
January 1998 • $11.50
Vol. 4 No.1

IN THIS ISSUE

1
The care and feeding
of zombies

4
Make W8bi simpler with
these tips

8
Changing the number of
processes a user may start

7
Torning on the floppy eject
dialog box

8
Sun Web Server v1 .o

9
Making cron work 100% of
the time

10
Whafs the diHerence between
floppyO and disk1?

11
How well do you know mkdir?

12
Use find to locate unneeded files

15
Getting megabytes of free
space, absolutely freel

. Tips & techniques for users of SunSoft Solaris

The care and feeding
ol zombies
When you're working on a

system trying to find a
problem, you can use the

ps -ef command to get a picture of
all the processes running on your
computer. When you use this com­
mand, you see every process your
computer is trying to manage, in a
listing similar to the one in Figure
A. (Please note that we trimmed out
many processes for the purposes of
this example.) This abbreviated p s
listing shows a zombie process, as
well as some of the process hierarchy.

Now, look at the shaded line.
Normally, the CMD field shows the
command you run to start a pro­
cess, but this one shows <defunct>.
So just what is a <defunct> process?

Figure A
$ ps -ef

UID PID PPID c ST IME TTY
root 0 0 0 14:44:49 ?
root 1 0 0 14:44 :49 ?
root 2 0 0 14:44:49 ?
root 3 0 0 14:44:49 ?
root 222 1 0 14:45:33 ?
root 260 1 0 14:45:37 ?
root 135 1 0 14 :45:21 ?
root 264 260 0 14:45:37 ?
root 263 260 0 14:45:37 ?

mar co 390 388 0 14:47:43 pts/3
root 388 135 0 14 :47:43 ?
root 374 222 0 14:47:25 ?

mar co 456 390 0 15 : 11 : 37 p t s / 3
mar co 457 508 0

root 472 390 0 14:59:34 pts/3

Perhaps you know it better by its
nickname: It's a zombie process.

While you may never see a
zombie process on many systems,
they're an all-too-common sight on
others. Just what is a zombie pro­
cess? How are they created, and
what are they doing?

Creating a process
It'll be easier to understand the de­
tails of zombie processes if you know
how processes work under Solaris.
Let's briefly look at how to create a
process and the structure of the pro­
cess hierarchy.

When you begin a program in a
shell, the shell starts (or spawns) a
new process to do the work. So when

TIME CMD
0:00 sched
0:00 /etc/init -
0:00 pageout
0:19 fsf lush
0:00 /usr/dt/bin/dtlogin
0:00 /usr/lib/saf/sac -t 300
0:00 /usr/sbin/inetd -s
0:00 /usr/lib/saf/ttymon
0:00 /usr/lib/saf/listen tcp
0:00 ksh
0:00 in . telnetd
0:00 /usr/dt/bin/dtlogin
0:00 . /defunct
0: 00 <defunct>
0:00 ps -ef

You get a list such as this with the ps-et command.

ZIFF-DAVIS
a SOFTBANK

company

11e,f.A' u>el> of SrmSoft Solans

Inside Solaris (ISSN 1081 -3314) is publ ished monthly by
The Cobb Group.

Prices
U.S $115/yr ($11 .50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491 -8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway
Louisville, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander
Print Designer Margueriete Winburn
Editors Karen S. Shields

Joan McKim
Publications Coordinator Linda Recktenwald
Managing Author Eddie Tolle
Product Group Manager Michael Stephens
Circulation Manager Mike Schroeder
Publisher Jon Pyles
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11 .50 each, $16.95 outside the US.
We accept MasterCard, Visa, or American Express, or we can
bill you.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright© 1998 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group and The Cobb Group logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for personal and
commercial use. Information furnished in th is newsletter is
believed to be accurate and reliable; however, no responsibility
is assumed for inaccuracies or for the information's use.

Inside Solaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade­
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade­
marks of their respective holders.

---11 JBDUM'Y 1998

you run your ps -ef command,
you'll see that the process' parent is
the shell you're using.

AC program creates a child
process with the fork() function,
which, at first glance, appears to
operate very strangely. When you
call fork(), only the original process
calls it, but both the parent and
child process return from it!

How does that work? When
you call fork(), Solaris makes an al­
most identical copy of the original
process. Then, both the parent and
the child processes may return from
the fork () function.

That's all well and good. How­
ever, since you typically want the
child to do something other than
what the parent is doing, you need
a method to distinguish between
the child and parent processes. For
the parent process, fork() returns
the process ID of the child; for a
child process, fork() returns 0. Thus,
when you create a process using
fork(), it will probably look some­
thing like this:

if (0 == fork())
{
I• We're in the child process •I
}

else
{
I• We're in the parent process •I
}

The process hierarchy
Every process has a unique identifier,
called the Process ID (PIO). When
you execute the p s -e f command, as
we did in Figure A, you'll see the
PIO in the second column. Each
process on your system was created
by another process, its parent process.
That process, in turn, was created
by its parent process. So it stands to
reason that there must have been a
first process, which is the case.

When you boot Solaris, a boot
loader loads the kernel, which ini­
tializes the basic services provided
by the operating system. One basic
service, the swapper, is run as pro­
cess 0 and named sched. This process
then starts three other basic pro­
cesses: init, pageout,and fsflush.
The i n i t process begins the other

basic services your computer pro­
vides. The in it process knows what
to do by reading the /etc/default file,
which tells it which processes to
start and under what circumstances.

The i nit process then spawns
the processes that manage the basic
system services, which, in turn, gen­
erate other processes. In Figure A,
process 472 is the ps -ef command.
Tracing its genealogy, we find that
its parent was ksh, whose parent was
i n . t e l n e t d. Process i n . t e l n e t d was
spawned by i netd, which was gen­
erated by in it, which sched started.

All processes must have a parent
process. So if a process with children
ends, the in it process (process 1) in­
herits the children. If the process
has no children, it simply dies.

Now comes the interesting part.
Since you can use multiple processes
in your programs, you have a facil­
ity to obtain information about your
child processes when the parent
processes end. Therefore, when a
process ends, it gives up all its re­
sources, except that the process­
information block remains until it's
read by the parent process.

Zombie processes
In fact, a zombie process is just
that-a process-information block
that's waiting for the parent process
to clean it up. While a zombie pro­
cess doesn't consume any CPU time,
RAM, or I/ Os, it does consume a
process-information block-a limited
resource. Thus, most professionally
written programs immediately clean
up after child processes when the
programs terminate, if they gener­
ate any child processes at all.

In order to demonstrate zombie
processes, we've created a simple
program named zombies. c, shown in
Listing A. The program creates a
child process, which waits for four
seconds and stops. After creating
the process, the parent runs a ps
command to show you the operat­
ing child process. Next, the parent
process waits for the child process
to terminate and runs the ps com­
mand again so you can see the
zombie process in the list.

For our test, we'll compile the program
with gee and run it, like so:

$ gee -o zom zombies.c
$ zom

PID TTY
1136 pts/2
1135 pts/2
1137 pts/2
1122 pts/2

PID TTY
1136
1135 pt s /2
1139 pts/2
1122 pts/2

TIME CMD
0:00 zom
0:00 zom
0:00 sh
0:00 bash
TIME CMD
0: 00 <de funct>
0:00 zom
0:00 sh
0:00 bash

The shaded line shows us that when the child
process ended, the parent didn't clean up after
it. As a result, the zombie process sticks around
long after it's dead.

Cleaning up zombie processes
To clean up a zombie process, a parent simply
inquires about the state of the child process.
Once Solaris sees the parent do so, it removes
the zombie process from the process list. Solaris
can then reuse the process-information slot.

Solaris provides several functions such as
wa i t () to inquire about the status of a child
process. Thus, you can eliminate a zombie pro­
cess by calling the wa i t () function. The wa i t ()
function suspends the parent process until a
child process terminates. Fortunately, when a
process terminates, it sends the signal SIGCHLD
to the parent process. So, you can clean up af­
ter a child that terminates by installing a signal
handler for the SIGCHLD event. In that event, you
can call the wa i t () function, knowing that it
will return immediately, because the child is al­
ready finished.

Listing A: zombies.c gEmerates a child process

'*********************** ***********************
* zombies . c - zombie process demonstration *
******************** **** **********************'

#include <signal.h>
#include <Unistd.h>

void SIGCHLD_handler(int i)
{ wait (0); }

int main(int argc, char • •argv)
{
ch a r cmd [50 l ;
sprintf(cmd,"ps -u %s",getenv("LOGNAME"));

I • Trap the SIGCHLD event, if desired •I

http://www.cobb.com/sun

As an alternative, you could investigate one
of the other wait () functions, such as wa i t3().
This function has an option to allow the parent
process to continue if none of the child pro­
cesses have terminated.

If you'll look again at Listing A, you'll no­
tice that it contains a function called SIGCHLD_
handler(), which calls the wait() function. The
line that installs the signal handler is included
only if you compile the program with the
symbol NOZOMB IE defined. We can compile
zombies . c and run it like this:

bash$ gee -0 nozom -DNOZOMBIE zombies.c
bash$ nozom

PID TTY TIME CMD
1212 pts/2 0:00 nozom
1213 pts/2 0:00 sh
1122 pts/2 0:00 bash
1211 pts/2 0:00 nozom

PID TTY TIME CMD
1215 pts/2 0:00 sh
1122 pts/2 0:00 bash
1211 pts/2 0:00 nozom

We don't see a zombie process because
once it terminated, Solaris sent the SIGCHLD
event to the parent process. The parent process
intercepted the SIGCHLD event, called the wait ()
function to clean up the zombie process, then
went back about its normal business.

Another word about init
OK, how does a process get cleaned up when
its parent terminates before the process does?
If you'll recall, the child of a process that's ter­
minated is assigned a new parent-i nit. With­
out seeing the source code for Solaris, we can't
be sure, but we believe that i n i t follows a pro­
cedure similar to the one we've just outlined to
clean up the child processes. •!•

#if defined(NOZOMBIE)
signal(SIGCHLD, SIGCHLD_handler);
#endif

I• Create a child process •/
if (! fork())

{ /• Child process returns 0 •/
sleep(4);
exi t(0);
}

I• Show the results ... •I
system(cmd); I• running •I
sleep(6); I• let them time out •I
system(cmd); I• terminated •I
return 0;
}

Inside Solarls

Make Wabi simpler with these tips
It's really too bad that Sun stopped devel­

opment on Wabi. Since Wabi allows you
to run many Windows programs, and the

MAE permits Solaris to run Macintosh appli­
cations, Solaris has the potential for an incred­
ibly flexible arena of applications.

Even though Sun stopped development of
Wa.bi, it's still a very nice addition to Solaris.
While Wabi doesn't handle Windows 95 appli­
cations, it does give you access to a wide range
of Windows 3.11 applications, many of which
are still available-and inexpensive, to boot.

Get the latest version
First and foremost, be sure you have the latest
version of Wabi with the most recent patches.
The latest version has some performance en­
hancements to make Windows applications
faster, so they'll consume less CPU time.

Figure A

With the default COE and Wabi installations, icons may clash.

Figure B

An icon box with COE allows you to move around the icon box to be
out of the way.

~-• Janllll'J_19_9_B ________ _.

At the time of this writing, the latest patch
available is 103587-03, which brings Wabi up
to version 2.2d. This patch also allows Wabi
to operate on 24-bit displays, even though the
color depth of your Windows applications
will remain at 8-bit depth. Moreover, this patch
allows you to run your monitor at optimal
settings and retain the ability to run your
applications.

Icon collision
When you minimize programs in Wabi, they're
minimized to the desktop, almost like normal
CDE applications. Unfortunately, Wabi doesn't
consult CDE to find icon locations that don't
conflict with the CDE icons. CDE normally
places the icons in a vertical column running
from the left to the right, top down. Wabi, on
the other hand, places them in horizontal col­
umns top down, from left to right. So the first
Wabi icon occupies basically the same location
as the first CDE application, as shown in
Figure A.

If you'd like to avoid the icon collision, you
can simply tell CDE to place the CDE icons in
an icon box. Then you can place the icon box in
a location that doesn't conflict with the Wabi
icons, as shown in Figure B.

Another benefit of using an icon box with
CDE is that it's scrollable, so you can make the
icon box fairly small. A small icon box will take
less desk space, and you can still access any
minimized application you want by scrolling
through the box.

Don't let Wabi take control ol your
floppy drive
For many, allowing the Wabi installation to
take control of the floppy drive is a nuisance­
especially if you're going to install from the
hard disk drive, as we'll discuss in the next
section. This way, you need not manually re­
enable the Volume Manager's control of the
floppy disk drive.

If you decide to allow the Volume Man­
ager to retain control of your floppy drive,
then you'll need to copy the Windows installa­
tion media onto your hard disk drive. Other­
wise, you'll be unable to install the files that
Wabi needs to complete the installation. (In or­
der to avoid any copyright infringements,

Wabi gets some of the files it needs from the
Microsoft Windows distribution diskettes.)

Store your installation media
on a hard disk
If you have an application that you're going to
install for multiple users on a workstation, you
can save time by placing images of the Micro­
soft Windows installation diskettes on your
hard disk. You'll do well to place images of the
installation diskettes for your other applications
on your hard drive as well. This way, you can
quickly install the software. You also need not
keep track of the diskettes if another user wants
to use Wabi on his workstation. You can just
install the application for them from the hard
disk drive.

Please keep in mind that you must read your li­
cense agreements carefully before you do this. You
don't want to put yourself in a position where you
may be violating the terms of your licenses.

When you load the disk images into the
subdirectories, you need to use vo lcheck to tell
the Volume Manager to mount the floppy; then
copy the files from the floppy to the directory,
and use e j e ct to unmount the floppy disk and
eject it. To simplify the process, we placed the
vo lcheck, cp, and eject commands on a single
line, shown in the following code, so that
whenever a floppy finishes, we can just move
to the appropriate subdirectory and use Bash' s
up-arrow to recall the long command line
again for the next floppy. If you're using an­
other shell, you can use that shell's history
recall function for similar ease.

bash$ mkdir /dsk2/wa biapps/win311
bash$ cd /dsk2/wabia pps/win311
bash$ for J in 1 2 3 4 5 6 7 8;do mkdir
diskSJ;done
bash$ cd disk1
bash$ volcheck; cp -R /f loppy/f loppy0 .; eject
/vol/dev/rdiskette0/disk1 can now be manually
ejected
bash$ cd . . /disk2
bash$ volcheck; cp -R /f loppy/floppy0 .; eject
/vol/dev/rdiskette0/disk2 can now be manually
ejected

Now, when you install Windows and Wabi
prompts you to place the first installation disk
in drive A, you can just tell it that you've placed
the first diskette in the /dsk2/wabiapps/win311/
diskl directory. Then, the setup program will
read the files it needs and finish the installation.

Some applications keep the diskette im­
ages separate, while other applications don't
mind if you place all the files into a single di-

http://www.cobb.com/sun

rectory before installation. Some applications
have other rules, since naming collisions may
occur between floppies.

If the installation manual doesn't contain
instructions on how to put the installation me­
dia on a hard drive, you should probably first
create a separate subdirectory for each floppy
disk. We normally use the application name as
the base directory, then name the subdirec­
tories diskl, disk2, and so on. After you do so,
you can create a directory, which we name all,
and copy all the installation disks to it.

Once you have the media on your hard disk,
it'll take only a few minutes to try a couple of
experiments to determine the best way to in­
stall the application. If the application installs
from the all directory, you can then delete the
directories diskl, and others. If it fails, then try
to install the application from the named sub­
directories. If that works, delete the all directory.

Once we've installed the disk images, it
takes only two to three minutes to install Win­
dows on a new account, and three to four min­
utes to install Word 6. You'll definately notice
the timesaving benefit.

File naming
When you're creating your application direc­
tories, be sure to use short, lowercase names. If
you use any uppercase characters, or if you use
a name that's too long, the system will "mangle"
the names to make them acceptable for Win­
dows. If you want names that are simple to
type, then keep them short and lowercase.

Another handy trick is to keep the paths
short. This way, when you're installing many
applications, you need not type so much. If
you can keep the paths short, you're way
ahead of the game. In our case, because of the
way we lay out our file systems and organize
our files, we placed Windows at /dsk2/wabiapps/
win311. Since that's not a terribly convenient
name to type, we created a symbolic link in the
root directory named win3 to point to the /dsk2/
wabiapps/win311 directory. In order to specify
the location of the first diskette, we need only
enter /win3/diskl.

Conclusion
Following these tips may save you some time.
Now you need not track down those elusive
installation floppies or remember to enable the
floppy drive for Solaris after installing Wabi.
Hopefully, you can get the user going in a few
minutes, so you can get back to the myriad
other tasks you must do each day. •:•

Inside Solaria

Changing the number ol processes a
user may start

Sometimes when your system gets incred­
ibly slow, you might run a ps -ef and
notice that a particular user has dozens

of processes running. The user may simply be
running several repetitive tasks, or she's writ­
ten a shell script to use background processes.
Perhaps a software developer has written a
multithreaded program that rambled off into
the weeds.

Solaris has an upper limit on the number
of concurrent processes it allows on the sys­
tem. (The default value seems to be about
1,000 on the machine we tested.) So if all the
processes are in use by an errant program or
user, you won't be able to kill them-after alt
each program you run must start a new pro­
cess to do so! About the best you can hope for
is that some processes will expire from lack of
resources so you can start killing the others.

Listilg A: num_procs.c

/**
** num_procs.c - Create as many processes as **
**we can. **
**/

#include <sys/errno.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char ••argv)
{
int i=0, ilastProc 0;

I• Create a lot of processes •I
while ((ilastProc<100000) && (i !=-1)

{
i = fork();
if (i ==0)

{ /• Child process •I
s l e e p (180) ;
exi t(0);
}

else if (i!=-1)
I• Normal process start •/
ilastProc++;

if (i ==-1)
perror("num_procs");

pr intf("Started %d processes.\n",
ilastProc);

}

,____~~ January1998

To illustrate, we've created a program
named num_procs that will create as many pro­
cesses as possible before it stops. The source
code for num_procs is shown in Listing A.

If you compile and run num_procs, you
should see something like this:

bash$ gee -o num_procs num_procs.c
bash$ num_procs
num_zombies: Resource temporarily unavailable
Started 947 processes.

Once num_procs starts all the processes it
can, it exits, which frees up exactly one process
slot. If you run the ps -ef command, you'll see
all the usual suspects, as well as a lot of pro­
cesses named num_procs. Executing any normal
command that uses a single process will oper­
ate just fine.

But the instant you execute a statement
that requires more than one process, you'll
have a problem. Your computer may appear
to hang, or you'll get an error message.

Luckily, all the processes generated by our
num_procs command live for only three minutes.
Three minutes after you run num_procs, all the
processes terminate, and your system will run
normally once again.

It's bad enough that a user can create
enough processes to hinder her own work.
Even worse is the fact that the user can hinder
everyone on the system. That's because Solaris,
out of the box, allows a user to start any num­
ber of processes, up to the maximum number
the system allows (if you'll recalt we men­
tioned that could be up to 1,000).

Fortunately, Solaris provides a method for
you to change the maximum number of pro­
cesses the system supports, as well as the num­
ber of processes any user may start. You can set
these limits by changing the /etc/system file.
When it boots, Solaris reads this file to help it
configure the system.

We care about two variables: max_nprocs,
which specifies the number of processes for the
system, and maxuproc, which sets the maximum
number of processes any user may start. The
following syntax sets these variables:

set variable=value

So if you want to limit the system to 500 pro­
cesses and each user to 50, add the following
lines to your computers /etc/system file:

• Maximum # of processes for the system
set max_nprocs = 500

• Maximum # processes per user
set maxuproc = 50

Please note that any comments in the /etc/
system file must have an asterisk (*) at the be­
ginning of the line. Also, remember that Solaris
reads /etc/system only when it boots up, so
you'll have to reboot your computer to imple­
ment your changes.

When a user attempts to run too many
processes, this simple change should affect
only that user's system. However, when

enough users hog multiple processes, they can
still prevent you from having any processes
left over for normal system maintenance­
such as killing errant processes.

Conclusion
For many systems, you'll never need to change
these process limits. However, spending a few
minutes now to prevent a user from usurping
all the processes on the machine may save you
a few frustrating hours later.

Since many users may need a significant
number of active processes, you don't want to
be too restrictive. Your goal is to prevent a
user from accidentally locking everyone out of
the system-not to limit your users. So for our
system, we retained the default maximum
number of processes on the system (about
1,000) and set the user limit to 500. •!•

Turning oft the floppy eject dialog box
As Solaris users, we know we have it good.

Solaris provides many facilities to make
our lives easier in one way or another.

The Volume Manager, in particular, really sim­
plifies the use of floppy disks and CD-ROMs.

With many other versions of UNIX, chang­
ing floppies isn't nearly so simple. If you're
going to mount a floppy-or other removable
device-you need to know the media type in
advance, then issue the appropriate mount
statement in order to mount the file system
on the media.

Full autopilot
In the ideal situation, both your CD-ROM and
floppy drive support automatic ejection and
detect media insertion. Whenever you insert a
floppy or CD-ROM drive, the Volume Man­
ager detects it and examines the media to de­
termine the type of file system it contains, then
mounts it. Similarly, when you're finished with
the media, you use the eject command, which
writes any pending data to the media, unmounts
the file system, and ejects the media.

Some intervention required
However, some drives don't support automatic
media detection. If the drive doesn't detect new

http://www.cobb.com/sun

media automatically, you'll need to run the
volcheck command to tell the Volume Manager
to check whether the drive(s) have new media.
Normally, only floppy drives lack this ability.

Similarly, some floppy drives have no
hardware to physically eject the media. In this
case, the eject command does everything it
can, short of ejecting the media. It still com­
pletes any pending writes and unmounts the
file system. Then, instead of ejecting the media,
it tells you that the drive is ready to be manu­
ally ejected.

When you use eject to tell the Volume
Manager from the command line that you're
finished with the diskette in a particular floppy
drive, the Volume Manager tells you when it
may be removed, as shown in Figure A. The
Volume Manager also presents a pop-up dialog
box to tell you when it's safe to remove the
floppy, as shown in Figure B on page 8.

Figure A

bash$ eject
/vol/dev/rdiskette0/disk3 can now be manually ejected

The Volume Manager tells you when it's safe to remove the floppy after you use
the eject command.

Inside Solaris

Figure B

__ , ________________________________ __
This pop-up dialog box also tells you when it's safe to
remove the floppy after using the eject command.

The fly in the ointment
Sometimes this pop up is inconvenient. The
OK button isn't selected by default, so you
can't just press the [Enter] key to dismiss it.
Also, it doesn't have a hotkey you can use to
dismiss it. The only simple keyboard combi­
nation you can use to dismiss the pop up is
[Alt][F4]. Otherwise, you must grab the mouse,
find the OK button, and click it.

The situation can be even worse when
you've got several machines in proximity, and
you're using a single workstation, telnetting into
another. Unless you explicitly set the DISPLAY
variable in your telnet session to point to your
display, the pop-up message appears on the
default display on the computer. Since the
eject command already tells you when it's safe
to eject the floppy, the ideal would be if we
could just turn off the dialog box.

The solution
Turning off the dialog box is actually rather
simple. The program that displays the dialog

box is in the directory /usr/lib/vold, and its
name is eject_popup. Just rename the program
to something else, say eject_popup.old, then the
Volume Manager won't be able to find and ex­
ecute it. We've used this technique before, and
it's never caused us a problem.

However, some people wonder what may
be going on inside the Volume Manager when
it can't find the eject_popup program. For those
of you who are a little apprehensive, you can
always create a fake version of ej ect_popup that
the Volume Manager will be able to find and
execute. You just need a suitable program that
won't do anything destructive. As it happens,
the /usr/bin/true program fits the bill perfectly.
So you can simply create a link to /usr/bin/true
named eject_popup in the /usr/lib/vold directory,
like this:

Devo% su
cd /usr/lib/vold
mv eject_popup eject_popup .old
ln -s /usr/bin/true eject_popup

Since we have retained the old version of
ej ect_popup, we can always restore the original
behavior if we want.

Conclusion
You may find the floppy disk's eject pop-up
dialog box too intrusive in some situations and
downright annoying in others. If the floppy
disk's eject pop-up dialog box is in your way,
you now know how to get rid of it. •:•

Sun Web Server vl .O

I f you want to try using a Web server to
publish internal documents, you really
owe it to yourself to get a copy of the Sun

Web Server. It's easy to install and administer.
Best of all, if you have a copy of Solaris 2.5.1 or
Solaris 2.6, you already have a license to use it.

Simply point your Web browser to the ad­
dress www.sun.com/webserverlindex.html to
start looking over the system requirements and
feature lists. Since it's a new product, Sun's

~-• Jallllll'Y 1_9_BB ________ __.

Web Server supports some new features, such
as HTTP 1.1 support, and all the important
features found on other Web browsers.

It comes in standard package format, so
it's simple to install. This gives you the time to
experiment with content, instead of worrying
about how to set up and configure it. You ad­
minister it with a standard Web browser, and
all the documentation is in HTML. What are
you waiting for? Download it and try it out! •:•

Making cron work 100% ol the time
While I was writing the article "A

Simple Way to Synchronize the Com­
puters on Your Network," I ran into a

difficulty with the cron command. I wanted to
execute the command:

date 'rsh Test -l test date +'%y%m%d%H%M.%s''

The response I'd get would be an E-mail from
cron telling me about a problem:

To: marco
Subject: Output from "cron" command
Content-Length: 80
Your "Cron" job

date +'

produced the follow ing output:

The problem with the % symbol
After some experimentation and reading the
man pages for date and cron, I discovered this
about the crontab file: "The sixth field of a line
in a crontab file is a string that's executed by
the shell at the specified times. A percent char­
acter in this field (unless escaped by \)is trans­
lated to a NEWLINE character."

When I dutifully preceded the percent
symbols in the command line, I got better-but
still useless-results. This time cron mailed me
this message:

date: bad conversion

At this point, just to get the project going, I
put the command in ascript file and synchro­
nized the computers. After I solved the problem
for the software development team, I began
working to discover why cron was acting so
strangely.

I discovered that the reason for this behav­
ior is a minor bug in the interaction between
cron and quoted strings. The% symbols in the
crontab file are intended to represent a newline
character, so you can pipe input to commands
that cron will execute. Whoever designed and
wrote cron envisioned the need to actually use
a literal% character. Thus, you were allowed to
use a backslash to quote the % character.

So if cron encounters a% after a\, it knows
to discard the \ and keep the %. However, if
the% character happens to be inside a quoted
string, then cron keeps both the\ and% charac-

http://www.cobb.com/sun

ters. Unfortunately, retaining both mangles the
output of the date command executed on the
server. As a result, the client d a t e command
tries to interpret a string like \07: \33: \22, which
results in the reported date conversion error.

In this case, we have two simple work­
arounds. The first is the one we mentioned
previously: We created a script file to do the
job, and our cron job simply executes the script
file. The second workaround is to omit the
quotes. Normally, you use quotes to prevent
the shell from breaking a string into multiple
parts at spaces, and to prevent the shell from
interpreting any special characters. Since our
format string doesn't contain any spaces and
contains no special characters, we were able to
omit the quotes. However, you won't always
be able to successfully omit the quotes. So, be
prepared to use a shell script, if necessary.

Using % successfully
Now that we've stumbled onto the special
characteristics of the % symbol, let's try it out.
When cron runs a job, it starts a shell and be­
gins sending the characters to the shell as if
they were typed. Each time it encounters a %
symbol, it instead sends a newline, (unless the
% symbol is escaped by a preceding\, as de­
scribed previously).

Therefore, if you have a command that
expects information from the standard input
stream, you can simply append % to your com­
mand. Doing so executes the command and
starts the next line of input. At this point, enter
the data you want to give to the program, using
a % wherever you'd normally use a newline.

Here's a contrived example: We'll use the
cat command to add two lines of data (abc and
def) to a file called /tmp/junk five minutes past
every hour. To do so, our crontab entry looks
like this:

5 • • • • cat >>/tmp/junK%abc%def

Editing a crontab
The safest way to edit your list of cron jobs is to
use the crontab -e command. When you do so,
the crontab command creates a temporary file
and invokes the editor for you. Then, when
you finish your changes and exit the editor,
crontab checks the validity of each line. If it
finds a problem, it will echo the line to the

Inside Solaris

screen and issue an error message, like so:

$ c1·ontab -e
Bad line in crontab
crontab: errors on previous line; unexpected
•character found on line.
crontab : errors detected in input, no crontab
•f i le generated.

Here, we entered the text Bad line in crontab
into the editor, then we saved and quit. The
crontab command echoed this line back to us to
show which line failed, then printed its error
messages.

Clearing a crontab
If you want to clear your crontab and you want
to use crontab -e, be aware that you can't just
erase all the lines in the file. If you
do so, crontab emits the message:

crontab: temporary file empty

and it won't change your cron jobs. Since the
message doesn't tell you that it's not going to
change your cron jobs, you'll get a nasty sur­
prise when your next cron job executes. You
can avoid this surprise by putting a comment

in your crontab. This way, although the crontab
file won't be empty, it won't do anything de­
structive either.

Conclusion
It often amuses me how one discovery leads
directly into another. Because of my problem
with cron, I discovered a feature I didn't even
know existed. While investigating the prob­
lem, I used a test account. When finished, I
erased the cron job. Or so I thought. The next
time I logged into the test account, I was
swamped with mail from cron complaining
about the problem with the cron job. •:•

Quick lip

If you use the crontab -e command to
edit your cron table, be aware that it'll

use the editor specified by the EDITOR
variable to perform your edits. So make
sure that you set EDITOR to your favorite
editor, or you may have to struggle with
an editor you aren't proficient in or don't
care for. If you're using CDE, the default
setting for EDITOR is jusrjdtjbinjdtpad.

What's the dillerence between
floppyO and disk1 ?
H ave you ever noticed that when you load

a new floppy disk, two directories ap­
pear in the /floppy directory? One always

seems to be named floppyO; the other is often
unnamed, diskl, or some other designation.

Whenever you load media into a remov­
able drive that the Volume Manager controls,
the Volume Manager mounts the media under
two names. One of these is the actual name of

Fig111re A
bash$ ls -al /floppy
total 20

the media (i.e., its disk label, if it has one), and
one is a symbolic link, as shown in Figure A.

The symbolic link is always the media type
with a suffix of the drive number for the me­
dia. So, the first floppy drive is always floppyO,
and the second is floppyl. Similarly, the first
CD-ROM is cdromO, the second is cdroml, etc.

This naming scheme is a convenience that
the Volume Manager offers. Sometimes you

don't care about the ac­
tual media name, and
sometimes you do.

drwxr-xr-x 3 root
drwxr-xr-x 27 root

nobody
root
other
nobody

512 Oct 8 07:22
When you don't care
what the media name is,
such as when you're
copying a file to a
floppy for your boss,

drwxrvxrwx 1 root
lrwxrvxrwx 1 root

1024 Oct 7 13:04 ..
7168 Dec 31 1969 boot

6 Oct 8 07:22 f loppy0 -> ./boot
The Volume Manager mounts removable media under two names.

m January 1_9_98 ________ _

you don't really need to know the floppy
disk's name. Thus, you can use the generic
name of the floppy, like this:

bash$ volchecK
bash$ cp file /f loppy/f loppy0
bash$ eject f loppy0
/vol/dev/rdisKette0/boot can now be manually
ejected

At other times, however, you want to be
certain that a particular volume is mounted be­
fore you proceed. This happens often in shell
scripts that access a particular CD-ROM. In
this case, your shell script can check for the
existence of the CD-ROM by examining the

" QUICK TIP

/cdrom directory for a directory of the required
name, like this:

if [! -d /cdrom/MyCD]; then
echo "Please mount MyCD and try again"
exit

f i

Conclusion
If you're always copying files to and from flop­
pies for people, then by all means ignore the
label name and use the generic name. It's
much simpler. But keep in mind that when
you must deal with specific files on specific
volumes, checking or using the actual volume
name will help prevent costly mistakes. •!•

How well do you know mkdir?
Everyone knows how the mK di r command

works, right? You just type

mKdir zebra

and you create the subdirectory zebra. What
could be simpler? Many people think that's as
far as it goes, and they don't learn the other op­
tions. After all, who reads the man pages for the
commands he already knows?

But the mK di r command has two options
that many overlook: First, it can create multiple
directories at once. It also allows you to specify
the permissions on the directories you create.

Creating multiple directories
Suppose you want to create the directories abc,
abc/def, abc/ghi, and xyz. You can do so with a
single mKd i r command:

mKdir -p abc/def abc/ghi xyz

Hmm. I set out to create four directories,
but only specified three. Did I miss one? No,
not only can you specify multiple directories
on the same command line, but you can also
specify the -p option which tells mKd i r to create
any parent directories required. So when mKd i r
tried to create abc/def and noticed that abc

http://www.cobb.com/sun

didn't exist, it also created abc before creating
the def subdirectory.

Specifying permissions
Another mK di r command option allows you
to specify the permissions on your directories as
you create them. This feature can be very handy
when you want to give people access to some
files, but don't want to open up your entire di­
rectory tree to them. You can create a directory
and limit access to it in one command.

For example, you may want to create a di­
rectory to distribute some information to the
other members of your group, but you don't
want anyone outside the group to have access
to it. To do this, you could always create the di­
rectory, then use chmod to alter the permissions.
But it would be even simpler to specify the
permissions as you specify the directory name,
like this:

mKdir -m 750 distrib

With this one command, you've created
the distrib subdirectory with the desired per­
missions. You, of course, get full access, mem­
bers of your specified group may access and
read the directory, and no one else may
access it. •!•

Inside Solaria

Using find to locate unneeded files
by David S. Herron

A continuing problem with any computer
system is the lack of free space on criti­
cal file systems. It seems as though

there's never enough-and where did all these
files come from anyway? While this article
doesn't offer the ultimate solution to this prob­
lem, it does offer a tool to help manage one as­
pect of the problem-detecting and deleting
junk files littering your file systems.

What are junk files?
There are many sources for junk files: applica­
tions or processes that dump core, temporary
files from programs that are no longer running,
backup copies of files, and so forth. These files
take up space, and, while they might be useful
for a short time, they're usually a waste of disk
space. Even as disk drive prices drop, avail­
able disk space is always at a premium.

The fundamental problem is that these
files do have a useful lifetime, which is why
they're being generated. After all, you wouldn't
let your programs generate core files if you
weren't going to look at them, would you?
(See "Stopping Core Dumps" for more de­
tails.) However, these files quickly lose their
value, but people are often too busy to delete
these files when they no longer have value.
Either they forget about them, in the case of
backup copies of files, or they never knew
about them, such as when some programs gen­
erate temporary files that aren't cleaned up.

Find these obsolete files
The basic technique that we'll present here is
to use find to locate the files we wish to delete,
then delete them. In this article, we'll lay out
the foundation for demonstrating the tech­
nique. Next month, we'll build a fancy shell
script to do all the work.

The first problem is to identify which files
are obsolete and may be safely deleted. Some
files are easy: How useful is a core file after it
hasn't been touched in a week? It's a safe bet
that we may safely remove it.

But how long is an emacs backup file? Once
we get past the obvious few cases, it turns out
that other files depend on the site. Backup files
here have a limited useful lifetime since we m J11111ary 199_8 ________ _

perform nightly backups. We can always re­
trieve the original document from tape, if we
must. So in our case, backups more than a
couple of days old are safe to delete.

Complex search clauses for find
We've used the find command to locate files in
various articles, so it should come as no sur­
prise that we'll use it here. However, so far we
haven't used find with complex search clauses.

Let's say that the host we're working on is
for the software development team, and they
use emacs for editing. After some thought and
digging around on the file system, we find that
we want to delete these files from the /home file
system:

• Any core file that hasn't been accessed in
three days.

• Any file named a.out not accessed in the
last week.

• Any file named junk or ttt that hasn't been
accessed in five days.

• Any backup file(*~ for emacs, and *.bak for
some other applications) not accessed in
the last four days.

We could locate all the files we want to
delete with the six commands shown here in
Figure A. However, we don't really want to do
it this way. It's far too resource-intensive. Not
only does the process take too much time, but
we wind up going over the file system six
times instead of only once, thus increasing the
number of 1/0 operations, RAM usage, and
the number of processes.

Figure A
$ find /home -name core -atime +3 -print
$ find /home -name a.out -atime +7 -print
$ find /home -name junk -atime +5 -print
$ find /home -name ttt -atime +5 -print
$ find /home -name I

* -· -atime +4 -print
$ find /home -name '•.baK' -atime +4 -print

These six statements will find and delete the files we want,
but at too high a cost.

The f i n d command allows us to specify
a complex expression that describes the files
we want to locate. So, we'd be better off
learning how to create these more complex
find statements. Not only would it help with

the current task at hand, but we'll find it useful
in other system administration tasks as well.
You're probably aware that when you string
clauses together with find, the find command
treats them as if the clauses had the word AND
between them.

That's why the six commands we showed
you will work: Not only must they satisfy the
name requirement, but they must also satisfy
the access time restriction (-at i me), or f i n d
won't print the filename. For example, the
clause -name core -a t i me +3 specifies files whose
names match core and which were last ac­
cessed more than five days ago.

The f i n d command allows us to specify a
choice with the -o (or) option, negation with
the ! (not) option, and grouping with paren­
theses ().Using these operators, we can re­
write our six statements as a single statement,
as shown in Figure 13.

Figure B
$ find I \ (\(-name core -atime +3 \) \
> -0 \(-name a.out -atime +7 \) \
> -0 \(-name junk -atime +5 \) \
> -0 \ (-name t t t -a t i me + 5 \) \
> -0 \ (-name I

* -· -atime +4 \) \

> -0 \ (-name '•.baK' -at i me +4 \) \)

> -print
This ti nd statement will do the same job, but much more
efficiently.

Here we need the parentheses we want to
specify more than just the filenames: In this

Table A: Useful find options

Find Option I Description

case, we also want to match the file's name and
age. Without parentheses, the expression would
run together like "find files whose name is core
and last accessed more than three days ago or
name is a.out and last accessed more than seven
days ago or ... " and it wouldn't be clear ex­
actly what the or clauses referred to. With pa­
rentheses, the statement is clear: " ... (name is
core and was last accessed more than three
days ago) or (name is a.out and last accessed
more than seven days ago) or ... ".

We must write the parentheses as \ (and \)
because parentheses are special characters to
the shell (i.e., they're metacharacters). If we
don't escape them, the shell would interpret
them, and f i n d would never see them. This
way, the shell ignores them, and f i n d does see
them. If we're going to use the negation opera­
tor (!) , we should be aware that the C shell
uses the exclamation mark for its command­
line history mechanism, so we'll want to quote
that character as well.

Once we start playing with complex file­
selection criteria for the f i n d command, we
may want to look more closely at the palette of
commands that find offers, so we can see what
we can do with them. Some of the more useful
f i n d options are shown here in Table A.

The f i n d command has many more op­
tions, so be sure to consult the man page for
them. This should give you a flavor of what
find can accomplish. It's worthwhile to spend
an hour or two investigating the flexibility of
the f i n d command.

-depth Performs a depth-first search by searching subdirectories before processing
the parent directory.

-mount , -xdev
-local
-f stype type
-newer file
-atime n, -ctime n, -mtime n

-gid n
-group groupname
-uid n

-user username
-nouser, -nogroup

-type c

http://www.cobb.com/sun

Restricts the search to the current file system.
Excludes remote file systems (as defined in /etc/dfs/fstypes). ===~
Only include file ~stems of type type.
Only show files newer than the file f i le.
Compare today's date with the last access time (-at ime) of the file, the creation
date (-ctime), or the last date the file was modified (-mtime).
Yields true if the file's ~OUR ID matches n.
Yields true if the file's grou_p name matches groupname.
Yields true if the file's owner's user ID matches n.
Yields true if the file's owner's name matches username.
Yields true when the file is missing a valid user ID (i.e., user doesn't exist
in /etc/passwd) or ~oup ID (as found in /etc/group).
Yields true if the file is of the specified type: (d=directory, f=file, s=symbolic
link, etc.).

Inside Solaria .. -------- --

Deleting the files
Once we identify a list of files to delete, all
that's needed is to delete them. While we
could use f i nd's -exec option to invoke rm to
delete the files, it starts a new process for each
command, which can consume quite a bit of
CPU and I/O time. Instead, we use xargs to
gather all the filenames and pass them at one
time to the rm command, as shown in Figure C,
so we run only three commands once each:
find, xargs, and rm, rather than the find process
and one rm command per file to delete.

Figure C
$ find I -name core -print I xargs rm -rf
We pass filenames one at a time to rm.

The x a r gs command collects all the words
it finds on its standard input and saves them.
Once the standard input is empty, it starts the
specified command (with argument list) and
adds the list of words it collected to the end of
the argument list. So the f i n d statement in Fig­
ure C locates all files named core and sends
them to xargs. Once xargs gets the names of all
core files, it starts the command rm -r f fol­
lowed by the entire list of commands to delete.

Together f i n d and x a r gs make for a very
flexible tool. There are a number of options to
tune their performance to the vagaries of the
exact command you want to use: You get to do
the job, and save time, RAM, and 1/0 operations.

P11tting it all together
What we've shown you so far is how to use
find, xargs, and rm together for the purpose
of cleaning away old files. Now we'll show
you a complete example.

First we must determine, for each file sys­
tem that we're responsible for, which files are
to be treated as disposable junk. What's con­
sidered a junk file varies, depending on the
file system.

As we said, when developing the state­
ment in Figure B, we tailored it to the /home
directory of a machine used for software de­
velopment. Each set of tools has its own char­
acteristic junk files that are left behind (e.g.,
emacs leaves backup files with a~ at the end).
We must think about how we use every file
system on each computer, and tailor our find
statement accordingly. You'll probably want to
do this for each host computer separately be­
cause you don't want to run f i n d running
across NFS-mounted partitions.

~-m January 1e_ea ________ _

Let's say we must clean up the file systems
/, /usr, and /home. Each has a separate list of
files to take care of, and we don't want to have
the find that starts at/ to wander into /usr or
/home. We also don't want find to cross over
into NFS-mounted partitions. So we might
make a shell script, like c leanFS, shown in
Figure D .

Figure D
#!/bin/sh

cleanFS -- remove unwanted tiles from the
I, I us r, and I home f i le systems

find I -xdev -name core -print I xargs rm
find /usr -xdev -name core -print I xargs rm
find /home -xdev \(\(-name core -atime +5 \)

-o \(-name·.-· -atime +10 \)
-o \(-name '•.bak' -atime +10 \)
-o \(-name junk -atime +3 \) \)

-print I xargs rm
The cleanFS script removes typical useless files from your
file system.

Once we've tested the cleanFS script, we
can safely automate it. The more you automate
things, the less you have to worry about. The

Stopping core dumps
Core dump files can take a significant

amount of disk space, especially if you
don't notice them, and they start to litter
your hard drive. If you never intend to ex­
amine these core files, you can modify your
shell's startup file to prevent any program
you run from generating a core dump.

If you' re running in the C shell, just
add the command

Devo% limit coredumpsize 0

Bourne and Korn shell users can achieve
the same effect with this command:

$ ulimit -c 0

In either case, you're setting the size
limit of the core dump file to 0 blocks, pre­
venting the program from generating any
core dump file at all. If you don't want any
of your system processes to generate core
files either, be sure to modify the .profile file
for the root account as well.

simple way to automate this task is to have
cron execute this script every day at, say, 3:00
a.m. You can do this by starting a root shell
and running the command:

EDITOR:vi crontab -e

This tells c r on tab to use vi as your editor
and to load the current cron schedule into vi for
editing. Now, add the following line of text to
the end of the current cron schedule:

• 3 • • • /usr/jrnl/bin/cleanFS

Finally, save the file and quit vi . Now
you'll run the cleanFS script every morning at
3:00. Please note that we're assuming here that

you place scripts from the journal in a directory
named /usr/jml/bin.

Conclusion
It's very important to remove useless files from
your hard drives. Although hard drives are be­
coming cheaper every day, you still don't want
to shut down your computer to add hard drives,
do you? While shell scripts using f i n d and x a r gs
are very flexible, the result isn't simple to read
or maintain. Since disk space management is
such an important topic, we'll build a shell
script that will use a configuration file to tailor
which files will automatically be deleted, sim­
plifying this laborious task. Look for the script
in an upcoming isssue. •!•

Getting megabytes of free space,
absolutely free!

I t happened again. You just popped in a new
9GB hard disk and just a few weeks later,
it's 95 percent full. Would you like to make

another 800MB appear on that disk? You can
do it! The trick is to know that when you ini­
tialize a file system with newf s using the default
parameters, Solaris sets aside some of the
space for working space (inode maintenance,
etc.) The newf s command uses the min free value
to tell it how much space to reserve-10
percent by default.

However, the default value of 10 percent
was decided a long time ago-when hard
disks were much smaller and partitions didn't
spread across multiple disks. While Solaris
needs some disk space to manage the system,
10 percent of an 8121MB disk tallies up to
812MB-an expensive price to pay. In fact, it's
too large a price! On any large partition, a
1 percent min free value is more than enough to
do the job.

Change your file system
You can change the amount of free space when
you create the file system (with the -m param-

http://www.cobb.com/sun

eter for newf s) or afterwards by using the tunef s
command, as shown in Figure A.

Figure A
challenger{root }: umount /home1
challenger{root} : tunefs -m 1 /dev/md/rdsk/d0
minimum percentage of free space changes from
10% to 1%
should optimize for space with minfree < 10%
challenger{root} : mount /home1
It takes but a moment to change them inf ree parameter on
a file system.

After you unmount the partition with the
umoun t command, it takes only a second for
tunef s to change the minimum free space pa­
rameter. Then you can mount the partition
again and begin using it immediately. Please
note that when you change the free space on
your file system using tunef s, you can safely ig­
nore the message about optimizing for space.

Figure B on page 16 shows the difference
between two identical 8121MB drives. The
/homel file system has a min free value of 10 per­
cent, while /home2 is set to 1 percent. The same
is true with the two identical 25GB partitions
/home3, and /home4.

Inside Solaria

SunSoft Technical Support

(800) 786-7638

(

I
I J

PERIODICALS MAIL
06/9::::

" r ,-.. ·-.. ~.
) .··

Please include account number from label with any correspondence.

Figure B
challenger{root}: d f -K
Fi lesystem k:by tes used avail capacity Mounted on
/dev/dsk/c0t4d0s7 8316189 9 7484570 1% /home1
/dev/dsk/c0t5d0s7 8316189 9 8233019 1% /home2
/dev/md/dsk/d0 24943121 9 22448802 1% /home3
/dev/md/dsk/d1 24943121 9 24693681 1% /home4
The /home2 and /home4 file systems have more space available to you than do
their counterparts.

Figure C
#!/bin/csh -f
#Show the minfree value of each local partition

echo "Partition minfree lost total"

foreach PARTITION ('df -K -F ufslgrep -v Fi lesystemlawk '{print
$6} I I)

set USED='df -K SPARTITIONlgrep SPARTITIONlawK '{print $3}''
set AVAIL='df -K SPARTITIONlgrep SPARTITIONlawK '{print $4}''
set TOT='df -K SPARTITIONlgrep SPARTITIONlawK '{print $2}''
set LOST='echo STOT SUSED SAVAILlawK '{print $1-($2+$3)}''
set MINFREE='echo $LOST STOTlawK '{printf "%3.0f", $1•100/

$2} I I

echo " " \
I awk '{printf "%-10s%3.0f%%\t %5.0f MB out of %6.0f MB\n",

partition, minfree, lost/1024, tot/1024}' \
partition=SPARTITION minfree=SMINFREE lost=SLOST tot=STOT

end
This showminfree script will show you an approximation of minfree on all your
file systems. ·

Figure D
challenger{root}: showminfree
Partition minfree lost total
I 10% 5 MB out of 47 MB
/usr 10% 32 MB out of 325 MB
/var 10% 33 MB out of 329 MB
/export 10% 8 MB out of 82 MB
/opt 5% 95 MB out of 1907 MB
/home1 10% 812 MB out of 8121 MB
/home2 1% 81 MB out of 8121 MB
/home3 10% 2436 MB out of 24359 MB
/home4 1% 244 MB out of 24359 MB
/home5 5% 95 MB out of 1907 MB
/home6 1% 80 MB out of 8030 MB
/home? 5% 90 MB out of 1791 MB
__ , ________________________________ __
The resulting script shows the size of the reserved area for
each file system, as well as the minfree parameter.

._____. JlllUBl'Y 199_8 ________ _

How do you know the value of mi nf ree?
Solaris doesn't have any command to show
which min free value is used on any given par­
tition. However, you can determine mi nf ree by
doing some math with the values d f presents.
Figure C shows the showmi n free script that dis­
plays the approximate value of mi nfree for all
file systems on your host.

We built the script by using d f -K to gener­
ate the numbers we need. If you add the amount
used and the amount available for use, you'll
find that you always come up short of the total
amount. This difference is the space set aside
by Solaris as dictated by the mi nfree value. So
we calculate the percentage by dividing the
amount reserved by the total size of the file
system. Figure D shows an example of the out­
put from our ·showmi nf ree script.

Conclusion
When you have large file systems on your ma­
chine, you owe it to yourself to eke out some
extra space on your hard drives. After all,
you've paid for those hard disks, and Solaris
isn't using nearly so much as the default value
of min free reserves. •!•

Are you a good tipper?
Do you have any great Solaris tips that

you've discovered? If so, send them
our way!

If we use your tip, it will appear on
our weekly online ZDTips service. (Visit
www.zdtips.com to check out all our avail­
able tip services.) It may also appear here in
Inside Solaris. Your byline will appear with
the tip, along with your E-mail and/ or Web
addresses.

Send your tips to inside_solaris @

zd.com., fax them to "Solaris tips" at (502)
491-4200, or mail them to

Inside Solaris
The Cobb Group
9420 Bunsen Parkway
Louisville, KY 40220

