
MICROPOLIS USERS GROUP

MUG Newsletter t 9 - April 1981

ANOTHER NEW FORMAT

MORE DATA, LESS SPACE

Yes, here we go again. The third format change of
the year. For those of us who want to make sure
you're getting your money's worth, the new 6-page
format allows room for 6t more characters than the
old 10-page format. The old page size for text was
7xl0 on an 8 1/2 x 11 page. Therefore, there were
(7") X (12 char/in.) X (60 lines/pg) X (9.3 pages),
or 46,872 characters. The new format, before re
duction, is (5.1") X (10 char/in.) X (92 lines) X
(2 columns) X (5.3 pages), or 49,735 characters.

Additional increases in actual text space also
result from having the blank lines which separate
paragraphs now use sot of the space they use to.
Short code lines also use less space.

The purpose of all this is to reduce the number of
pages reproduced, and the weight. Five pages in an
envelope, going airmail overseas, costs $1.20. The
newsletter can now be expanded by 33t and still go
for $.80. I also think the layout is more
professional. Comments are welcomed.

PRODUCTION PROCESS ALSO CHANGED

Another change, not as obvious to the reader, is
the method of production of the newsletter. I
bought a new program called TEXTWRITER from Organic
Software. In combination with Systemation's
EDIT/S, it makes a pretty fair wordprocessing
system, and is being used to produce the news
letter. One can use LINEEDIT, or even BASIC, if
EDIT/S isn't available. Best of all, I can work
with either a high-speed or a letter-quality
printer.

Up to this point, I've retyped all incoming corres
pondance that gets printed in the newsletter. Al
though I still welcome hand written letters, I'd
now prefer that correspondence meant for publica
tion come on disk in LINEEDIT format. Line length
isn't important. TEXTWRITER takes care of re
sizing lines.

To make it worth your while, I will consider the
submission of an article an acceptable trade for a
copy of a library volume. An article doesn't have
to be totally ready for publication. I'll edit it
if you wish - maybe even if you don't wish. But to
qualify for the trade, I do mean an article similar
to those in this month's newsletter, and not a
letter of comment or questions.

SYSTEMATION'S DISCOUNTS EXTENDED

Systemation's Bob Zale tells me that they will
extend their discount program an additional two
months. So, through the end of May, you can still
get 10 to 15t off Systemation products. See news
letter 17, pages 8 & 9, for details. Take your
discount from the prices listed there, which are
retail. Bob isn't raving about the response so
far. I wonder why people aren't taking advantage
of this offer? Systemation puts out some great
utilities. In all honesty, I couldn't function
without them.

THE MUG LIBRARY

The library is officially in business. We have one
full MOD II disk. As stated before, if you send me
a disk containing a new program for the library,
and $3 ($5 overseas), I'll send you back your disk
with a current library volume. If you want a copy

without sending a program, send $15 ($17 overseas)
to cover the costs of the disk, postage, packaging,
and my time.

All dollars must be in U.S. funds. To ease the
problem for those of you who don't have access to
US dollars, I'll accept disks at a barter rate of
$5 each. Please, no stamps. I can't use them.
That is, say you're from Canada and want one
library volume without sending a program. Send
four disks. I'll keep three and send you one back.
Include enough disks to meet or exceed the library
cost. I'll credit you with the excess.

If you want multiple disks, send multiple programs.
Only one free diskcopy per submitted program. I'm
sorry to say that this applies to MOD I, even
though there's less than half the data on each
disk. Actually, it's much more difficult for me to
make MOD I copies because DISKCOPY doesn't, at the
moment, do MOD I copies on my MOD II system.

I have enough material to fill a second MOD II
disk, so there will be a new listing next month.
My criteria for selection of this set was based on
variety. The remaining programs (and some new
ones) are just as good, but I only have so much
time for documenting what I'm doing. To tell you
the truth, it's a real chore keeping everything
straight.

By the way, don't get upset by seeing Tom Hogan's
Basically Speaking Software copyrights when you
list his programs. Tom is now editor of InfoWorld
and has gone out of the software business. He
graciously gave the MUG permission to include these
programs in our library.

Listed below are the contents of Revision 00 of the
MOD II Library Disk 01. MOD I Disk 01-A contains
MONEYONE through VISLETTER, MOD I 01-B contains
LOADGO through TRANS, and MOD I 01-C (not full)
contains the remainder of the MOD II 01 programs.

MUG MOD II Library Disk 01, Revsion 00

Name Type

MONEYONE BAS

LOANS BAS
NETWORTH BAS
CHECKBOOK BAS
BUDGET BAS
GRADEBOOK BAS

REPORTCARD BAS
AMO RT BAS

AMORT-TEXT SRC
POSTMAN2.0 BAS
DEPREC BAS
AMORT.S BAS
INVOICE BAS

FORMULA! BAS

FORMULA2 BAS
STATISTICS BAS

MMS-MEAN BAS
MMS-LINCOR BAS
MMS-T-TEST BAS
MMS-ANOVA BAS
MMS-COVAR BAS
VISLETTER BAS

LOADGO SRC

POKE.VIDEO BAS

Rev Author/Description

00 Hogan, T. Load and run for
control of the following 4
programs for home money man
agement.

00
00
00
00
00 Hogan, T. Run in conjunction

with the following program.
00
00 Smith, B. Amortization, with

its description in the follow
ing file.

00
00 Hogan, T. Mail-list routine.
00 Shapiro, J. Depreciation.
00 Shapiro, J. Amortization.
00 Shapiro, J. Invoice gener-

ation.
00 Shapiro, J. This and the

following program are varia
ble rate mortage calculators.

00
00 Hogan, T. Control program for

the following 5 statistical
programs.

00
00
00
00
00
00 Anders, M. A nice example of

the rudiments of a BASIC word
processor.

00 Micropolis. Allows automatic
execution of BASIC application
program from initial boot.

00 Maschino, G. Some elements of

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

POKE.NRS
DATES

RLTIME.DOC

RLTIME.SRC
START

DATA
KEY
CRAZYTALK
BATTLESHIP
LUNAR LAND
NERVES
SHUTTLE
!GUESS
YOUGUESS
SPACETAXI
SPACCAPTUR

BIGNUM

TICTACTOE

TICTACTEXT
ROMAN

ONT-PAY

GENSORT

TRANS

BARCOM

CALENDAR

NAMESORT-1

NAMESORT-2

POKE.!

POKE.2
POKE.3

BAS
BAS

SRC

SRC
BAS

DAT
BAS
BAS
BAS
BAS
BAS
BAS
BAS
BAS
BAS
BAS

BAS

BAS

SRC
BAS

BAS

BAS

BAS

SRC

BAS

BAS

BAS

BAS

00
00

00

00
00

00
00
00
00
00
00
00
00
00
00
00

00

00

00
00

00

00

00

00

00

00

00

00

BAS 00
BAS 00

graphics manipulation for a
memory mapped video in this
and the next program.

O'Brien, D. Converts a numer
ic date to day of week.
Rowland, H. Real-time clock
routines description, with
assembly language source in
next file.

Anders, M. Load and run for
control of the following 9
game routines.

Maschino, G. Game - Capture
the Klingon.
Rudow, B. Game which converts
numeric input to text.
Smith, B. Game - with the
following file being descrip
tion.

Mac Kenzie, M. Converts
arabic to roman numerals.
Mac Kenzie, M. A Canadian
payroll program.
Burkhardt, E. Merges a set of
unsorted records into a sorted
file.
Rudow, B. A BASIC filecopy
utility.
Barnum, B. Assembly language
Communications routine.
Mac Kenzie, M. Generates a
calendar.
Mac Kenzie, M. BASIC bubble
sort of names via DATA state
ments.
Mac Kenzie, M. Same as above,
except names via Keyboard
input.
Maschino, G. Combination of
sorts and graphics for memory
mapped video in this and the
following two programs.

SYSTEM PROGRAMMING TIPS

by the Micropolis S/W Engineering Group

In response to requests for internal (and external)
information on various parts of the PDS system, we,
the Software Engineering Group at Micropolis, would
like to make a deal with you.

Micropolis' corporate policy is such that the shar
ing of some of the information you would like is
forbidden due to the possibility of increased
support costs. In addition, the available resource
in the engineering group is very low at this time
(and always.)

However, we would like to help our users in prob
lems with the PDS system.

So here's the deal. Questions to the Micropolis
Engineering group should be addressed to the Mi
cropolis Users Group. We will answer any questions
we can through the Users Group. Any information
that we supply beyond clarification of the manual
must stay unsupported. What that means is that
under no circumstances should support problems with
that information be directed to Micropolis
directly. If our management sees effort being
expended to support information that we supply to

MUG NEWSLETTER # 9 - APRIL 1981
the Users Group, they will not allow this exchange
to continue.

So we will try to answer questions that appear in
the Users Group newsletter, if they are addressed
to us, with a general reply each month. If we miss
a month or decline to answer a question, give us a
break, we still love you!

Except for special circumstances we will only pro
vide information pertaining to the 4.0 and 4.1
releases of the PDS system or the 1.0 release of
the OSM system.

QUESTION: Is there some mod to LINEEDIT that I
could make to have it generate 250 character
records?

ANSWER: No, there is no possible mod to LINEEDIT
as LINEEDIT uses the @SAVEDATA and @LOADDATA
routines in MDOS. However, MDOS could be patched
such that the sequential write logic would only
generate 250 character records. In MDOS 4.0 the
address of some words which control the length of
records written sequentially is 1982 and 19BA. In
addition, at addresses lAOA and lAOD the low and
high order bytes of the desired length are stored.
We haven't actually tried this info out. Tell us
if it doesn't work.

QUESTION: Is there a way to read assembly language
(or BASIC) files when using an assembly language
routine called by a BASIC program?

ANSWER: Yes there is a way, however it is compli
cated. BASIC completely overlays the MDOS section
of PDS. This section contains all of the @ level
routines for doing file management. Inside the RES
section is a much more primitive file management
modual which is used by both MDOS and BASIC. We
can not (right now) divulge the interface to this
"kernal". Maybe a little later. This is touchy
information.

By the way, in OSM all file management capabilities
are available to all programs in either assembly or
BASIC including assembly language functions called
by BASIC. In addition, the calling conventions of
the file manager have been completely changed (and
improved). Unfortunately this means that existing
assembly language code for file management must be
rewritten. That's progress! We don't mean to be
flip. A lot of soul searching and hair tearing
went in to the change.

QUESTION: How about the entry points and parameter
passing requirements for the arithmetic routines in
BASIC?

ANSWER: Even if we gave them to you, you would not
be able to use them very well. Not the least of
the problems is that any errors that occured in the
processing would cause the program to crash. The
mathpak is kind of built into the program parser in
a messy way. Run time errors all bottom out
instead of cleanly returning error codes like MDOS
routines.

QUESTION: I know that CIN (etc.) is the logical
routine, CDIN is the physical routine, but what is
the purpose of @COIN?

ANSWER: The I/O sub-system of PDS is split into
several levels. The @COIN level provides the
facilities that handle the ASSIGNment directives
(i.e. printer echoing.) The original intent of the
table driven structures (@CIOTABLE and @LIOTABLE)
was to allow overlaying of I/O drivers. The extra
layer of logical vs physical I/O routines (CIN and
CDIN) was added later to simplify the configuration
process.

QUESTION: Is there any assembly language listing
for RES, MDOS, BASIC or any of the rest of the
programs in the PDS group, available? Even bits
and pieces.

ANSWER: NO. Not even bits and pieces. SORRY!

QUESTION: Do you have a routine for converting one

it ••

'--'

MUG NEWSLETTER # 9 - APRIL 1981
type file to another?

ANSWER: We aren't quite sure what this question
means: 1) We do not have a routine. 2) Conversion
of a BASIC program file to a LINEEDIT file could be
programmed in assembly language. The main problems
would be: the difference in line number range, the
expansion of the keyword tokens to ASCII text and
the reformatting of the result text line to the
LINEEDIT format.

The LINEEDIT format is explained in section 4.4.26
of the PDS manual.

The BASIC format is as follows: Each line begins
with up to 5 bytes that hold the line number in
ASCII. The remainder of the line contains the
line's text followed by a hex FD. The line's text
can contain ASCII characters mixed with keyword
tokens. Keyword tokens are 8th bit high bytes
(except for FD and FE). You can discover the map-

. ping by writing a record to a data file with a one
character string containing an 8th bit high char
acter and then reading it back into a string.
BASIC will detokenize the character. After the
terminating FD byte of the last line (if any) the
program is terminated with an FE.

IN CONCLUSION

Just to justify our existance, here is a freebee.
You may have noticed that there is no good way to
set the load address in a record through MDOS. It
must be frustrating to you since MDOS and the
ASSMbler obviously do exactly that. The secret is
the existance of two undocumented routines in MDOS:
@RFILESECTOR and @WFILESECTOR. The interface to
these routines is as follows:

@RF I LES ECTOR

@WFILESECTOR

@RF I LES ECTOR
@WFILESECTOR

on Entry:

on Return:

on Entry:

-file number in B register
-record number in DE
registers

-Record address in HL
registers

-record is read into the
filebuffer

-file number in B register
-record number

in DE registers
-record address in HL
registers

-record already buffered in
the filebuffer

on Return: -error code in A and
carry flag

EQU
EQU

1A8E
1AD3

Once again let us restate our position. Do not
call or write Micropolis for support on any of the
above information. If you have problems with it,
write the Users group and we will try to reply.

BASIC PROGRAMMING TIPS

by Don O'Brien
13085 Sky Park Drive, Omaha NE 68137

THE FMT STATEMENT

I have tried some things on my own and found that
they work. One is the fact that you may use other
characters in a FMT statement, such as a '/' or a
'-' With this concept, one may express a date
which has been input as a real number D (010381) by
using:

PRINT FMT(D,"Z9-99-99")
or

PRINT FMT(D,"Z9/99/99")

This yields •1-03-81" and "1/03/81", respectively.
The manual seems to cover this, but not too clear-

PAGE 3
ly. This has been very useful for me. I have seen
some routines which took several lines· of code to
accomplish the same results.

Another feature which I have found helpful is the
fact that a FMT statement can be assigned to a
string variable.

D$=FMT(D,"99-99-99")

This allows one to use the RIGHT$, MID$ and LEFT$
statements to separate the string into separate
pieces.

UNUSED MEMORY ------
I have also found that there is an area of memory
which is not used by MDOS or by BASIC. This is OOH
to, but not including, 006AH. I use this area to
store the date, but it could be used for anything
you wanted to store from program to program. Even
re-booting will not destroy the data in this sec
tion. I can change the data any time I like.

APPLICATIONS

In application, consider the following code:

020 IF CHAR$(PEEK(3))<>"/" OR CHAR$(PEEK(6))<>"/" G
OSUB 300

••••• (Go on with normal program) •••••
290 1 CLEAR SCREEN AND CURSER POSITIONING FOR INTER

TUBE CRT
300 PRINT CHAR$(12);CHAR$(27);CHAR$(89);CHAR$(44);C

HAR$(52);
310 PRINT"****** GOOD MORNING!! *****"
320 PRINT
330 INPUT "PLEASE ENTER TODAY'S DATE (MMDDYY) FOR U

SE IN TODAY'S PROGRAMS";X
340 PRINT
350 PRINT TAB(20);"THANK YOU! HAVE A NICE DAY!"
360 FOR I=l TO 500
370 NEXT I
380 D$=FMT(X,"99/99/99")
390 FOR I=l TO 8
400 POKE(O+I)=ASC(MID$(D$,I,l))
410 NEXT I
420 RETURN

Include these lines in your highest level program,
that is, the one that is always run first and which
probably contains a menu which selects operating
options. The first time line 20 is executed, the
TRUE condition will cause the call of subroutine
300, thereby setting the date, which will remain
across all program loads.

If you want the capability to change dates, include
the following lines and an option to call them.

600 FOR I=l TO 8
610 D$=D$+CHAR$(PEEK(O+I))
620 NEXT I
630 PRINT CHAR$(12);CHAR$(27);CHAR$(89);CHAR$(44);C

HAR$(32);"TODAY'S DATE IS ";D$
650 INPUT "DO YOU WANT TO CHANGE DATES";Y$
660 IF LEFT$(Y$,l)="Y" GOSUB 900
670 PRINT CHAR$(12)
680 RETURN
900 INPUT "ENTER THE NEW DATE (MMDDY'Y')";X
910 D$=FMT(X,"99/99/99")
920 FOR I=l TO 8
930 POKE(O+I)=ASC(MID$(D$,I,l))
940 NEXT I
950 RETURN

All application programs should include lines
600-620 to read the date out of low memory. You,
of course, then PRINT D$ whenever you need a date.

PAGE 4
MORE BASIC PROGRAMMING TIPS

by Burks Smith, of DATASMITH
P.O. Box 8036, Shawnee Mission KS 66208

YES/NO DETERMINATION

One of the more common routines used in applica
tions programs asks the operator a question and
expects to get a •YES" or •No• answer. A typical
service routine for this type of question must
check whether •YES" or "NO" was entered and execute
an appropriate part of the program in response.
Additionally, the service routine must be able to
detect an answer which is neither "YES" nor "No•
and prompt the operator to re-enter.

Because this is such a common routine, it is norm
ally encountered in many places in a program and it
is advantageous to keep it as short as possible
while still performing all the required tasks. A
routine that doesn't adequately check for a •gar
bage• operator response may behave unpredictably
and result in a program bug.

The following routine is extremely compact and has
all the desirable features:

100 A$=" ":INPUT "ENTER YOUR ANSWER•;A$
110 ON INDEX("YN",LEFT$(A$,l))+l GOTO

120,200,300
120 PRINT "INVALID RESPONSE, PLEASE RE

ENTER" :GOTO 100

200 Line 200 handles the •y• response.

300 Line 300 handles the "N" response.

In all, the routine takes just three lines: one to
ask the question, one to evaluate the response, and
one for an error message. The response evaluation
line is the one that does the work and is made up
of three components. (1) An ON •••• GOTO statement;
(2) An INDEX function, and (3) A LEFT$ function.
This is how it works:

The user's answer is assigned to the variable A$.
This is a string variable, so anything from the
keyboard is valid. Line 110 is handled by BASIC in
the following sequence:

(1) The LEPT$(A$,l) function isolates the first
character of the user's response. Only this single
character is evaluated so any string beginning with
nyn is considered to be a "YES" response and any
string beginning with "N" is considered to be a
"No• response. Thus, •y•, "YES", "YEAH", •yup• or
•YUGOSLAVIA" are all considered to be •yEs•
responses.

(2) The INDEX function returns the position of the
first character of A$ in the string "YN". If A$
begins with •y•, the INDEX function returns l; if
A$ begins with "N" the INDEX function returns 2.
If A$ begins with anything but •y• or •N• the INDEX
function will return a zero, because it won't be in
the string "YN". After the INDEX function does its
work, we will have either O, 1, or 2 to work with.

(3) Next, 1 is added to the number we have obtained
above to make the number 1, 2, or 3. This is used
by the ON •••• GOTO statement to determine which of
three line numbers the program will GOTO, depending
on what A$ was. The first line number points to
the error message, the second line number points to
a routine to be executed if the response was •y•
and the third line number points to a routine to be
executed if the response was "N".

USEFUL BUGS?

There is one possible pitfall in using this rou
tine, due to a bug (?) in the Micropolis INDEX
function. It seems that the •index• of a zero
length string in any other string is always 1.
Therefore, if A$ is an empty string, the routine
will act as if it were a •y•. It is for this
reason that A$ is set to a single space before the

MUG NEWSLETTER # 9 - APRIL 1981
input statement. If the operator simply hits
RETURN in this case, the routine will treat it as
an invalid response.

One man's bug is another man's feature, so the
INDEX "bug• could be used to advantage if desired.
For instance, an empty string response could be
taken as a •default• answer, in this case •YES".
If the order of the key string were changed to
"NY", then "No• would be the default for an empty
string.

~ FILE-OPENING SUBROUTINE

The code listed below is a subroutine used for the
repetative job of opening a data file on drive 1.
Instead of retyping the code each time I write a
program, I merge this routine into my code and call
it when needed. Joel Shapiro has spoken to me
about his theory that programming is a lot easier
if one has a subroutine library. While Joel will
hopefully expound on the subject in future issues,
the concept seemed reasonable enough for me to
implement some library routines. This one is used
on both the MUG membership and software vendors
disks, neither of which have been seen by anyone as
yet. But that's another story.

The relatively high line numbers (30000) are used
to keep the routine on top of the "work• code. As
stated in previous newsletters, when BASIC does a
GOTO or GOSUB, it starts at the lowest line number
and searches through the program until it finds the
proper line. Therefore, routines which are exe
cuted only once should be numbered above the •work"
code so that time is not wasted by searching
through them.

The •o$(4)• in line 30015 clears the screen. 0$(4)
is initialized by calling Dave Land's configuration
routine. See page 2 of newsletter 8.

This routine tries to keep you from aborting a
program in mid-run. Line 30018 checks to see that
the drive is on-line. Line 30048 allows you to
change disks if the current one doesn't have the
file you want. Line 30054 allows you to re-enter
an incorrectly spelled file name. The variable
ERR$, line 30066, will contain the proper error
message for the current failure.

30000
30003
30006
30009
30015
30018
30021
30024

30027
30030
30033
30036
30039
30042
30045
30048
30051
30054
30057
30060
30063
30066
30069

!

Subroutine for displaying contents of disk
& selecting file for operation

PRINT 0$(4)
OPEN 8 "l:DIR• ERROR 30063
CLOSE 8
PRINT TAB(lO);"THE FOLLOWING FILES ARE AVAILA
BLE:"
PRINT
DISPLAY •1:DIR•
PRINT
PRINT •If desired file is not listed, insert"
PRINT •another disk, type •x•, press RETURN."
PRINT
INPUT •Enter Name of File Desired:";F$
IF F$=•x• OR F$=•x• GOTO 30015
F$=•1: "+F$
OPEN 1 F$ ERROR 30063
RETURN
!
PRINT
PRINT •*****";ERR$;•*****•
PRINT "Correct Problem, Press RETURN to Conti
nue.•

30072 PRINT
30075 INPUT R$
30078 GOTO 30015

AN 'INKEY' ROUTINE

Several people have asked how to implement the
INKEY funtion contained in some other BASICs.
Micropolis BASIC does not support a function which

·- ..

""'

MUG NEWSLETTER # 9 - APRIL 1981
gets a single keyboard character response without
pressing RETURN. Since it is a nice feature, I
have implemented the following assembly language
routine as a substitute.

0000 ¢;6 ~ ¢ 0000 * INKEY 03/21/81
0000 0010 LINK 'SYSQl'
0000 0020 ORG 04EH
004E 3E 03 0030 MVI A,3
0050 32 AO 01 0040 STA @INBUFF
0053 3E 01 0050 MVI A,l
0055 32 Al 01 0060 STA @INBUFF+l
0058 32 A2 01 0070 STA @INBUFF+2
005B CD 7B 07 0080 CALL @CIN
005E 78 0090 MOV A,B
005F 32 A3 01 0100 STA @INBUFF+3
0062 ee :;ip ,,.,... OllO CALL @COOT
0065 eB oe ft8 0120 CALL @CCRLF
0068 C9 0130 RET

An example of implementation is the following BASIC
program.

10 DEF FAA=l6R4:1J 'f f= ?
20 PRINT "INPUT A SINGLE DIGIT NUMBER? ";
30 A$=FAA(l)
40 IF A$<"0" OR A$>"9" PRINT "INCORRECT RESPONSE!":

GOTO 20
50 PRINT A$
60 END

The subroutine prints the response at line 110 and
the program prints it at line 50. The redundancy
was used to show the alternative. Remove either
line when you use it.

If you are looking for a YES/NO response, line 40
of the program might read:

IF (A$<>"Y" AND A$<>"N") PRINT

You will have to load the object filebefore running
the BASIC program. Borrowing Don O'Brien's idea,
I've put it in low memory, so it will stay there as
long as your computer stays on. If you don't want
to assemble it, use the ENTR 004E command of MOOS,
followed by the object code listed above. See page
4-4 of the Micropolis manual for use of ENTR, and
newsletter 15 for a discussion of construction of
an object file. If you do assemble it as, for
instance, INKEY.L, I see at least three ways to get
it in the system. You could LOAD "INKEY.L" after
you get BASIC up. You could insert the line

05 LOAD "INKEY.L"

in my BASIC program. Or you could insert the line

415 LOAD "INKEY.L"

in Don's program. Using the latter method would
cause the file to load only if the date had not
been previously initialized.

The relatively unique feature of this concept is
that neither Don's or my program has any dependance
on what computer configuration you have.
Input/Output ports, memory size, type of machine
monitor, memory mapped or terminal video - nothing
makes any difference. These are truely universal
applications which make use of the common MOOS
structure and interfaces which we all have.

SOFTWARE FOR SALE

SYSTEMATION'S UNPROTECT

Systemation has released UNPROTECT, their second
CP/M utility. UM.PROTECT restores the original
source code for any program saved in the protected
format of Microsoft BASIC-80. Available on MOD I
or MOD II and IBM compatible 8" disk formats, for
$70 ($63 fo MUG members). CP/M 2.0 or later is
required. Contact Systemation, inc., P.O. Box 75,
Richton Park IL 60471 (312) 481-2420.

PAGE 5

SYNTAX'S TAX PROGRAMS

Syntax Corporation's SHORTAX program (mentioned in
newsletter 16) is now priced at $500 rather than
$250. This program is designed for the profes
sional financial and tax advisor rather than for
the general public and they have spent a lot of
additional money on developing quality
documentation.

However, Syntax will provide a free copy of
TAXMATCH and FINCAL to MUG readers who purchase a
copy of SHORTAX. SHORTAX is a fully documented
program with an easy to read user manual. The
TAXMATCH and FINCAL programs are functional but are
not yet documented for commercial purposes. When
they are suitably documented, the price will have
to go up. The SHORTAX manual is available for
$15.00.

The G/Ledger program is way behind schedule and
Syntax isn't ready to deliver any copies at this
time, unless the buyer wants to take it on an as-is
basis for a descounted price. (Negotiable)

By the way, the SHORTAX program is available from
Dave Land at the Computer Center, and Syntax would
like to send a manual to any other MOOS system
dealers for their consideration. Contact Vern
Jacobs at Syntax Corporation, 4500 w. 72nd Terrace,
Prairie Village KS 66208 (913) 362-9667.

LETTERS

BASIC & GRAPHICS ----
Buzz,
I just received my first copies of the newsletters,
and am eagerly looking foward to the next MUG's
issue.

Just thought I would let you know my inner feelings
about owning a vector Graphic System B. I have had
the unit since last June, using the Peachtree Soft
ware with some modifications, running under CP/M.
The hardware has been trouble free, with only minor
software difficulties. All in all I am very satis
fied, though I wish the system would operate a
little faster.

My problem has been understanding many of the for
mating commands of Micropolis BASIC. The manual
that came with the System B does not show examples.
Most books written about BASIC seem to be for the
TRS-80 or Apple or Pet, but none are written for
Micropolis BASIC. I called Micropolis and told
them of my problem as a new owner and beginer
programmer and they told me I should buy their
manual, which I did. I received the same manual
have from vector.

I would like to try my hand at some simple graph
ics. There is no mention of graphics in the manual.
Can anyone help me? Please advise me what I might
purchase to better understand Micropolis BASIC.

Richard M. Herz
74-76 Wythe Ave., Brooklyn NY 11211

Richard,
I try to print explanations of some BASIC direc
tives each month. Obviously, this is a random
approach and isn't particularly useful to the new
programmer. You are not alone in your request for
instruction.

There is no book on Micropolis BASIC. Books that
teach variations of Microsoft BASIC (such as the
TRS-80) should be useful, as Microsoft and Microp
olis BASICs are quite similar.

Anyway, I'll give formal instruction a try,
starting next month. Readers who have suggestions
on how to present material on BASIC and Graphics

PAGE 6
should call or write me and give me their thoughts.
Time is always a problem, too. If there are any of
you willing to write a monthly column on these
subjects, on assembly language, RES, MDOS, and
BASIC physical structures, CP/M, or any other
subject - please contact me.

While I'm on the subject, I want to thank - very,
very much - the people who have been contributing
letters and articles. Please continue to do so.
I'd like those of you who haven't sent anything yet
to give some thought to putting down on paper your
discoveries, accomplishments, and problems. Remem
ber, this is a newsletter, not a slick magazine.
Information interchange is the name of the game.

CLASSIFIED

FOR SALE: Two Micropolis 1033-2 dual disks, with
out controllers; $600 each or make offer. Ben Evers
(714) 565-4704 (days), 469-3629 (nights), or write
P.O. Box 307, Spring Valley CA 92077.

WANTED: Source of double-sided 16-sector 5 1/4
inch disks. Source for protective mailing jacket
for 5 1/4 inch disks. Buzz Rudow

FIRST CLASS MAIL

MUG NEWSLETTER # 9 - APRIL 198i

Status of Systemation's Compiler
Contents of Library Disk 2
A look at CP/M
More MDOS BASIC & Assembly Language routines

04/01/81

FIRST CLASS MAIL
=======

Subscription (August through July) rates:
u.s., Canada, Mexico; $12/year: Other, $25/year

Mid-year subscribers receive current year's back issues.

====================================
MICROPOLIS USERS GROUP

Buzz Ruoow, EDITOR
604 SPRINGWOOD CIRCLE

HUNTSVILLE AL 35803
(205) 883-2621

FIRST CLASS MAIL
======

Published monthly by the MUG

' :.. . .,

