
Customizing the
vi editor 1

Creating macros in vi 4

Oh, no-I forgot the root
password! 7

Don't panic! 9

Starting Solaris x86 in
single-user mode 11

Netscape 2.0n ported to
Solaris v2.5 15

Locking out a user 15

I

March 1996 • VOL. 2 NO. 3
us $11.50

I

mf~~1lf gp~s~rs of SunSof t Solaris

Customizing the
vi editor I
By Al Alexander

For years, UNIX users and admin­
istrators have had a love/hate
relationship with the vi editor-

in general, they've loved to hate it.
Many of the problems people have with
the vi editor can be alleviated with a
few configuration options that can
automatically be set during startup.

Most users never learn about this
startup option and how much easier
to use it can make the vi editor. In
this article, we'll explore some of the
most useful commands you can use to
customize v i .

The vi startup sequence
When you start the vi editor, it searches
for the environment variable EXINIT
and uses its contents as a set of configu­
ration commands. The EXINIT variable,
however, is limited in the commands
you can place in it and, as such, isn't
the best option to use.

If EXINIT is not defined, v i looks for
the .exrc file in your home directory (i.e.,
~/.exrc) and uses its configuration com­
mands. If one of the configuration com­
mands in ~/.exrc is the : set exrc com­
mand, vi looks in your current directory
for a file named .exrc, and if it exists, vi
executes the commands in that file.

In this manner, you can have a de­
fault configuration for vi as well as a
different configuration for each direc­
tory you're working in. In this article,
we'll modify the .exrc file in our home
directory, which will affect all of our
vi editing sessions.

Which customizations will
make using vi simpler?
It's nice to know that vi provides
such a flexible startup procedure.
But for now, that's begging the
question. Just what sorts of custom­
izations does vi provide for?

It turns out that there are quite
a few things you can do to make
vi simpler to use. Some com­
mands modify the way vi oper­
ates, and other commands allow
you to create useful macros. We'll
show a sampling of the more use­
ful commands we've found.

Showing the current mode
One of the biggest complaints
about vi is that you never know
what mode you're in-there's
nothing onscreen to in die ate
whether you're in command mode
or insert mode. You can easily cure
this complaint by issuing the : set
showmode command.

The : set showmode command
forces vi to give a visual indication of
what mode vi is in when you're typ­
ing-insert mode, append mode, etc.
If you're in command mode, as when
you first enter vi, you won't see any­
thing different. But as soon as you
enter insert mode, the words INSERT
MODE appear in the lower-right cor­
ner on your screen. Similarly, vi dis­
plays APPEND MODE, CHANGE
MODE, and OPEN MODE when
appropriate.

A Publication of The Cobb Group

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices

Phone

Address

Domestic $115/yr ($11.50 each)
Outside US $135/yr ($16.95 each)

US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-3433

Send your tips, special requests.and other
correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suife 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions,
and requests for bulk orders, address
your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd .com.

Postmaster Second class postage is pending in Louisville, KY.

Send address changes to:

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright Copyright © 1996, The Cobb Group. All rights reserved.
Inside Solaris is an independently produced publication
of The Cobb Group. The Cobb Group reserves the right ,
with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for per­
sonal and commercial use.

The Cobb Group and its logo are registered trademarks
of Ziff-Davis Publishing Company. Inside Safaris is a
trademark of Ziff-Davis Publishing Company. Sun, Sun
Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall , OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX and OPEN
LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are
trademarks or registered trademarks of their respective
holders.

Advertising For information about advertising in Cobb Group
journals, contact Tracee Bell Troutt at (800) 223-8720,
extension 430.

Back Issues To order back issues, call Customer Relations at (800)
223-8720. Back issues cost $11 .50 each, $16.95 outsid
the US. We accept MasterCard, VISA, Discover, or
American Express, or we can bill you .

Staff Editor-in-Chief Marco C. Mason
Contributing Editors Jeff Warner

Al Alexander
John Gowin

Editors Linda Recktenwald
Martha Bundy

Production Artists Margueriete E.Winburn
Amy Scott

Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
Publisher Lou Armstrong
President/CEO J. Thomas Cottingham

2 Inside Solaris

Masking screen garbage
When you're in a full-screen editor, one of the last things you want
is another user or process sending messages to your screen. (An­
other user can use the ta l K command to ask you a question, for
example.) When messages are sent to your screen, they're mixed
with the vi screen, making it difficult to see what you're editing.

Hence, many vi users learn (and frequently use) the "L com­
mand, which redraws the screen. Since the "L command is short
and simple, many people use it each time their screen is jumbled
instead of searching for a better way. The better way is to tell vi
not to allow other users or processes to send you messages. That
is precisely what the : set nomsg command does.

Setting tab stops
By default, vi sets tab stops to eight characters. When you' re pro­
gramming, this can be annoying, as deeply-indented structures can
scroll off the right side of the page. That's why programmers often use
tab stops of three or four characters. With the smaller tab stops, you
still get good indentation, but you don't run out of space so quickly.

You can tell vi how many characters wide a tab stop should be
with the : set tab st op=# command. All you need to do is replace
the # symbol with the number of character positions you'd like to
use. Thus, for programming, you might use:

:set tab stop=4

Showing line numbers
Another feature that helps programmers is knowing the line num­
ber that you're on. When you compile a program and encounter
errors, the compiler tells you which line numbers the errors are on
so you can find them more quickly.

You can tell vi to display the line numbers in a source file by
using the : set number command. When you want to turn line
numbering off, simply use the : set nonumber command.

The EXINIT environment variable
If you use the EXINIT environment variable to customize vi,
you' re limited to using the set commands. (If you want to see a list
of all the set commands, invoke vi and type :set all. When you do,
vi will show you a list of all available set commands.)

In order to use the EXINIT method of customizing vi, you sim­
ply set the EXINIT environment variable with a string that repre­
sents the options you want. The first word of the string should be
set, and the rest of the string is the list of set commands with their
parameters, if any. Once you've set the EXINIT environment vari­
able, you must export it so that vi will see it when it starts.

Suppose that you want to show the current insert mode, you
want tab stops to be set to 4, and you want line numbering turned
on. Using the EXINIT environment variable, you could do so with
the following commands:

EXINIT='set showmode tab stop=4 number'
export EXINIT

Please note: In this example, we used the Korn shell, which is the
most standard shell. The Bourne shell uses the same syntax. If you' re
using the C shell, you would instead use the single command:

setenv EXINIT 'set showmode tab stop=4 number'

The .exrc file
If you want your default vi configuration to
have predefined macros, you'll need to use
the .exrc file instead of the EXINIT environ­
ment variable. The .exrc file can contain com­
ments, colon commands (those entered on
the last line of the vi editor and beginning
with:, such as : set showmode), and macro
definitions. (For more information on mac­
ros, see the accompanying article "Creating
Macros in vi," on page 4.)

Comments in the .exrc file are those lines
that begin with a" character (double-quote
character). v i ignores all characters after
the ". You can include as many comments
in the .exrc file as you like. One warning­
don' t put any blank lines in the .exrc file. vi
doesn't care for blank lines in the configu­
ration file very much and may ignore your
configuration options.

A sample .exrc file
Now let's put all of this information togeth­
er into a single example. Figure A shows an

Figure A

.exrc file that sets up some features that
make vi very easy to use.

Let's examine this .exrc file to see just
what it does for us. The first three com­
mands shouldn't be any surprise, as we
covered them already. They simply tell vi
to show us which mode we're in, to block
messages from external sources, and to al­
low further customization in .exrc files
found in the current directory.

In our next command, we map a com­
mand to [Fl]. After the : map # 1 portion of
the first command, you see the character
sequence : ! more - , . vi _help "M. If you're
familiar with vi, you may know that the
: ! sequence allows you to run any UNIX
command while you're in the vi editor. For
instance, while you're in command mode
in v i , you can type : ! l s - a l (followed by
the [Enter] key) to get a long listing of all
files in your current directory.

This is a great feature because you don't
have to exit and re-enter vi just to run
the ls -al command, saving you a lot of

"Issue the 'showmode' command to tell vi to display the current editing mode
:set showmode
II

" Block messages from other users to keep my display clean
1

:

1

set nomesg

"Tell vi to also read the .exrc file in the current directory for further customization
:set exrc
II

"Define F1 to show a customized "help" file
1

:

1

map #1 :!more -1.vi_help"M

" Def i n e F2 to save current ch an g es to f i le
" (uses the current ti lename)
1

:

1

map #2 :w"M

" Define F3 to display line numbers on screen
~map #3 :set number"M

"Define F4 to remove line numbers from screen
~map #4 :set nonumber"M

" Define F5 to prepare for programming by turning on the autoindenting feature and setting the tab stops to 4
~map #5 :set autoindent"M:set tab stop=4"M

" Define F6 to set the tab stops to 4 characters
~map #5 :set tab stop=4"M

" Define F10 to display "long help" for vi
~map #0 :!man vi"M

" Set some useful abbreviations
:ab s4 Solaris v2.4
:ab s4x Solaris v2.4 for x86
:ab s5 Solaris v2.5
:ab s5x Solaris v2.5 for x86

Here's the .exrc file we use in our home directory to prepare vi for serious use.

March 1996 3

Figure B

keystrokes. We simply created a file in
our home directory named .vi_help that we
use to hold some quick notes on using our
customized version of v i , as well as some
frequently-used commands. Our .vi_help
file is shown in Figure B. Now, by pressing
[Fl] we can call up this file to the screen to
refresh our memories.

We've created a few other macros as well
in this customization file. We've defined
[F2] to write the file, so we don't lose any
changes. [F3] and [F4] turn the line num­
bers on and off, respectively. We defined
[FS] to turn on the autoindent mode and
set tab stops to 4 to make vi more conve­
nient for programming.

While the short help file is useful, some­
times we need to search for a command

that we don't often use. That's why we de­
fined [FlO] to open the manual entry for vi.
Here we can search for any command we
want. To do this, we again started a shell
and executed a command, only this time
we executed the man vi command.

Since we write about Solaris often, we
created a few abbreviations. Thus, when
we write articles, we won't have to type
Solaris v2.5 for x86 whenever we need to
reference it. Instead, we can type s5x, and
let vi do the substitution for us.

That's all there is to it
You've now seen how easy it is to customize
vi to suit your preferences. While you have
some limited ability to customize vi with the
EXINIT file, you'll probably want to create

your own .exrc file because of the
extra flexibility.

Conclusion
**************************** Short Help for Vi **************************** In this article, we used the .exrc

file to display the current working
mode, keep other users' messages
off our display, and create a set of
useful macros. You, too, can make
your life with the vi editor easier and
more productive. You can now apply
the techniques contained in this
article to customize vi to include
your own working preferences. •!•

F1-Short help, F2-Write File, F3-Show Line #s, F4-Hide Line #s,
F5-Autoindent ON+Set Tabs=4, F10-Long help

s4 -> Solaris v2.4
s4x -> Solaris v2.4 for x86
s5 -> Solaris v2.5
s5x -> Solaris v2.5 for x86

Delete: X=curr char, dS=del to end of line
dd:current line, #dd:next # lines

Insert: a=after curr char, i=before curr char, O=new line after this one
A=after end of line, l=at start of line, O=new line before this one

Alvin J. Alexander is an independent
consultant specializing in UNIX and
the Internet. He has worked on UNIX
networks to support the Space Shuttle,
international clients, and various
Internet Service Providers. He provided
UNIX and Internet training to over 400
clients in the last three years.

Move: 0 (zero)=move to start of line, S:move to end of line
b:back one word, W=forward one word
G=end of file, #G=goto tine #

Misc: :q!:Ouit, no save, :wq=Save & Quit, /xxx=search for xxx
!cmd=execute command cmd in shell

This is the text of our . vi_ help file that we use to remind ourselves of the commonly-used vi
commands and our macro definitions.

I

4 Inside Solaris

application tips

Creating macros in vi
I

n an ideal world, our lives would be filled
with a variety of interesting things. At
work, however, we must be content to

do whatever is required to complete our
jobs. Often, this means performing endless
repetitive tasks.

The good part is that we deal with com­
puters. Instead of performing these repeti-

tive tasks ourselves, we can make our com­
puters do them. That is, after all, why com­
puters were invented.

In this article, we're going to show you
how to use the macro facilities in vi. Us­
ing this technique, you'll be able to per­
form complex tasks with only a couple
of keystrokes.

The : map and : u nma p commands
The : map command lets you customize the
vi editor by allowing you to redefine the
meaning of a key or combination of keys
when you're in command mode. The
: unmap command lets you tell vi to forget a
specific mapping. You can create a macro
using the following syntax:

:map lhs rhs

You replace lhs with the key sequence you
want to use to trigger the macro, and you
replace rhs with the key sequence you want
to feed to vi . When you' re done with macro
l hs and you want to remove it, just type

:unmap lhs

For example, if you often need to turn on
and off the line numbering facility in vi,
you'll need to use the : set number and : set
nonumber commands repeatedly. You might
like to have a couple of shorthand com­
mands, say X and Y, to turn on and off the
numbering facility. To do so, we can create
the following maps:

:map X :set number
:map Y :set nonumber

With these macros defined, you should
be able to turn on the numbering by using
the X command and turn it off again with
the Y command. Right? Well, almost. If you
press X, vi waits for you to press the [Re­
turn] key before displaying line numbers.
We need some way to insert the carriage
return into the macro definition.

Adding control characters to macros
As you may know, the vi editor has a way
for you to embed control characters in your
files. You can use the same method to
embed control characters in your macros.

All you need to do to put a control char­
acter in your text (or macro) is to precede it
with [Ctrl]V. Then vi inserts the keystroke
that follows into the text without process­
ing it as a command. So, to insert the
[Return] key into your macro, just press
[Ctrl]V and then [Return].

Now we can redefine our macros to turn
on and off line numbering so they don't
pause until you press [Return]:

:map X :set numberAM
:map Y :set nonumberAM

When you press [Ctrl]V, vi displays the/\
symbol on your screen. When you press [Re­
turn], it displays the M, giving you AM. In
case you don't already know, a AM ([Ctrl]M)
character is the same as the [Return] key. If
you're at a prompt, type ls [Ctr l JM, and
you'll see a directory listing.

Which macros have I defined?
If you ever need to see which macros you've
defined, you can simply use the
: map command with no parameters.
When you do so, vi will display all
the macros you've defined. You'll Figure A
see a list like the one shown in inschar A[[2- i
Figure A. up A[[A k

down A[[B j
left A[[D h
right A[[C l
U U :set number
V V :set nonumber
[Hit return to continue]

Notice that vi displays seven
macro definitions instead of only
two. That's because vi doesn't
know about the [Insert] and cursor
control keys, so Sun Microsystems
modified vi to map them to the You can see the macros you've
appropriate commands for you. defined in vi by issuing the :map

command.

Which keys can I map?
Just what can you map in vi? You can map
any printable character that you want. If
you do so, and vi uses that character for a
command, you won't be able to use that
command from the keyboard. Usually that's
not a problem, as few people use all the
commands that vi provides.

Further, vi won't let you map multiple­
character sequences unless they start with a
nonprinting character. This prevents you
from accidentally invoking a macro. For ex­
ample, if you could create this macro

: map et : q !

then you couldn't use any of these t com­
mands, or vi would quit without saving any
changes to your current file.

If you want to map a function key, you
can map the first ten by using #1 through #9
for the first nine function keys and #0 for
[FlO]. In addition, there are many [Ctrl] and
[Alt] combinations that you can use for
macro definitions.

Special note about : map
Please note that macros have the ability to
trip you up: When you execute a macro in
vi, it first finds the string it's about to exe­
cute. Then it repeatedly tries to perform any
macro substitutions it can in the string. When
it can find no more substitutions, it then
executes the macro.

March 1996 5

6 Inside Solaris

Suppose, for example, that you define
the two macros

:map p dd
:map d xxxx

Here, the first macro definition tells vi to
delete the current line of text (using v i 's d d
command) when you press p. Then the
second macro tells v i to delete four charac­
ters when you press d. However, this
changes the effect of the first macro! After
you define the second macro, vi deletes
eight characters when you press p.

This happens because when you press p,
vi loads the macro buffer with d d. Then it
maps each d key to xxxx. The result is that
p executes xxxxxxxx. If you use a lot of
macros and some of them intersect like
this, you will see unexpected results.

If you experience this problem, you
might want to consider telling vi not to
successively process macros. The com­
mand to do this is : set noremap. If you
want to restore the default behavior, use
:set remap.

What about using macros in
insert mode?
The macros you create using the : map
command work only while you're in
command mode. You can't create a macro
in insert mode that will execute commands
for you. But all is not lost! The vi editor has
two special facilities for use in insert mode
that can still make your life easier.

The first of these is the : map ! command,
which operates much like the : map com­
mand, except that it operates in insert
mode. If you want to execute commands,
you must first make your macro process
the [Esc] key. You can also use it to perform
text replacements. Just as you'd suspect,
the : map ! command by itself lists all the
insert-mode macros, and the : u nma p ! com­
mand can erase a macro.

Thus, using :map! "E Codfish tells vi to
insert the string Codfish into your text
when you're in insert mode and press AE.
Similarly, using the : map ! "G " [: w"Ma com­
mand allows you to save your file while
you're in text mode. It works by first press­
ing [Esc] to get back to command mode,
then issuing the : w command witl:i carriage
return, and finally issuing the a command
to get back into insert mode.

The : map ! command has the same caveat
as the : map command: If you have strings

that clash, then they'll be mixed. together.
However, you can use multiple-letter mac­
ros that start with printable characters.
Suppose you create the following three
macros:

: map ! f i end i f
:map! od enddo
:map! "E Codfish

If you actually type the AE while in in­
sert mode, instead of getting Codfish, as
you would want, you'll get Cenddoendifsh.
What we really need is a command that
creates macros that are replaced only if the
key sequence is a separate word. Fortu­
nately, vi provides that command.

A better macro facility for insert mode
The second macro facility for insert mode is
the : abbrev i ate command. By the name,
you may have guessed what an abbrevia­
tion does. If you type the abbreviation in
insert mode, vi will replace it with the full
text of the phrase.

For example, since I'm the author of In­
side Solaris, I might want to abbreviate the
text string Solaris v2.5 to s5. Then, as I enter
text, I could just type s5 anytime I intend to
type Solaris v2.5.

The : abbrev i ate command operates just
like the : map command. To make an abbre­
viation, just type:

:abbreviate lhs rhs

replacing I hs with the abbreviation you
want to use and rhs with the string you
want vi to type in its place. It has always
amused me that the : abbrev i ate command
is so long. Fortunately, vi abbreviates the
: abbreviate command, so you can use : ab
instead of its longer counterpart.

Suppose I create the abbreviation:

:ab s5 Solaris v2.5

and I want to type "I am using Solaris
v2.5." In insert mode, I can type "I am
using s5," and you'll see "I am using sS"
on the screen. Then when I type a space,
[Return], or a punctuation character, vi will
replace the text s5 with Solaris v2.5.

This is the feature that we like about the
: ab command. Using the :map! command,
if I really meant to type s4 and typed s5, vi
would have replaced the text with Solaris
v2.5. In order to get back to s4, I'd have to
delete the phrase and retype it. With the

: ab command, vi waits until you complete
the word before expanding the phrase.
This prevents the macro mixup (remember
Cenddoendifsh?) we described previously.

Another benefit of this behavior is that
vi allows you to have multiple abbrevia­
tions with the same beginnings. Waiting
for an extra key allows v i to detect when
you've completed the abbreviation.

As an example, here are three abbrevia­
tions you might use to write about Solaris:

:ab s5 Solaris v2.5
:ab s5s Solaris v2.5 for SparcStations
:ab s5x Solaris v2.5 for x86

When I type s5, v i doesn't know for sure
which abbreviation I mean. If I add ans, I

could still change my mind and replace it
with an x or just remove it.

Just as with the : map command, you
can view your abbreviations by using the
: abbreviate command without any param­
eters. Also, you can remove an abbreviation
with the :unabbreviate (or :unab) command.

Conclusion
The v i editor provides two types of macros.
Using the :map and :map! commands, you
can create powerful macros that can per­
form complex operations: the first while vi
is in command mode, and the second when
vi is in insert mode. When vi is in insert
mode, the : ab command lets you type
abbreviations and have vi automatically
expand them to full phrases. •:•

Oh, no-I forgot the root password!

J ust before you went on a Hawaiian
vacation, you cleaned up your office.
Now you've returned, expecting a nice

day of answering mail and playing phone
tag. Unfortunately, you see several people
camping out in your office: The computer is
down, and they're waiting for you to fix it.

After a moment of fright, you realize
that the request is a simple one. Just log in
as root and tweak a parameter, and you' re
home free. You sit down and type root at
the login prompt. Then you type the pass­
word. The system rejects your attempt.

All of a sudden, you have a cold feeling
in the pit of your stomach. The password is
wrong. What did you change it to? Where
did you put that slip of paper that you use
to remind yourself? After a half-hour of
frantic searching, you realize you're
doomed. You can't log in as root. What do
you do?

In this article, we'll show you how to re­
gain access to the root account after you've
lost your password. Be forewarned that it
takes a bit of time and effort. Fortunately,
the method works and isn't a security
nightmare.

Let's get going
First you have to put your computer in
single-user mode. (If you have Solaris x86,
you'll need to refer to the article "Starting
Solaris x86 in Single-User Mode" on page
11.) Now that we're at the shell prompt, we
can do the dirty work. First, we'll need to
mount the file system that contains the /etc
directory. Then, we'll edit the shadow file to
tell Solaris that the root account has no
password. Finally, we'll unmount the file
system and reboot Solaris.

Mounting the root file system
If you know which file system holds the /etc
directory, this isn't a major problem. Just
issue the mo u n t command

mount /dev/dsK//i/esys la

replacing f; I es ys with the appropriate file
system name. If you've installed Solaris on
the first IDE drive, for example, the file
system name will be cOdOsO, or slice 0 of
the first disk on the first controller card.
Similarly, if the file system is on the third
SCSI disk on the second controller, you'd

I

March 1996 7

Figure A

use clt3d0s0. If you know which file system
to mount, you can skip the next section.

What if I don't know which file system
to mount?
If you don't know which file system to use,
you'll have to try them all, one at a time.
(I'd try cOdOsO and cOtOdOsO first, just in
case someone set the system up as simply
as possible.)

To try using a file system, issue the mount
command and see if the system complains.
If it complains, your screen will look some­
thing like this:

#mount /dev/dsk/c1t0d0s0
mount: /dev/dsk/c1t0d0s0 is already mounted,
la is busy,or allowable number of mount
points exceeded

[:3~~~=----~~--~~~Te_r~m_in_a_l~~-=-=-=-~~~---=~1.J.:JI
!j_elp] Y{indow fdit Qptions

!loot: sXuu63aJkkTm l : 6445: : : : : :
daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
l p: NP: 6445::::::
smtp:NP:6445::::::
uu cp :NP:6445::::::
nuucp:NP:6445::::::
list en: * LI<* : : : : : : :
nobody: NP: 6445::::::
noaccess: NP: 6445: : : : : :
j ohng: uWUzc6nDBHVi 6: 9302: O: : :
he lens: XX65CWQzl<qVWw: 9302: O: :
stevet: ?Vi hHxXbqABRs: 9302: O::
sysadmi n: xpc LcRqeot1Cc:94 78: O ...
marco:l<ncQaTm7bGl<vs:9534:::::

I "shadow" [Read on~ 17 l i ~ 394 characters

"

...
u

Removing the characters between the first two colons on the root line clears out
the password.

Figure B
.::J

'.;\Lindow f.dlt Qptions

ll)device device
ttto mount to fsck
tt
tt/dev/dsk/c1 d0s2 /dev/ rdsk/c1 d0s2
/proc
fd
swap -
/dev/dsk/cOdOsO /dev I rdsk/cOdOsO
/dev/dsk/ cOdOs6 /dev/ rdsk/ cOdOs6
/dev /dsk/cOdOs? /dev/ rdsk/c0d0s7
/dev /dsk/c0d0s5 /dev/ rdsk/cOdOs5
/dev /dsk/ cOdOs3 /dev/ rdsk/cOdOs3
/dev/dsk/cOdOs1 -

mount
point

/usr
/proc
/dev/fd
/tmp
I
/usr
/export/home
/opt
/usr /openwi n

Terminal

FS fsck mount mount
type pass at boot options

ufs yes
proc no
fd no
tMpfs yes
ufs no
ufs no
ufs yes
ufs yes
ufs yes
swap no

If it doesn't complain, then use the ls com­
mand to list the directory to see if the /etc
directory is there. If the drive successully
mounts but doesn't contain the /etc direc­
tory, issue the umo u n t command and try the
next file system. This process looks like this:

mount /dev/dsk/c0d0s6
ls I a
5bin diet lib oasys sadm
tmp adm dt lost+found
old s bin ucb a set
games mail openwin share ucbinclude
bin include man opt snadm
ucb lib ccs kernel net preserve
spool vmsys demo kvm news
pub src
umount /a

Removing the root password
Now we have to remove the password entry
from the /a/etc/shadow file. To do so, type v;
/a/etc/shadow, and you'll see a screen like
the one shown in Figure A.

The password is encrypted so you can't
read it. It's the jumble of characters be­
tween the first two colons on the root line
(the first line, in this case). All you need to
do to remove the password is to delete the
characters between the first two colons on
the root line. In other words, change root:
sXuu63aJkkTml: to root::. Now save the
file. Since it's read only, you must use the
: w ! command. If you try the : w command,
you'll receive the error message "/a/etc/
shadow" File is read only.

Now all you need to do is remove the
floppy from drive A, unmount the file system,
and reboot the computer. To do so, just type

umount /a
reboot

l·I~
Help I

I
Be sure to change the root

password once the system boots
up. You don't want to leave the
system open after all this work!
(Also, be sure to remember the
password this time.)

If you'd like to avoid the head­
ache of using trial and error to
find the /etc directory, just print
a copy of the /etc/vfstab file and
place it somewhere safe. Figure
B shows the /etc/vfstab file on my
work machine.

If you set up your machine in the standard fashion, you'll see the /etc directory on the file system
that holds /.

As you can see, there's no ex­
plicit entry for /etc, so it's located
in the root directory, which is
on cOdOsO. Use the mount point

8 Inside Solaris

column to determine which part of the direc­
tory tree is held by a file system.

What are the security risks?
That's all there is to it. The technique is
tedious, but not terribly complex. But now
there are a few thousand more people who
know how to do it. From a security stand­
point, that's not too bad.

First of all, many UNIX administrators
already know this technique. The technique
is tricky enough that most people won't at­
tempt it casually. Second, you need access to
the Solaris installation disk, the CD-ROM
drive, and the console. These things are
pretty easy to keep under control.

book review

Don't panic!
By Marco C. Mason

I
n the days before the Internet became pop­
ular, there were few UNIX books in the
bookstores. Now, however, there are quite

a few to choose from. While browsing in my
local bookstore recently, one in particular
caught my eye: Panic! Unix® System Crash
Dump Analysis, by Chris Drake and Kimberly
Brown. If you've ever seen your computer
hang and give you a panic message and
wondered what was going on inside UNIX to
cause this problem, this is the book for you.

Should you get this book?
This book demonstrates some of the tech­
niques used to decipher the state of a machine
after it experiences a fatal system crash,
known as a panic. The authors give a brief
introduction to adb, the assembly language
debugger, and show you how to search the
include files for symbol information.

Since the topic is very technical, you prob­
ably won't want to read this book if you
aren't familiar with programming. If you've
ever done any assembler or C programming,
you have the requisite experience.

On the other hand, if you're really inter­
ested in becoming a UNIX guru, this book
can give you some invaluable insight into

There's no chance of someone removing
the root password remotely, as long as the
permissions on the /etc/passwd and /etc/
shadow files aren't changed. For your infor­
mation, the permissions on these two files
are normally set to

-rw-r--r-- passwd
-r-------- shadow

Conclusion
Obviously, you want to keep your system
secure, and you shouldn't forget your pass­
word. But at least you now have peace of
mind: If you ever lose the root password, all
is not lost. With a bit of patience and work,
you can still get back into your system. •!•

the inner workings of Solaris because the
authors use the Solaris operating system.
Thus, while users of other UNIX systems
can benefit, Solaris users have the advan­
tage that the examples should work prop­
erly the first time.

Getting started
The book is divided into three major sections.
The first section, called "Getting Started,"
helps you learn the basics about panics.
First, you'll learn a lot of background
information such as:

• The difference between a panic and a
cored ump

• Why panics occur

• How to save the panic information in
preparation for analyzing it

• What to do when your system panics

• How to force your system to panic (This
technique won't make you any friends if
you panic a system that others are using!)

Then comes the meat of the section: a tu­
torial on the features of adb that you'll use
to analyze crash dumps. The authors show
you the basic adb commands and then

I

March 1996 9

1 0 Inside Solaris

show you how to extract certain pieces of
information that will help you understand
the system, such as the boot time, how long
the system was running, the machine type,
the version of Solaris, etc.

Next, you'll learn how to get the symbol
information from the kernel and coordinate
it with the information found in the header
files on your system. You learn how to use
this information to decode more complex in­
formation that pertains to your system crash.

Finally, you'll learn how to build adb
macros that will help you perform complex
tasks with just a few keystrokes. This is the
part of the book I found most interesting.
The authors teach you step-by-step how to
build adb macros and then present some
problems for you to solve. The problems
range from fairly

book should probably also get a good
book on the x86 internals. (One of my fa­
vorites is the Pentium Processor User's
Manual, Volume 3: Architecture and Pro­
gramming Manual.)

Even if you're not particularly interested
in crash dump analysis, this section of the
book is a great read. It gives you an appre­
ciation for all the activity that's going on
"under the hood."

Case histories
Once you've gotten this far, you should be
able to figure out why a kernel panics. It
would be hard to decipher though, because
you don't have any experience. In this
section, the authors try to impart some of
their experience to the reader by analyzing

eight different
easy to difficult
enough to really
make you think.

If you' re really interested
panics. After you
read this section,
you'll be better
prepared to give it
a try on your own. Advanced studies

Once you' re familiar
with the tools and
techniques required
to debug your
system, the authors

in becoming a UNIX guru,
this book can give you some
invaluable insight into the
inner workings of Solaris.

It was refreshing
to see that they
didn't hold anything
back. They showed

dive in and teach you some of the really
hard (but fascinating!) material. They start
with an introduction to assembly language,
and this is the only place I feel that the
book is weak. The introduction is accurate
but so brief that it's useful only as a re­
fresher for those who've forgotten assembly
language.

The rest of this section is very good. The
authors describe the methods you use to
trace the stack, and they cover all kinds of
information about the internals of Solaris,
such as:

• Memory management

• Process scheduling

• Threads

• File systems

• Device drivers

• Interprocess communications

• Streams

If you're running Solaris on an x86 ma­
chine, you'll find that the information on
stack tracing isn't nearly as useful as the
stack frame structure changes on x86 ma­
chines. Any x86 user interested in this

one case, "A
Stomped-on Module," where they were
unable to fix the problem. In this case,
they were able to find that something was
trashing some code, but they weren't able
to pin down the culprit. A realistic ex­
ample like this can help manage your ex­
pectations: Not even UNIX wizards are
always going to figure out what causes
some panics.

Conclusion
This book is a must if you're interested in
adb, panics, and/ or the Spare architec­
ture. It's published by SunSoft Press,
ISBN: 0-13-149386-8. Next month, I"ll
discuss another great book I found while
wandering the bookstore. •!•

SunSoft has recently
begun shipping Solaris x86

version 2.5. For upgrade
information, call

1-800-SUNSOFT

system administration

Starting Solaris x86 in
single-user mode I
By Marco Mason

Don't you hate it when you can't get
the computer to run properly?
Perhaps you've made a system

configuration change, and now the system
refuses to boot properly. Maybe the file
system's corrupt and the kernel won't load.
Perhaps you just forgot your root password
and need to get into your system. (See the
article "Oh, No-I Forgot the Root Pass­
word" on page 7.)

When these types of situations occur,
you'll need to start up Solaris in single-user
mode. In this mode, Solaris gives you full
access to your computer, enabling you to
repair file systems, edit files, etc. In this ar­
ticle, we'll show you how to get Solaris go­
ing in single-user mode, so you can do
what needs to be done.

Before you start
You need to have a CD-ROM installed on
the affected machine. You'll also need the
Solaris installation CD-ROM (and boot
disk if you're using Solaris x86). Finally,
you'll need some time to work through
the technique. On our system it took
about 10-15 minutes to get to the single­
user mode prompt. We checked out this
method on a Solaris v2.4 system, so be
warned that your mileage may vary on a
different version.

The objective of this technique is to run
through the installation program until the
first opportunity to quit presents itself.
Once we quit the Solaris installation pro­
gram, we'll be in single-user mode, and
we'll be able to perform any required sys­
tem maintenance.

Let's get going
First, put the Solaris Installation CD-ROM
in the drive, and shut down the system
as well as you can. Then insert the boot
diskette in drive A, and boot the computer.

Eventually, the computer should display
the Solaris Boot screen similar to the one
shown in Figure A. Don't walk away from
your computer during this first part,
because this screen waits only 30 seconds
for your response and then it will just boot
Solaris from the disk device.

On our system, we enter 10 for the CD­
ROM. On your system, the CD-ROM may
have a different device code. Select the one
that corresponds to the CD-ROM on your
computer. When you do, the system will
work for a while and then present you
with the secondary boot sneen, shown in
Figure B.

Figure A
Solaris for x86 - FCS MOB Version 1.23

Solaris/x86 Multiple Device Boot Menu

Code Device Vendor Model/Desc Rev

10) CD
11) NET
80) DISK

SONY CD-ROM CDU-541
EtherExp I/0:300 IR0=5
First IDE drive {Drive C:)

Enter the boot device code: 10

2.6a

You should select the CD-ROM device from the Solaris/x86 Multiple Device Boot
Menu screen.

Figure B

Solaris 2.4 for x86 Secondary Boot Subsystem, vsn 2. 11

<<< Current Boot Parameters >>>
Boot path: /isa/aha@330,0/cmdk@0,0:a
Boot args: /kernel/unix

Select the type of installation you want to perform:

1 interactive
2 custom JumpStart

Enter the number of your choice followed by the <ENTER> key.
At this point, you have five seconds to tell the installation kernel which boot
method you want to use.

March 1996 11

Figure C
Booting /kernel/unix ...
SunOS Release 5.4 Version generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
WARNING: clock gained 552 days -- CHECK AND RESET THE DATE!

Coniiguring the /devices directory

Configuring the /dev directory

Stand By ...

This part of the installation takes awhile because it's trying to boot Solaris from a
slow CD-ROM.

Figure D
The Solaris Installation Program

You are now interacting with the Solaris installation program. The
program is divided into a series of short sections. At the end of each
section, you will see a summary of the choices you've made, and be given
the opportunity to make changes.

As you work with the program, you will complete one or more of the
fol low i n g tasks :

1 - Identify peripheral devices
2 - Identify your system
3 - Install Solaris software

About navigation ...

- The mouse cannot be used

J

- If your keyboard does not have function keys, or they do not respond,
press ESC; the legend at the bottom of the screen will change to show
the ESC keys to use for navigation.

F2_Continue F6_Help

The first screen you encounter in the Solaris installation program is this
introduction screen.

Figure F
Identify Graphics Devices

On the next screens, you must identify one or more of the following
peripheral devices that are attached to your system. This is necessary to
configure your window system for use during the Solaris installation
program.

- Graphics card
- Pointing device

You will not be asked to identify devices which have been identified
automatically.

> If you do NOT wish to configure your window system at this time, press
F4. This will cause the Solaris installation program to run in a
non-graphics mode. You will have another chance to configure the window
system when the system reboots after installation, if you choose this
option.

>To begin identifying devices, press F2.

F2_Continue F4_Bypass Configuration F6_Help

You'll press [F4] at the Identify Graphics Devices screen so you can get to the
exit point more quickly.

12 Inside Solaris

Here, you want to select 1, for an interac­
tive installation. You have only five seconds
to answer, but there's no real hurry, as it
defaults to 1.

Now the system will grind away for a
few minutes, updating the screen with the
information shown in Figure C. Don't be
alarmed if the system seems to hang. As
long as it's periodically reading from the
CD-ROM, it's plugging along.

The italicized lines in Figure C don't
show up immediately. Instead, you first see
a slowly turning spinner. Some time later,
the next message appears, and the process
continues. Once the installation kernel
finishes loading, the Solaris installation
program starts.

Figure E

Keyboard Language

On this screen you must specify the language your
keyboard supports.

> To make a selection, use the arrow keys to high
light the option and
press Return to mark it [XJ.

Keyboard language

A [l German
[l Italian
[l Japanese(106)
[l Japanese(J3100)
[l Korean
[l Norwegian
[l Spanish
[l Swedish
[l Swiss-French
[l Swiss-German
[l Taiwanese
[l UK-Eng l i s h
[XJ US-English

F2_Continue F3_Go Back F6_Help

You use this screen to select the keyboard language.

Figure G
Confirm Information

>Confirm the following information. If it is
correct, press F2;
to change any information, press F4.

Keyboard type: AT keyboard
Keyboard language: US-English

F2_Continue F4_Change F6_Help

Now that you've described the relevant hardware in the
system, you're asked to confirm it.

The first screen the Solaris Installation
program presents is the introduction screen
shown in Figure D. You may want to read
it before pressing [F2] to continue.

Now we have to navigate through some
more screens. Fortunately, they're pretty
simple. First, we have to select the key­
board language, as shown in Figure E. Just
press [F2] to advance to the next screen.

Next, the installation program prompts us
to identify the graphics devices, as shown in
Figure F. Just press [F4] to bypass the config­
uration. This allows us to skip a few screens.

Since we bypassed the graphics device
identification phase, we immediately go to
the first Confirm Information screen, shown
in Figure G. Press [F2] to advance to the
system identification phase.

Now the computer goes through a bit of
activity, and the screen shows information as
it processes. After a few moments, the com­
puter presents the screen shown in Figure H.
When you see it, press [F2] to continue.

Now, using the screen shown in Figure I,
the installation process wants to find the
host name of the computer. We really don't
care what name is used as long as the name
contains at least three characters, so we en­
ter Cobb and press [F2] to continue.

The installation program next displays
the Network Connectivity screen, shown in
Figure J. On this screen, we'll indicate that
there's no network connected. This allows
us to bypass another screen. Just press the
down arrow to highlight the No box, press
[Return] to mark it with an X, and press
[F2] to go to the next screen.

Now we're presented with the second
Confirm Information screen, shown in Fig­
ure K Just press [F2] to accept the informa­
tion and advance to the Time Zone screen
shown in Figure L.

Press [F2] to accept the United States set­
ting, and the installation program will pre­
sent the second Time Zone screen used to
further refine the time zone your computer
is in. We'll just press [F2] at this second
screen to bypass it.

Now you set the time and date on your
computer on the Date and Time screen
shown in Figure M. Press [F2] to advance
to the next screen.

Now we're at the final Confirm Informa­
tion screen, shown in Figure N. Press [F2] to
move to the next screen.

Finally, we're at the screen we've been
waiting for, shown in Figure 0 . Here, we'll

Figure H
Identify This System

On the next screens, you must identify this system as networked or
non-networked, and set the default time zone and date/time.

If this system is networked. the software will try to find the information
it needs to identify your system; you will be prompted to supply any
information it cannot find.

>To begin identifying this system. press F2.

F2_Continue FG_Help

With this screen, the system identification phase starts.

Figure I
Host Name

On this screen you must enter your host name, which identifies this system
on the network. The name must be unique within your domain; creating a
duplicate host name will cause problems on the network after you install
Solaris.

A host name must be at least two characters; it can contain letters,
digits, and minus signs (-).

Host Name:

F2_Continue FG_Help

It doesn't matter what host name you use as long as it's longer than two characters.

Figure J
Network Connectivity

On this screen you must specify whether this system is connected to a
network. If you specify Yes, the system should be connected to the network
by an Ethernet or similar network adapter.

>To make a selection, use the arrow keys to highlight the option and
press Return to mark it [XJ.

Networked

[XJ Yes
[1 No

F2_Continue FG_Help

You'll tell the installation program that there's no network so you can bypass
another installation screen.

Figure K
Confirm Information

>Confirm the following information. If it is correct, press F2;
to change any information, press F4.

Host name: Cobb
Networked: No

F2_Continue F4_Change FG_Help

The second Confirm Information screen allows you to confirm that the system
identification information is correct.

March 1996 13

Figure L
~~~~~~~~--~~~~~~~~~~~~~~-

Time Zone 

On this screen you must specify your default time zone. You can specify a 
time zone in three ways: select one of the geographic regions from the 
list, select other - offset from GMT, or other - specify time zone file. 

>To make a selection, use the arrow keys to highlight the option and 
press Return to mark it [X]. 

Regions 

A [ 1 Asia, Eastern 
[ 1 Asia, Western 
[ 1 Australia I New Zealand 
[ 1 Canada 
[ 1 Europe 
[ ] Mexico 
[ l South America 
[X] United States 
[ 1 other - offset from GMT 
[ 1 other - specify time zone file 

F2_Continue F6_Help 

The first Time Zone screen allows you to modify the computer's time and date if 
necessary. 

Figure M 

Date and Time 

>Accept the default date and time or enter new values. 

Date and time: 02/07/96 16:54 

Year (4 digits) 1996 
Month (1-12) 02 
Day ( 1-31) 07 
Hour (0-23) 16 
Minute (0-59) 54 

F2_Continue F6_Help 

You'll bypass this screen that lets you set the time and date on your computer. 

Figure 0 

Upgrade System? 

This system is upgradable. Choosing the upgrade option means any bundled 
Solaris software will be updated to the new release, and as many local 
modifications as possible will be saved. 

While your system is upgradable, you can choose the initial otion; however, 
files on your disk will be overwritten and data will be lost. 

CAUTION: If you choose the upgrade option, it is especially 
important to back up your system . However, backing up is also 
recommended for the initial option if there is any data on the 
disk that you want to save. 

> To start the upgrade option, choose F2. 

>To start the initial option, choose F4 . 

F2_Upgrade F4_Initial F5_Exit F6_Help 

Here's the screen you were waiting for-the first one offering the Exit option. 

14 Inside Solaris 

press [FS] to exit the installation. When we 
do so, the program will ask you if you're 
sure. Just press [F2] again, and you'll exit 
the installation program. 

You've done it! 
Now you're done. You should see a# 

_ prompt on your screen showing you that 
the single-user version of Solaris is opera­
tional. You can now proceed to complete 
any maintenance tasks you need. •!• 

Figure N 

Confirm Information 

>Confirm the following information. If it is 
correct, press F2; 
to change any information, press F4. 

Time zone: US/Eastern 
Date and time: 02/07/96 16:54:00 

F2_Continue F4_Change F6_Help 

You're finally at the last Confirm Information screen. 

consultant and author based in Louisville, 
KY. He's worked on cow feeding systems, 
automated destructive equipment testing, 
and the largest computer-controlled sound 
system in the world. 

Other Cobb Group Journals 
Operating Systems and Environments 
Inside Microsoft Windows: Networking Edition 
Inside OS/2 
Inside the Internet 
Inside Net Ware 
Inside LANtastic 
Inside SCO UNIX Systems 
Inside Microsoft Windows 95 
Development 
Inside Visual Basic for Windows 
Inside Microsoft Visual C++ 
Delphi Developer's Journal 
Borland C++ Developer's Journal 
Productivity 
Inside Microsoft Word 95 
Inside Microsoft Office 95 
Inside Microsoft Office 95 Pro 
Inside Microsoft Excel 95 
Inside Microsoft Project 95 



product alert! 

Netscape 2.0n ported to 
Solaris v2.5 

The Netscape World Wide Web (WWW) 
browser, probably the most popular 
browser available for the DOS/Win­

dows environment, is being ported to Solaris 
v2.5. The final version is now available 
from Netscape's home site. 

Why should I be interested? 
Right now, there are many manufacturers 
jockeying for market share in the WWW 
browser world. Currently, Netscape has 
the lead in the DOS /Windows world. One 
of the reasons is that Netscape has some 
proprietary extensions to HTML to improve 
the appearance of documents. 

Since Netscape currently has the larg­
est market share, you'll find that many 
Web pages use Netscape extensions and 
therefore won't look their best on other 
Web browsers. These pages usually have 
the tag phrase "This page looks best 
when viewed with Netscape." Thus, if 

Locking out a user 
Periodically, we hire consultants to set up 

applications and write programs for us. 
When the contract expires, we need to lock 
them out. How do we do this so they can't 
access the machine anymore? 

On one occasion, we believe that we 
locked out the consulting account, but saw 
it logged in on a log. Did we just forget to 
lock it out? 

Ray Benjamin 
Clearwater, Florida 

It's not too difficult to lock out an account. 
First, log in as root, or issue the su com­
mand. If you're running Open Windows, 

the sites you're interested in visiting of­
ten have that tag line, you'll be interested 
in Netscape's browser. 

Also, Netscape has been adding features 
as quickly as they can. For example, Java 
support, once the exclusive domain of Sun 
Microsystems, is now being supported by 
Netscape as well. 

If you' re running an x86 version of 
Solaris, you're out of luck. There's no x86 
version of Netscape available, and it 
doesn't appear that one is corning soon. 

Where can I get more information? 
If you're interested in checking out Net­
scape's browser, you can visit their home 
page at http:/ /horne.netscape.corn/. From 
there, you can track the progress of the 
latest version of their Web browser soft­
ware. (If you're interested in Netscape's 
Web server software, you can also reach 
that information from the same page.) •!• 

start a terminal screen. When you're at a 
shell prompt, enter the following command: 

passwd -l consult 

But that's not all there is to it. This sim­
ply prevents someone from logging in us­
ing the login prompt. If someone is logged 
in under that account and knows you're 
locking him or her out, he or she can sim­
ply run passwd and enter a new password. 
So you must first make sure that person 
isn't already logged in. 

That's still not good enough. If you' re on a 
network, the user may have access from a 
remote host. Therefore, you need to check 

I 

I 

March 1996 15 



SunSoft Technical Support 

(800) 786-7638 

SECOND CLASS MAIL 

_., ~. ,,. 
,. 131 

illlill1ilill 

02/97 

Please include account number from label with any correspondence. 

Figure A 

the user's home directory and either remove 
or rename the .rhost file if there is one. 

To find the user's home directory, go to a 
shell prompt and list the /etc/passwd file as 
shown in Figure A 

The highlighted text shows the consult­
ant's home directory. So go to the /export/ 
home/consult directory and look for the 
.rhost file. Since the file begins with a pe­
riod, you'll need to use the -a switch with 
ls, like this: 

#ls -a 

.rhost 

.Xauthori ty 

.ab_library 

.sh_history 

. d t 

.dtprofi le 

In this example, the rhost file exists. Since 
we may call the consultant back for other 
projects, we don't want to delete the .rhost 
file; we'll just rename it to old.rhost so we 
can restore it when we fix the consultant's 
account, like this: 

#mv . rhost old.rhost 

Now we need to plug the last hole. Did 
the consultant leave any executable files or 

~~~~~~~~~~~~~~~~~~~~~~~~--' 

[2i,~~~~~~~-===,_......T~e~rm~l~na=l--=================---'l_J~
lielp I ~indow f.dlt Qptlons

$ cat passwd
• root: x: D: 1: 0000-Admi n(DDDD): / : /sbi n/sh

daemon: x: 1: 1: 0000-Admi n (DODD): I:
bin: x: 2: 2: 0000-Admi n (0000) : /us r /bin:
sys: x: 3: 3: 0000-Admi n(DDDO): I :
adm: x: 4 :4: 0000-Admi n(DDDD): /va r /ad m:

~ lp: x:71 :8:0000-lp (O OOO): /usr/spool/lp:
smtp: x: 0: 0: mail daemon user: I:

1 uucp: x: 5: 5: 0000-uucp (0000): /us r / lib/uucp:
nuucp: x: 9: 9: ODDO-uucp (0000): /var/spool /uucppub l i c: /us r / l i b/uucp/uuci co
li st en: x: 37: 4: Network Admi n: /us r /ne t /n ls:
nobody: x: 60001 : 60001 : ui d no body: I:
noaccess: x: 60002: 60002: ui d no access: I :
johng: x: 100: 60001:: /export/home/johng: /bin/sh
he lens: x: 101: 60001 : : /expo rt/home/he lens: /bin/sh
stevet: x: 102: 60001 : : /expo rt/home/stevent: /bin/sh
sysadmin : x:11 :14:: :/bin/sh
consult: x: 150: 60001 : Consulting services: : /bi n/ksh
$ I

You can find any user's home directory by looking at the sixth field in the /etc/
passwdfile.

16 Inside Solaris

shell scripts that can set a new user ID? If
so, then executing that program can pro­
vide the same rights he or she once had
from another account. So let's use the f i n d
command to find all the files the consultant
owns that have this permission bit set:

#cd I
#find -perm -04000 -user consult -print

Here, we start at the root directory look­
ing for any files that have the setUID per­
mission bit set (specified by the -perm -
04000 arguments) that are owned by the
consult account (specified by -user consult),
and we'll print them on the screen.

In this particular case, there were none.
If they did exist, you'd need to decide whe­
ther to remove the commands or leave them
alone, depending on whether you use them ·
or not.

As you can see, we don't know whether
you forgot to lock the password. If the con­
sultant was a remote user, you might have
left the .rhost file alone, enabling the con­
sultant to log in remotely. If the consultant
really wanted to get in, he or she could have
left in a backdoor program or script file to
grant access at a later time. •:•

We'd love to hear from you

If you've come across an interesting
Solaris tip, have questions about

articles you've seen in Inside Solaris, or
have ideas for topics youd like us to
cover in future issues, you can send
mail to the

Editor-in-Chief, Inside Solaris
The Cobb Group
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

Or you can reach us via the Internet
at inside_solaris@merlin.cobb.zd.com.

~Printed in the USA
~ This journal is printed on recyclable paper.

