
r
MICROPOLIS USERS GROUP

MUG Newsletter t 15 - October 1981

**

WRITING GOOD PROGRAMS (PART ~

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission, KS 66208

Last month we discussed techniques for writing code
that produces self-documenting, modular programs
that are easy to maintain and less likely to have
bugs. I have concentrated on planning techniques
and general styles of writing programs rather than
language details because good style encourages good
content. In order to become fluent in any language
(French, Basic, or whatever) you must use it often.
This is really the only way you can learn program­
ming, but starting out with proper planning and
style will make it easier.

SERVICING OPERATOR INPUTS

Most programs for business or scientific purposes
have some part of the input data entered directly
from the keyboard by a human. This input data may
vary from a simple •yes• or •no• answer to large
volumes of figures for actual processing. The
program must be able to get along with its human
users, and a very important aspect of this is the
ability to tolerate human error with out •crashing•
or making a mistake itself. Everything coming from
the keyboard should be checked for errors, and if
an error is detected the operator should be
politely informed and given another chance.

The simplest case is a question which requires a
"yes• or •no" answer. First of all, the question
put to the operator should be easy to understand
and indicate what kind of a response is expected.
"DO YOU WANT TO USE THE PRINTER (Y ORN)?· is a
typical example of this. In response to the above
question, a string of characters is INPUT from the
keyboard. It is expected that the operator entered
a •y• or an •N", since this is what was instructed,
but as the programmer, you must be prepared for
anything and allow a little leeway too. For
example, are you going to reject anything except
the single characters •y• or •N"? That may be too
rigid. What if the operator enters an "N" followed
by a blank space? N-space does not equal N. Will
you take "YES" or "NO" too? What if the operator
just hits the RETURN key?

All the possibilities must be considered when
coding even a simple question. The program's
treatment of the answer depends, to a great extent,
on the application. However, I prefer to use an
algorithm that only considers the first character
entered. Use a LEFT$ function to isolate the first
character in the string. If it is a •y•, assume
•yes•; if it is an •N•, assume •no". Otherwise,
assume an invalid response, report to the operator
that you can't understand, and ask again. Repeat
the loop until you get a valid answer. In
MICROPOLIS BASIC, just hitting the return key in
response to an INPUT statement leaves the value of
the input variable unchanged. Therefore, it is
wise to initialize the input variable to ••, or a
default answer, before the INPUT statement or the
results may not be predictable.

Operator response to a menu of numbered choices is
a little more easy to filter out. The value input
at the keyboard will be a number, so a numeric
variable is used. BASIC won't allow anythirig but a
number in this case, so you know at least a number
will be returned by the INPUT statement. All you
have to do is make sure the number entered is
within the the limits of the menu choices. For
really foolproof menus, you should avoid using an
integer variable as the variable input. I seldom
heed my own advice in this respect, but keep in
mind that an integer variable is stored as a fixed
number of digits, while a real (floating point)
variable ls stored in scientific notation. With

the default SIZES, your program will crash with a
CONVERSION ERROR if the operator enters 500000 or
more through an INPUT statement with an integer
variable. Try it.

When the operator needs to enter large amounts of
data, it is absolutely necessary that the operator
be given an opportunity to personally verify the
data before it is stored away or used in a
calculation. The easiest way to do this is to
re-display it after it is input and ask the
operator if it is OK. Facilities should be
provided to change a single item, without having to
re-enter all the data, if an error is detected.
Programs that use a database on diskette should
have facilities to manually update ANYTHING on the
diskette, and to manually recover from errors made
when erroneous data is used in calculations. The
excuse, •rt's in the computer and we can't change
it,• is a sure sign of a bad program. In fact, it
should be easier to change data in a computer than
data on paper. Computers are supposed to make
things easier, not more difficult!

SERVICING DISK ACCESSES

Besides errors from data entered in INPUT
statements, the most common cause of programs
crashing can be attributed to disk errors. Not
real I/O errors due to hardware, but things people
do or forget to do. The most common ones are DRIVE
NOT UP and FILE NOT FOUND, caused by the program
expecting to find something that has not been
provided by the operator, but there are others.
See the ERR function in the MICROPOLIS BASIC manual
(table 5.5). All of these disk errors cause the
program to be stopped in its tracks, and can be
catastrophic to a newly updated file that is open
at worst or annoying at best.

BASIC comes to the rescue with the ERROR clause in
the OPEN statement for a file. <ERROR linenumber>
refers to a line number to GOTO if an error is
encountered in the program. The line number should
contain code that determines which error has
occured (the ERR function) and appropriate error
handling routines. In the case of many errors, all
that is needed is to inform the operator of the
error and wait until the operator says its OK to
retry the operation. Other errors which can't be
corrected by the operator need to terminate the
program in an orderly way by closing files and
exiting to a menu, etc. For example, a DISK FULL
error handler definitely needs to close the file it
was updating so no data will be lost. Beyond that,
it depends on the program and the application.
Some programs might instruct the operator to mount
a fresh diskette and pick-up where they left off,
while others would have to be terminated.

Trying to imagine all the errors that could
possibly occur and devising software recourse is
not easy. Murphy's Law states: "If something can
go wrong, it will go wrong,• and I read somewhere
that: •rt is impossible to make anything foolproof
because fools are so ingenious." Good error
handling routines take programming time that could
be used for more exicting tasks, but chances are
you will eventually need it. Also, no matter how
hard you try, you will probably overlook something.
Even so, don't be discouraged; any error handling
is better than none and your programs will be more
reliable as a result.

NEXT MONTH we'll cover some nitty-gritty details of
how to design loop structures.

TABLE HANDLING TECHNIQUES = Part ~

by N. P. Dembinski
8618 Essex Ave., Chicago IL 60617

Last month we summarized some of the programming
techniques and guidelines useful for efficient
table handling. This month, a description of each
technique is presented. Also, the flowchart on the
last page is intended to aid programmers in the

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

selection of the most suitable table handling
techniques for the specific problems and
applications.

A. DIRECT TECHNIQUE

The table contains as many entries as the value of
the highest numeric table code being processed.
The code being searched for literally becomes the
index for accessing the corresponding table entry.

LIMITATIONS

The codes being processed must contain numeric
digits. The codes usually are not in straight
numeric sequence, (e.g., 001, 002, 003, etc.).
Gaps occur between codes and the table size becomes
prohibitive. Input data must be read at the
beginning of each step to fill the table.

B. SERIAL TECHNIQUE

Search the table beginning with the first position,
for each transaction and incrementing the index by
one, or coding repetitive compares. Entries do not
have to be in sequence but may be ordered by
testing for the most frequently accessed items
first.

LIMITATION

When the table size exceeds 30 entries, the
execution time to test all the entries becomes
prohibitive, and the input data must be read at the
beginning of each step to fill the table.

C. BINARY TECHNIQUE

The binary search technique is a good choice for
over 60 entries if memory is critical. The
argument to be found is first compared against the
middle of the table. On the basis of this
comparison, the upper or lower half of the table
will be compared against. The table will be halved
until an equal condition occurs or the size of the
table is reduced to zero. The table arguments must
be in sequence. A count of the number of entries
(easily generated when the table is filled) is also
required. The table size should be one less than
the power of two.

D. INCREMENT (PARTIONED) SCAN TECHNIQUE

This is most efficient method, time-wise, for over
60 entries. Search increment entries must be in
sequence, but entries within a group do not have to
be in order. When searching a table with this
organization, locate the group of entries wanted
and move that group of entries to a work area for a
detailed serial search.

E. SUBSCRIPTED ITERATIVE TECHNIQUE

This is the most common method of searching a table
and is the most inefficient.

F. LITERAL TECHNIQUE

A table does not appear in the data area, but the
codes being searched for appear as literals in the
procedure division of the program. A conditional
statement must be written for each code to be
processed. When the literal being tested equals
the transaction code being processed, the
corresponding data appears as a literal and is
moved to a common storage area.

LIMITATIONS

Limited to fixed codes not subject to change since
literal change requires source language changes,
recompilation, and far more coding is required than
in the other techniques.

With the availability of high level languages like
Basic, Fortran IV, Cobol, Pascal, and a few others
that may come along in the future, or some macro
oriented assembler language, the literal technique
becomes easy to use. The examples shown in the
following text will demonstrate the use of the

MUG NEWSLETTER 115 - OCTOBER 1981

Basic language. Basic is the most universal
language for micro-computers that is available.
These techniques have already been used or can be
translated to some other high level language
easily.

Presenting a strong case for using the literal
technique, assume that a company has offices or
plants in 16 cities. To conserve space on the
master record, the city and state are not stored
but identified by the five digit zip code number.
The direct approach is prohibitive since the table
would require 999,999 entries allocated for 16
entries only. The amount of coding required for
the literal approach is not prohibitive, there is
little likelihood that the relationship of the zip
code to city will ever change and the literal
processing is four to five times as fast than
either the serial or binary techniques. The Basic
coding which would implement the literal technique
follows below.

BASIC EXECUTIVE

(ETC.)
GOSUB 6000
(ETC.)

6000 !GET-ADDRESS
6010 IF Z$>•27601.THEN GOTO 6070
6020 IF Z$ > •14205• THEN GOTO 6120
6030 IF Z$ > •02109• THEN GOTO 6160
6040 IF Z$ •00902• THEN C$ = •sAN

JUAN PR" : RETURN
6050 IF Z$ •02109 11 THEN C$.BOSTON, MA"

:RETURN
6060 GOTO 6300
6070 IF Z$ > •55401• THEN GOTO
6080 IF Z$ > •43216 11 THEN GOTO
6090 IF Z$ •33101• THEN C$

:RETURN
6100 IF Z$ "43216" THEN C$

:RETURN
6110 GOTO 6300
6120 IF Z$ > "19104"
6130 IF Z$ "15219"

6140 IF Z$ "19004"

6150 GOTO 6300

THEN GOTO
THEN C$
:RETURN
THEN C$
:RETURN

6160 IF Z$ "07102" THEN C$
:RETURN

6170 IF Z$ "14205" THEN C$
:RETURN

6180 GOTO 6300

6280
6220
"MIAMI FL"

"COLUMBUS OH"

6250
"PITTS. PA•

"PHIL. PA"

"NEWARK NJ•

"BUFFALO NY"

6190 IF Z$ > "85026" THEN GOTO 6280
6200 IF Z$ = "77002" THEN C$ "HOUSTON TX"

:RETURN
6210 GOTO 6300
6220 IF Z$ = "57302" THEN C$

:RETURN
6230 IF Z$ = "55401" THEN C$
6240 GOTO 6300
6250 IF Z$ = "21233" THEN C$
6260 IF Z$ = "27601" THEN C$

:RETURN
6270 GOTO 6300

"BLOOM IN" :RETURN

•BALT. MD" :RETURN
"RALEIGH NC"

6280 IF Z$ "94086" THEN C$ •suNNYVALE cA•
:RETURN

6290 IF Z$ •96813" THEN C$ "HONOLULU HI"
:RETURN

6300 C$: RETURN ! BAD ZIP CODE

GUIDE FOR SELECTING TABLE LOOK-UP TECHNIQUES

A. Are the keys (item no., etc.) all numeric
(0 thru 9)?

B. Are most of the integers within the range of
the control key required?

C. Use the "direct technique•.
D. Is programming development time available to

code the literals?
E. Will the same key always relate to the same

entry?
F. Use the •Literal technique•.

G. Is it impossible to sequence the table-fill
data records?

H. Use the •serial technique•.
I. Does the total number of table entries exceed

'

r

MUG NEWSLETTER tl5 - OCTOBER 1981

10?
J. Use the ~binary technique".
K. Use the "serial technique".

/\
I \

I A \ ---
\ I I

\ I I
\/ I
I Yes I
I I
I I
v v
/\ /\

I \ I \
I B \ I D \ ___
\ ;--\ I I

\ I \ I I
\/ \/ I
!Yes !Yes I
I I I
I I I
v v v ----I I /\ /\ /\ I

I I I \ I \ I \ I
I c I I E \ I G \ I I\ __ I
I I \ ;--, I --, I I
I I \ I \ I \ I I
I I \/ \/ \/ I

!Yes !Yes !Yes
I I I
I I I
v v v ---- ---- ----

I I I I I I
I I I I I I
I F I I H I I J I
I I I I I I
I I I I I I
I I I I I I

PROGRAM DOCUMENTATION

by Joel Shapiro of BONJOEL ENTERPRISES
Box 2180, Des Plaines, IL 60018

K

Most of us will spend many hours writing programs
for others and our own use. However, these
programs may be used so infrequently that we forget
how to work with them. We'll use a lot of prompting
within the program, but the overall purpose, or
operation of the program may be lost because enough
detail isn't given at the time they're in use.

Including a set of instructions within the program
is an excellent idea and, if instructions are
required by the operator, a menu selection can
provide them. This takes up valuable memory and, if
the program is large, you may not have enough for
the program itself. Text does take up a lot of
space and becomes troublesome to enter in DATA
statements when you can't see the true length of
each line on the screen.

Alternative to this is the use of a data file and a
program or routine that will display the
instructions retained in the data file. That is the
approach offered here. Two programs; INSTR.GEN and
INSTR.READ respectively generate and read the
instruction data file.

An important feature is that the system will allow
you to select the starting record of the
instruction file for display and this can be keyed
to the calling program. It will also allow you to
return to the correct program after the
instructions have been displayed. The technique
for doing this is detailed within the INSTR.READ
program listing. This is a good feature of the
system in that it allows you to reuse the general
purpose instructions you may have in your file for
many different programs and routines. Also, since
you may select the specific routine you wish to
return to after use of the INSTR.READ program,
redundant instructions are possible without
duplication in the file.

I
I
I
I
I
I

PAGE 3

INSTR.GEN is charged with writing the file with the
instructions as entered. It stores three (3) lines
within one (1) physical file record without
packing. No editing utility is provided so each
line should be checked before RETURN is pressed.
After three (3) lines of instructions are entered
the system will pause while the record is written
to the file. This process continues until you're
done and a backslash is entered at the beginning of
a new line to close the file. If a file already
exists, additional instructions can be added to the
end of the file.

Note line 1000 on the listing and you'll see how I
got a modified version of Buzz's INKEY program into
RAM. Of particular importance is the input
subroutine in lines 20 thru 60. BASIC's INPUT
statement prints a question mark and a space at the
beginning of the input line, therefore, the
resultant line 9n the screen is offset by two
spaces and won't give you an accurate indication of
how the printed line will appear. This routine will
but must be located in the lowest line numbers of
the program to be effective. Located at the back of
the program the routine can't keep up with a fast
typist and characters will be missed. This is a
very useful routine as placing the escape sequence
for direct cursor positioning in line 20 will allow
you to input the line anywhere on the screen. This
allows you to draw a picture of a form and fill in
the blanks directly. Like I said, it's a very
useful routine.

INSTR.READ can be used as a program or changed and
incorporated into a program as a routine. The
operation is very simple and the technique for
returning to the correct program is explained in
the 1 isting.

Note the string delimiter is changed to Ascii 255
in both programs to allow you the use of commas in
the text. Line 280 in INSTR.READ provides for the
return of the delimiter to the default value (a
comma) •

Be sure to revise the variables for SCREEN WIDTH
and SCREEN HEIGHT in both programs as these values
are used for proper formatting.

I hope this may encourage some of you to provide
instructions as part of your program development;
it certainly helps to prevent mistakes when you've
forgotten how the program is supposed to work. And,
as editing and a few other features were left out
of these, I hope you'll keep the MUG advised if you
develop any enhancements.

Title: INSTR.GEN

10
20 >*
30 *>
40 <*
50

60
70

80
90 ><

100
110 ><
120
130 ><
140 ><

150
160 >

170
180 >

190
200

GOTO 410
PRINT:B$=""
C$=FAA(l):IF ASC(C$)=3 STOP
IF ASC(C$)=13 RETURN
IF ASC(C$)=127 OR ASC(C$)=8 THEN B$=LEFT$
(B$, LEN (8$) -1) :GOTO. 30
B$=8$+C$:GOTO 30

INPUT ROUTINE IS ABOVE - MUST BE AT 8
EGINNING OF PROGRAM

CLEAR SCREEN
PRINT CHAR$(26):PRINT REPEAT$(CHAR$(13)+C
HAR$(10) ,INT(H*.5)-2) :RETURN
! REVERSE VIDEO
PRINT CHAR$(18);:RETURN

VIDEO RESET
PRINT CHAR$(17);:RETURN
INPUT "Press RETURN When Ready ";A$:RETUR
N

PROGRAM START
GOSUB 90:PRINT TAB(T); "CREATE NEW INSTRU
C~ION FILE":PRINT

CREATES NEW FILE
PRINT TAB(T)"; Enter Name for New File";:
INPUT N$:PRINT:PRINT TAB(T); "Enter Drive
Number for File";:INPUT A:IF A<O OR A>3 G
OTO 180

OPEN FILE
N$=FMT(A,"N:9:")+N$:0PEN 1 N$ ERROR 210:G
OTO 220

PAGE 4

210 > PRINT:PRINT TAB(T);:GOSUB llO:PRINT "DISK
ERROR - ";ERR$:GOSUB 130:PRINT TAB(T); "C
orrect and ";:GOSUB 140:GOTO 180

220 > S=RECPUT(l):GOSUB 90:PRINT TAB(T); "Enter
text, line for line, exactly as":PRINT TA
B(T); "You wish it to appear on the scree
n.":PRINT

230 PRINT TAB(T); "Enter <CR> at the end of e
ach line.":PRINT:PRINT TAB(T); "Enter\ w
hen done with instructions.":PRINT:PRINT
TAB(T);:GOSUB 140:GOSUB 90

240 GET INPUTS - GETS 3 LINES AND WRITES
TO FILE

250 LINE IS COMPOSED IN B$ - TRANSFERS TO
G$ (X) ARRAY

260 > FOR I=O TO 2:GOSUB 20:IF I=O AND B$=CHAR$
(92) GOTO 330

270 IF B$=CHAR$(92) GOTO 310
280 IF LEN(B$)>W% THEN I=I-l:B$="":PRINT TAB(

T);:GOSUB llO:PRINT "LINE TOO LONG - REEN
TER":GOSUB 130:NEXT I

290 G$(I)=B$:NEXT I
300 WRITE TO FILE
310 > A$=G$(0)+Y$+G$(l)+Y$+G$(2)+Y$:PUT 1 A$:IF

B$<>CHAR$(92) THEN A$="":G$(0)="":G$(1)="
":G$(2)="":GOTO 260

320 ENDING FOR THIS ROUTINE
330 > F=RECPUT(l)-l:CLOSE l:GOSUB 90:PRINT TAB(

T); "Starting Record =";S:PRINT:PRINT TAB
(T); "Ending Record =";F:PRINT:GOSUB 14
O:GOTO 530

340 OPENS EXISTING FILE AND TRANSFERS TO
INPUT ROUTINE ABOVE

350 > GOSUB 90:PRINT TAB(T); "ADD TO EXISTING I
~STRUCTION FILE":PRINT

360 > PRINT TAB(T); "Enter Name for Existing In
struction File";:INPUT N$:PRINT:PRINT TAB
(T); "Enter Drive Number for File";:INPUT
A:IF A<O OR A>3 GOTO 180

370 N$=FMT(A,"9:")+N$:0PEN 1 N$ ERROR 380:GOT
0 220

380 > PRINT:PRINT TAB(T);:GOSUB llO:PRINT "DISK
ERROR - ";ERR$:GOSUB 130:PRINT TAB(T); "C
orrect and "; :GOSUB 140:GOTO 360

390 > GOSUB 90:A$="PROGRAM TERMINATED":PRINT TA
B(FNA(A$)) ;:GOSUB llO:PRINT A$:GOSUB 130:
PRINT:PRINT:PRINT:END

400 PROGRAM COMES HERE FOR INITIALIZATION
410 > DIM C$ (1) ,A$ (250) ,G$ (2,81) ,8$ (80) :GOSUB 1

000
420 SCREEN WIDTH
430 W=80
440 W%=W-l
450 SCREEN HEIGHT
460 H=24
470 DEF FAA=l6R4E:DEF FNA(X$)=INT((W-LEN(X$))

/2) :Y$=CHAR$(255):STRING Y$:T=INT(W*.25)
480 A$="INSTRUCTION FILE GENERATOR":GOSUB 90:

PRINT TAB(FNA(A$));A$:PRINT
490 PRINT "This program generates a file cont

aini~g the instructions for":PRINT "opera
ting a program. The file is read by calli
ng INSTR.READ":PRINT "from your program."
:PRINT

500 PRINT "INSTR.READ and the INSTRUCTION FIL
E must reside on drive 0 for":PRINT "prop
er operation. INSTR.READ is called with a
PLOADG ":PRINT "'INSTR.READ' within the c
alling program. If you wish to return"

510 PRINT "to the proper program after the in
structions are displayed,":PRINT "follow
the remarks contained within the listing
for INSTR.READ.":PRINT:PRINT TAB(T);:GOSU
B 140

520 MAIN MENU
530 > GOSUB 90:PRINT TAB(T); "Functions Availab

le":PRINT
540 PRINT TAB(T); " 1) Create New Instruction

File"
550 PRINT TAB(T); "2) Add To Existing Instru

ction File"
560 PRINT TAB(T); " 3) Terminate Program"
570 PRINT:PRINT TAB(T); "Select Function You

Desire";:A$=FAA(l):IF A$=CHAR$(3) STOP
580 IF A$<"1" OR A$>"3" GOTO 530
590 A=VAL(A$):0N A GOTO 160,350,390
990 LOADS MODIFIED INKEY$ ROUTINE STARTIN

G AT LOCATION 16R4E

MUG NEWSLETTER 115 - OCTOBER 1981

1000 >* A$="3E0332A0013E0132Al0132A20l":B$="CD7BO
77832A301CD7F07000000C9":A%=16R4E:B%=l:FO
R I=O TO 12:POKE(A%+I)=VAL("l6R"+MID$(A$,
B%,2)):B%=B%+2:NEXT I

1005 <* B%=l:FOR I=l3 TO 26:POKE(A%+I)=VAL("l6R"+
MID$(B$,B%,2)):B%=B%+2:NEXT !:RETURN

1010 (C) 1981 BONJOEL ENTERPRISES
1020 ! BY JOEL SHAPIRO

Title: INSTR.READ

10
20
30 ><
40 ><
50 ><

60 >
70
80
90

100
llO
120
130
140

150
160
170
180
190 >

200 >

210

220 >

230
240 >

250
260 >
270

280
290
300
310
320
330
340

1000
1010
1020
1030
1040
1050
1060
1065
1070
1080
1090
1095
llOO
1110
ll20
ll30
ll40
1150
1155
ll60
1170
ll80
1190
1200
1210
1220
1230
1240
1250
1255
1260
1270
1280
1285
1290
1300
1310

GOTO 60
! CLEAR SCREEN S/R
PRINT CHAR$(26):RETURN
INPUT"Press RETURN When Ready ";A$:RETURN
PRINT:PRINT TAB(T);:GOSUB 40:GOSUB 30:RET
URN
DIM A$(250),G$(2,81)

SCREEN WIDTH
W=80
! SCREEN HEIGHT
H=24
STRING CHAR$(255):T=INT(W*.25)

GET THE CODE FOR THE CALLING PROGRAM
P=PEEK(l6R4D)
! SELECT THE CORRECT FILE AND STARTING
RECORD NUMBER
IF P=l N$="INSTR-l":R%=5
IF P=2 N$="INSTR-2":R%=10
IF P=5 N$="INSTRUCT":R%=1
! OPEN THE FILE
OPEN 1 N$ ERROR 200 END 260:GETSEEK(l)=R%
:GOTO 220
PRINT:PRINT "DISK ERROR - ERR$":PRINT:PRI
NT "Correct and ";:GOSUB 40:GOTO 190

OPEN THE TERMINAL - SET FOR SCREEN HE
IGHT
OPEN 9 "*T" PAGESIZE H-3 ENDPAGE 50:GOSUB
30

READ AND DISPLAY FILE DATA
GET 1 G$(0),G$(1),G$(2):PUT 9 G$(0):PUT 9
G$(1) :PUT 9 G$(2):GOTO 240

CLOSE AFTER FILE IS READ
ENDPAGE 9:GOSUB 50:CLOSE !:CLOSE 9

RETURN TO DEFAULT DELIMITER (IF REQUI
RED)
STRING","

SELECT CORRECT PROGRAM FOR RETURN
IF P=l PLOADG "PROGRAM-!"
IF P=2 PLOADG "PROGRAM-2"
IF P=5 PLOADG "MAIN.PGM"
! (C) 1981 BONJOEL ENTERPRISES
! BY JOEL SHAPIRO
**

The operating program calls this one
whenever instructions are required by
the operator. The proper instruction
file and/or the proper starting
record can be selected by a POKEd
value from the calling program.
Use a decimal value between O and
255. This program used location 16R4D
for the POKE and subsequent PEEK. The
statement in the calling program
should read as follows;

POKE (16R4D) =5: PLOADG" INSTR. READ"

This program will then select the
correct file and starting record for
the instructions. ~s you can see,
this value is used to reload the
calling program after the instruc­
tions have been displayed.

If you wish, the value can be sensed
by the calling program and used to
return to a specific program segment.

Using a single file and selecting the
starting record will conserve disk
space when many separate instruction
groups are required. This feature
will also allow you to have your
general instructions in many files
and select those you wish to use
for a particular program. This will
save you duplicating instructions for

! rather general applications.
!**

MUG NEWSLETTER 115 - OCTOBER 19Bl

INTERRUPT HARDWARE FOR REAL TIME CLOCK

by Howard Rowland WBlAJX
79 Ivan Street Apt 65

North Providence RI 02904

REAL TIME CLOCK INTERRUPT

This article describes the implementation of a
simple real time clock on a Micropolis based
system.

A brief description of how the CPU handles
interrupts, then a description of hardware that can
be used will be presented.

BOBO INTERRUPTS

When the BOBO receives an interrupt request while
interrupts are enabled, it finishes the current
instruction and starts an interrupt acknowledge
cycle. This cycle is identified by the output of
the INTA status signal on S-100 pin 96. During
this cycle, the interrupt hardware in the system
will place an instruction on the data in bus.
Typically, this is a restart instruction, which is
a one byte call to a set address in low memory.
After receiving this instruction, the processor
will push the contents of the program counter onto
the stack. A return executed at the end of the
interrupt service routine will then continue
execution at the interrupted point. The B restart
instructions and the address called by them are
listed below:

Restart Opcode Adress Called

0 C7H OOOOH
1 CFH OOOBH
2 D7H OOlOH
3 DFH OOlBH
4 E7H 0020H
5 EFH 0028H
6 F7H 0030H
7 FFH 0038H

Restart 7 is interesting for a simple interrupt
implementation, as will be seen later.

Since an interrupt can occur at any time (if
enabled) the interrupt service routine must save
any flags and registers it will use and restore
them before returning. This is done with the PUSH
and POP instructions. Interrupts should be
reenabled before returning, because the processor
disables further interrupts when it acknowledges
one.

Since the Micropolis disk system is software
controlled, it uses software timing loops in its
operation. Any interrupts during one of these
loops or during a disk read or write can cause
errors. For this reason, the software disk driver
disables interrupts when it is called, preventing
any interruptions in its execution. Interupts must
be reenabled at the completion of the sector data
transfer when using interrupts in the system.
Space is provided for placing an EI (FBH)
instruction in the RES module. This byte, normally
a NOP (OOH) is located at OA04H in version 4 of the
Micropolis PDS. Any interrupt software
initialization routines must change this location
to the enable interrupt instruction so the disk
driver will reenable interrupts at the completion
of the sector transfer.

REAL TIME INTERRUPT HARDWARE

This circuit divides the 2 MHZ bus clock down to
1/60 hz (1 min period) and uses this divided rate
to generate an interrupt. 7 divide-by-10 counters
and one divide-by-12 counter are used to get the
required divide by 1.2 * lOB.

Counters Al through A7 consist of two sections, a
divide by two and a divide by five. The output of
the divide by two (pin 12) is fed into the divide
by five (pin 1). AB is similar except the second
section is a divide by six instead of a divide by

PAGE 5

five. The reset to zero inputs on Al through AB
are grounded and the reset to nine inputs on Al
through A7 are grounded to allow the counters to
count normally.

The output of the counter chain (AB pin B) feeds a
D-latch which latches the interrupt request.

A rising edge on the counter output (AB pin B) will
clock the •1• on the D input (A9 pin 3) to the Q
output (A9 pin 5). The Q output of the latch
drives the input of an inverter (AlO pin 1) whose
output drives the PINT (SlOO pin 73) line. This
line is active level low so the inverter provides
the proper signal polarity as well as isolating the
latch output from the bus.

An open collector inverter is used to drive this
line as it is pulled up on the processor card in
most systems. This allows any other possible
interrupts to be OR tied together. The software
must determine the cause of the interrupt if
multiple interrupts are used this way.

When the CPU acknowledges the interrupt, SINTA is
asserted on S-100 pin 96 which will clear the
interrupt. This is inverted to provide the proper
polarity for the clear input on the interrupt
latch.

The next r1s1ng edge on the input of the D-latch
will then generate another interrupt request 1
minute later.

Systems implementing a vectored interrupt scheme
may use one of the lines VIO to VI? (S-100 pins
4-11) instead of PINT. The vectored interrupt
hardware will then generate the appropriate restart
instruction on the interrupt acknowledge cycle.
The service routine for the real time clock must
then have a jump instruction at the appropriate
restart vector location.

If multiple interrupts are employed in the system,
a more sophisticated means of reseting the real
time clock interrupt must be employed. This is to
prevent the interrupt acknowledge cycle from
another interrupt from clearing a pending clock
interrupt. This can be accomplished by some
additional hardware and using an OUT instruction to
clear the interrupt in the clock service routine.

The input to the counter chain is taken from the
clock line, S-100 pin 49. The required frequency
is 2 Mhz for this counter. This line was used
rather than phase 2 because phase 2 (pin 24) is at
the processor speed, which is 4 MHZ in some
systems. Clock, pin 49 is specified (by the IEEE)
to always be 2 MHZ, independent of processor speed.
This should be verified, as some older CPU cards
put out a clock at the processor speed rather than
2 MHZ.

In my system, this is the only interrupt used so
nothing drives the data in bus during the interrupt
acknowledge cycle. The processor therfore reads an
OFFH which is a Restart-7, which is the interrupt
vector I used in the Real Time program. The data
in bus must be pulled up to 5 volts through
resisters to assure it will read as all ones when
it is undriven.

This allows a simple implementation when a single
interrupt is used in the system.

INDEX TO MUG'S FIRST YEAR

Ken Findlay (937 Briar Hill Ave., Toronto, Ontario
M6B lMl) has researched all of the MUG's first 12
issues, and coded the information by program
name/topic author, program/article type, and
category. He then wrote a set of programs to input
the information to a data base, to manipulate it,
and to print it. Although the printout can be in
many forms, what follows is an index in alpha­
betical order by programname/topic.

PAGE 6 MUG NEWSLETTER 115 - OCTOBER 1981

HARDWARE TO CLEAR CLOCK INTERRUPT BY AN
OUT XX INSTRUCTION

5

DIVIDE BY 2 FOR 4MHZ CLOCK

sv

77

45 SOUT

CLOCK
2MHZ

8 x 2.2K

49 >B
1":: ____ 1_4-l >A

2.2K

To select address bit
as zero, open switch

To select address bit
as one, close switch

2 x 74LS136
open collector
exclusive or

to A9
pin 1

CLOCK 49

(4MHZ)

10
12 D pr Q

11 > A9

clr
Q

13

sv

SV GND
74LS10 IT -7-
74LS136 14 7
74LS04 14 7

(disconnect A10-4
and pullup resistor)

1 MINUTE INTERRUPT

20KP.Z

QA 12 >B
11 >A

QD
2KHZ

R9

A4
3 RO

B QA
1--'--'-----:.....:....r A QD

QA
QD

B
11

2HZ 0.2HZ
6 6

7 R9 7 R9 7 RO

9

8

QA

QD

QA
QD

AS 2 A6 2 A7 AB

Total/ 1.2 x 10 8

2MHZ input = 1 min period out

A1-A7 74LS90 /10 counter
AB 74LS92 /12 counter
A9 74LS74 D Latch

A10 7405 Open Collector Inverter

IC SV GND
A1-A8 S ·10
A9,A10 14 7

3 RO 3 RO

PR

D

A9

>

sv
4

Q

A10 sv

~ 2K

4

to A1
pin 14
(2MHZ)

11

200HZ

PINT

SIN TA

(

MICROPOLIS USER'S GROUP NEWSLETTER INDEX ISSUES l THROUGH 12

PGMNAME/TOPIC

A-FORTH
AMO RT
ASMTEXT*
ASSEMBLER PGMING BOOKS
ASSEMBLER PROGRAMMING*
BANKING PGM
BASIC LOAD+GO
BASIC PGMING
BASIC PGMING BOOKS
BASIC TOKENS
BASIC/S COMPILER
BASIC/$ COMPILER
BASIC/$ COMPILER
BASIC/$ COMPILER
BOOKKEEPING
BSS
CCA DMS
CCA DMS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLEAR SCREEN
CLEAR SCREEN*
CLEAR SCREEN*
CLEAR SCREEN*
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M*
CRUNCH
CRUNCH
CURSOR CONTROLS*
DATABASE
DATABASE
DATABASE TWO
DATABASE TWO
DATE ACCESSES*
DATE ACCESSES*
DISASSEMBLER

CO. /AUTHOR

ACROPOLIS
MUG LIBR
B.RUDOW

MICROPOLIS

SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
DATASMITH

PGM/ARTICLE TYPE

HIGH LEVEL LANGUAGE
BASIC APPL PGM
8080 APPL PGM
8080 PGMING
8080 PGMING
8080 APPL PGM
8080 UTILITY PGM
BASIC PGMING
BASIC PGMING
BASIC DOC
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC APPL PGM

INV ANAL SYS BASIC APPL PGM
CUSTOM ELEC BASIC APPL PGM
CUSTOM ELEC BASIC APPL PGM

B.RUDOW
B.RUDOW
J.CALLAWAY

$.TATTERSALL
SYSTEMATION
SYSTEMATION
DAVE LAND
J.SHAPIRO
BON JOEL
BONJOEL
BON JOEL
D.O'BRIEN
ED BURKHARDT
CUSTOM ELEC
PRIORITY ONE

B.RUDOW
B.RUDOW
B.SMITH

GENERAL INFO
GENERAL INFO
GENERAL INFO
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
8080 SYSTEM PGM
8080 SYSTEM PGM
8080 SYSTEM PGM
B080 SYSTEM PGM
BOBO SYSTEM PGM
BOBO SYSTEM PGM
8080 SYSTEM PGM
BASIC PGMING AID
BASIC PGMING AID
BASIC PGM TECHNIQUE
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
8080 SYSTEM PGM
HARDWARE
BASIC PGM TECHNIQUE
DISK MEDIA
DISK MEDIA
DISK MEDIA

DISK DRIVE SALE
DISK FILE ACCESS
DISK I/O ERRORS
DISK RUDIMENTS
DISK RUDIMENTS
EXECUTION TIME*
EXECUTION TIME*
FILE OPEN ROUTINE*
FINANCIAL PLANNING
FLASHWRITER II
FLIPPY DISKS

PGMS SYNTAX CORP.

BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC APPL PGMS
HARDWARE

FMT
FMT*
GENSORT*
GOTO*
GRAPHICS
GRAPHICS*

VECTOR GR
MICRO-SERVE

B.SMITH
ED BURKHARDT
B.RUDOW

B.SMITH

HARDWARE
BASIC STATMENT
BASIC STATEMENT
BASIC UTILITY PGM
BASIC STATEMENT
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE

CATEGORY

COMPILER
BUSINESS
TERM I/O
REFERENCE

BUSINESS

REFERENCE
REFERENCE
COMPILER
COMPILER
COMPILER
COMPILER
BUSINESS
BUSINESS
DATA BASE
DATA BASE

TERM I/O
TERM I/O
TERM I/O
TERM I/O
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM

TERM I/O
DATA BASE
DATA BASE
DATA BASE
DATA BASE

DI SAS SM

DISK FILES

DISK FILES
BUSINESS

REFERENCE
REFERENCE
SORT
REFERENCE

VOL-PG

012-03
OOB-05
005-05
OOB-04
005-01
012-05
006-10
012-04
012-06
009-03
001-01
006-06
010-06
012-01
006-03
OOB-03
003-07
004-13
009-06
011-06
012-06
006-06
001-02
002-01
006-05
004-06
006-01
006-02
OOB-05
011-02
012-03
010-05
004-09
008-07
008-01
003-07
005-01
006-07
006-0B
009-03
012-05
003-07
004-12
004-05
005-10
010-04
011-03
002-02
012-04
009-04
006-04
011-01
012-06
009-03
012-01
007-01
002-02
010-01
011-01

(r
3
c:

MICROPOLIS USER'S GROUP NEWSLETTER INDEX ISSUES 1 THROUGH 12
G")

PGMNAME/'I'OPIC

HAM PGMS AVAILABLE
HIGH LEVEL LANGUAGES
HIGH LEVEL LANGUAGES
I/O PORTS
IMS
INKEY ROUTINE*
INVENTORY ONE
KEYBOARD INPUT*
KEYBOARD INPUT*
LEFT-FILL WITH ZEROS
MDOS ALTERATIONS
MOOS ALTERATIONS
MDOS DISK RECORD ADDR
MEMORY ALLOCATION
MICOPOLIS SOFTWARE DIR
MICROPOLIS HARD DISKS
MICROPOLIS HARD DISKS
MICROPOLIS HARDWARE
MICROPOLIS NEWS
MICROPOLIS NEWS
MICROPOLIS REPS
MICROPOLIS SYSTEM TIPS
MODEM
MODEM PGM
MODEM PGM FOR SOL*
MODI-MODI! CONVERSION
MUG DIRECTORY
MUG LIBRARY
MUG LIBRARY
MUG LIBRARY
MUG
MUG
MUG
MUG
MUG
MUG

LIBRARY
LIBRARY
LIBRARY
LIBRARY
MEMBERSHIP
NEWSLETTER

MUG OBJECTIVES
MUG OBJECTIVES
MUG OBJECTIVES
NEVADA COBOL
P/DIM
PAS
PAS
PAYROLL

DIR

PGMING AIDS AVAILABLE
PMS
PMS II
QUIKSORT*
R'S AND E'S
REACT
READING DISK DIR
RES-CONDENSED
ROUNDING*
ROUNDING*
ROUNDING*
SAVING VARIABLES
SAVING VARIABLES
SAVING VARIABLES*
SAVING VARIABLES*

CO ./AUTHOR

INV ANAL SYS
B.SMITH
BONJOEL
B.RUDOW
B.RUDOW

MICROPOLIS
MICROPOLIS

MICROPOLIS
MICROPOLIS
MICROPOLIS
MICROPOLIS
MICROPOLIS
MICROPOLIS
MICROPOLIS
D.C.HAYES
DAVE LOGAN
BOB BARNUM

ELLIS COMP
SYSTEMATION
INV ANAL SYS
INV ANAL SYS
DATASMITH
DATASMITH
CUSTOM ELEC
INV ANAL SYS
B.RUDOW

BON JOEL
ED BURKHARDT

B.RUDOW
J.CALLAWAY
DAVE LAND

B.MITCHELL
B.RUDOW

PGM/ARTICLE TYPE

8080 APPL PGMS
GENERAL INFO
GENERAL INFO
BASIC PGM TECHNIQUE
BASIC APPL PGM
BOBO PGM TECHNIQUE
BASIC APPL PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
B080 SYSTEM PGM
8080 SYSTEM PGM
B080 SYSTEM PGM
BASIC PGM TECHNIQUE
REFERENCE LISTING
HARDWARE
HARDWARE
HARDWARE
GENERAL INFO
GENERAL INFO
REFERENCE LISTING
GENERAL INFO
HARDWARE
B080 SYSTEM PGM
8080 SYSTEM PGM
HARDWARE
REFERENCE LISTING
GENERAL INFO
DISKOl DIR LISTING
GENERAL INFO
GENERAL INFO
DISK03 DIR LISTING
DISK02 DIR LISTING
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
HIGH LEVEL LANGUAGE
BASIC UTILITY PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC PGMING AIDS
BASIC APPL PGM
BASIC APPL PGM
BASIC UTILITY PGM
BASIC PGM TECHNIQUE
BASIC APPL PGM
BASIC UTILITY PGM
80BO SYSTEM PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC UTILITY PGM

CATEGORY

HAM RADIO

TERM I/O
DATA BASE
TERM I/O
BUSINESS
TERM I/O
TERM I/O

OP SYSTEM
OP SYSTEM
OP SYSTEM

MENTION
REFERENCE

REFERENCE

LIST

MENTION

REFERENCE

REFERENCE
REFERENCE
PRICE LIST

COMPILER

PROP MGMT
PROP MGMT
BUSINESS
REFERENCE
PROP MGMT
PROP MGMT
SORT

BUSINESS
DISK DIR
OP SYSTEM

VOL-PG

z
tz:I
:I:
(/)
r
tz:I
~
~
tz:I
:xi

005-12
005-11
012-02
006-05 ..
003-06 ,
009-04 (.11

006-09
001-02
002-01
008-07
OOB-09
012-06
009-03
009-03
004-07
003-05
006-02
001-02
003-06
006-02
003-09
009-02
005-10
006-01
007-03
002-01
006-06
006-01
009-01
009-01
011-02
011-04
011-04
011-05
010-04
009-01
001-01
006-01
007-01
012-03
010-02
003-06
008-03
006-03
006-03
003-07
008-03
003-03
011-02
008-03
012-04
006-06
002-03
006-05
008-01

0
()
~
0
Ill
tz:I
:xi

.....
\0
Q)

.....

004-08 1~
008-08 G")

000-08 1:z:1

010-02 -..J

r-1
<X>
O'I
r-1

a:
Cll
ca
0
E--<
(.)
0

Ll'I
r-1
a:
Cll
E--<
E--<
Cll
..J

~
Cll
z
(.!)
:::>
E

, ,
MICROPOLIS USER'S GROUP NEWSLETTER INDEX ISSUES l THROUGH 12

PGMNAME/TOPIC CO ./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG
===
SCREEN DISPLAY TEST*
SCREEN DISPLAY TEST*
SIZES
SOFTWARE VENDOR DIR
SOFTWARE VENDOR DI~
SOFTWARE VENDOR DIR
SOFTWARE VENDOR DIR
SORT RETAINING SEQ
SORT/A
SORT/A
SORT/B
SUBROUTINE LIBRARY
SYSTEMATION DISCOUNTS
TAPEREC
TAX PGMS
TICTACTOE
TX*
UNPROTECT
UTILITY PGMS AVAILABLE
UTILITY PGMS AVAILABLE
UTL-1 PGM PACKAGE
VARIABLE ALLOCATION*
VECTOR GRAPHIC SYSTEM
WAMSORT

J,. CALLAWAY
B.RUDOW

MICRO-SERVE
MICRO-SERVE
MICRO-SERVE
MICRO-SERVE

SYSTEMATION
SYSTEMATION
SYSTEMATION

SYSTEMATION

SYNTAX CORP.
MUG LIBR
B.RUDOW
SYSTEMATION
BONJOEL
SYSTEMATION
SYSTEMATION
B.SMITH
VEC GRAPH
BON JOEL

XREF SYSTEMATION
YES/NO INPUT RESPONSES* B.SMITH
YES/NO INPUT RESPONSES* ED BURKHARDT

BASIC UTILITY PGM
BASIC UTILITY PGM
BASIC STATEMENT
REFERENCE LISTING
REFERENCE LISTING
REFERENCE LISTING
REFERENCE LISTING
BASIC PGM TECHNIQUE
8080 UTILITY PGM
8080 UTILITY PGM
BASIC-80 UTILITY PGM
BASIC PGM TECHNIQUE
GENERAL INFO
BASIC APPL PGM
BASIC APPL PGMS
BASIC APPL PGM
BASIC UTILITY PGM
CP/M UTILITY PGM
GENERAL INFO
UTILITY PGMS
8080 UTILITY PGMS
BASIC PGM TECHNIQUE
HARDWARE
8080 UTILITY PGM
BASIC PGMING AID
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE

TERM I/O
TERM I/O
REFERENCE
LIST
UPDATES
MENTION
USAGE
SORT
SORT
SORT
SORT

MUSIC
BUSINESS
GAME
DISK FILES

REFERENCE
DISK FILES

SORT

006-06
006-07
002-03
005-05
006-02
007-10
011-03
003-03
001-01
003-01
010-05
010-01
009-01
011-06
006-04
008-06
004-01
009-05
006-07
007-09
005-12
008-06
003-05
006-09
004-10
009-04
012-05

The programs and data file will be put on Library Disk 7 - which isn't done
yet. You'll be able to use the programs for indexing magazine articles,
records, books - whatever. They are a very useful set of routines.

LIBRARY DISKS 4 & 5??

I have succeeded in thoughly confusing a lot of people last month by
referring to library disks 4 and 5. What I did, without telling you, was
to make the Membership Directory be Disk 4, and the S/W Vendor's Directory
be Disk 5.

CLASSIFIED

WANTED: People to input names and addresses at five cents each. I supply
the programs, the disk, and the data. You mail the completed input back to
me. Estimated need is for the first quarter of 1982. Tim Dawalt, P.O. Box
253, Lightstreet PA 17839, 717/784-4496

WANTED: A person to perform a disk conversion from 5 1/4 Micropolis CP/M
to 8" Standard (and/or double-density) CP/M. Martin Rothstein, 21 E. 40
St., NY NY 10016, 212/683-5310

00 1 NOTICE: Micropolis will present a floppy disk maintenance course on Oct. 7
Cll & 8 at the Los Angeles Airport Marriott. Cost is $200 for first student,
~ $175 for additional students from the same company. Fees include lunches,
c. manuals and diagnostic software. Contact Bob Louch at 213/709-3300.

w
Ill
Q)

>.
.......
Ll'I
N
<I>

(.!) w
:::> Q)
E .c

.µ
QI ••O
.c II.I
.µ Q) ..

.µ w
>.Ill Ill .c w Q)

>.
>tC:'­
r-1 O<X> .c r-1
.µ .µ<I>
c: p,.
0•'""' ...
Ewo

() ()
'O II.I
Q) .c)(
.c :s Q)
11.100E
r-1 •
.c Ill
:s 'O
c. Ill

c:
Ill
CJ

Ul

::::>

~ " H H

< " x "
Ul "
Ul " < "
~ "
u "
8 "
Ul "
0:: " H H
~ "

~
H

< ::e:
(/)
(/)

<
~
CJ

8
Ul
0::
H II
~II

" " "

c.
::::>
0
0::
(.!)

Ul
0::
Cll
Ul
::::>

Ul
1-t
o.J
0
c.
0
0::
u
1-t
::e:

~

o.J
1-t

~
Ul
Ul
<
o.J
CJ

8
Q) Ul

Wr-IM 0::
0 () 0 1-t
.µ w <X> ~
......... i.nr-1
'OCJMN
Cll \0

'O o.J N
.. 0 <I

) 0 M
0) Q) CXI
'O O'r-1 CXI
:s C:r-1 o:: ~

w:>i.n
N 0..11.10
N C/l .µ N
:s c:~

co~ :s
o::i::
\0

