 103 abeioas!
abuex aae120 103] 8abeiols!

e JOWSS3W
abessap!

ap OdW3L
aqe JAYLOO

abe1oag!
wlva:

ev91e ElEQ’

yre

500 ©01 o9 yooar'xe

weg ‘utebe 31 Aerd ‘- -sax! NIVOVY 3I10ys

soa o3 ob ‘on! LIXA

Ju,'1e

LIX3

& ONY N Te

yrz

qeadaz TT1Im u ang £Lay Aue ‘ssucdssI I0J JITEM! Liye
yre

(eBessaw) Butias Aerdsiqg! 6'Ue

utebe 211 zesy 031 Juem JT sy d9YSSHW 13sJJ0'Xp
11 Aeta!’ AV1d

auna aya o1 uted? FLON N¥S ‘TS

Xe‘sp

19151681 Sp 9ST[ETITUl’ VIvd 'Xe

Ieau

dpua

Jut
AOW

dw(
zC
dwo
z(
dwo
qut
ACW
quTt
Aow
Acw
TTE2
eat

ADW
AOW

so1d

NIWH

LIXI

FNIVOVY

NIYH

a7qe1 a2yl ur eilep woij Aporaw ayl skeld!

sanutw 1ad s3Ieaq Q02T s
ajnutw 1ad saeaq Que’ b-
ajnutw 1ad saeaq QZL! £
eanutw 1ad saeaq pevV! z-
aanutw rad sa3eaq QFZ! 4
aanutw Iad sieaq Q2T z
aanutw 13d saesq 0§’ [
sanutw 1ad saeaq 09! v
ainutw Iad saesq gp! 5
230U yainoj-ALaxis! T
830U puosas-AIITYL: £
870U YausaIXIS! g

sa0u yaybra! 21

ajcu 18azIend’ gz

a3jou JTEH! 0s

210U aToyMm’ oot

§1S91 pur sS2310U

SAB1IDC PBUTT-INod! va
8AEID0 pPaUTT-@8IYL! ZE
2AEID0 PAUTT-OML’ a1
BAEID0 pBUTT-auQ’ 8
SARIDC TTRWS! v
ARI20 1e2ID! e
aaeld0 eBIIUCD! T

34qoo”

eale apol!

nba
nba
nba

00210
0960
0zLd
[o1:1 0]
ovzd
oztd

080
090
8rd

odwal !

T T O W R

jo uotieIing!

abuex

nba

¥
£1
21
1
WS
4o
wa

aae100!

g

—

39

August 1991

gy 23e4d uo panunuo)
LINOY JUO ISAQ!

ssanuTw ©1 PpY’

2INUTW BUOC IBA0 TTE 189!
on?

£92NUTW BUO IBAQ!

Spucoas 031 ppy!
puooes auo Iaao TTe 1318b ‘sajx!

oN!

iPUCDas BUC IBAQ!

SpucDas Jo spaIipuny ppw!

Spuooas ppv!’

s9InuUTW ppy!

sinoy patitoads 01 SINOY IUSIIND PPy’
S8jnUTW IO SINOY ONY

swTl 2WUSIIND 3yl 189!

09't1e

1=
09'yg
SALONINW
09°'4g

ugq
oot'1gq
SaNOD23S
001’149
P'1q
up'uyq
121
yas'ye
Xe'Xe
yre
ysz'ye

Ieau ooxd

dws
+SALONIW

ourt

qns

dwo

! SANC2ES
out
qns

dwa
ppe
Pp®
ppe
ppe
I0X

aut
ADW

AV13d

TeaIaljut awrl patjtoads e 103 Av13ad’

330 Ia3yeads uml!

sBuritas a1x0d Iaxeads IaacDay!
ucTIRINP 830U patitoads 1031 AWIAQ’
S2aNUIW IO SINOY ONY

1t oag’

(T pue 0 S31Tg) uo Iayeads uIng’
sButilas syl aaesg!

sbutiiss Isyesads JusIImo 189!

a14g ybry !

uayl !

81AQ MO’ T AOSIATR @Yl 1IN0 puas’
I0STATp 186 01 baij ajou ayl Agq aprAatTa’
XB:XP OIUT(X8Y 8prezl) !

ZUZOBTE6TT Jo Aousnbail £5z8!

11 puas !

anem s1enbs 103 z IawTl £z dn 185!

31 186 on!

AIjua axau 031 UTOg!

830U 8yl acnpoigd!

Tp ut Aousnbaij paan!

Aousnbai] paITtssp = 8aR1d0 X ba1j sijoN!
Aousnbaijy si0u aya 139!

JybBtam aaBl120 8Yyl 189!

spucoes Jo s,00T/T aya 189!

dpusa

Te'yTs
xe
ANTI30
xe'xe
Te'yte
£'1e

xe
yre'te
Te'yze
ye‘te
TR 'YLy
™
yapre ‘xe
yz1'xp
Te'YeEr
Yy9ao'1e

1eau do1d

ENCOL

381
ano
dod
TR
10X
ano
10
ysnd
ut
ane
Aou
ano
ATP
Aouw
AOWw
ano
Aoul

3NOL

130 pue uo Iavweads syl uinL?

dpua

310N

s

dANOL
xe'1p

1=

[ts) 'Te
dAYLDO'T2
1e'1q9

Avld

1891
(LIXE AV1d
Gul
out
T1e2
Aow
Tnw
AC:
AOW
AOW

:0dS NWHL 8531

T Ut §,001/1 paaN!

spucdas ayi 189!

o998 J0 S,001/T pue spuodas ayl 13186 usylr’
pucIas e JO spaipuniy 00T/

pucsas e Ispun ‘ON‘

{pUODBS BUC IAAD!

uotieImp patijroeds 10] aTeds!

Iaputewal ayil Jo pII 139!
uoTIRIng prajioads 103 a1eas!

JybBtam oyl Ag UOTIIBIND BPTATRP ©1 Juem!
aaT1atsod 3t a9ew os ‘saraebau s,a1¢
Taqunu aatatsced B S,3T ‘ON!

€398 ¢ 119 SI!

aybBtem odwal aya 18!

yg oIaz!

Xe oI1ag!

12 ©03uTr S30uU JO UCTIRINGg!

Aousnbasxj aj0u ©31 3IUTOg!

Te Ul UOTIBINP 283jou palljog’
19 ©3ur IOSTATIQ!
puUsSpIATP a8yl ST UDTUm XE 01UT 12NpoId!

TewIou SawWTl JTeY © pue auoc Io] ISTTATITIR!
1ajutod aTgel syl ¥oeq ysng!

I® Ul UOTIRIND 230U pallop arTqnod!

SawTl SYlINCJ-a8aIYyl PUB JUC I0T IOSTATQ!
PUSPTATP a8yl*'*°xXe 0JuTr 32npoid!

sawTl SYilIncj 8aIyl pue suo I03] ISTTATITIW!
‘aop auc ATuc ‘oN!

¢30p Isyloue 3T SI!

10p aTqnop =21qtssod o1 auteg!

uotieIinp Iernbai ‘oN!

£10p e 1T SI!

ajou 03 I0 J0op ©1 1UTed!

ucTlRINE 210U By 299!

ApoTew a8yl 031 oeq ‘IaA0 IS8y’
AIjua IxXaN!

AVI3a pue’

spucosas Jo s,001/1 8yl 189!

12 ut 5,007/ pasaN!

spuodas ayl 189’

ses jo S,001/T pue spucoas ayl 1ab uayl!
pucoas ® JO spaIpuny QOt!

puosas e I1apun ‘oN’!

(PUCDasS BUC I8AQ!

uoTieInp petjioeds 103 areds!

Iaputews1 ayl 3jo prr 189!
ucTieInp prajioeds 10J 8Teds!

JuBiam a8yl AQ UCTIRIND IPTATR 031 auem!
aatitsod 1T a¥ew os ‘aataebesu s,317¢
Iaqumu aatatsod ® §,11 'ON!

ye' e

Te'uq

yo

_ otorrus
235 NYHL S5371
00T *xe

12

NOILVMNG 0Q 3I0Ys

ye'ye

12

ﬁU.Hm

1e
FAILISOd
yog‘t1e
OdW3L'T®e
yg'ug
Xe'xe
1e’'12

is

1q

z2'19

19

£'19

T8

ENOG L0d IOyS
1q

v'1q

1q

L'1q
100 3NO

a0’ (18] 13d 314q

s
10 ON

s, ' [18] 12d @34q

s
[1s] 18

4ION 3I0ys
s

A¥TI3a
Te°'19q

ye're
Te'uq

ya

00T 'yd
D35S HEANN
00T 'xe

1=

1534 o0 3Ioys
ye'ye

T2

12°18

TE

2aN ON

ACW

AW

ATP

AQW

qf

dwo
INOILV¥NG od
T

TEAILISOd

du(

Iox

ATP
Byox

Bau

z(
1593

ACW

IOK

I0X

AOW

uotaeInp

2ap
1100 3NO
dwl
ATP
uoTieIng
ACW
Tnw
uotrieINg
ACW
sul
dws
ourt
sul
duo
ourt
ADW
1 1Sdd ON
dw(
out
1182
AOW
103S H¥IANN
AOU
AOQW
ATD
AOW
ql
duo
:183¥ 0d
T
:OEN ON
dwl
IoX
ATP
Byox
Bau
zC

August 1991

40

- Getting the Most from Your Computer

Part 3

John Lewis
6 Sexton Cove Road
Key Largo, FL 33037

The focus of this series is to aid you in
deriving the maximum utilization of your
computer through exercising your imagi-
nation in the creation of significant pro-
grams. Pascal was named after Blaise Pas-
cal, a French mathematician who said:
“Imagination disposes of everything; it cre-
ates beauty, justice, and happiness, which
are everything in this world”. A rather pro-
found observation and certainly one which
bears scrutiny. My own experience of eu-
phoria after the successful creation of a
new algorithm or program segment tends
to steer me in the direction of complete
agreement with Pascal’s statement.

In Part 2 of this series, we acquired the
Pascal source code for a rather handy
calculator which was added to the win-
dow/menu program from part one. In this
article, our first task will be to convert the
calculator code into a unit, making the
inclusion of a calculator into some of your
future programming efforts quite easy,
possibly adding a touch of charisma.

Since we are building a program a step
at a time and although each segment is a
“stand alone” program, the final productis
the sum of its parts, so let me address those
readers who have just joined us. The best
course of action would be to obtain copies
of “REMark” that contain the previous two
articles, failing that, send me a FORMAT-
TED (3-1/2" or 5-1/4") disk and $5.00 for
shipping and handling. My address is given
at the beginning of this article. | will return
your disk with the source code from the
previous two articles.

The actual conversion of a working
program segmentinto a unitis quite easy as
you will soon see. Your first priority will be
to make a copy of the source code for

“CALC.PAS” and put the original in a safe
place; you might otherwise become a vic-
tim of Murphy’s law. You can use the DOS
command: copy CALC.PAS CALC-
UNIT.PAS, assuming “CALC.PAS” is resid-
ing in the default directory. Now load
Turbo Pascal and get ready to perform a
little surgery to the file we have created
under the name “CALCUNIT.PAS”.
Remember, we discarded all the non-
generic code from “DRAWBOX.PAS” when
we made it into a unit. We will want to
accomplish the same objectives here. The
first consideration will be to change the first
line of the program from “Program calc;” to
“Unit calcunit;”. This informs the compiler
that it will be compiling the code into a unit
(“CALCUNIT.TPU” (TPU - Turbo Pascal
Unit)) rather than a program “exe” file.
There is no need to make any of the
routines “Public” other than the one used
to access the unit itself. In fact, the reverse
is true, we should keep all the procedures
and variables not needed by “calling” pro-
grams, private. Doing so will make a real
contribution towards modularity. As a con-
sequence, the code found under the “inter-
face” heading of our new unit should be
quite brief, mine consists of one procedure
named: “Execute_calc”. Where did
“Execute_calc” come from?
Let’'s look at the
“CALCUNIT.PAS” in Listing 1.
Go ahead and perform the required
surgery on the code from Part 2 of this
series to convert it into the unit shown. As
you can see, only the removal of some
selected pieces of code and the insertion
of a Procedure name (Execute_Calc) along
with a complementary “end”, is required
for the conversion. Be sure that you pre-

code for

serve the original source code for
“CALC.PAS” when working on the unit
version.

Our next step will be the creation of
another “stand alone” program which will
become item two on the main menu. I'm
sure most of the readers who are following
this series have a programming project that
they would like to pursue, but first things
first.

One subject continues to come to the
attention of anyone working on computers
and software. That is computer memory
and the math required to address it. | know,
you are probably thinking that I'm going to
bore you with a lot of theory about binary
and hexadecimal math. Not true. What we
are going to do is create some software
which will take much of the drudgery out of
converting hexadecimal and binary num-
bers into decimal and vice versa. The con-
version utility will not serve as a panacea,
but will make any future dealings with
number base changes much easier. It will
also serve as a vehicle for learning about
one of Pascal’s math capabilities, integer
arithmetic involving modulus division.

First, let's take a brief look at the num-
ber bases most frequently encountered in
dealing with computer memory address-
ing, as well as the method used by the CPU
in dealing with data and/or instructions.
Hexadecimal (number base 16) is com-
monly used in the display of CPU registers,
in disk file content representation (MS-
DOS DEBUG uses this format) and numer-
ous other places. In short, you will almost
certainly encounter the hexadecimal num-
bering system in your pursuit of computer
programming. Even more important (in my
humble opinion) is the binary (base two)

August 1991

41

representation of numbers. When working
with the logical operators (AND, NOT, OR,
XOR, etc.) you will find that being able to
see the bit locations of a given number will
be a great help.

The hexadecimal numbering system
uses the digits 0 - 9 and the letters A - F, for
a representation of the numbers 0-15 by a
single character. The number 255 (deci-
mal) has a hexadecimal counterpart FF.
Dissecting each number in turn, we find
that 255D (the trailing “D” denotes deci-
mal notation) is equal to 5 (5 * 1) (units) +
(5* 10) (tens) + (2 * 100) (hundreds). FFH
(the trailing “H” denotes hexadecimal no-
tation) yields 15(15*1)+240(15*16).The
binary equivalent 11111111B (the trailing
“B” denotes binary notation) yields 1 + 2
(1*2) + 4 (2*°2) + 8 (2*2*2) + 16 (2*2*2*2)
+32(2*2%2*2*2)+64(2*2*2*2*2*2)+ 128
(2*2*2*2*2*2*2).

The first requirement in software de-
sign is the definition of the task to be
performed, a rather simple chore in this
instance. Our job is to design a program
which will deal with each number system
and display its equivalentin the other bases.

There are several methods available
for converting decimal numbers into Hex,
but we will use one that employs math-
ematical logic without any fancy tricks.
We’ll examine each step as we build our
program, using the same number alluded
to above in our discussion of number bases
(255). If we divide 255 by 16, using the
Pascal “Mod” (modulo) operator we de-
rive a remainder of 15. Using fifteen (plus
1) as an index into the character array
(string)“0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F", we
find the character “F”. We'll store that
character for the time being in a Pascal
string. Referring back to the division opera-
tion, we find that 255 “DIV” 16 also yields
the number fifteen which becomes our
second index into the character array al-
luded to above. Now we append the first
character “F” to the second “F” for the
hexadecimal number “FF”, or more cor-
rectly, “FFH”. If the second operation had
yielded a number in excess of 15, we
would have once again used the “MOD”
operator on the dividend and continued as
in the first case.

If the logic used here does not seem
perfectly clear, | urge you to conjure up
some other examples and subject them to
the same algorithm. Notice too that | used
numbers that would fit in one byte of
computer memory for the sake of simplic-
ity only. For instance: one added to 255
yields 256D or 100F, a number which must
occupy two bytes (00000001 00000000 in
binary). The algorithm works for larger
numbers as well.

Now compare the above description
to the actual program listing (DcHxUnit.pas)
found in this article. Look closely at the
procedure “Construct(val : Longint);” and
compare the program logic to the descrip-
tion above. If | did a good job, you should

Listing 1

unit calcunit;
interface

procedure execute_calc;
implementation

uses boxunit, crc;

Var
accum, vall : Real;
row, col, i : Byte;
Opticon, Len : Integer;
ch, che, op : Char;
s, st : string;

string;p : char):Real;

Function Get result(s
| provide real storage for value of s |}

Var v : real;
code : Integer;
begin
Val(s, v, code);
case p of
‘+' :begin accum:=Vall+V;end;
‘-':begin accum:=Vall-V;end;
/:begin accum:=Vall/V;end;
‘*':begin accum:=Vall*V;end;
else accum:=V;
end;
Vall:=Accum;
Get_result:=Vall;
end;

[get numeric value of string s, store in v }

{ compute result, store in accum]

{ store accum in vall |}
{ Punction must be defined 1}

Procedure docalc;
begin
col:=2;row:=14;st:="";
Accum:=0;ch:=chr (0);Vall:=0;
gotoxy (col, row) ;
while ch <» 'qg' do
begin
ch:=readkey;
if c¢h <> chr(8) then st:=st+ch;
if c¢ch = chr(8) then
begin
if col » 2 then
begin
col:=col-1;gotoxy (col, row);
write(* *});
end;
len:=length(st);
st:=copy(st,1,len-1);
end;
write(ch);
if ch <> #8 then
col:=col+1;
gotoxy (col, row) ;
if ch = *=' then
begin
s:="';op:=chr (0);
for i:=1 to length(st) do
begin
che:=st(i];
case chc of
‘0'..*9':begin s:=s+chc;end;
o :begin s:=s+chc;end;
** . .'+':begin st:=-s;accum:=get_result(st,op);
s:='';op:=chc;end;

{ initialize variables]

[provide means of escape |

{ enable backspace |}

{ update display after backspace }

[remove last char }

| parse the input string)

- :begin st:=s;accum:=get_result(st,op);

s:='';op:=chc;end;

i o :begin st:=s;accum:=get_result(st,op);
s:='';op:=chc;end;

Kiai# :begin st:=s;accum:~get_result(st,op);
s:='""';op:=chr (0) ;end;

end;

end;

gotoxy (col,row) ;write(’ *,accum:4:4);{ format & display result

gotoxy (10, row+2) ;
write('Enter “g* to quit, any other key to continue ');
ch:=readkey;if ch <> "g' then col:=2;gotoxy(col,row);clreol;

gotoxy (col,row+2) ;clreol;accum:=0;vall:=0;st:="";gotoxy (col, row);
end;
end;
end;

Procedure Execute_calc;
begin
clrscx;

42

August 1991

Listing 1 (Cont'd.)

gotoxy (2,2);

gotoxy (2,4);
write('keys:
gotoxy (2,6) ;
write(* / (division).');
gotoxy (2,8);

+ (addition),

gotoxy(2,10);

docalc;
end;
end.

(subtraction),

write('This calculator provides four functions using the following'):

* (multiplication)’):

write(’Problems must be entered in a number, operator, number format.’);

write(’Pressing the equals key (=) will cause display of the answer.’);
gotoxy (2,12) ;write(’'Enter your problem: ‘};

see a striking similarity.

Only two more steps remain in design-
ing our program, that of displaying the
decimal equivalent of a hexadecimal num-
ber and, finally, the binary representation
of both.

Let's tackle the binary operation first.
We will once again employ the “MOD”
and “DIV” operators for our integer arith-
metic and use decimal 30 for our example,
applying much the same logic as in the
decimal to hexadecimal problem.

We will repeatedly divide the original
number (30, in this case) by 2, using first the
“MOD” operator (yielding the remainder)
and then the “DIV” operator (yielding the
dividend) until the original number is re-
duced to zero. Applying this logic yields the
binary number“11110”, padding the result
with three zero’s for the sake of clarity
(since we are dealing with 8 bit bytes) gives
us “00011110". Success!

Once again, look at the listing for
DCHXUNIT.PAS and compare the logic in
“Procedure Binary(val : Longint);” with the
explanation just given. Hopefully, you will
see a close similarity. | apologize for the
extra complexity caused by the need for
display of numbers too large for a single
byte representation; however, this portion
of the program is quite effective in provid-
ing an attractive (and useful) display of its
binary output and that, after all, is adequate
justification for some extra code.

Before we proceed to the hexadeci-
mal-decimal conversion, let’s look at some
routines found in “Procedure Binary(Val
:Longint)”, which deserve a little extra at-
tention: “while” and “repeat”. The “while”
routine is a “loop control” method that
continues execution as long as the condi-
tion specified is TRUE. All of the statements
within the “begin” and “end” markers are
performed in sequence until the condi-
tional statement becomes FALSE. If it is
False to begin with, no execution occurs.

A similar statement, but different in
one very important aspect, is the “repeat
until” routine. This statement will cause
repeated execution of the statements within
the “begin” and “end” delimiters until the
specified condition becomes FALSE. One
iteration of the loop always occurs, regard-
less of its conditional state.

Now we can attack the hexadecimal
to decimal conversion. It poses a little

different problem in that any given hexa-
decimal entry may contain some charac-
ters which have no numeric (decimal) value
(A - F). The most logical way to deal with
this anomaly is to use a “lookup table”.
Ours already exists in the form of “Hex-
string”. We can compare a given (starting
with the least significant) character in the
input string with each character in
“Hexstring”, incrementing the value of our
reference until a match is found. The refer-
ence will thus attain a decimal value corre-
sponding to its hexadecimal counterpart.
By multiplying with a factor equal to 16
times its less significant neighbor, we can
assemble the decimal equivalent of our
hexadecimal entry.

If you examine the “Procedure
Hex_ToDec(HexStr : String20)”(within
“DcHxUnit.pas”), you will, hopefully, see a
parallel to the above. Before we continue,
let’s look at one area of this routine which
might cause a bit of confusion. We use a
double “while” statement, each containing
a parameter for comparison. Bear in mind
that whenever you encounter this condi-
tion, the innermost “while” loop executes
first, then the next outermost. This tech-
nique can be used with several “levels” of
while loops, each one performing its task

before “falling through” to the next. In this
case, the procedure designates “Found” as
equal to the character within “Hexstring”
(indicated by the value of its string index
plus one). Next, “Found” is compared to
the character within the input string that
corresponds to the index: “Len” (length of
string). “1” (the Hexstring index) is
incremented with each iteration until a
match is found (“ch <> Found” becomes
false).

The procedure now “falls through” to
the next “while” statement (while Len > 0).
The variable “Dec” is made equal to the
index used above, multiplied by a factor
which starts with 1 and is incremented by
16 with each iteration. The result is a
decimal number, equal to its hexadecimal
equivalent. See Listing 2.

| hope that you will study the program
listing for DCHXUNIT.PAS until you under-
stand itfully. ltcontains some logic that you
might find useful in other programming
projects. There are no surprisesin the code,
just some straightforward logic used to
solve a problem.

Notice that you have been working on
the code listing for a Pascal “unit” rather
than a program. | decided that we could
graduate to constructing a unit directly
without going through the intermediate
step of coding a program and then modify-
ing the file to construct a unit. The conver-
sion process is largely redundant after all.

| promised you an added item for the
Window/Menu program from Part 1 of this
series. All we have to do now to accom-
plish the inclusion of this unitin our project
program is a bit of painless surgery. Let’s
look at Listing 3 for “PROJCT_1.PAS”,

Notice that nearly all the extraneous
code has been culled from our project
program and it has undergone a name
change. Only the bare essentials remain.

Listing 2
Unit DcHxunit;
Interface
Procedure Execute_DcHx;
Implementation
uses Crt, Dos;
Type
String20 = Stringl20);
Scringl = string(1);
const
HexString :

Var
outscring, InString,
St : Stringl;
Value, Dec : Longint;
Dumy : Integer;
Ch : Char;

Dum :

Procedure Binary(Val : Longint);
Var len, Byte_Count, Format :
Begin

Len:=0;Format:=8;
Cutstring:=""

Begin
Byte Count:=2;
Format:=17;
end;
wWhile val » 0 do

String20 = '0123456789ABCDEF’ ;

String20;.

Integer;

iIf val < 256 then Byte Count:=1
Else if (val > 255) and (val ¢ 65536} then

{ no *;* when using else }

August 1991

43

Listing 2 (Cont'd.)

Begin
str(val med 2,st); | get val modulo 2, convert to string |}
outstring:=st+outstring; | append outstring to st |
val:=Val Div 2; [integer division by 2]
len:=len+1; [add to length of outstring]
if len = 8 then { check for end of byte }
outstring:=' { tack on a space]
end;
If Length(Outstring)
repeat
begin
insert(’'0’,outstring,1};
len:=length(outstring) ;
end;
until len = Format;

‘+outstring;

¢ Format then { check for length |}

[Pad the output string with zeros |}

{ are we done ? |
end;

Procedure Hex_ToDec (HexStr
Var Len, I
Found : Char;
begin

Len:=Length(HexStr);I:=0;Dec:=0;Count:=1;
while Len > 0 do begin
while ch <> Found do
begin
Found:=HexString([I+1];
ch:=HexStr [Len] ;I:=1I+1;
end;

: 5tring20);
Integer;Count : LonglInt;

{ I = index into Hexstring }

The three “units” house nearly all of the
more sophisticated routines.

If you are new to programming, |
would urge you to use this new program
segment to view a graphic representation
of Hexadecimal and Binary numbers and
their correlation to each other. For in-
stance, Hex “FO” and its binary equivalent.
A few minutes spent using this program
can give you quite an insight into how the
two number bases complementeach other.

If you have any questions regarding
this, or any of the articles which comprise
this series, or even Turbo Pascal program-
mingin general, please feel free to write me
atthe address given at the beginning of this
article. Be sure to enclose a S.A.S.E. (Self
addressed, stamped envelope) if you wish
areply. Feel free to make comments about
the series. If you stipulate that your letter
may be included in a future article, that
would be helpful.

Listing 3
Program Projct_1;
uses boxunit, crt, calcunit, DcHxUnit;

Var
option integer;
Procedure Esthetics;
begin
textcolor (black) ; textbackground (lightgray) ;
end;

Procedure SetUp;
Begin
window(Left+1,Top+1,Right-1,Bottom-1};
TextBackground (Blue) ; TextColor (Yellow) ;clrscr;
end;

begin
while option <» 6 do
begin
clrscr;Esthetics;

drawbox (left, top, right, bottom); [uses Boxunit
setup; {top=4, left=5, right=75, bottom=22 }
gotoxy (11,2) ;write('Please enter...');

gotoxy (20,4) ;write('1. Calculator’);

gotoxy (20,6) ;write(‘2. Decimal, Hexadecimal, Binary conversion.’);

gotoxy (20,8) ;write('3. Function not yet implemented.’};

gotoxy (20,10) ;write('d4. Function not yet implemented.’);

gotoxy (20,12) ;write(’'S. Function not yet implemented.’);

gotoxy (20,14) ;write(’'6. Exit to operating system’);

gotoxy (18,16) ;write(’'the number of your choice *):

readln(option) jclrsecr;

case option of
1:begin Execute_calc;end;
2:Begin Execute_DcHx;end;
end; [end case option of }

end; | end of while }

end. %%

{ uses calcunit]
{ uses DcHxUnit

The Electronic Clavier
P/N 885-6016

r/;

/

- —

44

August 1991

- Introduction to C++

Ninth Installment

Lynwood H. Wilson
2160 James Canyon
Boulder, CO 80302

Resources

| have installed the new Borland C++
version 2.0 which recently appeared. At
first | intended to stick with the Turbo C++
since | do not write software to run under
windows yet, but my spies told me that
there was a lot more to the Borland com-
piler than just windows. And there is.

Borland intends the Turbo C++ com-
piler to be their low end tool. The Borland
compiler will be the top of the line, the
developer’s tool. In just the two days since
| installed it, | am convinced. It compiles
faster, runs in protected mode so it can
handle larger programs, and it produces
much smaller executable programs. They
say the editor is much improved also, but |
still use Brief.

Since last month | have begun explor-
ing the Blaise Turbo C Tools. | was looking
for a way to do menus and pop-up dialog
boxes with mouse support in character
mode quickly, without too much work.
There is, of course, no free lunch but | was
hoping to find a moderately priced meal. |
found it.

The Blaise Tools include over 200
functions which do a lot of useful things.
Menus and windows with mouse support,
help screens, string functions, a tiny editor
to use in your programs, and plenty more.
And the best part is that the functions run
from high- to low-level. It's as though they
gave us not only the finished high-level
functions they thought we would find use-
ful, but also all the tools they used to build
them, in case we wanted to do it differently.
This answers the main objection | have
always had to packages like the Zinc Inter-
face Library | mentioned last month; which
is that they are great if you want to do

exactly what the designer of the package
wanted to do, but they lack flexibility. The
Blaise tools are flexible. And they give you
the source, at no extra charge. And you can
read their book. Recommended.

In three days | was able to cobble
together a demo of the whole menu sys-
tem for the program | am working on,
including a few sample data entry screens.
Much of this was made from the Blaise
demo code. The client was properly im-
pressed.

As l've gotten deeper into the pro-
gram, I've run into the usual conflicts be-
tween the way Blaise did it and the way my
customer wants it. In each case, | have
been able to drop down a level to more
primitive functions from Blaise and Borland,
and get it just like | want it. And don’t
overlook the value of being able to show
the client something close to what he
wants very quickly, even if you have to
change it later.

The only minor problem is that the
Blaise Tools are written in C, not C++. Itis
easy enough to use them (or any other C
functions) in a C++ program. You need
only to tell the C++ compiler that the
functions are straight C. This is most easily
done by making the entire header files
which contain the prototypes for the C
functions extern “C”, like this:

extern *“Cc* {
#include <bscreens.h> // Blaise
#include <bmouse.h? // headers

)
If you only have a few C functions, you

can add the extern “C” to their prototypes.
extern "C* void ¢_func{char ch);

The reason thisis necessary is that C++
appends to the name of each function a
series of characters which describe the

parameters the function takes. It's called
name mangling. This is how the compiler
can do data type checking on parameters
to functions from different disk files. By
declaring functions to be “C”, we tell the
compiler that they will not have these
appendages, and therefore, data type
checking must be suspended for these
functions.

So it is quite easy to use the Blaise
Tools with C++. However, the tools would
be the better for having been written in
C++ and | expect Blaise is working on it.
This seems to me to be the area where
OOP does us the most good, in making
code easily reusable in new programs. |
found myself making several of the Blaise
Tools into objects just because that is the
way | am beginning to think. And | found
that the effort paid off each time | used
them.

I will talk more about that and write up
some of the code in a future article. Right
now, we'd better finish up with pointers.

More Pointers

Several installments ago, we learned
how to initialize a character array with a
string like this:
char agreeting(] = *Hello, world";

A similar thing can be done with a char
pointer, like this:
char *pgreeting = *“Hello, world~;

From the similarity of these statements
and what we have seen of the similarities
between array and pointer notation, these
two look a lot alike. They are both used
often, but here are differences worth men-
tioning.

First, agreeting and pgreeting are both
char pointers, since they both hold the

August 1991

45

address of a character; but pgreeting is a
pointer variable and agreeting is a pointer
constant. Remember that agreeting holds
the address of the beginning of the array
which holds the string. (Watch the distinc-
tion here between the memory and what is
stored in it. Agreeting is a character array
which holds the string "Hello, world”.) In
order thatit always point to the head of the
array, it cannot be changed. Thus, it is a
constant. Pgreeting also points to a char
which is the beginning of a string, but it can
hold other values, can be made to point to
other characters as well.

There is another important difference.
When we define the array agreeting, we
allocate memory and store the initial chars
in it. Later in the program we can store
other chars in that memory, since it is an
array of char variables. In the other case,
the string of chars whose address is as-
signed to pgreeting form a string constant.
The result of an attempt to modify a string
constant is undefined. It is not an array of
char memory which you may use as you
like.

The values of agreeting and pgreeting
can both be passed to functions as char
pointers, but the functions must observe
the differences between the things pointed
to. By passing the value of agreeting to
another function, or by assigningittoachar
pointer variable in the same function, we
can overcome the limitation that we can-
not change the value of agreeting (the
pointer). Thus, see Figure 1.

be replaced by

cout << pstr;

because "cout" knows (from the definition)
that pstr is a char pointer and will print the
whole string, up to the NULL.

And note yet again that we could have
defined the first parameter to the function
as an array without changing anything else.
In other words, the first line of the function
could have been:
vold pr_str(char pstr[])

This may seem wrong because we are
incrementing the value of pstr in the func-
tion and | told you that you could not
change the value of a pointer constant,
such as the name of an array. However, no
matter which way we define the parameter
we pass into the function, it is still a pointer
to an array, not the actual name given to
the array at the time the memory was
allocated, and so you can change its value
as you like.

Arrays of Pointers

When you need a set of strings, for use
in a menu or something, it is convenient to
be able to bunch them together into a
single entity. We already know how to do
that with a multi-dimensional array, but the
more common method uses an array of
pointers. If you watch closely, you will
notice that although this works a lot like a
two-dimensional array, there are significant
differences.

Here is a declaration of an array of 5
pointers to char.

#include <iostream.h> void pr_str(char
char agreeting(] = *Hello, world~;
char *pgreeting = “Hi yourself”;
pr_str(agreeting);
pr_str(pgreeting);

1

void pr_str(char *pstr) {
while(*pstr)
cout << *pstr++;
cout << *'\n’;

Figure 1

char *pch(5);

Note
that these do
not yet point
to anything
(thatwe know
of). We can
make them
point to a
string just as
we did with a
single pointer

*pstr); void main(veoid) [

In the function, both the strings look
the same and they both get printed to the
screen. However, they are not the same
and we must remember it, even if the
function cannot tell the difference. For
example, itis perfectly reasonable for us to
copy the string pointed to by pgreeting to
the array agreeting, but we must not copy
anything to the memory pointed to by
pgreeting since that memory holds a string
constant.

Note that we can pass the name of an
array to a function and declare it in the
function as a pointer. This is legitimate
since the array name is a pointer to the
beginning of the array. Pointer and array
notation can be mixed as you like, the main
restraining factor being the necessity to
read the code again someday.

Note also that the "while" loop that
prints the string a character at a time could

above.
pch(2] = *"This string”;

Remember, pch(2] is just a plain char
pointer just like pgreeting. If we'd like to
initialize the whole batch of pointers at the
same time, we can do it like this:
#include <iostream.h>
void pr_items(char *+*pstr, int n);
void main(veoid) |{

char *items[] = { “One item”,
“Another item*,
*Yet another”®,
“The last* 125

pr_items{items, 4); |}

void pr_items(char **pstr, int n) {
for{int i = 0; i < n; i ++) |
cout << pstrli):;
cout << *\n‘;

]
Note that "items" is an array of char

pointers which are initialized with the ad-

dresses of the four strings. It is not an array
of strings (a two-dimensional array of char)
The strings are not stored in items, their
addresses are.

Note also the declaration of the first
parameter in pr_items. pstris a pointerto a
pointer to a char. This is sometimes called
double indirection. In the body of the
function, | switched back to array notation,
and sent pstr|i] to cout. The string is printed
because pstr{i] is a pointer to char, as
described above.

This array of pointers to strings saves a
bit of memory compared to using a two-
dimensional array, since the second di-
mension of the array would have to be big
enough to hold the longest string. Since the
pointers in our array point to string literals
or constants, each takes only the space it
requires.

This operation would be more conve-
nient if we did not have to pass the size of
the array to the function. If you'll recall, we
solved that problem in the case of strings by
ending with a unique value which could
not be normal data, and which tells us that
we are at the end. We can do the same
here.

#include <iostream.h> void pr_items(char
**pstr); void main(void) |
char *items(] = { "One item~”,
“Another item”,

“Yet another”,
“The last”,

)

pr_items(items) ;

1

void pr_items(char **pstr) |
for{int i = 0; *pstrl[il;
cout << pstr(i];
cout << *\n’;

i) |

}

In this example, the last string is an
empty or NULL string with nothing in it
except the NULL. In the function, the for
loop runs until the char pointed to by pstr{i]
is NULL. Thus, we do not have to passin the
length of the array.

You can accomplish the same thing by
making the value of the last pointer NULL,
rather than by making it point to a NULL.
#include <iostream.h> void pr_items(char

**pstr); void main(void) {
char *items[5] = | *One item”,
“Another item",
“Yet another”,
“The last”
items[4] = NULL:

pr_items(items);
)

void pr_items(char **pstr) |
for(int i = 0; pstr([i]l; i ++) {
cout << pstr[i];
cout << '\n‘;
]
1
In this example, we had to explicitly
assign the value NULL to the last pointer.
This is not quite as convenient in this case,

but we will see cases later where it is more

46

August 1991

so. Note that in this function we end the
loop when pstr[i] itself is false, rather than
that which it points to.

Note thatwhen we are assigning NULL
to a pointer we use the symbol NULL rather
than the number 0. NULL is 0, but not all
zeros are equal. Null is defined for us in
several different header files, and its value
is 0 if we are in any of the smaller memory
models in which pointers are two bytes
long and OL in the larger memory modelsin
which pointers are four bytes.

In old C, programmers often assumed
that pointers were integers. Itworked when
they had less than 64K bytes of memory,
because the pointers were the same as
integers. Such assumptions must be purged
from the programs before they can be
ported to systems using larger memory
models. We should not trap ourselves by
doing the same sort of things.

You might use such an array of point-
ers to strings or other data types if you were
going to sort the data. It is much quicker to
move the pointers around in their array
than it is to rewrite a long string or some
larger data type.

Void Pointers

So far we have seen that pointers are
always defined as pointing to a particular
data type. Occasionally, however, a situa-
tion will arise in which you will need a
pointer, but you don’t want to commit
yourself at compile time as to what it will
point to. The solution is a void pointer. Void
pointers cannot be dereferenced or be
used in pointer arithmetic because these
things won’t work unless the compiler
knows what kind of data they point to.
However, a pointer of any other type can
be cast to type void and back again without
loss of information.

If you declare a function like this:
void ambiguous (void *ptr);
you can pass to it a pointer of any kind. If
you had declared pointers like these:
char *pch;
int *pi:
float *pfl;
you could then call the function like this:
ambiguous (pi) ;
ambiguous (pch) ;
ambiguous (pfl) ;
in the main code. The function would have
to know, somehow, what kind of pointer
each of them was, perhaps by another
parameter which acted as a flag. This is
similar to function overloading, but not
quite the same.

When you use overloaded functions,
the compiler figures out which of several
functions with the same name to use by the
data types and number of arguments. Note
that this is done at compile time. If you
don‘tknow in advance because it depends
on the input to the program, and you have
to decide at run time, then overloaded
functions will not help. Void pointers can
be the solution.

Pointers to Functions

As in the case of arrays, the name of a
function holds its address. Given this ad-
dress, we may pass a function to a function
as a parameter, and assign the address to a
pointer which points to the function. We
can call the function just as if we knew its

name. Here is a simple example.
#include <iostream.h>

void print_int(int x);

void print_2int(int x);

void a_func({int y, void (*pf) (int x)):
void main(void)

{

int a = 17;

a_func(a, print_int);
a_funcla, print_2int);

1

void print_int(int x)
{
cout << x << '\n’;

void print_2int(int x)
{
cout << 2 * x << '\n‘;

1

void a_func(int y, void (*pf) (int x))
l
pEly);

]

The functions print_int() and
print_2int() are simple functions that take
anintargumentandreturn nothing. A_func()
takes as its arguments an int and a pointer
to a function that takes an intargumentand
returns nothing. Here is the definition of
that pointer.
void (+*pf) (int x)

It might seem more reasonable to do
it like this:
void +*pf(int x)
but if you think of it, this is the definition of
afunction which takes an intargument and
returns a void pointer. The parentheses
around the name and the asterisk make it
into the definition of a pointer instead.

To call a function using a pointer to it,
you can treat the pointer to the function as
though it were the function’s actual name.
It also works to dereference the pointer
explicitly and call the function like this:
(*pf) (x);
but that is exactly like saying:
pEix);

Asin the case of arrays, since the name
of the thing holds the address of the thing,
we may use the pointer to the thing as
though it were the name of the thing.

Command Line Arguments

It is often useful to pass arguments to
a program when you execute it. When |
started this editor, for instance, | added the
name of the file | wanted to edit. When you
add arguments to the program name on
the command line, the operating system
passes them to the program as two argu-
ments to the program. The first is an int
which holds the total number of argu-
ments, and the second is a pointer to an
array of char pointers to the argument

strings themselves. Here is a simple ex-
ample which prints out all the command

line arguments.
#include <iostream.h> void main(int argc,
char *argv(l) |
for(int i = 0; 1 < arge; i++)
cout << argv[i] << *\n’;
}
The first argument is always the name

of the programiitself, with the full pathname.
Afterall, itis the first thing on the command
line. You might argue that the program
should know its own name, butanyone can
rename it and, in any case, it can some-
times be useful for a program to know
where it lives.

The names of the two arguments, argc
and argy, are not mandated by the lan-
guage, but they are the same ones used by
everyone since Kernighan and Ritchie them-
selves and it's a pretty good practice to
stick to them.

The standard requires that the list of
pointers to arguments, argv, be terminated
by a NULL pointer. Thus, we could have

written the program like this:
#include <iostream.h> void main(int argc,
char =rargv) |
while(*argv)
cout << *argv++ << ‘\n‘;
)
This version prints arguments until the

next pointer in the array of pointers to
strings has the value NULL. The only prob-
lem is that the program doesn’t need the
other argument, argc, and we get a warn-
ing from the compiler that it is not being
used. If we leave the argument out of the
program it doesn’t work. However, if we
leave out the variable name and keep the
data type everything comes out fine and
we don’t get the warning message. Like
this:

void main(int, char **argv)

This is a useful technique in all the
cases where you have unused arguments
for any reason. It is dangerous to get into
the habit of disregarding warnings, better
to get into the habit of writing code that
does not produce warnings. It's not always
possible, but we can try.

References

Aswe have seen, the arguments passed
to functions in C and C++ are passed by
value, rather than by reference. The func-
tion gets a copy of the value of the param-
eter to use as it likes, and the original
variable back in the calling code is un-
changed.

We can choose to pass the function a
pointer to a variable in the calling code to
allow the function to change that variable,
or to save memory, but the responsibility is
on us to pass the address correctly and to
make sure the function and the call match.
This isn’t difficult, as we’ve seen above, but
it could be more convenient. Here is how
to make it more convenient.

Areferencein C++ (nosuch thingin C)
is like a pointer in that it contains the
address of something else, and like an

August 1991

47

ordinary variable in that you need not
dereference it. Their main use is in passing
variables to functions. Here is the switch_em
program from last month, rewritten to use

references rather than pointers.
#include <iostream.h> void switch_em(int
&a, int &b); wvoid main(void) f
int x = 17, ¥y = 23;

cout << *\nX = * << x;

cout << "\n¥Y = * << y;
switch em(x, y);

cout << "\nX = * << x;
cout << *\nY = * << y;

void switch_em(int &a, int &b} |

int temp;
temp = a;
a = b;
b = temp;
]
In the definition and the declaration

(prototype) of the function switch_em(),
thearguments aand b are references. They
are declared int &a, which is the declara-
tion of a reference.

Since references need not be
dereferenced with the * like pointers, they
are used directly justlike simple variablesin
the function. You can think of this construc-
tion as a way of passing parameters by

instead of its value, merely by putting am-
persands (&) in front of the variable names
in the function definition and declaration.
There is no change in the calling code, it
looks just like it would if you were passing
ordinary parameters in the ordinary way.
The difference is all in the function.

Herein lies one of the disadvantages of
using references. You cannot tell from read-
ing the calling code that the function can
change the values of the variables in the
calling code. | know of no solution to this
potential error, and therefore, | recom-
mend careful and limited use of references.

As with pointers, references are often
used when the intention is to save memory
by not creating another copy of a large data
structure. In this case, itis good practice to
declare your intention of not changing the
value of the parameter by making it a
constant.
void foo(const int &bar);

Here "bar" is a reference to an integer
argument being passed in, but it is a con-
stantin the function (regardless of its status
in the calling code) so that the value of bar
may not be changed.

Note that even though a referenceis a
little like a pointer, it cannot be changed

reference; passing the actual parameter

after it is initialized. It cannot be made to

point to something different.

There can be no references to refer-
ences, no arrays of references, and no
pointers to references. However, you can
take the address of a reference, in which
case you get the address of the thing
referenced.

Independent References

References can also be used indepen-
dently of function calls. Here is such a
reference definition.
int x;
int &rx = x;

Such an independent reference, like
all references, must be initialized when itis
created. The reference rx is an alias for x
and can be used in place of x in any
context. However, it offers no advantage
over using x directly, and will potentially
make the code harder to read. | cannot
think of any reason for doing this.

Sources

C Tools Plus $149.00
(includes source)
Blaise Computing Inc.

2560 Ninth Street Suite 316

Berkeley, CA

(800) 333-8087 %

Continued from Page 40

ib HOURS i No
sub al,60 iYes,
inc ah ; Add
HOURS:
cmp ah, 24
jne CHECK iNo,
sub ah,ah iYes,
CHECK:
push ax
mov ah, 2ch iGet
int 21h
pop ax iGet
cmp ox, ax
ja QUIT
jb CHECK iNo,
cmp dx, bx iYes,
ib CHECK iNot
QUIT: iYes,
ret
DELAY endp
end

get a2ll over one hour
to hours

iOver 24 hours?

check elaspsed time
get rid of excess

;Save hours and minutes

current time

hours and minutes

;Do they match?
iNo,time’'s up!

check again

how about seconds and hundreds?
yet

time's up

All Checks must

be made out to

Zenith Data Systems

Zenith Data

_ January 1, wm 1991

= _0000

Systems

_ Zero dollars and zero/100 === s

SAM

PLE

N
Is lack of computer knowledge
holding you up?

~

"Powering Up"
could be your best protection!

"Powering Up"

by Bill Adney

Order today!
ZUG (616) 982-3463

A

48

August 1991

all N\ |
N \ |

\ ¥ §
N

«.%‘_

It's HOTTER than ever! Jam-packed with new fea-
tures, HADES |1 still remains the easiest-to-use disk
editor ever! Just look at some of the features:

e Sector Display/Editing

e Sector HEX/ASCII String Search

e File Display/Editing

e Physical and Logical Cluster Display
e File HEX/ASCII String Search

e Drive Parameter Display

e 512 MegaByte Drive Size Limit

e File Attribute Display/Edit

e Automatic Erased File Recovery

e Manual Rebuild File Recovery

e Works with Headerless MS-DOS Disks
e PC-Compatible or H/Z-100

HADES Il is still only $40, and original HADES owners
can upgrade their distribution disk for only $15. Call
HUG today at: (616) 982-3463.

Don't be afraid to communicate! Get HUGMCP
and make contact the casy way. Now with sup-

= port for all Laptops, order HUG Part number
| 885-3033 today.

WG Commnda
m m; I.ml hr? Plnr:f r m and How Many
h !l
iH)hI Hlbh Mill Be High-Ly
M= Sa}m ta To Disk Frow I §]ﬂEn?
Modew By May iH oeol
" - llu e !ru:h ta Fron ish, Usiug Either K HirE
ch Optionally ored, oce
'?_" L Se El ﬁl Softuare Can Be Configured
“ -
“ -

5
s

Send lata ll tg Mhr T

Exits Back To ¥5-

Ter = s:w es
S!w Ter Ing!
Select Message (00, (F1} To List, Anything Else To Abort —) _
Ti-Hlp Fi-Mey FizBefr Fé=Sav Fi=Sad Fi=Clgr F7=Clp FBPrint P:Lat O

WOCE Conliguraiion Mesu:

| B

H —; iurl si‘lrm?g: ?ﬁ;‘m“

Select 45, (F1) For Belp, Mouthing Els! To Quit =)
Ill latr 15¢

Sll hﬂn Inla I‘aﬂh hl SII To T
:Imnlu t u Text:
lete tlf
(H W

Tidlp Py Pl=befr TéSer FizSed Fi-Clgr Fi=Clr Fi:Print M:-Lat O

LENITH B BULK RATE

data systems : U.S. Postage

Groupe Bull . S
Zenith Users' Group

POSTMASTER: If undeliverable, $2.50
please do not return. P/N 885-2139

	image001
	image002
	image003
	image004
	image005
	image006
	image007
	image008
	image009
	image010
	image011
	image012
	image013
	image014
	image015
	image016
	image017
	image018
	image019
	image020
	image021
	image022
	image023
	image024
	image025
	image026
	image027
	image028
	image029
	image030
	image031
	image032
	image033
	image034
	image035
	image036
	image037
	image038
	image039
	image040
	image041
	image042
	image043
	image044
	image045
	image046
	image047
	image048
	image049
	image050
	image051
	image052

