
I
. I

in this issue \ .
1
An introduction to awk

5
Removing a strangely named
file

8
Configuring the Devices and
Systems files for cu

10
Microsott's DMF and MDF
floppy disk formats

12
Blocking foreign IP packets
from accessing your internal
network

15
How do you perform system
maintenance on the root file
system?

18
File locking under Wabi

May 1996 • VOL. 2 NO. 5
us $11.50

~""'"-=~'~'"' , .•

: Tifa$:;{i. :~echniques for users of SunSof t Solaris

An introduction to awk
By August Mohr and Marco C. Mason

The awk language is a powerful part
of the UNIX system. This language
allows you to do many things that

would otherwise require you to write
a C program. In fact, it's often used for
prototyping programs to test ideas be­
fore converting them to C or another
compiled language. If you're wonder­
ing about the funky name, that's be­
cause it's named for its authors: Aho,
Weinberger, and Kernighan.

If you've never used awk, this article
may inspire you to try it. If you've
used only its default output capabili­
ties, this article gives a starting point
for taking fuller advantage of this
powerful tool. Be sure to read the man
page for more information on awk' s
capabilities.

Despite the power, awk programs can
be amazingly simple-especially when
compared with the equivalent C pro­
grams. This simplicity comes in part
from its ability to make assumptions
about the format of its input that a ge­
neric programming language can't. It
presumes that its input is ASCII text,
that the input can be organized into
lines or records, and that the records
can be organized into fields.

Simple idioms, complex tasks
The simplicity possible with awk allows
it to be used within pipelines for tasks
such as extracting fields from a line of
input. Here's an example of a common
idiom used in shell scripts. By default,
awk will use a blank space in an input
line (spaces and tabs) to separate fields
of non-blank characters. The following

awk command will print the first
field of every line in the file test:

S awK '{ print $1 }' test

The quoted part of the com­
mand line tells awk what to do
with the file test. In this case, it
tells awk to print the first field in
each line.

The command we just showed
you illustrates the basic structure
of an awk command. The part in
quotes specifies a list of action
statements telling awk what to do,
and the part after the quotes speci­
fies the list of filenames to process.

Records and fields
When awk processes a file, it reads
it line by line. Each line is consid­
ered to be a record and is treated
by itself. Each record is a collection
of fields, separated by white space.

In your action statements, you
can refer to a field by the construct
$n, where n is the field number
you're interested in. In an awk pro­
gram, you may have multiple ac­
tion statements, each in the form

pattern { action }

where you can omit either the pat­
tern or the action part. If you omit
the pattern part, awk executes the
specified action on every line. In
our example, we omitted the pat­
tern part and used just the action
part, which simply prints the first
field in the record.

A publication of The Cobb Group

SOLARI
Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices Domestic $115/yr ($11 .50 each)
Outside US $135/yr ($16.95 each)

Phone US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-3433
Editor-in-Chief (502) 493-3204

Address Send your tips, special requests, and other
correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions,
and requests for bulk orders, address
your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd.com.

Postmaster Second class postage paid in Louisville, KY.

Copyright

Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright © 1996, The Cobb Group. All rights reserved.
Inside Solaris is an independently produced publication
of The Cobb Group. The Cobb Group reserves the right,
with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for per­
sonal and commercial use.

The Cobb Group and its logo are registered trademarks
of Ziff-Davis Publishing Company. Inside Safaris is a
trademark of Ziff-Davis Publishing Company. Sun, Sun
Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX and OPEN
LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are
trademarks or registered trademarks of their respective
holders.

Advertising For information about advertising in Cobb Group
journals, contact Tracee Bell Troutt at (800) 223-8720,
extension 430.

Back Issues To order back issues, call Customer Relations at
(800) 223-8720. Back issues cost $11.50 each, $16.95
outside the US. We accept MasterCard, VISA, Discover,
or American Express, or we can bill you .

Staff Editor-in-Chief Marco C. Mason
Contributing Editors Jeff Warner

Al Alexander
August Mohr

Editors Linda Recktenwald
Martha Bundy

Production Artists Margueriete E.Winburn
Amy Scott

Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
Publisher . Lou Armstrong
President/CEO J. Thomas Cottingham

2 Inside Solaris

Let's try it out. First, go to your root directory, type ls -C, and
examine your output:

$ ls -C
TT DB
bin
cdrom

dev
devices
etc

export
home
kernel

lib
mnt
net

opt
platform
proc

sbin
sh lib
tmp

usr
var
vol

Now, if we pipe the output of the ls -C command to our
example awk command, we should see the following:

S ls -C I awk '{ print $1 }'
TT DB
bin
cdrom

xf n
xxx

For each line, awk reads the record, splits it into fields, and prints
the first field.

Pattern matching
The pattern part of an action statement tells awk when to execute
the action. If the pattern doesn't match, then awk doesn't execute
the corresponding action in curly braces.

If you want to operate only on lines that contain a particular
string, you can use the syntax Ix I to represent the string, where
xis the string you're looking for. Thus, if you wanted to print
out each line that contained the word Solaris, you could use the
action statement:

/Solaris/ { print }

The awk program has two special patterns that make report writ­
ing easier. These are the BEGIN and END patterns. The action for the
BEGIN pattern is automatically run before awk reads any records. The
action for END is run after awk processes the last record.

Variables and mathematics
In order for you to do some serious processing, awk allows you to
create variables and do mathematics. If you want, you can perform
calculations with values found in a specific field. To create a vari­
able, simply assign it a value like this:

var = 5

Here, we've assigned the value 5 to the variable var. You can treat
the fields as numeric values and access them in your calculations.

The awk program provides you with many mathematical opera­
tors, like addition(+), subtraction(-), multiplication(*), and divi­
sion(/) . Putting together what we've learned so far, you could
add all the numbers in a column like this:

awk 'BEGIN { total=0} {total+= $1} END {print "Total=",
•total }' test

As you can see in this example, there are three action state­
ments. The first has a pattern of BEGIN, and we use it to set a vari­
able named total to 0. The second doesn't have a pattern, so it's
executed for every line; this action statement adds the value of the
first column to total. The third action statement has an END pattern,
so awk executes it after it's processed all the records: In this case,

the last action statement prints total, which
at this point contains the total of all values
found in the first column in the file test.

Decisions and looping
We've already shown you how you can ex­
ecute a pattern based on a decision: Using a
pattern like I Sol a r i s I tells awK to process the
action statement only if the word Solaris is
found in the record. However, awK provides
much more sophisticated decision-making
capability.

You can use an if statement to execute a
statement if a certain condition is met. To
do so, you use the syntax

if (condition)
s tmt 1

else
s tmt2

Thus, if the specified condition is true, the
if statement executes the statement labeled
stmtl. On the other hand, if the statement is
false, the i f statement executes the state­
ment labeled stmt2. It will execute one or
the other statement, but not both. Please
note that thee l se and stmt2 part of the if
statement are optional. For example, the
statement

if (var== 2)
print "Var equals 2"

prints "Var equals 2" if, and only if, the
value of var is 2. Otherwise it does nothing.
Pretty simple, isn't it?

One of the looping constructs is known
as awhile loop. This construction looks like
this:

while (condition)
stmt

When you get to the wh i le statement, awK
checks the condition. If it's true, then it ex­
ecutes the statements tmt. Then awK executes
the wh i le statement again. Thus, as long as
the condition is true, the statement will be
repeatedly executed. For example, if you
execute the statement

wh i le (var > 2)
var -= 1

when var is 10, then awK will notice that the
condition is true. Then it will subtract one
from var, leaving it at 9. Then awK will ex­
ecute the wh i le statement again leaving var

set to 8. awK will repeatedly execute the
wh i le statement until finally awK subtracts
one from var, and var is less than 2. Then
awK stops processing the wh i le statement
and goes on to the next statement.

Compound statements
As you may have noticed, a single statement
in a wh i le loop isn't terribly useful. There's
just enough room for you to change the vari­
able your condition is based on. You don't
really have enough room to do any other work.

As you may expect, there's a way
around this: awK provides compound state­
ments. In other words, awK allows you to
treat an arbitrarily large number of state­
ments as a single statement by enclosing
them in a pair of curly braces and separat­
ing them with semicolons(;). You can put a
compound statement anywhere you're al­
lowed to place a statement. As an example,
let's take our wh i le loop and let it print the
value of var as it executes. Go ahead and
type in the following command:

awk 'BEGIN { var=10; while (var>2) { print
•var; var -= 1 } }'

When you press [Enter], you'll see a column
of digits from 10 to 3. You won't see a prompt,
however. The awK program is waiting for
records to process. Since we didn't specify
an input file, it's waiting for you to enter
the records from the keyboard. Simply press
[Ctrl]D to tell awK that there aren't any more
records.

A simple sample
As a real example of the power of awK,
we'll create a script that will print the
amount of disk space on your machine in
megabytes and show the total amount of
space you've used. To do so, we'll take
the output of the d f -K command, which
is close to what we want, convert the val­
ues from lK blocks to megabytes, and for­
mat the output into multiple columns
with headers.

Let's look at the output we get from the
d f -K command, shown in Figure A on the
next page. In manipulating this input with
awK, we'll look at several useful features of
the language. First, the input fields are
separated by any amount of white space
(spaces or tabs). The output of d f -K will
always have white space separating the
fields.

May 1996 3

The script we'll use to manipulate and
display these values is shown in Figure B.
Please note that the line numbers are just
for reference, they're not part of the script.

Figure A
- - -
,... Termina l 1 ,.

j,\l.lndow f.dlt Qptlons

$ df -k
Fil esyst em kbytes used avai l capacity
/dev/dsk/cO t OdOsO 212 5981 394698 1 518693 21%
/ proc O O O 0%
fd 0 0 0 0%
swa p 35380 428 34952 2%
/vol /dev /dsk/c0t6d0/so la r i s_2_5_x86/s 2

26 7664 - 1 0 100%
/vo l /dev/ds k/c0 t 6d0/so l a ri s_2_ 5_x86/s 0

155 60 12436 1 584 89%

Mo unt e d o n
I
/proc
/dev/f d
/tmp

/cd rom/s o l a r i s_2_ 5_x86/s 2

/cd rom/s o la r i s_2_5_x86/ s0

This is an example of output from the d f -k command. It shows disk usage for
mounted file systems in 1 K blocks.

Figure B

1) #!/bin/ksh
2) #Based on df -k, show disk usage in megabytes.
3) PATH:/bin:/usr/bin
4) df -k I awk -e '
5) # Print the column headers
6) BEGIN {
7) printf "%-18s%8s%8s%5s%8s%s \n", "File", "Max", "Used",

•"Used", "Free", "Mount"
8)

9)
10)
11)

}

printf "%-18s%8s%8s%5s%8s %s\n","System","MByte",
•"MByte", "%", "MByte", "Dir"

TotalM = TotalUsedM = 0

12) #Process each line of df -k output
13) NR >= 2 {
14) FileSys=S1; MaxK=S2; UsedK:S3; FreeK:$4; MntPt=S6

.t!_elp

15) #Ignore unmounted partitions, i.e., those with 0 byte size.
16) i f (Ma xK > 0) {
17) #If the filename is too long, print it on its own line
18) if (length(FileSys) < 19)
19) printf "%-18s", FileSys
20) else
21) printf "%s\n%18s", FileSys,
22) #Volume is mounted, display stats
23) MaxM = MaxK/1024; UsedM:UsedK/1024; FreeM=FreeK/1024;
24) UsedPct = UsedK•100/MaxK;
25) printf "%8.2f%8.2f%5.1f%8.2f %s\n", MaxM, UsedM, UsedPct,

26)
27)
28)
29)
30)

•FreeM, MntPt
#Accumulate totals
TotalM += MaxM; TotalUsed += UsedM
}

31) #Print the ending summary
32) END {
33) print ----------------------------------
34) printf "Total disk space : %8.2f MBytes\n", TotalM
35) i f (Tot a l M > 0)
36) printf" Percent in use : %5.1f%%\n", TotalUsed•100/

37)
38) I

•TotalM

The d fv script uses awk to calculate and format a table of the megabytes used on all
mounted file systems.

4 Inside Solaris

Line 14 of Figure B shows how we can
assign these field values to variables. Note
that assigning them to variables is for clarity
and ease-of-use only; we can make calcula­
tions and output using the field-number
variables directly. Also note that line 16
checks to see if we might divide by 0 (this
could occur if a file system listed in /etc/
vfstab isn't mounted). If MaxK is zero, we
won't process the line any further. Lines 23,
24, 27, and 36 of the dfv script show how we
can use variables in calculations and how to
assign those values to new variables.

The overall structure of this awK program
consists of three action statements. The first,
beginning on line 6, uses the BEGIN pattern
to specify the actions we want to perform
before any input lines are read or processed.
In this case, we' re printing our header
and zeroing out our TotalM and TotalUsed
variables.

The pattern that selects the second and
subsequent lines uses the built-in NR vari­
able, which contains the count of the cur­
rent input record or line. Here, if the NR
variable is 2 or larger, we process the action
statement. This has the effect of skipping
the first line output by the d f -K command,
which is a column header, as you can see in
Figure A.

The last action statement, starting on line
32, simply prints the total amount of disk
space and the percent used.

Formatting with printf
We use the pr i n t f commands in lines 7
and 8 to format our column headers. In
line 25, we use another print f statement
to display the results of our calculations.
In the print f commands, a pattern begin­
ning with a percent sign(%) describes the
formatting of each field . After defining
the output pattern, the print f routine
substitutes the input values into the pat­
tern in the order they appear.

In the header commands, each field is
defined as some number of string (s) char­
acters. The minus sign(-) that precedes the
first and last fields indicates that the field
is to be printed left-justified instead of the
default right-justified. Therefore, the for­
mat string %8s specifies a right-justified
string that takes eight columns.

In lines 7 and 8, we described all fields
using the s character, and we gave all input
values as character strings. In line 25, only
the first and last fields are strings; the rest

are either base-10 (decimal) numbers (d) or
floating point numbers (f).

As with the string values, the number
given is the number of character places in
the output format. For floating point fields,
the number to the left of the period indi­
cates the total width of the output field,
while the number to the right of the period
indicates how many of those characters
should be reserved for digits to the right of
the decimal point. We used the same field
widths in our column headers as our nu­
meric output to keep our columns aligned.

Note the print f statement in line 36. All
the text appearing outside of a field defini­
tion is printed literally. In this case, awk will
print "Percent in use : "followed by a num­
ber five digits wide (one digit after the
decimal point), followed by a % symbol.
Note that we had to use two % symbols to
get a single one, since the % symbol tells
pr i n t f to start a field definition. Figure C
shows what the output of the dfv script
looks like on one of our machines.

Conclusion
We didn't show you everything about awk.
It's too big and complex a language. We
do hope that we got your curiosity going,
though. The basics are pretty easy to learn,
and you can use them to do some fairly

Figure C
~· -- - - -- - - -- -- --- T~tn11nal •

~lndow f.dit Qptions Help

$./dfv 1
Fi l e Max Used Used Free Mount
Sys t em MByte MByte % MByte Di r
/dev/dsk/cOt OdOsO 20 76.15 385 . 44 18.6 1483.11 / 1

-
1

swa p 43.91 0.15 0.3 43 . 77 /tmp
/vo l /dev /ds k/c0t6d0/ so l a r i s_2_5_x86/s 2

261. 39 - 0.00 -0 . 0 0 . 00 /cdrom/solar i s_2_5_x86/s2
/vo l /dev /ds k/c0t6d0/so la r i s_2_5_x86/s0

15. 20 12 . 14 79 . 9 1. 5 5 /cdrom/sol ari s_2_5_x86/s0 I

Total disk space : 2396 . 65 MBytes
Percent i n use : 16 . 6%

$ I

This is the output of the dfv script in Figure B when applied to the same file
systems as shown in Figure A.

complex jobs. As we mentioned, you'll
want to read the man page to get some more
detail on awk. If you'd like some more de­
tailed information on the awk language, you
might want to refer to the following books:

The A WK Programming Language
Alfred V. Aho, Brian W. Kernighan, & Peter

J. Weinberger
Addison-Wesley Pub. Co., 1988
ISBN 0-201-07981-X

sed & awk
Dale Dougherty
O'Reilly & Associates, Inc., 1990
ISBN 0-937175-59-5 •:•

Removing a strangely named file I
By August Mohr and Marco C. Mason

S ometimes you or your computer
accidentally creates a file that has
unusual characters in its name. De­

pending on the nature of the error and
the application that created it, such a file
might have control characters, quotes,
tabs, or even new line characters within
the name. Cleaning up such an error by
removing the file can p rove difficult, but
it should be possible using one of the fol­
lowing techniques.

Filenames containing special
characters
As you know, some characters have special
meaning in the shell. These include the
wildcard characters * and?, quotation
marks, parentheses, and the ampersand. If
the filename contains characters like these
that are special to the shell, all the charac­
ters of the filename may be visible in an ls
listing, but you can't remove the file simply
by typing the name as displayed.

May 1996 5

6 Inside Solaris

Suppose you have a file named T&Bar\ Vee in
your directory that you want to remove.
Your first impulse would be to use the rm
command like this:

$ rm T&Bar\Vee
338
BarVee: not found

You can remove the file (or rename it
with the mv command) by typing a back­
slash(\) before each special character. This
tells the shell to treat the next character as a
normal character. (This is why the\ didn't
appear in the error message above; \ V told
the shell to treat the Vas a V. In effect, the
\ was ignored.) Since the backslash is a
special character as well, a filename con­
taining a backslash will need two of them.
For example, to remove a file named
T&Bar\ Vee, you'll need to put a backslash
before both the special characters & and \
in your rm command:

$ rm T\&Bar\\Vee

Names beginning with a dash
One common, but easy to deal with, case is
a filename that begins with a dash (-), such
as -foo. If you just try the obvious rm com­
mand, an error will occur:

$ rm -foo
rm: illegal option--0
rm: illegal option--0
usage: rm [-fiRrJ file ...

This is because a dash introduces rm options,
in this case, -f, -o, and another -o. There is a
-f option to rm, but no -o, so rm complains.
Even if it didn't, it still wouldn't remove your
file named -foo. It would only set the specified
options in preparation to deleting the file(s)
specified, in this case, none.

There are many possible solutions, but
the easiest one in this case is to precede the
filename with./. This simply specifies that
the file is in the current directory. While
this is what rm defaults to, adding the ./to
the start of the filename keeps rm from pro­
cessing the filename as a set of switches
because the dash is no longer the first char­
acter in the filename:

$ rm ./-foo

Names with non-printing
characters
If the filename contains non-printing char­
acters, such as control characters or spaces,

that condition may show up in an ls listing
that doesn't properly align in columns. If
you're really unlucky, the filename contains
the character sequence that clears your
screen (e.g., the single character [Ctrl]L on
the console). Every time the filename is
printed, your screen clears.

One way of identifying the erroneous
characters is to put the output of ls into a
file and then examine the file with vi. Using
the : s e t l i s t command in v i will show
where the lines end with a$ and let you
identify embedded tabs and trailing spaces.

There are two options to the l s command
that can also be helpful in identifying files
with non-printing characters in their
filenames. These are the - b and - q options.
The -b option displays non-printing charac­
ters as three-digit octal values preceded by a
\ character, and the -q flag causes them to
be displayed as question marks. When you
know where the non-printing characters are
in the name, you can match those characters
with shell wild card characters.

For instance, in a directory containing a
file with the name fooALbar (with an em­
bedded [Ctrl]L character), an ls command
would just clear the screen, leaving just
"bar" in the upper-left corner. Using ls -b
would display it as foo\014bar and using
l s -q would produce f o o? bar. Knowing
there is only one erroneous character, you
could then remove the file with the com­
mand rm f o o? bar (assuming no other files
matched the f oo?bar pattern).

You can also use the -i (interactive) flag
for the rm command. Using the command
rm - i * will prompt you for a y or n re­
sponse for each file in the current directory.
You simply respond with an n to each file
except the ones you want to remove. You
can use leading and trailing characters with the
* to narrow the choices (e.g., rm -r f * r will
offer you only files that begin with f and
end with r).

You can copy all the valid files to an­
other directory (not a subdirectory of the
one with the problem). Then you can re­
move the troublesome file with the rest of
the original directory using the command
rm -r directory_name. Then you can re­
create the directory and move the remain­
ing files back.

If you're running Open Win or the CDE
environment, you can use the File Manager
to delete the files. First, you must select
the file(s) to delete. Then, in the Open Win

environment, select Delete from the Edit
menu. In the CDE environment, choose Put
in Trash from the Selected menu.

You can also use the find command to
remove files using its - i num and -ok argu­
ments. Using -i num followed by an inode
number will match the file with that num­
ber. The -ok argument to find is similar to
the -exec argument, except that it prompts
you for confirmation before executing each
command. Note that this won't work well
with filenames that have characters such as
[Ctrl]L that affect the display.

To use f i n d with the - i n um option, first
type ls - i. This will give you the inode
numbers of all the files in the directory.
Find the inode number of the problem file.
Now, to delete the file, enter the command

$ find . -inum number -ok rm {} \;

where number is the inode number of the
file you want to remove. You'll then be
prompted to confirm whether you want to
remove the file.

Names containing a slash
Another very special case occurs when the
file contains an actual slash(/) in its name.
This isn't supposed to happen-slashes
separate the components of a name and are
never supposed to occur within a name. In
fact, you can't create such a file-the system
won't let you. Nor can you remove such a
file-the slash, no matter how you type it in,
will be interpreted as a component separator.

Filenames with embedded slashes can
only occur as a result of a catastrophic sys­
tem failure. Extreme action is needed to
remove them using the c l r i command.
You can't use c l r i on a mounted file sys­
tem, so this technique won't work on the
root file system. See the next section, "Files
Containing a I in Your Root File System,"
for additional instructions if your file exists
in the root file system.

First, find the inode number using the
ls - i command. Write this number down
carefully. Next use the shutdown command
to enter system maintenance mode. You
should double-check that the file system in
question has been unmounted. If it hasn't,
use umo u n t to unmount it. Clear the inode
using the c l r i command.

Suppose for a moment that we have a file
named gesoren/platz in our /var/x directory.
Suppose further that the /var directory is the

mount point for our /dev/dsk/c0t0d0s6 file
system. Using ls -i, we find that the inode
number of gesoren/platz is 2345. We put the
system in system maintenance mode and
unmount the /var file system. Now we can
clear the inode with the command

clri /dev/dsk/c0t0d0s6 2345

This command deallocates the inode
and puts it on the free list. However, cl r i
doesn't remove the entry from the direc­
tory. The directory entry that you couldn't
remove is still pointing to the inode that's
now on the free list. This is a potentially
dangerous situation. Before you do any­
thing else, run f s ck on the affected file sys­
tem. For the example above, run

f sck -F ufs /dev/dsk/c0t0d0s6

and f s ck will detect and repair the file sys­
tem structure inconsistencies caused by our
running the c l r i command. When it finds
the directory entry that we cleared with
c l r i, it will show some information like this:

f sck -F ufs /dev/dsk/c0t0d0s6
** /dev/dsk/c0t0d0s6
**Currently Mounted on la
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
UNALLOCATED 1:2345 OWNER=root MODE=0
SIZE=0 MTIME=Dec 31 19:00 1969
NAME=/gesoren/platz

REMOVE?

Here, f sck is telling you that it found a
directory entry for file /gesoren/platz using
the unallocated inode numbered 2345. It
wants to know if it should remove the di­
rectory entry. At the REMOVE? prompt,
type y and press [Enter]. The f sck com­
mand will delete the directory entry and
continue to scan your disk drive. Near the
end, you'll get another warning:

**Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
FREE BLK COUNT(S) WRONG IN SUPERBLK
SALVAGE?

Now f sck is telling you that the number
of free blocks calculated doesn't match the
number of free blocks in the superblock.
(The cl r i command didn't update the free
block count in the superblock when it
cleared the block.) It's asking if it can fix
the count in the superblock. Again, type y

May 1996 7

8 Inside Solaris

and press [Enter]. Then f sck will finish fix­
ing the errors on your drive:

22925 files, 394588 used, 1731393 free (3137
frags, 216032 blocks, 0.1% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

Warning: Running cl r i in multi-user mode,
running c l r i on a mounted file system, or
failing to run f sck immediately after run­
ning cl r i can cause file system corruption,
leading to data loss.

Files containing a I in your
root file system
Since the c l r i command works properly
only on an unmounted file system, we need

a way to run Solaris without mounting our
root file system. For more information on
this, see the article "Starting Solaris x86 in
Single-User Mode" in the March issue of
Inside Safaris.

You can use the basic technique described
in that article to boot Solaris in maintenance
mode from the CD-ROM. From there, you
can execute the c l r i command to clear the
specified inode and then run the f s ck com­
mand as described in the p·revious section.

Conclusion
As with many things in Solaris, there are
techniques you can use to accomplish a
seemingly impossible task. In this article,
we've tried to show you several ways you
can solve the problem of removing files with
unexpected characters in their names. •!•

Configuring the Devices and Systems
tiles tor cu
By Al Alexander

I f you've read the article "Using the cu
Utility with Solaris 2.x" in our Decem­
ber 1995 issue, you may have started

using the cu command to communicate
with remote systems via a modem. In this
article, we'll examine the process of config­
uring your Devices and Systems files to
make using the cu program a little easier.

Background
The command you'll use to dial out is called
cu, for Call UNIX. This command is a part of
a much larger communication facility known
as UUCP, or UNIX to UNIX CoPy. The entire
UUCP suite of tools allows you to perform
remote logins to other systems, copy files to
and from other sites, and send E-mail to re­
mote users-all via modem connections.

UUCP is now standard on all UNIX plat­
forms. On UNIX System V Release 4 sys­
tems, such as Solaris, it is also referred to as
the Basic Networking Utilities, or BNU.
Configuring your system for dial-out capa-

bility with the cu command is the beginning
of the entire UUCP configuration.

Configuring the Devices file
In our original article, we didn't cover sys­
tem configuration. Thus, if your system
wasn't already configured for use with cu,
you couldn't dial out. For a minimal con­
figuration for dial-out capability, you only
need to modify one UUCP file-/etc/uucp/
Devices-to connect to the outside world.
The /etc/uucp/Devices file tells the UUCP
utilities which devices they can use to con­
tact remote machines.

You can edit the Devices file with your
favorite text editor. Assuming that you
have a Hayes-compatible modem con­
nected to the first serial port on your com­
puter, add the following lines to the end of
the Devices file:

ACU ttya - Any hayes
Direct ttya - Any direct

Make sure there are no blank spaces at
the beginning of these lines. Any line
within the Devices file that begins with a
blank will be considered to be a comment.
Lines beginning with a# symbol are also
considered comments.

Table A provides the definitions of the
fields in the Devices file. The first line we
added to the file specifies that an Auto­
matic Calling Unit (e.g., a modem) is con­
nected to the serial line /dev/ttya, that con­
nections can be made at any speed, and
that a Hayes-compatible dialer program
will be used to issue commands to the
modem.

If you're using a Hayes-compatible mo­
dem on your serial port, this configuration
line lets you submit a phone number to the
cu command, and the dialer program takes
care of the rest of the work. For example,
the following command dials the phone
number 568-6250:

cu 5686250

The second line we added to the Devices
file specifies that we also have a direct con­
nection to the serial line /dev/ttya. You use
this configuration line to allow direct ac­
cess to the modem, in case you need to is­
sue special commands, such as at or at z0.

Testing the Devices file changes
Once you've made these changes to the
Devices file, you can connect to the modem
directly with the command

cu -lttya

where the -l command-line switch tells the
cu program the device to which you want
to establish a connection.

If this command succeeds, you'll see the
message Connected from the computer sys­
tem. You can now type commands from the
Hayes command set, such as AT, and your
modem should respond with the usual OK
message, as shown below:

cu -lttya
Connected
at
OK

For clarity, we've displayed what you type
in color and what your computer displays is
in black.

If you see these messages, congratula­
tions! You've done everything you need to

Table A

Field#
1
2
3
4

Description
Device type (either ACU or Direct)
Device to use for the connection
Dialer-line (this field is archaic; just use a"-")
Connection speed

5 Dialer-token (ha yes uses the Hayes command set for
dialing; Direct assumes a connection is already made
and this field is not required.)

These are the definitions for the fields in the /etc/uucp/Devices file.

dial out from your system. If you make an
error configuring your Devices file, cu may
give you an error message like this:

cu -lttya
Connect failed: NO DEVICES AVAILABLE

If you don't see these messages dis­
played on your screen, it might be because
your modem isn't turned on, your modem
may be connected to the wrong port, the
port may not be enabled properly, or you
may be using an incorrectly-configured
cable. Please read your modem's installa­
tion manual before proceeding any further.

Once you successfully configure your
system, you can either try dialing out to
another system with the A TDT or A TDP com­
mands, or you can disconnect from the mo­
dem. To disconnect, type the special char­
acter sequence ~. (a tilde followed by a
period) and press [Enter]. The system
should respond with the Disconnected mes­
sage and return you to your UNIX prompt.

The entire connection sequence should
look like this:

cu -lttya
Connected
at
OK

voyager .
Disconnected

Take a look at the fifth line. While you
typed only the character sequence - . the cu
program displayed the system name be­
tween the characters you typed.

Modifying the Systems file
With your current setup, you can call any
computer in the outside world by either
specifying its phone number or connecting to
the ttya device and then issuing an A TDT or
A TDP modem command. If you change an

May 1996 9

Table B
Field # Description

additional UUCP configuration file, you can
call remote systems by name, such as

cu compuserve

The file you'll need to change is called
/etc/uucp/Systems. In this file, you specify
the names of computer systems to which
you may want to connect, as well as some
additional information, like the phone
number and connection type.

For instance, if your local CompuServe
phone number is 568-6250, you can add the
following line to your Systems file:

compuserve Any ACU Any 5686250

Table B describes the field definitions for
the Systems file.

1 Name of the remote site
2 Calling schedule-Any allows calls at any time of day;

Never disallows callouts using this entry.
3 Device type (ACU or Direct)
4 Connection speed
5 Phone number of the remote site
6 Login conversation script (not used in this article)

These are the definitions for the fields in the /etc/uucp/Systems file.

foreign file systems

Please note that only the first seven let­
ters of the remote site name are expected to
be unique. Therefore, you must be careful
when setting up the Systems file to ensure
that no two site names start with the same
two letters.

After you configure your Systems file, you
can easily dial in to CompuServe by typing

cu compuserve

Conclusion
Once you've configured the Devices and
Systems files, you and every user on your
workstation can dial out to remote com­
puter sites to run remote applications and
transfer files. An additional benefit is that
you've begun to configure your entire
UUCP system. If your business has several
geographically separated offices, you can
continue the UUCP setup to further enable
scheduled remote logins, file transfers, and
site-to-site E-mail. •!•

Alvin J. Alexander is an independent consult­
ant specializing in UNIX and the Internet. He
has worked on UNIX networks to support the
Space Shuttle, international clients, and various
Internet service providers. He has provided
UNIX and Internet training to over 400 clients
in the last three years.

I Microsoft's DMF and MDF floppy
disk formats

1 0 Inside Solaris

M any of you use Wabi so you can
run the same Windows applica­
tions that others in your company

use, such as Microsoft Word. With the older
versions of Microsoft products, there usu­
ally isn't a problem, because Microsoft dis­
tributed its applications on floppy disks
with the standard DOS file system on them.

However, Microsoft ships some products
in huge volumes. If it can find a way to ship
you the same software using fewer diskettes,
it stands to save quite a chunk of change.
Thus, Microsoft started using a disk format

called DMF, and then more recently, MDF.
In this article, we'll describe the ramifica­
tions of these two file systems on a Solaris
installation.

How is a floppy formatted?
At this point, you may be wondering how
Microsoft is packing the same amount of
information on fewer disks. Obviously, it
use.s file compression as much.as possible.
But Microsoft still wanted more.

As you may know, a standard 3.5" DOS
diskette is formatted to use 80 tracks, with

18 sectors per track, and both sides of the
diskette. Since each sector is 512 bytes, the
diskette holds 80 (tracks) * 18 (sectors) * 2
(sides)* 512 (bytes), or 1,474,560 bytes.
Then DOS uses a few sectors to hold the
root directory, the FAT tables, etc., giving
you about l.44MB to use.

What you may not know is that sectors
aren't just butting up against each other. A
floppy drive is a mechanical device, and
mechanical devices can' t (economically) be
built with the same exacting standards as
computer chips. The head positions can
change slightly, motor speeds can vary, etc.
In order to allow floppy disks to be trans­
ported between machines, you have to
build tolerances into them.

The end result is that floppy disk for­
mats have an intersector gap that's used as
a buffer zone between sectors, as shown in
Figure A. This gap allows differences in
motor speeds to be accommodated.

For example, suppose you formatted a
floppy without an intersector gap on a ma­
chine with a motor speed that was slightly
too slow. This would make your sectors
slightly smaller than normal, since the disk
controller writes the data at the same speed
each time. Then you put your floppy in a
different computer and wrote a sector to
the disk. Unfortunately, this computer has
a motor that runs a bit too fast. When you
finished the write, your disk would look
something like the one shown in Figure B.

See the blue sector? This is the one writ­
ten to by the machine with the slightly fast
motor. As you can see, it's longer than the
others. Long enough, in fact, to damage the
following sector, shown in black. This is
why we have the intersector gaps.

What is DMF?
Microsoft's engineers evidently thought that
the intersector gap was very conservative ..
They decided to shrink it in order to fit more
sectors around the disk. Rather than the 18
sectors used with a standard high-density
floppy disk, they squeezed the intersector
gap enough to add three more sectors per
track. This boosted the total to 21 sectors per
track, for a total of 1.72MB. After removing
the overhead for the root directory and FAT
tables, you get 1.68 usable MB per diskette.

Fortunately, some versions of Solaris,
such as Solaris v2.5, will mount these
floppies properly as a DOS floppy, allow­
ing you to install software from them, as

Figure A

Intersector Gap

Floppy disks have gaps between the sectors so that they can accommodate
differences in motor speeds.

Figure B

Normal Sector

/

Sector written
with a fast motor

Destroyed sector

This disk was formatted with no intersector gaps and used in two machines with
different motor speeds.

well as read and write to them. You can
even put a ufs file system on them, using
the command

/usr/sbin/newfs -v -i 4096 -o space -b 4096
.__c 4 -d 1 -f 512 -m 1 -s 3360 -t 2 /dev/rfd0

Thus, if you want to reuse your DMF disks
after you upgrade a Microsoft product, you
don't have to reformat them. You can simply
use them as a DOS file system or install the

May 1996 11

I

12 Inside Solaris

ufs file system and use them normally.
(Please note that you should enter the pre­
vious command as a single line.) Unfortu­
nately, Solaris doesn't let you format disks
with this format, so you won't be able to
copy these disks unless you have spare
DMF-formatted disks available.

What about MDF floppies?
Now you're probably wondering what else
Microsoft could have up its sleeve. It turns
out that the motor speed isn't the only me­
chanical tolerance that has to be accounted
for. Positioning the head to the correct track
also uses mechanical components. Obvi­
ously, since everyone uses 80 tracks, there
has to be room for all 80 without hitting
any mechanical limits.

Yes, you guessed it. Since disks have to
be transportable, drive manufacturers de­
cided to add a bit more space to move the
heads. Microsoft then decided to add two
more tracks and got an easy 2 (tracks)* 2
(sides) * 21 (sectors) * 512 (bytes), or 43KB
of space. It's not much, but if it lets you
squeeze out one disk from a package, and
you're going to sell lOOK copies, you can
save a cool million bucks.

While some versions of Solaris will
mount the DMF floppies, the MDF floppies
are a different story altogether. The Solaris
drivers won't let you read the last two
tracks, so you can't use MDF floppies in
your Solaris machine.

Workarounds
If you want to install a Microsoft product
that's distributed on MDF media, there are
several ways to do so. Each method re­
quires a PC on your network running Win-

letters

<lows and PC-NFS or PC-NFSpro. The basic
idea is to read the floppies from the PC and
write them to the Solaris machine's hard
drive. Then you can install the software.
Some Microsoft software may install differ­
ently than others, so you may have to try
one or more different workarounds to in­
stall a package.

First, try creating a base directory for the
software product, like /install. Then simply
copy all the diskettes into that directory.
Then run the applications installation pro­
gram (usually setup.exe) from that base di­
rectory. Some applications sold on CD­
ROM and floppies will work from this
method, as the CD-ROM often is just a
dump of the floppy images, usually stored
as a bunch of .CAB files.

Other packages won't work this way. In
this case, a CD-ROM installation doesn't
bother compressing the files since there are
over 600MB available on it. Your next step
is to decompress all the .CAB files in your
/install directory to make your /install direc­
tory look like this kind of CD-ROM. To do
so, go to the /install directory on the DOS
machine and execute the following DOS
command line:

f or % i i n (* . CAB) do ex t r a c t I e % i

This will decompress all the files in the
.CAB files into the directory. Now you can
run the installation program. If the installa­
tion program likes this method, it won't
even bother asking you to change disks.

If this doesn't work, your final fallback is
to create a subdirectory for each installation
disk under your base directory, named diskl,
disk2, etc. Then when the installation pro­
gram prompts you for the next disk, just alter
the path to point to the next directory. •:•

Blocking loreign IP packets lrom accessing
your internal network
I've set up a computer running Solaris as

a firewall. I have all of my internal systems
on one side, and an Internet connection is on
the other. The firewall is the gateway between
the Internet and my internal systems.

I've disabled the in. routed daemon, but
I want to make sure that packets with a de­
fined route can't get through the firewall.
The only way I want packets to get to my
internal network is for the packet to go to

an application on the firewall. If my appli­
cation decides to, it may forward the pack­
ets to my internal network. In summary, I
want to configure a Solaris system with
two network controllers such that it will
never route a packet.

Todd Matthews
via the Internet

You've described a situation that's becom­
ing more common all the time as the Inter­
net continues its explosive growth. You
want your users to be able to get out to the
Internet, but at the same time you want to
keep the rest of the world out of your LAN.

In the scenario you describe, shown
in Figure A, you have a Solaris machine
acting as a gateway with two network
interfaces: one interface connected to
your internal LAN and a second interface
connected to the Internet. Your internal
LAN may be a small 5-u ser LAN or a
5,000-user corporate network.

Using static routing tables
A classic solution to this problem has been
to kill the routing daemon on the Solaris
workstation acting as the router and then
manually create a static routing table with
the route command. By doing this, you cre­
ate static routes to specific hosts on the In­
ternet you want to be able to communicate
with but disable all other routes.

When you manipulate the routing table in
this manner, it doesn't matter how a remote
site sets up its routing, because it can't com­
municate with your host if your host doesn't
have a route back to the remote site. While it
sounds simple, as a practical matter, this type
of firewall can require a considerable amount
of ongoing administration, depending on
your businesses' use of the Internet.

Using firewall software
A better alternative is to use special firewall
software that will decide, on a packet-by­
packet basis, whether the network traffic is
safe. This solution has the advantage that it
tends to be more secure, if only because the
software vendors spend a lot of time wor­
rying about the security of their firewall
software. Firewall software also has the ad­
vantage of being much more flexible than a
static routing table.

In your case, you already have an addi­
tional firewall software product installed on
your Solaris server. Your security objective is

Figure A

Gateway
Computer

NIC 1 NIC 2

The gateway computer is the single point of communication between the internal
and external networks.

to disallow all TCP /IP traffic from passing
through your workstation at the operating
system level. Instead, you want all TCP /IP
traffic to flow through your firewall software.

The problem you're probably running into
has to do with an assumption that the Solaris
developers made and embedded in the sys­
tem startup files. Their assumption is that if,
during boot time, Solaris detects that two
network interfaces are present on the server,
all TCP /IP network packets will be for­
warded from one interface to the second. In
many cases this is a fair and useful assump­
tion, but it's not appropriate in the scenario
you describe.

Please note that the software actually
checks three conditions:

1. Are there more than two network
interfaces?

2. Is there a point-to-point interface
configured?

3. Does the /etc/gateways file exist?

For the purposes of this article, we' re
assuming that your problem is due to your
two network interfaces and not due to a
point-to-point interface or the presence of
an /etc/gateways file.

In this case, the solution is to modify the
proper startup file so that all forwarding of
TCP /IP packets by the Solaris operating sys­
tem is disabled. The proper startup file to
modify is /etc/rc2.d/S69inet. This file contains
several lines containing the n d d command.

The n d d command is used to manage the
TCP /IP driver configuration parameters.
The same n d d command that enables IP

May 1996 13

forwarding can also be used to disable IP
forwarding to resolve your problem.

At the end of the /etc/rc2.d/S69inet file,
you'll find a section of Bourne shell code
that determines how many network inter­
faces are on your computer. If the code
finds two or more interfaces, it invokes n d d
to enable the forwarding of IP packets.
This section of code is shown in Figure B.
On a Solaris 2.4 server, this section of code
comprises the final 34 lines of the S69inet
file, including comments.

In Figure B, you'll see a highlighted
comment that reads "Machine is a router:
turn on ip_forwarding, run routed, and ad­
vertise ourselves as a router using router
discovery." Following this comment is the
code that performs these three steps:

Figure B

if [-z "Sdefrouters"]; then

f i

#Determine how many active interfaces there are and how
•many pt-pt

#interfaces. Act as a router if there are more than 2
•interfaces

#(including the loopback interface) or one or more
•point-point

#interface. Also act as a router if /etc/gateways exists.

numifs='ifconfig -au I grep inet I wc -l'
numptptifs='ifconfig -au I grep inet I egrep -e '-->' lwc -l'
if [Snumifs -gt 2 -o Snumptptifs -gt 0 -o -f /etc/gateways

•]; then

else

f i

#Machine is a router: turn on ip_forwarding. run routed.
#and advertise ourselves as a router using router discovery.
echo "machine is a router."
ndd -set /dev/ip ip_forwarding 1
if [-f /usr/sbin/in.routed]; then

/usr/sbin/in.routed -s
fl
if [-f /usr/sbin/in.rdisc]; then

/usr/sbin/in.rdisc -r
f i

#Machine is a host:if router discovery finds a router then
#we rely on router discovery. If there are not routers
#advertising themselves through router discovery
run routed in space-saving mode.
#Turn off ip_forwarding
ndd -set /dev/ip ip_forwarding 0
if [-f/usr/sbin/in.rdisc]&&/usr/sbin/in.rdisc-s;then

echo "starting router discovery."
elif [-f /usr/sbin/in.routed]; then

/usr/sbin/in.routed -q;
echo "starting routing daemon."

f i

The last few lines of /etc/rc2.d/S69inet turn on packet forwarding if you have two or
more network interface cards.

14 Inside Solaris

1. It executes the n d d command to tell
TCP /IP to route packets through your
computer.

2. It starts the i n . routed daemon to allow
dynamic routing configuration and
force the computer to supply routing
information to other computers re­
questing it.

3. It starts the i n . rd i s c daemon that al­
lows the system to advertise routing
information to the internal and exter­
nal networks.

To solve your routing problem, you can
modify the S69inet startup file. How you
elect to do this depends on your program­
ming style. We prefer to allow the program
to come into this portion of code and then
echo some text that states that "Multiple
network interfaces have been found, but IP
forwarding is turned off and all routing
daemons are disabled." You'll see this text
appear on the console at boot time. Then
make the appropriate changes to the ndd,
in. routed, and in. rdi sc commands.

The changes we made to this file are
shown in the highlighted section of Figure
C. As you can see, we first echo some text
to the console when the script runs to tell
anyone watching what we're doing. Next,
we changed the ndd command line so that
the last argument is a 0 instead of a 1. This
disables the forwarding of TCP /IP packets
from one network interface to the other.

Note that the script no longer starts the
in. routed and in. rd i sc daemons. We do
this because the Internet already has the
routing information required to find your
site, and your internal network should al­
ready have all the routing information it
needs. By not providing these two daemons
on the firewall computer, we're helping to
prevent internal routing information from
being seen on the Internet. This may make
your system less attractive to hackers.

Determining whether you want to run
these daemons will probably be dictated by
your firewall software. If you do need to
run these daemons, you'll want to run
them in host mode instead of router mode.
In that case, change the lines that start the
daemons to read

/usr/sbin/in.rdisc -s

and

/usr/sbin/in.routed -q

The -s option to the in. rd i sc daemon
populates the host's routing tables at
boot time but does not advertise itself to
other computers as a router. The -q op­
tion on the in. routed daemon prevents it
from supplying routing information to
other computers.

Please note that any time you make
changes to a script file that's used when
your system boots up, you must test these
changes before rebooting your computer.
Otherwise, a simple error in the script may
cause your computer to hang during sys­
tem bootup. This can be difficult to re­
cover from.

In order to prevent a system hang, copy
S69inet into a different directory, such as
/test, and make your changes to that copy.
You can then execute the script from the
command line by typing

#sh /test/S69inet

This command tells Solaris to start a
new Bourne shell and that the Bourne shell
should run your modified S69inet script
file. After your script file runs, you'll be
returned to your system prompt. If the
script doesn't run correctly, you'll need to
verify the changes you made. After you've
tested your changes and verified that they
work properly, copy the S69inet script back
into the /etc/rc2.d directory. The next time
you boot your computer, it will automati­
cally execute your script and quit forward­
ing IP packets indiscriminately.

You can find more information about
TCP /IP routing by referring to the man
pages on these topics: i n . r o u t e d (1 M),
in.rdisc(lM), route(lM), routing(4), ip(7),
netstat(lM), and ndd(lM).

Figure C

if [-z "Sdef routers"]; then

f i

#Determine how many active interfaces there are and how many
- pt-pt

interfaces. Act as a router if there are more than 2 interfaces
#(including the loopback interface) or one or more point-point
#interface. Also act as a router if /etc/gateways exists.

numifs='ifconfig -au I grep inet I wc -l'
numptptifs='ifconfig -au I grep inet I egrep -e '-->' I wc -l'
if [Snumifs -gt 2 -o Snumptptifs -gt 0 -o -f /etc/gateways

•]; then
-------------- CHANGES START HERE -------------------­
echo "Machine has 2 or more network interfaces, but IP"
echo "forwarding is disabled and networking routing and"
echo "router discovery daemons are disabled."
ndd -set /dev/ip ip_forwarding 0
#if [-f /usr/sbin/in.routed J; then
/usr/sbin/in.routed -s
f i
if -f /usr/sbin/in.rdisc]; then
/usr/sbin/in.rdisc -r
f i
-------------- CHANGES STOP HERE

else

f i

#Machine is a host: if router discovery finds a router then
#we rely on router discovery. If there are not routers
advertising themselves through router discovery
run routed in space-saving mode.
#Turn off ip_forwarding
ndd -set /dev/ip ip_forwarding 0
if [-f /usr/sbin/in.rdisc J && /usr/sbin/in.rdisc -s; then

echo "starting router discovery."
elif [-f /usr/sbin/in.routed]; then

/usr/sbin/in.routed -q;
echo "starting routing daemon."

f i

This modified /etc/rc2.d/S69inet file turns off packet forwarding and doesn't start the
routing daemons.

How do you perform system maintenance
on the root file system?
About your article in the March issue of

Inside Solaris, "Oh, No-I Forgot the
Root Password." The tricky part is to get the
shell prompt in single-user mode without
giving the root password. I have Solaris 2.4
and I can't get permission to enter the shell in
init level 3, nor can I use boot -s without giv­
ing the root password. Maybe you know how
to do this?

Marita Oman
via the Internet

Marita, you can do so by following the same
general procedure described in the article
"Starting Solaris x86 in Single-User Mode"
on page 11 of the same issue. Please note
that the prompts may be different for the
SPARC installation. Just follow the installa­
tion procedure, and exit from the installa­
tion at the first opportunity.

When you exit the installation program,
you're left at single-user mode, with the
CD-ROM mounted as your root file system.

May 1996 15

SunSoft Technical Support

(800) 786-7638

SECOND CLASS MAIL

Please include account number from label with any correspondence.

16 Inside Solaris

You can then mount your root file system
on your boot drive at the /a directory with
the command

mount ldevldsklfilesys la

and proceed to recover your root password.
(Note that filesys is the name of your boot
partition, such as cOtOsO if it's the first slice
of the first IDE drive on the first controller.)

It's important to note that this trick is
much more useful than just allowing you
to recover a lost password. If you've ever

File locking under Wabi
Help! I have a database application that

I'm running under Wabi, and I'm see­
ing some strange behavior. I can open
tables on a normal Solaris partition without
any problems. If I try to open a database
table on a DOS partition, however, it fails.
What's going on?

Isaac Curtis
Los Angeles, California

That's a strange problem. After some inves­
tigation, we found that Sun is aware of the
situation. It turns out that Solaris doesn't
support file locking on DOS partitions (the
ones you mount as type pcfs).

When an application requests to open a
file with locking, Solaris tells the program
that file locking isn't available. This causes
your program to think that the open opera­
tion failed, which is causing your problem.
This isn't a concern for most Windows ap­
plications, since few of them open files
with locking.

Sun recently published a workaround
for this problem so you can use your data­
base. Just set the environment variable

needed to perform some system mainte­
nance commands on your root file sys­
tem, such as f s ck or cl r i, you'll find that
some commands only work on a file sys­
tem that isn't mounted. In this case, you
can use the same trick to mount the CD-ROM
as your root file system, so you can leave
your normal root file system unmounted.
Since the CD-ROM is already set up with
a /bin directory with all the file system
maintenance commands, you're all ready
to go, without having to install a bootable
Solaris partition on a second hard drive.

WABI_NOLOCK to 1 before you start
Wabi. This tells Wabi not to lock any files,
even when requested.

If you' re using the C shell, you can do
this with the command:

setenv WABI_NOLOCK=1

For the Bourne and Korn shells, you use the
following commands:

WABI NOLOCK=1
export WABI_NOLOCK

After you change the environment vari­
able, when an application requests a file
open with locking, Wabi reports that the
file is open and locked. Then you can use
your tables on your DOS partition.

Keep in mind, however, that your files
aren't locked, so if another person uses
these tables at the same time, you can lose
data, even if they're on a standard Solaris
(ufs) partition. If that's a problem, you
should probably move your data tables to
a standard Solaris (ufs) partition instead of
using this technique. •:•

~Printed in the USA
Y!::J¢ This journal is printed on recyclable paper.

