
\ 

MICROPOLIS USERS GROUP 

MUG Newsletter I 2 - September 1980 

~ Published monthly by the MUG, Buzz Rudow - Editor, 604 Springwood 
Cir., Huntsville AL. Subscription rate: $12/year, $2/single copy. 

Gentlemen: 

Another month - how time flys. I pity those poor columnists who 
have to put out a column every day. Until I get some feedback 
on what the membership wants to see, I'll just write about some 
of my investigations. 

We won't have any huge problems transferring software among the 
membership. The variations we have are MOD I and MOD II disks, 
and Version 3 and 4 of the Micropolis systems. BASIC programs 
have the same syntax in both Versions 3 & 4, although the inter­
preters are different. Assembly language is potentially a bit 
of a problem since the entry points in MDOS changed, and people 
also tend to access routines in their lowest level operationg system. 
These problems are controlable. To go from MOD I to MOD II (or 
back) disks, all one has to do is have both drives and a MOD II 
controller board. We'll discuss more on the specifics if we decide 
to start a library. 

The only other major concern is the input/output to devices other 
than the disks, specifically to the CRT. It was pointed out that 
my example last month of clearing the CRT was too simplistid. 
It would work for memory-mapped devices but not for external terminals. 
By using the function statement, we can still overcome the problem. 

By the way, even if it's only good for memory-mapped video, I f~und 
a way for my BASIC programs to compute whether they are runni~g 
on my SOL or Ve~tor. RES location 16R0500 contains the line length 
of the screen. Again, if 'C' = the 'clear screen' command, and 
'K' = the keyboard input buffer: 

IF PEEK(l6R0500)=79 THEN C=4:K=l 
IF PEEK(l6R0500)=63 THEN C=ll:K=252 

Thereafter, as I said, I use PRINT CHAR$(C) and IN(K). This only 
works, of course, if the screen size of your two systems happens 
to be different. 

Those of you who are Systemation software owners already know that 
Systemation included our circular in their mailout for the latest 
CRUNCH program. That assistance should help our cause immensely. 
Systemation's Bob Zayle has already been immensely helpful. 
While I realize that aiding in a project designed to increase activity 
with Micropolis is self-serving to a Micropolis software house 
such as Systemation, Bob has not just been cooperative, he has 
spent literly hours on the phone with me. Anyone who's in a small 
business knows that that sort of diversionary time is not easy 
to come by and still stay in business. Bob, the MUG appreciates 
your help and thanks you profusely. 

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com



\ 

MUG Newsleter t 2 - September 1980 Page 2 

One of Bob's hints pertains to the GOTO statement. For illustration, 
I supposed I had a program to separate disk records from one file J 
into three new files. Separation is dependent on the contents .· 
of some variable in 'the original file. The program (TEST!) doesn't 
do any disk reads or writes. The variable J is arbitrarily incremented 
to simulate the decision variable in an incoming record. The 
incrementing of the variables A, B, and C simulate the writing 
of output files. I do this sort of thing, and indeed use the ON 
- GOTO statement. 

The purpose of all this is that the GOTO supposidly takes a great 
amount of time to execute. Micropolis BASIC goes through the program, 
front to back, each time to find the line referenced by the GOTO. 
The test was to run a short program by itself and then again when 
it was appended to the physical end of a large program. My large 
program was 16700 words long. My execution time, shown in TABLE 
1, indeed amazed me - 33.7 seconds alone, 281.2 seconds when on 
the end - a 734% increase in execution time. So I tried TEST2 
with no GOTO's. Indeed, though the stand-alone version ran some 
10% slower than the stand-alone TEST!, the appended version ran 
almost as fast as the stand-alone. (Why did it run slower? - I don't 
know) 

As an afterthought I tried TEST3, which is another equally acceptable 
"proper" way to program the situation. Theoretically, you shouldn't 
waste t~me doing the extra !F's if you already have the answer. 
As expected, TEST3's stand-alone execution time was equal to TESTl's. 
What was unexpected was the appended execution time. TEST3 was 
slightly faster than TEST2 even though it had GOTO's. The ON -
GOTO was the real culprit. I wasn't even sure the GOTO's were 
causing any trouble. TEST4 seems to answer that. Merging the 
test into the large program indeed caused a 42% increase in execµtion 
time over the stand-alone version. 

The conclusions to be made from all this seem to be: 

1. Always stay away from ON - GOTO's. 
2. If possible, put your code in-line rather than doing a GOTO. 
3. A routine in a short program runs faster than 

the same routine in a large program. 
4. As a general rule, keep your "most-executed" routines, especially 

those with GOTO's, at the physical front (low line numbers) of 
your program. 

5. Put all your comments and non-time-critical routines (menus, 
etc.) at the physical back of your program. 

20000 ! TEST 1 20000 ! TEST 3 
20005 J = 0 20005 J = 0 
20010 FOR I = 1 TO 1000 20010 FOR I = 1 TO 1000 
20015 J = J + 1: IF J > 3 J = 1 20015 J = J + 1: IF J > 3 J = 1 
20020 ON J GOTO 20025, 20030, 20035 
20025 A = A + 1: GOTO 20040 20025 IF J = 1 A = A + 1: GOTO 
20030 B = B + 1: GOTO 20040 20030 IF J = 2 B = B + 1: GOTO 
20035 c = c + 1: GOTO 20040 20035 IF J = 3 c = c + 1: GOTO 
20040 NEXT I 20040 NEXT I 
20045 PRINT I, A, B, c 20045 PRINT I' A, B, c 
20050 END 20050 END 

20040 
20040 
20040 

..J 



\ 

MUG Newsleter I 2 - September 1980 

20000 ! TEST 2 00001 GOTO 20000 
20005 J = 0 00010 GOTO 1000 
20010 FOR I = 1 TO 1000 01000 GOTO 20015 
20015 J = J + 1: IF J > 3 J = 1 05000 GOTO 10 
20025 IF J = 1 A = A + 1 20000 ! TEST 4 
20030 IF J = 2 B = B + 1 20005 FOR I = 1 TO 1000 
20035 IF J = 3 c = c + 1 20010 GOTO 5000 
20040 NEXT I 20015 NEXT I 
20045 PRINT I, A, B, c 20020 END 
20050 END 

TABLE 1 - TEST EXECUTION TIMES (SECONDS) 
Execution Times: TEST 1 TEST 2 TEST 3 

Alone 33.7 36.8 33.7 
Merged 281.2 37.3 37.2 

TEST 4 
13.7 
19.5 

Let's take a look at the SIZES statement. It is formated 

SIZES (r,i,s[,n]) 

where r = 3 to 30 
i = 2 to 29 
s = 1 to 250, and 

Page 3 

n = a number designating the arbitrary end of the program. 

In the cases of 'r', 'i', and 's', the integer signifies the number of 
words the computer allocates to the 'real', 'interger', and ., string' 
variables. Manipulation of 'r' and 'i' can cause significant impacts 
to your programs. To a lesser degree, so can 's'. The default values 
are r=5, i=3, and s=40. 

Starting at the bottom, if 'r' is set to 3, the computer allow,s you 
a real number of 4 significant places - and it truncates. That is, 
an input of' .123499999' gives '.1234'. The extremes look like 
this: 

r = 3; + and - 9.999E60 
= 4; + and - 9.99999E60 
= 5; + and - 9.9999999E60 
= 6; + and 9.999999999E60 

The maximum size of the number stays more or less constant, but the 
precision, or accuracy, doesn't. The bigger the size of 'r', the 
more precise your answer. The system doesn't tell you if you are 
truncating. It does tell you if you exceed the extremes, but that 
is a very large number. To illustrate the impact, suppose you want 
to add the numbers 10,321.49 and 538.70. If 'r'=3, your answer 
will be 10,850.00 - not exactly what you expected. To get the accuracy 
you desire, you have to set 'r'=S. That will get you 8 significant 
digits, enough for 999,999.99. Setting 'r' to 4 would have truncated 
the hundreths place. 

If 'i' is set to 2, the computer gives you an integer number of 
four digits, although the most significat digit can't exceed a value 
of 4 or 5. The extremes are: 



MUG Newsleter # 2 - September 1980 Page 4 

i = 2; -5,000 to +4,999 
= 3; -500,000 to +499,999 
= 4; -50,000,000 to +49,999,999 
= 5; -5,000,000,000 to +4,999,999,999 

As you can see, the size of the number is increasing by 2 digits 
for each single step increase in ·the SIZE value. That calculates 
to a maximum size of 58 digits, which should be sufficient for most 
of us. Exceeding the allowable size in an input statement will cause 
the system to give you an error. That is not the case if you are 
doing math within your program. If 'i'=2, then 4999 + 1 = -5000 - Yes, 
minus 5000. Be sure you SIZE your integers large enough to take the 
biggest number you will generate. 

There are other considerations besides size and exact precision. 
Memory size is one. One might conclude from the above discussion 
that you should just open up the SIZES to (30,29,250) and forget 
about it. However, in addition to specifying the number of digits 
and the precision, the SIZES numbers are stipulating the number 
of words used to represent each occurance of any variable of that 
type. In the default mode, SIZES (5,3,40): DIM A(2000) would allocate 
10000 words (5 times 2000) for the A array. I use this size of 
an array when I'm sorting ·mailing files since I can get greater 
than 2000 logical records on a Micropolis disk. I obviously don't 
want to arbitrarily use SIZES (30,29,250) or my array would occupy 
60,000 words (30 times 2000), a bit much for a 48K machine. Actually, 
the lo;ooo word allocation is a bit much since the interpreter 
takes a minimum of 22,272 words, and the rest of the program takes 
space. If I set SIZES to 3 (for real numbers) I would truncate 
the last digit of the 5-place ZIP code. But by setting 'r'=4, 
I keep the required accuracy (up to 6 places) and cut the allocation 
to 8,000 words. I could also use an integer array and set 'i'=-3 
and save another 2000 words. ~!. 

There is an additional problem associated with real numbers. I 
have one billing program that adds a 1.5% monthly interest charge 
to any upaid balance. I use a format statement for printing the 
bill that just prints the "normal" digits. That is, for a balance 
of 37.22: 

UNPAID BALANCE 
INTEREST CHARGE 

BALANCE DUE 

$ 37.22 
.55 

$ 37.77 

But the computer knows that the balance really is $37.7783 (37.22 
times .015 = .5583). When the customer pays the bill the computer 
still has a value of .0083 in that variable. My problem was that 
I scaned this variable for "greater than zero" amounts as in indication 
of unpaid balance. Even though the bill was paid, the program 
would cause a new bill to be generated with a $0.00 UNPAID BALANCE, 
and a .00 INTEREST CHARGE. You don't solve the problem by just 
throwing away the "surplus" billing statements. Left alone, the . j 
value eventually generates printable errors in the cents digit. ..,,., 

There are several ways of getting around the problem. You can 
work strickly in integers. I opted to leave variable as real but 

\ always make adjustments when multiplying. If A=UNPAID BALANCE 
and B=INTEREST CHARGE: 



. " 

MUG Newsleter I 2 - September 1980 Page S 

B = A * • OlS: ! .SS83 = 37.22 * .OlS 
B = B * 100:1 SS.83 = .SS83 * 100 
B = INT(B):l SS. = INT(SS.83) 
B = B/100:1 .SS = SS/100 

or, putting it together: B=(INT((A*.OlS)*l00))/100 

I really haven't gotten into the topics I mentioned for this month. 
Systemation hasn't released their BASIC compiler yet. I did receive 
their SORT/A, and while it's every bit as good as predicted, I haven't 
documented my experience yet. It sure is fast, though. I did 
speak to Micropolis about their hard disk. While it's "kind-of" 
released, it will still be a couple months before you'll see ads 
for it. They also are releasing a double-sided disk. To meet 
my deadline, development of these subjects must wait another month. 
Oh, yes - the Micropolis Newsletter, after a year and a half of 
hibernation, is soon to be released. We're promised that it will 
be sufficiently full of news to make up for the delay. 

9/1/80 


