

It's HOTTER than ever! Jam-packed with new fea-
tures, HADES Il still remains the easiest-to-use disk
editor ever! Just look at some of the features:

e Sector Display/Editing

e Sector HEX/ASCII String Search

e File Display/Editing

e Physical and Logical Cluster Display
e File HEX/ASCII String Search

e Drive Parameter Display

e 512 MegaByte Drive Size Limit

e File Attribute Display/Edit

e Automatic Erased File Recovery

e Manual Rebuild File Recovery

e Works with Headerless MS-DOS Disks
e PC-Compatible or H/Z-100

HADES Il is still only $40, and original HADES owners
can upgrade their distribution disk for only $15. Call
HUG today at: (616) 982-3463.

‘REMark=

The Official Zenith Data Systems Computer Users Magazine

N

(Advertising N (PC Compatibles)
Cader New and Improved: Harvard Graphics
Service Page Earl R. Zimmerman, Jr. 7
No. No. The Programmer's Craft: Tools of the Trade
250 B.U.D. Unlimited 16 Thomas B. B.-'ng] 0
e o et b Breaking the Churlish Bounds of DOS
149 W.S. Electronics 28) P art 2
David W. Lind 13
By Your Command — Chapter 1
Richard |. O'Connor 21
Getting Started With . . . Instant Recall (1.2)
Alan R. Neibauer 29
dBASE Il - Part 12
- D. R. Cool 37
A 286LP 8 to 12 Megahertz Upgrade:
Made Easy
\\ Ceorge C. Ludden 45)
4 Z-100 (Not PC) Only k
MENU.BAT
_ Steven W. Vagts 42)
g General ik
Port-O-Call: COMT
Laura White 5
ZAP - No More Data!
Robert D. Miller . 26
Introduction to C++ - Fifth Installment
Lynwood H. Wilson 33
Modem: A Data Transfer Solution — Part 3
¥ Robert C. Brenner 39 /
|| The Electronic Clavier || ~N
PN 885-6016 o oo . DEDOMEES
kSoftware Price List 2/

April 1991

Managing Editor
Jim Buszkiewicz
(616) 982-3837

Software Engineer

Pat Swayne

(616) 982-3463

Production Coordinator Secretary
Lori Lerch Lisa Cobb
(616) 982-3794 (616) 982-3463
COM1 Bulletin Board ZUG
(616) 982-3956 Software Orders
(Modem Only) (616) 982-3463
Contributing Editor Printer
William M. Adney Imperial Printing

St. Joseph, Ml

Contributing Editor

Advertising Robert C. Brenner

Rupley's Advertising Service
Dept. REM, 240 Ward Avenue
P.O. Box 348

St. Joseph, Ml 49085-0348
(616) 983-4550

U.S. APO/FPO &
Domestic All Others
Initial $22.95 $37.95*
Renewal $19.95 $32.95*
* U.S. Funds

Limited back issues are available at $2.50, plus
10% shipping and handling - minimum $1.00 charge.
Check ZUG Product List for availability of bound
volumes of past issues. Requests for magazines
mailed to foreign countries should specify mailing
method and include appropriate, additional cost.

Send Payment to: Zenith Users' Group

P.O. Box 217
Benton Harbor, M1 49023-0217
(616) 982-3463

Although itis a policy to check material placed in
REMark for accuracy, ZUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in
REMark, which describe hardware modifications,
are not supported by Zenith Data Systems Com-
puter Centers.

ZUG is provided as a service to its members for
the purpose of fostering the exchange of ideas to
enhance their usage of Zenith Data Systems equip-
ment. As such, little or no evaluation of the pro-
grams or products advertised in REMark, the Soft-
ware Catalog, or other ZUG publications is per-
formed by Zenith Data Systems, in general, and
Zenith Users' Group, in particular. The prospective
user is hereby put on notice that the programs may
contain faults, the consequence of which Zenith
Data Systems, in general, and ZUG, in particular,
can not be held responsible. The prospective user
is, by virtue of obtaining and using these programs,
assuming full risk for all consequences.

REMark is a registered trademark of the Zenith
Users' Group, St. Joseph, Michigan.

Copyright (c) 1991, Zenith Users' Group

PRODUCT NAME

ACTION GAMES
ADVENTURE

ASCIRITY

AUTOFILE (280 ONLY)
BHBASIC SUPPORT PKG
CASTLE

CHEAPCALC

CHECKOFF

DEVICE DRIVERS

DISK UTILITIES

DUNGEONS & DRAGONS
FLOATING POINT PKG
GALACTIC WARRIORS
GALACTIC WARRIORS
GAMES 1

HARD SECT SUPPORT PKG
HDOS PROG. HELPER

HOME FINANCE

HUG DISK DUP UTILITY

HUG SOFTWARE CATALOG
HUGMAN & MOVIE ANIM
INFO SYS AND TEL. & MAIL SYS
LOGBOOK

MAGBASE

MISCELLANEOUS UTILITIES
MORSE CODE TRANSCEIVER
MORSE CODE TRANSCEIVER
PAGE EDITOR

PROGRAMS FOR PRINTERS
REMARK VOL 1 ISSUES 1-13
RUNOFF

SCICALC

SMALL BUISNESS PACKAGE
SMALL-C COMPILER

SOFT SECTOR SUPPORT PKG
STUDENT'S STATISTICS PKG
SUBMIT (280 ONLY)

TERM & HTOC

TINY BASIC COMPILER

TINY PASCAL

UDUMP

UTILITIES

UTILITIES BY PS

VARIETY PACKAGE

WHEW UTILITIES

XMET ROBOT X-ASSEMBLER
280 ASSEMBLER

280 DEBUGGING TOOL (ALDT)

ADVENTURE

BASIC-E

CASSINO GAMES
CHEAPCALC

CHECKOFF

COPYDOS

DISK DUMP & EDIT UTILITY
DUNGEONS & DRAGONS
FAST ACTION GAMES
FUN DISK |

FUN DISK Il

GAMES DISK

GRADE

HRUN

HUG FILE MANAGER & UTILITIES

HUG SOFTWARE CAT UPDT #{
KEYMAP CPM-80

MBASIC PAYROLL
NAVPROGSEVEN -

SEA BATTLE

UTILITIES BY PS

UTILITIES

X-REFERENCE UTIL FOR MBASIC 32:1231 -[37]

ZTERM

OPERATING
PART NUMBER SYSTEM
H8 - H/Z-89/90
885-1220-137] CPM
885-1010 HDOS
885-1238-(37] CPM
885-1110 HDOS
885-1119-[3 HDOS
885-8032-(3 HDOS
885-1131-[37] HDOS
885-8010 HDOS
885-1105 HDOS
885-1213-137] CPM
885-1093-[37] HDOS
885-1063 HDOS
885-8009-[37] HDOS
aa&soos-lsﬂ CPM
885-1029-(3 HDOS
885-1121 HDOS
885-8017 HDOS
885-1070 HDOS
885-1217-137] CPM
885-4500 VARIOUS
885-1124 HDOS
885-1108-37] HDOS
aa&nw-ls HDOS
885-1249-3 CPM
885-1089-(3 HDOS
885-8016 HDOS
885-8031 13;] CPM
885-1079-[3 HDOS
885-1082 HDOS
885-4001 NIA
885-1025 HDOS
885-8027 HDOS
885-1071-[37) HDOS
885-1134 HDOS
885-1127-[37] HDOS
885-8021 HDOS
885-8006 HDOS
885-1207-{37] CPM
885-1132-(37] HDOS
885-1086-{37] HDOS
885-8004 HDOS
885-121237] CPM
885-1126 HDOS
885-1135-[37] HDOS
885-1120-[37] HDOS
885-1229-(37] CPM
885-1078-[37] HDOS
8851116 HDOS
H8 - H/Z-89/90 - H/Z-100 (Not PC)
885-1222-(37] CPM
885-1215-37] CPM
885-1227-(37] CPM
885-1233-(37] CPM
885-8011-{37] CPM
885-1235-{37] CPM
885-1225-[37] CPM
885-1209-[37] CPM
885-1228-(37] CPM
885-1236-[37] CPM
885-1248-[37] CPM
885-1206-[37] CPM
885-8036-[37] CPM
885-1223-[37 CPM
885-1246-[37 CPM
885-4501 VARIOUS
885-1230-[37] CPM
885-1218-[37] CPM
885-1219-(37] CPM
885-1211-[37 CPM
885-1226-[37 CPM
885-1237-37 CPM
CPM
3003-37 CPM

Software

DESCRIPTION PRICE
GAME 20.00
GAME 10.00
AMATEUR RADIO 20.00
DBMS 30.00
uTiuTY 20.00

ENTERTAINMENT 20.00
SPREADSHEET 20.00
CHKBK SOFTWARE 25.00

UTILITY 20.00
UTILITY 20.00
GAME 20.00
UTILITY 18.00
GAME 20.00
GAME 20.00
GAMES 18.00
UTILITY 30.00
UTILITY 16.00
BUSINESS 18.00
UTILITY 20.00
PROD TO 1982 9.75
ENTERTAINMENT 20.00
DBMS 30.00
AMATEUR RADIO 30.00
MAGAZINE DB 25.00
UTILITY 20.00

AMATEUR RADIO 20.00
AMATEUR RADIO 20.00

uTiuTy 25.00
uTiuTy 20.00
1978 TO DEC '80 20.00
TEXT PROCR 35.00
UTILITY 20.00
BUSINESS 75.00
LANGUAGE 30.00
uTiLITYy 20.00
EDUCATION 20.00
uTiuTy 20.00
COMMUN & UTIL 20.00
LANGUAGE 25.00
LANGUAGE 20.00
uTILITY 35.00
uTiLITY 20.00
uTiuTyY 20.00
UTILITY & GAMES 20.00
uTiuTy 20.00
uTiuTyY 20.00
uTILITY 25.00
uTiuTy 20.00
GAME 10.00
LANGUAGE 20.00
GAME 20.00

SPREADSHEET 20.00
CHKBK SOFTWARE ~ 26.00
uTiuTy 20.00
uTiuTy 30.00
GAMES

GAME

GAMES

GAMES

GAMES

GRADE BOOK
HDOS EMULATOR
UTILITY

PROD 1983 TO 1985
UTILITY

BUSINESS

FLIGHT UTILITY
GAME

uTiLITY

uTiuTy

uTILITY
COMMUNICATIONS

33IIIVSIVEIVHIII
83888888858383888888

April 1991

] @®
This Software Price List contains all
~— products available for sale. For a de-
tailed abstract of these products, refer
to the Software Catalog, Software Cata-
OPERATING log Update #1, or previous issues of
PRODUCT NAME PART NUMBER SYSTEM DESCRIPTION PRICE REMark.
H/Z-100 (Not PC) Only
CARDCAT 885-3021-37 MSDOS BUSINESS 20,00
CHEAPCALC 885-3006-37 MSDOS uTILITY 20.00 . &Y
CHECKBOOK MANAGER 885-3013-37 MSDOS BUSINESS 20.00 .
CP/EMULATOR 885-3007-37 MSDOS CPM EMULATOR 20.00 Now Available!
gSﬁGN S ORAGONS LA ggggg;g; MSDOS gBMg gg% ZUG software is now available on 2"
- MSDOS AM S : % o0
ETCHOUMP 885-3005-37 MSDOS UTILITY 20,00 sk, j“"ﬁj"”‘? 933;23;?:33}0;?1&
EZPLOT Il 885-3049-37 MSDOS PRINTER PLOT UTIL 25.00 part number (i.e., 2. 7150
GAMES (ZBASIC) 885-3011-37 MSDOS GAMES 20.00 add $3.00 to the purchase price of the
GAMES CONTEST PACKAGE ~ 885-3017-37 MSDOS GAMES 25.00 software (i.e,, $20.00 + $3.00 = $23.00).
GAMES PACKAGE Il 885-3044-37 MSDOS GAMES 25.00
GRAPHIC GAMES (ZBASIC) 885-3004-37 MSDOS GAMES 20,00 _ J
GRAPHICS 885-3031-37 MSDOS UTILITY 20.00
HELPSCREEN 885-3039-37 MSDOS UTILITY OO0 e e e gt o
EgGMEi(((;‘:RD PRINT SPOOLER 885-1247-37 cpgo ; u?ug %%
Y 885-3045-37 MS uTILl ! ’
KEYMAP 885-3010-37 MSDOS UTILTY gy i LATTOROWNERS gufentied ot
KEYMAP CPM-85 885-1245.37 CPM UTILITY 20.00 out! All of ZUG's MS-DOS software is
MATHFLASH 885-8030-37 MSDOS EDUCATION 20.00 | available on 3-1/2" micro-floppies too! |
POKER PARTY 895.0042.37 MSDOS ENTEATANMENT 2000 | \Whenorderingjustadda’80"tothe 7 |
POKER PA -8042- i Lk
SCICALG 885-8028.37 MSDOS UTILITY 00 I digit Z“UG part Tmmber. F?r thle standard I
SKYVIEWS 885-3015-37 MSDOS ATRONOMY UTILITY 20.00 5-1/4" floppy, just add a "-37".
SMALL-C COMPILER 885-3026-37 MSDOS LANGUAGE 30.00 \ _/
SPELLS 885-3035-37 MSDOS SPELLING CHECKER 2000 @~ m—— — — — — — — — —
SPREADSHEET CONTEST PKG ~ 885-3018-37 MSDOS VARIOUS SPRDST ~ 25.00
TREE-ID 885-3036-37 MSDOS TREE IDENTIFIER 20.00
USEFUL PROGRAMS | 885-3022-37 MSDOS UTILITIES 30.00 .
UTIUTIES 885-3008-37 MSDOS UTILITY 20.00 Make the no-hassle connection with
ZPCIl 885-3037-37 MSDOS PC EMULATOR 60.00 your modem today! HUGMCP doesn't
Nk ZPC UPGRADE DISK 885-3042-37 MSDOS uTILTY 20.00 give you long menus to sift through like
HfZ-100 and PC Compatibles some modem packages do. With
ADVENTUHFER SR gg%;g mgggg 3}?&% 10.00 HUGMCP, YOU'RE always in control,
BACKGRD PRINT SPOOL 20.00 not the software. Order HUG P/N
BOTH SIDES PRINTER UTILITY ~ 885-3048 MSDOS UTILITY 20.00 i e
CXREF 885-3051 MSDOS UTILITY 17.00 885—3033‘37 today, and see if it isn't
DEBUG SUPPORT UTILITIES 885-3038 MSDOS UTILITY 20.00 the easiest-to-use modem software
E:g’g . ggﬁ mg%g UU;;H%Y %% available. They say it's so easy to use,
HEPCAT 885-3045 MSDOS UTILITY 35.00 they d'ld',.}t. e;f" "Tad r; Jook ;\tNthe
HUG EDITOR 885-3012 MSDOS TEXT PROCESSOR ~ 20.00 MBIt S ANB 0N INOOAIT) SIUNare
HUG MENU SYSTEM 885-3020 MSDOS uTILITY 20.00 that|use, and I'min charge of the HUG
nﬂg SC?FWAHE CAT UPD #1 83233035 ug%g Egﬂ%&ﬁl%&?ga 4\90'4‘;:’59 bulletin board!" says Jim Buszkiewicz.
885-] :
ICT 8080 - 8088 TRANSLATOR 8853024 MSDOS UTILITY 20,00 e St ANYbTe“T/ Zenith
MAGBASE 885-3050 VARIOUS MAG DATABASE 25.00 computer that's capable of running
MATT 885-8045 MSDOS MATRIX UTILITY 20,00 MS-DOS!
MISCELLANEOUS UTILITIES 885-3025 MSDOS UTILITIES 20,00
PS' PC 2100 UTILITIES 885-3052 MSDOS UTILITIES 20,00
REMARK VOL 8 ISSUES 84-95 885-4008 N/A 1987 25.00
REMARK VOL 9 ISSUES 96-107 885-4009 N/A 1988 25.00
REMARK VOL 10 ISSUES 108-119 885-4010 N/A 1989 25.00
SN DOl e N o A 1 200 ORDERING INFORMATION
sC - MSDOS uTILITY] :
UTILITIES I 885-3014 MSDOS UTILITY 20,00 For VISA, MasterCard, and American
Z100 WORDSTAR CONNECTION 885-3047 MSDOS uTILITY 20.00 Express phone orders, telephone the
PC Compatibles Zenith Users' Group directly at (616) 982-
p
gﬁRDCAT 8 gsoosm mg%g gs; g:gg&ga goo. 3463. Have the part number(s),
EAPCALS - 00 ot titv readvfor aui
CLAVIER 885-6016 MSDOS ENTERTAINMENT 20.00 df:g:p;;ﬁ“(sg‘ a;gi?u;:éw ;’f: oy;dc;rrqullﬁ:
CP/EMULATOR Il & ZEMULATOR 885-6002 MSDOS CPM&ZIO0EMUL 20.00 JIOCERING.) A, Y 1 A
DUNGEONS & DRAGONS 885-6007 MSDOS GAME 20,00 10% postage and handling ($1.00 mini-
E%F;%)ET Il gggﬁl? ﬁg%g EHH%EE%(%?(T UTIL gg% mum charge, up to a maximum of $5.00)
3 : to: Zenith Users' Group, P.O. 17,
HAM HELP 885-6010 MSDOS AMATEURRADIO 20.00 B tator i 49%25_0021?,‘“\,?81
KEYMAP 885-6001 MSDOS UTILITY 20.00 LS + VIorl
LAPTOP UTILITIES 8856014 MSDOS UTILITIES 20.00 MasterCard and American Express require
PS' PC UTILITIES 885-6011 MSDOS UTILITIES 20.00 minimum $10.00 order. No C.0.D.s ac-
T e saveRe 85,6008 Mepos UMTIES oo et Gt cepled.
S LUS 885-6009 MS UTILITI i : . i
SKYVIEWS 8856005 MSDOS ASTRONOMY UTIL 20,00 Questions regarding your subscription?
TCSPELL 885-8044 MSDOS SPELLING CHECKER 20.00 Call Lisa Cobb at (616) 982-3463. J
ULTRA RTTY 885-6012 MSDOS AMATEURRADIO 20.00
YAUD (YET ANOTHER UTIL DSK) 885-6015 MSDOS UTILITIES 20.00

April 1991 3

LZENITH

data systems
Groupe Bull

REMark Magazine Subscription
& ZLink/COM1 Bulletin Board Information

Your subscription entitles you to receive REMark, our monthly magazine containing articles
specific to Zenith Data Systems computer and generally to other PC Compatible computers. All
articles in REMark are submitted by readers like you. We welcome YOUR articles, and will pay you
for any we accept!

A REMarksubscription also allows you full access to the ZLink-COM 1 bulletin board system (COM1,
for short) described in detail in the brochure. There are many, many megabytes of free and
shareware software available for downloading to registered COM1 users. Full access also lets you
order products from the “Bargain Centre” section of COM1. The money you can save in the
Keyboard Shopping Club will pay for decades of REMark subscriptions.

Last, but definitely not least, your subscription puts you in touch with thousands of other Zenith
Data System computer users, from whom invaluable information can be exchanged.

REMark subscriptions, currently $22.95, can be obtained in one of three ways. First, by ordering one
onthe COM1bulletin board (see the Keyboard Shopping Club section); second, by phone with VISA,
MasterCard, or American Express; and third, through the US Mail using a credit card, money order
or check made payable to: Zenith Data Systems. Our address is:

Zenith Data Systems Users' Group
P.O. Box 217

Benton Harbor, MI 49023-0217
(616) 982-3463

Once you receive your ID number, registration on the COM1 BBS is NOT automatic. It requires that
you log on, enter your first name and last name EXACTLY as they appear on your REMark mailing
label, and then enter your ID number as your password. The FIRST time you access the board, you
must elect to start a NEW ACCOUNT and answer the various questions. Once you've done this, our
automated scanner will compare the system’s database against the subscription database. If you
made no mistakes, you will be verified and given full access, within 24 hours.

Once you’vebeen authorized as a full member, several important things happen. First, you're given
full downloading privileges of up to one megabyte per day. Secondly, you'll have full access to the

message boards. And finally, you'll be able to take full advantage of the Bargain Centre product
savings.

Detach this form, enclose your check, money order or credit card information (no cash please).

REMark Subscription / Renewal Form

New Member: D Yes [:l No Credit Card #
ID Number: Exp. Date
Address Change? D

Renew New
Name: U.S. Bulk Mail D 19.95 D 22.95
Address: U.S. First Class D 32.95 D 37.95
City, State, Zip: : APO/FPO [[132.95 []37.95

Surface Overseas

Daytime Phone #: () Air Printed Overseas [Js2.95 []57.95

S—

Pont-O-Call:

If you’ve been wanting a faster computer
without purchasing an entirely new ma-
chine, the Heath Computer Upgrade kit is
for you. Model HUG-386-25 converts your
H-248, H-386 or H-386-3 computer into a
25 MHz, 32-bit, 80386-based computer.

The kit, includes a four-drive chassis, 32-
bit 80386 replacement main board, 32-bit
input/output board a 32-bit 16K cache
memory board, and is used in conjunction
with your computer’s present power sup-
ply, drive controller and video boards. Be-
cause the new main board is larger by
design, old video boards like the Z-409
CGA video cards will not fit into the slots —
so plan on purchasing a newer video board
if you're upgrading. In addition, the new
board is compatible with either the Intel
80387 or Weitek WTL-3167 numeric
coprocessor and specific instructions are
included in the kit to insure proper installa-
tion.

The main board is the real key to getting
more speed out of your machine. Equipped
awith two, 32-bit 1M single in-line memory
modules (SIMMS), the board also has the
fast “Enhanced Page-Mode” RAM technol-
ogy. When these features are combined
with the advanced paging controller and
AT-superset 32-bit memory bus, memory
access time is significantly reduced. In
addition, to decrease any remaining
memory access wait the kit includes a 16K
cache memory board.

For those of you who are in constant
need of more memory, the upgraded sys-
tem has a maximum capacity of 64M. You
need to be informed however, that there is
an admitted bug which will be corrected in
the eight slot version of the motherboard.
The motherboard in the upgrade kit will

not recognize a two or four meg SIMM in
the first four sockets. It will however recog-
nize these larger modules in the last four
sockets giving you a maximum total of
20M on the motherboard and 44 on
memory expansion cards. You can expand
the system memory in either TM, 2M or
4M increments.

Still looking for more? If you utilize appli-
cations which require more than the 640K
limit of MS-DOS, the upgraded system has
the Lotus-Intel-Microsoft Expanded Mem-
ory aSpecification (EMS). In addition, the
main board’s EMS 4.0 hardware implem-
entation makes up to 256K of memory
available for those software packages, like
Windows 4.0, which are written to take
advantage of expanded memory.

If you are wondering how all this will
interact with you computer’s present equip-
ment—namely your power supply, your
worries are all for nothing. Your computer’s
original 200-watt switchiing-type regulated
power supply provides enough reserve
power for the maximum 64M of system
memory, two floppy disk drives, and two
hard disk drives.

You do need to be aware however, that
because the new main board is so much
larger than the old one, you can only install
one full-height, three inch high, hard disk
drive in your new upgraded computer,
unless you are willing to give up your
second floppy drive. You see, the new
motherboard occupies the same real es-
tate thatis required by a full-heightdrive on
the inside cage in the lowest position. The
maximum configuration allowed may in-
clude three half-height devices and one
full-height device or, two full-height and
one half-height devices.

OM*1

Laura White
759 Polfus

Benton Harbor, Ml 49022

Even though you are limited when it
comes to your full height hard disk, the
number of other accessories you can in-
stall more than makes up for it for the
limitation. You have your choice of one or
two hard disk drives model numbers HWD-
4028 (5-1/4", 40M, 28ms drives) or ZD-
800 (5-1/4", B0OM 40ms drives). You can
also install any combination of one or two
of the following drives: 5-1/4", 1.2M (ZD-
12); 5-1/4", 360K (Z-207-7); or a 3-1/2"
1.4M (ZD-144 installedin a 5-1/4" bracket.
As was mentioned before, you can add
memory by putting in a memory expan-
sion board, model number ZA-3600-MQ),
which holds up to four 2M SIMMS or 4M
SIMMS when they become available.

You not only get a wide variety of choices
in drives, but you also get a choice when it
comes to monitors. With a 31 kHz dual-
port VGA video board you can drive VGA,
EGA, CGS, MDA, or Hercules monitors,
Model HVB 550. That includes everything
from a 31 kHz Monochrome Monitor,
model number ZMM-149-A or P, to a flat
technology monitor, model number ZCM-
1492.

Installation of the upgrade is relatively
quick and easy. After removing the circuit
boards and the backplane board, you can
then remove both disk drives. Next, dis-
connect the cables from the hard drive
labeling cables appropriately. (You want
reassembly to go as smoothly as possible
when itcomes to cables and connections.)
Finally, you need to remove the power
supply, the lock assembly and the card
guide. That's all there is to it.

Take note however, to use caution when
removing circuit boards. Do not let go of a

Continued on Page 32

April 1991

...the other cats get to sing along!
And now, HEPCAT does Windows!

HEPCAT, the
powerful, versatile
pop-up calculator
from ZUG, is now
even better. HEP-
CAT not only can
pop up over just
about any DOS pro-
gram you are likely
to use, but now ver-
sion 2 can also pop
up over Windows™ 3, even when it is
running in the standard (286) or 386 en-
hanced modes.

What Is HEPCAT?

HEPCAT (Handy Engineer’s and
Programmer’s CAlculation Tool) is a float-
ing point calculator with several scien-
tific/engineering features built in, and a bi-
nary (programmer’s) calculator combined
into one tiny, powerful program. HEPCAT
is a memory resident program that “pops
up” on your screen whenever you activate
it by typing a special “hot key” sequence.

The Other Cats Can Sing Along
Unlike other pop-up calculators, HEP-
CAT is concurrent. That means that when

you pop it up over a running program, the
program can continue to run. For example,
if you pop it up while Lotus™ is busy
loading a huge spread sheet, it will con-
tinue loading while you perform your cal-
culations. And HEPCAT always pops up in
the current video mode, rather than forcing
the screen into a text mode like other
pop-ups do. HEPCAT can pop up in any
standard CGA, ECA, VGA, or Hercules™
graphic mode, as well as in any text mode.
It can even pop up in some non-standard
graphic modes (but it may not clear its
window when you exit).

HEPCAT Works Harder

The floating point calculator in HEPCAT
includes the following built-in functions:
powers, pi, factorial, square root, sine, arc
sine, cosine, arc cosine, tangent, arc tan-
gent, log (natural and base 10), e*X and
10”X, and it does rectangular-to-polar and
polar-to-rectangular coordinate conver-
sion. It also includes several built-in US-met-
ric and metric-US conversions. The binary
calculator works in these number bases:
binary, tetral (base 4), octal, split octal,
decimal, and hexadecimal; and it supports
these operations: MOD, AND, OR, XOR,

SHL, SHR.

The HEPCAT floating point calculator
supports 8 significant digits and can display
numbers four ways: floating point, fixed
point, scientific notation, and engineering
notation. Numbers are handled internally
in BCD format to eliminate binary round
off errors in addition and subtraction.

HEPCAT Eats Less

HEPCAT uses less than 18k of memory
— less than any other pop-up calculator that
we know of. It also uses less than 14k of
disk space, so you don’t have to worry
about where to put it on a small system.
HEPCAT is easier to learn, too, with com-
mands that make sense.

If you are tired of pop-up calculators
that can only sing solo, or calculators that
can do DOS but not Windows (or Win-
dows but not DOS) give HEPCAT a try.
HEPCAT is available from ZUG as part no.
885-3045 for $35.00 (plus S/H). It works
on any Zenith Data Systems computer that
runs MS-DOS or Z-DOS (including the Z-
100 series), and on most PC-compatibles.
If you have HEPCAT version 1, send in your
original distribution disk and $10 to up-
grade to version 2. &%

6

April 1991

New and Improved

HARVARD GRADPHICS

Earl R. Zimmerman, Jr.
78 Wells Drive
Dayton, OH 45431

Introduction

Back in May 1989 | reviewed Harvard
Graphics 2.12 for REMark. The review
talked about how easy Harvard Graphics
was to use, the large variety of charts that
can be created, symbols libraries, and other
features such as the spell checker, slide
show capability, and using macros to speed
up your work. | thought it was a top notch
program then, and the newest version,
Harvard Graphics 2.3, hasn’t changed my
opinion. While many upgrades to a basic
program are relatively minorin nature, that
can’t be said about this upgrade.

This upgrade has taken some of the
accessory packages that Software Publish-
ing Corporation (SPC) sold separately and
combined them into one program without
changing the feel and operation of previ-
ous versions. For instance, version 2.3
contains the Draw Partner and Chart Gal-
lery accessories. Even with additional fea-
tures version 2.3 only uses 420K of RAM,
unless you want to use the on-line tutorial
or macro program. You will need 640K to
run these programs.

Il begin by talking about the major
improvement - Draw Partner, and then
cover time saving features, improved print-
ing capability, new symbols, slide show
presentation improvements, and other mis-
cellaneous features.

Draw Partner

Draw Partner is a versatile drawing pro-
gram that lets you create more compli-
cated charts, as well as logos for busi-
nesses or clubs, churches, etc. It allows
you to add special effects to your charts.
Figure 1 illustrates just some of the features
you can use to create interesting charts.
Figure 2 is an example of a logo | created
using Draw Partner. In addition, you can
fine tune drawings by using the zoom
feature and point editing features. You can
also use different fonts on a chartas well as
perform the same features found in Draw/
Annotate such as drawing lines, circles,
and boxes as well as adding buttons. The

button feature is discussed in more detail
later in the article.

The most welcome improvement is that
you can access Draw Partner from Harvard
Graphics as well as return to it without
leaving Harvard Graphics. Previously you
had to access it from the DOS Prompt. You
can now access it by using a speed key or
through the Application Menu which is

changing colors, sizes, etc.

Application Menu. The Application
Menu is a simple DOS shell for Harvard
Graphics. It only uses about 15K of RAM.
Like Chart Gallery, it saves you some time.
It allows you to run up to eight application
programs, run Draw Partner or other Har-
vard Graphics Accessories, or work from
the DOS prompt. However, you can’t run

i B 3

\©
WS <X,
<

wW

C)\)\.-AF? »

LN
SR AR

(&) 7 =

THIS IS SWEPT CIRCULAR TEXT

/

SHADOWED TEXT
SHADOWED TEXT

VERTICALLY FLIPPED SYMBOL ’

THIS IS A SKEWED LINE /

PP

Figure 1

discussed later in this article.

Chart Gallery. Anyone who presents brief-
ings knows there oftenisn’t time to prepare
charts. Keeping this in mind, SPC inte-
grated the Chart Gallery feature into Har-
vard Graphics 2.3. Chart Gallery contains-
66 different pre<created charts in nine dif-
ferent categories. The briefer has a choice
of text, pie, horizontal and vertical bars,
and line charts, sixarea and high/low/close
charts, five organizational charts, and four
combination charts. This feature is acti-
vated from the main menu by selecting
Create Chartand From Gallery. The briefer
then selects the type of chart and the
choices for that type chart appear. The
briefer then enters the data and saves the
chart. There is no need to spend time

Figure 2

April 1991

Applications

Menu item 1: Draw Partner Menu item 5:
Maximum size (K): Maximum size (K):
Command: HGDP.EXE Command:
Menu item 2: DOS Menu item 6:
Maximum size (K): Maximum size (K):
Command: c: \connand com Command:
Menu item 3: Menu item 7:
Maximum siza (K): Maximum size (K):
Command: and:
Menu item 4: Menu item 8:
H:xinun size (K): Maximum size (K):

and: Command:

e F8-Options F10-Continue
Figure 3

the Harvard Graphics Macro program or
the Harvard Graphics tutor or any other
memory resident utilities. If you want to
run the macro program or any other
memory resident utilities you must load
them before you start Harvard Graphics.
Memory limitation is often a big draw-
back in trying to run two programs at a
time. Harvard Graphics allows you to take
advantage of EMS or a ram disk when you
set the Application Menu options. A word
of caution - before setting Harvard Graph-
ics to use EMS or a ram disk ensure you
have at least 600K of EMS or 600K of disk
space available on your RAM disk. If you
set the options to use either of these and
don’t meet the requirements you will not
be able to run any additional programs.
You'll just get an error message telling you
there isn’t sufficient disk space available. |
know this because | made the mistake of
setting Harvard Graphics to use my 384K
ram disk to store temporary files.
Another limitation to this feature is, un-
less the program you want to run is on the
DOS path, you must create a batch file
with the commands necessary to run the
program. The batch file name is typed on
the command line (see Figure 3) at the Ap-
plications menu. SPC should improve this
feature in future versions by allowing

signed a speed key.

Showcopy Utility. This utility is performed
from the DOS prompt. It's now easier to
copy slide shows, check a directory for all
the files needed to copy a file show, and
create a slide show from all the charts in a
directory. It's no longer necessary to copy
a slide show file by file. There are three
commands:

Showcopy - Used to copy a slide show,
templates (.TPL files), palettes (.PAL files),
and bit-mapped graphics files (.PCX files) to
another directory or disk.

Showcopy Verify - Used to verify that all
the files, palettes, and bit-mapped graphics
files are present on the disk before a copy
is made.

Showcopy Create - Used to create a slide
show from a particular disk or directory.
Unlike the previous commands, Showcopy
Create only uses the chart (.CHT) files to
create a show. Charts will appear in the
slide show according to where they are
located on your disk. Harvard Graphics will
assign the name NEWSHOW.SHW to the
show you create unless you specify other-
wise.

Better Computer Graphics
Metafiles (CGM) Support.
Previous versions of Harvard Graphics,

as well as version 2.3, import CGM images
from other programs to create charts. The
difference between version 2.3 and ver-
sion 2.12 is how the imports are handled.

In version 2.12 you used a separate
utility call META2HG outside the Harvard
Graphics program. You typed META2HG
[File name of CGM file] and the CGM file
would automatically be saved as a symbol
file.

In version 2.3, at the Import/Export Menu,
you select Import CGM File, select the
CGM file from the Select CGM Metafile
screen by highlighting the file with the
cursor and depressing F10. The imported
file is then displayed on the screen. You
can modify it using the Draw/Annotate
feature or save it as a chart or symbol.

Improved Printer Qutput

More and Better Print Drivers. Version
2.3 has eight new print drivers. There are
now more and better drivers for Hewlett-
Packard Laserjet printers. Data going to
the HP printers are now optimized so full
size charts can be printed in high quality if
the printer has at least 512K of memory.
When | previously tried to print high qual-
ity charts using a HP Laserjet 1D, my chart
would not print on one 8 1/2"x 11" page.
It printed half of the chart on one page and
half on another. Now it prints on one page
and it seems to be faster. See Figure 4 for
a complete list of supported printers.

Gray Scaling Support for Black and
White Printers. To print a pie chart or bar
chartin gray scales (16 shades), all the user
has to do is select Color as the fill attribute
and set the Color to Yes at the Print Chart
Options. Printing on an Epson FX-1050, |
found this feature to be nice when | printed
a chart on standard quality because it was
easy to distinguish the different slices of a
pie. When | printed the same chart on high
quality it was much more difficult to tell the
slices apart. However, when | printed the
same chart on a Hewlett-Packard Laserjet
IID | liked the high quality better. If you
don’t like the quality of gray scale charts
you should select No at the Print Chart

multiple command lines for each program. 1 Set
Speed Keys. Another handy time saver is Priatee'l Setip
Speed Keys. You can save keystrokes to er aintlJet, ata '
. Okidata ML
perform common ope_ratlons. There e Eg?cz.urbol.?gﬁ“t“ ﬂg DTgﬁiE:t‘ Okidata ML ﬁ
seven speed keys available at the main Canon Enpg IBM Graphics Printer Okidata Laseroénszog
menu or at the chart data forms: Epson Fx LJ(HX 1BM Proprinter,XL,I1 Olivetti PG 1 M2
Epson EX IBM Proprinter X20,XL24 QMS ColorSc ript 100
Ctrl G - Get a chart Eboon b I8 Quietwriter 11T Quse LaserTEN, ¢
Ctrl X - Import Excel Data Epson LQ 800,1000 1BM Color Printer Tektronix 469
Ctrl S - Save the chart Epson LQ 1500 IBM Color Jetprinter Tektronix Phaser CP
Epson LQ 2 00 1BM Personal PagePrinter Tektronix ﬂ
Ctrl L - Import Lotus Data Epson G 3 IBM Lase rinter Toshiba P1310 Pﬁ} 91351
Ctrl P - Print a chart {iP taser:‘!a: .7 NEC Eg 159 L.CP6 ;g:hilﬁ: g 5
Cti R Goto Daw/Annotate b Loseryet't1s 117 b Neo g Laserdot] Toahibg PageLaser 12
Ctrl D - Go to Draw Partner IlP LaserJet nr.%n NEC LC-890 (PostScript) Xerox
This feature mostly benefits the inexperi- | [1P ?i:{-}:i LiL'(feal/2) Mo Solok | 3 Xerox 4045
enced user. Experienced users are aware iP PaintJet XL Okidata ML 1 2,183 VDI Printer
they can create one-key macros using the
Macro program. In my opinion, SPC should Printer: HP LaserJets,I1,I1D
expand on this feature in future releases as FT-Relp ;
there are still many routine tasks not as- Figure 4 F10-Continue
8 April 1991

—

Options and you will get patterns.

Other Printing Improvements. There is
a new no-margin option for non-postscript
printers. It allows you to get the largest
possible output provided you set the chart
size to Full when printing. | liked this fea-
ture because my images were somewhat
larger and clearer. In addition, you can
now use A4 paper and to print files to disk.

Larger Symbol Library

The new symbol library has over 500
new symbols. This large library corrects
one of the deficiencies of previous ver-
sions. The symbols are much more de-
tailed than previous symbols and also print
in gray scales for users with black and
white printers. The library contains: ani-
mals and plants, arrows, borders, build-
ings, buttons (more on this later), calen-
dars, various common objects, computers
and equipment, flags of 48 nations, flow
chart symbols, Greek alphabet, people,
industry symbols and icons, maps, money,
signs, transportation, office equipment and
items, and presentation symbols. Some of
the new symbols appear on Figures 1 and
5.

Slide Show Presentation Improvements

Animated Sequences. Harvard Graph-
ics contains 10 animated slide show se-
quences to spice up your presentation and
grab your audience's attention. They in-
clude: a fireworks show, sand going through
an hourglass, mouse in a maze, shooting
ducks, William Tell, fish eating fish,
dartboard target, fish story, birdman, and a
cash register ringing up sales. All these
shows can be viewed by displaying the
ANIMATOR slide show in the HG\SAMPLE
subdirectory.

These slide shows are composed of .PCX
files and charts created in Harvard Graph-
ics. You can edit the text in the fireworks
show or the dollar amount that the cash
register rings up or create your own se-
quences by using an overlay technique
which is described in the documentation.
The overlay technique draws objects on

FY 91 ECP STATUS MENU

ECP 10080 -

A

PN

ECP 10040 - IMPROVED ENGINES
TEWS UPDATES

ECP 10073 - DATA BASE # 1

ECP 10118 - DATA BASE #2

ECP 10101 - OFP UPDATE

VIEW STATUS OF ALL
Figure 6

the screen that appear to be moving.

Hypershow/Buttons Features. This handy
feature allows the briefer to show selected
parts of a slide show. It replaces the Go-To
feature in version 2.12. In that version, you
could only go to one different chart from a
chart you were viewing. However, in ver-
sion 2.3 you can go to up to 20 different
charts from the chart you are viewing.

Here’s how it works. Figures 5 and 6 are
master menus (free form text charts) |
created to show the financial status of a
program | work with. These charts allow
me to go to other shows or charts | created
previously withouthaving to call up individ-
ual charts or separate screen shows from
the main menu. The only thing different is
the numbered buttons before the six menu
items. They are button symbols from the
symbols library.

Using the Draw/Annotate or Draw Part-
ner feature | chose Add, selected Button,
assigned a button number from 1-6, drew
a box with the cursor around the symbols,
and saved the chart. Figures 5 and Figure 6
are tied together through the Buttons fea-
ture. If | select button 4 (by depressing 4 or
clicking on the button with the mouse) on
Figure 5, Figure 6 will appear. From Figure
6 | can go to Figure 7 by depressing or
clicking on the 1. After all the charts, slide

F15-E WST FINANCIAL STATUS

TP

AT,

T

&
t

FY 89 REQUIREMENTS
FY 89 ECP STATUS
FY 91 REQUIREMENTS
FY 91 ECP STATUS

VIEW ALL REQUIREMENTS

VIEW ALL ECP STATUS
Figure 5

shows, and menus are created they are put
in one master slide show and each chart,
slide show, or menu is assigned a number
sequentially. They are linked through the
Hypershow Menu which is activated by
pressing F8 at the Screenshow Effects
screen. Each button must be assigned a
key and a chart/slide show number to go
to. After keys and related chart/slide show
numbers are assigned, the slide show is
saved.

You can also assign special key numbers
that allow you to go to the next chart,
previous chart, the first or last chart in the
slide show, or escape the slide show. Also,
it's really not necessary to use a button
symbol to link charts or slide shows. You
can place the buttons anywhere on the
chart. However, you have to remember
where you placed it.

Miscellaneous Features

New Traditional Font and Multiple Fonts
on One Chart. A Traditional font was
added in version 2.3 for a total of seven
fonts. In addition, version 2.12 only al-
lowed one font per chart. In version 2.3
you can select the font you want to use
from the Draw/Annotate feature or from
Draw Partner. This is illustrated in Figures 5
and 6 where the chart titles are in Execu-
tive font and the remainder of the charts
are in Traditional Font.

On-Line Tutorial. In addition to getting
help by pressing the F1 key you can also
gethelp from the tutor. Atthe DOS prompt
you enter HGTUTOR and a menu ap-
pears. The tutor covers the basics of creat-
ing the various types of charts. There is also
a brief section on slide shows where the
Hypershow/Buttons feature is covered. If
you are an experienced user | recommend
notinstalling the tutor during installation as
the benefit you would receive from itisn’t
worth the hard disk space it takes up.

Multiple Palettes. There are 11 new pre-
set color palettes. What's new about this is
the palette color is saved with the chart.
This means each slide could have a differ-

Continued on Page 12

April 1991

The Programmen’s Crabt:
Tools Of The Trade

Computer programs liberate people
from tedious, mindless tasks. It's an irony,
though, that programming itself is often a
cottage industry - artisans hand-crafting
each program with their own unique meth-
ods, using the most basic of tools. People
created languages like C and Fortran using
an assembler, an editor, and little else.
What's worse, the editor was the "line-ori-
ented" variety; using it was like reading
your mail through a narrow slot. Debug-
ging meant poring over "core dumps” -
files containing a snapshot of the memory
image of the program when it went
"boom" - to find obscure glitches. That's
about as far back as my personal career
goes; | have heard stories of programming
computers using front panel switches, flip-
ping eight of these to load in one byte, but
Ill have to take that on faith. That's an
incredible amount of effort, compared to
the work the machines were supposed to
do.

Fortunately, all that is changing. Not
fast enough, maybe - some of you may still
use core dumps for debugging. Still,
today’s tools are miles ahead of what | had
when | began programming PC’s in 1980.
Back then, | was amazed at the "full-screen”
editor available on the Heath H-89; it was
so much more intuitive and easier to use
than mainframe editors. The only other
software "tool" | had was the language
itself - in my case, Microsoft BASIC for
HDOS. You could run and modify a BASIC
program without ever leaving the inter-
preter. This feature led to some quick fixes
to code; the interpreter’s ability to pin-
point errors on a line was a major boon to
programmers. It also led to some bad
coding habits; sometimes a programmer
needs to back off and rethink the whole
program, not just the screenful closest to
the first error.

Overview

This article will survey some of the
modern programming tools available on
PC’s, with a few observations on the future
of programming. Most of the proper

Thowaos B. Bing

2155 Canalyx Dr.
Swywa, GA. 30080

names in this article refer to specific soft-
ware products or companies, and are
therefore the registered trademarks of
their respective companies. | try to distin-
guish between what I've used and prod-
ucts I've simply seen advertised. The PC
software field involves rapid change in the
companies and products being sold. Con-
sequently, a product | mention is probably
not the only tool for a given job, and may
not be the best. Specific products are cited
merely to give readers a starting point for
their own investigation.

Compilers Vs. Interpreters

The first true compilers for PC’s gave
us a taste of the execution speed and
memory savings available through this
technique. No longer would we have to
give up RAM (32K to 82K) to the inter-
preter. There was a commercial advantage
too; we wouldn’t have to distribute our
code in source form. There was a trade-off,
however; compiling a large program could
take several minutes, especially on the
early hard-disk 8088 machines. Back then,
| didn’t have Desqview or Windows, so |
couldn’t work on another program during
a compile; | just waited until the compile
succeeded - or failed. | spent ages refining
my programs through the "3-C" method:
Change, Compile, and Crash. | had to edit
the program, save it and exit from the
editor, and run the compiler; three sepa-
rate programs were involved, counting the
linker. Still, the pluses of compiling out-
weighed the minuses. For one thing, |
could use pre- written libraries, linked with
my own programs, for file management or
other routine tasks.

The editor and the language itself were
thus my only early tools. After | started
using MS-DOS, some of the DOS utilities
(and some shareware programs) came in
handy for making backups and keeping
track of files.

Current Tools: Editors
What's available today? How much of
an advantage does a modern programmer

have in tools and techniques over the
pioneers? Plenty. Let's start with editors.
Editors today can bring up two or more
files in different windows; you can cut and
paste text between them. Many of them
can "undo" multiple changes. Color high-
lights text blocks being copied or moved.
Global search and replace can change all
occurrences of one name to another - or
change only the ones you specify, show-
ing each change as it occurs. Some high-
end editors, like Sage Professional, can
emulate a broad range of older editors
while introducing new and powerful fea-
tures. The BRIEF editor understands C-lan-
guage syntax and keeps you from making
basic syntax errors. The ability to drop
down into DOS and return is a valuable
and increasingly common feature. If you
really can’t live without your mainframe
editor, KEDIT and SPF/PC are available for
the PC. The ability to move program text
easily between the editor, compiler, and
other tools, such as version control sys-
tems, is rapidly becoming a reality.
Granted, the high-end programmer’s edi-
tors have a price to match, comparable
with Wordperfect or Microsoft Word.
There are a few good editors available at
a modest price. | find that QEdit
(SemWare, $59.95) offers multiple win-
dows and a long list of useful features at a
modest price. Plus, it's available on many
BBS’s (including the COM1 BBS; see
QEDIT207.ZIP) for a "try before you buy".
EMACS is a highly regarded windowing
editor from the Unix world, written by
Richard Stallman of the Free Software
Foundation. There is a PC EMACS version
available for $8.00 plus shipping (C Users
Group Disk 197). There is also a Z-100
version available on the COM1 BBS;
download ZMACSEXE.ZIP.

"Vi" is the editor | use most. If you've
read the faint praise for viin my "DOS And
Unix, Part 2" article (REMark, May '90),
that may surprise you. Admittedly, vi
knows nothing about color. Butit’s flat-out
fast at doing block copies and deletes, and
it's available on both MS-DOS and Unix

10

April 1991

machines. It can be customized a good
deal, even to the extent of defining func-
tion-key macros. Vi is available by itself for
$149 from MKS, but don’t buy it that way.
It's a much better deal as part of the MKS
Toolkit.

My recommendation for a PC editor
would be QEdit, vi, or EMACS, at least to
start with. However, many folks will be
quite at home with the basic Wordstar-
style editors that come with compilers like
Borland Turbo C and Microsoft Quick C.
These integrated editors speed up the
cycle of edits and compiles. They also
keep you from shuttling back and forth
between separate editor and compiler
programs.

Version Control

If you only deal with a few short pro-
grams that don’t change often, keeping
track of different versions is easy. How-
ever, as time goes by on most program-
ming projects, programs grow and
multiply, revisions come more often, and
more people get involved in the updates.
As a result, an automated system for track-
ing changes becomes crucial. | use one
called RCS (Revision Control System),
from MKS. RCS maintains a file for each
source code program | develop. This file
contains the latest version of each pro-
gram, its revision history, and "deltas" for
each revision back to the earliest. By ap-
plying these deltas to the latest version,
RCS can retrieve any version of the file |
wish to see. Special keywords are used in
the RCS source file to identify the version
number, author, and revision date and
time. In this way, RCS can place correct
version numbers and timestamps in each
version without the programmer having to
change them manually. Two special pro-
grams are used to "check in" and "check
out" versions. If a version is checked out
and locked by one programmer, no one
else can change this program (within RCS)
until it is unlocked again. The unlock oc-
curs when the original programmer
checks it back in or a special unlocking
program is run. This diminishes the danger
of two conflicting revisions to one pro-
gram. The program is still accessible for
"read-only" use, such as printing, even
when locked. RCS can be told to discard
the latest version of a program and its
revision notes automatically. This effec-
tively "backs out" changes which turn out
to be undesirable and makes the previous
version the most current one. Any version
on file can be deleted in this manner. You
can even insert version numbers in .OB)
and .EXE files by simply defining a charac-
ter array or string containing the version
number. Such arrays usually contain a dis-
tinctive character sequence that is unlikely
to occur elsewhere in the file; this allows
the file to be quickly scanned for the ver-
sion number. This is useful for a program-
mer troubleshooting on a user’s machine;

the version number of the software which
is actually in use can be verified.

An added benefit of RCS is that only
the latest version appears in full-text form;
earlier versions are reconstructed as
needed from the latest version and the
deltas. This technique avoids needless du-
plication and saves disk space.

These features of RCS are representa-
tive of those available in other version
control packages. Sage/Polytron offers
Polytron Version Control System (PVCS)
for PC’s. PVCS has been endorsed by
Marc Rochkind, the author of SCCS, the
original Source Code Control System for
computers running Unix. Other PC ver-
sion control products include TLIB and
SMS. These systems can manage other
documents as easily as program files. The
RCS product for the PC can even control
binary file versions, so you could use it for
WordPerfect or Wordstar documents.

Selective Compiling: Make

In addition to controlling versions, it’s
also useful to control the compile process
for large programming projects, so that
only those source files which have
changed are re-compiled. Programs that
perform this kind of compilation control
are called "make" programs; this was the
name of the original Unix version of this
utility.

The hot competition between Borland
and Microsoft has resulted in fairly capable
versions of "make" being included with
these two C compilers. Even on today’s
fast 286 and 386 machines, utilities like
these are worth having to eliminate unnec-
essary compiles (and of course, to save the
programmer’s time). Opus and MKS also
market their own versions of make.

C Debugging Tools

Some C tools that have long been
available on the PC are making their way
to Unix systems (and vice versa). Users of
PC C compilers with integrated editors
and debuggers may be surprised to hear
that these are fairly new to Unix. In Unix
systems with X Windows, we are begin-
ning to see this kind of integration:
Hewlett-Packard’s Softbench is a fairly so-
phisticated example. And it’s true that
Unix programmers can speed up the 3-C
cycle by keeping their editor running while
they started a new copy of the shell to
handle compiles; on systems with lots of
memory, you can do that. However, it is
only by integrating the compiler and editor
that the editor can highlight the exact
position of errors in the source file as the
compiler finds them.

Gimpel Software’s C-terp is an interac-
tive, interpretive style debugging environ-
ment for C. It's available for both MS-DOS
and versions of Unix that run on Intel
CPU’s. Gimpel also offers PC- Lint, a
source code analysis tool with its origins
in the Unix world. Lint was designed to

resolve inconsistencies in source pro-
grams that the compiler might not spot,
such as a function call with two arguments
when three are required. | see a tendency
for the high-end PC C compilers to include
"lint-like" features. For instance, the
Microsoft C compiler version | use (5.1)
has a /W3 flag that turns on very extensive
error checking and spots some of the same
errors that "lint" would find.

Cross-referencing to show how vari-
ables and functions are used in several
program files is a must when developing
big projects. It keeps a change in one file
from having unintended consequences
elsewhere. Programmers who have used
"cxref* on Unix can probably find similar
capabilities in "C-Analyst" by Cater Soft-
ware and "CLEAR for C" by CLEAR soft-
ware. CLEAR also advertises documenting
and flowcharting features.

Function Libraries

Often, programmers like to concen-
trate on the bigger issues in designing a
program. "Standard" tasks like file manage-
ment and screen layout are handled by
purchasing function libraries that link with
the object modules the programmer cre-
ates. When | was developing an inventory
management/floor plan package years
ago, | chose to move from MBASIC to
compiled CBASIC. One factor in my deci-
sion was that the Access Manager pack-
age from Digital Research would work
with CBASIC. Access Manager provided a
speedy way to access and update records
in large data bases and left me free to
design the user interface and error han-
dling. Examples of currently available li-
braries for C are: c-tree (file management),
Blaise C tools (screens and windows),
WKS Library (\WKS, .WK1, and .DBF file
manipulation), and HALO (graphics).
They’re usually in the $100 - $500 price
range. Often that’s worth it, if the package
works as advertised and keeps a major
software project from going down the
tubes.

Database Tools

I've dwelt mostly on C, but the tools
for database programmers, particularly in
the dBase arena, are worth mentioning.
The dBase compilers which turn dBase
into .EXE files have attracted attention be-
cause they're speedier than interpreted
dBase and they don’t require a dBase
license for each user’s machine. | bought
Wordtech’s Quicksilver a few years back
and | remember when a friend brought
over a medical practice package he had
written in dBase to compile it. It took a little
tweaking to get it to compile and link okay,
but it ran so much faster he just sat there
and giggled.

Because dBase is such a widely used
data base manager, several tools are avail-
able to aid programmers in using it: There
are the dBase compilers already men-

April 1991

11

tioned, such as Quicksilver, Clipper, and
Force. There are program generators such
as Genifer and UI2 which build complete
source code, after the programmer speci-
fies the screen and data file layouts. Hav-
ing used Genifer, | can say that it takes a
little time to build your screens and files
correctly, but still far less than with manual
methods. Also, once those specs are com-
plete, Genifer will generate hundreds of
lines of dBase source code in minutes. The
code produced this way can be modified
like any other .PRG file. If the initial run
points out the need for changes in file and
screen layout, they can be easily made and
the program can be quickly re-generated
from the revised specs.

There are other packages, such as
dBEST Toolbox and Mach-4, that add func-
tions like graphics and date conversion to
the standard dBase capabilities, and
dSALVAGE, to help you recover damaged
data files. As mentioned before, there are
C libraries to read and write .DBF files.
Since other database programs are being
marketed as a step up from dBase, many
of them have utilities built-in to read data
from .DBF files and transfer it into their
own data base format.

On The Horizon

One area I've wanted to explore (and
haven’t yet) is the use of program genera-
tors to produce C programs. Tools like
Matrix Layout and Charm are advertised
as automating the generation of C source
code. It'll be interesting to see how much
work programmers still have to do with
such tools.

| see two trends that will ultimately
change the way software is developed for
PC’s. The first is the emergence of usable
CASE tools. CASE stands for Computer-

Aided Software Engineering, and, in my
opinion, we're not there yet. American
companies are aiming for a seamless set
of tools that will manage the creating and
maintaining of programs over their full life
cycle - from the initial bright idea through
development and bug fixes, until the pro-
gram is retired. There are a few products
now that help with documenting program
specs and new designs, and with figuring
out what each program is supposed to do.
There are also tools to maintain consis-
tency among the various pieces of large
programming projects, to keep the work
of a large team in sync. My own view is
that such tools must be affordable (about
the same price as a PC C compiler), and
adapted to the needs of a small program-
ming group, one to five people, before
they will make much impact in the PC
arena. | also think they should be able to
clean up and reverse- engineer existing
code to improve its correctness and doc-
umentation. The ability to rework existing
code is something that is only beginning
to appear in the expensive mainframe
CASE packages.

The second trend is the emergence of
object-oriented languages (Smalltalk and
C++, for instance), and use of object-ori-
ented programming (OOP) in traditional
languages. The whole idea of "objects" that
handle specific tasks by operating on mes-
sages passed by other objects appears to
be gaining ground. Programmers will de-
velop libraries of objects that can be ex-
tended and reused, and these objects will
become the interchangeable parts of soft-
ware manufacture. | believe that C++ will
be as commonplace in a few years as
vanilla C is now. Whether programmers
will have absorbed the OOP philosophy is
another matter.

Having all these goodies will not be the
millennium or the death knell of program-
ming. Their use should mean that program-
mers will worry about bigger "chunks" of
the programming job; that their creativity
will focus at a higher level. | think future
programmers will design software more at
the "black box" level of whole programs
and major functions. To complement the
human designer, automated systems will
look after lines of code, variable names,
and similar low-level issues. For instance,
adding a new data field to a whole family
of programs and files may require only a
single English-like command from the de-
signer. We're not there yet, but from my
vantage point, we sure have made some
progress.

Sources

To conclude this article, let’s look at
sources of the products mentioned. Two
mail-order houses that cater to the soft-
ware needs of programmers are:

Programmer’s Connection

North Canton, OH 1-800-336-1166

The Programmer’s Shop

Hingham, MA 1-800-421-8006

Both these companies publish large,
detailed catalogs of their offerings. The
catalogs themselves are a basic education
in programmer tools; they include capsule
descriptions of the products. Just about
everything described above is available
from one of these two companies. The C
Users Group disk containing EMACS s
available from the C Users Group, 2601
lowa Street, Lawrence, KS 66046, phone
913-841-1631. The QEdit editor is also
available from SemWare, 4343
Shallowford Road, Suite C-3, Marietta, GA
30062, phone 404-641-9002. %

Continued from Page 9

ent background or it could remain the
same through the entire slide show presen-
tation.

Conclusion

Version 2.3 is a significant improve-
ment over version 2.12. Itis well worth the
price of the upgrade unless you previously
purchased the Chart Gallery and Draw
Partner accessories separately. The strong
points of the upgrade are it's improved

symbols, improved printing quality, and
slide show features.sg [

Don’t miss a single issue...

MOVING? 1

——=——"0"0

make sure you send in
a change of address!

ECP
RECEIVED

JAN 91

FACT
FINDING

MAY 91

F-15E WST: FY91 3010 FUNDING--$4.2M
ECP 10040: IMPROVED PERFORMANCE ENGINE

FFP COST
PROPOSAL

JAN 91

NEGOTIATIONS
COMPLETE

JUN 91

Figure 7

TECHNICAL
EVAL/AUDIT

APR 91

CONTRACT
AWARD

JUL 91

12

April 1991

Breaking the Churlish
Bounds of DOS

Part 2

In the first of these series of articles, the
concepts of overlays, expanded memory,
and extended memory were introduced.
This article completes the discussion of
overlays. Parent and child processes were
discussed in Part 1. These processes are
not overlays in the narrowest sense of the
word in that the child programs occupy
unused memory released by the parent
program for that purpose. The parent
program is never overlayed. However,
memory previously allocated to the parent
program is overlayed. In this article, the
processes discussed do overlay the code
of the parent program which is called the
“root” program. Two different processes
are discussed, the use of an overlay linker
and the use of the disk operating system
Execute Program Function.

The Overlay linker

The easiest way to create overlays is to
use the overlay feature of the linker. When
a source program is assembled or com-
piled, a file called an object file is pro-
duced. The object file contains some ex-
ecutable code and references to external
subroutines which must be incorporated
before the code can be made executable.
The linker is the program which resolves
the external references and arranges the
code into an executable program file with
the file name extension, EXE. The external
references may be other object code files
in libraries provided with the compiler, in
user generated libraries, or object code
files provided to the linker with the main or
root program. Assemblers do not normally
come with libraries because assembly
language instructions are normally trans-
lated directly into machine code. Most
linkers permit the selection of one or more
object files as overlays. The assembler or
compilers used to generate the root object
module must have an overlay manage-
ment capability.

The current (Version 5.0) Microsoft
Macro Assembler (MASM) does not have

David W. Lind
RR1,Box 3114

Bar Harbor, ME 04609

an overlay manager. Therefore, one can-
not use MASM to generate programs which
use overlays created by an overlay linker.
However, most newer Microsoft compil-
ers do have overlay managers which will
pass appropriate code to the linker to
generate overlays. MASM can be used to
create object files which are used as over-
lays by the overlay linker. In general, the
root program must be compiled or as-
sembled by a compiler or assembler which
has an overlay manager. The overlays can
be valid object files created by any means.

The Microsoft Disk Operating System
(MS-DOS) LINK.EXE linker program allows
overlays to be specified by placing the
overlay object files in parentheses when
the LINK program is executed. The linker’s
overlay manager will then determine when
and how the overlays will be used. All
overlay modules must be code segments
or procedures (subroutines). Data is not
overlayed. The manuals provided with the
linker describe the process in detail. If the
applications programmer follows the in-
structions carefully, the overlay process
should work properly without any user
intervention when the program is executed.
The size of the program code is limited only
by the amount of mass storage memory
available for the program file. Only one file
with the extension EXE is generated. This
file contains all the overlays, as well as the
root program, and may be much bigger
than available random access memory.
The file will be reopened as necessary to-
overlay memory,

If the reader is familiar with the FOR-
TRAN programming language, the follow-
ing short FORTRAN program can be used
to call the procedure “over3” listed as
“OVERLAY3.0OVL” atthe end of this article.
EXTERNAL OVER3
CALL OVER3
END

This code, to which the file name
“OVTEST.FOR” was assigned, should be
complied by a FORTRAN compiler which

has an overlay manager. The statement
“PUBLIC over3” must be added to the
procedure source code just before the
statement “code SEGMENT.” Then the
procedure, which was assigned the file
name “OVER3.ASM,” should be as-
sembled. The FORTRAN object code
(OVTEST.OBJ) and assembler object code
(OVER3.08BJ) should then be linked with
the statement:

LINK OVTEST + (OVER3)

The reader should note the size of the
.EXE file, which for the author’s file was
7,432 bytes, and redink the files without
the parenthesis. The resulting file should
be much shorter. The author’s re-linked file
was 4,108 bytes. Thus, there is additional
code overhead associated with overlays as
would be expected. This overhead must
be considered in the design of overlay
programs.

Of course, an overlay linker cannot be
used to solve the problem which occurs
when there is too much data for the pro-
gram memory space. In that case, the data
must be kept in files on mass storage and
called into memory as required. Another
way to resolve the excessive data problem
is to store the data in expanded or ex-
tended memory. More about thatin future
articles. But, even the excess data problem
can be handled by the DOS Execute Pro-
gram function. However, this usage is
normally not recommended. In addition,
this function permits management of over-
lays without using the overlay features of
an overlay linker.

The programs used as examples in the
following discussion are written in assem-
bly language. Many compilers, e.g., C,
have features which allow execution of
system interrupts. The reader should be
able to write programs in these higher level
languages based upon the examples. How-
ever, there are also library subroutines in
these languages which will accomplish the
same objectives with less intervention by
the programmer. The examples should

April 1991

13

provide considerable insight into the op-
eration of these library subroutines.

The Execute Program Function

The Execute Program Function was in-
troduced in the first of these series of
articles. The Load and Execute Program
subfunction, Subfunction 00h, was dis-
cussed and demonstrated. Subfunction
03h, Load But Don’t Execute, is the subject
of this article. Load But Don’t Execute over-
lays a part of the parent or root program
with code or data from a file on a mass
storage medium. But, the code is not exe-
cuted. Thus, Subfunction 03h differs from
Subfunction O0h in three ways. First,
Subfunction 03h does not execute the
loaded code or data, but Subfunction 00h
does. This difference also means that the
overlays for Subfunction 00h must be
executable code, but the overlays for
Subfunction 03h can be code or data or a
combination of code and data. Finally,
Subfunction 00h overlays free memory
space which was released by the parent
program. This space is not in the parent
program. However, the memory used by
the overlays handled by Subfunction 03h
is normally within the parent program.

The Load But Don’t Execute subfunction
is useful when one wishes to exercise
more control over the overlay process or
have more direct access to data segments.
The overlay becomes a part of the root
program, not simply another program in
memory. However, Subfunction 03h will
overlay any part of random access mem-
ory (RAM), including the disk operating
system and RAM portions of the Basic
Input/Output System. Therefore, the Load
But Don't Execute subfunction can de-
stroy important system data or code and
even damage video circuits if used care-
lessly. The likelihood of damaging circuits
is not great, but cannot be ignored. As a
general rule, one should overlay only
memory owned by the root program.

There are generally two types of code
overlays, simple code segments and pro-
cedures. This article discusses both in detail.
A third type of overlay is also discussed, a
data overlay. Data overlays are uncom-
mon because it is usually much easier and
more efficient to use data files. Before
these types of overlays can be used, some
preparation is necessary. Keep in mind
that the following discussion is a “text
book” approach. Alternatives will be pre-
sented after the basic discussion.

Memory Allocation Preparation

Before the Load But Don't Execute
subfunction is used, memory needs to be
reallocated. Recall that the root or parent
program is normally allocated all available
memory when it is loaded. Although
Subfunction 03h overlays do not required
free memory, the loader program does.
Therefore some memory must be freed for

the loader. Generally, itis best to shrink the
memory allocated to the program to the
minimum required. This feat is accom-
plished with the Set Block function. The
ROOTPGM.EXE listing at the end of this
article demonstrates this process. The list-
ing contains an unusual number of com-
ments so that the reader is not forced to
recall details from the text. It is best to learn
the general concepts from the text and
glean the details from the comments in the
program. As is no doubt clear by now, this
subject is not trivial.

After the program is shrunk, the program-
mer must determine where the overlays
will be located. Usually itis best to establish
a separate code segment where the over-
lays will reside rather than overlay existing
program code. The program should be
enlarged using the Allocate Memory func-
tion, INT 21h-Function 48h. This function
adds some of the memory freed by the Set
Block function to the root program. Typi-
cally, a 64K byte segment is added. The
number of paragraphs of memory to be
added to the program is placed in register
bx. Recall that one paragraph of memory
is 16 bytes. InROOTPGM.EXE, the number
of paragraphs is 4096 which is 64K bytes.
The Allocate Memory function is called by
placing 48h in register ah and executing
INT 21h. The major reason for using the
Allocate Memory function rather than
simply releasing less memory with the Set
Block function is that the Allocate Memory
function returns the segment address of
the allocated memory in register ax. If this
additional segment were to be generated
by the Set Block function, the programmer
would be responsible for determining the
address of the new segment. Once one has
the address of the new segment, it can be
stored for later use. But, keep in mind that
the Load But Don’t Execute subfunction
will place the overlay anywhere in the basic
system memory the programmer directs. If
one uses a separate segment for the over-
lays, it is important to keep track of the
address of that segment.

The Load But Don’t Execute Subfunction

Once enough memory is released for the
loader and a segment of program memory
is selected/prepared for the overlay, the
overlay can be called into memory. This
process requires that a parameter block be
established in the extra segment. This pa-
rameter block contains only two words.
The first word is the segment address of the
overlay, normally obtained from the Allo-
cate Memory function. The second word is
the relocation factor which is normally the
same as the overlay segment address for
EXE type overlays and is O for COM type
overlays. Further discussion of relocation
factors is beyond the scope of this article.
When the subfunction is called, es:bx must
pointto the parameter block. DS:DX must
point to an American Standard Code for

Information Interchange (ASCII) string con-
taining the path, file name and extension of
the overlay file. This string must be termi-
nated by a binary “0.” The ax register must
contain the value “4B03h.” Then the over-
lay is called by executing INT 21h.

Simple Code Segment Overlays

For the purpose of this article, a simple
code segment overlay is a segment of
code which is written as an executable
program or part of an executable program,
but is not an explicit procedure or subrou-
tine. Subfunction 03h does not examine
the overlay to determine if itis data or code
and certainly does not determine if it is a
simple code segment overlay or a proce-
dure. But, this information is important to
the programmer.

Recall that the overlay is not executed by
Subfunction 03h. If the overlay is code, it
must be executed by a jump or call to the
overlay. This transfer of control is to a
separate code segment, assuming one has
not overlayed the current code segment,
and is a “far” jump or call. That is, both the
code segment register and the instruction
pointer register mustbe changed. A simple
code segment overlay requires some spe-
cial coding considerations, whereas, a pro-
cedure does not.

The problem is not so much transferring
to the overlay as it is getting back to the
proper pointin the original code segment.
Either a far jump or call will transfer control
to the overlay. The overlay code segment
must contain a means to return to the
original code segment. If the overlay code
segment is accessed by the “call” instruc-
tion, the segment:offset address of the
next instruction in the original code seg-
ment is pushed onto the stack automati-
cally. The code segment overlay can then
return control to the original code seg-
ment by a far return. If the programmer
wishes to use a jump instruction to execute
the overlay, the code segmentaddress and
the address of the next instruction in the
original code segment must be pushed
onto the stack before the jump instruction
is executed. The return from the overlay
code segment is the same as with a call.

The OVERLAY 1.0VL overlay file listed at
the end of this article is an example of a
simple code segment overlay. The execu-
tion of such an overlay can be accom-
plished by pushing the code segment reg-
ister onto the stack with a “push cs” instruc-
tion. Then, the address of the instruction to
be executed upon return from the overlay
must be pushed onto the stack. This proc-
ess is most easily accomplished by labeling
the instruction to be executed upon return
and loading the address of this label into a
register with the “lea” instruction and
pushing the register onto the stack. Con-
trol is then passed to the overlay code by
a far jump. The instruction “jmp dword ptr
..” is used for this purpose. The “...” in the

14

April 1991

instruction is a label in the data segment at
which the segment:offset address of the
overlay code segment is found. The first
word at this label is the offset address. This
word is set to O for an EXE type code
segment and 100h for a COM type code
segment. The second word is the segment
address, normally obtained from the Allo-
cate Memory function. Note the use of the
“dword ptr” modifiers in the jump instruc-
tion. The “dword” specifier tells the assem-
bler to treat the operand as a data label at
which the double word address is located.
The “ptr” operator tells the assembler to
override the original type of the label (which,
in the example program, is word) and treat
it as a double word label.

Some folks may want to use the instruc-
tion “jmp far ptr...” This instruction will not
work properly. The specifier “far” is used
only with labels. The instruction “jmp far
ptr ...” will cause the data at the label
represented by “...” to be executed. The
only time this instruction can be used is
when the overlay code segmentis labeled.

The alternate and simpler way to exe-
cute the overlay code segmentis to use the
“call” instruction. The formatis “call dword
ptr ...” This instruction automatically puts
the code segment and return offset ad-
dresses on the stack. Again, “...” is a label
at which the segment:offset address of the
overlay execution point is found.

Returning from the overlay code seg-
ment can be simple or esoteric depending
upon the version of the assembler in use.
Starting with MASM Version 5.0, one may
use the return far, “retf,” instruction - a
simple and straight forward method. It is
not necessary to use “retf” with any other
instruction or directive.

If one is using a version of MASM that
does not support “retf,” the method is a bit
more complex. The offset address of the
original code segment must be popped
into a memory location and then the seg-
ment address of the original code segment
must be popped into the next word. Then
a far jump is used to return the code to the
original code segment. Be sure to locate
the data for the segment:offset address of
the original code segment in such a way
that the assembler can unambiguously
locate the data and that the data will not be
executed.

Procedures

Procedures are code segments explicitly
written to be called by the root program. In
some programming languages procedures
are called subroutines. When one identi-
fies a procedure or subroutine to the as-
sembler or compiler, the assembler or
compiler ensures that the requirements to
return from a call are included in the object
file. If the procedure is a part of the root
program’s original code segment, the
procedure is typed as “near.” If the proce-
dureisin another code segment, it is typed

as “far.” The default type is near. Normally,
an overlay procedure is explicitly typed as
far. One can always type a procedure as
far, but the procedure must then be called
with a far call.

Once a procedure is overlayed on the
root program, the procedure can be called
with the instruction “call dword ptr ...”. As
with the call to a simple code segment, the
“..." is the label of two words containing the
offset and segment address of the proce-
dure. Again, “dword ptr” must be used
because the label is the location of the
pr;:;cedure address, not the procedure it-
sell.

A procedure may also be called by a far
jump (e.g., jmp dword ptr ...), but this
process requires the programmer to place
onto the stack the segment:offset address
of the instruction to which to return. The
use of the “call” instruction is much easier
and less prone to error.

The procedure itself is normally typed as
far (e.g., PROC FAR). It is not necessary to
use retf if the procedure is defined as far. If
one uses retf, no harm is done. Remember,
the instruction “retf” was introduced in
MASM Version 5.0, so it is not available in
earlier versions.

Data Overlays

A data overlay is a difficult means of
dealing with data problems. Calling data
files through the file control block process
is better. However, there may be reasons
to overlay data. The data is overlayed on
the root program in exactly the same
manner as code segment overlays. Of
course, the overlay segment address is a
data segment address. Also, a data overlay
is not executed. The overlay can be on the
original data segemnt or in a separate data
segment. The program listing at the end of
this article shows the data segment over-
layed. Keep in mind that the data in the
overlay should be addressed by direct
numerical means, not by labels, unless one
uses a data segment template.

Freeing Memory

When one is finished with the section of
the root program used exclusively by over-
lays, this memory can be freed by the Free
Allocated Memory function-Function 49h.
This step is not necessary, but it is a good
practice particularly if the program is a
terminate-but-stay-resident program. To use,
this function, first push the es register onto
the stack because the function uses the es
register to point to the segment of memory
to be freed. Then, put the address of the
segment of memory to be freed into a
general register and move it to the es
register. Move 49h to the ah register and
call the Free Allocated Memory function
with INT 21h. This process frees the allo-
cated memory. Then pop the original value
of the es register back to the es register.

Assembling and Linking Overlays

Before leaving the subject of overlays, a
few words about assembling and linking
overlays may be helpful. The assembler
will process any valid data segments or
code segments individually or in combina-
tion. Stack segments should not be in-
cluded in overlays. Disregard warnings
about no stack segments. The root pro-
gram and overlays should be linked sepa-
rately. Therefore, labels should not be
defined as public and external references
must not be included. The linked overlay
files should be assigned extensions other
than EXE or COM to prevent independent
execution of these files. When the loader is
asked to overlay existing programs, it ig-
nores the extensions in the overlay file
names.

Alternative Approaches

The techniques described above should
work in virtually any situation. If the oper-
ating system environment is unencumbered
and well-behaved, overlay short cuts are
possible. The Set Block function may not
be necessary. When the operating system
releases the loader, the memory that the
loader used is also released to the system
- not to the executing program. Therefore,
if the program does not allocate memory
and there are no resident programs which
may seize free memory, there will be
enough free memory for the loader. That is
a rather big “if” given the current glut of
esoteric resident programs.

One can define a 64K byte segment in
the original program to use as the overlay
segment. For example:

overlayseg SEGMENT
DD 16384 DUP(?)
overlayseg END

would make a perfectly good overlay
segment. The address of this segment would
be obtained in ax by:
lea ax,seqg overlayseg

The difficulty with this approach is that if
the program is too big, one has no oppor-
tunity to reduce the size of the segment
without re-assembling the program. On
the other hand, the Allocate Memory func-
tion will return the maximum amount of
free memory available if it fails to allocate
the requested amount of memory because
of insufficient memory. At that point, the
requested memory and size of the overlay
segment can be reduced by the program.

It should be clear at this point that over-
lays can be versatile and powerful. How-
ever, they can be dangerous. One should
be forewarned once again of these dan-
gers.

Warnings and Cautions

Overlays can be placed any where in
memory. Thus, one can destroy or alter the
operating system or other programs and
files. Ensure the overlay segmentaddress is
not external to the program unless you

April 1991

15

really wish to change memory external to
the program. Avoid changes to segment
addresses above EO0Oh where video con-
trol memory resides. One can, in this
memory area, reset video output to pro-
duce Virtual Graphics Array output which
can damage video display equipment not
designed to accept such signals. This case
is one of the exceptions to the rule thatone
cannot damage a computer system by just
programming it.

It is possible to overlay code segments
with data and data segments with code.
One can execute data segments and use
code segments as data. Almost all things
are possible, but not all things are profit-
able. The information in this article opens
the door to all kinds of programming tricks.
Be careful. Strange combinations of tech-
niques may permit extraordinary capabili-
ties and confuse even the most brilliant
programmer, but these techniques may
also confuse the originator and become a
curse rather than a blessing.

The Demonstration Program
and Summary
The program listing following the refer-

ences demonstrates the techniques out-
lined in this article. The root program
memory is shrunk to minimum size, then
memory is allocated for the overlay seg-
ment. A simple code segmentis overlayed | 3. Microsoft Corporation, Microsoft Macro
on the overlay segment and executed us-
ing a far jump. New data is then overlayed
on the data segment. A procedure is over-
layed on the overlay segment and exe-
cuted by a far call. Before the program | 4. Microsoft Corporation, Microsoft MS-
terminates, the allocated memory is re-
leased to the system. These techniques
should help the programmer develop
powerful programs using overlays.
easiest way to use overlays is to allow the | 5. Phoenix Technologies Ltd., System BIOS
overlay linker to generate them automati-
cally, a feature of the overlay linker which
is much appreciated by folks who have
occasion to use INT 21h-Function 4Bh.
The next article in this series will discuss
the use of expanded memory. 6. The Waite Group, The Waite Group's
MS-DOS Developer’'s Guide, second

References

1. Duncan, Ray, Extending DOS, 1990,
Addison-Wesley Publishing Company,
Inc., Reading Massachusetts.

2. Microsoft Corporation, Microsoft Macro

Redmond, Washington.

Washington.

tion, Bellevue, Washington.
The

chusetts.

Company, Indianapolis, Indiana.

Trademarks

of the Microsoft Corporation.

Assembler 5.0 Microsoft CodeView and
Utilities, 1987, Microsoft Corporation,

Assembler 5.0 Programmer’s Guide,
1987, Microsoft Corporation, Redmond,

DOS Operating System Programmers
Reference, 1984, Microsoft Corpora-

for IBM PC/XT/AT Computers and Com-
patibles, 1989, Addison-Weseley Pub-
lishing Company, Inc. Reading, Massa-

edition, 1989, Howard W. Sams &

Microsoft and MS-DOS are trademarks

rRAPID INDEX: A computer program that-I
INists titles of maﬁazine articles by subject :

lor in alphabetical order.

10 CPM or O PC/MS-DOS 2.1 or later. |

| DRIVE: I
COMPUTER: O 5.25"DD..$21.00

IO Z-100 Models O 5.25'HD..$23.00 |

| O IBM Compatable [J 3.5'DD....$23.00 |

| Magazines current_lly available: |
ect. Service & Tech. (1984 - 89)

I REMark computer magazine (1985-89) |
| Calif. residents add 6.75% sales tax. |
Send check or money order (US funds)
Ionly to: l
| B.U.D. Unlimited, !
| P.O. Box 503, Elverta, CA 95626. |

| REMark is a trademark of Heath. Zenith User's |
gyt J

Reader Service #250

Listing

data

ovlayl

ovad
averseg
namel
namez2
name3

mess
mess0l

Iootl
xitmess
data

esdata

segadd
relfact

COMMENT * PROGRAM: ROOTPGM.EXE

SEGMENT

This program demonstrates the overlay process controlled by
the Execute Program Function, Subfunctien 3. Three over-
lays are called by this program. One overlay is another
code segment, the second is a data segment, the other is a
procedure.

This program and the overlays are for pedagogical purposes
only. No expressed or implied warranties are made for this
program with respect to merchantability or fitness for a
particular purpose. The user assumes all responsibility
for any damage resulting from the use of this program or the
concepts. WARNING: Overlaying some parts of memory could
cause damage to data or equipment. Ensure that the segment
address of the overlay is within the program memory space
and that the overlay is able to fit within the allocated
memory. *

COMMENT * The following message is displayed by OVERLAY1.OVL. *

DB
DB

COMMENT

DW
DW
DB
DB
DB

* This line is displayed by the new code segment.’',10,13,'S*
100 DUP(0)

iAllow room for overlays

* The following data are used by ROOTPGM. *

4] ;Far address of overlay, offset portion
? ;Far address of overlay, segment portion
‘OVERLAY1.0OVL',0

;File name of first overlay
;File name of second overlay
;File name of third overlay

‘OVERLAY2.0OVL',0
‘OVERLAY3.OVL’,0

COMMENT * The following data are messages produced by ROOTPGM. =

DB
DB
DB
DB
DB
ENDS

SEGMENT

COMMENT

DWw ?
Dw 2

* ERROR - could not shrink pregram memory.’,10,13,°S’

ERROR - could not allocate memory for child process.’,10,13
isr
' This line is displayed by the root program.',10,13,'$"’
t*++*Normal Program Termination.','$’

* The following data is the parameter block for the Execute

Program function. =

April 1991

e

esdata

code

start:

memok :

allok:

ENDS

SEGMENT
ASSUME

COMMENT

mov
mov
mov
mov
sub
mowv
int
jnc
mov
lea
int
mov
int

cs:code,ds:data,es:esdata,ss:stack ;Identify segments

* The following section of code initializes the data segment
and shrinks the program‘s memory space to that which it
actually requires. If the program space cannot be reduced,
the program terminates. This process is required to free
memory for the program loader which must be called into
memory to load the overlays. If the program indicates that
memory could not be released or the released memory is not
sufficient to contain the loader (most unlikely), remove
resident programs (e.g. Sidekick, Windows, etc.) to free
memory space. *

ax,data ;Put the segment address of data in ax

ds,ax iMove the address of data to ds

CX,es ;Put PSP segment address in cx

bx,seg pgmend ;Put address of last segment in bx

bx.cx ;iFind length (in paragraphs) of this program
ax,4A00h ;Put Set Block function number in ax

21h ;Shrink memory allocation

memok ;If carry flag is clear (no error), continue
ah,09h :;Else, put Display String function number in ah
dx,mess0 ;Put message offset in dx

21h ;Call display string subroutine

ax,4C00h ;Put Terminate Process function number in ax
21h ;jTerminate program

COMMENT * This block of code initializes the extra segment, displays

mov
mov
lea
mov
int
mov
mov
int
jnc
mov
lea
int
mov
int

a message, and allocates 64K bytes of memory (4096
paragraphs) to ROOTPGM. If there is insufficient memory

to allocate 64K, a message is printed to that effect. Then,
more memory must be obtained by releasing resident programs
or the amount of requested memory must be reduced. This
process is necessary because the program was shrunk to its
minimum size.

To avoid confusion and possible conflicts, an additional empty
code segment in the program is generated as a place for the
overlays. By convention, a 64K byte segment is established.
The Allcocate Memory function adds this 64K byte segment to
the program and places the segment address in ax which one
can use to locate the segment. The shrunk program has grown
by 64k bytes. It is possible to shrink the program to its
minimum size plus 64K bytes or to overlay existing parts of
the program. But, such technigues require carefull
management by the applications programmer. It is usually
better to use the Allocate Memory function. *

ax,esdata ;Put the segment address of esdata in ax
es,ax ;Move the address of esdata to es

dx,rootl ;Put the offset address of rootl in dx
ah,09h ;Put the Display String function number in ah
21h ;Call Display String

bx, 4096 ;Put number of paragraphs in bx

ax,4800h ;Put Allocate Memory function number in ax
21h ;Locate allocated memory

allok ;If carry flag is clear (no error), continue
ah, 0%h ;Else, put Display String function number in ah
dx,mess01 ;Put message offset in dx

21h ;Call display string subroutine

ax,4Co0h ;Put Terminate Process function number in ax
21h ;Terminate program

COMMENT * At this point, the first overlay of the additional code

segment can be called. The parameter block for the Execute
Program function must be initialized. This block is located
in the extra segment and consists of two words. The first
word (segadd) contains the address of the segment (paragraph)
where the overlay is to be loaded. The second word (relfact)
is the relocation factor (i. e., the segment address of the
module which begins execution). For EXE type overlays, the
segment address and relocation factor are normally the same.
For COM type overlays, the relocation factor is 0 because
only EXE programs are relocatable.

The American Standard Code for Information Interchange
(ASCII) string at namel contains the file name of the
overlay. The offset address of this string must be in
register dx when the Execute Program function is called.
Also, register bx must contain the offset address of the
parameter block. The Execute Program function is called

We are still trying to get
caught up on our ISsue

We would like you to know how
much we appreciate your patience.
Thank You!

April 1991

17

The Electronic Clavier
PN 885-6016

Xitl:

mov
mov
mov
lea
lea

int

COMMENT

push
lea
push
jmp

COMMENT

mov
mov
mov
lea
lea
mov
int

by loading 4B03h in ax and executing INT 21h. The overlay
is then loaded at the specified loaction in memory. *

overseg,ax ;Store the overlay segment address in overseg
segadd, ax ;Put the segment address in segadd
relfact,ax ;Put the relocation factor in relfact
dx,ds:namel ;Put offset address of overlay file name in dx
bx, es:segadd ;Put offset address of parameter block in bx
ax,4B03h ;Put function and subfunction numbers in ax
21h ;Call Execute Program function

* Although the overlay is now loaded, execution proceeds
with the next instruction in the root program. This
differs from subfunction 1 of Execute Program which
executes the child program. Therefore, the overlay
generated by subfunction 3 of Execute Program must be
executed by a FAR jump or call (remember, the overlay
is in a separate code segment). In order to return to
the root segment after the overlay is executed, the
current code segment must be saved on the stack and the
offset address at which one wishes to resume execution
must be pushed onto the stack as well. Then one can jump
to the overlay *

cs ;Save code segment address on stack

ax,xicl ;Get offset address of resume point

ax ;Save offset address on the stack

dword ptr ovad ;Far jump to overlay with double word address

;Point at which to resume execution

* The following code overlays the data segment. This process
is not recommended and is included for instructional purposes
only. Data segments can be more safely overlayed by data
file processes. This code demonstrates that overlays can be
loaded anywhere in memory. The process is the same as
loading a code segment overlay except that the overlay is
loaded at the beginning of the data segment and, of course,
no attempt is made to execute the overlay, although, that
could be done. Note that only a part of the data segment is
overlayed. *

ax,ds ;Put the data segment address in ax

segadd, ax ;Put segment address in parameter block
relfact,ax ;Set relocation factor

dx, name2 ijPut offset address of file name in dx

bx, es:segadd ;Put offset address of parameter block in bx
ax,4B03h ;Put function and subfunction numbers in ax
21h ;Call Execute Program function

COMMENT * The new data overlayed on the data segment is displayed

mov
mov
int

by the following code. Note that the data is not
referenced by a label. One should use an offset number,
in this case - 0. Labels are not changed by the overlay
process, but they are not transferred from an overlay
file either. =

dx, 0 ;Put offset address in dx
ah, 09h ;Put Display String function number in ah
21h ;Call Display String function

COMMENT * The following code overlays the second code segment with

mov
mov
mov
lea
lea
mov
int

a procedure (subroutine). The first overlay occupies the
second code segment until the third overlay overlays it.
The process is the same as the first overlay process except
for the name of the overlay file. =

ax,overseg iPut overlay segment address in ax

segadd, ax ;Put segment address in parameter block
relfact,ax ;Set relocation factor

dx,ds:name3 iPut overlay file name offset address in dx
bx, es:segadd iPut parameter block offset address in bx
ax,4B03h ;Put function and subfunction number in ax
21h ijCall Execute Program function

COMMENT * The procedure is called with a far call to the segment:offset

call

address of the procedure. One cannot use the procedure name
because external references are not resolved by the loader.
It is not necessary to save cs and the instruction pointer
because the "call” instruction does so. *

DWORD PTR ovad

COMMENT * The memory allocated to the second code segment is freed

by the following code. This process is optional, but is
good practice. *

18

April 1991

code
stack
stack

pgmend
pgmend

code

start:

orad
orads

code

data
mess
data

code

push

continue:

es ;Save extra segment address

mov ax,overseg ;Put segment address in ax

mov es,ax ;Move it to es, i.e. redefine extra segment

mowv ah,49h ;Put Free Allocated Memory function # in ah

int 21h ;Call Free Allocated Memory function

pop es ;Restore extra segment address

COMMENT * An exit message is now displayed tc indicate control has
passed to the root program. *

lea dx,xitmess ;Put message offset in dx

mov ah, 09h jPut Display String function number in ah

int 21h ;Call Display String function

mov ax,4C00h ;Put Terminate Process function number in ax

int 21h ;Terminate program

ENDS

SEGMENT stack

DB 256 DUP(?)

ENDS

SEGMENT ;Dummy segment to mark program end

ENDS

END start ;"start” must be placed in this line

COMMENT \ OVERLAY1.OVL
This program displays an *“=* and the message at offset
0 of the root program's data segment. Note that this
program has no data or stack segments. The instruction
*retf” resumes execution at the location in the root
program which was stored on the stack. \

SEGMENT

ASSUME cs:code

mov (= B oF R O ;Puc “** in dl

mov ah,02h ;Put Display Byte function number in ah

int 21h ;Call Display Byte function

COMMENT * Labels are not transferred, i.e. externals are not resolved,
by the overlay process. Therefore, memory locations in the
root program must be referenced by offset numbers. *

mov dx, 0 ;Put offset 0 in dx

mov ah, 02h ;Put Display String function number in ah

int 21h ;Call Display String function

COMMENT * The following line must be deleted for MASM versions less
than 5.0. *

retf ;FAR return, MASM Version 5.0 or above

COMMENT * Use the following code for returns from MASM version less
than 5.0. *

jmp continue ;Jump around data

DwW ? ;0ffset pointer

DW ? ;Segment pointer

pop orad ;Pop original code segment offset address into orad

pop orads ;Pop original code segment address into orads

jmp DWORD PTR orad ;FAR jump to original code segment

ENDS

END start

COMMENT * OVERLAYZ2.OVL
This program consists only of a data segment containing
one message which will be overlayed onto the root
program’'s data segment. i

SEGMENT

DB ‘'**This line is displayed after the data overlay’,10,13,'§’

ENDS

END

COMMENT * OVERLAY3.OVL
The following procedure displays a message and returns
to the calling program. The message to be displayed is
in the procedure’s ccde segment. Therefore, the data
segment is made identical to the code segment so that
the Display String function can access the message. Of
course, the original data segment address must be saved
before the data segment address is changed and restored
before the procedure returns control to the root program. *

SEGMENT Continued on Page 36

Quality Enhancements!

EaZy PC Products

EZM-128: Expand 512K base memory to
640K. Simple, plug-in installation. $125.00
EZCLOCK: Calendar/Clock. Piggy-back
add-on for EZM-128. $35.00

No Slot Clock/Calendar

FBE SmartWatch: Automatic date/time
on bootup. Installs under BIOS/Monitor
ROM. Ten year battery. Works with all
Heath/Zenith MSDOS computers. For
PC’s $32.00, Z-100 $33.00 Module: $25.00

H/Z-148 Expansions

ZEX-148: Adds one full-size and one half-
size expansion card slot. $79.95

ZP-148: PAL chip expands existing 640K
memory to 704K. CGA/MDA only! 519.95

ConfigurationControl

CONFIG MASTER: Menu-select active
CONFIG.SYS during bootup, Software for
PC/Z-100 MSDOS. $29.95

H/Z-150 Items (Not for '157, '158, '159)
VCE-150: Eliminate video card. Install
EGA or VGA card. All plug in. Includes
circuit board, SRAM and RM-150. $49.95
ZP640 PLUS: PAL chip to expand stand-
ard memory card 1o 640/704K with 2 banks
of 256K RAM chips (not included). $19.95
ULTRA-PAL: Three PAL chips: MR150
for 704K + 312K RAM Disk; MR150T
for 640K + 512K RAM Disk; LIMI50 for
640K + 512K (32 pages) of simulated v3.2
Lotus/Intel/Microsoft Expanded Memory.
With software. Install on standard memory
card. No soldering. Needs 45 256K RAM
chips (not included) for maximum mem-
ory configuration. $39.95

COM3: Change existing COM2 1o COM3.
Put internal MODEM at COM2. Don’t
lose serial port. With software. $29.95

H/Z-100 Modifications

ZMF100A: Expand "old" motherboard
(p/n 181-4917 or less) using 256K RAM
chips (not included). No soldering. $65.00
ZRAM-205: Put 256K RAM chips on your
Z-205 board. Get 256K plus 768K RAM
disk. Contact us for data sheet before
ordering. Without RAM chips. $39.00

H/Z-89 Add-Ons

HB9PIP: Parallel printer 2 port interface
card. With software. $50.00 Cable $24.00
SLOT4: Add fourth expansion slot to right-
side accessory bus. $39.95

Order by mail, FAX, telephone, or sce your dealer.
UPS/APOYFPO shipping included. VISA/MasterCard.
WA residents add 8.1% wx. Hours: M-F 9-5 PST.

We return all calls left on our answering machinc!

1-5:
FBE Research Company,Inc.
P.O. Box 68234, Seattle, WA 98168

206-246-9815 Voice/FAX [guchTone
Reader Service #104

April 1991

Splinters.

all you have is :
a stick in the mud!

With this board,
you're really talking! /

Call (616) 9855463 for mbl;;information

If you hunger for Computer news..
R

]

. " 4
Dinner is Served! Lmé

BY YOUR COMMAND
Chapter 1:

Introduction

Computers are a lot like dogs, in that
it's often best if you establish your relation-
ship clearly right up front before things get
out of hand.

When | began to work on a minicom-
puter at my office, | found out that the
command prompt could be customized to
anything | wanted unless it was something
useful (like the name of the current sub-di-
rectory). This irritated me enough to
search around for an appropriate prompt
phrase (the default was “OK”) that put
things into proper perspective. Who's in
charge around here, anyway?

Enter the Zylons from the Buck Rogers
TV series of several years back (sci-fi fans
may correct my memory for names; that's
what Buggin’ HUG is for!). Those metallic
hunks with the room-temperature 1Q’s
were generally only good for harrassing
Twikki, worrying Buck, and making the
Bettys scream. But their allegiance to The
Leader was marvelous, and their response
to his every order was the low growl, “By
Your Command”.

Since that phrase best expresses how
| prefer to be addressed by the office mini,
that became my prompt. Telling comput-

confessions of

a Macro uUser

Richard J. O'Connor
848 Fenske Drive NE
Olympia, WA 98506

and design and specific protocols, but the
key to getting action from a computer is
specifying the right verbs in the right com-
bination.

It occurred to me that it might be
enlightening to put together a series-of-
the-every-so-often that dealt with helping
you tell your computer what to do, even
if you aren’t classically trained in a pro-
gramming language. Perhaps your theme
song is something like

" Joe Programmer booted up
Feeling somewhat lonely
Didn’t know a language, so
He wrote in macros only."

As long as the Poetry Police aren't
monitoring REMark, I'll probably get away
with that. The point here is that you don't
have to rely on Microsoft or Ashton-Tate
or WordPerfect Corporation to speak to
your computer for you. Sometimes, the
best way to get something done YOUR
way is to do it yourself. And.that's what
we're about in this and subsequent arti-
cles: giving you examples using macros,
batch language, and even BASIC and Pas-
cal that can re-establish YOU as the verb-
hurler, and your microcomputer as the
box whose only thought between orders

is “By Your Command”!

Today’s Lesson: When The Standard Out-
put Isn’t QUITE Right!

Even a good programmer can’t antici-
pate everything that might be done with
the output they generate. And so it was
with Cathy’s softball statistics manager, a
program that converts scorebook entries
into box score lines for individual players.
Tables are generated for each game as
well as for the season to date, and to share
this information with our teammates,
Cathy would generally print a handful of
copies and pass them out at the next
game.

Well, you have to understand that this
is co-ed recreational slowpitch softball,
and we have players representing a wide
spectrum of talent, from zero to one, as a
programmer might say. This summer,
Coach informed Cathy that there were
some players who didn’t like their individ-
ual stats laid out there in black and white
for everyone to see. In fact, he would
prefer it if she could somehow change her
reporting scheme to generate tables for
each individual player, which could then
be handed out in relative privacy.

ers (and the occasional human) whe!t'to do Canyon Gountiy Coyotes vs Suspects
is a large part of how | earn my living; | Home -- Visitor
expect them to do what | ask and then 12 -- 2
come back for more orders. This, thenis |
the essence of operating a computer; tell- | |pira: 6-25-90
ing it what you want done, and awaiting | [Time: 6:00 p
delivery of results.
Player AB R H RBI 2B 3B HR BB K B.A On Base
What Do Programmers Know That The | [gonnie pattaball 3 0 o o 0o 0o 0 o o0 0 0
Rest Of The World Doesn’t? Jim Battaball 4 2 3 3 2 0o 0 0 0 750 1000
If this is computer operation (and if | [Joan Flyout 10 o0 o o ¢ o0 o0 O 0 0
you're reading this, you probably have a | |Dan Flyout : 2 0 S-S - . 2 xoen
Denise Homerhitter 1 0 0 0 0 0 0 o o 0 o
computer SOMEWHERE that you know | | pan mecannon x & 2 o o6 0 0 0 0 0
how to operate), what, then, is computer | |Nadean Mudslider 2 1 o o 06 0 6 0 o0 0 500
PROGRAMMING?' A working definition RiC; Mudslider o 0 0 c o o0 o 0 O o 0
: . P cathy O’Connor 3 0 2 1 0 0 0 1 o0 666 750
might be: Computer Programming is the | | ¢ ¥ 7 ConCn 2z 0 1 2 1 0 0 0 1 500 500
ar:/'sclence;'praf:tlce o_f hurl!ng verbs at a Lynn Singleslapper 101 1 o © o0 o0 1 o0 1000 1000
central processing unit until you get the | |John wellhitball i a3 iz 6 0 0 0 0 o0 666 666
desired results. There is a lot more in-
volved in pfofessmnal programming Fhat Figure 1
has to do with order and logic and insight
21

April 1991

If you're getting paid to develop soft-
ware, this is why you get the Requirements
List written in ink and signed in the pres-
ence of credible witnesses. But the request
seemed reasonable, so Cathy and | dis-
cussed alternative ways to do what he
wanted on the way home that night.

Generally, there are two approaches
to a request that comes after the program
is already written. You can either add an-
other subroutine to the program, or you
can massage the output the program now
generates into the desired format. This
“massaging” can further take the form of
another program, a long and involved ses-
sion with your favorite editing tool, or
perhaps a simple sequence of word pro-
cessing commands.

Sometimes if you lay the current print-
out against a sketch of the proposed out-
put, one of your options will jump right up
and take over your brain. Figure 1 shows
a sample table generated by the program
in its original form. (Some of the names of
my fellow Coyotes have been changed to
protect.you know the drill.) Note that
while Jim Battaball might not mind sharing
his good fortune with the rest of the world,
Denise Homerhitter might have second
thoughts. The way Coach *really* wanted
the table to look is listed in Figure 2.

Are you thinking what I'm thinking?
This problem virtually cries out for a pair
of safety scissors and a jar of white paste.
In fact, you could create everything the
coach asked for with a hardcopy printout
of all of the games played to date and a
little of that famous cut-andpaste technol-
ogy we learned in first grade.

If the cut-and-paste metaphor makes
sense, use it. Word processors can cut-
and-paste electronically, and most of them
can repeatedly execute a series of com-
mands, so we chose this option. Remem-
ber, there are several approaches to
solving problems like this, and you may be
led to try a different approach.

Can You Do It In WatchWord?
A sequence of word processing com-
mands stored in a file for repeated execu-

Jim Battaball
Oct 23, 1990

Team Name AB R H RBI 2B 3B HR BB K B.A On Base
Suspects 4 2 3 3 2 0 0 0 0 750 1000
TCCU 3 1 3 (4] 1 0 4] 0 (4] 1000 1000
Les Schwab 5 3 3 1 1 0 0 0] 600 1000
Brotherhood 3 2 3 2 0 1 0 1] 0 1000 1000
Big Tom's 4 1 1 1 1 0 0 0 0 250 250
Taxis Rangers 3 2 1 1 0 0 0 0 0 333 333
Scanners 0 o]] 0 1] o] b} o] 1] 0
Dirty Daves 4 1 2 4 1 1 0 0 0 500 500
Taxis Rangers 4 1 2 2 1 0 0 0 0 500 1000
Gould’'s Backers 3 2 2 3 1 0 0 0 0 666 666
Cumulative 33 14 20 17 a 2] o 0 606 757
Figure 2

game_1.80

game 2.90
Jim Battaball Jim Battaball game _3.90
Dan Flyout Dan_Flyout game_4.90
Denise Homerhitter game_5.90
Denise Homerhitter game _6.90
Dan McCannon DanﬁMcCannon game_?.go
Cathy O'Connor Cathy_0O’Connor game_B.90
Dick O‘Connor Dick_O‘Connor game_9.90
John Wellhitball John_Wellhitball game_10.90

Figure 3 Figure 4

tion is called a “macro.” My favorite word
processor, PC WatchWord Version 3, sup-
ports macros with a language that even
allows setting counters, comparing values,
and branching to different sections of a
macro based on the results of these com-
parisons. Anything you can do during a PC
WatchWord session can be done within a
macro, along with these extra capabilities
that are more often found in programming
languages. One nice thing about Watch-
Word is that Version 3 of Z-100 Watch-
Word is so similar to PC WatchWord that
the macro we developed will run on a
Z-100 with only four command changes!

At this point, | could point you to the
macro listing (Listing 1) and leave compre-
hension as An Exercise For The Reader.
Instead, let's learn a few things about
macro programming by building it one
section at a time.

First, we need to consider the thought
processes you would go through if you did

this job manually. You would look up the
first batter’s name, cut it out and paste it
on a sheet of paper. Then you would cut
out a heading line so that the numbers that
followed below made sense to the reader.
Next, you would snip out the opposing
team’s name and the corresponding line
of statistics for that player in that game and
paste them alongside each other. And
back to the next player’s name, and so on.
Your brain has a better pattern-recognition
sense than your microcomputer has, soit's
easy for you to see when you've finished
the job. The computer has to be taught
things like what “done” means, and where
the critical pieces of information are, and
how to handle the final results. If we break
down the chores to be done into single
commands, the computer can do the
work, and we make the design of the job
easier for ourselves.

One way to teach the computer who
the players are is to build a disk file listing

the name of every player who wants a

1990 Season (as of 8-14-1990) summary table printed. Since each

player’s results must be kept separate in

the form shown in Figure 2, we could store

Player AB R H RBI 28 3B HR BB K B.A On Base each table in a separate file. What to name

Bonnie Battaball 29 4 8 4 0o o0 0 1 2 275 300 these disk files? In our case, we can build

Jim Battaball 33 14 20 17 8 2 0 0 © 606 757 unique filenames using combmathns of

Joan Flyout 29 4 10 8 0 0 0 1 0 344 433 first and last names of the players without

gan . Flygut i ;"; i Z ; i g g é g 322 g;; much trouble. Figure 3 shows a file Cathy
enise Homerhitter -] . :

Dan McCannon 31 11 14 6 3 0 0 0 0 451 548 built for this purpose ca!led ROSTER‘.TXT'

Nadean Mudslider 28 9 9 3 0 0o 0 2 o0 321 400 Note that each player’s name is listed

Rick Mudslider 12 4 6 4 1 1 o0 0 o 500 583 exactly as it appears in the game summary

g? EEYOOéCOHHOI ;é 12 1: ; ; g g g 0 2:: ggg tables (Figure 1), followed by a version that

i¢ ‘Connor 1 4

Lynn Singleslapper 28 2 9 2 0o o o0 3 1 321 451 replaces ﬂ.'";"" . b;:h.veen ﬁrs(hand last

John Wellhitball 24 6 6 6 0 0 0 2 0 250 423 names with an underscore character.

e T T T T T T T T T T T T T T Names in the first column will be used as

search strings for WatchWord, while

Figure 5 names in the second column can be used

to build DOS file names (you can get into

22 April 1991

R

more trouble than it's worth trying to use
DOS file names with spaces embedded
within them). The filenames will be con-
structed with the first 8 characters of the
underscored name, and an arbitrary exten-
sion (we used .ST, to stand for STatistics).

Entering a header line (actually, two
lines consisting of abbreviations like AB, R,
H, RBI, etc. and a dashed separator line)
into the file we build for each player is
much faster if this information is stored in
a separate file that WatchWord can read
in when needed. Cathy created such a
two-liner, and called it PLAYER.SHL.

Now the computer knows who to look
for in the game summary tables, and
where to store the results of all games.
Each game summary table is already
stored in its own disk file, courtesy of the
original program. But how do we tell the
computer what the names of those files
are?

If you guessed “another list of names,”
you're thinking like a verbhurler! Figure 4
shows the contents of a simple file called
GAMEFILE.LST, which just lists the names
of the game summary files, one per line.
At this point, Cathy decided to make use
of another file built by the softball program
called LIFESTAT.TXT, which keeps a run-
ning total of batting statistics across all
games through the season. (A portion of
this file is listed in Figure 5.) By pulling out
the appropriate line from the last table in
this file, we can add the cumulative statis-
tics for each of our players without doing
any further arithmetic! Now with files
ROSTER.TXT and GAMEFILE.LST, the
games files themselves, PLAYER.SHL and
the LIFESTAT.TXT cumulative statistics file,
we finally have all of the props we’'ll need

for our production.
Part 1: Setting It All Up

Before starting, there are a few things
to clarify. The macro listing we’re working
with is the one for PC WatchWord, which
prints the PGUP sequence as an a-umlaut
(two dots above the ’a’), the GDN se-
quence as a division sign, the key as a
graphic that resembles a thin, backwards
‘u’, and the Shift-UpArrow and Shift-
DownArrow sequences as box-drawing
characters. If you see odd-looking symbols
like these in the listing, refer to nearby
comments, which follow semicolons.
Hereafter, when | refer to WatchWord, |
generally mean both the Z100 and PC
versions, However, the testing and timing
was all done using the PC version.

One thing that both flavors of Watch-
Word can do easily is work with two files
simultaneously, using a horizontally split
screen for easier viewing. WatchWord
also has variables (named @1, @2,
@3,.,@9) and parameters (named @A, @B,
@C,.@Z) that you can use to hold useful
items like file names and line counts. We
wrote this macro so that the user could
specify the name of the roster file and the
name of the games list file at execution

Listing

IR R AR AR RN R AT RAF R AR RTA NN R IMACTO DS MACE R R AR A A A R AR AN R R R A RN TR

e Macre Form : PS/roster filename/games list filename/ -
- String Values .
i * @1 -- Roster filename *
il @2 -- Filename containing the list of &
" game files. -
e @3 -- player name from the roster file X
il @4 -- player filename for saving the *
Al stat file to be created »
i @5 -- games list file. Contains the filenames -
i of games to be parsed into individual *
™ records. .
i Variables *
Hiy @h -- # of players counter. Obtained by setting L
™ @Z using the PARAM command. @Z is set to the *
Hid number of lines in the buffer. @A = @2 w
Hid @B -- counter to keep track of the number of *
i * completed. When @A = @B the main loop is *
i* finished. .
Fify @c line counter in stat file being created. L
i @ -- # of games counter. @Z is once again set *
o using the PARAM command after reading the »
i games list file. When @ = @Z all games .
;. information has been collected for the *
- current player. -
’t0itit.iiIﬁtt*Itit**'"tii&ttt‘Itttt'titi'IIt"QIQtit‘ttt‘t‘ttt‘t-i*'lt"

Opening Routine
;‘i‘tt"‘.‘Q'It‘Q-It!It‘l‘Qt‘!"IQt‘I‘ttt"k'!'t"'t'."'..*""*tt""'t'
SPLIT1

;read the roster file into the top buffer

READ @1

PARAM

SET A @2

SET B 0

JUMP i

AR R A R e el R A R e R R A AR A R R AR AR AR AR AR AR

Read Next Player Routine

P e e R R R R

EAD @1

;*W'W"ﬁ'*'*"b'*"*'t"*'*'."t"*"""""""l'*'*'*'*‘*'*'*I*.‘Q*'W"
; Build Table For_Current_Player Routine
-GUP move to TOP of file
DOWN @B
;get a player’'s name
ZONE 1 20
SET ZONE ARG 3
ZONECCPY 1
ZONE 25 32
;get a player’'s filename
SET ZONE ARG 4
;get the shell used to build the statistics textfile
READ PLAYER.SHL
FN @4 .5T

-GUP move to TOP of file
ipaste player's name and center it
PASTEOVERLAY
CEN
;paste current date and center it
OVERLAY DATE 1
CEN
;switch to the bottom buffer
SWITCH
SET C S
ijread the games list file
READ @2
PARAM
SET D O
JUMP h

P e R s
‘

: Read Gamefile Routine

A A AR I R R Rl A A e A e R A A A AR A AR AR ARttt itl ittt tll sl

-GUP move to TOP of file
DOWN @D

R e e e e R e R R R R]
v

: Extract Player_Stats Routine
:‘.fll“l'i‘ttttitit"tfit'tQt.i-t‘-ltt!'t‘t‘t‘!'.'tt't'ttt"'t‘tttﬁﬁ*'t*'
filename to obtain stats from this game for this player

ZONE 1 B8O

SET ZONE ARG 5

READ @5

;locate the plaver’s name in the game file

April 1991

23

L/@3y/

JUMPF e

;get the player’'s stats
GOCOL 22

- ; the SELECT command
GOCOL B0
COPY 1
;locate the opponent name by finding "ws"
-L/vs/

GOCOL 46

= ; the SELECT command
GOCOL BO

COPY 0

;switch to the top buffer

SWITCH

-GUP move to TOP of file
ADD C 1
DOWN @Cc
;paste the name of the opponent
PASTEOVERLAY 0
;The next two strange-looking commands do a Shift-UpArrow and
Sshift-DownArrow.
4

9

UpP 1

;paste the player’'s stats
GOCOL 22

PASTEOVERLAY 1

R e e e e e e e R S R R s
i

- Add_YearToDate_Stats Routine
;t'ttttt!'III'IIIIIII'IIIIiIIiI'ItIltIII'I.‘!llItb"'.‘l't'l.!"!'t'*"'tt
bottom buffer
SWITCH
ADD D 1
COMP @D @Z
JUMPN g
iwhen finished with the game files get the current cumulative stats
READ LIFESTAT.TXT
v H
-GDN move to BOTTOM of file
;locate the player's name, searching backwards through the mcst
jrecent season stats entry
L/@3/
JUMPF]
;put stats into the paste buffer
GOCOL 22
= ; the SELECT command
GOCOL 76
COPY O
;switch to the top buffer
SWITCH

-GUP move to TCP of file

ADD C 1
DOWN @&C

;Do a shift-UpArrow to enter screen mode in order to add "Cumulative®.
;The following Shift-DownArrow returns to command mode.
4
Cumulative
9
up 1

ipaste stats
GOCOL 22
PASTEOVERLAY 0

;adjust the last two columns to align with the rest of the stats
GOCOL 60
E ; the SELECT command
GOCOL 75
COPY 1

jcopy selected text into paste buffer 1
GOCOL 61
PASTEOVERLAY

;switch to the bottem buffer
SWITCH

AR R R R R R R R R R R R R R R RS R R SRR R AR R R R R R R R R R R R RS R R R R R R R R R R R R R
: Finish Player File Routine

P
’

time for greater flexibility. For example, |
start this macro from within WatchWord

with the command
MACRO
PS.MAC/ROSTER.TXT/GAMEFILE.LST

WatchWord’s use of labels (@a, @b,
@c,.,@z) adds further flexibility by allowing
the computer to branch, or “jump” to a
different section of the macro file and
continue working. Note that our finished
macro has seven labelled sections; let's

see what they do.
Section 1: Opening Routine

The first thing we do is command
WatchWord to split the screen so we can
work on two files at the same time later
on. This isn’t strictly necessary, but it be-
comes helpful if you want to watch the
macro execute during the “debugging”
phase. Then the first file named on the
macro execution call is read into Watch-
Word; this happens to be the ROSTER.TXT
file. The PARAM command does several
useful things; for now, we make use of the
fact that it counts the number of lines in
the current (ROSTER.TXT) file, and stores
that number in the variable @Z. We can
use this number as a counter by storing it
in a parameter like @A, so this is what the

SET command does.
Section 2: Read Next Player Routine

The main “loop,” or sequence of re-
peated instructions, begins here. The @f
label gives us a target for subsequent
JUMP commands that will cycle through
this loop again. The only action of this
routine is to read the first of the files
specified when you started the macro into
WatchWord.

Note that there were certain things we
only wanted to do once in this macro, such
as setting variables A and B. This is the
purpose of Opening Routines. Since we
read the ROSTER.TXT file into Watch-
Word at the start in order to set these
variables, we can skip the
Read_Next_Player routine the first time
through with a JUMP i command and save
a little time.

Part 2: Creating A Player File
Section 3:
Build Table For Current_Player
Routine

Each time WatchWord runs this sec-
tion, a new file will be built for the current
player. We start by using the GUP com-
mand to move to the top of the file. The
parameter @B holds the number of lines
we have to move down to reach the name
of the next player to summarize; initially
this is zero. We set a zone from columns
1 to 20, define @3 as the name of the
variable that will be filled with the next
zonecopy command, and then place the
contents of columns 1-20 (the player’s first

top buffer
SWITCH and last names) into @3. Similarly, the
SAVE contents of columns 25-32 (first 8 columns
;Egegklthc aumber of players done of the player’s firstname_lastname) are
COMP @A @B stored in variable @4. WatchWord then
JUMPN £ reads in the header information, names
NOSPLIT _ the current working file with @4 as
24 April 1991

-GUP move to TOF of file
iclear the screen
DEL *
;empty the paste buffers used
EMPTY 0
EMPTY 1
;signal the end of the macro,
RING

leave macro and quit Watchword

EXITS/Finished with Print Stats job successfully!/

filename and ST as extension, pastes in the
player name at the top, centers it, adds a
centered date below it, and switches to
the lower file buffer to read in the GAMEF-
ILE.LST file. PARAM is used to set @Z to
the number of lines in this file, which is
simply the number of games played to

date.
Section 4: Read_Gamefile Routine

An inner loop begins here, where the
game summary table for each game is
checked, and all statistics for the current
player are copied out into the growing
player file. The GAMEFILE.LST file is read
in, WatchWord moves to the top of the
file, then down “@D” lines to reach the line
containing the name of the next game
summary file. Initially, GAMEFILE.LST has
already been read and @D set to zero, so
this routine will be skipped.

Section 5:
Extract_Player Stats_Routine

First, the current file name is read into
variable @5, and then the file itself is read
in, displacing the GAMEFILE.LST informa-
tion. The Locate command uses the con-
tents of variable @3 (set to the current
player’s name) to look for a line of batting
stats for this player in this game. If the
search fails, the JUMPF command drops
control down to the next section, where
we begin the Are We Done Yet? tests.
Otherwise, the stats from columns 22

through 80 are placed in buffer number 1
using the GOCOL, SELECT, and COPY
commands. A reverse Locate finds the
opposing team name on the line with 'vs’
(versus) on it, and places that name in
buffer 0.

Then we switch back to the player file
under construction, increment the line
counter @C, move down that many lines
from the top, and paste in the opposing
team name. In order to append the stats
themselves, WatchWord requires that a
blank line be created in the file, which can
be done by moving from Command mode
into Screen Mode and back again. (The PC
WatchWord commands for this are Shift-
UpArrow and ShiftDownArrow.) The stats
are then pasted in, and a new line has been
added to this player’s file.

Section 6:
Add_YearToDate_Stats_Routine

At this point, we need to check if there
are any more game files to read. The
number we've read so far, @D, is incre-
mented and compared with @Z, the num-
ber of lines in GAMEFILE.LST. Until these
numbers are equal, control will shift back
to Section 4, where the name of the next
game file is obtained, and the search for
statistics repeats.

When all game files have been
searched, the LIFESTAT.TXT file is
searched from bottom to top t6 find the

most recent entry for the current player,
and this line is copied into the player file
through another series of GOCOL, SE-
LECT, COPY, SWITCH and PASTE com-
mands. The word “Cumulative” is used
instead of an opposing team name, the
columns are aligned, and the player file

now looks just like Figure 2.
Part 3: The End Game
Section 7: Finish_ Player_ Routine

We're done with that player; are there
still others to build tables for? In this sec-
tion, the player file is saved, the number
done so far (@B) is incremented, and com-
pared to @A, which was set to the number
of lines in the roster file during setup. If
there are more players to do, control shifts
back to Section 2, where the next player’s
name is read, and the loop begins again.

Once all players have their summary
tables built, the only chore left is to do a
little screen and buffer cleanup, and to
signal the waiting user to put down the
REMark magazine and prepare to print out
the files.

On our 12 MHz Zenith Z248, it takes
PC WatchWord about 2.5 minutes to run
this macro for seven players and ten soft-
ball games. There are any number of ways
to write a utility to do this faster. But the
purpose of this exercise was to see what
could be done just using a word processor.
It's not “language” programming in the
strictest sense, but macro programming is
a powerful way for any user who can plow
through a manual to start ordering their
computer around.

Are you “in command” yet? What are
you waiting for???

NEXT TIME: something for BASIC lov-
ers, and others who can type! 3

April 1991

25

Robert D. Miller
860 Isis Court
Reno, NV 89512

There have been many articles published
in computer magazines about the damage
to computer data from power line surges.
There has been very little written about the
damaging effects of Electro Static Discharge
or ESD.

In my job as Quality Engineer, one of my
main responsibilities is to create and main-
tain the company Quality Control proce-
dures. After spending many hours on one
procedure (about 30 pages long), | deliv-
ered the diskette to the document control
administrator. He reached up to take the
disk from me and ZAP there was a static
discharge. A shock so great that we both
jumped.

| decided to check to see if any data was
lost, | found the diskette could not be
accessed or even formatted. The diskette

was completely damaged. Fortunately this Walking across.VinV’ floor 35,000 1,500carpet
o Walking over vinyl floor 12,000 250
was a copy of the procedure, the original Workar at banch 6.000 100
was still on my computers hard drive. Common bl nt bag picked 2:3 000 1200
The electronics industry has been plagued up frr‘o}:nat:e:schag pic ’ ’
with ESD since 1960. One aircraft com- Work chak padded with 18,000 1,500

pany, Douglas Aircraft Corporation, be-
came aware of ESD when replacing some
of their vacuum tube avionics systems with
the latest solid state (transistor) technol-
ogy. Although the new systems were di-
rect replacements, there were four times
the number of soft failures or failures that
do not reoccur during retest.

Through extensive research, their engi-
neers discovered that static electricity was
the cause of these problems. They found
there were a number of causes for the
generation of static. If a person walks across
a carpet and touches a door knob, they
can generate as much as 40,000 volts of
static electricity (Table 1). To develop a
charge that big will occur when the humid-
ity is low (10-20%), but the charge will be
only about 1,000 volts with 65-90% hu-
midity.

An electrostatic charge is a build up of
static electricity from a process called the
triboelectric effect. The triboelectric effect
is the rubbing of two dissimilar materials
and rapidly separating them. A good ex-
ample as above, is just walking across the

carpet. Another example is lifting a plastic
bag off of the work bench.

An electrostatic charge is energy at rest,
but is released when you touch a conduc-
tive object like a metal door knob (orin my
case, even a computer diskette). That ZAP
we received when passing the diskette had
to be a healthy 20 to 30 thousand volts to
arc thru the plastic disk folder and damage
the floppy diskette inside.

Table 1 shows the various conditions that
will create static build up on your body.

No More Data!

tors. This makes the integrated circuit sen-
sitive to even lower voltages.

When a charge of 3 to 4 thousand volts
is required before you can even feel the
spark, a transistor or |C usually fails com-
pletely. The real fun comes when there is
an arc that cannot be seen or felt and is
presented to that new batch of RAM chips
that was just added during your computer
memory expansion. The IC is only partially
damaged (wounded), it still works, but is
not fully functional.

Means of Static
Generation

polyurethane foam

Table 1
Typical Electrostatic Voltages

Electrostatic Voltages
10-20%
Relative Humidity

65-90%

Further research revealed that a person
just begins to feel the sensation of the dis-
charge when the voltage reaches 3,500
volts. A visible arc can be seen at about
4,000 volts with the corresponding crack
at about 4,500 to 5,000 volts.

Another hazard with ESD and computers
are the effects on the electronic compo-
nents themselves. Primarily the integrated
circuits. An Electrostatic Discharge will
cause such an arc, in a brief moment of
time, one milli-second (one thousandth of
a millionth of a second) that a tremendous
amount of heat is generated (as much as
1600 degrees Fahrenheit). That kind of
temperature will vaporize a transistor junc-
tion or integrated circuit. Many transistors
only require a hundred volts or less to be
completely destroyed.

Only a few years ago, an integrated
circuit contained only a hundred or so
transistors, but today integrated circuits
like the microprocessor in your new 80386
computer will contain thousands of transis-

| have built a number of kits over the
years and have seen very little information
regarding the precautions of ESD. The in-
structions only talk about not touching the
transistor or integrated circuit leads. An-
other precaution tells you to touch the
chassis of the computer before handling
the devices, or removing them from their
static dissipative containers.

The problem with only touching the chas-
sis is, if you let go, you can build a new
charge of up to 6000 volts by moving
around at your work bench (refer to Table
1). Now when you get up to answer the
phone, forget to touch the chassis again,
set the device on something conductive,
ZAP you damaged the device.

Below are some quotations from com-
puter manuals that | have in my library. The
information pertains to the upgrading the
computer by adding an integrated circuit
or accessory circuit board.

“CAUTION: Some integrated cir-
cuits are electrostatic sensitive and

26

April 1991

can be damaged by static electricity
if they are handled improperly. Once
you remove a circuit board from its
protective packaging or the com-
puter, do not handle the board un-
necessarily.”

“CAUTION: Some integrated circuits are
electrostatic sensitive and can be dam-
aged by static electricity if they are handled
improperly. Once you remove the IC from
its protective packaging, do notlayitdown
orletgo of ituntil itis installed in the board.
When you bend the leads of the IC, hold
the IC in one hand and place your other
hand on the work surface before you
touch the IC to the work surface. This will
equalize the static electricty between the
work surface, you and the IC.”

If you decide to add a plug in hard drive
or an extended RAM board to your com-
puter more problems can occur. Several
components can be damaged by careless
handling. Some people believe that if you
handle a circuit board by the edges and
have the charge on your body equal the
charge on the circuit board, the compo-
nents won't be damaged.

The problem is the board has roughly the
same charge as your body and if you set
the board down on the metal cover of your
computer, the charge dissipates from the
board to the conductive computer top,
destroying some chips along the way.

Table 2 shows the ESD sensitivity of vari-
ous semiconductor components found in
your computer.

charges will be drained off and new charges
will not build-up.

2. Once components are mounted on a
PC board, they are safe from static dam-
dage.

WRONG. The chance of damage is even
greater because the board component
interconnections (traces) act to funnel the
charge directly to the device. Itis very hard
to handle a circuit board and not touch
leads or circuit traces.

3. Only circuit boards with CMOS de-
vices require static protection.

WRONG. Most PC boards manufactured
today have half of their devices of the
CMOS variety or have greater sensitivity
than CMOS.

4. You must actually touch the PC board
or component to cause static damage.

WRONG. Simply exposing acomponent
to the electric field surrounding a charged
object (styrofoam cup or plastic bag) will
cause a break down of the dielectric layer
inside. This will occur without actual con-
tact taking place.

5. PC boards that test “good” after im-
proper handling have not been damaged.

WRONG. There is documented proof
that the devices may only be weakened,
causing premature failure or erratic opera-
tion.

6. Shipping and storing PC boards in pink
antistatic polyethylene provides complete
and effective static protection.

WRONCG. Boards contained in “pink poly”
only prevents static buildup. Components

Table 2
Semiconductor Static Sensitivity
Device Type ESD
Sensitivity Range (Volts)
VMOS 30-1800
MOSFET 100-200
GaAsFET 100-300
EPROM 100-
JFET 140-7000
SAW 150-500
OP-AMP 190-2500
CMOS (input protected) 250-3000
Schottky Diodes 300-2500
Film Resistors (thickThin) 300-3000
Bipolar Transistors 380-7000
ECL (P.C. Board Level) 500
SCR 680-1000
Schottky TTL 1000-2500

I would like to repeat the “10 Myths of
Static Damage” [10] here because | think
they are very important to the servicing
and use of your desk top computer:

1. Touching the equipment frame to
ground yourself is an adequate static-safe
procedure.

WRONG. This will quickly drain the ex-
isting static charge but fails to prevent re-
generation. Even simple body movements
can build up enough charge to damage
sensitive components. Only by wearing a
grounded wrist strap can you ensure the

can still be “Zapped” by a charge from .

someone without a grounded wrist strap.
The bag mustalso have a metallic shield im-
pregnated in to the plastic.

7. Only electronic equipment located in
a carpeted area requires static protection.

WRONG. Static charges from just walk-
ing on a vinyl floor can build sufficiently to
damage many semiconductor components,

8. If you keep the humidity high enough
around the equipment static will be elimi-
nated.

WRONG. Static charges aren’t as high

but they are still dangerous. Besides air-
conditioning usually reduces the humidity
in many environments.

9. Topical antistats (sprays, wipes, etc.)
are all the protection necessary.

WRONG. Topical antistats are tempo-
rary and become less effective with lower
humidity. They provide no shielding pro-
tection.

The last myth pertains to field service
technicians.

10. Technicians will refuse to wear wrist
straps or use static precautions.

WRONG. With proper training, techni-
cians realize how static precautions can
reduce their work load with a reduction in
“NPF” reports (No Problem Found).

To reduce the possibility of losing data
on your diskettes or damage to your com-
puter, there are several companies that
make anti static products to help protect
your work station.

One product is an anti-static strip (fig. 1)
that attaches to your keyboard. The con-
ductive strip has a wire with a metal ground
lug on the end. The lug is attached to
ground at the wall power receptacle with
the screw that holds the cover on.

If you touch the strip when you sit down
at your computer, any static charge that is
built up on your body will be safely di-
rected away to ground. Now when you
handle your diskettes there is less chance
of damaging the data with static. Some of
the older computers could even be dam-
aged from static conducted through the
keyboard.

Another device available for discharging
static at the computer workstation is an
anti-static pad (fig. 2) that the computer sits
on and is attached to ground. There is a
small box (fig. 3) that sits next to the
keyboard and “lights up” when you touch
the test point, to show you that the charge
has been safely dissipated.

If you are going to upgrade your com-
puter with a RAM board, new RAM chips,
amath co-processor chip, anew hard drive
or whatever, extra precautions are required
here too. Several companies offer a con-
ductive wrist strap (fig. 4) that is attached
to ground, at the receptacle cover screw.
There is a receptacle test adapter (fig. 5)
with three lights that show the receptacle
is wired correctly. The test adapter also has
a ground jack that the wrist strap wire plugs
into.

When you are wearing the wrist strap,
you can move around your work bench,
remove the RAM chips (or any other elec-
tronic component or accessary) from its
static safe container and safely install itinto
your computer. Even better is the addi-
tional use of a static dissipative bench pad
(fig. 6,7) that is also connected to ground.

When you place a static dissipative con-
tainer holding the ICs or circuit board on
the pad, it will dissipate any charge thathas
built up. Now you can safely remove the

April 1991

27

ICs and place them on the pad until you
plug them into the board. Don‘t forget
your wrist strap.

The environment around your working
area is just as important in eliminating
static. Styrofoam cups, plastic bags, vinyl
chair covers as well as the kind of clothing
you wear should be carefully controlled.

If you have transistors or integrated cir-
cuits that must be soldered in place, an-
other source of ESD is the soldering iron.
The soldering iron (fig. 8) must have less
than two (2) ohms resistance between the
tip of the iron and the ground wire on the
power cord. The iron must not have more
than two (2) millivolts rms from the tip to
ground. Any iron that meets DOD-STD-
2000 or MIL-STD-2000 (as indicated on
the soldering iron brouchure) are safe for
ESD sensitive components.

If you are going to de-solder the devices
from a printed circuit board and you use a
Soldapullt (that is how it is spelled) by
Edsyn, (fig. 9) be sure you only use the
“Silverstat” static conductive version.

So for a safe work environment when
using your computer, have at least a
grounded ESD strip attached to your
keyboard. Then touch the strip before
touching your keyboard or handling your

floppy discs. When upgrading your com-
puter with RAM chips, clock chips, CPU
chips, hard drives or whatever, wear a
conductive wrist strap.

Remove the devices from their conduc-
tive containers, then plug them in to their
sockets. Or better yet use an antistatic pad
as well as a wrist strap.

These static dissipative items are not ex-
pensive when you consider the frustration
of intermittent problems with the opera-
tion of your computer, or damaged disk-
ette. | consider it good hardware insur-
ance. | consider the wrist strap to be a
minimum precaution.

References

D.E.Frank, “SOFT FAILURES-THE INVISIBLE
MODE,” Annual Reliability and Main-
tainability Symposium, March 1983.

D.E.Frank, “ESD CONSIDERATIONS FOR
ELECTRONIC MANUFACTURING,”
McDonnel Douglas Corporation, An-
nual Reliability and Maintainability
Symposium, January 1982.

J.R.Huntsman, "ELECTRIC FIELDS, STATIC
DAMAGE, and SHIELDING;” Static Con-
trol Systems/3M,225-4S, 3M Center, St.
Paul, MN 55144

D.Yenni, “BASIC ELECTRICAL CONSIDERA-

TIONS IN THE DESICN OF A STATIC-
SAFE WORK ENVIRONMENT,” Nepcon
West, 1979.

D. Gleeson & B. Russeth, “10 MYTHS OF
STATIC DAMAGE,” Static Control Sys-
tems/3M,225-4S, 3M Center, St. Paul,
MN. 55144

Suppliers

RADIO SHACK

500 One Tandy Center
Fort Worth, TX 76102

HUB Material Company
33 Springdale Avenue
Canton, MA 020201.

Technitool
Box 368
Plymouth Meeting, PA 19462

MISCO
One Misco Plaza
Holmdel, N) 07733

GLOBAL Computer Supplies
2318 East Del Almo Blvd., Dept. 97
Compton, CA 90220 %

W S Electronics

(513) 376-4348

*kokkk KKKk

Since 1975

(513) 427-0287

1106 State Route 380, Xenia, Ohio 45385

g ENABLE 2.0

YOU AND
‘!OUR BIG 1IDEAS.

* 300 cps draft speed
* Wide carriage

— * 24 pin printing
* Front panel controls

ALPS Allegro 500XT™
SPECIAL

EMS Kit for 2-159

H D Controller 2-248
H D Controller Z2-150
Swivel Base for 1490
Diagnostics for 184
Word Processing

2-315
Z2-417
2-317
2CM-1400-1
CB-4364-39

Quantities limited to stock on hand

THE ALPS ASPI6CO0 PRINTER.
COSTS VERY UTTLE,
.IAMS NOT AT ALL.

=Auio tear bar prevents paper wasle.

With the flick of a button, your (anfold

paper advances to the periorativn, then

automaticaily returns 1o Wp-oHorm

position.

«Rugged 9-pin head delivers crisp

output 3 192 cys in draft mode. 28 cos

i lefler quality,

*Compact 3-1b. body makes for easy
iity.

*Printer stand is buaitsin.

*Prints labels easily.

»Full Epson FX-85 companbility.

ATTENTION:

Federal Government Offices
We stock ALL ALPS Printer Models and we stock
ALPS PARTS and RIBBONS for all ALPS models
including your P2000’s and ASP-1000's

AMERICA
Built by popular demand.

““GOVE RNMENT DISCOUNTS OFFERED****

e are 1onk:n? for good dealers.
ALPS Authorlzed Disfributdr and Service Center

Reader Service #149

April 1991

Getting Started Witk . . .

Alan R. Neibauer

11138 Hendrix Street
Philadelphia, PA 19116

Mﬂ/’m N\/\/\/W\,@W
Instant Recall (1.2)

V\/\f\NQMW/\/\/\/\WNww

Personal Information Managers, or PIM’s,
are designed to organize your work. They
keep track of tasks you and others have to
perform, your schedule of activities, and
people you work with.

Unfortunately, for all of their value, PIM’s
have not taken the software world by
storm. Perhaps the problem is the targeted
audiences. Those managers who could
most benefit from using a PIM are not the
most likely to be using a computer daily.

After all, using a PIM requires logging of
meetings, activities, and people every day,
so some amount of time must be spent at
the keyboard entering data. If you do not
want to spend that time on the computer,
then a PIM will be of limited use. However,
if you are already using your computer
daily, a PIM can be an excellent manage-
ment tool. And if you have a complex
schedule, it is worth your while to get to
the keyboard a few minutes each day to

project, then include it in my monthly
invoice.

There are programs designed specifically
for client billing. However, by using a PIM
I have all of the other benefits that this class
of software provides. With Instant Recall,
this includes, for example, a clipboard for
copying text from one application to an-
other, a task and schedule manager, and a
telephone-book with a dialer. The tele-
phone book even allows me to copy names
and addresses directly into my word proc-
essor for addressing letters and envelopes.

Before showing how Instant Recall can
be used for billing, let's look at Instant
Recallin general. It offers all of the features
you would expect from a DOS:based PIM.
As a TSR program, it can be popped up
from within any application, even from
within Windows 3.0, making it easy to
manage your schedule while you are work-
ing on your computer.

Interacting with Instant Recall

The class of information stored by Instant
Recall is called a view. Each view let’s you
see information in a certain perspective.
Figure 1 shows the main Instant Recall
screen in the overview mode. This displays
the current day’s schedule on the left and
any special reminders on the right.

The menu bar along the top of the screen
shows the basic categories of operations
that you can perform.

View lets you select the type of informa-
tion you want to display — notes, tasks,
appointments, people, schedules, or files.
Instant Recall provides two additional view
types, Global and Open Time. Global, as
seein Figure 2, shows all of the information
in the database sorted by time. Using the
global view, you can quickly see how the
various types of information relate. The
Open Time view, as shown in Figure 3,
graphically displays your schedule for the

use the PIM, even if you use the computer
for little else.
!) . . , Database - MAIN Instant Recall Fri-Mar 15 18;3{am
In my article Getting Starting with PIM’s + Ui) A9
(Remark, January 1991) | discussed PIM’s LT Vam pocuss Tuntions Mﬂﬂ' Hely =_ﬂ|.llt
in general using two examples to illustrate Schedule Information For Fri-Map 15 Reminders
their functions — IBM’s Current which runs s .
under Windows, and Primetime Personal, 9 9%2:?;}.‘23?%% Xohl regarding new
a DOS application. In this article, we’ll client
focus on Instant Recall, a PIM from Chronok 11;08am-12: 30pm
ogic Corporation, to see how it can be iz’,-‘g'gl“#g'zt?i I‘;nwall proposal
used to keep track of time for consultants, l:.ungh wi thPGr‘enmalk
lawyers, and others who bill clients based
on time spent on projects.
In my own business, for example, | must
keep track of each block of time | spend
programming or writing, each related
phone call, and each visit. If | forget to log
an item | probably won't include it in my
bill.
Since | spend a great deal of time at the
computer, | can keep track of my activities - -
using Instant Recall, or another PIM. | log View: Overvieu Fi 1
each call, each section of time | work on a igure
April 1991 29

Rlaéa?aﬁe-usmm Rccess runctiangloml-lelp Quit Tri-far 15 18:3tan
Date Description Type Category
3 Fri-Mar 15 Meeting with Kohl regarding new client Schedule None
Complete Grenwalk proposal Schedule Grenwalk
Lunch with Grenwalk Schedule Grenwalk
Tue-Mar 19 Rolland Grenwalké People Grenwalk
Monthly WP training Task Grenwalk
Thu-Mar 28 Install Q&4A application Task Chesin
Thu=-Apr 11 Mellon Financial Corporationt People None
None Adam Chesiné People Chesin
Gail Goldsmith People None
—D—l-eEJPgD?;ml‘?T:e (Pglp) Previous (Isc) Exit —
Figure 2

day, explicitly listing periods of open time.

Access lets you select specific types of
information, such as data relating to a spe-
cific individual, priority, or key phrase.

Functions include actions that you can
perform on the database, such as adding,
modifying, or deleting information.

Setup is used to change the display and
system characteristics, enter passwords,
and modify the hot key used to call up
Instant Recall.

Calendar allows you to change the date
and select other days for review.

Instant Recall works with both a mouse
and keyboard. If you are using the key-
board, you access the menu bar using ALT
key combinations, such as Alt-V to pull
down the Views menu. Once a menu is
displayed, you can press the arrow keys to
move from menu to menu, or ESC to return
to the displayed function.

Fortunately, Instant Recall is designed so
you can avoid clumsy key combinations to

view. You can select to print details on a
single entry, multiple entries, or all of the
entries in the view. Output can be sent to
either the printer or a disk file. Instant Recall
prints all reports as ASClII text, there are no
installable printer drivers to take advantage
of special fonts or other printer features.

When data about a person is displayed,
you can also press U to use the phone
dialer, or L to print mailing labels from the
address information.

The mailing label function lets you print
labels, or send the address information to
the clipboard or directly to the keyboard in
the program running when you popped up
Instant Recall. (You'll learn about the clip-
board later.)

For example, suppose you use Instant
Recall to maintain your mailing list but you
want to use WordPerfect to generate a
letter. Instead of typing the address in the
letter, start WordPerfect, then pop up In-
stant Recall and display address informa-

tion by pressing Shift-Ctrl P, for the people
view. Figure 4 shows how the people view
appears. Select the address you want then
press L (for Labels), Enter, then F1, which
selects keyboard destination. WordPerfect
pops back to the screen and the selected
address appears character by character
just as if you were typing it yourself.

The Clipboard

Instant Recall’s clipboard is designed to
transfer text from one application to an-
other, or to and from ASCII files on disk.
While it is part of the program, it can be
called up independently, without actually
popping up the PIM itself. | often find
myself using the clipboard almost as a
separate application, during computing
sessions when | do not use the rest of
Install Recall at all. Once Instant Recall is
loaded into memory, and from within it,
another application, or at the DOS level,
press Shift-Ctrl-C to pop-up the clipboard
menu with five options.

The clip from screen option allows you
to copy displayed text to the clipboard’s
memory. You move the cursor to one end
of the block you want to copy, press Alt-M
to mark the start, move the cursor to the
end of the block, and press Enter to save
the text the clipboard. You can select
either line or rectangle modes. You can
only mark text if it appears on the screen,
you cannot scroll the selection. If you want
to transfer more text than appears, use the
Report function.

Append to clipboard operates the same,
except it adds the marked text to any
existing contents.

Paste from clipboardinserts the contents
of the clipboard at the location of the
Ccursor.

File to clipboard inserts the contents of a
disk file into the clipboard.

Write clipboard to file saves the clip-
board to an ASCII text file.

perform mostfunctions. When you are not
actually entering data, single keystrokes Database - M Open Time - lWeek Of Mar {5 Fri-Mar 15 10:31am
are used to initiate operations. For ex- Alt + Views fAccess Functions Setup Calendar Help Quit
ample, from the overview mode, you can R T T | PR S T
quickly change to the people view by pr?a 6o 3—-te-ii 12?;—,_—-2._-9.-:&._:&5::9 SUMO TU KE TH F{I 8% ﬁﬁh
pressing P, or change databases by enter- Sa 34567839
ing F for files. This process lets you perform Su- 10 11 12 13 14 15 16 |4 Day »
many functions faster with the keyboard ?‘-‘ 17 18 19 20 21 22 23 |4 Nk »
than with the mouse. UL‘ %‘l* 23 26 27 28 29 38 1 #"‘ :
Suppose, for instance, that you are using LTh F1) Select Entries ’
WordPerfect and want to add an appoint- it M
ment to the schedule. You would press 9:00am-18: 30am
Shift-Ctrl to call up Instant Recall, then S A L‘f?g;ng with Xoh! regarding new
(for Schedule view, then Add) or A S (for 1
Add Schedule). Either combination will im- {030 Jpen T - 30 Mias
mediately display the form for adding an Co mplete Grenml'l Imﬁosal
appointment. i%' Bpn "gpm 1ns
In most views, the keystroke functions 4
are consistent. A always des, M modifies, Lunc}l with Grenualk
and D deletes. Use Z to zoom in, or display
the details on a particularitem, or) to jump p— -
to a different date. View: Open Time Figure 3
R prints a report based on the current
30 April 1991

Use the label function and the clipboard
to transfer all of the addresses into WordPer-
fect for a mass mailing. In the people view,
press L F2 F2 to transfer all of the addresses
via the clipboard. Paste the clipboard into
WordPerfect, then create and use a macro
that adds the necessary merge codes.

Password Protection

When you install Instant Recall, the de-
fault database called Main is automatically
created. You can store all of your informa-
tion in Main, or you can create additional
databases.If you store information in a file
other then MAIN, you have to tell Instant
Recall to use that database before you can
access the data.

Databases are independent from each
other, so you can password protect sensi-
tive information in one file, while leaving
another open for general access. Once
you add a password to a file, via the Setup
option, Instant Recall requests the pass-
word before a database can be accessed.

Unlike some database programs, which
allow various levels of password protec-
tion, Instant Recall’s locks the entire data-
base. A program called DECODE is sup-
plied that will reset, or remove, the pass-
word. You do not need to know the pass-
word to remove it with DECODE, it is
mainly a safety feature in the event you
forget it.

Anyone with access to the DECODE
program can remove the password. But
since DECODE is not copied to the work-
ing disk when you install Instant Recall, the
offender would need an original distribu-
tion disk. This means that your password
won't be of any use if someone has a
strong desire to get at your data. They just
have to purchase their own copy of Instant
Recall and run the DECODE program on
their own disk.

Still, the password scheme offers some
security against the casual user who might

have access to your system.

Categories

If you want the convenience of storing
data about various clients in one file, you
can create categories.

You create categories using the Setup
function to establish groups to which enti-
ties are related. Instead of using a separate
file for each client, for instance, you can
create a category for each and maintain all
of your information on one database.

When you insert a person, task, appoint-
ment, or other element in the database,
you assign it to one of your categories. By
selecting the category option in the access
menu, you can then limit the items dis-
playedin any view to those associated with
a specific category.

Categories are useful even when you
create a separate database for each client.
Use categories to separate items into the
different projects for the same client, or for
tracking types of billing activity. You might
have distinct categories for recording phone
conversations, on-site visits, off-site visits,
and other types of activities which you bill
at different rates or reporting intervals.

Text Entry

The notes view provides a word process-
ingike function for text entries up to 65,000
characters per note. Notes can be con-
nected to other database entries through
links with the person the note relates to (in
the people view) and the category to which
it is assigned.

Like all Instant Recall elements, the note
can also include an advance notice and
alarm time entry. These are used to alert
you that an activity or key time is approach-
ing.

You can display notes using any of the
methods on the access pull down menu,
but the key phrase feature is particularly
useful. Key phrase access lets you select

Database - MAIN Peopl i- !
ATE s Vlows Acosss Functions ” elp quit o TerdS 10:34am
Name Telephone Category
e B o
Philadelphia, PA 19111+ ST
Goldsmith, Gail
3875 3ith Stpeet flane flone
cean (ity, NJ 88176 -
Grenwalk, Rolland £@9-222-6452: Voice Grenwalk
st Avenue pB9-222- !
Margate, NJ 830604 L
Mellon {Enan?ia}lijgrporatinn 764-4758 None
ncoln Hi
Rosemont, PA 191 Z'fag
— (PgDn} Mo
Uieu:g Etandzid Cacy B ==
Figure 4

notes, or any other element, by searching
for a text string. The search string can even
include the and, or, and not boolean op-
erators.

You can enter text directly into the note
view, or import it from a word processing
file via the clipboard — just make sure the
file is in ASCII format. To import a file,
display the Note Add screen, then press
Shift-Ctrl C to display the clipboard op-
tions. Select File to clipboard, and enter
the file name that you want to copy into
the clipboard. Then, press Shift-Ctr-C again
and select Paste from clipboard to insert
the text into the note.

To transfer a note to a word processor,
select the note in note view and use the
Reportfunction to write the note to a file or

keyboard.

Tracking Time

Now that you've have an overview of
Instant Recall, let’s take a closer look at
using it to keep track of your time for
billing. We'll do this by looking at Instant
Recall’s quick timer view, which allows
you to maintain information about time
spent on an activity.

Rather than discuss quick timer function
by function, let’s see how it can be used.

Suppose you’re working at your com-
puter and a client calls on the phone for in-
formation. You would press Shift-Ctrl to
pop up Instant Recall, then A Q, for Add
Quick timer, to display the screen shown
in Figure 5. Notice that the current date
and time appear at the Start prompt.

As you speak, you can enter a descrip-
tion or jot down notes about the client and
the purpose of the call. When you hang up,
press Ctrl-Enter to record the description
and automatically insert the length of the
call at the Elapsed Time prompt. With the
call logged into the database, you can
easily recall it a the end of the month to
include the time in your invoice.

If you want, you can manually change
the start date and time, and the elapsed
time. This way you can record into the
database periods of activity that you spent
away from the computer.

The other prompts in the view provide
for optional functions. For example, use
alarm time to limit the time you spend on
the current activity. After entering the
description, insert the number of minutes
or hours you want to spend on the activity
at the alarm time prompt. Install Recall will
beep and display a warning message when
the time expires. | use this often when
making long distance phone calls, and for
limiting the amount of time | spend on non-
productive calls. The beep soundingin the
background provides a perfect excuse to
get off of the phone.

Pop Up Timer
Of course, if you are very busy, you
might not have time to complete the quick

April 1991

31

Database - MAIN Quick Timer - Add Fri-Mar 15 10:34am
ASK.
DESCRI PTION EE%EET
Unspecified. None
START ELAPSED RDVANCE ALARM
PRI DATE & TIME TIME NOTICE TI
No Mar {5 1%:343m en No ﬁnr‘II %ﬂ?r ﬁg;lEGORY
DESCRIPTION

(Alt-Z) Zoom — (Ctrl-Enter) Save — (Esc) Ixit —

Figure 5

W

when you find yourself quickly moving
from one project to another. These times
are perfect for Instant Recall’'s pop up
timer function.

The popup timer is a special form of
quick timer entry that you can initiate with-
out popping up the full Instant Recall screen.
When you start an activity, press Shift-Ctrl-
A and enter a brief description of the
activity, such as a phone call or drop-in
visitor. When you press Enter, the pop-up
timer begins recording the time spent on
that activity. When you're done, press
Shift-Ctrl S to stop the timer for that activity.

You can begin tracking one activity while
one is being timed by starting the pop up
timer again. Any timers running will be
suspended. To enter details on the activity,
switch back and forth between activities,
or time more than one simultaneously, you
have to pop-up Instant Recall and enter the
quick timer view.

Figure 6 shows the quick timer view with

a number of activities listed. The ones
marked with an asterisk are suspended.
The others are active, or currently being
timed. To stop or start an activity’s timer,
select it on the screen and press S, then
Enter. You can suspend only one activity
from within an application using the pop-
up timer. This is the Hot Entry marked with
the triangle in the right margin of the quick
timer view. To change the hot entry, select
the activity on the view and press H then
Enter.

When I'm ready to prepare an invoice, |
use the Report function to save the quick
timer entries to a disk file. This gives me an
ASCII file with the description, start time,
and elapsed time for each activity devoted
to a client or project. The file becomes the
detail lines of the invoice, and | add the
address using the Label function.

As | mentioned previously, there are pro-
grams devoted to client billing. These pro-
vide greater flexibility and capability for

gﬂa}aﬁ?e;ﬁmm fccess 1'|.|r'.r:tig:gt:k liT:Ty Quit Bt 13 s
Pri Description Stant Elapsed Category
3 No Call from Chesin Mar {5 10:32am &M Nore 4
No Respond to Roland Mar 45 18:30am #2M None
No Call from Smithson Mar 45 9.20am *{7M None
View: Timed theat Bl ==
Figure 6

preparing invoices and tracking time. In-
stant Recall does not include mathemati-
cal functions for computing the total of
elapsed time or multiplying time by hourly
rates. | usually use a separate pop-up calcu-
lator, like Sidekick, to calculate the totals
after I've formatted the invoice. It would
be nice, however, if Chronologic consid-
ered adding a feature for summing elapsed
time by category for quick time entries.

The great advantage of using a PIM such
as Instant Recall, is that it is not limited to
a client billing view. You can instantly pop-
up a global picture of activities, tasks,
people, and notes, by topic, view, or date.
You can see how the different types of
information relate to each other, making it
easier to manage, organize, and evaluate
your interests. 3%

Continued from Page 5

board until you have placed it in its con-
ductive bag. If you do not have a conduc-
tive bag, before you touch the board to
another object, hold the board in one hand
and touch the object with your other hand.
This will equalize the electric potential
between yourself, the board, and the ob-
ject.

There is one more area which you should
be aware of and use extreme caution.
When removing the main board, take note
of the lithium battery. A fire, explosion and
severe burn hazard exists from the lithium
battery on the main board. Do not heat the
battery above 73 degrees Celcius (162
degrees Farenheit) or it may leak or ex-
plode. Do not short circuit, charge, over-
discharge, disassemble, crush, penetrate
or incinerate the battery.

Other than those two areas which re-
quire caution, disassembly is relatively easy.
Once you have completed this part of the
upgrade, you can now begin reassembly
by simply replacing the boards with those
in the upgrade kit. Don't forget the power
supply, lock assembly and drives - they
have sort of an important function!

A reliable source within Zenith Data
Systems has informed me that they are
working on a similar kit for government
customers. It does notinclude a computer
chassis. Watch for itin the Bargain Centre!

| do have one more tip: You will want to
assure that your software installation is
taking full advantage of the 386 computing
power and the amount of memory you
have installed. To accomplish this, refer to
your software manual.

holding you up?

32

April 1991

Introduction to C++
Fifth Installment

Lynwood H. Wilson
2160 James Canyon
Boulder, CO 80302

Introduction

As a free lance | get to work on other
people’s code a lot. | don’t hate it. | know
people who do, who would rather be beat
with a stick, but | don’t mind. It’s one of the
best and most widely overlooked ways of
learning. Who tries to write in any human
language without first reading a good deal
of other people’s writing? And yet most
programmers rarely read anyone else’s
code. A lot of them don’t even like to read
their own.

It's hard. Other people use different
conventions, different formats and differ-
ent choices of variable and function names.
What's more, some other programmers
aren’t as good as we are and their work is
hard to read because it doesn’'t make
much sense. And no one puts in enough
comments, or comments on the things we
really need more information about. And
in every one of those ways | was another
person a year ago.

You learn alotaboutwhatnotto do from
reading other people’s code. And occa-
sionally you find a gem, a perfect little bit of
code that is so clean and neat that you
learn something important about what to
do.

In the past, | read code looking for such
titbits. Perfect little functions such as you
find in The C Programming Language by
Kernighan and Ritchie. Lately | find | am
looking more at the structure and organi-
zation. | think this is caused by having to
actually do something with the code, as
opposed to reading a program in a maga-
zine. After all, the toughest test for the
structure and organization of a program is
for someone who doesn’t know the pro-
gram to try to fix a serious problem or
make a major modification. The thing | find
I most appreciate in this situation is not
having to read every line of the code to
figure out how the program works.

Structured programming is usually pre-
sented as a better way to write programs,
a way to help the programmer deal with
the complexity of the problem he is trying

to solve. And down at the end it says “It
makes the program easier to maintain too.”
| think this emphasis is backward. Perhaps
because | have been doing maintenance
lately | have been more aware of the prob-
lems.

Maintenance (including modification for
new capabilities) takes about two thirds of
the effort spent over the life cycle of a
major program. The other one third covers
specification, design, programming, mod-
ule test, integration, integration test, docu-
mentation, and everything else. This may
seem impossible to those .of you who
haven’t been involved in a major project,
but those who have agree that it is true.

The particular attribute of structured
programming which seems to help the
most in maintenance is the ability to read
the program at a high level without reading
all the code. Each function should be de-
signed and written so thatits operation and
the flow of the related data are easy to
follow and you don‘t have to read all the
code in every function it calls to under-
stand it. This allows you to work at the level
of the problem you are trying to solve
without having to understand all other
levels, higher and lower. It is a way of
managing complexity which allows you to
focus on your work.

This is the core problem in computer
programming, and it always has been ever
since the guys used to walk up and down
the passages inside the machines with
shopping carts full of vacuum tubes (re-
member those big glass transistors?) trying
to replace them as fast as they burned out.
As soon as the hardware improved to the
point that there was a fair chance of run-
ning a 10 line program to completion
someone immediately wrote a 20 line
program. The complexity of the software
has been growing just slightly faster than
the tools we use to make sense of it ever
since.

The problem is the programmers. The
machines have no difficulty with the most
complex programs, as they only deal with

one tiny machine language instruction ata
time. The computer does not “know” any-
thing about the structure or the complexity
or even the size of a program it is running.
It only knows about the particular instruc-
tion it is performing at the moment. Pro-
grammers, on the other hand, must be
concerned with the whole program at
once. And there is the problem. A large
program is too complex to understand all
at once.

From one perspective, C++ is C with ex-
tensions to better handle complexity. To
help you to understand what you need to
understand and to ignore what you can
safely ignore. And from that same perspec-
tive, most of the great advances in pro-
gramming have had that same goal.

More Functions

Most of the structure of the functions we
covered last time would work as well under
C as under C++. This lesson will cover
some of the things C++ added to plain C
functions. First a bit of program organiza-
tion which is common to C and C++.

All programs must have a function called
main. When the program is executed, it
begins with the first line of the function
called main. When the last line of main has
been executed, the program ends. Other
than those two rules, all functions are
equal and any function may call any other.

A function may even call itself. This is
called recursion, and | will give an example
or two later.

Default Parameters

In C++ you may have a function which
will automatically supply a default value for
a parameterif the function is called with no
value for that parameter. See Figure 1 for a
simple example.

This is one of many useful functions for
moving the cursor around the screen.
Friendly user interfaces require that you do
better than just printing lines of text to the
bottom of the screen and letting them
scroll off the top. This is of course just a

April 1991

33

#include <iostream.h>
#include <conio.h>

void cur_right(int distance = 1);
main ()
{

cur_right(5);
getch();

cur_right();
getch();

void cur_right(int distance)
{

Figure 1

cout << “Move cursor 5 spaces right.”;

cout << “\nMove cursor 1 space right.”;

gotoxy (wherex() + distance, wherey());

the argument list, after any argu-
ments which do not have defaults.

tions. These functions do not have any
other existence, no definition elsewhere,

some_func({int a, int b = 1, int ¢
some_func(int a = 1, int b, int ¢

= 2); // OK
- 2); // WRONG

This makes sense if you consider
that the compiler must be able to
tell which parameters are missing
in order to assign default values to
them. If you call this function with
2 arguments, the compiler assumes
that c is missing and supplies the
default value 2. If you call it with 1
parameter, the compiler assumes
that b and c are missing and sup-
plies the defaults. If you call it with
no arguments, the compiler de-
cides you made a mistake and
supplies an error message. (Be-

start.

Several of the library functions used here
are new. The functions wherex() and
wherey() return integers representing the x
and y coordinates of the cursor. Gotoxy(x,
y) moves the cursor to the coordinates
represented by the arguments x and y.
These are library funetions from the Turbo
C++ library.

There is a long standing element of
confusion about how locations on the
screen are described. Sometimes the upper
left corner position is 1,1 and sometimes it
is 0,0. In the past programmers have usu-
ally thought of itas 0,0 (O is after all the first
number) and users have thought of it (when
they thought of such things at all) as 1,1.
Borland has broken with this convention,
and called the upper left corner 1,1. No
problem, as long as you know.

When this program is executed, the main
function is called first and it prints the first
line of text and calls cur_right() with the
argument 5 which moves the cursor 5
spaces to the right and returns. Main then
calls the function getch() which waits for a
key stroke. When you hit any key, getch()
returns with the ASCII value of the key
(which is not used) and the second line of
text is sent to the screen and cur_right() is
called with no argument. Cur_right there-
fore gets 1, the default argument, and
moves the cursor one space to the right.
Again the program calls getch(), waits for a
keystroke, and then ends.

Note that the default argument is sup-
plied when the function is declared (proto-
typed) at the head of the program rather
than when the function is defined. This
means that you can supply default argu-
ments for functions you do not have the
source code for, such as library functions.

This ability should be used with some
discretion, to avoid excessive confusion to
someone who is used to using the library
function in its normal way.

In the case of a funation which takes
several arguments you may supply de-
faults for more than one of them, but the
default arguments must go at the end of

cause there is no default value for the
parameter b.) There is no way that you can
call the function with value for argument b
and none for a or c.

The ability to supply default arguments
for a function is particularly useful when
you have decided to modify a function to
increase its capability. You can add one or
more new arguments to the function call
and with the use of defaults you do not
have to go back and modify every existing
call to that function in your code. You can
use defaults to ensure that the function
works just as before if called just as before.

Many programmers would not write a
function like cur_right() with only a single
line of code for its body, but would just put
the single line of code in their program
wherever they needed it. | think that in
many such cases a function with a well
chosen name can offer better readability.

| am not, however, convinced that
cur_right() offers a clearer picture of what
it does than cur_right(1), but it makes a
good demonstration of default arguments.

Inline Functions

In a case where you would like the
readability of a function call without the
overhead, C programmers have tradition-
ally used a preprocessor macro. However,
macros lack data type checking and can be
the cause of some elusive bugs. C++ offers
the solution in the form of inline functions.

The inline function code is substituted

so their bodies must be here, unlike other
functions.

Since all the code of the function occurs
here, we call it the definition of the func-
tion rather than the declaration. An inline
function does not have anything which
would reasonably be called a declaration,
or a prototype.

See Figure 2 for our example function, in
inline form.

The availability of inline functions should
overcome any reluctance to write short
functions, and for this and other reasons
we will see more short functions in C++
than in most other languages.

Inline functions must be defined in all
diskfiles which use them, and so if you plan
to use one over several files it makes sense
to putitin a header file which is #included
in each of the files which uses the function.

Overloaded Functions

When two or more functions have the
same name but take different argument
lists, they are called overloaded functions.
We have seen a similar situation in the
arithmetic operators. The multiplication
operator, for example, does a slightly dif-
ferent job depending on the types of the
data itis operating on. Floating point multi-
plication is different in the details of the
operation from integer multiplication, but
conceptually they are doing the same job.

The argument list can vary in number or
type of arguments.

Figure 3 shows a simple example of over-
loaded functions.

When main() calls oprint() with an inte-
ger argument the first oprint() which was
defined with an integer argument s called.
When main() calls oprint with a character
argument, the second oprint(), defined
with a character argument is called.

Note that the two functions each have
their own declarations at the beginning of
the program, and their own separate defi-
nitions. They are two separate functions
which just happen to have the same name.

In earlier versions of C++ (earlier than

directly wherever the function is
called, rather than being stored
somewhere and jumped to like a
normal function. This means that
the overhead of passing control
to a function and back again after
it ends is saved.

The definition of an inline func- [
tion is the same as its declaration.
(Actually, the terminology gets a
little shaky here.) At the head of a
file where you would expect proto-
types (declarations) of functions
defined elsewhere you may also \
have definitions of any inline func-

#include <iostream.h>
#include <conio.h>

inline void cur_right(int dist = 1)

main()

cout << *Move cursor 5 spaces right.”;
cur_right(5s);
getch() ;

cout << *“\nMove cursor 1 space right.”;
cur_right();
getch() ;

{gotoxy (wherex() + dist, wherey());]

Figure 2

34

April 1991

#include <{iostream.h>
#include <conio.h>

void oprint(int x);
void oprint(char ch);

main ()
{
oprint('Q’');
oprint(79);
1

void oprint(int x)
{

1

void oprint(char ch)

{
cout << "\nThe char is

|

¥ << ch <<

Figure 3

cout << *“\nThe int is * << x << .

itis not as good a deal as it might
seem. For one thing if the variable
ch turns up with bad datainityou
have no idea where to look for
the culprit since every line of code
in the program has access to ch.
More importantly, you cannot
follow the flow of the data through
the program without reading
every line of code (and having an
exceptionally good memory).

A lot of the ideas and concepts
of good programming style in
general and object oriented pro-
gramming in particular seem
unnecessary, even counter-pro-
ductive, when the program in
question is an example 25 lines

' long. Large programs, 10,000 lines

or so, are different from small
programs and have different

2.0) the keyword “overload” was used to
tell the compiler what was going on. Itis no
longer necessary.

If there is not a match between the
argument list being passed by the calling
code and one ofthe versions of the func-
tion, the compiler will try the standard type
conversions which we discussed along
with mathematical operators. This can turn
into a pretty complex business. At this level
of experience you should ensure thatthere
is a function to match your argument list
and avoid the problem.

This idea seems simpler in my mind if |
think of them as different functions with
different names. Think of them as having
the argument list added to their names, so
that the first one would be named oprint(int)
and the second is named oprint(char). The
compiler actually does something very
similar to this when it compiles the code,
so it can keep them straight. If it works for
the compiler it will work for us.

Global Variables

It is possible to get data in and out of
functions without explicitly passing it. A
variable declared outside of the functions
of a program is accessible to all functions
in the program. Figure 4 is an example.

This simplifies the program by eliminat-
ing the need to pass the data around, but

problems that are not apparent until you
have struggled with them.

Clobal variables can be useful but | try to
avoid them as much as possible. There are
cases where there is just no other reason-
able way to solve a problem, but not very
many.

The #define preprocessor directive
causes the preprocessor to perform a simple
text substitution. The first group of charac-
ters (up to the first space) after the #define
is replaced throughout the file with the rest
of the characters on the line. Figure 5 is an
example.

The preprocessor searches the file for
the word Pl and every time it finds an
instance of it the rest of the line is substi-
tuted, in this case 3.14. The result of this
substitution is that the calculation in the
above program is changed from radius *
radius * Pl to radius * radius * 3.14.

This is a very powerful and useful tool.
Suppose you wanted to change the value
of pi to 3.141592653 in a search for greater
precision. You need only change itin one
place, rather than hunting through the
whole program.

Another use for the #define is found in
the endless fight against magic numbers,
numbers which do some magic thing that
is notapparentwhen reading the program.
For example, if you wished to determine
whether a particular character was a car-
riage return you might write a line of code

like this:

if(ch = 13)

Preprocessor
Directives

| have mentioned
preprocessor mac-
ros and #define
without properly de-
scribing them, so | main()
here they are. {

Before the com- | -
piler gets your code
it is run through
another program
called the pre- |,
processor. In many

fidefine PI 3.14

float radius;

cin >»> radius;

#include <iostream.h>

cout << "Enter the radius: ";

cout << "\nThe area is " << radius = radius * PI << '.';

Figure 5

systems it isn’t re-
ally aseparate program butjusta partof the
compiler. In any case, we will think of it as
separate since the job it does is independ-
ent of the compiler. In most cases where it
is part of the compiler, you can set a
compiler flag so that you can save the
output from the precompiler before it is
compiled, just to see what it has done.
We have been using the preprocessor in

#include <iostream.h>
#include <conio.h>

void print();

char ch;

main()

{

cin »> ch;
printi);

]

void print()
{

cout << "\nThe char is * << ch << *.’;

} Figure 4

// declaration of global variable

all our programs to copy header
files into our code with the #in-
clude command. | discussed this
briefly in the first installment. -

The preprocessor responds to
any line which begins with #. These
statements are called sometimes
compiler directives, but | will
continue to call them preproces-
sor directives since | think that
helps to make it clear that the
operations they call for occur
before the compilation of the
program begins.

The #define Directive

And if you wanted to be particularly kind
to anyone else who had to read it you
might include a comment such as:

// 13 is RETURN

but it would be a lot clearer if you wrote:
if (ch = RETURN)

which you could do if only you wrote this
line at the head of the program:

#define RETURN 13

The main reason for this is readability,
but it is also useful if you should ever port
the program to another environment in
which the carriage return is not 13. You
have only one change to make.

Note that by convention and old habit,
words to be the subject of a #define are
usually written in all capital letters. This is
not required, but helps tell them from
variables.

Constants

There is another way to achieve the
same purpose in C++ and that is the con-
stant. Here is the same program using a
constant in place of the #define.

April 1991

35

#include <iostream.h>
const fleoat PI = 3.14;
main()

{

float radius;

cout << “Enter the radius: *;
cin »>»> radius;

Figure 6

cout << *“\nThe area is * << radius * radius * PI << '.';

#else,
after if.

#elif:

#ifndef:
#ifdef.

#undef :

used after #ifdef just as else is used

used like else if.

means “if not defined”,

which undefines the word following it.

works like

Figure 7

result macros are sel-
dom used in C++ ex-
cept by old C pro-

Constants are not always written in upper
case like defines are, but| think itis a good
practice for those of us who are used to the
idea from C. | think it makes things a bit
clearer.

The word const can be used before the
data type in any declaration. Also, a const
has scope just like any other
data object, but this is done a bit differ-
ently. A const declared outside all func-
tions, such as the one above, has file
scope, thatis its scope is the disk file within
which it is declared. If you want to refer-
ence this const in another file you must
define it like this:
extern const fleat PI = 3.14;
and in the other files that use it, declare it
like this:
extern const PI;

This use of the constant differs from that
of C. This is one of the areas in which C++
is not a proper superset of C. These
changes are intended to encourage the
use of constants instead of defines.

The const MUST be given a value when
it is declared since it cannot be given a
value anywhere else. To attempt to change
the value of a const is a compile time error,
as is an attempt to declare one without
initializing it.

Note that the disadvantages of global
variables do not pertain to global con-
stants. There is no problem with the value
being changed by a function which
shouldn’t and they do not create confu-
sion about the flow of data between func-
tions since they don’t change. They repre-
sent data which is intended to be available
everywhere, but whose flow you are not
interested in following.

This technique has the advantage that
the compiler can do the usual data type
checking on a constant, but not on a
#define. Also a symbolic debugger will
know about a constant but will not know
about a #define, since the text substitution
has occurred before the symbol table is
constructed.

#define Macros

The preprocessor #define can also be
used to write macros, which are like small
functions without the function call over-
head. If that reminds you of something,
you have been paying attention. Actually,
C++inline functions were intended to save
you from the problems of macros. As a

grammers who haven’t completed the tran-
sition. We will have a quick look at one, in
case you work with old C programmers.
f#define mult(x, ¥) x = vy

In this case x and y are arguments just like
the arguments of a function. If the macro
is used in a program like this:
z = mult(7, 4);
it will be expanded by the preprocessor to
this:
z =7 " &4
and the value 28 will be assigned to z. The
problems occur when the call is more
complex. For example, what about this?
z = mule(7 + 2, 3);
You have every right to expect z to get 27,
but the macro will be expanded to:
Z =7 % 2 ® 3
which assigns 28 to z. This problem can
easily be solved by putting parenthesis
around the arguments in the #define like
this:
fidefine mulc(x, vy)
which expands to
2= (7 +2)* (3);
but what if you write a macro like this one:
fidefine sg(x) (x) * (x)
and call it like this:
y = 3;
z = sq(y++);

It will be expanded to
z = (yee) = (ye+)
which will assign 12 to z and leave y with a
value of 5, not at all what you would
expect. So although the macro capability
is carried over into C++ for compatibility
with old C, you should use inline functions
instead because of unexpected problems
like these.
Hifdef

The last preprocessor commands we will
deal with are a set of commands for con-
trolling which portions of the code are to
be compiled.

These are commonly used with test code,
portions of the program which are putin to

{x) = (y}

help in test and debugging and are not
intended to be part of the final product. It
is done like this:

Part of the program......
#ifdef TEST

Cest
code

#endif
the rest of the program......

If TEST is defined when the code is
compiled, then the test code is compiled
too. If TEST is not defined, the code
between the #ifdef TEST and the #endif is
ignored.

You can cause TEST to be defined by
adding this statement to the head of the
program:

#define TEST

which defines TEST as NULL since you
didn’t say what you wanted it defined as.
That activates the #ifdef, since it doesn’t
care what TEST is defined as, only whether
it is defined at all.

There is a compiler flag in Turbo C++ to
define a symbol. If you place -DTEST in the
line which invokes the compiler, TEST will
be defined. This allows you to control the
conditional compilation without actually
changing your code.

There are other directives in this family,
and they are shown in Figure 7.

Check your manuals for examples of
these less common commands, and don’t
forget to write a few programs between
now and next month. <&

If you hunger for Computer news.

=

Continued from Page 19

overl PROC FAR
push ds ;Save data segment address
mov as, cs ;Put code segment address in ax
mowv ds, ax ;Make data segment the same as code segment
lea dx, messa ;Put the message offset address in dx
mov ah, 09h ;Put Display String function number in ah
int 21h ;Call Display String function
pop ds ;Restore data segment address
et ;Return to the FAR code
messa DB '==*This message is displayed by the procedure.',10,13,'S$’'
overl ENDP
code ENDS
END %

36

April 1991

dBASE III

DPart 172

D. R. Cool
7421 Troy Manor Road
Huber Heights, OH 45424

The LOAD and CALL Commands

The LOAD and CALL commands
are virtually ignored in most texts on
dBASE lIl. Although the dBASE il
manual does give an example of a
program that changes the cursor, it
gives absolutely no information on
how to manipulate data that has
been passed to the program as argu-
ments using the CALL command.

One question may come to mind
-if you can run any external program
using the RUN command, why would
you need LOAD and CALL? One
answer is speed. The RUN com-
mand requires loading a program
from disk each time it is invoked. If
you wanted to paint screens, for ex-
ample, direct to video memory using
assembly language, using the RUN
command would cancel out any
speed advantage. Using the LOAD
command, a program is loaded into
memory once, usually at the begin-
ning of a program. It can then be
executed instantly at any time using
the CALL command.

When I firstattempted to use these
commands, | almost gave them up
as a lost cause. | would LOAD my
program then try to execute it with
the CALL command only to have the
system respond with “Program not
loaded”. Yet the CURSOR program
given as an example in the dBASE IlI
manual worked fine. Finally, | discov-
ered the problem. It seems that
dBASE Ill has a bug that prevents it
from loading any program with eight
characters in the basic file name. To
illustrate, take any file and copy it to
TESTPROG.BIN. Now, enter dBASE
and try to load this file with “LOAD
TESTPROG”. Now try to run the
program with “CALL TESTPROG".
dBASE should respond with “File
was not LOADed.” Now Press F6
and continue to the end where it
says “Modules loaded:” You should
see “TESTPROG” followed by two

Listing 1
; DRAWSC
; Progra
; To be
; Writte
; Asssmb

jmp

; data a

scrn_color

screenl
db
db
db

db * B —

db -’
db -
db *
db *
db ¢
db '
db *
db -’
db
db

:[B. Backup | |

R.ASM
m to draw main menu

used with LOAD and CALL commands of dBASE III
n by: D.COOL
le using As6.

Rename resultant .0OBJ file to DRAWSCR.BIN.

org 0000h ;zero offset (required by dBASE III)
start ;jump over data
Iea

db ?
db 80 dup(32)

;store attribuce here
;start of menu text
+

-

| MPCAG SYSTEM THREE |

—————— —+

e + o e + |

| SEARCH Jjm——— +] ASSISTANCE fr——=a |

[y | | 4———— + I_1

| 1. By vendor PN 1 A. The Assistant

| 2. By SMD PN - I D. DOS Commands

| 3. By M38510 PN |__ | H. Help

| 4. Project info (— L. Lock Computer

| 5. Reg. Users 1

| 6. Special —

* |
by - IOPNORI: Wi 520 | '
_+ MAINTENANCE | eSS] +| INFORMATION i] 4

+ | 4y 1_1
DATE

| T. File transfer |
| U. Data Base Updates |
I

T P e e e R |

|
I
i

LAST UPDATE:

|
|
|
I
|
|
|
|
|
|
db ! |
|
|
|
|
|
|
|
|

Enter selection or X to quic:
'

mov al, [bx] ;get screen attribute from command line

push ax ;save temporarily on stack
mov ax,cs ;set DS to CS

mov ds,ax S

pop ax ;retrieve attribute and store

mov [scrn_color],al
mov ax,0b800h
mov es,ax

;set destination to screen

; Wrize attribute first:

wIL_attr

mov di,0001h ;set destination pointer to address of
;first attribute
;set counter to 2000 bytes

;get attribute

mov cx, 2000
mov al, [scrn_color)

$ mov es:byte ptr di,al
;segment override required since ES
;is the segment wanted

inc di ;skip character

inc di

loop wrt_atcr ;do until counter = 0

April 1991

37

Listing 1 (Cont'd.)
; Write text:
lea si,screenl
lea di,0000h
cld
mov cx,2000
Wwrt_txt: movsb
inc di
jnz wre_txt

iset source pointer to screen text
;set dest pointer to start of screen

;set counter to 2000 bytes

;write ASCII code to video memory
;skip attribute

;do until counter = 0

retf ;exit to dBASE

additional characters. Use a file name seven
characters or less and no problem. (This
bug was corrected in dBASE Ill Plus.)

There is one thing in particular you should
pay attention to if you use the LOAD and
CALL commands in any of your programs.
If you have data contained within the pro-
gram, you must set the Data Segment (DS)
register to the data segment (or code seg-
ment if data and code are in the same
segment) before attempting to manipulate
the data. This is because dBASE Ill initially
sets the DS register to point to the segment
containing any memory variables passed
with the CALL command.

Two other points: .The program must
start at zero offset instead of the usual
0100H, so start the program with the state-
ment “ORG 0000H". Second, the pro-
gram must end with a FAR return instead of
the usual DOS exit.

Listing 1 is the assembly listing for a
routine which paints a main menu by writ-
ing ASCII code directly to video memory.
Note that the screen text is contained
within the program rather that writing it
from a file, which would defeat the pur-
pose of the program - namely, a very fast
screen display. Note the first statement

OK. give me the story
one more time,
you're reading a
borrowed REMark?

“org 0000h” as required by dBASE Ill. The
next statement - “jmp start” - jumps over
the data area to the code.

The data area contains a series of data
statements starting with the label “screen1”.
The first statement is simply a series of 80
spaces, since the first screen row of this
menu is blank. The next lines contain the
actual menu characters. To construct your
own screen, simply type characters exactly
the way you want your screen to appear
including any extended graphics charac-
ters. (Generation of graphics characters
was explained in my last article.) When you
have constructed your screen display, put
your word processor or editor into INSERT
mode and insert “db” plus a space plus a
single quote (‘) before each screen line. At
the end of each screen line insert another
single quote. Make certain each line con-
tains exactly 80 characters or spaces be-
tween the single quotes. Also, include
exactly 25 data lines even it contains noth-
ing but spaces.

Next, we come to the code. To be flex-
ible, since this program is used on both
monochrome and color monitors, | pass
the color attribute as a memory variable
with the CALL command. Consequently,
the first thing this program doesis to get the
attribute value and saveitin the AL register.
As stated in the dBASE Ill manual, the BX
register points to the first memory variable
on the command line. The next command
- push ax - saves the color attribute on the
stack. (The program can’tstore it within the
code segment yet because the DS register
is not set to the proper value.) The next
three instructions wet the DS register to the
same value as the Code Segment. Next
the program retrieves the attribute and
stores it for later use.

The next two instructions set the ES reg-
ister equal to the video memory segment at
B80OOH. This address is where the 4000-
byte video memory buffer that represents
the first page of display memory starts. This
memory is arranged in groups of 2-byte
addresses. The even addresses contain the
bytes that the hardware interprets and dis-
plays as characters. The odd addresses
contain attribute bytes which determine
the foreground and background colors of
each character.

The next instruction sets the destination
pointer (DI register) to the address of the
first attribute: B800:0001. Next, the counter
is set to 2000 bytes (80 columns by 25
rows) and the AL register is loaded with the
attribute value. The next four instructions

form a loop which writes the attribute
value to 2000 locations in video memory.
The final series of commands write the
menu text to video memory using the
MOVSB command. The program ends with
the required FAR return.

This program was compiled using A86, a
compiler that can be downloaded from
the HUG bulletin board. If you use this
compiler, take the resultant .OB]J file and
rename it using the extension “.BIN”. To
use the program, you must first load it:

LOAD DRAWSCR
You can then call the program:

CALL DRAWSCR WITH CHR(attribute)
where attribute is any number from 0 to
255. If you have a color monitor, attribute
is decoded as follows:

bits 0-3:

foreground color:
black 0

blue 0
green 0
cyan 0
red 0
magenta O
brown 0
white 0
gray 1
It blue 1
It green 1
It cyan 1
It red 1
It magenta 1
yellow 1
bright white 1

—_——m w0000 = —=m—-m—-000 0
—~—- 00—~ —~00—=—-00—=—=00
- 0= 0O0=20=20=20=20=0=0C

bits 4-6:

background color:
black 0

blue 0
green 0
cyan 0
red 1
magenta 1
brown 1
white 1

—_,—_OO0O—= =00
= 0O=0=0=0

bit 7:

0 = normal

1 = blinking
Thus, an attribute value of 23 (17H) would
produce white letters on a blue back-
ground.

Using the LOAD command, you can
load up to five files up to 32,000 bytes
each. To un-LOAD a file, use the RELEASE
command followed by the file name. The
extension is always assumed to be “.BIN”.

This completes my series on dBASE III.
Although | have not discussed every
command, it was my intent to focus pri-
marily on programming. | will be glad to
answer any questions on this series or on
dBASE il or dBASE Il Plus (except for
networking). You can write to me at the
above address or put a message on the
HUG BBS. 3%

38

April 1991

e

To accurately transfer data at speeds
above 2400 bps, the information must be
modified to remove redundancy. Data com-
pression is the electronic equivalent of re-
moving the white space on a sheet of text.
The bare (compressed) text is then trans-
mitted and the white space is re-inserted
(decompressed) at the receiving end. This
allows more data capacity per unit of
physical storage and lowers data transmis-
sion costs because more information is
shared in a standard unit of time.

Today, text, spreadsheets, forms, graph-
ics, still video, motion video, and voice are
usually compressed before transmission.
Different methods are used to cram as
much data as possible into a finite range of
time or frequency. Text data is squeezed
using Run Length, Huffman, Shannon-Fano,
Lempel-Ziv (LZ1, LZ2), and Lempel-Ziv-
Welch (LZW) compression coding. For
graphics and line art we use Huffman,
Quantization, Text Compression, and
Discrete Cosine Transform (DCT) coding.
For facsimile we’ll use DCT, Modified
Huffman, and Relative Element Address
Designate (READ) coding. For full motion
video we’ll use DCT, Color Cell Compres-
sion, or Digital Video Interactive. And voice
incorporates a myriad of proprietary meth-
ods, most based on Adaptive Differential
Pulse Code Modulation. Each of these
compression algorithms is optimized for
the type of information to be stored or
transfered.

Data compression can be accomplished
in software or hardware. Users of CP/M
run SQ.COM to compress ASCII files by
about 40 percent and USQ.COM to de-
compress the files back to their original.
Unix users are familiar with utilities such as

COMPRESS and COMPACT. In our MS-
DOS world we have programs such as
ARC from System Enhancement Associ-
ates, the freeware program LHARC from
Haruyasu Yoshizaki, and Phillip Katz's
shareware program PKZIP from PKWARE,
Inc. These programs incorporate one or
more compression algorithms. For example,
SQ.COM uses Huffman coding. ARC, PK-
ZIP and COMPRESS all use the LZW
compression algorithm, and one stage of
PKZIP uses a close relative of Huffman
coding called Shannon-Fano coding.

Commercial programs have grown so
large that some are now compressed and
packaged with a decompression program
included. CorelDRAW, for example, comes
compressed from 14-disks to seven. It in-
cludes LHARC to expand the Corel DRAW
program files during installation.

Files that have been compressed mustbe
decompressed before use. Many bulletin
board files that you download are com-
pressed before transmission. At your end,
you run a decompression program to re-
store the file to its expanded size before
you can run the software.

Some files can compress much better-
than others. ASCII text, listings, spread sheets
and forms with lots of repeated characters,
character strings, or words can compress
best. Binary files and .EXE files are usually
less compressible.

The amount of compression that an algo-
rithm achieves defines its compression ratio.
It compares the uncompressed to the
compressed file length. Compressions from
2:1 for data and 50:1 for graphics are
common.

Compression that compacts data 2:1,
but allows the exact original information to

A Data Transfer
Solution

Part 3

Data Compression

Robert C. Brenner
9282 Samantha Court
San Diego, CA 92129
Copyright (C) 1991, Robert C. Brenner

be recovered, is called lossless. Complex
compression algorithms are used to trans-
fer huge video image files at high compres-
sion ratios (50:1), but some loss in pixel
information occurs. This lossy compres-
sion technique works fine for video be-
cause a few incorrect pixels have little
effect on image quality (particularly if the
image is full motion video). This article fo-
cuses on lossless compression because
this is common in modem data transfers.

Huffman Coding

In the early 50s David Huffman designed
a statistical data compression technique
that replaces symbols such as 8-bit ASCII
characters with codes of varying lengths.
The file is compressed into fewer bits and
these codes are then sent. Atthe otherend
a decompression algorithm based on the
same technique replaces the code with
the original data.

Frequently used symbols such as e, t,and
a are assigned shorter codes (1- to 4-bits
wide). Less frequent symbols such as j, g,
and z can be represented as 8- to 16-bit
codes. Three bits can represent the first
four most common characters, eight bits
can be used to represent the 5th through
the 19th most common symbols and 16
bits can be used to represent infrequent
symbols.

Several forms of Huffman coding exist.
Static Huffman coding uses a conversion
table of symbol occurrence probabilities
compiled from statistical observations or
generated by prescanning input data. As
the data stream is read, an encoding tree is
constructed starting with the least prob-
able character combination (symbol). Each
symbol represents a leaf on the tree. High

April 1991

39

probability symbols are located close to
the root and assigned shorter codes than
low priority symbols. Combinations of
symbols (leaves) are combined as nodes
and assigned a probability that represents
the products of the probabilities of the
leaves. Nodes are then combined to pro-
duce other nodes representing further
combinations of symbol leaves. The code
lengths are variable. Once the look-up
table tree is constructed, compression can
begin.

Static Huffman coding requires a table of
probabilities for each type of data. When
the symbol types aren’t known, a Dynamic
Huffman Coding technique is used to con-
struct the tree on the fly and compress the
data as it is being read. The Huffman tree
changes dynamically with the changing
symbols and symbol combinations so the
occurrence probabilities vary constantly.
The coded output is sent to the receiving
modem where a Huffman decompression
algorithm uses the same compression tree
to convert the code and dynamically update
the tree.

Huffman coding increases system over-
head because the frequency distribution
of symbols in the source data must first be
determined to build the probability table.
The symbol combinations (nodes) cannot
change during transmission. Therefore, two
passes are used at each end of the trans-
mission link. The sending system examines
the data (Pass 1) to build or update the
table; then another pass is made to create
the compressed output file. The receiving
system reads the symbol substitution table
sent with the compressed file to define the
decoding rules and then expands the data
as it comes in.

Compressed files are at risk because the
non-linear code length used in Huffman
coding implies that corruption of a single
data bitin the compressed data stream can
desynchronize the entire file producing
gibberish during decode. The requirement
for an end of compressed data file signal
makes the data stream a few bytes longer.
However, even with these limitations,
Huffman coding has been a long time
favorite. It is used as the last stage in the
Joint Photographics Experts Group (JPEG)
color image and Microcom Networking
Protocol (MNP) Level 5 data compression
protocols.

LEMPEL-ZIV

Another important lossless compression
technique was described in the IEEE Trans-
actions on Information Theory in May 1977
by A. Lempel and). Ziv. Like Huffman, their
Lempel-Ziv (LZ) compression algorithm
looks for repeated characters or strings
and substitutes a shorter code for the
repeated sequence. The compression soft-
ware scans text, graphics, or binary files
and performs statistical analysis to create a
code substitution table. The difference

between LZ and Huffman is that LZ re-
places frequently appearing symbol strings
with fixedlength codes. Over 60 percent
of the words in a text file can be replaced
with these short codes. In Lempel-Ziv, a
fixed-length 11-bit code is used to repre-
sent up to 32 compressed characters.
Where Huffman is suitable for transfers
under 9600 bps, Lempel-Ziv works well
above 9,600 bps. At 9,600 bps, its a toss-
up. Telebit’s Trailblazer uses Lempel-Ziv to
operate atan effective 19.2 kbps on dial-up
lines normally limited to 12 kbps.

There are two primary implementations
of Lempel-Ziv, LZ1 and LZ2. LZ1 compres-
sion is accomplished using a memory-resi-
dent 2K sliding dictionary window in which
strings of data are coded and consecu-
tively stored. Repeated strings are replaced
by codes and kept in the look-ahead win-
dow. During decompression, the uncom-
pressed strings and codes are read and the
sliding window is searched for code
matches. A match causes the code to be
replaced by its appropriate string of data.
The sliding window of LZ1 adapts quickly
to a changing data stream. With no diction-
ary to manage, this technique imposes little
processor overhead.

LZ1 has been implemented in firmware
to perform group decompression in some
hard disk drives and is used in quarter-inch-
cartridge (QIC) tape and digital audio tape
(DAT) drives. It’s also implemented in soft-
ware utilities such as SY-TOS Plus, PC Tools
Deluxe, and Norton Backup.

A second Lempel-Ziv technique, LZ2,
converts a unique string of data into a
4096-entry dictionary with a numeric value
assigned to each string. Again, once the
dictionary is constructed, repeated diction-
ary entries are transmitted as compressed
data code words. LZ2 synchronizes both
the compression and decompression func-
tions during data transfers. The dictionary
at the receiving end is filled by the sending
modem and then decompression begins.

There are several derivatives of Lempel
Ziv. The British derivative, British Telecom
Lempel Ziv (BTLZ), uses a slightly different
library for storing representations of com-
pressed characters. The Hayes Computer
Products derivative, Hayes British Telcom
Lempel Ziv (HBTLZ), prevents random
binary data from being inadvertently ex-
panded by a compression algorithm.

In 1984, Terry Welch refined the Lempel-
Ziv algorithm to replace strings of charac-
ters with single codes. This LZW method
does no analysis of the incoming text. It
simply adds every new string of characters
to a table. Compression occurs when a
single numerical code replaces a string.
Although difficult to predict, the optimal
dictionary matrix size has been established
at 4096 codes. This means that both send-
ing and receiving systems must include
RAM for storing the LZW dictionary. In a
4096-entry dictionary, the first 256 codes

usually represent ASCII characters and the
remaining 3840 codes represent strings of
characters.

Each codeword is between nine and 12
bits long. Of the 4096 logical entries in the
dictionary matrix, the first 512 are nine bits
wide; the second 512 are 10 bits wide, the
next 1024 are 11 bits wide, and the final
2048 logical entries are 12 bits wide. This
makes the actual 4096 entry dictionary
45,568 bits wide (slightly under 6K) mini-
mum. To avoid hashing collisions that could
slow the compression rate, the dictionary
RAM is typically 8K to 16K.

As data is passed through the LZW algo-
rithm, it is checked for strings. If a string is
already in its table, it sends the code substi-
tute. If not, it adds the string to the diction-
ary, assigns a code, and then sends it. The
dictionary table builds rapidly, and com-
pression starts once approximately 100
codes have been assigned.

At the receiving end, a decompression
algorithm decodes the string and code
components to produce an identical sub-
stitution table. The incoming data doesn’t
include a string translation table because
the code itself contains the information
necessary to reconstruct the dictionary. A
single exception case involving repeated
characters in the same word is automati-
cally handled by the LZW algorithm. As
described in an October 1989 Dr. Dobb’s
Journal article, compressing the string “/
WED/WE/WEE/WEB/WET” causes the
sequence “/ W E D 256 E 260 261 257 B
260 T” to be transmitted. The decompres-
sion algorithm decodes this back to the
original data.

Re-creating the translation table, posi-
tions, and data sequence elements from
the compressed information is one of LZW'’s
strongest features. This makes data trans-
fer time inherently shorter. To reduce string
search and comparison time, strings are
stored as code/character combinations. A
hashing routine applies an XOR function
to group strings of data by content and to
store them in sequential dictionary loca-
tions. For example, all the strings starting
with “6” are stored serially. Hash coding
cuts the search (hence the translating)
time. Hashing is not easy to implement,
but it makes string matches possible in a
single search. Extracting the data at the
other end is typically fast and accurate.

1ZW compression works well on English
text (2:1 common) and fairly well on saved
screen displays, but is less capable with
data files. Expanding from 12 to 14-or 15-
bit codes achieves better compression
ratios on large files, but degrades perform-
ance on small files. This is why the data
compression program ARC was written for
variable length codes. ARC may use 9-bit
code for one string and 10- or 12-bit code
for another.

As long files are read, the LZW compres-
sion ratio tends to degrade, because once

40

April 1991

the finite size table is full, new strings are
not encoded, but get sent without com-
pression. Some strings at the beginning of
a file may be seldom used again but retain
a code substitute in the dictionary table. To
counter this, some LZW applications
monitor the compression ratio and peri-
odically flush the table of strings that aren’t
frequently used. Dynamically rebuilding
the dictionary greatly enhances the com-
pression ratio, but it requires more execut-
able program (hence operating RAM)
space.

Some applications run LZW codes
through adaptive Huffman code filters to
gain a few more points to the compression
ratio. Although efficient, this increases the
complexity of the code and adds to the
compress-transfer-decompress time.

LZW is the basis for the program PK-ZIP
and Unix’s COMPRESS utility. It's also

used in CompuServe’s GIF file format, ARC,
and Stuffit. The LZW algorithm was pat-
ented by Sperry (now UniSys).

Data compression in software isinexpen-
sive. If data files are compressed before
modem action, high performance transfers
can occur, but both ends of the transmis-
sion line must use the same compression/
decompression algorithm. Then as long as
the sending and receiving electronics can
buffer and convert the data fast enough,
system performance is optimized. Because
high speed modems push the limits of
current technology, maximum performance
is achieved by compressing and decom-
pressing data “on the fly.” As transfer speeds
increase, software cannot compress/de-
compress fast enough. This prompted
companies like Rockwell to design inte-
grated circuits (ICs) that can perform data
compression and decompression in hard-

ware. Some companies offer adapter
boards thatimplement LZ2 data compres-
sion before modem transmission.

Derivations of LZ2 are appearing. Hew-
lett-Packard and Advanced Hardware Archi-
tectures, Inc. jointly proposed a variation
of LZ2 called data compression Lempel-
Ziv (DCLZ) as a standard for quarter-inch
QIC tape drives. DCLZ uses hash-coding
for dictionary lookup string matching. As
we’ll also see in the next article, standards
and protocols such as Microcom Systems
MNP5 use dynamic Huffman compres-
sion, MNP7 combines Huffman coding
with a predictive algorithm to shorten the
Huffman codes, and the international
V.42bis standard incorporates all three
forms of the Lempel-Ziv algorithm LZ1,
LZ2 and LZW, to achieve a theoretical
maximum transfer rate of 38,400 bps. Stay
connected.

This article has been adopted from Modems Made Easy. The author’s book will be published next month. To
order, send $19.95 plus applicable sales tax to Brenner Information Group, 13223 Black Mountain Rd. 1-430,
San Dlego California 92129, call (619) 538-0093, or check with your local bookstore.

Modems Made Easy {ISBN 0-929535-09-X), $19.95.

*

ég

n
Just AnsueR €S 0R No!™

EGAD Screen Print
Now Available for Z-100 -or- PC

Graphics & Text Screen Print for VGA, EGA, CGA i
displays (PC version), or Z-100 series. '
* Print any part of the screen - crop box pops up when
Shift-PrtSc (PC) or Shift-F12 (Z-100) pressed,
use arrow keys to select region.
* Enlarge graphics 1-4 times
* Prints in color (color printers) or black & grays
* SET program selects printer colors, other options.
Supports most popular dot matrix, laser, and ink jet
printers (including Epson, NEC-8023, MPI, Okidata,
etc.) EGAD for PC’s, Order # 270; EGAD for Z-100,
Order # 271. Either is $35.00 postpaid.

Z-Screen Library for 'C’

Screen & Keyboard [/O library for Microsoft *C’. Two
sets of source code included (one makes programs which
will run on PC; the other, for Z-100). Both librarics have
same interface to your code. No royalties for use. Call or
write for complete description. Z-Screen, #246, $20.00

=

TR

R R R R R

Call or Write for Free Catalog,

Lindley Systems—4257 Berwick Place,
Woodbridge, VA 22192-5119 (703) 590-8890
Reader Seryice #136

Reader Service #136

April 1991

41

MENU.BAT

Tired of listening to the complaints of the
kids and spouse that your computer just
isn’tuser friendly? Tired of the familiar ‘A>"?
How about trying a friendly batch file to
get you off the hook!

I’'m sure some of you cringe at the term,
batch, because it is synonymous with the
term, programming. But, fear not. We're
going to take this in small steps, but before
we start, let me explain something else.

Those of you who read my article, “Dress
Up the CP/M " A>' Prompt With a Picture!”
may have been disappointed that MS-
DOS doesn’t have a similar capability.
Ahhh . . . but it does - at least on Z-100
machines (I still have to work out the
graphics problem on the PC-compatibles).
Use my Z-100 version of PAINT, as de-
scribed in the December 1989 and Febru-
ary 1990 issues of “REMark” to make the
desired graphics screen. Then, using the
MS-DOS command RDCPM copy the file
to your MS-DOS working disk. | use the file
name HELLO.SCN. Insert the lines, TYPE
HELLO.SCN and PAUSE, in the batch file
AUTOEXEC.BAT and the screen will be
displayed in the same great (color) form.

Confused? Well, | think it will become a
little clearer than mud as we explore this
other dress up method, so bear with me.

MS-DOS looks for a batch file,
AUTOEXEC.BAT, while it goes through its
BOOT functions. If it finds one, it will run it
before ending with the familiar ‘A>" prompt.
The key is to insert a small routine (pro-
gram) under this file name. This will involve
dusting off the MS-DOS manual . .. Oh, |
can hear the groans already.

There are two ways to make an
AUTOEXEC.BAT file. One uses the COPY
command — a simple process but errors
require starting all over again — or using a
line editor or simple word processor to

Steven W. Vagts
2409 Riddick Road
Elizabeth City, NC 27909

create the file and modify it later, if neces-
sary.

Let's briefly touch on the COPY method
first. Reviewing the section in the manual
entitled, How to Create Batch Files, we start
at the ‘A>’ and type the following:

COPY CON AUTOEXEC.BAT

Press RETURN. This command tells MS-
DOS to copy the information from the
console (keyboard) to the file AUTO-
EXEC.BAT.

Before proceeding further, what do we
want the routine to do?

Many of us have a real-time clock in-
stalled, and MS-DOS has a command file,
RTCLOCK, thatreads and displays the date
and time on the screen. If you are tired of
the usual DATE? and TIME? questions during
the BOOT process, we can eliminate those
very neatly at the same time. Type:
RTCLOCK

Press CRTL-Z (type the letter Z, while
holding down the CRTL key), and then
press RETURN.

MS-DOS now saves the batch file and
displays the message “1 File(s) copied” to
show it created the file.

To execute the file, simply type AU-
TOEXEC at the ‘A> prompt. You will find
the date and time displayed on the screen
and a new ‘A>’ prompt displayed beneath.

Something | didn’t discover for several
years — if you leave out the CTRL-Z, you
may end up with two ‘A>" prompts, one
under the other! Don‘t forget to end your
batch file with a CTRL-Z. Unless your word
processor permits you to inserta CTRL-Z at
the end of your file, this will be a problem.

That was simple. However, we need a
more complex routine than this and, as |
mentioned before, this method is intoler-
antof errors. We need a line editor thatcan
modify lines. Enter EDLIN to the rescue.

Review the chapter entitled, The Line
Editor (Edlin), in the manual. Though not
the easiest Line Editor to use, itisn’t all that
bad, either.

Before we leap into our new file, entitled
MENU.BAT, it would be nice, though not
required, to place two other files on our
system disk or boot directory. As you play
with EDLIN, you will find that you can’t
insert blank lines on the screen when it is
run - at least | can‘t. This is a ridiculous
limitation that | can’t believe exists. Maybe
one of you has a solution.

In any case, someone else must have
also had a problem, because on a HUG
disk, P/N 885-8046, entitled MS-DOS ASM
UTILITIES, is a neat little program, CRLF-
.COM, from Mr. John Stetson. Its sole
purpose in life is to insert blank lines on the
screen! The source file is also there to mess
with, if desired.

Another file on the same disk provides
the date and time like RTCLOCK, but also
includes the day of the week. Also from
Mr. Stetson, the file, DATETIME.COM, is
only 1K as opposed to the file
RTCLOCK.COM which is 3K! Its source
code is also included.

As | said, these files are optional. Without
CRLF.COM you simply can’t skip lines,
and you already have RTCLOCK.COM.
Now, let’s get on with MENU.BAT.

At the ‘A> prompt, type EDLIN
MENU.BAT and press RETURN. We're only
going to use a few of EDLIN’s more simple
commands.

Following a brief opening line, you end
up with a command asterisk, *, in the left
margin. Type | and RETURN. Each new line
will start with a line number and colon
followed by an asterisk, *. Type the follow-
ing lines after the asterisk. Check each line
carefully before pressing RETURN, then

42

April 1991

the next line number will appear. Don’t

worry about a mistake at this point.
Following the line, there may be a com-

ment in brackets, {}. Don’t type these.

Also, for space considerations, a number

in square brackets, [], indicates the number

of spaces to type between the preceding

character and the nextone. Don’t type the

brackets or the number. Here’s my rou-

tine:

1:~ECHO OFF

(Commands won't be displayed on the

screen as they are executed}

2:*CLS

{Aninternal MS-DOS command thatclears

the screen}

3:*DATETIME

{Displays the day of the week, date, and

time. If the file, DATETIME, is not available,

then type RTCLOCK instead)

4 :*CRLF

[As discussed above, this skips a line. If not

available, don't type anything - just press

RETURN]

5:*CRLF

(I wanted to skip two lines)

6:*ECHO[10]* * =% + *[10]GAME MENU[10]*

{Or type whatever title you wish}

7 :*CRLF

8:*ECHO[10] ADVENT [2] BABY [11] BOMBER [9] CELTIC

{While your file names may be different,

use these for now)

press RETURN. Let’s change line 8. Follow-
ing the *, type 8 and press RETURN. You'll
see an indented line, providing the entire
old line, followed on the next line with 8:*.
On some terminals {my Z-100 won't for
some reason, but my Z-181 does), if you
use the right arrow key to move the cursor
across the line, you'll find the entire line
print as you move to the right end. Back-
space, or use the left arrow, to the point
you want to change, type the new name or
names and press RETURN at the end. The
new line is now saved and you are returned
to the command asterisk.

Press the letter L and RETURN and the
entire routine is displayed with the new
line. To delete a line, at the command
asterisk type the line number followed by
the letter D and press RETURN. If you list
the routine again, the line is gone. To insert
lines, atthe command asterisk type the line
number at which you wish to start, fol-
lowed by the letter | and press RETURN.
Thefirstline numberand colon is displayed
followed by an asterisk as it was when we
first entered the lines. Following the last of
your new lines, type CTRL-C on the next
blank line to exit the insert mode. If any-
thing else were typed on that line before
typing the CTRL-C, IT WOULD BE LOST!
Always type the CTRL-C on the NEXT
BLANK LINE.

9:*ECHO[10] FIRE[11]GERM[11]HILIFE [9]) KILLER

10:*ECHO [10] MAZE [11]) SNOOP [10] TRIAC [10] WORD

11:*CRLF
12:*ECHO[10])* * = =
13:*CRLF

14:*ECHO[10]Type one of these names or MENU to return to this menu:

{At the end of line 14, type CTRL-Z, as
discussed above, and press RETURN]

At line 15:* type CTRL-C. This returns us
to the command line, an asterisk at the left
margin. Type the letter Eand RETURN. This
ends EDLIN, saves the file MENU.BAT, and
returns us to the MS-DOS ‘A>' prompt.

Type MENU and press RETURN. The
screen should show the information at the
start of this article. Note any changes you
wish to make, such a removing or adding
spaces or asterisks. Note the file names
you wish to use. As above, | don't bother
with file extensions if the files run inde-
pendently. If you're using ZBASIC files,
however, | still don’t use file extensions,
but line 14 might read, “Type ZBASIC and
the name of afile above. Typing MENU will
give this menu.”

Got all your changes? OK, let’s press on.
Type EDLIN MENU.BAT and press RE-
TURN again. Changes are easy. At the
command asterisk, type L and RETURN.
The screen displays the list of all lines in our
routine. You'll note, however, that only the
first line has an asterisk after the line number.
This is EDLIN’s line pointer, showing the
current line you‘re on. It's of no concern
for our minor editing problem.

This time, at the command asterisk, type
the line number you wish to change and

Make all your other changes and type E
at the command asterisk. When you exit
this time, your original MENU.BAT file now
becomes MENU.BAK and MENU.BAT is
replaced with the new file — as with many
word processors. After ensuring MENU.BAT
does what you want, you can delete this
.BAK file.

Now, let’s fix the AUTOEXEC.BAT file.
You can use the COPY command as we
did above, starting over, or we can use
EDLIN again. If you are just running a
simple floppy disk system use COPY:
A>COPY CON AUTOEXEC.BAT and press
RETURN.

Type MENU and CTRL-Z and press RE-
TURN. All done. Try rebooting and MS-
DOS should run AUTOEXEC.BAT, that runs

MENU, and you get your MENU displayed |

on screen. You're on your way.

For those running a hard disk, type ED-
LIN AUTOEXEC.BAT. At the command
asterisk, type L and press RETURN. If your
file was made as described above, you'll
find:
1:*RTCLOCK

Using the EDLIN commands as described

above, delete this line and try this file:
1:*ECHC OFF

2:*PROMPT $pSg

{PROMPT lets us change the default MS-

DOS prompt. This will display the working
directory with the greater than sign, >)
3:*PATH = E:\DOS

{Causes MS-DOS to check the \DOS di-
rectory on the E: drive or partition for com-
mand files. This is where | keep CRLF.COM
and DATETIME.COM, for example}
4:*CLS

5:*MENU

At the end of line 5, don’'t forget the
CTRL-Z. Atline 6 type CTRL-C to exit to the
command asterisk.

Finally, if you want to display a PAINT file
as discussed when we started, then when
any key is pressed, display a menu file,
insert (*51) the following lines to your
AUTOEXEC.BAT file:

5:*TYPE \DOS\HELLO.SCN
6:*PAUSE

Type CTRL-C at line 7. Typing L at the
command asterisk shows your line 5 to
now be:

7 :*MENU

Still with me? Good! For hard disk users,
let me go one step further. Those of you
with an H/Z-100 will have hard disks with
several partitions - probably several for MS-
DOS applications, another one or two for
CP/M, and probably a few more for ZPC
and PC-DOS files - up to sixteen partitions!
Confusing? My wife and kids would be in
a panic trying to manipulate around all
these, if they bothered trying at all!

Try this on for size. My AUTOEXEC.BAT
file for MS-DOS is as listed above. The
MENU.BAT lists the names of the other
partitions. (See Figure 1.)

Then, each of the above has their own
batch file, most of which must assign an-
other partition (the Z-100 is limited to 4
active partitions at a time, labeled E: thru
H:). MENU.BAT gives the above menu se-
lection.

As an example, GAME-Z.BAT is:
1:*ECHO OFF
2:*ASGNPART 0:GAMES;Z-DOS G:
[ASGNPART is another file in my \DOS di-
rectory. This command assigns a logical
drive name (from the range of E-H) to a
physical hard disk partition. 0 is the hard
drive unit (0-3) that | want to use. GAMES
is the partition name. Z-DOS is the name of
the operating system used & stored on the
specified partition. G: is the logical drive
name (E-H) that we want to use)

3:*G:
(Makes G: the default drive]
4: *MENU

(Each of the partitions has its own menu

directory similar to that used above for
each floppy disk]

The batch file, GAME-PC.BAT, is the
most complicated because we must also

run ZPC before our games:
1:*ECHO OFF

2:*ASGNPART 0:PC-DOS F:

3:*PATH = E:\DOS;F:\ZPC

4:*F:

5:*IF EXIST \ZPC\ZPC.COM GOTO X
6:*ECHO ZPC.COM file not found!
7:*GOTO Y

B:=:X

April 1991

43

1:*ECHO OFF
2:*CLS
3:*DATETIME
4:*CRLF
5:*CRLF
6:*ECHO Current directory is Z-DOS.
(This is not actually Z-DOS, but s labeled to differentiate from IBM MS-DQOS, which
is ZPC)
7:*CRLF
8:*ECHO = = = » = =« DIRECTORY MENU A
9:*CRLF
10;*ECHO BASIC DBASE GAME-BAS MENU Z-ART
11:*ECHO CAD GAME - PC PT ZPC
12: *ECHO GAME-Z WP
13:*CRLF
14 :*ECHO Type one of these commands or ZDIR for full directory:
Figure 1
g.+2pC 5:*IF EXIST \ZPC\ZPC.COM GOTO X
10:*ANSISYS 6:*ECHO ZPC.COM file not found!
11:"CRLF 7:*GOTO Y
12:*CRLF Biix
13:+CD F:\GAMES 9:*ZPC
14 : *MENU 10:*ANSISYS
15:%:Y 11:+CD \WP
This gives an example of conditional (IF- ig : ::g
THEN) branching to X or Y, loading AN- [127 |
SISYS for IBM PC escape sequences, and | 1s5.-uenu
changing directories (CD). All this com- | 16:*CRLF
17:*ECHO Enter PC to emulate IBM-PC

plexity takes a lot of time to sort out and set
up, however, it sure takes the pain out of
moving around the various partitions.

The individual partitions also include a
ZDOS.BAT batch file to get you back to
the original MS-DOS directory from which
you started.

One last batch file for those using
WordPerfect 5.0 under ZPC. Entitled
WP.BAT, it consists of:

1:*ECHO OFF

2:*ASGNPART 0:PC-DOS F:

3:*PATH = E:\DOS;F:\ZPC

4:*F:

computer.

18:*ECHO Enter Z100 to return to normal
mode .

19:*:Y

| hope you have found this dissertation
both useful and entertaining, If it has helped
in some small way to straighten out the
complexities of batch file use, it would
have been worth the effort.

Until the next time | get the urge to write
and say ‘Hi’, | wish you all the best in your
programming efforts. “REMark” —keep up
the good work. | enjoy every issue. &

Reahee

re
Tl GET o Tie Tounson SURVEY REFORT AS Scon AS
I FiNiSH M& Son's HoMEwoRK ¥

2
ACCOUNTING & TAX

Not sure if you need the expensive
‘Chinese Flower 1-2-3', or ‘Spanish
Numeral Four spreadsheet prog-
rams? Then find out for only $20!
“CheapCalc’’ will do double preci-
sion addition, subtraction, multipli-
cation, division, power, SUM, and
roots (using fractional powers).
CheapCalc has many other func-
tions too numerous to mention
(just like the expensive spreads)!
CheapCalc is available for all
Heath/Zenith computers and op-
erating systems. For more informa-
tion, check out page 58 of the Soft-
ware Catalog Update #1, or call
HUG and order your copy today.

We are still trying to get
caught up on our issues.

We would like you to know how
much we appreciate your patience.
Thank You!

44

April 1991

A 286LP 8 to 12 Megahertz Upgrade

Background

In June, 1990, Greg Braithwaite described
his development of a method for upgrad-
ing 8MHz 286LP computers to 12MHz.
The upgrade consists of soldering new IC’s
and other components to the main board.
I thought long and hard about whether |
was confident enough to tackle this task.
The downside risk was that | could end up
with an expensive boat anchor if | dam-
aged the board. Eventually, | decided to go
ahead. If Greg could figure out how to do
all this, the least | could do was give it a try
to see what happens.

Greg's procedure can be found as
286LP12.ZIP in the ZDS file section of the
COM?1 bulletin board.

Planning and Parts

Greg's instructions included a list of the
parts | would need to install. | had the
board part number 85-3384-01 described
in the instructions. | began my search for
the parts by calling the Heath parts depart-
ment. The folks there were very helpful.
They had all the parts | needed except one
(which | will mumble about later) and the
total cost was only $25.63. They accepted
my VISA number over the phone (little did
they know) and the parts arrived in just a
few days.

Since | was going to be working at the
board level, | decided to upgrade my
monitor ROM (444-643-1) to the current
version (444-643-10). That cost an extra
$12.60, but probably will prove useful in
the future.

Part number 969-1158, the 24MHz crys-
tal, turned out to be a “Zenith only” part.
Now to find a dealer/repair shop that
might have one. Hah! It just happened that
most of the dealers are Heath dealers.
None in this area had the part. | had trips to
San Antonio and Phoenix planned, so |
tried the various dealers in those cities, fig-
uring | could pick one up while | was there.
Nope - none there either. | ended up hav-

Made Easy

George C. Ludden
2102 Planters Row Drive
Midlothian, VA 23113

ing to order one through a Zenith Data
Systems dealer. It cost $23.50, almost as
much as all the parts from Heath together.

The instructions indicated that seven new
IC chip sockets were needed. | got those
and some solder (desoldering) braid at a
local electronics store.

My soldering gun is old and made for the
days of welding leads to buss bars in the
chassis. Anybody remember those days? A
lot of heat was needed, which today could
fry the fragile foils on a circuit board. |
decided to upgrade my tools appropriately
for delicate work. A new lower tempera-
ture tip for my soldering gun and a small
soldering iron with a builtin desoldering
bulb both proved to be very helpful during
the project.

As Greg suggested in his instructions, |
ran the PCTools system information test,
which showed the computer operated at
455% of the speed of the original PC. This
was useful for comparing the old and new
speeds. | then did a printscreen of the
monitor ROM setup so that | wouldn’t
have to guess what the setup was later.

| decided to exchange the monitor ROM
before doing the speed upgrade to make
sure it worked. | would hate to have noth-
ing work later and wonder whether it was
the new ROM or the speed upgrade that
had a problem. | used a small screwdriver
to pry out the old ROM and made sure the
pins on the new ROM were straight before
inserting into the socket. A brief test of the
computer showed everything was working
properly. The only difference | could tell
was the option to put a security password
on the system.

Getting Started

Finally, a day came when | could spread
out all the parts and the computer in the
kitchen and work all day without being
disturbed. Another one of my fantasies;
with three boys and a dog rampaging
through the house, distractions were

common. “No, Jeff, you can’t take that
neat looking IC to school for show and tell;
the computer won't run very well without
it. And don’t try to see if the dog thinks it
tastes good!”

HINT: Use a camera with the computer
cover removed or draw pictures to show
arrangements, where various wires, cables
sockets go, etc. This will help when reas-
sembling the computer later.

| used a large antistatic plastic bag (the
type used for shipping circuit boards, etc.)
to cover the workplace to prevent acci-
dental static discharges. Always touch the
plastic first to minimize the chance of
zapping an IC chip.

First came the cover. Pull the cabinet
forward carefully. The edges are sharp and
could cut the floppy/hard drive cables that
rest on top of the drives. Examine these
cables closely. If you see any sign of abra-
sion or cutting of the insulation, cover it
with electrical tape. If itlooks like any wires
are cut, or the drives don’t work properly
later, there’s a good chance that the cable
needs to be replaced. After removing the
cover, | removed the Z-549 video card and
put it in a safe place.

HINT: When you take out the various
screws and other small pieces, make a
sketch showing where the screws came
from. Then store the screws, etc. in an
envelope or Ziplok bag until you need
them again. This will help you from getting
to the end of the job and saying, “Where
do all these extra parts go? Ah, heck, |
guess we don’t need ‘em anyway.” It also
helps to make sure which screws go in
which holes, since there are some unused
holes, and you won’t have to try to figure
out which ones to use.

| cleaned off the years of accumulated
dust and dirt from the inside of the cabinet
with a vacuum cleaner. This can be a
chancy operation since a small static dis-
charge could ruin one or more circuits.
Don’t try this unless you are confident that

April 1991

45

Photo 1. Before.
there is no chance for static.

Next, remove the floppy/hard drive cables
from the backplane board by pulling up
gently but firmly. There is no need to
remove the cables from the drives or to
remove the drives themselves.

There are three connectors on the mother
board that have to’be removed. They are
located between the backplane connec-
tor and the drives. Unplug the speaker
lead, the battery lead, and the power sup-
ply from the motherboard and push the
leads aside.

Use a good pair of pliers or hex wrench
to unscrew the six screws holding the
parallel and serial ports to the chassis.
Don’t forget to put these in a safe place for
reassembly.

Remove the two screws attaching the
backplane board to the chassis. One is at
the top rear and the other is somewhat
hidden between the top two card connec-
tors. (See Photo 3.) Squeeze the plastic clip
connector at the top front of the board
with a pair of pliers and pull the board
slightly. The board then will pull straight up
from its connection to the motherboard.
Put the board and screws in a safe place.

Remove the five screws holding the
mother board to the chassis. Gently pull
the keyboard connector mini-board up
from the motherboard to disconnectitand
store it safely.

. ’ br- : —

Gently work the motherboard out of the
chassis. There may be a little interference
near the parallel and serial connectors. It
may help to move the speaker up out of
the way slightly and lift the front edge of
the motherboard. Whatever you do, don't
force anything. If (or when) you get frus-
trated and want to loosen it with a two
pound hammer (you know that will work),
quit! Take a break. Yell at the kids. Kick the
dog. Break a window. But don’t, whatever
you do, don't try to force anything. Pa-
tience will eventually work, and force will
probably break something permanently.
Put aside the chassis until it is time to reas-
semble the computer.

Put the motherboard on your (preferably
anti-static) work surface and examine it
closely. Compare it to the list of compo-
nents to be replaced and find the location
of each on the board. Always touch a
ground surface (such as the antistatic sur-
face or a parallel or serial port) first to
dissipate any built up static.

Everything to this point has been revers-
ible. From here on you will be making
electrical changes to the mother board. If
you’re squeamish, think twice about going
any further. Once you get started, you
can’t back out. At this point, Quincy (a
second generation mutt) decided that she
wanted to fix the board her way. She stuck
her nose right in there and threatened to

Photo 3. idden Screw.

Photo 2. Drive Cables.

bury the board next to the dog house. That
was the last she saw of the kitchen until the
job was finished.

Solder Removal

There are two methods to remove solder
from circuit boards. The desoldering iron
with suction bulb works well where holes
in the board have been filled in; the wick-
ing action of solder braid is best for remov-
ing solder where components are seldered
in place. | used both of these methods for
this project.

HINT: When using a desoldering iron,
make sure you never, never, never squeeze
the bulb when the iron is near the board.
You may squeeze molten solder onto the
board and create shorts and a multitude of
other problems. Always squeeze the bulb
over a moist paper towel, hold the bulb
while you melt the solder joint, and release
the bulb to suck up the solder. Then squeeze
the bulb over the paper towel to expel the
solder.

Old Parts Removal

The first parts to be removed were IC
chips at U518 and U520. Located near the
keyboard connector, | used desoldering
braid to remove as much solder as pos-
sible. (Photo 6 shows the working area.)

HINT: Double and triple check compo-
nent numbers to make sure you are work-

46

April 1991

ing on the correct one. You sure don't
want to take out the wrong one, although
my son Mark thought it was such fun, he
thought we should take them all out. Mark,
go play with Quincy.

Removing existing IC’s may be the tough-
est part of the whole project. If a compo-
nent has only twe or three soldered pins,
it's easy to remove it by alternately work-
ing on each pin. But when removing a
multi-pin component, it’s virtually impos-
sible to remove it intact, even by using the
desoldering braid and desoldering iron.
Enough solder is retained to hold the
component firmly to the board. In these
situations, | cut each pin on the compo-
nentside of the board, remove the compo-
nent, and then desolder each pin sepa-
rately. Make sure that you get all the solder
and pins out of the hole, but be careful not
to damage the foil.

HINT: Take your time. This can be very
frustrating, and frequent breaks will help.
Hurrying and trying to force the compo-
nent won’t help, and may lead to damag-
ing the board.

Clean the solder from U517, U519, C518
and C523. Since there are no existing
components at these locations, the des-
olderingiron is probably the easiest to use.

HINT: After you have finished these steps,
hold the board up to the light to make sure

-—‘?

'w"'.!"_'-'tl-’u!"t.'t‘
———————e—r 1 s

"Hen

I
LNsvaE N d
"y

i

Photo 5. Desoldering Iron.

allthe holes are clearand ready for the next
step.

New Parts Installation

Now solder in four 14-pin IC sockets at
U517, U518, U519, and U520. Note that
the end of the socket with the notch should
line up with the marked end on the board.
Solder two opposite corner pins on each
socket and recheck the sockets to make
sure all pins go through the board and all
sockets lay flat against the board. Then sol-
der the remaining pins. Check all solder
joints to make sure that they are good
joints, with no solder bridges or extra pieces
of solder. Now solderin capacitorsatC518
and C523, cut the excess leads, and check
the joints.

HINT: Use a magnifying glass to check
for good solder joints, loose solder, etc. It's
easier than burning your eyeballs out trying
to see those tiny little buggers.

There! Wasn't that easy? If you made it
this far, you've got it made. Your blood
pressure should be coming down by now.

Now it's time to insert the IC’s in the four
sockets you installed. Make sure you touch
the grounding material before you remove
and handle each IC (to prevent static).
Check the pins on each IC to make sure
they are straight; bend them as necessary
to make them straight. Note that the end

Photo 7. A closeup of the clock crysll area after

modification and reinstallation.

o S ————
e e s e

Photo 6. Work Area.

with the notch should be aligned with the
notch on the socket. Since these four IC’s
are almost identical to each other, double
(or triple) verify the part numbers as you
install them.

Remove the jumpers at U525. You may
find it easy to cut each wire and then des-
older the holes to remove them. Also des-
older the holes at RP-503. Install the 20-pin
socketat U525 and the resistor pack at RP-
503, similar to the 14-pin sockets above.
Plugin the IC at U525. Be careful about the
orientation of the resistor pack and the IC
when installing.

HINT: Not all of the holes may have
jumpers installed; note which holes have
jumpers in case you need to reinstall them
at some future time.

There is a step to add a capacitor at
C529, but my mother board already had a
capacitor there so | skipped this step. If
your board doesn’t have the capacitor,
desolder the holes and install a capacitor.

The next series of steps requires desold-
ering a number of holes for crystals and ca-
pacitors. Several of these would not open
either with desoldering braid or the des-
olderingiron. | had one of my sons hold the
board on edge and applied heat from the
foil side. Being very careful not to damage
the foil, | used a very sharp, pointed set of
tweezers to twist and drill through the hole

7

Photo 8. All Done.

April 1991

47

from the component side.

The new crystals could be soldered into
place but it is easier to solder a socket and
then just press the crystal into the socket.
Italso makes it possible to remove the crys-
tal later if needed. An 8-pin socket is used.
Since the crystal has only four pins, the
middle two pins on each side are removed
by pulling out with needle nose pliers. The
sockets are then installed at U536 and
U551. Solder capacitors into C550, C551,
C566, and C567.

Solder the electrolytic capacitors into
C557 and C570. Since electrolytic capaci-
tors are polarized, be careful to match the
“+” or “-" sign on one side of the capacitor
to the appropriate hole on the board.

Solder the striped coils into L505 and
L510 and the ferrite coils into L503 and
L508.

Insert the 24MHz crystal into the socket
atU551 and the 32MHz crystal at U536. In

\

The Electronic Clavier
P/N 885-6016

lieu of other instructions, | oriented the
crystals similar to U537 and U550 already
present. Photo 7 shows this area.

There is a single jumper at J513. Cut this
jumper in the middle of the wire and sepa-
rate the cutends slightly. Don’tremove the
wire, since it may be needed if you ever
want to slow the machine back to 8MHz.

Final Checks and Reassembly

Once again, use a magnifying glass to
check all solder joints and look for loose
pieces of solder and solder bridges. | used
a “microduster” blower to make sure any
tiny pieces of solder, wire, or IC chip leads
were removed from the board before reas-
sembling.

Carefully slide the motherboard back into
the cabinet. Move the speaker up to make
room to lift the front side of the board. This
will help get the serial ports into position.

HINT: Make sure there are no loose parts
or wires under the board as you slide itinto
place. Itis easy to let one of the wires next
to the disk drives wander under the board
where it can get stuck.

Don't forget to include the small key-
board connector with the front screw. Plug
it into its connector and then insert the
screw.

HINT: Gently remove the plastic card
holder on the front face of chassis to make
it easier to install the keyboard connector.
After the mother board and keyboard
connector are installed, reinstall the card
holder.

Insert and gently tighten the five mother
board screws. Don’t overtighten as there is
a possibility the board could crack. Install
and tighten the hex screws for the parallel
and serial ports.

When inserting the other boards, | gently
cleaned the edge connectors with a pencil
eraser to remove any oxidation which may
have built up over the years. This will help
ensure good contact in the future.

Insert the backplane board into the mother
board. Push the hole in the upper front
corner onto the plastic clip and insert and
gently tighten the two screws. Connect the
power supply, speaker wires, battery and
the two disk drive cables securely.

Install the video card and any other cards
and replace the cabinet, being careful not
to cut the disk drive cables. Now it is time
to hook up the monitor and check out your
work.

Power Up

The bets were running heavy in our neigh-
borhood by now. 5to 1, the speed increase
wouldn’t work; 3 to 1, nothing would ever
work again; even odds, the monitor would
smoke, too, when | turned it on.

| couldn’t look. But | didn’t smell any
smoke. Finally | peeked. There was a mes-
sage on the monitor. My system configura-
tion was missing. A push of the <ESC> key
took me to the monitor ROM. All configu-

ration settings had been lost when the
battery was disconnected. | pulled out the
printscreen sheet and reset the time, date,
RAM, and drive information.

This time the system boot was success-
ful. The machine went through all the gyra-
tions it has to in my config.sys and
autoexec.bat files. | couldn’t believe it!
Tentatively, | started up various application
programs. They all worked! Fantastic!

| hot keyed into PCTools and ran the
system information check. It now shows a
speed of 690% of original PC speed. That
correlates exactly with the clock speed
change from 8Mhz to 12Mbhz. Since that
day, | haven’t found any bugs in the sys-
tem.

Caveats, Always Caveats

My upgrade was successful. But was |
just lucky? Needless to say, the modifica-
tions are not supported by Zenith Data
Systems. There are a lot of potential pits to
fallin when attempting this type of change.
The following are some of the most obvi-
Ous.

1. The CPU was supplied to run at 8MHz.
It may not be able to handle the higher
speed. If so, it can be replaced with a
12MHz 80286 chip.

2. The RAM memory for the 8MHz unitsis
100 ns, which may not be fast enough
to keep up with the higher speed CPU.
It can be replaced by 80 ns memory.
That would be a good excuse to buy 1
meg SIMM memory and get full benefit
from the additional memory.

3. There may be other speed sensitive
chips on the board. I'm not a computer
designer, so | just crossed my fingers
and followed the directions. Everything
on my board seems to be compatible
with the upgrade.

4. Zenith Data Systems, as with most manu-
facturers, makes running changes on
their products. Most of these won’t be
documented and don't affect normal
operation, but if your board has a change
that affects these modifications, it's pos-
sible the upgrade won’t work. So be it.
At least you can revert to the original
8MHz operation by removing the crys-
tals, IC chips, and reconnecting the
jumper. | verified that this works.

Finis

The 8MHz 286LP is a great machine,
perfect for home use or any application
where bunches of expansion slots aren’t
needed. At 12MHz, it’s a screamer. Ready

“to give it a try? Chances are that your

upgrade will work perfectly. It's certainly
worth the try.

OK, let the kids and dog back in the
house now. I'm finally finished. It's time to
get back to the serious stuff, like Indiana
Jones and the Last Crusade.

48

April 1991

ZENITH

data systems
Groupe Bull

POSTMASTER: If undeliverable,

please do not return.

Don't be afraid to communicate! Get HUGMCP
and make contact the easy way. Now with sup-

port for all Laptops, order HUG Part number
885-3033 today.

— Prints Thig List, Tour 3to Buffer Size, fnd How Many
g 1, 2 o
— flins i age, .
These Messages Are Entered Using The (F6) Setup Comsand.
n-~ Tes_The Starage er On and OFf, When The Buffer
ﬁ. The Bafr) On The 25th Line Mill Be High-Lighted.
M — #lles Saving Data To Disk Frowm The Sluug‘hl'l'lr‘w
isectly From The Modew By Mag Of XMODEM Protecel
= Wllns ing Bata Frow Disk, Using Lither NOM-ROFF,
Mhich Optionally Can Be Irtmd. On KNODEN Protocal.
— In Setup Node 50 This Sof tware Can Be Configured.
= Clears Out ta That Mag Be In The Storage Baffer.
— Send Duta In mx Buffer To Printer.
P — Dats Bck To KE-NS.

5t Beffer = 524288 Bytes
Sm Buffer Usage = B Bytes

.

=37 @
3

Select Message (8-0), (F1} To List, Anything Else To dbort —) _
FiAly Fitsy Pi:Bufr FhSaw F5cSed Fé=Cfgr FP=Cle Fi-Print PY:Dat o

=} Medil Rati
=3 ﬂ:l'.n ?.’ﬁn, l;n
] dard Lengih
;) M!{ Or bdd Bute-Nessages
] aseses Functises
] by %":H?E::Ih-‘:x'xu“
e 1gerat
D) Wakr Chasges Persanant
Seleet 45, (1) For Melp, Sogthing Else To Suit —) _
Rare: 15708
arity. WM
S
LN
poese Ts Eeghosnd Bigable: W
s""‘a‘:‘-"" Bata Parity ;n'. I 10 TR
Isitializatios Tewt: W
Irte Charactey: m-f'
Foden Purt Set To: CONL

TGl M-ty Fl-belr Th-Saw T3Sad TG:Cfgr TP-Clr M:Prist PrLqt O

BULK RATE
U.S. Postage
PAID
Zenith Users' Group

$2.50
P/N 885-2135

	image001
	image002
	image003
	image004
	image005
	image006
	image007
	image008
	image009
	image010
	image011
	image012
	image013
	image014
	image015
	image016
	image017
	image018
	image019
	image020
	image021
	image022
	image023
	image024
	image025
	image026
	image027
	image028
	image029
	image030
	image031
	image032
	image033
	image034
	image035
	image036
	image037
	image038
	image039
	image040
	image041
	image042
	image043
	image044
	image045
	image046
	image047
	image048
	image049
	image050
	image051
	image052

