
MICROPOLIS USERS GROUP

MUG Newsletter # 21 - April 1982

~***
POINTERS TO VARIABLE STORAGE

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission KS 66208

Like most modern Basic interpreters, Micropolis
Basic allocates storage for variables dynamically.
That is, storage space is only used when needed
rather than always occupying memory. For a given
size memory, you can write a long program with
little variable storage or a short program with
large variable storage and use the same amount of
memory.

When you first type RUN, all storage space for
variables is cleared and you have a clean slate to
work with. Subsequently, your reference to
variable names in your program causes memory to be
allocated to variable storage in the following way:

A reference to a Real (floating-point) variable
causes memory to be allocated in blocks of 26
variables each, representing complete alphabets of
letters. If you reference the variable X, Basic
allocates storage for the variables A-Z, and any
future references to variables in the range A-Z do
not require any additional memory. However, if you
later reference the variable E7, Basic will
allocate another complete alphabet for the
variables A7-Z7. Thus, there are eleven alphabets
of 26 variables each that could possibly be created
by Basic. These alphabets of 26 variables are

l.. treated internally by Basic as arrays. Basic only
~knows the position of the first variable (A) and

calculates the position of any other letter. The
value of RSIZE is the number of bytes used each
real variable, so by knowing the address of the A
variable and RSIZE, the address of any other letter
variable can be determined.

Integer variables are handled in the same way as
real variables. A single reference to an integer
variable allocates memory space for all the integer
variables A%-Z%. The pointer points to A% and
ISIZE holds the number of bytes used by each
integer variable.

String variables are allocated one at a time, so
there is a separate pointer for each string
variable A$-Z$. The first byte of a string
variable holds its maximum length and the second
byte holds its current length. The remainder of
the bytes hold the string itself. SSIZE holds the
maximum length of each string unless specifically
dimensioned otherwise.

All arrays have a separate pointer and space is
only allocated when the array is dimensioned. The
internal storage format is as follows: Byte 1 holds
the number of dimensions in the array. This is
followed by a 16-bit word for each of the
dimensions which holds the maximum number of
elements in each of the dimensions (the dimensioned
value plus one). Byte 1 tells you how many 16-bit
words follow it and these words are arranged in the
opposite order that they appear in the DIM
statement. Finally, there is one additional byte
that holds the number of bytes used by each element
in the array. The data follows immediately. For a
two dimensional arrray A, the data is arranged as

t A(O,O), A(l,O), A(2,0), •••• ,A(n,O), A(O,l),
~ A (1 , 1) , • • • • etc .

It should go without saying that you must know what
you are doing before you write a program that does
any updating of the data or the pointers, and any
program that fools around with data stored by Basic
must be thoroughly tested before it is allowed to
manipulate any important data. However, once you

(Continued on Page 4)

MUG NEWSLETTER 121 - APRIL 1982 Paqe 2

FORTH

by Dr. Richard s. Newman
Faculty of Medicine

Memorial University of Newfoundland
St. John's, Newfoundland, Canada AlB 3V6

My interest in FORTH arose out of the need for a
fast high-level language. My application was the
control of a high speed analog to digital converter
and several digital to analog converters. Assembly
language coding is tedious at best and the hours
spent debugging such code needs no comment. FORTH
solved my problems as no other language to my
knowledge could.

The differences between FORTH and other languages
are many and I don't propose to go into all of them
(I am not really enough of a programmer to do that
anyway). FORTH is fast however, and for my
application that was essential. Listings 1 and 2
are Micropolis BASIC and FORTH versions of the
high~level benchmark program of J. Gilbreath's (see
Byte, Sept. 81). This program calculates the
primes from 1 to 8190 without using division.
Instead the program uses information about what
numbers cannot be prime. On my 2 mHz Sorcerer the
FORTH program ran in 15 seconds whereas the BASIC
program took 1228 seconds. On this benchmark FORTH
is nearly 82 times faster than BASIC and is only
0.7 seconds slower the the equivalent Z-80 assembly
lanquage program. ON the Interface Age benchmark
(August 1981), Micropolis Basic takes 2251 seconds
whereas FORTH runs it in 144 seconds. As a
comparison, the IBM System 34, a mainframe, running
BASIC took 129 seconds. This is one reason why
FORTH is the standard operating language in most of
the radio astronomy labs around the world.

FORTH is structured and as such it forces the
programmer to use "top down design" and "bottom up
programming". Programs assemble from top to bottom
and there are no line numbers or GOTO's which let
you make jumps to rescue poor designs. Since each
application is broken down into small pieces (top
down design), each piece is written and debugged
separately (bottom up programming). This also
means that changes in a program can be made
rapidily (such as in the middle of an experiment)
and the program again running in a few minutes.

The core of the FORTH language is quite small which
means that machines with a small amount of RAM
space can run FORTH. The cost of small size is
that standard FORTH systems use only 16 and 32 bit
signed integer numbers (software or hardware
floating point systems are available if this is a
problem). Functions which are common in BASIC like
square root, sin, log, string handling, etc. are
not available in the core of FORTH although they
can be added. The design philosophy was that the
applications programmer adds what is necessary to
execute the application. The language is therefore
not burdened with functions which are not used.

FORTH programs are also conservative of memory
because they use very few variables and coding is
very tight. FORTH is a stack oriented language so
variables go on the stack in much the same way as a
Hewlett-Packard calculator. To take advantage of
the stack, reverse polish or postfix notation is
used, again like the HP calculators. The
representation of 2 times 2 in FORTH is 2 2 * as
opposed to 2*2 in BASIC. The arguements are
entered first and then the operator. Although
initially confusing, after you learn to use it you
appreciate the fact that no parenthesis are
necessary on long math expressions. For example,
in BASIC (2+3)/(4+5) translates in FORTH to 2 3 + 4
5 + / • 2 is placed on the stack and then 3. 2
and 3 are added together and the result left on the
stack. 4 and 5 are then placed on the stack. 4
and 5 are then added and the result left on the
stack. The sum of 2 and 3 (still on the stack) is
then divided by the top stack value (sum of 4 and
5). Math is very fast in FORTH because of the
stack. Listings 3 and 4 are BASIC and FORTH

(Continued on Page 5)

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

MUG NEWSLETTER 121 - APRIL 1982 Page 3

WRITING & READING DISK FILES - PART 2

by Buzz Rudow

Last month I discussed the use of the delimeter in
disk file structure. One of the nice things about
storing data on the disk with delimeters is that
you don't normally have to worry about any one
field's length. However, you do have to worry
about the size of the combined fields in a PUT. If
the total size of all your fields exceeds 250, the
system gives you an error message. To avoid the
excess PUT length, you must keep the number of
variables down to a small enough size so that the
maximum length of the combined variables won't
exceed 250.

Staying with the name and address record as an
example, the name-field can be any length.

Buzz Rudow
or

Buzz Rudow - C/O DAMAN

I find a couple things wrong with this system.

(1) You can exceed the size of your output form.
If you have a 3" label, then a 32 character name
doesn't fit (assuming a 10 character inch printer).
(2) It is wasteful of disk space. The N$, A$, and
C$ that I used last month won't take up more than
90 to 120 characters. But when Micropolis writes
to the disk - that is, you do your PUT - the system
uses all 250 characters of the sector you are
addressing.

Therefore, one of the first things I tried to do
was to compact two logical records into one
physical disk record.

If you have 250 characters to use, then you can use
125 for each logical record. A quick check at
whether this works is to estimate the size. If I
have four lines of data, each being 30 characters,
then I use 120 characters.

Indeed, you could input your data that way. My
problem was that DAMAN's customers had various
requirements, few of which were for a simple three
or four line label.

Before I go further, let me say that there is
nothing stopping you from storing two logical
records on a sector, using delimiters. This
discussion, however, is limited to solving the
problem by the forcing of fixed field lengths.

Sparing you the details of the various forms I
tried before I arrived at my current "standards",
this is one of DAMAN's formats for data.

VARIABLE STARTING
NAME USE SIZE LOCATION

A$ NAME 28 001
B$ ADDRESS 1 28 029
C$ ADDRESS 2 28 057
0$ CITY 13 085
E$ STATE 2 098
F$ ZIP 9 100
G$ COUNTRY 2 109
H$ AREA CODE 3 111
1$ PHONE 7 114
J$ FLAGS 5 121

TOTAL SIZE = 125

When inputting data, I check for length and then
force the variable to be the size I want. That is

05 B$=REPEAT$(" ",28): !Makes String of 28 Blanks
10 INPUT "Enter Name: ";A$
20 IF LEN(A$)>28 PRINT "Name must be less than

29 Characters":GOTO 10
30 A$=A$+B$; !Pads right hand side with blanks
40 A$=LEFT$(A$,28): ! Truncates to the proper size.

Each variable is checked for exceeding the maximum

(Continued on Page 6)

MUG NEWSLETTER 121 - APRIL 1982

MORE ON THE QUICKENING OF MOOS ON THE EXIDY

by John Donaldson
Mytton Rodd Ltd., P.O. Box No. 1

South Melbourne 3205 Australia

Page 4

In response to several questions about the previous
article (MUG: JAN 1982, Pg 13) on speeding up MOOS
on the EXIDY, I have tried to explain the
principle. While the exact EXIDY changes won't
work for others, the principle should be valid for
other monitors. I trust that if you find a
solution for your system, you'll let the MUG know.

We cannot claim to be experts in the operation of
the Sorcerer or the Micropolis, however this is the
best explanation we can offer at this stage.

I would suggest that you read this article in
conjunction with the Micropolis manual Rev. 8 9/78,
pages 4 - 18 and 4 - 19, in particular together
with the Sorcerer Software manual 18 pages from the
back and the section "Keyboard Quick Check". My
Australian edition of the Software manual
unfortunately does not have page numbers.

In summary, the patch to the RES module substitutes
the Sorcerer Quick Check routine for the @ CBRK
routine (4.3.1.3) if the @ CDBRK routine (4.3.1.6)
returns a value which is not 0 and not ASCII.

The @ CDBRK routine detects whether and what key
has been pressed. It does this twice by first
calling the complete Sorcerer monitor keyboard
routine and then recognises the character and
whether it is 0 or non ASCII (ie. a control key).
It then calls the @ CBRK (4.3.1.3) routine.

The patch replaces this second call to the Sorcerer
input routine with a call to Quick Check which does
the same thing but a lot faster.

The Sorcerer monitor has two keyboard input
routines. The Micropolis system has to be written
to cover all computers which may not have the Quick
Check routine. Hence the Micropolis logic must
take the general case rather than the particular in
to account.

The patch has substituted Quick Check for @ CBRK
routine. Hence the syntax checking only affects
the keyboard input routine and substitutes the more
efficient Sorcerer Quick Check routine where
appropriate - ie. 0 or not ASCII.

We have used this patch for about six (6) months
with no crashes or other nasty occurances. We use
2 disk drives with all Micropolis disk commands and
extensive interfacing of the computer and the disks
with no trouble.

The BASIC Syntax is of course unaffected and all
BASIC error messages (Appendix A.) and MOOS error
messages (Appendix D.) are all present.

POINTERS TO VARIABLE STORAGE

(Continued from Page 1)

understand the system, you can write assembly
language subroutines that add considerable power to
Basic programs. For example, I found it a fairly
simple matter to write an assembly language
subroutine that can sort all the elements in an
array stored by Basic quicker than you can say ZAP!

The following are the pointers to the variables as
used by my copy of version 4.0 Basic. Testing on a
number of different computers indicates that it is
probably the same on all version 4.0 Basics.

RSIZE
!SIZE
SSIZE

04C5
04C6
04C7

MUG NEWSLETTER 121 - APRIL 1982

The pointer at

3421
3423

t .3425
,..,3427

3429
3428
3420
342F
3431
3433
3435
3437
3439
(24 MORE WORDS
3468

Points to

AO
Al
A2
A3
A4
AS
A6
A7
AS
A9
A
A$
8$

POINT TO C$-Z $)
A%

**** ARRAYS ****
3385 A()
(25 MORE WORDS
3389
(25 MORE WORDS
33ED
(25 MORE WORDS

FORTH

POINT TO B () -z ()
A$()

POINT TO B$()-Z$()
A% ()

POINT TO B%()-Z%()

(Continued from Page 2)

Page 5

programs which calculate the product of 2 * 2 1000
times. At 2 mHz, FORTH executes in 2.5 seconds
whereas BASIC takes 27 seconds.

There is a lot more I could say about FORTH but
perhaps it would be more instructive if I mentioned
when I use FORTH. I use FORTH for all real time
applications (data acquisition, display, control of
stimulators etc.). I have also used FORTH for
writing plot routines and for cursor addressing of

~
. my memory mapped video. When I had to calculate

he best way to handle my morgage renewal on the
house (our morgages are for at most 5 years at a
time) I wrote the programs I needed in BASIC
because it had functions which I have not yet
implemented in FORTH and at the time I did not have
my floating point FORTH. I have also used BASIC to
write satistical analysis routines and a program
which simulates the electrical activity in nerve
fibres. Again these programs required functions
not contained in FORTH. All of these programs
could have been written in FORTH but at the time it
was easier using BASIC than implementing the needed
functions in FORTH.

The FORTH I use on my Sorcerer is Laboratory
Microsystems Z-80 FORTH which costs $50.00 (this
includes a manual with all of the FORTH
definitions, lots of FORTH programs, a description
of the FORTH design, a screen editor and a Z-80
assembler for FORTH) • For the floating point
software version the price is $150.00. If you
really want fast floating point math you can get a
version which supports the AMO 9511 on an S-100
board and in addition implements many of the math
functions not included in FORTH. CP/M version 2.0
is necessary for all of these systems. Laboratory
Microsystems (4147 Beethoven Street, Los Angeles,
CA. 90066) can supply FORTH on the Micropolis Mod
II format diskette. For a good book on FORTH, I
recommend "Starting FORTH" by Leo Brodie which is
available from Mountain View Press (P.O. Box 4656,
Mountain View, CA. 94040). The price is $16.95.

I have enclosed a copy of the FORTH source for the
Users Group (MUG Library Disk 19). To assemble,
use FORTHSORl. It will call up the other three
source files as it needs them. The start address

. is 2BOO. Since it uses MOOS calls it must have

U YSQl and SYSQ2 on drive 0 during assembly. The
ORTH module is executable as it stands.

It is pretty certainly not bug-free. I cannot get
the editor to work correctly (the editor is not
included on the disk) • It will, as it stands,
execute FORTH but you cannot store your programs on
the FORTH screens. In addition, error messages
which normally come from the disk are not present
so you have to figure out your own mistakes when it

MUG NEWSLETTER i21 - APRIL 1982 Page 6

dosen't like your statements. Any interested MUGer
could have a lot of fun with it, however, and start
to learn FORTH while we continue to debug it.
Then, as we debug it, we can notify users of the
necessary fixes. The complete glossary of the
instruction set can be obtained from Forth Interest
Group (P.O. Box 1105, San Carlos, CA. 94070, (415)
962-8653). $15.00.

Listing 1
SIEVE Program in Micropolis BASIC

1 B=lOO
2 DIM A%(B)
5 C=O
6 FOR I=O TO B
7 A%(I)=l
8 NEXT I
9 FOR I=O TO B
10 IF A%(I)= 0 THEN 18
11 P=I+I+3
12 K=I+P
13 IF K>B THEN 17
14 A%(K)=O
15 K:::K+P
16 GOTO 13
17 C=C+l
18 NEXT I
19 PRINT C, "PRIMES"

NOTE- "B" in line 1 should be 8190 but that takes
too long. If B=lOO then it takes 15 seconds to
find the primes from 1 to 100 or 81.9*15=1228
seconds for the primes from 1 to 8190

Listing ~
SIEVE program in FORTH

8190 CONSTANT SIZE
0 VARIABLE FLAGS SIZE ALLOT

DO-PRIME
FLAGS SIZE 1 FILL (SET ARRAY)
0 (0 COUNT) SIZE 0

DO FLAGS I + C@
IF I DUP + 3 3 DUP I +

BEGIN DUP SIZE <
WHILE 0 OVER FLAGS + C! OVER +REPEAT
DROP DROP l+

THEN
LOOP

."PRIMES"
(SEE WHAT I MEAN ABOUT NOT BEING EASY TO READ!)

Listing l

10 FORI=lT0100l:A%=2*2:NEXT I

Listing !

:TEST 1000 0 DO 2 2 * DROP LOOP

WRITING & READING DISK FILES - PART 2

(Continued from Page 3)

size. Enough blanks are then put on the right-hand
side to guarantee that the variable exceeds its
defined size. Finally, the variable is truncated
to the defined size.

To make a single variable, you can concatenate the
input variables to, say X$, by writing -
X$=A$+B$+C$+D$+E$+F$+G$+H$+I$+J$

Let's ignore, for the moment, the problem of how to
write and read two of these to each physical disk
record. Just assume you wrote XS, as above, and
then read it back.

A crude way to print the "label-only" data to the
screen is to say -

PRINT LEFT$(X$,28): !Prints Name
PRINT MID$(X$,29,28): !Prints Address Line 1
PRINT MID$(X$,53,28): !Prints Address Line 2
PRINT MID$(X$,87,13)+",";MID$(X$,100,2)+" "+

MID$(X$,102,9): !Prints City, St, & Zip.

MUG NEWSLETTER 121 - APRIL 1982 Page 7

I hope I haven't lost you. Perhaps you are
wondering why one would want to go through all
this, so let me review the situation.

(1) By limiting record size to 125, I can store two
logical records per disk sector, thereby saving
disk space.
(2) By forcing each field to a specified size, I am
guaranteed that I won't overflow my 125 character
record size.
(3) By forcing each field to a specified size, I
know where each field starts and stops in the
concatenated string. If I know this, then I don't
need to use delimiters and therefore I can save, in
this case, 10 characters which can be used for
data.

The negative sides of the situation are:

(1) You can't input data of greater lenght than
allowed in the definition. For instance, if I
wanted the state to be "Ala.", I can't do it. If a
city's name exceeds 13 characters, then that name
must be abbreviated.
(2) You have to do your own parsing. That is, when
you want to work on the phone field, you don't have
it in I$. You can put it there (parse the input
string X$) by saying -

I$=MID$(X$,114,7)

To write to the disk, I use the following
technique.

10 DIM X$(150),Z$(250)
20 I=l: ! "I" used for indicating the

(1) left or (2) right
30 GOSUB 100: ! Get one logical record input
40 GOSUB 200: ! Move it to output buffer.
50 GOTO 30

100 INPUT A$, •••• ,J$
190 X$=A$+B$+ ••••• +J$
195 RETURN

200 IF I=l THEN Z$=X$:I=I+l:RETURN
210 Z$=Z$+X$:PUT 1 Z$:I=l:RETURN

Of course there's a bit more to it than the above.
I have to check for the operator ending input, for
the end of input being in mid-physical record, or
for the start of input being in mid-physical
record.

The data is, as I've shown, written to the disk as
a set of two 125-character strings concatenated
into one. I write no delimiter to the disk. The
delimiter, you remember, is used by the operating
system to parse the separate strings out of a batch
of data. Since I know where my strings start and
stop, I need no delimiter.

Regardless of my needs, the operating system still
looks for delimiters. As mentioned last month,
the default delimiter is the comma (,). If I now
write

DIM Z$(250)
GET 1 Z$

the operating system will physically read all of
the sector into an internal buffer and then scan
the buffer for a comma. If a comma exists, the
operating system will put only the data preceeding
the comma into Z$. That's not what I want, so I
must change the string delimiter to be some
character which will not by found in the data. A
reasonable one to use is

STRING CHAR$(255)

which is a HEX FF.

Getting Data Back Out

Pictorally, if you input a series of logical
records to a system such as we've discussed, the
data is on the disk like this:

MUG NEWSLETTER 121 - APRIL 1982 Page 8

.........................
Physical Record 1 : Logical 1 : Logical 2 :
Physical Record 2 : Logical 3 : Logical 4 :
Physical Record 3 : Logical 5 : Logical 6 :
By inspection, you can see that if you wanted
logical record 5, you'd have to get the left 125
characters of physical record 3. Stated
mathematically:

if P=Physical record, and
L=Logical record

then P=INT((L+l)/2)

Working through a couple example to show you it
works:

for L=l
=2

3

P=INT((L+l)/2)=INT((l+l)/2)=INT(l)=l
=INT((2+1)/2)=INT(l.5)=1
=INT((3+1)/2)=INT(2)=2

Determining which side of the physical record can
be done with the evaluation of the statement:

MOD(L,2)
If MOD(L,2)=0, then use the right side.
If MOD(L,2)=1, then use the left side.

Next month I'll put this all together. Included
will be how to pad when the operator stops in
mid-sector and how to pick up the blank record on
subsequent data entry.

RELOCATING MDOS HAS BENEFITS

by Ron Shenk
329 Robin Hood Rd., Atlanta, Ga. 30309

After adding a Micropolis Mod II disk drive to my
SOL computer I had two BASIC intrepreters, PT's
ECBASIC, which I had been using up to that time, · }
and the Micropolis disk basic, which I call MBASIC. ~
Both have nice features: MBASIC supports random
access disk files, can achieve up to 60 decimal
digits of accuracy if desired, and has nice program
tracing. On the other hand, ECBASIC supports
IF •• THEN •• ELSE, has a gem of an editor and, most
significantly, is FAST. Typically, MBASIC requires
30% more time to execute the same program.

How nice it would be if ECBASIC could be interfaced
to the disk drive.

The solution I reached was to relocated MOOS to the
top of RAM memory and write a disk interface
routine, which I call INTECOM. With this relocated
operating system, RDOS, several potentially useful
applications became possible. I could now use
DEBUG to trace programs which occupy low memory
overwriting MOOS. I could even write off to disk
the disassembled listing produced by DEBUG. I
could also write to disk listings made by LINEEDIT
of MBASIC in order to use features offered by a
second editor or to execute MBASIC programs by
ECBASIC. I could download to disk BASIC programs
listed from a time sharing service or other remote
site and then feed them to MBASIC for execution
without having to type a single line, if the syntax
was compatible. I could convert CP/M files to MOOS
files and vice-versa.

To relocate MOOS, I first found all addresses in
MOOS (about 1600 in number) • Then I wrote the
program MDOSMOVER to increment each one of them by
XXOOH, for any hex digits XX, and move the
resulting code to the new location. MDOSMOVER
works with version 4.0 of MDOS and with my
particular I/O routines. However it should not be ...J··
difficult to modify by hand the I/O section of MDOS
for any particular computer.

For anyone interested, I can supply the programs
MDOSMOVER or INTECOM on printout, on Micropolis Mod
II diskette, or on SOL-CUTS cassette tape. For
printout, please send $3 for either program or $4
for both. For diskette or tape, please send $15
for either program, or $24 for both.

MUG NEWSLETTER #21 - APRIL 1982 Page 9

SORCERER'S APPRENTICE

The Sorcerer is alive and well and living in
~Michigan.

The Sorcerer's Apprentice Users Group publishes a
fact-filled newsletter eight times per year.
Content of the newsletter is directed at the
Sorcerer user, from the true apprentice to the
experienced business user with a disk system.

Circulation is world-wide, and articles in the
newsletter are contributed from individuals and
from editors who address a specific subject each
issue. The Sorcerer's Apprentice is in its fourth
year of publication.

Current issues of the Sorcerer's Apprentice are
averaging 24 pages, magazine-size, with both
articles and advertising of interest to the
Sorcerer user. Back issues are available.

The users group also maintains a Sorcerer CBBS
system in the Detroit area (area 313, 535-9186
ringback).

Sorcerer users around the world are invited to join
the Sorcerer's Apprentice Users Group. Annual dues
are $18 in the United States, $24 Canada and
Mexico, and $32 in other countries. Dues include
the newsletter, access to the Sorcerer CBBS, and
other services.

For information, write Sorcerer's Apprentice, P.O.
Box 33, Madison Heights, Michigan, 48071. Or, call
president Don Gottwald, (313) 286-9265.

LIBRARY CHANGES & ADDITIONS

~As I mentioned last month, I'm trying to get the
library disks to contain 35 tracks or less, and to
get them organized into categories.

Disk 6 now contains only System Utilites. These
work, I think, and in many cases contain the source
code, so you can modify them. The MDOS
dissassembly of Manderson's has been moved to Disk
17. The System Patches have been moved to Disk 16.

I moved the MUG Newsletter Indexing programs and
data files from Disk 7 to Disk 13. Actually, these
are all new. Ken Findlay rewrote the programs and
files to pack 3 logical records to each sector.
Thanks alot, Ken. We were running out of space
with the old format. And I know that conversion
wasn't a trivial task. The Newsletter index for
issues 13-20 is printed on pages 13-16. The
non-interfaced menus on Disk 7 were deleted.

Disk 9 now also contains only System Utilities.
The system patches were moved to Disk 16, and the
FILECOPY disassembly moved to Disk 18; System
Disassemblies And Documentation. Manderson's Z80
disassembler was moved to Disk 15.

There is some new material on the above mentioned
disks, but I'll discuss it next month.

Totally new material exists on the following disks:
Disk 12 - Technical & Household programs; Disk 14
has some miscellaneous routines which aren't
categorized; Disk 18 has some further info &
documentation for Manderson's DMOS disassembly
(Disk 17); Disk 19 has some new games, and Disk 20
has FORTH.

l 'here probably is enough for CP/M disks 1003
~Games) & 1004 (Utilities), but I can't be specific

about their contents at the time I'm writing this.

I really hope that this shifting around doesn't
upset you terribly. In the long run, I'm quite
sure it's a proper move, but it will cause some
confusion for a time.

To brighten things up, remember that all disks from

MUG NEWSLETTER #21 - APRIL 1982 Page 10

6 on out are now $10 instead of $15 ($12 instead of
$17 for those of you outside of North America).
For those of you submitting programs on your disk,
the price remains $3 ($5 outside North America).
MOD I owners no longer have to send a second disk.

LATEST DISK CONTENTS

What follows are updated Table of Contents for some
of the Library Disks. Space doesn't permit all
updates to be listed this month, so I'll finish
next issue.

MUG MOOS Library Disk 06, Revision 06, APR 82
SYSTEM UTILITIES - 25 tracks

Name Typ Rv Sze Author/Description

EDITT0EXT SRC 00 013 Manderson, R. - Documentation
for the following 9 files.
LINEEDIT5 SYS 02 OOF Manderson, R. - The assembled
version of the EDIT files. Similar to Mp LINEEDIT,
but has MERGE, enhansed APPEND, & editing
capabilities.
SYSQl SRC 00 OOB Manderson, R. -
EDITL SRC 00 OOB Manderson, R. -
EDIT2 SRC 00 021 Manderson, R. -
EDIT3 SRC 00 027 Manderson, R. -
EDIT4 SRC 00 016 Manderson, R. -
EDITS SRC 00 OlB Manderson, R. -
EDIT6 SRC 00 013 Manderson, R. -
DISYMS SRC 00 021 Manderson, R. - Instructions
for assembly & use, as well as the source for a Z80
disassembler.
UNASSM SYS 00 OOB Manderson, R. - The assembled
version of DISYMS. Lots of options - lists, ASCII
equivalents, SYM tables.
S/DISKCOPY SRC 00 014 Findlay, K. - Source for the
following substitute for the Mp DISKCOPY. Slower but
surer on some systems.
DISKCOPY SYS 00 004 Findlay, K. -

MUG MOOS Library Disk 07, Revision 02, APR 82
MISCELLANEOUS - 32 tracks

Name Typ Rv Sze Author/Description

INSTR.TEXT TXT 00 013 Shapiro, J. - Documentation
for the two INSTR. programs that follow.
INSTR.GEN BAS 00 OOE Shapiro, J. - Allows
generation/ read of data files that contain a
program's instructions & documentation. Frees memory
& speeds up programs. See newsletter #15.
INSTR.READ BAS 00 OOB Shapiro, J. -
TOKEN BAS 00 007 Powers, W. - Hunts down the
tokens, or codes, used in Mp BASIC. Lists codes &
function. See newsletter #14.
DISKMENU BAS 00 007 Burkhardt, E. - Reads the
dir- ectory (DIR) file from video mapped memory.
Outputs to screen. See news'r #12.
LABELS BAS 00 007 Burkhardt, E. - Same as
above, but prints disk labels.
W-2S.DOC TXT 00 004 Schoenke, T. - Documentation
for W-2S.
W-2S BAS 00 OOF Schoenke, T. - Produces W2s &
W3s for those whose payroll is manual or whose
program doesn't do it.
JUMBLES BAS 00 008 Riding, G. - Solves the
JUMBLES puzzle contained in many newspapers. See
news'r #16.
TAXDEPR BAS 00 011 Rothstein, M. - Generates de-
preciation schedules for S/L, 125%DB, 150%DB, DDB
or Variable method. Also Investment Credit & Bonus
depreciation.
CW.DOC TXT 00 OOB Fait, D. - Documentation for
the following 8080 assembly language program.
CW.SRC SRC 00 020 Fait, D. - Converts keyboard
input to a CW sequence, via a look-up table, & sends
to output port. Receives & times signal from input
port, con- verts to char. via look-up table, &
displays it.
CW OBJ 00 006 Fait, D. -

MUG NEWSLETTER #21 - APRIL 1982 Page 11

PER-REM
PERSPECT.
draftsman
TESTl-I
TESTl-0
CHECKBOOK

BAS 00 OOC Ivey, W. PERSPECT. documen'n.
BAS 01 022 Ivey, W. Aids artist or

balanc'g.

in producing perspective drawings.
DAT 00 OOF Ivey, w. -
DAT 00 OOF Ivey, W. -
BAS 00 OOC Little, H. - Checkbook

MOTION BAS 00 005 Pickert, A. - Illustration of
screen motion. See news'r #16.
RESCUE.DOC SRC 00 016 Bohn, J. - RESCUE
documentation
RESCUE OVL 00 004 Bohn, J. - Allows
unSCRATCHing of files. Handy utility.
SPELL BAS 00 003 Harden, Jon - Neat tool for
learning. Takes list, displays word for variable
time. Then clears screen. You must now type the word
correctly.
INSERT BAS 00 003 Harden, Jim - Binary
insertion subroutine.
STOCK-MRKT BAS 00 000 Harden, Jon - Tool for
personal stock decisions.

MUG MOOS Library Disk 09, Revision 02, APR 82
SYSTEM UTILITIES - 22 tracks

Name Typ Rv Sze Author/Description

$BATCHCOPY SRC 01 OlB Singer, C. - Source for ~
batch FILECOPY. Can move up to 50 files in a single
call. Doesn't have to be resident on any disk
involved in the copying.
BATCHCOPY USR 01 005 Singer, C. - Executable
version.
$BLINKCOPY SRC 00 022 Singer, C. - Source for a
modified BATCHCOPY that moves cursor as files are
copied.
$SEARCH SRC 00 OOC Singer, C. - Replacement for
SEAR to allow string searches.
#RESTORE SRC 00 OOC Singer, C. - Finds and
reconstructs SCRATCHed files.
RESTORE USR 00 006 Singer, c.
#GET-TRAX SRC 00 019 Singer, C. - General purpose
utility for inspection of disk tracks without
recourse to DIR.
GET-TRAX USR 00 005 Singer, C.
$SYMSHELL SRC 00 OlA Singer, C. - Symbol Sort-List
Utility.
SYMSHELL USR 00 004 Singer, C.
$RENUM SRC 00 049 Singer, c. - Utility for
renumbering BASIC lines for Version 3.0.
RENUM SYS 00 008 Singer, c.

MUG MDOS Library Disk 11, Revision 01, APR 82
SYSTEM UNIQUE - 35 tracks

These programs contain screen control codes for
specific processors, and must, in most cases, be be
modified before use in your system.

NAME TYP RV SZE AUTHOR/DESCRIPTION

DOCGEN.BAS BAS 00 032 Jamba, D. This, and the
following ten files, are a document generator (word
processor), written in BASIC. Contains EXIDY
dependent code and must be modified for operation on
other systems.
VUTIL •• OBJ OBJ 00 002 Jamba, D.
DGCONT.BAS BAS 00 008 Jamba, D.
DGENTR.BAS BAS 00 02E Jamba, D.
DGLIST.BAS BAS 00 OOF Jamba, D.
DGSAVE.BAS BAS 00 007 Jamba, D.
DGREAD.BAS BAS 00 006 Jamba, D.
DGEROR.BAS BAS 00 004 Jamba, D.
DGALTR.BAS BAS 00 OOF Jamba, D.
DOCGEN.LIB DAT 00 013 Jamba, D.
DOCGEN.DOC BAS 00 019 Jamba, D.
SINITIAL SRC 00 064 Hall, L. Converts North Star
disks to Micropolis - if you have BOTH controllers
in your system.
LIFE BAS 00 008 McGraw, D. This, and the
following eight files, are the game of LIFE.
Contains Compucolor dependent code and must be
modified for operation on other terminals.
SRCDIS SRC 00 003 McGraw, D.

MUG NEWSLETTER #21 - APRIL 1982 Page 12

SCRSET SCR 00 010 McGraw, D.
SRCCOM SRC 00 008 McGraw, D.
SETUP OBJ 00 003 McGraw, D.
DISPLAY OBJ 00 002 McGraw, D.
COMPUTE OBJ 00 002 McGraw, D.
INSTRUCT BAS 00 OOF McGraw, D.
DEARBUZZ SRC 00 ooc McGraw, D.

MUG MDOS Library Disk 12, Revision 00, APR 82
TECHNICAL & HOUSEHOLD - 27 tracks

Name Typ Rv Sze Author/Description
======================

MENU BAS 00 DOC Rudow, B. - Master Menu,
including auto-configuration.
MENU.T BAS 00 007 Rudow, B. - Submenu for
technical programs.
MENU.ff BAS 00 007 Rudow, B. - Submenu for
household programs.
DATE.CK BAS 00 006 Rudow, B. - Verify/Change
System Date.
FLIGHTPLAN BAS 00 OOB Ripley, B. - Plans aircraft
flight plans, including time and fuel.
EARTHSTAT BAS 00 007 Helm, E. - Computes azimuth
and elevation look angles for geosyncronous
satellites.
VOR/DME-DR BAS 00 043 Lugar, J. - A program for
aircraft navigation using only the standard Vortacs

· to provide Great Circle Direct navigation that is
normally only available to aircraft equipped with
expensive area navigation receivers.
TRIANGLE BAS 00 014 Lugar, J. - This program is
an engineering program that computes with trignometry
the remaining parts of any triangle given just
three parts.
AREA BAS 00 OOB Lugar, J. - This program
computes the area of a figure or a parcel of land
that has straight sides or a circular curved side
between known coordinate points. This is useful to
engineers, architects, and builders. . }
INVERSE BAS 00 009 Lugar, J. - This program ""11/1
computes the bearing and distance between any known .
coordinate points. This also uses Coordinate
Geometry and is most useful to those involved in land
parcels and building.
CURVE BAS 00 024 Lugar, J. - This is an
engineering program to compute the standard
inter-related parts of any circular curve knowing any
two parts. Also part of the program gives offset
dimensions to aid in staking or plotting any
curcular curve.
TOURISTCRD BAS 00 009 Rusczyk, R. - Prints a
formletter postcard requesting tourist information.
POLCARD BAS 00 010 Rusczyk, R. - Prints a
formletter postcard to your politicians.
BUYHOUSE BAS 00 017 Rusczyk, R. - Computes and
prints an 3-page evaluation which is useful in
selecting a used house for personal or investment
purposes.
STOCKCARD BAS 00 009 Rusczyk, R. - Prints a
postcard request for quarterly and annual corporation
report.
HOUSEREPAR BAS 00 OOE Rusczyk, R. - Maintains a
record of all the repairs and enhancements to your
home and property.
HOUSELIST DAT 00 007 Rusczyk, R. - Data file for
HOUSEREPAR.
OILTANK BAS 00 OOC Rice, J. - Calculates the
gallon capacity for 1/2 inch increments of any
cyclindrical tank.

MUG MDOS Library Disk 18, Revision 00, APR 82
SYSTEM DISASSEMBLIES AND DOCUMENTATION - 7 tracks

Name Typ Rv Sze Author/Description
======================

#MDOSDOCl DOC 00 009 - Rusczyk, R. - Questions to
Manderson about separating RES & MOOS.
#MDOSDOC2 DOC 00 02A Manderson, R. - Answers.
#MDOSDOC3 DOC 00 006 Rusczyk, R. - Further
problems and comments.
$FILECOPY SRC 00 OOE Singer, C. - FILECOPY
disassembly.

~
..-t

Q)

tr
cu
0.

N
CX>
O'I
..-t

...:I
H
ci::
0.
<

..-t
N ..
c:r:
~
f­
f­
~
...:I
C/)

3:
~ z
g
:E

!""I
..-t

Ill
tr
cu
0.

N
CX>
O'I
..-t

...:I
H
c:r:
0.
<

..-t
N
•I

c:r:
~
f­
f­
~
...:I
C/)

3:
~ z
C>
::::>

• :E

MICROPOLIS USER'S GROUP NEWSLETTER INDEX VOLUMES 13 - 20 / ALPHA BY TOPIC

PGMNAME/TOPIC CO./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG
===
A-FORTH COMPILER
ACCESSING DISK FILES*
AUTO-CONFIGURATION*
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING*
BASIC TOKENS
BASIC TOKENS*
BASIC TOKENS/KEYWORDS
BASIC/S + BASIC/Z
BASIC/S COMPILER
BASIC/S COMPILER*
BATCHCOPY*
BOOKKEEPING
CDS VERSATILE COMPUTER
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
COMMUNICATIONS
COMPAL-8200
COMPUTER NO'S
CONTROL-P
CONTROL-P*
CP/M
CP/M
CP/M - MDOS COMPARISON
CP/M - MDOS CONVERSION*
CP/M HANG FIXES
CURSOR CONTROLS*
DEBUG
DIM
DISK CATALOG SYSTEM*
DISK DRIVE BELTS
DISK ERRORS
DOC GEN
DOUBLING KEYS
DRIVE TURN-OFF
FORTH
FORTH
GENERAL LEDGER PGMS
GET-TRAX
GRAPHICS*
IBM/MICROPOLIS FORMATS
INTERNAL DATA FORMAT
INTERRUPTS
JUMBLE PUZZLES*
LATAH
LIFE
MDOS ALTERATIONS
MDOS HANG FIXES
MDOS HANG FIXES
MDOS PDS VERSION 4.0
MDOSPATCH
MERGE
MICRO-LINK
MICROPOLIS HARDWARE

~

ACROPOLIS
B.RUDOW
B.RUDOW

B.SMITH

W.POWERS

SYSTEMATION
SYSTEMATION
SYSTEMATION
C.SINGER
DATASMITH
CDS

B.CARIGNAN

B.RUDOW

J.FACTOR

B.RUDOW

MODERN MICRO

A.PICKERT

G. RID IL-JG

MICROPOLIS

DATASMITH

MICROPOLIS

HIGH LEVEL LANG
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGM ING
BASIC STATEMENTS
BASIC DOC
BASIC DOC
HIGH LEVEL LANGUAGE
BASIC SYSTEM PGM
BASIC SYSTEM PGM
8080 UTILITY PGM
BASIC APPL PGM
HARDWARE
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
808"0 SYSTEM PGM'
HARDWARE
PGMING THEORY
8080 SYSTEM PGM
8080 SYSTEM PGM.
8080 SYSTEM PGM
8080 SYSTEM PGM
8080 SYSTEM PGM
UTILITY PGM
8080 SYSTEM PGM
BASIC PGM TECHNIQUE
8080 SYSTEM PGM
BASIC STATEMENT
BASIC UTILITY PGM
HARDWARE
DISK MEDIA
BASIC APPL PGM
8080 SYSTEM PGM
HARDWARE
HIGH LEVEL LANGUAGE
HIGH LEVEL LANGUAGE
BASIC APPL PGM
8080 UTILITY PGM
BASIC PGM TECHNIQUE
HARDWARE
BASIC DOC
HARDWARE
BASIC APPL PGM
HARDWARE
BASIC APPL PGM
8080 SYSTEM PGM
8080 SYSTEM PGM
8080 SYSTEM PGM
80BO SYSTEM PGM
8080 SYSTE"1 PGM
BASIC PG1"1ING AID
8080 sy;.;TEM PGM
HARDWARE

COMPILER
DISK FILES
TERM I/O

REFERENCE
REFERENCE
REFERENCE
COMPILER
COMPILER
COMPILER
DISK FILES
BUSINESS

OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM

OP SYSTEM
TERM I/O
DEBUGGER
REFERENCE
DISK DIR

WORD PROC
OP SYSTEM

COMPILER
COMPILER
BUSINESS
DISK FILES

REFERENCE

GAME

GAME
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM

020-02
020-03
019-08
013-01
015-01
016-01
014-01
018-02
014-05
020-13
020-06
013-01
014-01
017-06
020-09
014-02
013-06
014-08
015-08
016-16
017-16
018-16
019-12
020-14
018-03
016-11
017-01
018-08
018-12
013-02
014-02
014-06
019-06
020-12
013-03
017-04
019-01
017-10
016-13
014-06
018-09
018-08
016-03
013-02
013-03
013-03
018-06
016-02
020-12
020-01
015-05
016-04
017-02
018-05
014-04
019-05
020-12
014-03
018-09
020-09
Oll;-14 OIJ

MICROPOLIS USER'S GROUP NEWSLETTER INDEX VOLUMES 13 - 20 / ALPHA BY TOPIC

PGMNAME/TOPIC

MICROPOLIS HARDWARE
MICROPOLIS PDS SUMMARY
MICROPOLIS PREV MAINT
MICROPOLIS S/W
MICROPOLIS SOFTWARE
MODI-MODI! CONVERSION
MODI-MODI! CONVERSION
MODII-MODI CONVERSION
MOTION*
MUG CONTROL OF MDOS
MUG DISK MASTER MENU*
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY - STDS
MUG LIBRARY RULES
MUG NEWSLETTER INDEX
MUG OBJECTIVES
MUG SOFTWARE HOUSE
PASSWORDS
PENSION PGMS
PGM DOCUMENTATION*
PONY-PICK
PUBLISHED SOFTWARE
READING DISK DIR
RESTORE FILES
RIGID DISKS
SAVING BASIC PGMS
SCREEN DUMP
SCREEN EDITOR
SEARCH
SGN FUNCTION
SIZE(N)*
SMASH
SOL 80-COLUMN DISPLAY
SORCERER BASIC
SORCERER S/W
SORCERER/MOOS PATCHES
STATISTICS PGMS
STRING ARRAYS*
STRING OPERATIONS*
SYSTEM MEMORY
TABLE HANDLING
TABLE HANDLING*
TABLE HANDLING*
'I' AX PRO
TEXTWIUTER

CO./AUTHOR

MICROPOLIS
MICROPOLIS

A.PICKERT

B.RUDOW

J.SHAPIRO
BON JOEL

B.ZALE

G.RIDING
DATASMITH

MODERN MICRO
B.RUDOW
K.FINDLAY

J.HARDEN
N.DEMBINSKI

PGM/ARTICLE TYPE

HARDWARE
8080 SYSTEM PGM
HARDWARE
GENERAL INFO
REFERENCE
HARDWARE
HARDWARE
HARDWARE
BASIC PGM TECHNIQUE
GENERAL INFO
BASIC PGM TECHNIQUE
DISK06 CONTENTS
GENERAL INFO
DISKOl DIR LISTING
DISK02 DIR LISTING
DISK03 DIR LISTING
DISK04 DIR LISTING
DISK06 DIR LISTING
DISK05 DIR LISTING
DISK07 DIRT LISTING
DISK06 MODIFICATIONS
DISK09 DIR LISTING
DISK08 DIR LISTING
DISKlO DIR LISTING
DISKll DIR LISTING
DISK1001 CONTENTS
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
BASIC PGM TECHNIQUE
BASIC APPL PGM
BASIC PGMING
8080 APPL PGM
GENERAL INFO
BASIC UTILITY PGM
8080 UTILITY PGM
HARDWARE
BASIC PGM TECHNIQUE
8080 SYSTEM PGM
8080 UTILITY PGM
8080 SYSTEM PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGMING AID
HARDWARE
HIGH LEVEL LANG
UTILITY PGMAS
HARDWARE
BASIC APPL PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
8080 PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
8080 APPL PGM
8080 APPL PGM

CATEGORY

OP SYSTEM

REFERENCE
LISTING

TERM I/O
REFERENCE
PRICE LIST
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE

REFERENCE

BUSINESS

DISK DIR
DISK FILES

OP SYSTEM
EDITOR

DISK FILES

INTERPRET

BUSINESS
STRINGS
STRINGS

BUSINESS :JD PROC

VOL-PG

013-05
019-04
018-04
018-01
020-14
014-05
014-06
013-02
016-02
018-03
019-12
014-04
016-05
016-015
016-07
016-08
016-08
016-09
016-09
016-10
016-12
018-11
018-11
018-12
018-12
020-lQ
020-11
020-14
015-05
014-07
019-01
018-08
014-06
015-03
019-08
013-04
014-04
018-05
018-03
018-15
018-08
018-08
018-09
014-05
016-02
020-09
018-14
018-13
016-15
019-12
013-04
019-02
016-13
017-03
014-02
014-07
015-01
017-04
017-05

MUG NEWSLETTER 121 - APRIL 1982 Page 15 MUG NEWSLETTER 121 - APRIL 1982 Page 16

MICROPOLIS USER'S GROUP NEWSLETTER INDEX VOLUMES 13 - 20 / ALPHA BY TOPIC

PGMNAME/TOPIC CO./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG
===
TRACK DENSITIES
VERSATILE CDS
Z80 ASSEMBLER

CLASSIFIED

8080 SYSTEM PGM
HARDWARE
8080 PGMING AID

FOR SALE: UDS-103A-CBS, Bell-103 compatible 300
baud data modem. Answer only, direct connect, with
a direct access arrangement (DAA). $100.

Joe Callaway, 1728 5lst St. West
Birmingham AL 35208 - (205) 925-8169

FOR SALE: SlOO system with 48K RAM. North Star
Z80A processor. Dual Micropolis MOD II drives.
Visual 200 display terminal. Decision Data 6540-1
printer. Micropolis software only. Complete for
$3, 950. Wi 11 sell pr inter only for $850. Call
Call (313) 887-8136 and ask for Ray.

WANTED: Help in interfacing a VG Flashwriter II
board to a TEI Video Controller Card MCS-VCB.
Running with a TEI CPU.

Bob Samwel, AB Datatel Inc., Box 30, S-293 01 Olofst
Sweden. Phone +46-45441325, TELEX: 4545 DATATEL
s.

WANTED: Help in patching CP/M 1.42 on a Vector
Graphic. Need the code for CBIOS and the code for
the VG monitor which drives a 48K terminal I/O.
Contact Mark Levy, 2825 E. Hillery, Phonix AZ
85032. Phone (602) 867-2101 (home) or 937-1666
(work).

OP SYSTEM 017-04
017-14

ASSEMBLER 018-10

DAMAN SOFTWARE

The DAMAN (software sales) side of the MUG is
surviving, though the purchase of inventory is
expensive. I sincerely appreciate the business of
you MUG members. Hopefully, everyone is pleased
with the software. I'm slowly learning the
capabilities of the S/W we're offering. If there
are questions on your particular needs, please call
or write.

One program I thought would sell better than it
has, was Spellbinder.

I have, available for immediate delivery, one copy
of Spellbinder for each of the following
configurations.

(1) Vector Graphics (56K, 4.0 monitor or greater)
(2) Menu selectable I/O terminal - includes
Hazeltine 1500, ADM 3A, Intertube II, Heath-19,
SOROC-120, TVI-910; 912; 920; 925; 950, ZENTEC,
Cromemco 3102, Visual 200, and ADDS Viewpoint. Any
terminal or video mapped memory system can be
configured, but it takes modification of an
assembly language file, and a DDT job to do it.

Spellbinder is a full function wordprocessor with
macro capability which allows features to be added
for the unique requirements of each user. A Mail
List macro is included for mail merge with form
letters. Spellbiner incorporates a full screen
video editor, drivers for regular or precision ... ~
printers, has soft hypenation, insertion/deletion, ·"'111
search (and replace/delete/add/with wildcards), a
print to screen to preview text as it will appear
on the page, and all the printing enhansements and
controls.

DAMAN's price for Spellbinder is $319 (lists at
$495), delivered (add $7 outside North America).
There is a version for the Exidy, though I don't
have it in stock.

Published Monthly by the MUG
Subscription rates:

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 881-1697

U.S., Canada, Mexico; ,$18/year: Other, $25/year

FIRST CLASS MAtL

FIRST CLASS MAIL

:: 0 .2 0

