
r
!

MICROPOLIS USERS GROUP

MUG Newsletter I 14 - September 1981

**

WRITING GOOD PROGRAMS (PART ~

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission, KS 66208

Last month we discussed the philosophy of good
programming practice. In review, the three
requirements of a good program are that it works,
it is maintainable, and it gets along with people.
Keeping this in mind, a program should be planned
from the top down, with major functions broken down
into sucessively more detailed functions, and some
sort of written plan is absolutely necessary for
anything but the most simple of programs.

Top-down design of a program lends itself to
subroutine oriented code. Carried to the extreme
(and the extreme may be desirable), the main body
of the program consists primarily of GOSUB state­
ments with subroutines performing all the logical
functions. Subroutines called by the main body of
the program may, in turn, call other subroutines,
each of which perform a definable logical function.

If the program has been planned using a flowchart
or other planning tool, it should be obvious as to
how the code should be grouped in subroutines.
Typical subroutines might perform a logical set of
calculations like State tax in a payroll, an input
operation like getting names and addresses for a
mailing list, various output operations, a table
lookup routine, etc. The result is a program that
is MODULAR in design. What may have been a single
long, rambling piece of code is actually a collec­
tion of short, easy to understand sub-programs held
togeather by an equally short main program segment
consisting of GOSUB statements and some simple
logic.

Many programming teachers and textbooks tend to
give the impression that subroutines are for saving
space when a routine needs to be performed at
several different places in a program. While this
is true, a far more important function is to make
the program easier to understand, more reliable,
and maintainable. Even if a subroutine is called
only once in a program, its use is justified be~
cause it makes the program structure more apparent
to the programmer. The space saving for a sub­
routine that is called repeatedly can be thought of
as a bonus.

The use of modular subroutine-oriented code does
not automatically make a program a well-written
one, and the use of subroutines is invisible to the
user of the program. However, if a programmer uses
the top-down design approach and modular code, he
or she is less likely to introduce bugs in the
program due to bad planning and development time
should be reduced. Subroutines also improve
maintainablity, since if a problem should appear or
if modifications need to be made, the changes need
only be made to a subroutine, which is more or less
portable. Productive programmers maintain a
library of subroutines they can use in new programs
to cut development time and increase reliability.

Second only to the use of subroutines in making a
program easy to understand is the liberal use of
comments. Even relatively easy to understand code
like BASIC quickly becomes just so much jibberish
when you have forgotten what it is supposed to be
doing, and it may only be a matter of hours until
you forget. I have adopted the policy of beginning
each subroutine with a comment line (REM or !) that
indicates what the subroutine does and adding other
comments where needed. The comment line is the
entry point of the subroutine so if I see a GOSUB
400 somewhere in the program, I know that line 400
will be a comment line that tells me what that
subroutine does.

(Continued on page 3)

BASIC/S COMPILER REVIEW, PART 1

I decided to try and put BASIC/S through a
combination of loops, subroutines, calculations,
and string manipulations. The program listed below
doesn't accomplish anything - it's just a benchmark
test vehicle.

10000 !TEST.B/S
10010 SIZES(6,5,49)
10020 PRINT "START"
10030 R$="THIS IS A TEST"
10040 J\=l
10050 FOR I% = 1 TO 1000
10060 ON J\ GOSUB 10120,10130,10140
10070 J% = J% + 1
10080 IF J% = 4 THEN J\ = 1
10090 NEXT 1%
10100 PRINT "END"
10110 END
10120 GOSUB 10150:RETURN
10130 GOSUB 10150:RETURN
10140 GOSUB 10150:RETURN
10150 Q% = ((((!%/\ 2) \ 2) * 1.5) + 7) -J%
10160 S$ = MID$(R$,(2 *J%)-l,J%+2)
10170 ON J% GOTO 10180, 10190, 10200
10180 RETURN
10190 RETURN
10200 RETURN

It took 57.8 seconds to complete the program under
BASIC/S. With Micropolis BASIC, it took 175.4
seconds. BASIC/S ran a little over three times
faster. I know that, with Micropolis BASIC, the
larger a program is, the slower it runs. So I put
the test program on the back of a 300 line program,
inserting a GOTO 10010 as the first line. I
recompiled the same large program for BASIC/S.
When run, it still took 57.8 seconds for BASIC/S.
Program size has no effect on execution speed for
the compiled version. For Micropolis BASIC, it now
took 763.4 seconds. In this benchmark, running
identical programs, BASIC/S runs 13.2 times faster
than Micropolis BASIC.

The savings of memory space isn't as big a plus as
I thought it might be. The BASIC/S version, system
and large program, took 37237 decimal bytes. The
Micropolis version took 38502 bytes. By compacting
Micropolis BASIC, you could get it down to 36710.
Compacting the program would have further reduced
the Micropolis size.

Last month I mentioned code security as one area of
comparison. Interpretive Basics, like Micropolis',
have no security. The current operator can change
or copy code as he wants. This is a problem for
both the software vendor and for the business
owner. Vendors hesitate putting in the time to
create sophisticated software that someone can
easily change and then resell as his own.
Employees of business have been known to change,
purposely and inadvertantly, a line of code. This
can result in destroyed data, or worse, erroneous
data which isn't discovered for months. While a
compiled Basic doesn't provide perfect security, it
makes it very difficult for either of the above
situations to occur.

My assessment so far - Well, as Don Warner, who
also has an "original" version, said to me as we
were discussing a few of the bugs, it has taken a
bit of the pioneering spirit to get through the
first months. Personally, I'm having fun. To be
truely easy to convert existing software, one will
have to wait for Version 1.1 which will support the
DDIM function and a bunch of new ones that don't
exist in Micropolis BASIC.

DDIM allows you to dimension an array dynamically,
eg, A%(SIZE(l)). There is no destinction between
A%(100) and A%(SIZE(l)) in Micropolis BASIC and I
use dynamic dimensioning a lot. Bob Zale says that
it should be available by the time you receive the
newsletter. Owners of Version 1.0 will receive 1.1
for, at most, the cost of materials. Bob also says
that Version 1.1 will execute faster than 1.0.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

CP/M TECHNICAL TIPS

AUTO-EXECUTE AFTER WARM OR COLD START

by s. Tattersall, ITT
London Road, Harlow, Essex, England CP179NA

CP/M version l.4X on Micropolis/Sorcerer includes a
feature to execute a program/command on start-up.
A 'mode-byte' in CP/M has to be set to enable this
feature and is located at 24FFH in SYSGEN. This
'mode-byte' is usually set to DOH (Feature
disabled). If it is changed to DlH then a program
can be executed on cold start and if it is changed
to D2H then the program will execute on warm start.

As distributed, the auto-execute facility will
execute a program named AUTO.COM. This
program/command name may be altered in SYSGEN at
location A08H.

OAOO C3 55 03 C3 51 03 7F 04 41 55 54 4F 20 20 20
20 .U •• Q ••• AUTO

OAlO 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47
48 COPYRIGH

OA20 54 20 28 43 29 20 31 39 37 38 2C 20 44 49 47
49 T (C) 1978 I DIGI

OA30 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00
00 TAL RESEARCH

OMO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

OA50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

The auto-execute command/program name can be any
valid command line, e.g.

RUN PROGRAM
or DIR

The program/command name is inserted into the input
buffer starting at address A08H, in SYSGEN, and the
new program/command name length must be inserted in
A07H.

All alternations to CP/M are made in DDT: after
loading the configured version, e.g.

DDT CPM38.COM

and SAVEd in the usual way, e.g.
SAVE 40 CPM38A.COM

TABLE HANDLING TECHNIQUES

by N. P. Dembinski
8618 Essex Ave., Chicago IL 60617

Many of us think up programs, begin writing code
and before too long, we're bogged down with
inefficient program logic that may be difficult to
maintain if future revisions are required. If so,
it's possible that you are a person in need of
programming techniques.

The one most important step in writing a program,
often neglected by many programmers, is thinking
the logic through in advance.

For your personal project, you're not going to
worry too much about program memory size or
execution time. But there are a number of tech­
niques that have been developed that will be of
benefit to you in writing and maintaining good
logic and therefore efficient programs.

Table handling of data is probably one of the most
abused techniques in programming. The types of
data, frequency of use and size are usually not
well thought out in advance.

When reading in data supplied by a user to build an
internal table:

1. Check to make sure the data does not exceed
the space allocated for the table.

2. Check the sequence if data must be in sequence.
3. If the data contains the subscript determining

MUG NEWSLETTER 114 - SEPTEMBER 1981

its position in the table, check the subscript
for a valid range.

Try to find out why you abended (abnormal end of
program execution) when a data record came in with
a negative subscript that was not checked.

When testing for the end of a table, use a named
value giving the item count, rather than using a
literal. Then, if the table must be expanded, only
one value needed be changed, instead of all refer­
ences to a literal.

If you are doing a lot of processing on an item in
a table, move the item (subscripted) to a work
area; do all the processing necessary, and move the
item back to the table. Even when subscripts are
in computational mode, subscripting takes time.

Table look-up research on the comparative
efficiency of four different types of table
handling techniques is summarized below.

The tests involved:
1. Reading a file of 21 records to fill a

table (in the literal test, records are read,
but no table is used) •

2. Making 10,500 accesses to a table of 21 entries
evenly distributed over the entire table range.

3. Adding the corresponding table data on each
access to a control total.

4. Printing a single line (the control table) •

TABLE LOOK-UP EXECUTE TIME RATIOS

DIRECT
TECHNIQUE

LITERAL
TECHNIQUE

BINARY
TECHNIQUE

SERIAL
TECHNIQUE

RATIO 1 1 3.7 4.28

NOTE: That as the table size increases from 21
entries tested above, the serial technique would
appear relatively less efficient and the binary
technique approach would improve efficiency.

The ratios shown do not include compilation, load
or set up. They only reflect processing described
above in the tests.

1. Use indexing rather then subscripting.
2. Include search argument in sort key if

possible.
3. If the table items are subject to seasonal

variation, have the program do a count of the
transactions each time the program is run,
and write it out to tape or disk ready for
the next production run.

4. Choice of table organization and access
method depends on the programming problem
to be solved.

5. Use data analysis - check for strings of
equal data and go against the table once.

6. When tables in memory are so large that it
must be kept on a disk, build a skeletal table
in memory with disk addresses of the full rec­
ord and find records by direct access;

OR
Build part of the table in memory - those
that are most frequently referenced - and
keep the rest on disk.

OR
Sort transactions against the table and bring
part of the table into memory at a time.

This summarizes some of the programming techniques
and guidelines useful for efficient table handling.
Next month I'll give a detailed description of each
technique.

CDS VERSATILE SERVICE

Tim Dawalt passed me some information about repair
facilities for the defunct CDS Versatile computer,
which, of course, has the Micropolis S-100 system.
I spoke with Don Smathers, the president of

'

MUG NEWSLETTER #14 - SEPTEMBER 1981

Computerease, and verified that he has plenty of
parts for the CDS.

He also has some application software for CP/M on
Micropolis. Among the selection are a General
Business Package, a Dental Package ($990), and a
Temporary Placement Package ($2500) •

The CDS Versatile was originally sold with a
Micropolis BASIC Business Package. Don has no
knowledge of the legal status of this software,
though he can't recall seeing a copyright anywhere
is the code. You guys with this software should
take a good look at it. If it really doesn't have
a copyright, you might consider sharing it.

At any rate, if any of the members has a problem
with their CDS, contact Computerease, P.O. Box
4156, Wilmington Delaware 19807, phone (302)
654-6775.

PDS VERSION 4.0

Some of you are still running under Version 2 or 3
of the Micropolis Program Development System (PDS).
Version 3 and Version 4 BASIC programs look the
same, that is, they'll run on each other's PDS.
Version 4 BASIC executes faster, however, and also
has editing capabilities not contained in Version
3.

The biggest change is that the RES and MOOS areas
are different for the two systems. The MUG
Library's assembly language routines won't run on
Version 3.

You can obtain Version 4 from Micropolis, Order
Processing Dept., 21329 Nordhoff Street, Chatsworth
CA 91311 - phone (213) 709-3300. If you just want
the disks, the cost is $25. A new manual costs
another $50, or $75 for the full package. Since a
third of the manual is changed, I'd say you should
get it if you get the disks. Postage costs will be
added to the above prices.

WRITING GOOD PROGRAMS (cont. from £9. ll_

Using comments as entry points helps to avoid
accidentally removing an entry point when a program
is modified by removing lines or changing line
numbers.

Comments in a program use up memory and the
programmer must attempt to strike a balance between
program size and readability. In reality, however,
program size is not a very serious consideration in
commerical business applications programs, because
the computers involved usually have ample memory.
This is not always the case with hobbyists with a
small budget, but in general, memory can be con­
sidered to be cheaper than good software within
reasonable limits.

One technique for writing application programs for
sale is to develop the code on a computer with a
large memory size and fully comment it during the
development stage. Then, when the programs are
debugged and ready for sale, use a program that
removes the comments (and spaces) from the code,
such as Systemation's CRUNCH or Datasmith's SMASH.
It is not unusual to get a program size reduction
of 20 to 40 percent with these programs, and the
condensed code can be distributed while the fully
commented version is retained for use in
maintenance and further debugging.

I wrote the program below a year or so ago to help
myself figure out some memory dumps one afternoon.
It converts a number entered by the operator into
its equivalent notation in any number base desired.
When I found it recently by accident, it took me
quite a while to figure out what it was supposed to
do, probably nearly as long as it took to write it.
It works, however, and is representative of a short

PAGE 3

program that was intended to be used only once.
Note that it is an endless loop and takes a
Control-C to stop:

10 DIM A$(80)
30 INPUT "ENTER A NUMBER"; X
50 INPUT "ENTER CONVERSION RADIX";B
70 R=MOD(X,B)
80 X=INT(X/B)
90 IF R<lO THEN A$=FMT(R,"9")+A$: GOTO 110
100 A$=CHAR$(ASC("A")+R-10)+A$
110 IF N>O THEN 70
120 PRINT FMT(B,"Z9R ")+A$
130 PRINT
140 GOTO 30

:he f~llowing is the same program, using nearly
identical code, that I modified for this article.
I've gone a little overboard for such a short
program to illustrate a fully documented, modular
program. The only feature that has been added is a
way to stop it, and. the INPUT statements have been
made more descriptive of what they want from the
operator:

10
20
30
35
40
50
60

70
100
110
120
130

140
150
160
170
200
210
220
230

240
250

260
270
300
310
320
330

340

350

360
370
380
390

1
1
1

**** CONVERT ****
CONVERTS NUMBERS TO ANY BASE.
WRITTEN BY BURKS A. SMITH 6-20-81

(REVISION 0)

DIM A$(80): !STRING FOR HOLDING ANSWER
PRINT "NUMBERS MAY BE ENTERED IN DECIMAL
(xxxx) OR RADIX FORMAT (bbRxxxx)"

! < MAIN PROGRAM

GOSUB 200: !GET INPUT FROM OPERATOR
IF X=O THEN STOP: !QUIT IF OPERATOR

ENTERS ZERO
GOSUB 300: !PERFORM CONVERSION
GOSUB 400: !PRINT ANSWER
GOTO llO: 1 AND LOOP

1< GET INPUT FROM OPERATOR

INPUT "ENTER NUMBER TO CONVERT (0 TO QUIT)";X
IF X=O THEN RETURN: !RET IF OPERATOR WANTS
TO QUIT
INPUT "ENTER RADIX FOR CONVERSION";B
IF B<2 OR B>36 THEN PRINT "INVALID RADIX"

:GOTO 240
RETURN

!< CONVERT NUMBER TO DESIRED BASE
!
A$="" : !CLEAR THE ANSWER STRING
R=MOD(X,B): !REMAINDER OF NUMBER/BASE IS A
DIGIT OF THE ANSWER
IF R<lO THEN A$=FMT(R,"9")+A$: GOTO 360: !USE

NUMBER IN ANSWER FOR R<lO.
A$=CHAR$(ASC("A")+R-10)+A$: !USE LETTER FOR
R>=lO.
X=INT(X/B): !COMPUTE NUMBER FOR NEXT ITERATION
IF X>O THEN 330: !LOOP IF MORE TO DO
RETURN !ELSE RETURN

400 !< PRINT THE ANSWER
410
420 PRINT FMT(B,"Z9R ");A$:

ANSWER
430 PRINT
440 RETURN

!PRINT THE RADIX AND

Obv~ously, the second version of the program is
easier to read for a human and is more or less
self-documented due to the large number of
comments •. The extravagant use of memory for
comments is of no consequence here because we
aren't about to run out, but some kind of balance
has to be struck on •serious" programs. Using a
comment as the first line of each subroutine has
the highest priority and comments connected with
trivial statements has the lowest.

These programs are presented to illustrate a style
of cod~n~ programs that improves eye-appeal and
readability. Hopefully, this will also improve the
development of a logical program and the ability of
t~e program to be m~intained over a long period of
time. NEXT MONTH I 11 discuss some human factors,

PAGE 4

and what should be considered when writing programs
that have to get along with people.

ED NOTE: Burks has a nice article on •using
Micropolis Basic• in the September Issue of
Interface Age. Pick it up for a little extra
education.

' CORRECTIONS

The August newsletter spoke of Vector Graphics with
Tandem drives. The drive manufacturer is Tandon,
not Tandem. Tandem makes computer systems, which,
I believe, use Micropolis drives.

The July newsletter has an article on modifying
CBRK to use the space bar instead of Control s for
PAUSE. I incorrectly assumed that everyone's CBRK
routine was the same. They aren't. I'll find the
correct locations for as many systems as I can, and
tell you the results next month.

READING "DIR" FROM BASIC
~~ ~~-

Although Bob Zale (Systemation) has been up to his
ears in BASIC/S, he gave some information that
allowed me to dig a bit deeper into processing of
the DIR file from BASIC.

DIR is stored on track 0, sectors 3 through 12.
Each of these ten sectors contains information on
16 possible files. For single sided drives, only
the first 8 files are used. The directory
therefore has a maximum size of 80 files (10 times
8), but only 77 (MOD II) or 35 (MOD I) can be used.
That's because disk space is allocated to a file
one track at a time. For each sector, the 16 bytes
for each file are allocated as follows:

Bytes 00 thru 09 - ASCII name
10 - Starting track number (plus 128)
11 - File type
12 - ?; unknown use
13 - Number of sectors used (plus 1)
14 - ?; unknown use
15 - ?; unknown use

Bob told me that RES has a read buffer at 16R3B8.
Using this information, I wrote the following
program which reads and displays DIR.

10 ! TESTDIR
20 OPEN 1 "DIR"
30 EOF(l)=l6
40 FOR L%=3 TO 12
50 GET 1 RECORD L% A$
60 GOSUB 130
70 NEXT L%
80 EOF(l)=l
100 PRINT
110 CLOSE 1
120 END
130 J%=16R03B7
140 FOR K%=1 TO 128 STEP 16
150 IF PEEK(J%+K%)=255 THEN GOTO 240
160 FOR I%=0 TO 9
170 PRINT CHAR$(PEEK(J%+(K%+I%)));
180 NEXT I%
190 PRINT TAB(l2);
200 FOR I%=10 TO 15
210 PRINT FMT(PDEEK(J%+(K%+I%)) ,"999");" •;
220 NEXT I%
230 PRINT
240 NEXT K%
250 RETURN

Line 30 opens the DIR file size to 15 sectors. EOF
is always one more than the file size. I don't
know why DIR's size is normally zero; it should be
16. But you can't read it if it's zero (that's
probably why it's zero), so I had to open it up.
Actually it should read EOF(l)=l7, but I wasn't

MUG NEWSLETTER 114 - SEPTEMBER 1981

sure whether that would allocate another track,
which I didn't want to do. When I'm done (line 80),
I set the size back to 0.

Line 50 looks like it puts something into A$. It
doesn't. The data size is greater than 250 bytes,
so BASIC ignores the input. The GET places the
data in the buffer at 3B8H, though. Line 140
breaks the data up into eight 16-byte pieces. The
last half of the data is blank, as I mentioned
above. Line 150 checks the first byte for a FFH.
This value means that the location is unused. I
jump out if that's the case. You ought to put a
•1• on this line and run it once on a disk where
you've scratched some files. Interesting. Lines
160 & 170 print the ASCII file name. Lines 200-210
print the numeric values in the next six bytes.

A listing by FILES would give a print that looks
like this:

DIR
RES
MOOS

03 0000
03 0014
OC OOlA

The values are printed in hex. TESTDIR prints the
values in decimal, and its output looks like this:

DIR
RES
MOOS

128 003 000 016 001 000
129 003 000 021 001 001
131 012 000 027 001 001

CAUTIONlll Whenever you are going to play with
data on a disk, practice on a backup. While I
don't think this program destroys anything, be
careful. I have used it, even left the size of DIR
at 16, and everything still works fine.

There are lots of things one can do to enhance the
program. Those of you who work on this, let me
know what you come up with. If you know the use
and organization of the sectors preceeding and
following 3-12, please tell me about it.

LIBRARY DISK ~ - SYSTEM SOURCE

Disk 6 of the MUG Library is ready for release. It
is the disassembled and commented code for RES and
MOOS, a modified version of LINEEDIT, and a Z80
disassembler. Robert Manderson (C/O Hewlett
Packard Pty Ltd, 31-41 Joseph St., Blackburn,
Victoria, Australia, 3130) did the work. RES and
MOOS may not be identical to your system as it
seems that all manufacturers have their little
changes. The RESI/O module is, of coarse, normally
different for all of us. It would have to be
edited for your system. It assembles back to
Robert's system, though. In addition to the source
code, there are text files of explaination. This
is a wealth of information. Robert has done a
tremendous job.

The LINEEDIT program is based on Micropolis', but
has a MERGE command, an altered APPEND function,
and enhansed EDIT capabilities. The Z80
disassembler is a Manderson creation.

The distribution of this disk must be controlled.
We must take care not to violate the copyright. It
therefore will not be •sold". It will be
distributed only on a basis of you submitting a
program, disk, and the standard $3 (North America)
or $5 (other) cost for postage & handling. I must
also insist that your submission disk include a
Version 4 RES & MOOS in addition to the program
submitted for the library. This will prove that
you are an owner of Version 4, and that I am not
interferring with Micropolis' sales of this
product.

Those with MOD I will have to send 2 physical
disks. This is a lot of data. Robert has even
more, so we'll be expanding on the data base.

MUG NEWSLETTER 114 -mSEPTEMBER 1981

BASIC TOKENS --- ----
by William D. Powers

3520 San Semeon Ave., Oxnard CA 93033

Those of you who have looked at the code in memory
when a BASIC program is loaded, have noticed that
the 'key' words are never there. That's because
Micropolis BASIC converts these words (PRINT, GOTO,
etc.) into one byte tokens. The following program
finds and decodes these tokens.

The assumption is made that a token is a byte with
a value X, where X is greater than 80H and less
than FAH. Each token represents a string of 1 to 9
characters. The program also assumes that there is
a table in BASIC of the following form:

bbbbXbbXbbbbbbbbXbbXbXbbX •••
where 'b's form a string of BASIC ASCII characters
and the X is the token representing the preceeding
string.

That such a table exists was shown by examining
memory with the MOOS DUMP command, after BASIC had
been loaded and control then passed back to MOOS.
This examination also showed that the first ASCII
string was 'CONT'.

The BASIC module is searched from its start at
1598H until the table is found. Since, for most
systems, it starts around 3000H, the search may
take a bit of time. The first and last locations
of the table are saved, and a memory file is
constructed of the data between these locations.

Variable definitions used in the program are:
A() TOKEN VALUE
B$() STRING REPRESENTED BY TOKEN
W TEMPORARY VALUE
N LOCATION START OF TABLE
L EVENTUALLY LAST LOCATION OF TABLE,

MOSTLY, LOCATION TO BE PEEKED AT

010 !TOKEN
020 DIM A(l28),B$(128,10)
030 I=l
040 L=l6Rl598-l
050 L=L+l
060 IF PEEK(L)<>ASC("C") THEN 50
070 IF PEEK(L+l)<>ASC("O") THEN 50
080 IF PEEK(L+2)<>ASC("N") THEN 50
090 IF PEEK(L+3)<>ASC("T") THEN 50
100 A(I)=PEEK(L+4):B$(I)="CONT":N=L:L=L+4
110 PRINT "TOKEN FOR ";B$(I);TAB(22);"IS ";A(I)
120 I=I+l:B$(I)=••
130 L=L+l:W=PEEK(L)
140 IF W<l28 THEN B$(I)=B$(I)+CHAR$(W):GOTO 130
150 A(I)=W:IF W<>l6RFA THEN 110
160 PRINT "TOKEN LIST STARTS AT ";N;" DECIMAL"
170 PRINT "TOKEN LIST STOPS AT ";L;" DECIMAL"
180 END

Note that the literal at line 70 is the letter
"oh", not a zero. If you want to see what the
token looks like, append

;CHAR$(A(I))
to the end of line 110. The interpretation will
differ, depending on the type of character
generator you have in your system, and will, in
most cases, completely disrupt the sequential
listing you would normally get.

LETTERS

Buzz,
I thought it might interest you to know that rumor
has it that SIG/M, which is a CP/M special interest
group in this area, is planning to have the CP/M
User's Group library on 5" disk - some on
Micropolis and some on North Star.

You might want to talk to Hank Kee; 42-24 Colden
St,; Flushing, NY 11355 (212) 539-3202 to see if
MUG can co-operate.

PAGE 5

BASIC FUNCTIONS

Also I've run across an interesting use of the SGN
function in BASIC. The statement was ON SGN(X)+2
GOTO 100,200,300.

Another thing that I've discovered is that you can
do something like FOR I=l TO SIZE(n) where SIZE(n)
is the number of records in file(n), eg, OPEN n
"name".

Has anybody got a routine to patch into MOOS to put
out an address header prior to a dump from memory?

HARDWARE STANDARDIZATION

Also does anyone know if there is any standardi~
zation among drive manufacturers in the pin
connections of the cable header to the drive
controller board? Can Micropolis drives be made to
work with a North Star controller (single density)?

I, too, have had uniformly good results with all
Systemation products in addition to having Bob Zale
be generous with his time in resolving numerous
difficulties with my application programs.

Keep up the good work!

Martin c. Rothstein, CPA
21 E 40th St, New York NY 10016

Marty: I'll check out SIG/M and a couple other
CP/M groups and write the results next month.

Are you aware of the fact that you can use a
literal on most MOOS commands? Specifically, you
can do an ASSIGN 2 3 to get your output to the
printer and -

>DUMP 04E7 04FO "09/01/81"
>FILES "09/01/81"

The literal must be 10 characters or less.

UPGRADE FROM MOD .!_ TO MOD .!..!.

Buzz,
I read an article that said the difference between
single density and D.D. was that D.D. omits clock
pulses and uses more compact coding format. As a
result, the data transfer rate doesn't change. I
don't think that is true of Micropolis MOD.l /
MOD.2. My question then is - ••• I have MOD.l.
What is cheapest way to upgrade to MOD.2? The
answer that I expect is - sell MOD.l and buy MOD.2.

Murray MacKenzie
38 Inniswood Drive, Scarborough, Ont Canada

Murray: From a data transfer viewpoint, there
isn't any difference between MOD I and II. Both
drives turn at 300 RPM, have 16 sectors/track, of
268 (unformatted) bytes/sector, and transfer data
at a 250 Kbit/second rate. The MOD II has 77
tracks, where the MOD I has 35.

You don't have to sell your MOD I to go to MOD II.
The controller board (the S-100 board in your
computer) is the same for either type drive. The
softwre is the same (however, see the Jack Rice
letter, below). MOD I and II drives can be mixed
in any sequence among the four drives serviced by a
single controller board.

I have MOD II's as drives 0 and 1, and MOD I's as
drives 2 and 3. You would simply need the add-on
modules and a new 3-(or 4) connector cable.

The cost of a single-sided, single MOD II add-on
drive (MCP-1023M2) costs $495 from Priority-One. A
double drive costs $895. You'd also need the Daisy
Chain cable (MCP-1083-02) at $40.

You can get the full new system, which includes
controller, manuals and system disks, for $695 and
$995, respectively. You'd still need the daisy

PAGE 6

chain if you wanted to use your MOD-I. Call
Priority-One, toll-free, at (800) 423-5922.

Buzz,
I would find a list of disk types (manufacturers)
and part numbers that work with MOD II most useful.
I can no longer buy disks here that work with my
Micropolis, and when ordering by mail, frequently
going through customs, it would be useful to be
sure of getting a diskette that would work with 77
tracks, the first time.

Doug Ellis
PO Box 485, Halifax NS

I know that there are lots of disks which work.
Keeping the product numbers straight for each brand
is a chore, though. Lately I've been using the new
Verbatim DATALIFE disks, with good results. I've
had no trouble with the 'MD 550-16-18209 double
sided/double density 16 sectored, certified 40
tracks per side' disk. I haven't tried the MD
525-16, a single sided version of the above,
because that's the same part number of their old
single density disk that I never liked.

To be really sure, get one of the following:
MD 577-16-18230 single sided/double density

16 sectored, certified 77 tracks
MD 557-16-18257 double sided/double density

16 sectored, certified 77 tracks/side
If you have any trouble finding these, or their
equivalent, I can send you a softbox package of 10
MD 577-16-18230 disks for $42 postpaid to North
America. Again, as for everthing in the MUG, you
can use your VISA or MASTERCHARGE but the charge is
104% of the cash price.

Buzz,
Keep swinging with the MUG.

we run a lot of CP/M at this firm, as you might
know, and we are not running so much MOOS at all.

Anyhow, thanks to your MUG magazine we learned
about the CP/M-MDOS translation thing from
Systemation Inc. I think that Systemation Inc.
should tell Lifeboat that there is such a utility
and it should be put up on Lifeboat's price-list.

We probably have more interesting U.S. software for
CP/M than anybody else in Sweden.

This CP/M-MDOS is a must for our firm.

We develop software in Assembler very often under
MOOS ASM because we find it better to work with
than e.g., CP/M MAC that we also have. Thus we
develop software with ASM LINKl and LINK2 and debug
it with DEBUG-GEN.

When it works we transform it to 84-files with
TRANSLATOR II and then put it on CP/M with UTL-1
package from Systemation Inc ••

The best thing with MOOS is that you can run a
short piece of assembler under BASIC for debugging
and test running.

Having thus CP/M and MOOS you have the best of all
worlds.

I myself prefer CP/M operative system and under
CP/M we have bought many application and utility
programs: Wordstar, the best wordprocessor there
is, for a translator of foreign language, PL/I-80,
SID, MAC, Datastar, Mail-Merge, T/Maker, a
fantastic Tarbell editor - wordmaster, Magsam IV,
QSORT, CBASIC, FORTRAN-BO, FORTHlll, SELECTOR-IV
for our administration files, GLECTOR for
bookkeeping, CAT for catalogizing, BSTAM and
DISTEL. It would be possible to write an article

MUG NEWSLETTER 114 - SEPTEMBER 1981

about it, and I did in the Swedish Mikrodatorn.
Although MOOS is far better than CP/M in many
aspects, MOOS could not offer all this software
that we have purchased and that we really need.
Moreover MOOS op. system is not suitable for bulk
erasing files and many facilities we use under CP/M
as translators. Moreover CP/M software is
compatible even if you change to a hard disk.

MOOS is much safer to run and should there be a
Wordstar under MOOS I might even consider to work
under MOOS with my transaltions.

I think the hobbyist and the hacker should stick to
MOOS, but a business computerist simply has to face
facts and run under CP/M environment.

Maybe you don't share our ideas.

In spite of what I have said about CP/M, we remain
MUG faithful and send a cheque of the due amount
for 1982 and really thank you for the newsletter
which is valuable information for us.

Bill Leksen
POLKO, Box 12184, 102 25 Stockholm Sweden

Bill: I see your point, and I don't exactly
disagree with you, but I have a slightly different
point of view. If one is going to purchase a
wordprocessor or a Fortran compiler, you need CP/M
- at least at this point in time. There certainly
is more software available for CP/M.

It isn't as clean as it looks, however. There are
multiple versions of CP/M. There are also multiple
versions of BASIC, each of those having several
revisions. Any application program may require
some set of a particular CP/M and a particular
revision of a particular BASIC. Other applications
programs might require Fortran or one of the
multiple versions of Pascal.

With Micropolis, things are pretty static, and
therefore considerably less confusing and less
expensive. MpBASIC Rev. 3 works on Rev. 4.
Revision 4 has been around for years and probably
will never get changed. If you, meaning, in
general, any member, are going to write your own
software, I think you should stay with Micropolis.
There is also a fair amount of software that can be
purchased. It is all transferrable to the
Micropolis hard (Rigid) disk, too.

There are a substantial number of members in the
group who are in business, who do own CP/M and a
wordprocessor, but who use Micropolis for
everything else.

It's not that I disagree with your personal choice
of how to run, Bill. I'm sure that it's proper for
your circumstances. But I do disagree with the
blanket statement that any "professional" system
must be primarily, or totally, CP/M. However, I
appreciate your comments, and am pleased that you
are continuing your participation in the MUG.

SPECIALTY PROGRAMS

Buzz,
I am not really a computer nut, not that I wouldn't
like to be, but I just don't have the time. All
the software I have is licensed software; I am in a
specialty business for which off the shelf software
is not available. We are in the Pension/Profit
Sharing administration business.

I have developed a few programs on my own (in
M.BASIC). One of them is a program that calculates
single and joint and survivor annuities at any in­
terest rate and two annuity mortality tables, with
cost of living increases at any interest rate after
retirement. A combination of any male or female
ages can be used. It is strictly an actuarial
program and probably not of any interest to anyone
not in my type of business.

r

MUG NEWSLETTER t 14 - SEPTEMBER 1981

Another program that I developed is an interest
program which produces four columns for any rate of
interest and duration as follows:

Present value of $1.00, present value of $1.00 a
year, accumulated value of $1.00 and accumulated
value of $1.00 a year. Values can be determined at
either the beginning or the end of the payment
period. If there is any interest in these I'll be
happy to exchange them for something else.

By the way, I have two Vector Graphic Computers,
Model II (MOOS and CP/M 2.2), and two Diablo 1620
printers. If I can get one cheap enough I might
consider buying an additional one.

Rudolf L. Duering, Duering & Associates, Inc
582 Market St, San Francisco CA 94104 415-421-5053

Rudolf: I'd love to trade each of your programs
for a disk full of software. While each program
qualifies you for a full library disk, be sure to
include an extra disk of yours for each library
disk. I need to use your disks for the $3 rate.

Specialty programs are what really make systems
useful. I wish we could get loads of them. Maybe
we should start a set of disks for Accountants,
Lawyers, Construction, etc.

RUNNING MOD I ~ II TOGETHER

Buzz,
I have obtained a new interface cable from Dave
Land in Kansas City, and now have my MOD I single
drive attached with my MOD II drives (1053) and
everything seems to work ok. That is with the
expected results that MOOS does not know that the
third drive out there is not a MOD II drive like
the first two. Type in "FREE 2" and he gives me
about 42 more files than I should have. But we can
live with that since we now have a way to get all
files, both program and data, back and forth
between the !I's and the single I. I just have to
keep the smaller MOD I size in mind when trans­
ferring files.

Jack C. Rice
11411 Hubbard, Kansas City KS 66109

Jack: You are pretty much where I was a couple of
months ago. Many people wrote me and told of the
configuration bytes for the disks drives which are
0884H, (drive 0) through 0887H (drive 3).

You can see the contents of these by typing (from
MOOS) -

>DUMP 0884 0887 <er>
The computer will respond with
0884 40 40 40 40
For your system, MOD !I's in 0 and 1, MOD I in 2,
Type
>ENTER 0886 <er>
>23/ <er>

If you had MOD I's in both drives 2 and 3 the
second line response would have been 23 23/ <er>.
You can save your new RES by having your system
disk in drive 0 and typing:

>TYPE "RES" 0
>SCRATCH "RES"
>SAVE "RES" 2Bl 15983

I ran into another problem with DISKCOPY. I was
trying to copy from drive 2 to 3, both MOD I's.
I'd always get errors. The problem was that
DISKCOPY was called in off drive O. DISKCOPY gets
its max-track information from the drive it was
read from. It was trying to copy 77 tracks instead
of 35. The solution was to either call DISKCOPY
from drive 2 or 3, or to temporarily set location
084H to 23H.

PAGE 7

EXIDY'S MOOS CONFIGURATION

Buzz,
My Sorcerer requires that I leave a 'hole' in S-100
memory for the controller. That's a bit of a
problem in that neither board will allow a block
smaller than 4K to be moved nor will either board
allow any block to be disabled. Since all the
controller needs is lK, it would be nice to disable
just that amount. Both are static RAM; one is a
Vector Graphics 16K Rev. 2. The other is an
Ithaca Audio SK lA-1110 Rev. A. Since the Sorcerer
doesn't support the Phantom line, I guess I'll have
to get hold of CS* on the block in question. The
controller will be running one of three places -
normally D400, sometimes BCOO, more often B400.

The above question can be summarized as follows:
Given that I've no control of PHANTOM* (pin 67),
how do I disable a lK block for the disk
controller?

Don Myklebust
19710 Guthrie, Strathmore CA 93267 (209) 568-1389

Don: I don't think you need to leave the 'hole'.
Contact Bob Hageman at the Sorcerer's Apprentice,
313/535-9186. I believe you can insert the
controller in space currently designated for, but
unused, by PROM boards.

DIRECTIONS OF MUG

Buzz,
Something I'd like to see is an overview, a look at
the whole area of microcomputing and where we are
in relationship to what's going on, our percentage
of the market in hardware, software, what publica­
tions (magazines) are aimed where and what will be
important to learn or not. There seems to be a
glut of information and a need to have a clear idea
of priorities. I know this is beyond the scope of
MUG, but it must be a concern for the group.

Listed below is a routine I use to insert a new
entry into a alphabetical list or file. It
successively approximates the position so that a
maximum of log (2) N comparison, are required (10
for a list of 1024, for example).

100 0$=N$(N): Set dummy holding variable,
105 0$, equal to new entry, N$(N)
110 H=N:G=O: Set Max position, H, equal to
115 file length, N
116 Set Min position, G, equal to O
120 M=INT((H-G)/2): ! Finding increment 1/2 dis-
125 ! tance between max & min,
126 ! (H & G)
130 IF M<l THEN 160: ! Position of new entry found
140 IF O$>N$(M+G) G=M+G:GOTO 120: ! New entry>
145 min+increment, mew min created
150 H=H-M:GOTO 120: ! New entry < min+increment,
155 ! new max created
160 FOR J=N TO H+l STEP -l:N$(J)=N$(J-l):NEXT J
165 ! Make room for new entry
170 N$(H)=O$:RETURN: ! Place new entry into
175 ! proper position

Jim Harden, Harden Farms
McKnight Rd., Cleveland MS 38732

Jim,
Gee, a philosopher in our midst. You said a great
deal in one paragraph. However, the MUG is
intended, or at least capable, of aiding you in all
areas mentioned, with the exception of priorities.
What's important to me isn't necessarily important
to you. I try to cover all the bases. This
probably makes parts of the newsletter useless to
those who aren't interested in ••• (name your poison
- graphics, communications, assembly language,
etc).

There aren't any magazines aimed at Micropolis.
The closest are Kilobaud, (S-100) Micro Systems,
and Interface Age. Other magazines aim at areas
which may be important to you. MUG's specific role
is not to compete with them, but to alert you to

PAGE 8

their existance. MUG's primary purposes are the
documentation of the Micropolis Operating System
and the software which works on those systems. We
have a rough time doing that!

I believe that Graphics, Communications and
Distributed Data Processing are the •growth"
The •typed" and "structured" languages, such
Pascal and Ada, are getting a lot of press.
quite complicated, though, and I don't know
compiler for micros will be created. Don't
people will want to write in it, either.

areas.
as
Ada is

if a
know if

There's no doubt that if you want to be a part of
what's going on in microcomputers, you better get
CP/M. We are definitely a minority. However, it
doesn't bother me to not be in the •pack". I never
particularly liked Disco or Punk Rock, and don't
care for TV game shows. There are lots of
instances where I prefer to separate myself from
what the majority is doing. Micropolis happens to
be one of those instances.

CBASIC LIBRARY?

Buzz,
I purchased the Osborne general ledger and payroll
programs in CBASIC on the MOD II format. As these
are considered public domain, would they be
suitable for the library?

Leonard S. Darsey, O. F. ECKLUND, INC.
PO Box 279, Cape Coral, FL 33910

Leonard: We presently have nothing but Micropolis
software in our library. I have no problem with
establishing a CBASIC (or MBASIC) set of library
disks. I wonder about the practicality. I'm under
the impression that CBASIC programs won't run on
CBASIC II, and in fact, CBASIC II Version 2.06
programs won't run on CBASIC II Version 2.07.
Never-the-less, if the membership feels that such

MUG NEWSLETTER 114 - SEPTEMBER 1981

CP/M software is useful, we should certainly start
to accummulate the same sort of routines and
programs for CP/M languages as we now are doing for
the Micropolis languages.

The final point - I don't know how software gets
into the public domain. The Osborne software is
still being sold, isn't it? The programs would be
nice to have but we must be careful and have some
certification that they are not under copyright.

CLASSIFIED

FOR SALE: SOL computer system with 48K static
memory, dual Micropolis MOD II drives, Panasonic
Monitor/TV. Works perfectly and includes lots of
software - MDOS + BASIC 4.0, CP/M (Lifeboat +
custom SOL), CBASIC2, Electric Pencil I and II,
Systemation Utilities, Games, etc., etc.~tc. $2500
for everything.
Dean Sabins, 9811 Ballard Dr 1112, Laurel, MD
20708 (301) 792-0790

FOR SALE: System integrated into a Trimm
Industries 3' X 5' single-bay pedestal desk with
lap drawer. Contains a TEI rack-mounted S-100,
22-slot mainframe chassis with heavy duty power
supplies; Cromemco 4Mhz Z80 CPU, IMSAI SI02 serial
I/O, 56K of contiguous 4Mhz static memory,
Intertube CRT intelligent video terminal,
Micropolis 1053 MOD II dual drive. Software
includes Version 4.0 MOOS, BASIC, etc.,

- Systemation's UTL-1, DSM-1 & BEM, and the CCA Data
Base Management system. Complete H/W & S/W
documentation. System available by mid-December.
$3000, shipping included.

John Martin, C/O The Redington Group, 6605 S.
135th St., Omaha NE 68137. (402) 895-3296

09/01/81

Published Monthly by the MUG
Subscription rates:

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 883-2621

U.S., Canada, Mexico; $18/year: Other, $25/year

FIRST CLASS MAIL

FIRST CLASS MAIL

