
(CL
TECHniCAL
JOURmL

Volume 4 Issue 2
November 1984

TECHNICAL
JOURNAL

Contents
Volume 4 Issue 2

Modelling a multiprocessor designed for telecommunication
systems control 119

R.H. Thompson

Tracking of LSI chips and printed circuit boards using the ICL Distributed
Array Processor 131

D.J. Hunt

Sorting on DAP 139
P.M. Flanders and S.F. Reddaway

User functions for the generation and distribution of encipherment keys 146
R. W. Jones

Analysis of software failure data (1): adaptation of the littlewood
stochastic reliability growth model for coarse data 159

P. Mellor

Towards a formal specification of the ICL Data Dictionary 195
B. Sufrin

Notes on the authors 218

Museum and Archive for the history of the computer 220

ICL Technical Journal November 1984 117

i dTFPHniPfll The ICL Technical Journal is published twice a year by
IHIIDHQI Peter Peregrinus Limited on behalf of InternationalJUUKIIHL Computers Limited

E d itor
J. Howlett
ICL House, Putney, London SW15 1SW, England

E ditoria l Board
J. Howlett (Editor)

H.M. Cropper C.J. Hughes
D.W. Davies (British Telecom Research Laboratories)
(National Physical Laboratory) K.H. Macdonald
G.E. Felton J.M. Pinkerton
M.D. Godfrey E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor

1985 subscription rates: annual subscription £15.00 UK, £17.00 overseas,
airmail supplement £7.50, single copy £9.00. Cheques should be made out to
‘Peter Peregrinus Ltd.’, and sent to Peter Peregrinus Ltd., Station House,
Nightingale Road, Hitchin, Herts. SG5 ISA, England, Telephone: Hitchin 53331
(s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the
UK Copyright Act 1956, part 1, section 7, whereby a single copy of an article
may be supplied, under certain conditions, for the purposes of research or
private study, by a library of a class prescribed by the UK Board of Trade
Regulations (Statutory Instruments 1957, No. 868), no part of this publication
may be reproduced, stored in a retrieval system or transmitted in any form or by
any means without the prior permission of the copyright owners. Permission is
however, not required to copy abstracts of papers or articles on condition that a
full reference to the source is shown. Multiple copying of the contents of the
publication without permission is always illegal.
©1984 International Computers Ltd.

Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142-1557

118 ICL Technical Journal November 1984

Modelling a multiprocessor
designed for telecommunication

systems control

R.H. Thompson
British Telecom Research Laboratories, Ipswich, Suffolk

Abstract

The paper describes a sophisticated com puter simulation model of a m ulti­
processor which was designed to control the operation of a telecom m uni­
cations exchange. The model was initiated in the early design stage of the
multiprocessor, and has been progressively enhanced to represent successive
developments in the processor design.

The model has been used first as an aid to the evaluation and optim isation
of the design of the multiprocessor, and secondly to predict its throughput
and perform ance under normal load, overload and failure conditions.

1 Introduction

Modern stored-program controlled (SPC) digital telecommunications exchange
systems are modular in concept, so that each individual module can be separately
enhanced to take advantage of improvements in technology without affecting
the remainder of the system. The principal hardware modules needed in a tele­
communications exchange serving predominantly telephone subscribers are
shown in Fig. 1, and are as follows:

— Line interface units. These control the state of subscriber lines and the
circuits to adjacent exchanges.

— Signalling units. These convey signalling information such as call seizure and
routing digits, to and from other exchanges.

— Subscriber concentrator units. Most individual subscribers generate little
traffic, where ‘traffic’ is interpreted as the proportion of a given time (the
exchange ‘busy hour’) that a line or circuit is occupied with telephone calls.
Economics demand that subscribers’ traffic be concentrated onto consider­
ably fewer circuits before being switched through the exchange.

— A routing switch. This is used to connect a subscriber’s call through the
exchange either to another subscriber on that exchange or to another
exchange.

— A control processor. While the other hardware modules will undertake local

ICL Technical Journal November 1984 119

processing of their routing functions, in most exchange designs a central
control processor will perform the main procedures for handling telephone
calls.

This structure will vary for other types of exchange, for example, an exchange
simply interconnecting other exchanges would not have subscriber concentrator
units. However, these differences are not significant here.

To ensure that a complete exchange system will meet its performance require­
ments in terms of traffic and call-handling capacities, it is essential that the
performance of each hardware module and the software interactions between
modules be analysed and quantified. It is also necessary to determine rules so
that the optimum amount of equipment needed for any given exchange can be
specified; a finite probability of congestion (the ‘grade-of-service’) is economically
necessary.

120 ICL Technical Journal November 1984

Fig. 1 Simple structure of a telecom munications exchange
LI: line interface unit
SU: signalling unit
SCU: subscriber concentrator unit

Performance analysis and the derivation of rules for specifying equipment
quantities are the roles of the engineers in the Teletraffic Division, part of the
British Telecom Research Laboratories at Martlesham Heath, Suffolk.

The subject of this paper is the control processor, whose basic performance
parameter is the number of call attempts it is capable of handling in the
exchange busy hour. The paper describes a simulation program developed by
members of the Teletraffic Division to model the hardware and software inter­
actions for a particular multiprocessor design for the control processor. The
simulation model has aided the design of the multiprocessor and is currently
used to predict its performance under normal call attempt load, under high to
severe call attempt overload, and under various failure conditions.

2 General description of the multiprocessor being modelled

Basically, the multiprocessor being modelled consists of up to four central
processing units (CPUs) and their associated hardware, collectively known as a

ICL Technical Journal November 1984 121

Fig. 2 Typical call setup a t main netw ork exchange
CCP: call control process SU: signalling unit
RSHP: routing switch handler process RS: routing switch
ISP: input from SU process I time intervals between dialled
OSP: ou tp u t to SU process [digits

cluster. Each of the CPUs in a cluster has access to a common pool of store
blocks. Up to eight clusters can be linked together to increase the processing
power if required. The associated exchange hardware modules — for example,
the signalling units and the routing switch — appear to the multiprocessor as
peripheral units. Each peripheral receives attention from the multiprocessor
either periodically or as and when required. However, the simulation model
represents these peripherals only as the input/output of work for the multi­
processor, so that further discussion about them is unnecessary here.

Within a cluster, the store blocks form the main memory of the multiprocessor
and its software resides in this memory. This software is divided up into a
number of units, called processes, each of which is responsible for a well defined
function. A process can be one of two types — an application process concerned

122 ICL Technical Journal November 1984

Fig. 3 Process scheduling on the multiprocessor
CCP: call control process (replicated) ISP: input from signalling unit process
RSHP: routing switch handler process OSP: ou tpu t to signalling unit process

with the handling of telephone or data calls, or a management process which
comprises part of the multiprocessor operating system (OS). A number of
processes may together comprise a subsystem, and a process may itself be made
up of a number of separate modules. For example, the call control process is
responsible for the central core of telephone functions required to set up and
clear down telephone/data calls. This process is one of many processes forming
the call processing subsystem, and the process itself is made up of several
modules including the network routing module and the line selection module.
However, it is a process as an entity that is recognised by the operating system
rather than a subsystem of processes or a process module, so that only pro­
cesses need be considered here. Processes are scheduled to run on the CPUs, and
they can be replicated when more processing power is required to perform a
particular function than one copy of the process, running on one CPU, can
provide.

The setup and cleardown of a telephone call requires a number of different
functions to be performed, i.e. a number of processes to run. Therefore, a
sequence of process activations will be associated with each call. Fig. 2 shows, in
simplified form, such a sequence of process activations occurring for a typical
call setup at a main network exchange. The entire set of such sequences is
known as the application program (AP). All transfers of call data between pro­
cesses are handled by the OS in the form of tasks, so that, in Fig. 2, the OS is
required to run at all points corresponding to an interprocess task. Fig. 3 outlines
the interaction between the processes and the OS from the teletraffic standpoint.
The key feature is a system of queues whereby demands for processing resources
(i.e. the tasks) queue for particular processes which, in turn, queue for service by
the CPUs. Tasks are serviced by the processes on the basis of task priority (up to
16 levels) and first-in first-out (FIFO) within a priority level.

Any process may, under control of the OS, run on any CPU, but on no more
than one CPU at any one time (i.e. processes are non-re-entrant). Processes are
allocated to the CPUs on the basis of process priority. Process priorities are pre­
emptive, whereas within a process task queue the task priorities are non-pre-
emptive. This priority discipline is complicated by the fact that some processes,
primarily the peripheral unit handler processes, can be activated periodically;
i.e. they are made inactive once their task queues have been emptied and are
only reactivated following a periodic 10 ms clock interrupt (this mode of
operation facilitates timing functions and reduces OS overheads). The passing of
tasks between processes, and the scheduling of both a process to run on a CPU
and a task to be handled by that process, are the responsibility of the part of the
OS known as the process allocator (PA). Because of its central role in the opera­
tion of the multiprocessor and to minimise its runtime, the PA is implemented in
microcode within the control store of each CPU. In effect, the PA operates as
the highest priority process in the multiprocessor.

Since the processing power of any processor system is limited, there will be a
maximum call attempt rate which can be handled successfully. Telecommunica­
tions traffic can be highly volatile, and an influx of call attempts beyond the

ICL Technical Journal November 1984 123

maximum designed rate can occasionally occur. An efficient processor load
control is essential to ensure that there is no serious reduction, or even collapse,
in the call handling rate of the processor system. In the multiprocessor being
modelled, load control operates by monitoring the occupancy of the CPUs and
the state of the process task queues, and then by using this information to
regulate the rate at which new calls are accepted for handling by the multipro­
cessor.

3 General description of the simulation model

The model has been designed to simulate the interaction between the operating
system, especially the process allocator and load control, and the application
program for a single cluster, with the added facility of being able to represent
the intercluster communication of a multicluster configuration. It has been
progressively developed over a period of some 10 years, from the very early
processor design concepts to the current multiprocessor, multicluster configura­
tion. This development of the model has been facilitated because, first, the
process structure of the software has been carried forward almost unchanged
through the major design changes in the multiprocessor hardware, and, secondly,
the decision was taken at an early stage that most of the multiprocessor design
details would be defined through input data to the model. New multiprocessor
designs have therefore been relatively easy to model by changing this data.

The model has been programmed in PL/1 and uses the event-by-event simulation
technique. This technique is the basis of a PL/1 simulation package, called
Telesim, which has been specifically designed by the Teletraffic Division for
teletraffic performance analysis. The Telesim package undertakes the scheduling
of events, and provides for the handling of histograms and confidence interval
routines. The model thus consists of a set of event-by-event action blocks, and
Telesim schedules the action blocks to run in the order in which they occur in
time. By this means, the real-time behaviour of the model is obtained.

Two other main sections of the model concern queue handling and the prepara­
tion of input data. There can be up to 128 of the process queues, shown in
Fig. 3, where each process queue can have any priority (including the same as
another queue) and can consist of tasks having up to 16 priority levels, with
the entire set of tasks being buffered in a single storage area. A queueing package
consisting of multilinked lists was developed specifically for the model to
minimise its runtime and storage requirements, and to allow a variety of service
disciplines such as FIFO, LIFO and random-out to be studied. The input data
for the model consists of the multiprocessor configuration, details about the
processes and tasks which they service, and the set of sequences of application
processes which form the Application Program. These data are initially coded as
simple alphanumeric structures collectively known as process structured language
(PSL), and converted by a PSL translator into data suitable for use by the model.
Developed for the simulation model, PSL is a subject in its own right; it is
sufficient to say here that it is PSL which provides the model with its versatility.

124 ICL Technical Journal November 1984

The model has been written to provide the following main facilities:

(i) a variable number of CPUs per cluster
(ii) a variable number of clusters

(iii) a variable number of software processes

Each process can have a unique priority, or the same priority as another
process, and has a queue with 16 priority levels for tasks handed to it.

Each process can be replicated, i.e. there can be more than one copy. A
replicated process can have its total traffic balanced or imbalanced among
its replicates.

Processes can run on demand, can be initiated periodically, or both. When
a periodic process empties its queue, it must receive a timing task, or a
task of higher priority, before it can service any tasks which have arrived
and are of lower priority than the timing task.
Processes can be interrupted and resumed at a later time. There is no
restriction on the number of times a process may be interrupted.

(iv) a variable number of process sequences

A sequence need not necessarily represent a complete telephone call, but
any part of a call. A sequence can also represent any form of nontelephony
actions.

The model allows parallel processing where this occurs in the sequences,
and the passing of control within a sequence can be dependent on a
number of conditions having been satisfied, for example, a routing digit
cannot be transmitted until it has been received and the previous digit has
been transmitted.

(v) timing values, which are used for:
- sequence interarrival times
- process task runtimes
- operating system (PA) runtimes.
These may be specified as constant or negative exponentially distributed.

(vi) a variable number of response times may be collected for each sequence,
facilities having been provided to start and stop a measurement at any
stage in a sequence

(vii) a set of results to give details of the usage and performance of the above
facilities, including:
- CPU occupancy
- process occupancies, queueing delays and task queue lengths
- processing effort and time-in-system for each sequence
- response time distributions
- the loss grade-of-service, with the cause(s) for calls being lost, if any
- the behaviour of the processor load control parameters
- a history of the above results during a run of the model.

ICL Technical Journal November 1984 125

A detailed description of the complete model is inappropriate for this paper,
instead an outline is given of the major elements in the model. These elements
are the process allocator, the set of CPUs, processes and tasks, processor load
control and the application program.

4.1 Process allocator (PA)

The PA is modelled as a process per CPU, with each process having the same
priority, this priority being the highest in the model. The PA can be considered
as re-entrant (more than one process can execute code simultaneously). However,
the PA cannot be modelled as a totally re-entrant process, since there are times
when data common to all the PAs must be accessed. On these occasions, access
to the common data is controlled by a set of lockouts. In the model, when one
PA attempts to access data already locked out by another PA, the former PA
will be enqueued to await the freeing of the lockout.

The PA is run whenever a process makes a call to it, or an interrupt is received.
Under normal conditions, a process will only call the PA if either it is handing a
task to another process, or the process has finished the task it was handling. In
the latter case, the PA will either find another task in the process’s queue for the
process to serve, or it will set the process blocked and will reschedule the CPU
to set running on the CPU the highest priority process waiting to be processed.

Upon arrival, an interrupt is immediately serviced by that CPU currently running
the lowest priority process, this CPU being called the LCPU. Three types of
interrupt are incorporated in the model

— a clock interrupt, which is generated at intervals equal to the clock period
(currently 10 ms). This enables the PA to perform timing functions and send
timing tasks to the periodic processes when required

— an interrupt generated from within a process sequence, which allows a sequence
to initiate the running of a process to represent interrupts generated from the
associated peripheral units

— a suspended queue interrupt (SQI), which is generated to set running on the
LCPU a process which is of higher priority than the process currently running
on that LCPU. An SQI may be generated whenever a process has handed a
task to another process, or an interrupt has just been serviced.

For a multicluster configuration, the PA additionally performs intercluster task
passing. A task destined to be passed from one cluster to another is placed by
the PA in a buffer for a time representing the task transmission to the other
cluster. After this time, the task is inserted into a receive buffer, which is
scanned by the PA every clock interrupt. Thereupon, the task is handed to the
destined process.

4 Major elements in the simulation model

126 ICL Technical Journal November 1984

4.2 CPUs, processes and tasks

Each CPU must be in one of the following states:

— waiting for a lockout to become free
— running a lockout
— running the process allocator
— running a process

Each CPU has associated with it a Background process. This process is run
whenever there is no other process awaiting service on a CPU. The set of
Background processes have the same priority, which is the lowest priority in the
multiprocessor.

Up to 128 processes can be modelled, and each process must be in one of the
following states:

— running on a CPU
— making a call to the process allocator
— interrupted, awaiting to resume service
— suspended, awaiting to begin service
— blocked, awaiting the arrival of a task.

A process can be interrupted while running on a CPU, but not while calling the
PA. A process must be in the blocked state when it has no tasks to serve, and on
the arrival of a task, the process is placed in the suspended state to await
scheduling to run on a CPU by the PA.

A task is generated in the model either by the PA as a timing task or for each
process occurrence in the application program sequences. Each task is identified
with a process and enqueued in that process queue. The limit to the number of
tasks in any one queue is the maximum number of tasks allowed in the common
storage area for all tasks. Associated with each task is the following set of
parameters:

— the priority of the tasks, in the range 1-16. When a process runs, it serves the
tasks in its queue in priority order and on a FIFO basis for each priority level.

— the minimum priority of the task which can next be served by the process.
This inhibits the process from running the next task should its priority be
less that the minimum priority, and the process can only resume running
when a task of at least the minimum priority arrives.

— the mean service time of the task, and its service distribution, whether
constant or negative-exponential.

— the length, in words, of the task. This length determines the amount of PA
time required to enqueue the task, and the task transmission time between
clusters in a multicluster configuration.

— whether the task is intra- or intercluster in a multicluster configuration.

ICL Technical Journal November 1984 127

4.3 Processor load control

The purpose of processor load control (PLC) is to regulate the work performed
by the multiprocessor so that, under call-attempt overload or failure conditions,
the number of tasks within the process queues does not build up to excessive
levels. Should the total number of tasks exceed the maximum allowed in the
common tasks storage area, the consequences would be dire because the multi­
processor would cease handling any work at all and would need to be restarted.

The multiprocessor uses a dual scheme to perform load control. First, workload
limits are used to control the acceptance or rejection of new calls (represented
by sequences in the application program) such that the maximum number of
calls in the setup phase at any instant does not exceed a given workload limit.
A monitoring period of approximately 5 s is specified (the periodicity is
adjustable) and in each period information is gathered on the CPU occupancies,
the calls accepted, the calls rejected and the maximum number of calls in the
setup phase. Based on this information, new workload limits are calculated for
the next monitoring period to ensure that the average CPU occupancy does not
exceed a specified value, say 0-9.

The second part of the scheme involves thresholds on the process queues and the
common task area. If the number of tasks within a process queue, or the common
task area, exceeds a preset, upper threshold, an overload is indicated. End of over­
load occurs when the number of tasks is reduced below another preset, lower
threshold. There exists a degree of flexibility as to the action invoked when an
overload is in progress, but, generally, a process queue overload causes all new
calls to be rejected for its duration, and a common task area overload causes the
input of tasks from the peripheral units to be inhibited.

This dual load control scheme was largely designed using the model. Its mode of
operation is such that, under call-attempt overload, regulation of the CPU
occupancy enables the acceptance or rejection of new calls to be controlled in a
stable and smooth manner. In more severe circumstances, such as a failure
condition, the thresholds provide direction protection against an excessive
number of tasks in a process queue or the common task area.

4.4 Application program

The application program is the full set of sequences, where each sequence
describes the process activations required for the multiprocessor to perform a
particular action, for example, setting up a telephone call. Each process activa­
tion is initiated by a task, which is inserted into a queue for that process, so that
a sequence progresses from start to finish as a series of tasks handed to, and then
served by, the processes in the sequence. A sequence can have the additional
features

— a time interval can be specified between any two process activations. A time
interval can be either constant or negative-exponentially distributed, and can

128 ICL Technical Journal November 1984

be used, for example, to represent the delays between receiving dialled digits
from subscribers, or the time taken by the peripheral unit to perform an
action as instructed by the multiprocessor

— parallel branches can be specified, so that a sequence can have more than one
process activated at the same time. There is no limit to the number of parallel
branches, but all branches must finish before a sequence can terminate

— process activations can be conditional. A number of parallel branches can
terminate at a process activation, which cannot proceed until all these
branches have finished

— an interrupt can be generated to the PA to force the immediate running of a
process, if possible

— any number of response times can be specified at any points within a
sequence.

When a peripheral unit wishes to communicate with a process, the unit may
either generate an interrupt to the PA or wait to be periodically interrogated by
the process. Further, the information to be communicated may reside in a buffer,
which is external to the multiprocessor, or within its main memory. These
possibilities are all modelled as a normal process activation within a sequence,
except that the task handed to the process queue is identified as being from
external hardware (a peripheral unit) with the following options:

— whether an interrupt is to be generated to serve the task, or the task must
await the process to periodically scan its queue

— whether or not the PA is to be invoked for handing the task to the process
— whether or not direct memory access (DMA) is to be used for the task.
These options allow the specific types of peripheral unit communication to
processes to be modelled. Communication from processes to peripheral units
may be either via a buffer in main memory or direct to the unit. Whichever, the
model assumes that the time taken to do this will be included in the service time
of the relevant tasks.

Sequences in the application program need not just represent successfully set up
and cleared down telephone calls. Rejected or mishandled calls, calls meeting
engaged tone or no answer etc. can just as easily be modelled. Sequences can also
be used to represent ancillary functions such as updating subscribers’ meters,
collecting management statistics, handling failure conditions in the peripheral
units etc.

5 C o n c l u s i o n s

This paper has described a simulation model of a multiprocessor, designed to be
the control processor in a telecommunications exchange. Details of the multi­
processor and the work it performs in handling telephone calls are specified
entirely by the data input to the model. This allows the user of the model to
specify easily, and at will, the type of work for which the performance of the
multiprocessor is being analysed.

ICL Technical Journal November 1984 129

The model has aided considerably the design of the operating system, especially
the process allocator and processor load control. The model has also demon­
strated that a telecommunications exchange, controlled by such a multiprocessor,
can survive severe call-attempt overload and failure conditions, which cannot be
readily simulated on live equipment. Recent measurements on a real system
when stimulated by artificial call generators have confirmed the accuracy of
early model predictions of the multiprocessor call handling capacity.

A c k n o w l e d g m e n t s

Acknowledgment is made to the Director of Systems Evolution & Standards of
British Telecom for permission to publish this paper. Acknowledgment is also
made to colleagues in the Teletraffic Division who made significant contributions
to the development of the Simulation Model, in particular Mrs J.W. Davies,
Mr A.G. Bruce and Mr A.P. Keogh.

130 ICL Technical Journal November 1984

Tracking of LSI chips and printed
circuit boards using the ICL
Distributed Array Processor

D.J. Hunt
ICL Technical D irectorate (Systems Strategy Centre), Stevenage, Hertfordshire

Abstract
A utom atic generation of interconnection tracks on LSI chips and circuit
boards is a major com putation task in design autom ation. The ICL
Distributed Array Processor (DAP), a parallel processor having a few
thousand processing elements operating in parallel on a common instruc­
tion stream , has been applied very successfully to this problem using the
well known Lee algorithm.

1 Introduction

Today’s logic designers make extensive use of computer power to help them in
their design task, the extent of their problem being apparent when it is realised
that a single VLSI chip can have a complexity equivalent to that of several
printed circuit boards of just a few years ago. Computers can not only provide
the means for capture and storage of a design, but also perform computation­
intensive tasks such as simulation, placement (physical mapping of logical
elements), tracking (insertion of metal interconnections) and automatic genera­
tion of test procedures. The amount of processing needed, and hence the exe­
cution time, for the latter group of operations often grows as the square or even
the cube of the circuit complexity (measured for example as the number of gates)
and hence the time may become excessive.1

The use of structured design techniques at the logical or physical level can
reduce the processing time, as can developments in algorithms, but there is still
considerable demand for processing power. One way of achieving such power is
to use a parallel processor; the work described here uses the ICL Distributed
Array Processor (DAP). Initial work has concentrated on tracking, but DAP is
expected to have a role to play in many other related activities.

2 Principles of DAP

The architecture and principles of this single-instruction-stream/multiple-data-
stream (SIMD) machine have been described in several papers.2 The model used

ICL Technical Journal November 1984 131

in chip tracking has 4096 processing elements (PEs) arranged 64 x 64, each
having 4096 bits of memory, giving a total of 2 Mbytes for the array. Most
programming is performed in DAP Fortran3’4 , a Fortran extension incorporating
as basic elements matrices and vectors that match the DAP size, as well as scalars;
and an assembly language Apal is also available.

The main factors that make DAP suitable for tracking work are its Boolean pro­
cessing capability and the fact that the two-dimensional array of PEs can be
matched to the regular grid on which tracking is performed. The 2 Mbyte storage
capacity permits chips with over one million grid points to be represented
entirely in DAP memory. Experience shows that excellent performance can be
achieved as well as simple mappings and easily understandable programs.

3 D e s c r i p t i o n o f t r a c k i n g a l g o r i t h m

The Lee tracking algorithm is very well known5. Its principle is illustrated in
Fig. 1 for a simple single-layer maze, showing the search for a path from source
cell S to target cell T when certain cells marked B are blocked. The first step is
to mark all free neighbours of S with the value 1 (‘free’ meaning that the point
has neither been reached before nor is blocked). Then free neighbours of those
points are marked 2, and so on, values 1,2,3,1,. . . . being inserted cyclicly.
If a path is possible, then eventually the target point will be reached as in the
Figure and the number of steps taken is the path length; the algorithm ensures
that the shortest path is found.

Having established that a path is possible, a particular path may be marked as
shown by starting from the target and following the cyclic sequence 3,2,1,3,. . .
(beginning with whatever value is appropriate to the destination) from cell to
neighbouring cell. In general, many paths are possible with the same length, the
normal procedure being to continue tracing the path in the current direction
until a change is found to be necessary. The use of three values for temporarily
marking cells is sufficient to enable a minimum length path to be identified by
this means.

In a multilayer maze an individual cell may be blocked on any combination of
layers, and certain transitions between layers may be prohibited. Thus, it is
necessary to mark the 1,2,3 values separately on each layer. Multiple layers are
considered in pairs, the Lee algorithm being used to search only for East-West
paths on one layer (2f) of each pair and only for North-South paths on the other
(Y). In chip or board tracking the blocked areas may be blocked to all tracks
(for example power lines), or be previously tracked metal. Normally, many
points are to be connected together to form a string, or net. This is achieved by
tracking individual links to join each pin in turn (starting with the second pin)
to the earlier pins in the net. In chips it is usual for the second and subsequent
links of a net to be allowed to join onto previously tracked metal of the same
net.

A serial implementation of the forward search might maintain a list of currently

132 ICL Technical Journal November 1984

2 1 2 3 3 2 3 • • • • •
1 3 1 2 3 . . . 3 2 1 2 3 [T] • • •

3 2 3 1 2 3 . 3 2 1 3 1 2 3 • • •

2 1 B B B B B B B B 2 3 1 2 3 . •

1 3 B B B B B B B B 1 2 3 1 2 3 •

3 2 1 3 2 1 2 3 1 2 3 1 2 3i 1 2 3 .
2 1 3 2 1 3 ------ 1 — — 2 —— 3 —— 1 —— 2 —— 3 —— 1 —— 2 3 1 2 3

1 3 2 1 3 2 3 B B B B B B B B B B B 3

3 2 1 3 2 1 2 B B B B B B B B B B B 2

2 1 3 2 1 [S] 1 2 3 1 2 3 1 2 3 1 2 3 1

3 2 1 3 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2

Fig. 1 The Lee tracking algorithm

active points (i.e. those points that were reached for the first time in the
previous step) as well as the matrix structure implied by Fig. 1. The next active
list is simply the accessible neighbours of points in the current active list.

4 M a p p i n g t h e p r o b l e m o n t o D A P

A hypothetical chip that was small enough to be mapped directly onto the DAP
array could clearly be tracked using a very simple DAP program. Separate logical
matrices could be used to represent source and target regions, blocked regions,
values 1,2,3 and so on. The element-by-element Boolean operations and neigh­
bour shifting available on DAP permit simple expression of all the required
functions. In a sense, at any given step only those PEs on the ‘active wavefront’
(corresponding to points on the active list of a serial program) are doing useful
work. However, essential structural information is held in the pattern of that
wavefront and the structure is being implicitly handled by the Boolean and
neighbour operations. Real chips are very much larger than the DAP dimensions,
and this necessitates changing the code in two ways.

First, any given Boolean matrix must be partitioned into sections or sheets that
match the DAP size. Although every sheet could be processed at every step, this
would clearly involve much unnecessary work. Thus a list of those sheets
containing active points is used in a manner similar to the active point list in a
serial program.

Secondly, a straightforward allocation of one logical matrix to each necessary
state as mentioned above results in a total of about 20 such matrices being
needed for two-layer chips or boards, but to accommodate the largest chips in
DAP memory it is necessary to code the state of the chip more compactly. In
the current program a 9-bit code is used: four bits for each of the two layers and
one bit for via information (see Section 5). A decode is performed prior to
processing each sheet, but the code is chosen to make this process very simple.

Some details of a program written for tracking a large uncommitted logic array
are given in the following sections, concentrating on the parts where most time
is spent. The program can run on different sizes of DAP, and accepts as
parameters the chip dimensions, adjusting its storage structure accordingly.

5 F o r w a r d s s c a n

The forwards or expansion phase, during which codes 1,2 and 3 are inserted,
accounts for most of the execution time, as in a serial program. The DAP code
for expansion on a single sheet is considered first; example code is given for the
X layer, the Y layer being similar. It is assumed that in DAP-Fortran the 9-bit
code for the sheet has been decoded to give logical matrices XLEVEL1,
XLEVEL2 etc, and VIAFREE is a matrix which is True where propagation
through a via (i.e. a path between two tracking layers, X and Y in this case) is
allowed. One step of expansion can be written:

134 ICL Technical Journal November 1984

XNEW = SHEP (XLEVEL2) .OR. SHWP (XLEVEL2)
.OR. (YLEVEL2 .AND. V1AFREE)

Here SHEP is the DAP-Fortran function resulting in a Shift East with Plane
geometry (i.e. value False being shifted in at the West edge).

Then the points at which the target has been hit, if any, can be identified:

XHIT=XNEW .AND. XTARGET

A rapid test for completion of this link can then be applied:

IF (ANY(XHIT .OR. YHIT)) GOTO 500

The function ANY returns a logical scalar which is the ‘OR’ function of all
bits in its logical matrix argument; this result is then used as the argument of
a conditional statement in the normal way.

Finally, the next level marker is inserted, taking into account only those points
to which expansion is permitted:

XLEVEL3(XFREE) = XNEW

This statement is a matrix assignment of XNEW to XLEVEL3, but matrix
XFREE which is True at points that have not yet been used acts as a mask, so
the assignment is only performed where its element has the value True.

In practice all the sheets that include part of the active wavefront must be
processed in this manner, and the active points transmitted across sheet
boundaries. To deal with these boundaries each entry in the sheet list includes
not only the sheet address, but also four Boolean vectors specifying the inputs at
the four edges of the sheet. In fact there are two lists: the ‘current’ list and the
‘next’ list. Each step of expansion deals with each sheet in turn in the current
list, incorporating the edge vectors in the shifts. The next list is initially empty,
but as active points are identified at the sheet edges the address of the appro­
priate neighbouring sheet is added to the list if necessary, together with the
Boolean edge vector. The current sheet is also added to the next list unless it
contains no active points. At the end of the current list the next list is copied
into the current list; if that list is empty than no path is possible for the link
being attempted.

6 B a c k w a r d s s c a n

Having established as above that a path is possible from a given pin to a target,
the metal is placed by following the sequence of level values 3,2,1,3,2,...........
back from the hit point. This is done sheet by sheet, and although a simple
method is used it is much faster than Lee expansion because of the smaller
number of sheets crossed.

ICL Technical Journal November 1984 135

For a given sheet the first step is to evaluate in parallel the permitted directions
of travel from every point on the sheet. This involves logical functions of
matrices XLEVEL1 etc., and their values shifted one place. The path is followed
sequentially using these permitted directions. Where alternative paths exist the
current direction of travel is continued whenever possible; otherwise an arbitrary
selection is made. When the start point or the sheet boundary is reached the
entire path section identified on that sheet is incorporated in parallel into the
9-bit code. This involves setting codes for via, metal and target, the last of these
permitting the track to be a target for a subsequent node of the same net.

7 O t h e r t r a c k i n g o p e r a t i o n s

Prior to performing any tracking it is necessary to initialise the DAP representa­
tion of the chip with codes for pins, blocked areas and metal, perhaps incorpora­
ting manually specified tracks. Each such region is built up from a set of
rectangles, and DAP-Fortran provides functions to facilitate the generation of
these patterns. For example:

XMETAL = XMETAL .OR. (COLS(Xl,X2) .AND. ROWS(Yl,Y2))

Integer scalars XI, X2, Y l, Y2 here define the limits of the required rectangle
within a DAP sheet. The function COLS returns a logical matrix which is True
in columns XI to X2 inclusive and False elsewhere; the function ROWS deals
similarly with rows.

After tracking, DAP generates descriptions of the tracks in a form suitable for
mask making. It can also identify any particular metal on the chip by propagating
along tracks from the specified point until the pin is reached.

The 2900 host system is responsible for holding the data structures that represent
the initial state of the chip, the interconnections that are to be made and the
metal generated by the DAP program. Relevant parts of the database are passed
to and from the DAP as required.

8 Results and performance

The program described has been used to track uncommitted logic array chips
having up to 8000 logic gates and nearly 14 million grid points.6 Performance
is of course very dependent on the number of gates used, the complexity of
interconnections and the chip layout. Figures for two example chips are given
below, the execution times given being only for tracking.

Design A Design B

Number of nets 2200 2400
Metal length (number of grid units) 790 000 930 000
Tracking time (s):

DAP-Fortran 1700 2100
Apal and DAP-Fortran 410 470

136 ICL Technical Journal November 1984

Note that a net may typically contain four pins and hence require three tracking
operations; some nets are much more complex than this. Some nets are very long
(in terms of the grid length), and it is these that make the major contribution to
runtime, since the time for finding a path depends on the sum of the number of
active sheets at each step of expansion.

The times quoted are first for a program written entirely in DAP-Fortran, and
secondly with just the forwards scan converted to assembly code. The perfor­
mance advantage of using Apal is obvious: factors of 4-1 and 4-5 overall for the
two examples. The advantages are greater for long nets because the fraction of
executed code that is converted to Apal is greater.

Comparisons with serial implementations of the same algorithm are more difficult,
partly because both codes are subject to alteration and improvement from time
to time, and partly because the tracking time given is only one section of the
overall design process. Suffice it to say that execution times of a few hours have
been needed for these examples on serial mainframes.

9 Comments and conclusions

DAP has proved very effective at tracking the chips mentioned above. The
method is, of course, applicable to other tracking cases, such as printed circuit
boards, and a number of similar programs have been written to take account of
factors such as extra pairs of X Y layers and variants in the detailed rules specify­
ing which configurations of wiring are permitted.

The Lee algorithm is perhaps the most natural for DAP, but other techniques
such as line search and channel allocation are often used on serial machines.
No detailed work has been done on these, but similar styles of implementation
on DAP are likely to make their use very effective too.

Looking to the future, there are a number of other aspects of design automation
that seem worthy of investigation with a view to DAP implementation. The DAP
principle is of course applicable to machines smaller than the current 64 x 64
array and is well suited to LSI implementation; a DAP with, say, one-quarter
the number of processing elements could achieve about half the performance of
the larger machine on the inner work of tracking, for a given technology of
implementation. The compactness of such a small DAP together with its high
performance could make it a powerful and cost-effective component of a more
interactive design automation system.

A c k n o w l e d g m e n t

The author is indebted to many colleagues at ICL Manchester for the provision
of host software and interfacing to existing design automation systems, without
whom the DAP tracking of real chips would have been impossible.

ICL Technical Journal November 1984 137

This paper was first presented at the conference Parallel Computing ’83. It is
reproduced here with the permission of the North-Holland Publishing Company.

R e f e r e n c e s

1 ADSHEAD, H.G.: ‘Towards VLSI complexity: the DA algorithm scaling factor: can
special DA hardware help?’ Proc. 19th DA Conference (ACM/IEEE 1982), 339 ff.

2 HUNT, D.J. and REDDAWAY, S.F.: ‘D istributed processing power in m em ory’, in:
‘The f i f th g en era tio n c o m p u te r p r o je c t ’ SCARROTT, G.G. (Ed.), (Pergamon Infotech,
Maidenhead, 1983)49-62.

3 FLANDERS, P.M.: ‘Fortran extensions for a highly parallel processor’, in 'S ta te o f th e
a r t r e p o r t: su p e r c o m p u te r s ’. (Infotech International, Maidenhead, 1979.

4 GOSTICK, R.W.: ‘Software and algorithms for the Distributed-Array Processors’,
IC L T ech. / . , 1979, 1, (2), 116-135.

5 LEE, C.Y.: ‘An algorithm for path connections and its applications’, IE E E T rans.,
1961, EC-10, (5), 346-365.

6 ADSHEAD, H.G.: ‘Employing a distributed array processor in a dedicated gate array
layout system ’, P roc. IC C C , 1982, (IEEE, Oct.) 411 ff.

138 ICL Technical Journal November 1984

Sorting on DAP

P.M. Flanders and S.F. Reddaway
ICL Technical D irectorate (Systems Strategy Centre), Stevenage, Hertfordshire

Abstract

Sorting data is an im portant and time-consuming activity in many com puter
applications. The paper describes how a highly parallel processor, the ICL
DAP, can be used effectively for both internal and external sorts.

1 Introduction

In many computer applications, both scientific and commercial, there is a
requirement to sort data. Also, sorting may be used to implement other opera­
tions on a parallel processor such as scatter-gather, permutations, conformal
mappings etc.1. In commercial applications the volume of data to be sorted fre­
quently exceeds the size of main memory.

A variety of sorting algorithms have been developed, for the most part with
sequential computers in mind. We consider here the application of a parallel
computer, the ICL DAP2, using an algorithm suitable for parallel processing,
Batcher’s bitonic sort3. Sorts for which all data can be accommodated in main
memory (internal sorts) and those which require backing store (external sorts)
are considered. Consideration is also given to the use of tag sorts, to improve
performance and to handle variable length records. Examples of internal non­
tag sorts of fixed length records have been implemented, but the remainder of
the work is theoretical. More details of topics covered in this paper are given in
Reference 4.

2 The ICL DAP

A general description of the DAP is given by Flanders et al.2, and there is a
short note in the paper by Hunt in the same issue of this journal as the present
paper. A point of detail which is relevant to our work is the difference between
what are called ‘vertical’ and ‘horizontal’ mode processing, respectively. In the
former, which is the principal mode of operation, the successive bits of a data
item are held in the store of a single PE, so that each PE produces one result; this
has a parallelism of 4096. In the latter a data item is mapped so that a row of
PEs is used to produce each result; results are produced more rapidly but the
parallelism is reduced to 64. Data are routed between PEs either by shifting ‘bit

‘ planes’ (64 x 64 bits, one per PE) in any of the four directions or by highways

ICL Technical Journal November 1984 139

Fig. 1 Sample bitonic sort of eight records

3 Batcher's bitonic sort

Fig. 1 shows the comparisons and exchanges of data in a sample sort of eight
records using Batcher’s bitonic sort; a brief general description is given below for
the more interested reader. In Fig. 1 data are moved as indicated at each step
and compared with the data already there; the larger or smaller element, indicated
by “+’ or is then selected.

Batcher’s bitonic sort is based on the idea of a bitonic sequence; a sequence is
bitonic if, when considered cyclicly, it has one ascending and one descending
portion. Suppose a bitonic sequence of records, Ai where / = 1,2, . . . /Vis split
into the two sequences A l andA2 such that:

A i i = min(Ai, A i+Ni2)
and

A 2i = max(Ai,Ai+N/2)

140 ICL Technical Journal November 1984

which traverse the rows and columns of the PE matrix; for the former, the time
taken increases with the distance shifted.

where 1 < i < N/2 and records are compared using the record keys, then it can
be shown that A j and A 2 are also bitonic sequences and all records of A 2 are
greater than or equal to all records of A \ . Thus, if a bitonic sequence of N
records is split into two sequences in this way and the resulting sequences are
again split, and so on, the result is ordered after log N steps (all logarithms here
are base 2.) This enables a bitonic sequence to be ordered by successive splitting;
the ordering may be increasing or decreasing.

To sort an arbitrary set of N records the algorithm to order a bitonic sequence is
used as follows. First, consider the N records as N/2 sequences, each containing
two records. Each sequence is trivially bitonic and is ordered as above; half the
N/2 sequences are put into ascending order and half into descending order. The
N/2 sequences are then taken in pairs, one ascending and one descending
sequence in each pair, so that each pair is a bitonic sequence of four records.
This gives N/4 bitonic sequences each having four records; the number of
sequences has been halved and the number of records in each sequence has been
doubled. Repeating this procedure log N times leaves the data sorted.

4 Use of DAP for internal sorts

At each step of the algorithm to sort N records there are N/2 ‘comparison-
exchanges’ all of which can be performed in parallel. Each of these involves
comparing two records and conditionally exchanging them depending on the
result of the comparison. In a complete sort there are W(Arlog N (1 + log A))
comparison-exchanges, that is about ¼log N more basic operations than in a
conventional serial sort. However, the Batcher algorithm has the advantage that
it is readily implemented in parallel on the DAP with each PE performing one
comparison-exchange, for vertical mode processing. For sorts where the number
of records is at least twice the number of PEs (or twice the number of rows for
horizontal mode processing) the parallelism of DAP can be utilised to the full.

On DAP the conditional exchanges are executed in parallel using activity control;
this may be contrasted with implementation on a serial machine using condi­
tional jumps. The time taken on DAP is independent of the initial ordering of
data.

Before each stage of comparison-exchanges can be executed, records must be
paired up in the same PEs. In general this requires data to be routed among the
PEs, and this is done using parallel techniques which shift and merge bit-planes.
Unless care is taken this routing can dominate the execution time. Much atten­
tion has been given to this in the literature; however, most published algorithms
concentrate on the special case where the number of records equals the number
of PEs5’ 6. The more general problem where there are more records than PEs
has been studied by Baudet and Stevenson7 but they use an algorithm involving
more comparisons than Batcher’s bitonic sort to reduce routing; they also
assume independent addressing in each PE is possible.

ICL Technical Journal November 1984 141

The algorithm for DAP for the general case where there are more records than
PEs is described more fully in Reference 4; it achieves high performance by:

(i) ensuring that all PEs are active and perform distinct comparison-exchanges
(ii) taking into account, in the mapping of data on to the store, the relative

frequency of comparison-exchanges at different separations
(iii) allowing the mapping of data to vary during the sort. This almost halves

the routing required for an optimal static mapping. It leaves the data in
an unnatural order but the overhead to restore natural ordering is small.

With reference to (ii), the data are sorted first within PEs, then over the PE
plane starting with nearest neighbours in both directions and moving on to the
longer routes. The resulting complexity in data organisation and movement is
best handled using the ‘mapping vector’ techniques described in References 8
and 9. These provide a systematic and readily implemented means of data organ­
isation.

The time taken to sort N records has a contribution from the comparison-
exchanges which is proportional to N log N and a contribution from routing
proportional to N. For practical values of N on DAP the contribution from these
is of the same order. An estimate of performance is given below for a vertical
mode sort of 128000 records each 8 bytes long; all 8 bytes are used in comparing
records. For the sorts implemented on DAP, actual times were typically 10%
greater than estimated. Rates of processing data are given in Mbyte s '1 to allow
easy comparison with disk transfer rates. Figures are given for a DAP having
32*32 PEs; performance on the smaller DAP does not fall in line with the
reduction in the number of PEs since routing is less dominant.

64*64 DAP 32*32 DAP
Comparison-exchanges 536 cycles/bit-plane 536 cycles/bit-plane
Routing 743 cycles/bit-plane 424 cycles/bit-plane
Number of bit-planes 2048 8192
Total machine cycles 2-6 x 106 7-2 x 106
Total time at 200 ns/cycle 0-53 s 144 s
Rate of processing data 1 -9 Mbyte s_1 0-7 Mbyte s"1

5 Tag sorts and variable-length records

If the sort key is a small part of the record, better performance is achieved by
using a ‘tag sort’. Tags comprising the record key and record address are formed
for each record and these are sorted instead of the records themselves. The
sorted tags are then used to order the complete records, thereby moving each
record once only. This improves performance of the sorting process by a factor
roughly equal to the ratio of the record length to the tag length;it does, however,
incur the additional costs of tag formation and record movement.

Moving records according to the sorted tags makes effective use of the ability of

142 ICL Technical Journal November 1984

the DAP to move whole bit-planes of data at a time. The shifting required to
produce a new alignment for the moved record is noticeably more with larger
DAPs; also the larger number of bits in a bit-plane is only useful for records
larger than 128 bytes, and so the smaller DAP may actually be faster. Perfor­
mance for tag sorts is in many cases dominated by record movement and to a
lesser extent by tag formation.

Tag sorts give an effective means of sorting variable-length records. It is assumed
that each record contains a byte count for the record and that the key fields are
fixed length and at fixed positions relative to the start of record. Despite extra
work in forming tags and moving records, DAP is still effective.

Estimates are given below for a horizontal mode tag sort of 32000 100 byte
records having 4 byte keys; figures are given for fixed and variable length records,
with 100 bytes being the average length in the latter case. Unless stated otherwise
figures are in cycles per bit-plane of record data; the cycle time is 200 ns.

Fixed-length records
-------------------------- 64*64 DAP 32*32 DAP
Tag formation 70 21
Sort tags 120 78
Move records 260 29
Total 450 128
Rate of processing data 5-7 Mbyte s-1 5-0 Mbyte s-1

Variable-length records
------------------------------ 64*64 DAP 32*32 DAP
Tag formation 200 43
Sort tags 120 78
Move records 410 74
Total 730 195
Rate of processing data 3-5 Mbyte s-1 3-3 Mbyte s-1

6 External sorts

Sorting an amount of data too large to be held in the DAP store is done in two
parts, a prestring stage followed by one or more merge passes. The prestring
stage forms sorted strings, each of as many records as can be sorted in memory,
and is implemented as a sequence of internal sorts. The merge passes combine
these strings to form progressively fewer sorted strings until just one string is
obtained. The algorithm for a two-way merge pass is similar to that for a con­
ventional two-way merge except it merges blocks using a bitonic merge rather
than comparing single records. At each step the next block of records is taken
from one of the strings (for ascending order, the one whose next block contains
the smallest key) and merged with the ‘current block’; the half containing the

ICL Technical Journal November 1984 143

smallest keys is then output and the remainder left in store as the next ‘current
block’.

To prove that this algorithm works it is sufficient to show that after each merge
the records output from the merge area all have keys less than or equal to those
of all records in the input strings (for sorting in ascending order). Clearly this is
true for the string from which the last block was selected. We denote this string
by S i , the block selected from it by Bx and the smallest key in that block by
K i ; we denote the other string by S2, its next block by B2 and the smallest key
in B2 by K2. Before block B t was selected for merging, the records left in the
merge area from the previous merge must have all been less than or equal to the
larger of K , and K2; however, since B x was chosen in preference to B2 we know
that K x < K2 and consequently all these records must have keys less than or
equal to K 2. The result follows immediately.

The merging of two blocks, sorted into ascending order, can be achieved by
reversing the order of one of the blocks so that together they form a bitonic
sequence. In practice it is not necessary to explicitly reverse the order since the
bitonic merge can easily be modified to give the first half of its result in ascend­
ing order and the second half in descending order; when the first half is output
it is replaced with another block in ascending order so that the two halves to be
merged are in opposite order.

The above describes a two-way merge; a number of strings can be merged by
forming a binary tree of two-way merges within the DAP memory. The output
of each merge at a given level of the tree is input to the next level. Merging a
number of strings not equal to a power of two can be done by placing the input
from some strings higher up the tree.

For an m -way merge a block of N records is output after each stage of log m
two-way merges. The work per two-way merge is approximately proportional to
A^l+log N), which implies that to achieve high performance the block size must
be as small as possible while allowing effective use of DAP parallelism. A smaller
block size also helps reduce storage requirements. We therefore assume that on
the 64*64 DAP, horizontal mode processing is used with a block size N = 64.
Merge performance varies somewhat with the record parameters, but a typical
performance for a 32-way non-tag merge is as follows:

Example of merge performance (32-way merge)
64*64 DAP_______ 32*32 DAP

Block size (records) 64 32
Number of steps in block merge 7 6
Cycles per merge per bit-plane output 320 220
Total cycles per bit-plane output 1600 1100
Rate of processing data (Mbyte s_1) 1 -6 0-58

Tags can be used to handle variable length records and, where appropriate, to
achieve performance improvements similar to internal sorts. A tag is formed for

144 ICL Technical Journal November 1984

each record on input and the tags are merged rather than the complete records,
which are left in input buffers. As tags emerge from the merge tree the corres­
ponding records are moved to the output buffers.

With the high speeds possible for both prestring and merge stages, disk transfer
rates may be the limiting factor in overall performance. The availability of a
large DAP memory helps in allowing large disc block sizes which maximise
transfer rates.

7 C o n c l u s i o n s

The DAP can be used for high-performance sorting on both internal and external
sorts. Tag sorts can be used to improve performance where relevant and to
handle variable-length records. Ancillary operations of tag formation and record
movement can be effectively implemented on DAP hardware. The performance
of smaller DAPs is much better than would be expected from comparing array
sizes.

Acknowledgment

This paper was first presented at the conference Parallel Computing ’83. It is
reproduced here with the permission of the North-Holland Publishing Company.

References

1 SCHWARTZ, J.T .: ‘U ltracom puters’, A C M Trans, o n P ro g ra m m in g L an gu ages &
S y s te m s , 1980, 2 (4).

2 FLANDERS, P.M., HUNT, D .J., PARKINSON, D. and REDDAWAY, S.F.: ‘Efficient
high speed computing w ith the D istributed Array Processor’, Symposium on High
Speed Com puter and Algorithm Organisation, University o f Illinois, Academic Press,
1977.

3 BATCHER, K.E.: ‘Sorting networks and their applications’, P roc. A F IP S , 1968, SJCC,
32, Montvale, New Jersey (AFIPS press), 307-314.

4 FLANDERS, P.M. and REDDAWAY, S.F.: ‘Sorting on DAP’, SSC R eport CM72,
International Computers L td ., Stevenage, UK (Oct. 1982).

5 NASSIMI, D. and SAHNI, S.: ‘Bitonic sort on a mesh-connected parallel com puter’,
IE E E T rans., 1979, C-28, (1).

6 THOMPSON, C.D. and KUNG, H.T.: ‘Sorting on a mesh-connected parallel com puter’,
CA C M , April 1977, 20.

7 BAUDET, G. and STEVENSON, D.: ‘Optimal sorting algorithms for parallel com puters’,
IE E E T ran s., 1978, C-27 (1).

8 FLANDERS, P.M.: ‘A unified approach to a class o f data m ovem ents on an array
processor’, IE E E T ran s., 1982, C-31 (9).

9 FLANDERS, P.M.: ‘Languages and techniques for parallel array processing’, Ph.D.
Thesis, Dept, o f Com puter Science, Queen Mary College, University o f London (July
1982).

ICL Technical Journal November 1984 145

User functions for the generation
and distribution of encipherment

keys
R.W. Jones

ICL Technical Directorate, Bracknell, Berkshire

Abstract

It is generally accepted that data encipherm ent is needed for secure
distributed data-processing systems. It is accepted, moreover, th a t the
enciphering algorithms are either published or must be assumed to be known
to those who wish to break the security. Security then lies in the safekeeping
of the encipherm ent keys, which must be generated and stored securely
and distributed securely to the intending users.

At an interm ediate level of detail of a system it may be useful to have func­
tions which m anipulate keys explicitly but which hide som e of the details
of key generation and d istribution, both for convenience of use and so that
new underlying techniques can be developed. The paper offers a contribu­
tion to the discussion. It proposes key-manipulation functions which are
simple from the user's point of view. It seeks to justify them in term s of
the final secure applications and discusses how they may be implemented
by lower-level techniques described elsewhere. The relationship of the
functions to telecom munications standards is discussed and a standard
form is proposed for encipherm ent key information.

1 Introduction

It is generally accepted that data encipherment is needed for secure distributed
data-processing systems. It is accepted, moreover, that the enciphering algorithms
are either published or must be assumed to be known to those who wish to
break the security. Security then lies in the safekeeping of the encipherment
keys, which must be generated and stored securely and distributed securely to
the intending users. A number of schemes have been proposed, and in some cases
implemented, to manipulate keys securely. For example References 1, 2 and 3
describe different methods and offer different but overlapping sets of facilities
to the user. It is likely that new methods will be developed and that some
part of these methods should be hidden from the user. Since the subject has
clearly not reached a stable point it is very likely that any attempt at present to
establish a standard user interface will soon need revision. Nevertheless, this
paper is written on the assumption that a discussion of such an interface is
useful, since it helps to identify the common features of different schemes and
to gain some idea of which features will become generic and which become part
of the underlying mechanisms.

146 ICL Technical Journal November 1984

At some level users do not concern themselves with the manipulation of keys or
with explicit commands to encipher and decipher data. They ask for a secure
connection to another user or for a securely stored file and can assume that such
details are thereby taken care of. At a lower level software and hardware logic
exists which deals with things such as how keys are generated, how data en­
cipherment keys and key encipherment keys are kept distinct and the manner
of transporting a data encipherment key to a remote user.

At an intermediate level of detail it may be useful to have functions which
manipulate keys explicitly but which hide some of the details, both for conveni­
ence of use and so that new underlying techniques can be developed. This paper
discusses this intermediate level. In doing so it must make assumptions about
which functions are primitive at this level. For example, since a digital signature
may be achieved by enciphering a message digest, using the secret member of a
public key pair, one might decide that it is an application to be programmed in
terms of encipherment primitives and does not give rise to specific primitive
operations. This view is invalidated by signature techniques which do not depend
upon encipherment. Similarly there is implicit in such an interface a
judgment of which of the details should be hidden. Reference 4 describes
a key-distribution centre. In an appropriate context software at some level
submits a request to a key-distribution centre (KDC) for a key which can be
used to communicate securely with an intended correspondent. We may wish
to produce software which needs no modification when moved from such an
environment to one where the system supporting the application user keeps
records to enable it to issue keys securely to all members of the community. If
this is so we should hide the use or nonuse of the KDC, but we judge in doing
so that the user at that level has not lost needed flexibility. Such judgments
as these are made in what follows and the reasons for them are discussed.

2 T h e f u n c t i o n s

This section describes a set of functions to generate and manipulate keys. The
intention is that they appear simple to the user. The user is somewhat ill defined,
but well enough, it is hoped, for the benefit of the discussion. One candidate is
certainly an application process which makes use of an application service as
defined in the open systems interconnection model2 * * 5 and which wishes to
perform explicit data encipherment. Another candidate is the logic of a transport
layer entity in the open systems interconnection model which offers a secure
service to users of the transport service and which, therefore, sends a data-
enciphering key to a remote transport entity. The functions are as follows.

2. 1 Generate key (t, s)

Generate key (f, s) means generate for me a key or a pair of keys of type t and
return to me, as the result of this function, the local name of the item containing
the key or keys. The type shows, among other things, whether a symmetric or
asymmetric algorithm is involved. In the former case a single key is generated
and returned as the result of the function. In the latter case the enciphering and

ICL Technical Journal November 1984 147

deciphering pair is generated and returned. The local name is subsequently used
subscripted by 1 or 2 to indicate an individual member of a key pair thus
generated or unsubscripted to mean the single key generated or the complete
item containing the key pair, s is a 64-bit string, supplied by the caller, which is
to be used by the key-generation function. The caller does not know the
cleartext value of the key generated but is assured that the same t and s values
in a subsequent call will generate the same key or keys, s may be omitted, in
which case the values generated, as far as the caller is concerned, are random.
The chance of generating them again is random. The type t is an integer. Possible
meanings assigned to its values are:

— a key-enciphering key (KEK) for DEA1
— a data-enciphering key (DEK) for DEA1
— an RSA key pair to be used for enciphering keys.

Other meanings, to which values might be assigned, are discussed in Section 3.

NB. This function and the next two have a result. The assumption is that the
users have notations which enable them to write something like

x := generate key (y, z)

The variable which is to hold the result could be written as another parameter.
This is a matter of taste.

2.2 Give key (k, q)

Give key (k , q) means send my key whose local name is k securely to the user
known to me as q. Assign to the key a common reference number which we
may use in messages to each other and in communicating with our local
encipherment services (of which this function forms a part). Make the reference
number available to q and return it to me as the result of this function.

NB. The exact manner of making it known to q that the key is available is not
considered here. In an implementation it would not be a trivial issue. Similarly,
although we may assume that the services at the users’ locations acknowledge
receipt to each other, there is need to consider whether the end user should do
so as well. The assumption here is that if this is done it is separate from the basic
functions needed for key distribution.

2.3 Mutual key (t, q, s)

Mutual key (r, q, s) means generate a mutual key for me and user q, use seed s
and give the key type t. t and s are as in ‘generate key’, s may be omitted to
obtain a random key. Assign to the key a common reference number and make
it available to q and return it to me as the result of this function.

148 ICL Technical Journal November 1984

2.4 Take key (r, q)

Take key (r, q) means make the key whose reference number is r unavailable to
userr/.

2.5 Destroy key (K)

Destroy key (K) means destroy the key identified by K. K may be a local name
of a key, created by ‘generate key’ or a reference number created by ‘give key’
or ‘mutual key’.

3 U s e o f t h e f u n c t i o n s

This section considers the functions of Section 2 in the light of applications of
encryption and related techniques.

3.1 Connection establishment and user authentication

When establishing a connection between two users so that they may exchange
messages protected by encryption (for example if they use an insecure tele­
communications link) both users (or their local services) must be provided with a
key and the users must be authenticated to each other’s satisfaction. ‘Give key’
and ‘mutual key’ may both be used to send a key to a remote user (the reason
why both exist is discussed in Section 4). A reasonable requirement of either of
these functions is that it delivers the key, guarantees to the initiator that the
recipient is the user requested, tells the recipient from whom the key came and
guarantees that they, in turn, are who they claim to be, i.e. not just a legitimate
user of the service. This is illustrated in Fig. 1., where A is one of a number of
users of the A service and B is one of a number of users of the B service. The A
service is used by A in a controlled environment in which the identity of A is
assured (for example the process which represents A has been initiated after the
submission of a password to a control program which controls access to
resources, one of which is the A service). B has the same relationship to the B
service. The route between the A service and the B service is assumed to be
insecure in the absence of encipherment.

A B

A se rv ice--------------------------------------- B service

Fig. 1 User com m unications via encipherm ent services

After receiving a request from A to deliver a key to B, the A service, having
discovered the route, sends it to the B service, suitably enciphered by a KEK.
The A service and the B service must authenticate each other. Their manner of
doing this depends upon a number of factors, including whether a KDC is

ICL Technical Journal November 1984 149

involved and whether the KEK is a public or secret key. Methods are discussed,
for example, in References 4 and 6. For example, Reference 4 describes
protocols for sending a DEA1 key, first when it is protected by DEA1 encryp­
tion and secondly when it is protected by public key encryption. In both cases
the protocol is described in terms of a user A who wishes to send a key to
another user B, with the aid of a KDC (see Fig. 2).

KDC

A------- A service----------- B service--------B

Fig. 2 Use of key-distribution centre

In the first case the protocol has three logical parts, namely:

(i) A obtains securely from KDC two copies of the key, one enciphered by
A’s KEK and the other enciphered by B’s KEK.

(ii) A sends to B the copy enciphered by B’s KEK
(iii) A and B use the key to exchange authentication protocol.

In the second case the protocol has four logical parts, namely:

(i) A obtains securely from KDC B’s public key and the key to be used.
(ii) A sends to B the key enciphered by B’s public key.

(iii) B obtains securely from KDC A’s public key.
(iv) A and B exchange authentication protocol.

(For details of the values exchanged to cope with particular security problems
see Reference 4.)

Either of these methods may be hidden from the users at the level proposed for
them here. The appropriate interchanges are initiated by the function ‘mutual
key’. A possible improvement in underlying protocols to remove as yet unknown
security flaws is also hidden from them.

Once the two services have authenticated each other they may trust each other
to have authenticated the users they serve and therefore to give A and B a service
which authenticates the remote user.

Having obtained a mutual key, the two users, if they are particularly suspicious,
may wish to exchange further messages to convince themselves of each other’s
genuineness. This must depend upon further secret information, which becomes
vulnerable if it is sent to the other, as yet untrusted, party, using the newly
established connection. They may, for example, exchange passwords using the
protection of the connection they do not quite trust. If a correct reply password

150 ICL Technical Journal November 1984

is not received within the permitted number of attempts the first one is compro­
mised and there is a suspicion that the key distribution service is in error. The
users may, on the other hand, have private encipherment keys, previously de­
livered, which they use only to protect their private authentication protocol. If
the protocol reveals a doubt of correct identity no secret user information is
compromised but, as before, the trustworthiness of the key distribution service
is in doubt. This kind of consideration is inevitable if there is a standard service
which distributes keys and attempts to guarantee that the sender and recipient
are genuine. An alternative is that the service does not use encipherment to
authenticate the users, but leaves it to them. Another is that the identity of the
recipients is guaranteed but that they are only sure that the originator is an
authorised user of the key distribution service. Neither of these possibilities
seems as useful since one or both users must either risk compromising secret
information or must hold a key personally. They may well do so but they should
not be forced to.

Another point to consider is that a user who wishes to connect to a remote re­
source may not be directly identifiable by that resource. For example, a
database interrogation service may contain no check of its users’ authoritity,
assuming that their identity was established as part of the identification
procedure when they logged in and that the resources at their disposal, including
the interrogation service, were thereby decided. There will then be an entity, at
the same location as the users who wish to connect, that is concerned with
resource allocation, that knows which users are allowed to use which resources
and that checks permission before allowing the users’ connections to be made.

This entity has a privileged position in remote user authentication in that it is
trusted by remote parts of the service (entities of the same kind as itself) to
guarantee that the users it serves are only given authorised connection. It is
useful to build into the service some mechanism to guarantee to such privileged
entities that they are communicating with their own kind. The simplest way of
doing this is to design the control software so that all connections to remote
processes are handled by such entities and that they check access permission at
one or both of the sites involved. If we assume that this is not the case and that
there is a need to make connections between processes which will do their own
checking of authorisation then a possible way of identifying the entities which
are to be given more trust is to allocate exclusively for their use a special type of
key. The encipherment service guarantees to the remote encipherment service
that such a key may only be used successfully by such an entity. Reference 2
introduces the idea of type values which it is useful to bind securely to keys (e.g.
DEK or KEK). A useful type value which is not mentioned there is one which
guarantees that the key may be used only by an entity authorised to check
access rights.

There are applications where it is useful to be able to generate the same key at
two remote sites rather than sending the key from one to the other and without
sending values used to generate it via the telecommunications link. For example,
customers are supplied with plastic cards which are used to help identify them.

ICL Technical Journal November 1984 151

The cards contain values which are to help generate the key to be used in
sending information to a central installation. In addition they are required to
type in a PIN value which also contributes. Another contributory value comes
from the terminal into which they insert their cards (the terminal value may be
changed periodically for greater security). The central installation holds these
values. When it is told in clear who the customers and the terminals claim to be
it generates a key using the stored values, knowing that the genuine terminals
can generate the same on behalf of the genuine users. For this and similar cases
the key-generation functions in Section 2 contain a seed value, with the
assurance that the same seed will generate the same key. When an unrepeatable
key is wanted the seed is omitted. There is, of course, a danger in this facility
and it may well be that it should be denied to some users.

In making a request for a transport connection, as described in the open systems
interconnection model, it is envisaged that a user may ask that it be secure.
The details of what this means are not yet spelled out but it certainly implies
encipherment. A connection request message may contain ‘security parameters’7
and we may suppose that they will indicate the key to be used, either as the
actual key (suitably enciphered) or as a reference to a key already known to
both parties. We may then consider the applicability of the functions described
here. First, if the two parties have an established mutual KEK used to encipher
keys they wish to send each other the functions are not applicable. The key to
be used for the connection is enciphered by a call on the sender’s encipherment
service. It may then either be placed in the connection-request message or it may
be sent beforehand (for example as one of a batch of keys to use that day) and
a reference to it may be placed in the connection-request message. If the two
parties do not have such a mutual KEK and do not have a supply of session keys
to choose from then the function ‘mutual key’ applies. However, it cannot be
used to encipher the key which is then placed in the connection request because
that is not its function. Its function is to deliver the key. Neither is it reasonable
to suppose that a key should be extracted from the connection request as it
passes from one KEK domain to another (and there may be such separate
domains for security purposes). The use of ‘mutual key’ in this case is to
establish a mutual key for the transport entities that they may use to encipher
the keys to be used subsequently for transport connection protection. It must
be done as a separate previous operation and, at least the first time, must be sent
over an ‘insecure’ transport connection. This does not matter as the function
handles its own security.

3.2 Data privacy and data authentication

Once keys have been successfully exchanged by the two end users of a tele­
communications link or by their local services on their behalf data privacy may
be achieved by data encipherment and decipherment. Each local service must
therefore provide enciphering and deciphering functions. The user may also wish
to encipher and decipher keys using key-enciphering keys to produce and make
use of key hierarchies. These topics are dealt with, for example, in References 1
and 2, which describe means of protecting keys such that they never appear in

152 ICL Technical Journal November 1984

clear outside a trusted encipherment environment. They are relevant to this
paper in that the user of the key-manipulation facility needs the ability to
operate explicitly upon keys of a chosen type, but should not need to know how
the types are indicated or need to be wary of operations upon keys of a particular
type which might prejudice security. Data authentication and greater assurance
of privacy are obtained by using particular modes of operation of encipherment
(for example cipher block chaining or cipher feedback when using block ciphers)
and by the addition of checking information (e.g. enciphered sum checks to
reveal illicit modification and various identifying values to reveal illicit insertions
and replays). These functions are not directly concerned with key generation
and distribution and are not dealt with in this paper.

3.3 Digital signatures

A digital signature depends upon a sender using a key that no one else has and
the receiver being able to demonstrate that the key has been used. To do this the
sender may use the secret key of a public key cipher, such as RSA, and make the
public key available to the receiver.8 Using the functions described here a type
value would be assigned to mean a public key pair. The effect of a public key
cipher may be achieved by adding type information, meaning ‘encipher only’ or
‘decipher only’ to a symmetric cipher key in a trusted environment, with the
knowledge that it can only be removed and acted upon in a trusted environ­
ment.2 Another possibility is to use an algorithm which has an associated public
and private key but which transforms the text to be signed by some means other
than encipherment. Such keys can also be indicated by type information in the
functions described in Section 2.

3.4 Stored secure files

The key-generation function may be used to generate a key which enciphers a
file stored locally or whose medium is to be physically removed from the
computer environment. If a file is stored for a long time or is transferred to a
separate site it will be necessary to re-encipher. Reference 1 points out that a
hierarchy of keys is needed in such a case. References 1 and 2 discuss how this
may be achieved securely. The exact method is hidden at a lower level and
visible in the functions described here only in the fact that keys are generated
with an explicit type which indicates key-enciphering key or data-enciphering
key.

3.5 Protection o f software copyright

Reference 2 points out that type information securely attached to a key may be
used, given a secure execution environment, to safeguard copyright. Software to
be protected would be enciphered by the key and the key would be supplied to
the user enciphered by a KEK which was available only inside the secure execu­
tion environment. When the software was used it would be deciphered as an
implicit part of the loading operation. This idea anticipates the commercial

ICL Technical Journal November 1984 153

availability of such an execution environment. However, when appropriate, a
type value could be assigned in the functions of Section 2.

4 Relationship to detailed key manipulation schemes

This section discusses how the functions described in Section 2 can be imple­
mented using a number of techniques described elsewhere. The functions are
dealt with in turn.

4.1 Generate key

Let us assume we are using one of the key management schemes described in
References 1-3. Each scheme, when it generates a key and makes it available
outside the trusted encipherment facility, protects it by enciphering it. The
schemes differ in how they do this and in how they ensure that the keys may
not be misused (for example that a DEK may not be deciphered and made
available outside the encipherment facility in clear form). They differ in the
amount of protection they give the keys. The key notarisation scheme guarantees
that a key can only be used successfully by the intended users by making the
encipherment and decipherment of the key a function of the identities of the
users for whom the key is intended. Since users must establish their identity in
a way which satisfies security criteria (for example by supplying a password)
they cannot successfully use someone else’s key. The IBM scheme protects the
key from exposure and ensures that some different types of key cannot be
confused. To do this different master keys at an installation are used to encipher
KEKs, session keys and keys used to encipher files. The operating system is
relied upon to ensure that the keys are used by the intended users. The ICL
scheme enciphers a key, together with type information indicating how it may
be used, by a KEK (in some cases by an installation master key). It can, there­
fore, potentially restrict keys in ways which may be defined and could include
the equivalent of the key notarisation scheme. The functions supplied in terms
of key type therefore overlap and where they coincide they are not implemented
in the same way. The functions described in Section 2 may be mapped on to any
of the three, with the proviso that some of the key types envisaged are not
present in some cases.

The local name produced by ‘generate key’ is then in the context of Reference 1
the form enciphered by KM0, KM! or KM2 according to its type. In the context
of Reference 2 it is the key and concatenated type enciphered by the master key.
In the context of Reference 3 it is the form supplied by the key notarisation
facility.

If a key is to be associated securely with its users as in Reference 3 then extra
associated software is needed if the basic encipherment facility does not provide
it. Whether it is always desirable to tie a generated key immediately to particular
users is a debatable point.

154 ICL Technical Journal November 1984

4.2 Give key

Assume that the user to whom the key is to be given is at a site which uses a
similar system in terms of References 1-3. If the first site has the necessary KEK
it can re-encrypt the generated key and send it directly to the second site. There
the service re-encrypts it for the second user if the key used to protect it in
transit is not the one which protects it when it is stored there. There may, on the
other hand, be a series of re-encipherments en route because of the need to cross
different key domains. The user of the ‘give key’ function may remain unaware
of this.

As in Reference 4, a key-distribution centre may be used to generate the key in a
form suitable for transmission to another site. This also may be hidden from the
user of the ‘give key’ function.

If the sender and recipient are encipherment services which differ in the way
they encode keys for protection (as in References 1-3) more manipulation is
needed to effect the transfer. There must be a transformation function, which
operates in an environment as secure as the one used to encipher the data in the
first place, which deciphers and re-enciphers, reformatting as necessary. This also
can be hidden from the user of ‘give key’, although a standard way of formatting
keys and their associated information is clearly desirable.

4.3 Mutual key

In some cases this may be only a shorthand way of writing ‘generate key’,
followed by ‘give key’.. However, consider the following cases:

— when a KDC is used to generate the key it may be necessary to tell it the
identity of the other partner in the connection so that it may encipher it
appropriately4

- the generation of the key may need the involvement of the encipherment
services at both ends of the connection (e.g. when using the Diffie/Hellman
algorithm9).

For such reasons ‘mutual key’ may be needed as a primitive function at this level.

4.4 Take key and destroy key

If the underlying implementations are those of References 1-3 these functions
are barely necessary. If a generated key is stored by the encipherment service
and a reference to it passed back to the user then an explicit destruction of keys
is needed. ‘Take key’ may also be used to inform the service that a particular
user is no longer entitled to use a key.

5 Relationship to communications standards

We may expect the emerging open systems interconnection standards to provide

ICL Technical Journal November 1984 155

secure services. For example, as already mentioned, an enhancement of the
transport service is likely to provide authentication of users, data privacy and
data authentication. The two entities which communicate to provide this service
must establish jointly agreed keys and initialisation variables and would make
use of functions such as those described in this paper. The form of the trans­
mitted key and its accompanying information is an obvious candidate for
standardisation and would avoid the need to transform the key en route, other
than to change its key-encryption key. In seeking a standard form we have to
consider:

- the length of the key
- the permitted users (if this is to be declared explicitly)
- information about the type of use permitted.

The methods referred to in this paper do not all allow the same restrictions of
key use to be described. Moreover, in some cases, the restriction is implied in the
manner of enciphering the key (e.g. the key notarisation scheme). A standard
which explicitly stated the users could therefore be considered redundant in
this case. However, if the basic key-manipulation method does not involve the
user’s identity (as in Reference 1 and in Reference 2 in its simplest form) the
addition gives added security.

The basic encipherment algorithm affects both the length of the key and the
type information which is relevant. For example, an indication o f ‘encipherment’
or decipherment’ is irrelevant to an RSA key.

Reference 2 has suggested that the ‘parity’ bits in the DES key could be used to
indicate typing information. This may be unacceptable as an international
standard. The typing information must then be held separately from the 64-bit
key variable.

Bearing these points in mind the following is a tentative suggestion for a
standard form for a key and associated information. First, the clear form. It has
the format:

key length, key, key type, users

where ‘key length’ is an integer which gives the length of the following key;
‘key’ is the key as a binary string;
‘key type’ is a binary string whose bits have the following significance:

1st bit DEKorKEK
2nd bit enciphering key or not
3rd bit deciphering key or not
4th bit software protection key or not
5th bit key usable by any process or only by one authorised to check

access rights
(meanings for other bits are likely to prove useful);

156 ICL Technical Journni November W .

and where ‘users’ consists of either one or two alphanumeric strings which
identify the permitted user or users.

If such a composite item is to be transmitted over an insecure telecommunica­
tions line it must be enciphered. The form this takes depends upon the en­
ciphering method. Using a 64-bit block cipher, for example, one must use some
method of ensuring that the separate blocks which form the item cannot be
changed unnoticed. One might, for example, form an enciphered sum check of
the whole item and send it with it. A method which enciphered a block as long
as the composite item could dispense with this.

6 Conclusions

This paper has discussed a number of issues related to the standardisation of the
interface to an enciphering service at a particular level.

Several ways of providing basic key-manipulation features have been considered.
It would be logically possible to evolve a standard way which made use of the
best features of those considered. This would make standardisation of the form
of the key and associated information easier.

An enciphering service may or may not make use of a separate key-distribution
centre, depending on the number of communicating locations and the
complexity possible in each. This design option is likely to survive. The
functions suggested here deliberately hid this choice, taking the view that it is a
part of the service implementation which the user should be able to ignore.

When a key is sent to a remote user it may need to be transformed because a
different way of protecting it is needed. It may need to be enciphered by the
remote user’s location master key. During its journey it may need to be en­
ciphered by a KEK used only for transportation. It may need to be re-enciphered
by several such keys in the course of its journey. Such transformations should
be hidden from the user at as low a level as possible so that logic can be written
irrespective of the context created by the way the network of users is organised.

New methods of enciphering are likely to be developed. We should attempt to
protect users from the need to know the underlying changes they bring. This is,
of course, an aim which cannot necessarily be fulfilled. At the level chosen for
the functions of this paper we reveal the essential difference between symmetric
and asymmetric ciphers. New methods may bring their own characteristics which
should not be hidden.

New applications of encipherment and related techniques are likely. Two
mentioned here are digital signatures, which do not use encipherment of a form
which can be used for data privacy, and a new key type dedicated to controlling
resource use.

For such reasons the subject is one which will continue to develop and the

ICL Technical Journal November 1984 157

points made in this paper are offered as part of the discussion needed to find
functions and techniques which may develop as our knowledge of the subject
grows.

References

1 EHRSAM, W.F., MATYAS, S.M., MEYER, C.D. and TUCHMAN, W.L.: ‘A crypto­
graphic key management scheme for implementing the data encryption standard’, I B M
S ys t . / , 17 (2).

2 JONES, R.W.: ‘Some techniques for handling encipherm ent keys’, IC L Tech. / , 1982,
3 (2), 175-188.

3 SMID, M.E.: ‘A key notarisation system for com puter netw orks’, NBS Special Publica­
tion 500-54, US Dept, o f Commerce.

4 PRICE, W.L. and DAVIES, D.W.: ‘Issues in the design o f a key distribution centre’,
NPL R eport DNACS 43/81, National Physical L aboratory, Teddington, Middlesex, UK.

5 International standard ISO/IS 7498. ‘Inform ation processing systems — open systems
interconnection - basic reference m odel’.

6 NEEDHAM, R.M. and SCHROEDER, M.D.: ‘Using encryption for authentication in
large networks o f com puters.’ Communications o f the ACM, December 1978.

7 Draft International Standard ISO/DIS 8073. Inform ation processing systems - open
systems interconnection - connection oriented transport pro tocol specification.

8 RIVEST, R .L., SHAMIR, A. and ADDLEMAN, L.: ‘A m ethod o f obtaining digital
signatures and public key cryptosystem s’, Comm unications o f the ACM, February
1978.

9 DIFFIE, W. and HELLMAN, M.E.: ‘New directions in Cryptography’, IE E E Trans.,
IT-22 (6).

158 ICL Technical Journal November 1984

Analysis of software failure data (1):
adaptation of the Littlewood stochastic
reliability growth model for coarse data

P. Mel lor
ICL Group Quality, Stevenage, Hertfordshire

Abstract

Measurement of software reliability requires three things: a conceptual
model, an inference procedure and a prediction procedure. The conceptual
model describes software failure in probabilistic terms. The inference pro­
cedure gives an estim ate of the model parameters based on analysis of the
failure history of a software product. The prediction procedure uses those
param eter values to forecast future behaviour.

The conceptual model used here is Littlewood's stochastic reliability
growth model, published in 1981. This is a three-param eter, fault-counting
model. It has two types of uncertainty: each fault is a Poisson source of
failure with its own rate, and this rate is itself a gamma-distributed random
variable. The shape and size param eters of the gamma distribution and
num ber of faults are the param eters to be estim ated. L ittlewood's maximum
likelihood estim ation of the param eters has been adapted to apply to a
data set consisting of fault count and running tim e a t several sample points.
A standard for data capture is given which will yield a 'clean' set: one
which is no t influenced by events outside the tim e period, system sample
and product version being studied.

The model has been programmed in Pascal for the ICL Personal Com puter.
The results of analysing several data sets are presented and assessed.

Put not your trust in optimistic modellers. If the advocate of a model will tell
you openly its drawbacks as well as its strengths, cherish him.

Bev littlewood

1 Introduction

1.1 Software quality assurance: the need for measurement

The need for reliable software is one of the main challenges to the computer
industry. To meet this, large sums of money are spent on design, development and
testing techniques to ensure that software will not fail in use. Our confidence in
its not failing is what we mean by its reliability.

ICL Technical Journal November 1984 159

To judge the success of reliability-improvement methods we must have a measure
which expresses our confidence as a number. Without an agreed measure, any
programme of improvement is pointless. To know what has been achieved, we
must be able to test the finished product and estimate reliability from the
failures observed. The technique of reliability measurement is an essential
complement to the techniques of developing reliable software.

We cannot achieve what we cannot measure.

1.2 Aims o f reliability measurement

Typically, software goes through several stages in production: statement of re­
quirements, design, specification, coding, testing, trial and release.

Statement of requirements requires knowledge of the market and the capabilities
of current design methods. The conformance of design to requirements, specifi­
cation to design and code to specification (prior to test and during early testing)
is assured by inspection.

Measurement of reliability begins when a stable product is available, in later
testing or trial. (‘Stable’ means that functional enhancement is at an end: repair
of faults found during trial can still be carried out.) The purposes of applying the
measurement technique at this stage are:

— to allow reliability to be quoted on delivery. A certified minimum reliability
may be one of the requirements for certain applications, e.g. flight control,
nuclear reactor safety systems

— to enable the vendor to forecast the cost of support
— to assess the point at which the product is fit for release (based on limits of

minimum reliability or maximum support cost)
— to estimate the further testing time required until the product is fit for release.

1.3 Defects and failures

It is worth making clear a distinction between the defect count kept during
most development procedures which use design and code inspections (notably
the Fagan method), and the statistics of software failure used to measure
reliability.

The defect count is kept for all stages of development from design through to
testing. It provides a measure, typically expressed as ‘defects found per thousand
lines of code’, of development progress. By comparison with similar products at
the end of their lifecycle it is possible to estimate ‘defects remaining per thousand
lines of code’.

Faults found as a result of failure during test will be counted as defects for
inspection purposes. There is therefore a common area between the two sets of
statistics. In fact, to investigate the relationship between ‘estimated defects

160 ICL Technical Journal November 1984

remaining’ and reliability is an interesting task for research. However, the defect
count is a static measure: it takes no account of running time. Since it does not
tell how likely a given defect is to cause a failure, it provides no measure of
reliability.

1.4 The pursuit o f perfection

We can never be certain that software will not fail. Even if no failure at all has
been observed during trial, this would give less than total certainty that the
product would run without failure for any subsequent period. Even though the
aim of software production is zero defects, reliability measurement is still
needed to assign a number to our confidence that the product in fact contains
zero defects.

A target of zero defects must not be confused with an assumption of zero
defects. Safety measures, backup and fault-reporting procedures need to be in
place even for highly reliable products. As the engineering adage has it: the
magnitude of a disaster is proportional to the designer’s certainty that it cannot
happen.

1.5 Hardware and software reliability concepts

The concepts of hardware reliability must not be applied unthinkingly to
software. Hardware reliability theory depends on being able to observe the fre­
quencies of failure among many identically produced items. Software is only
produced once, even though many copies are run. The ‘probability of nonfailure’
is therefore a measure of our confidence in it (this is probability in the Bayesian
sense).

There is no direct equivalent in software of physical component failure. The
standard measure ‘mean time to failure’ (MTTF) has limited applicability to
software. (The reasons for this are considered later.)

‘Mean time to repair’ (MTTR) is also not a useful concept in software. Typically,
after a software failure, the system can be restarted immediately and the
diagnosis of the fault takes place away from the system using evidence gathered
at the time of failure. The repair may be applied much later, again without
requiring a significant amount of system downtime.

On the other hand, the concepts of software reliability also describe the de­
tection and removal of design faults in hardware systems and some aspects of
repairable hardware reliability.

The differences are discussed at greater length elsewhere1.

1.6 Specific problems o f the vendor

Certain problems of software reliability are peculiar to the vendor of computer
svstpm c Tn n a r tir i iln r·

ICL Technical Journal November 1984 161

— many systems will simultaneously run the same software product, certainly
after release, but probably also during validation

— as a result, one fault may cause many failures in the field before it is dealt
with

— the vendor’s support costs depend on the number of reports of failures of all
degrees of severity, not just those causing total system crash

— postrelease data tends to be poor, since it must be collected from many
systems in the field. Automated collection may improve the quality of this
data.

Most software reliability models deal with a single instance of a program running
in a controlled environment with perfect data capture. The model used here has
been adapted to cope with the above problems. Instead of requiring running
time up to detection of each fault, it uses total running time and faults found in
each of several periods of time.

Published models assume each fault is seen only once, since it is then removed.
Here the same effect is achieved by disregarding all but the first failure caused by
any fault. Note that data on repeat occurrences would in theory be useful in
estimating the contribution made to the overall failure rate by the individual
fault. However, the Known Error Log is published to users to suppress the report­
ing of failures due to faults already logged. Since the repeat data are censored to
an unknown extent by this mechanism, all but first occurrences are discarded.

The ‘memoryless’ nature of the model justifies the addition of running time
from several systems running simultaneously.

1.7 Basic method

To measure software reliability requires three things:

— a conceptual model o f how software failure occurs. This is expressed in terms
of the probability of given faults causing failure. It depends on the value of
certain parameters. The model used here is Iittlewood’s stochastic reliability
growth model2 (referred to as LSRG). This assumes that faults in the product
cause random failures (i.e. each fault is a Poisson source of failure), but each
fault does so with its own rate. As the software is run, faults are found and
removed and those remaining are fewer and each is less likely to cause a
failure, hence the decreasing rate of occurrence of failures observed during
test. The three parameters are the number of faults, and two parameters de­
scribing the distribution of their individual rates.

— an inference procedure. This applies the model to a particular product by
estimating the values of the parameters to fit the observed failure statistics.
Maximum likelihood estimation is most frequently used.

— a prediction procedure. This predicts behaviour of the product by combining
th e resu lts n f th e in ference n ro re d n re w ith th e conventua l m odel.

162 ICL Technical Journal November 1984

We proceed as follows:

— A frozen version of the product is run under trial conditions as close as
possible to those of actual customer use.

— All running time is recorded. (Some other suitable measure of product use
may be substituted.)

— All incidents are recorded, with date and time of occurrence. An incident is
any software failure, user error or detection of a usability problem.

— Each incident is diagnosed to determine its cause, or ‘source’.
— The first incident due to each source is counted, the rest are discarded.
— Data as above are collected for several periods of running. This gives a set of

pairs of numbers: the running time and new sources found in each period.
— A graph is drawn of accumulated new sources found against running time.

The slope of the ‘smallest’ curve that can be drawn over this (in a sense
defined later) is a measure of the failure rate at any point.

— The three model parameters are evaluated (inference procedure).
— The expected number of sources found and failure rate can then be calculated

for any future time (prediction procedure).

The result of this method applied to a typical data set is shown in Fig. 1 and 2
and Tables 1-4 in Section 6.

ICL Technical Journal November 1984 163

Fig. 1 B200A data set: sources found

Care is necessary when interpreting the results:

The predictions are of the finding of new sources. Repeat incidents due to
known sources will also occur, depending on the number of systems simul-

taneously running the product and the repair policy adopted. The software
service cost model1 will take these into account when predicting support load.

The predictions are of incidents over running time. For use on the released
product, a factor representing ‘average use per week’ (or similar) must be applied.

Although one of the parameters is ‘number of faults in the product’ this does
not justify a manager saying to a programmer ‘Right, Smith! The model shows
394 bugs in your program. Don’t come back till you’ve found them all!!’. Most
of those faults would be very infrequent causes of failure. It would make more
sense to set targets in terms of rate of occurrence of failures or reliability at
several points in time and continue testing until the predicted rates or reliabilities
were within target for each point chosen.

164 ICL Technical Journal November 1984

Fig. 2 B200A data set: rate

Care must also be taken in setting up the trial environment. The predictions will
only be valid if the type of usage during measurement is not significantly differ­
ent from that during actual use.

Lastly, care must be taken with data collection. Statistics must come from a given
frozen version of the product, run on a given sample of systems over a given
period of time. The data set must be ‘clean’: there must be no ‘crosstalk’ from
outside, e.g. the first time a source is found in the trial it must be counted as
new, even if known from incidents prior to the trial.

1.8 Structure o f the paper

Terminology is defined in Section 2. Section 3 describes the Littlewood
stochastic reliability growth model in mathematical terms, including the formulae
for prediction. Section 4 describes the inference procedure. Section 5 outlines
the minimum data capture standard. Section 6 presents some examples of data
sets and their analysis. Section 7 examines the significance of different
parameter values, Section 8 considers alternative approaches and Section 9 looks
at further work required.

2 Terminology

failure unacceptable behaviour of the product

query user response to detection of difficulty (other than an
actual failure) in using the product: includes ‘usability’
problems

incident covers both failure and query: generally observed by
the vendor when an incident report is raised by the
user

fault result of a mistake in design or coding which causes
failure when encountered during running

source anything which causes an incident: either a fault, or
feature of the product which causes a query to be
raised (see note below)

instance where a product is run on several systems, the ‘copy’
of a source on one particular system.

manifestation detection of a source, resulting in an incident. May
occur at any instance of the source..

known source one which has manifested itself at any of its instances,
as opposed to a ‘new’ source

KEL Known Error Log: central file of all known sources

u product use: a measure of how much the product has
been exercised and the sources in it exposed to risk of
manifestation. Usually running time. However, for
certain types of product a different measure may be
required. For example, for an intermittently used
interactive program the number of transactions may
be used. Rarely identical with elapsed time, u = 0 at
start of trial.

/ > | x } , / v | x | c j Probability that x it true, conditional probability that
x is true given a

S (t | u) reliability = Pr { No incident before further product
use t \ as measured after nroduct use u

ICL Technical Journal November 1984 165

n number of sources of incident in the
product parameters

h scale parameter of gamma distribution of the
s shape parameter of gamma distribution model
n h s estimates of n, h, s

x ! j y x exp (~y) dy, x > 0. For integral x, this

x
= Π i

i = 1
- the factorial function. For nonintegral x, the
gamma notation is often used: Γ (x) = (x - 1)!

X random variable X. Random variables are denoted by
capitals and their realisations by lower case

p d f (x) probability density function of random variable X

E { x } , E { z | u \ expected value of random variable X, expected value
after use u

C accumulated sources manifest (random variable)

M (u) E { C \ u\ \ expected number of sources manifest after
use u

R (u), R (u | c) rate of occurrence of incidents from whole product
after use u, rate conditional on c sources having been
found already. (Referred to in the literature as
ROCOF: rate of occurrence of failures, but note that
we wish to include incidents of both types.)

Z rate of manifestation of individual source (random
variable)

(n \ the binomial coefficient n!/c!(n-c)!, n and c integers
c)

LCM least concave majorant: the smallest curve (actually a
series of straight line segments) that can be drawn
over a graph of sources manifest against product use

exterior point point on the graph at which it touches the LCM

N o t e : We shall be mainly concerned with large operating system software. The
complexity of such software means that product behaviour may be to specifica­
tion, but unacceptable, or acceptable although outside specification. The above
terminology sidesteps any argument about whether ‘queries’ are ‘failures’ or not.

The rest of this paper will refer to source manifestations and incidents, except
where a deliberate distinction is made between faults and query sources when
analvsina data sets.

166 ICL Technical Journal November 1984

3.1 General remarks

The model is fully described in Littlewood’s 1981 paper2. It was chosen since it
avoids the rather dubious assumption of earlier models, such as those of Musa3
and Jelinski and Moranda4 , that all sources have an equal contribution to the
total incident rate. It is also mathematically tractable. In addition, for calcula­
tion of the vendor’s lifecycle costs, a model is needed which predicts both the
total number of incidents and the number of incidents which are first manifesta­
tions of sources.

It is a ‘fault-counting’ model: one which has as one of its parameters the
‘number of sources in the product’. A further refinement is to make this a
random variable as in the ‘Poisson-gamma’ model. This has been compared to
the Littlewood model by Moeks and found to give almost indistinguishable
results.

That the model takes the incident as its fundamental observation accords well
with experience in software development and support. We do not observe a
rate, we observe an incident. (After product release, the vendor usually observes
just the report of an incident.) In fact, without a conceptual model, we cannot
define what we mean by the rate.

ψ

The cost forecast model1 hypothesised a different rate for each instance of a
source due to the application of a ‘stress factor’. This is not relevant here and
is omitted for simplicity.

3.2 The multisystem problem

Since sources are random in the Poisson sense, the stream of incidents from any
source is ‘memoryless’: if we observed all manifestations we would see the same
distribution of incidents over product use whatever point we took as our origin.
This would justify adding together product use from several systems for the
purposes of analysis, even with arbitrary shifts relative to one another of the
points at which they started running. We could, for example, compile the first
week of our combined data set from statistics of week 1 of all systems, even
though they did not start running simultaneously. However, we are observing
first manifestation only, and since manifestation of a source on system A before
system B starts up would censor any manifestation on system B from our
records, we must preserve the ordering of system startup. For a given calendar
period, then, we combine statistics of product use and incidents across all
systems in that period.

In what follows, it is assumed this has been done and all references are to
manifestations of a source, not of instances of a source, as though dealing with a
single system.

3 Littlewood stochastic reliability growth model

ICL Technical Journal November 1984 167

3.3 Assumptions

1 A software product contains a given number n o f discrete sources of incident.

2 Each source generates incidents randomly, i.e. as a Poisson process, during
product use.

Pr 1 c incidents generated over product use « } = exp (_ZM)
c!

where z = manifestation rate of this source

3 Only the first incident from each source is observed, i.e. each source is re­
moved immediately and perfectly on manifestation.

4 Sources are independent of each other. The total incident rate from the
product is therefore the sum of the manifestation rates of all the sources
still present at the time.

5 The manifestation rate Z of an individual source is a random variable with
a gamma distribution:

P df (z) = hszs- 1 exp (- hz)

where h and s are the scale and shape parameters.

Note: h has the dimensions of product use. s is dimensionless.

3.4 Choice o f gamma distribution

This is chosen to model the uncertainty about individual source rates since

— it is mathematically tractable
— it is flexible enough to fit any actual distribution we may expect to meet in

practice
— it is conjugate with the Poisson: after a period of use, when some sources

have been removed, provided the initial p d f of the rate was gamma, the final
one will be also. The shape parameter remains constant, but the scale
parameter h increases after use u to h + u. This represents the selective
depletion of the population of sources: those with high rates tend to be
eliminated earlier.

3.5 Formulae for reliability and other measures

For the purpose of estimating these measures, we assume that the parameters n, h,
and s are known. Refer to Section 2 for the notation. The derivations are in the
Appendix, or else in Littlewood2. Note that ‘incident’ here is ‘manifestation of a
new source’: repeats are ignored (assumption 3).

expected number of sources manifest in (0, u):
M U A = r \ r \ u \ = « Π - (h l (h + Π Ϊ

168 ICL Technical Journal November 1984

conditional manifestation rate at u, given c sources manifest in (0, «):

R (« | c) = (n - c) s/(h + u) (2)

expected manifestation rate at u :

R (μ) = Μ1 (μ) = nhss/(h + u f +i (3)

conditional reliability at u = Pr { No incident in (u, u + t) \ c in (0, u) } :

h + u 1 (« - c >

5 (t | u , c) = (4)
h + u + t

expected reliability at u:

S (r | u) = (5>
\ h + u / \ h + u + t /

conditional expected time to next incident at u, given c incidents in (0, u):
£ { T \ u , c] =(h + «)/((« - c)s - 1) (6)

Note that the expected manifestation rate of an individual source remaining
after use u is s/(ft + u).

We shall use mainly the unconditional expressions 3 and 5. This differs slightly
from the treatment of Littlewood2, who usually quotes measures given some
observed number of incidents.

The reason is this: if, after estimating n, h and s from an observed data set (see
Section 4), further observations^ are made, then instead of calculating the
measures with the old^n, h and s but conditional upon the extra incidents we
calculate new values o f n, h and s using the increased data set.

When monitoring a software trial, therefore, the parameters are always estimated
on all available data at any time and used to predict product behaviour beyond
the last observation. The incident rate, for example, is therefore shown as
smoothly decreasing instead of having the step drops at each incident which the
original model gives2.

It is relevant to this approach that maximum likelihood estimation as described
in Section 4 always gives a curve of expected number of sources found against
product use which passes very close to the last data point.

3.6 Confidence intervals

Formula 1, for the expected number of sources found, is derived from the
binomial pdf of C, as given in the appendix, where it is used to derive the
likelihood function. From this p d f can be derived the quantiles of the observed

ICL Technical Journal November 1984 169

future incidents, and hence of the conditional incident rate and reliability. This
will be covered in a later paper on applying formal methods of assessing predictive
accuracy.

Note that no confidence intervals can be quoted for the estimates of n, h and s.
Maximum likelihood estimation in this case provides no means of calculating
them. The uncertainty of our predictions is expressed solely by the confidence
intervals of C.

3.7 Nonexistence ofMTTF

From eqns. 6 in Section 3.5, it is evident that E | T 1 u, c l is not always meaning­
ful.

The condition for E { T\ u, c J to exist is:

s > l/(« - c) = 1/(number of sources remaining) (7)

To obtain an unconditional expected time to failure after use u , E \ T \ u \ , we
would have to evaluate:

n

Σ e { T \ u, c) Pr { c = c}
c = 0

Since E { T \u, n] is obviously infinite (no further incidents are possible after
removal of last source) and Pr { C = n) is finite (it is just possible that all
sources have been removed), the sum always contains at least one infinite term,
and the unconditional expected time to next incident, or ‘MTTF’, is meaningless.

Because of this, manifestation rate. and reliability must be used as software
measures instead of MTTF.

4 Parameter estimation

4.1 General

This is the inference procedure referred to earlier. The object is to find the best
estimate of the parameters n, h and s for a given set of failure data.

The method used is maximum likelihood estimation (MLE). This essentially asks
the questions: 1

1 For a particular set of values of the parameters, how likely are we to observe
the given data?

? F o r u /h irh n a ram etp .r v a lu es is th a t l ik e lih o o d oreatest*i

170 ICL Technical Journal November 1984

The first question requires a likelihood function which gives the probability. The
second requires a search procedure to enable a computer program to look for the
maximum of that function (since an analytical solution is not possible).

4.2 Likelihood function

Suppose the data set consists of m pairs of numbers (c(·, «,·), where c,- is number
of sources found after product use «,·, 1 < i < m, c0 = u0 = 0

Then (see Appendix)

Pr { particular source not manifest in («,·_ j , u,·) \
= qf = ((h + u,-_ 1.) / (/ 1 + ut))s (8)

Define p,· = Pr {source is manifest] = 1 - ¢,-

Then

Pr { c,· sources manifest by «,· | c,-_ 1 manifest by «,· _ i }
= Pr { (ci - c,-_!) sources manifest in («,·_ j , w,·) out of « - c,-_ j remaining at

and so:

m
Pr \ given data set being observed} = Π i,· (10)

/= 1
This is the likelihood function to be maximised to give n, h and s. In practice,
since the value of this function is very small, its log is used to avoid floating­
point underflow.
4.3 Search procedure

Many procedures are available. The one used here is the ‘naive hill-climbing
method’.

1 set precision p = 0-5
2 select first dimension, say n
3 until likelihood function stops increasing, increment n by step pn
4 until likelihood function stops increasing, decrement n by step pn
5 repeat 2-4 for other dimensions h and s
6 if the set of values has changed since 2, repeat 2-5
7 set precision p to new value p/2. If p < 2~7 end, else go to 2.

The start point for the search may be set by the user at runtime: by default it
is h = um, s = 1 and n = best value as defined below. There is an option to
search with a fixed value of s, varying n and h only.

ICL Technical Journal November 1984 171

4.4 Simplification o f search

It is possible to express the best value of n for given h and s as a function of h
and s. To do this, we differentiate the log of the likelihood function (eqn. 14)
partially with respect to s and equate to 0 for stationary value. The resulting
value of n is given by

m m
« = Σ [log <7,· (f i~ c/_ i ¢/) / (1 - <?,·)] /]T log ¢,- (11)

/= 1 /= 1

This reduces the number of dimensions of the search to two (or one if s is fixed).
With this reduction, the search procedure yields an estimate for a set of 150
points in 1 h on the ICL Personal Computer. Regarding n being a function of h
and s : see remarks in Section 7 on interpreting the parameters.

Compare eqns. 10 and 11 with eqns. 46 and 47 in Littlewood2.

5 Data-capture requirements

5.1 General

The following standard must be observed when collecting data for analysis,
otherwise meaningful estimates cannot be made. Note that the same standard
applies to data for any model capable of estimating reliability and incident rate
and not solely to data for the Littlewood stochastic reliability growth model.

5.2 Data required (ideal)

1 Total use of product on all sample systems up to every incident.
2 Is the incident a first manifestation or a repeat?
3 What is the type of the incident (e.g. failure or query) and its severity

(e.g crash)?
4 In which product, version and module is the source located?
5 Data set must be clean (See 5.4)

Note
(i) Product use up to incident is often derived from the date and time of the

incident, which is then mapped on to running-time records. All incident
reports, including queries and documentation errors, must therefore
record the date and time of occurrence.

(ii) Usually a trial will involve several products running together. The above
data are required for each product separately. In addition, if failure rate is
to be broken down between modules, sources must be located down to
module level.

If ideal data are available, it is possible to use the model with the original likeli­
hood function lean. 46 in Littlewood2!.

172 ICL Technical Journal November 1984

5.3 Minimum data required

As above, but with 1 replaced by

1(e) Total use of product on all sample systems in each of several periods
during the trial

1(b) Within which period did each incident occur?

This type of data is often the best that is available. The adaptation of the
inference procedure is necessary to cope with it.

5.4 Clean data

Whether ideal or minimum data is collected, the data set must be ‘clean’. This
means that it applies to a single product version, run on a known sample of
systems for a given time period.

Three kinds of crosstalk from outside the data set must be avoided:

5.4.1 Time period: The trial should start with a ‘clean slate’ i.e. the first time a
source is manifest in the trial it must be treated as new, even though it is known
from incidents prior to the trial.

5.4.2 System sample: Manifestation of a source on a system not included in
the trial must also not prevent it being counted as new at its first manifestation
on a system in the trial.

5.4.3 Version: The trial must be done with a specific frozen version of the
product. Sources manifest in other versions and presumed to be present in the
trial version must still count as new when manifest in that version.

Crosstalk will result in failure data being censored, and give rise to optimistic
reliability assessments.

5.5 Practical concerns

5.5.1 Delay: There will be a time lag before dependable analysis of a given data
set can be performed. This is due to the time required for incident diagnosis,
and, in the case of field data, time for reports of product use to be sent in.

In the interim, incidents can be assigned to their ‘best guess’ category. To err on
the side of pessimism, unresolved reports should be treated as manifestations of
new sources.

5.5.2 Databases and data extraction: It must be possible to find the earliest
in c id e n t in w h ich a oiven so u rc e m a n ife s te d i ts e lf

ICL Technical Journal November 1984 173

The database structure must therefore allow the following procedures:

1 For each known source, extract all incidents
2 Of these, select the earliest by date of occurrence.

This implies that ‘known source’ records must be held separately to incident
records, with appropriate cross-references.

5.5.3 Product use recording: Complete records, in the form of system logs or
other records, must be kept. Automated recording, particularly if some such
measure as ‘number of transactions’ is being used, is an advantage.

This data is the most frequently missing or incomplete. It cannot be too highly
emphasised:

Without records o f product use no statement about reliability can be made.

6 Examples of data sets and their analysis

6.1 General

Assume that the data have been gathered to the standard described in Section 5.
If it has not, this analysis is useless (in fact, any analysis is useless). We have then
a set of pairs of numbers: product use and sources found. (Actually product use
is measured by running time in all the examples.)

The first step is to accumulate totals and plot a graph of accumulated sources
against accumulated running time. This alone gives a good picture of how the
product is progressing. It is surprisingly seldom done.

The least concave majorant is the smallest envelope of straight-line segments
which lies over this graph. Its slope at any point is an estimate of the total
manifestation rate of new sources. The points at which the graph touches the
LCM are referred to as exterior points. Estimation of total rate due to several
independent sources with different individual rates by this procedure is known as
isotonic regression. See Barlow et al.6 for the theoretical background. It has
been applied to the detection of faults in complex systems by Campbell and
O tt7.

The failure data analysis program generates the graphs and reports the exterior
points and LCM slope at each.

Following estimation of the parameters n, h and s by MLE graphs can be drawn
of the unconditional expected source accumulation and manifestation rate.

In all the examples except Moek83A, MLE was performed on h and s, with n
calculated as in Section 4.4.

174 ICL Technical Journal November 1984

6.2 Data sets B200

These relate to an operating-system field trial. Accumulated product use and
sources manifest are given at the end of each of 17 weeks. Product use is
measured in units of 1000 running hours, and all rates are quoted as incidents/
1000 h. Exterior points are marked by having the LCM slope shown against
them. The results are shown in Tables 1-3.

Three sets have been analysed: B200P: product faults only; B200Q: query
sources only; B200A: all sources taken together.

Table 1 B200: in p u t data, ex terior points and LCM slopes

ICL Technical Journal November 1984 175

Point Accumulated
running tim e kh

B200P
sources

LCM
slope

B200Q
sources

LCM
slope

B200A
sources

LCM
slope

1 0-312 0 1 1
2 0-620 3 1 4
3 1-216 5 2 7
4 2-450 14 8 22
5 3-725 31 26 6-98 57
6 5-146 47 34 5-63 81 15-74
7 6-962 61 38 99
8 8-583 73 51 124
9 10-484 99 62 5-25 161 14-99

10 12-598 120 9-52 72 4-73 192 14-66
11 14-960 135 6-35 83 4-65 218 11-01
12 17-776 150 96 4-62 246
13 20-412 168 108 4-55 276 10-64
14 22-772 183 6-14 114 297 8-90
15 24-685 190 3-66 119 2-57 309 6-28
16 25-847 190 119 309
17 27-658 193 1-01 120 0-34 313 1-35

Table 2 B200: param eter values and derived rates

Set n h s s /h n s /h s / (h + u m) Rfrm)
P 301 222-522 8-7287 0-0392 11-81 0-0349 3-78
Q 175 170-020 7-6570 0-0450 7-88 0-0387 2-14
A 475 211-336 8-7378 0-0413 19-64 0-0366 5-93

s /h and s / {h + u m) are the mean individual source manifestation rates at the start and end
o f the data set. n s/h and R (u m) are the corresponding rates for the whole product.

Table 3 B200: expected accum ulated m anifest sources and rates

Use, kh
Set Acc.

10
Rate

30
Acc. Rate Acc.

100
Rate Acc.

300
Rate

P 96 7-70 201 3-45 289 0-32 301 0-003
Q 62 4-81 125 1-93 170 0-14 175 0-001
A 158 12-52 326 5-39 459 0-45 475 0-004

Note that n for B200P and Q add to give n for B200A almost exactly. The rates
also add. All are type 2 sets (see remarks in Section 7.1 regarding long-term
predictions from such sets). The expected accumulations are rounded in Table 3.
Given this rounding, ‘all sources manifest’ is predicted by 300000 running hours.

The LCM is drawn on the graph of B200A (Fig. 1) and the exterior points are
numbered. This is not generally done, since the table of exterior points and
slopes suffices. The P and Q graphs are not included, being similar to A.

Note that the rate curve (Fig. 2) disagrees with the last LCM slope. The estima­
tion procedure has ignored this final improvement in favour of the earlier steady
growth in manifest sources.

There is a period of increasing manifestation rate at the start. This suggests that
early usage is untypical, i.e. it took time for users to install the product fully
and start hitting the problems. An analysis was therefore done using the last 13
points only (Tables 4 and 5). This yielded very different parameter estimates
(particularly of h and s), but short-term rate estimates which were only about
20% down on the original.

Table 4 B200 (5-17): param eter values and derived rates

Set n h s sflt n s /h s / Q i + u m) A(«m)

P 240 167 190 9-6915 0-0580 13-91 0-0503 3-10
Q 146 79-039 5-2263 0-0661 9-65 0-0272 1-72
A 399 87-973 5-1763 0-0588 23-48 0-0269 4-95

Table 5 B200 (5-17): expected accum ulated m anifest sources and rates

U sek h 10 30 100 300
Set Acc. Rate Acc. R ate Acc. Rate Acc. Rate

P 98 8-68 199 2-72 251 0-012 254 0-0002
Q 63 5-47 123 1-50 152 0-065 154 0-0006
A 160 14-12 324 4-36 413 0-234 421 0-0026

Note tha t the accum ulated sources in table 5 have been corrected by adding in those already
manifest before po in t 5 , and the use is reckoned from point 1, n o t 5. Tables 3 and 5 are
therefore directly comparable.

This shows some resilience to suspect early data.

6.3 Data sets B150

These data were presented in the earlier paper1, when they were analysed by a
relatively crude method assuming s = 1. The input data sets are large and are not
reproduced here. There are three sets: P: product faults; Q: query sources; C:
maior faults (subset of P).

176 ICL Technical Journal November 1984

B150 is an earlier version of the same product as B200. All rates are therefore
converted to manifestations/1000 running hours to enable comparison. Note
that the timescale on the graphs (Figs. 3-5) is still calibrated in running days
(= 24 running hours), however. The total length of the trial was 22-769 x 1000
running hours. Results are shown in Tables 6 and 7.

6001- -6 -c__O

■g expected sources ^ ̂ I ^
J found ̂ ! £
ία 400 -I ^ ; - « S
§ 1 ^ end o f] E
2 1 / s£~—. actual sources data " l S
s - \ y r ' found] - §Ό l / r*̂ 1 O
Φ \ f j J I <Λi \ \ / r \ t
| 200 ■‘- K - L C M slope I ' 2 "
0 / / N i 2
° jfr \^ -e x p e c te d ra te l Z

■f I i ' £
/ 11 |-] —

o l_______I_______i______ i______ i_____ i ■ i ' i L Jn
0 100 200 300 400 500 600 700 800 900 1000

running time, days

Fig. 3 Data set B150P: sources found, LCM slope and unconditional expected rate and
sources

.c
8o
&

1 5 0 - - 1·5χϋ

'co
£
«Λ

1 l
° 100 . . - 1.0 §
«1 end of >ttj . , >u d a ta φ

O . , ! - utin expected sources ^ ̂ ^------ φ

f 50 “t ^ ---- '—’ " ^ X a c tu a l sources j " ®·5 *
3 Λ — found] %,
ϋ I \ / j I c° I -Vp - t.CM slope I - -o

f* N .^^expected rate I Z
0 ______i 1 i i I 1 i i i ' *- ■ = 0 -ί-

Ο 100 200 300 400 100 600 700 800 900 1000 2
running time, days

Fig. 4 Data set B150C: sources found, LCM slope and unconditional expected rate and
sources

ICL Technical Journal November 1984 177

.C
ooo

1 5 0 - -0 .6 aΊλ£
cσ
E

_ expected sources w
c found \ u
o \ _I—-_f—I 3
~ 1 0 0 - 1 - 0 .4 °
a, e ι— — I $
£ ■·. actual sources i jk

8 e n d o , i - S
| LX__ datQ̂ I° X Z?T I «
= 5 0 - 'X - T 1 " a 2 sE j I o
b --V S-, 1 σ
o y i —̂ I------ ACM slope 1 .£

—- - _ __ _ -pxpprteri rate | A

0F i_____ ι_____ ι_____ ι_____ ι-------- 1---------1---------1-------- 1 L , 1 q ϋ
0 100 200 300 400 500 600 700 800 900 1000 2

running time, days

Fig. 5 Data set B150Q: sources found, LCM slope and unconditional expected rate and
sources

Table 6 B150: parameter values and derived rates

Set n h s s/h ns/h s/(A+um) R(um)

P 7397 0 4 9 8 0-02086 0-0419 309-84 9 x 10"4 0-15
C 1567 0-189 0-00961 0-0509 79-70 4-2 x 10 4 0-02
Q 136 14-577 1-6315 0-1119 15-22 0-0437 0-03

Table 7 B150 : expected accumulated manifest sources and rates

U sekh 10 30 100 300
Set________Acc, Rate______Acc. Rate Acc. Rate Acc. Rate

P 455 13-79 608 4-64 775 1-37 924 0 4 5
C 60 1 4 2 76 0 4 7 5 93 0-141 108 0-047
Q 78 3-85 114 0-804 131 0-067 135 0-005

6.4 Data sets Moek83

These are due to Moek5. Set A relates to a large real-time system providing infor­
mation about aircraft movements, and B to a program for performing complex
aerodynamic computations.

Note that time is in units of 10s CPU seconds (i.e. time clocked up on the
central processing unit) for set A and 103 CPU seconds for B.

Note that P and its subset C are of type 1, Q of type 2.

178 ICL Technical Journal November 1984

Table 8 Moek83 data sets: input, exterior points and LCM slopes

ICL Technical Journal November 1984 1 7 9

Point Accumulated
CPU time 105s

Set A
sources

LCM
slope

Accumulated
CPU time 103s

Set B
sources

LCM
slope

1 0-0088 1 110-00 0-00052 1 192-31
2 0-0431 2 0-00104 2 192-31
3 0-0717 3 30-00 0-00356 3
4 0-1893 4 0-00510 4
5 0-2368 5 0-00585 5 62-37
6 0-2392 6 0-00785 6 50-00
7 0-2622 7 0-00994 7 47-85
8 0-3479 8 0-01226 8
9 0-3941 9 0-01458 9

10 0-4047 10 0-01690 10 43-10
11 0-4429 11 20-00 0-02015 11
12 0-5909 12 0-02243 12 36-17
13 0-6086 13 0-02554 13 32-15
14 0-8513 14 0-02871 14 31-55
15 0-8993 15 0-03196 15
16 0-9040 16 0-03520 16 30-82
17 0-9044 17 0-04411 17
18 1-0061 18 0-05306 18
19 1-0173 19 0-05380 19 16-13
20 1-0271 20 20-00 0-06312 20
21 1-2701 21 0-07192 21 11-04
22 1-2876 22 0-08117 22 10-81
23 1-3321 23 0-10308 23
24 1-3807 24 0-11353 24
25 1-3871 25 0-12320 25
26 1-4270 26 20-00 0-13280 26
27 1-6954 27 0-14309 27
28 1-7181 28 0-15381 28
29 1-7201 29 10-00 0-16453 29
30 2-1119 30 0-17483 30
31 2-2610 31 0-18534 31
32 2-4077 32 0-19640 32 8-68
33 2-5708 33 0-24909 33 1-90
34 2-9549 34 0-31866 34
35 2-9661 35 0-38723 35
36 3-2717 36 0-46023 36
37 3-3318 37 0-52954 37
38 3-3350 38 5-57 0-59831 38
39 3-5371 39 4-95 0-66723 39
40 3-8011 40 3-79 0-72879 40
41 4-1791 41 2-65 0-79817 41
42 4-9213 42 1-35 0-86726 42
43 5-7657 43 1-18 0-87682 43 1-59
44 6-6157 44 0-95177 44
45 1-02657 45
46 1*10127 46 1-34
47 1-16827 46

Set A is of type 2, and a particularly atrocious example. When s is constrained to
fixed low values, the prediction of ‘imminent perfection’ is avoided. B is of type 1.

Results are shown in Tables 8-10 and Fig. 6-8.

Set n h s s/h ns/h s/(A+um) R(um)

A 45 6-13841 4-009 0-6531 29-39 0-3143 0-75
A 49 2-32582 1-5 0-6449 31-60 0-1678 1-09
A 54 1-70560 1-0 0-5863 31-66 0-1202 1-33
A 67 0-97667 0-5 0-5119 34-30 0-0659 1-58
A 339 0-46335 0-05 0-1079 36-58 0-0071 2-10

B 132 0-013 0-09481 7-2797 960-92 0-0803 6-90

-ο 40 - expected sources -----r
c found

φ - y-^P"1 \ a c tu a l sources
^ found
S A
* 20 - P
σ /(-13 .· I
ε .-r'3 - J-*Ο ηS /nt--------- 1----------1--------- 1--------- 1--------- I--------- 1--------- 1______ i______ l______ l

0 1 2 3 4 5 6 7 8 9 10
running time, 10®s CPU time

Fig. 6 Moek83A actual and expected accumulated manifest sources against running time:
s = 4-009

■o 40 - actual sources ,— i-------
§ found \ r 1

\ expected sources
S - Ά ' ' ' " found

o f~y« I f
| 20 - A
o A\3 / J
E Λ - '3 - Vυ *1υ -j*O .J

0 L ------------1------------- 1------------- 1------------- 1-------------1------------- 1--------- 1 ■ I ■
0 1 2 3 U 5 6 7 8 9 10

running time, 105 s CPU time

Fig. 7 Moek83A actual and expected accumulated manifest sources against running time:
~ = n .n c

Table 9 Moek 83: parametei values and derived rates

180 ICL Technical Journal November 1984

The data are actually of the ‘time to failure’ variety (i.e. ideal: see Section 5),
but have been treated as ‘failures within period’ without any great difference from
the results obtained by Moek5.

For set A, the best s from an unconstrained search = 4-009. Other results for set
A were obtained by fixing s at the given value and searching on the other
parameters only. For set B, s = 0-09481 is also the best obtained in an uncon­
strained search. Moek does not quote a best s, but calculates n for various fixed
values of s and takes a simple average. This procedure seems to have no
theoretical justification.

The interfailure running time at point 15 of the published data sets is incorrect.
The accumulated running time of 31 -96 is correct, however, and is used in this
analysis.

Table 10 Moek83: expected accumulated manifest sources and rates

ICL Technical Journal November 1984 181

Fig. 8 Moek83B actual and expected accumulated manifest sources against running time:
s = 0-09481

Use 10s s
Set Acc.

1
Rate

3
Acc. Rate

10
Acc. Rate

30
Acc. Rate

A(s = 4-009) 20 13-8 36 4-00 44 0-232 45 0-004
A(s = 1-5) 20 12-9 35 3-98 45 0-489 48 0-044
A (s= 1-0) 20 12-6 34 4-16 46 0-672 51 0-092
A (s = 0-5) 20 11-4 34 4-17 47 0-910 55 0-192
A(s = 0-05) 19 10-9 32 4-43 49 1-386 64 0-451

Use 103 s 1 3 10 30

B 45 8-18 53 2-47 62 0-666 69 0-200

6.5 Data sets Misra83

These are from the Space Shuttle flight control program and were published by
Misra8. They consist of running time (here given in units of 1000 h) and faults
found in each of 38 weeks of testing. The faults are divided into major and
minor, and are analysed both separately and combined.

Results are shown in Tables 11-13 and Fig. 9.

Note that all three sets are of type 2. It can be seen from Table 12 that the
values obtained for n from the major and minor sets sum approximately to that
obtained from the total set, but the agreement is not as good as that seen in
Table 2.
Table 11 Misra83 data sets: input, exterior points and LCM slopes

Point Accumulated Major LCM Minor LCM Total LCM
running tim e, lOOOh sources slope sources slope sources slope

1 0 0625 6 96 00 9 144 00 15 240-00
2 0-1065 8 45-46 13 21
3 0-1465 9 20 130-95 29 166-67
4 0-2145 11 26 88-24 37
5 0-2765 14 31 80-65 45 123-08
6 0-3425 15 34 49
7 0-4155 17 36 53
8 0-4890 20 41 61
9 0-5810 22 45 67

10 0-6524 22 47 69
11 0-7169 25 51 76
12 0-7816 26 58 84
13 0-8176 29 58 87
14 0-8716 29 63 92
15 0-9111 31 66 97
16 0-9791 36 69 105
17 1-0401 41 72 113
18 1-1027 43 76 119
19 1-2014 45 86 131
20 1-2264 47 89 136
21 1-2384 48 90 138
22 1-2934 51 92 143
23 1-3424 53 96 149
24 1-4064 57 101 61-95 158 100-01
25 1-4324 58 37-71 101 159
26 1-4984 60 103 163
27 1-5474 62 103 165
28 1-5994 64 35-93 105 169
29 1-6694 65 108 173
30 1-7539 68 114 182
31 1-8369 71 29-47 117 188 6 9 6 9
32 1-8969 71 118 189
33 1-9694 73 119 192
34 2-0594 75 123 198
35 2-1174 78 24-96 126 204
36 2-1774 79 128 207
37 2-3454 82 17-54 139 221
38 2-4569 83 8-97 148 44-74 231 69-36

ICL Technical Journal November 1984

Fig. 9 Misra 83: actual and expected accumulation for three sets

Table 12s Misra83: parameter values and derived rates

Set n h s s/h ns/h s/Q i+u^ 7?(um)

Major 177 17-1570 4-721 0-2752 48-71 0-2407 22-65
Minor 497 5-9503 1-022 0-1718 85-36 0-1216 42-43
Total 727 6-5261 1-195 0-1832 133-15 0-1331 66-03

Table 126 Misra83: results using Goel-Okumoto model13

Set a b

Major 163-813 0-28759
Minor 315-551 0-25756
T otal 597-887 0-20988

Table 12b shows the results obtained by Misra using the Goel-Okumoto model9.
a is the expected number of faults initially present (corresponding to n in LSRG)
and b is the individual manifestation rate of each source (the same for all sources
— compare with s/h).

Table 136 shows the predicted and actual faults found for the 200 h mission
following the collection of the data set. The predictions using the Goel-Okumoto
(G-O) model are quoted from Misra8 . The expected value is optimistic, but the
actual figures lie within the 90% confidence interval. The expected value from
the LSRG model is very close to the observed numbers of faults. The ‘Duane’

ICL Technical Journal November 1984 183

Fig. 10 Distribution of source m anifestation rate z for different values of shape
param eter s

Table 13a Misra83: expected accumulated manifest souices and rates

Use kh__________1__________________ 3____________________10__________________ 30

Set Acc. Rate Acc. Rate Acc. Rate Acc. Rate

Major 42 35-2 94 19-4 157 3-52 176 0-15
Minor 73 62-3 170 37-4 316 11-6 418 2-24
Total 114 97-4 264 58-0 487 17-3 634 3-04

Table 136 Misra83: predictions for next 200 h by various models

Prediction: G -0 G-O(90% le) LSRG Duane Actual
Set______________Acc._________ Acc._______________Acc. Acc. Acc.

Major 3 6 4-4 5-3 5
Minor 7 11 8-3 8-6 9
Total 13 19 12-8 13-8 14

ii ·'· ICL Technical Journal November 1984

figure is obtained by fitting a simple power curve to the data (see Section 8.1)
and is closer still. On some sets, though, (e.g. B200 — see 8.1 again) this simple
procedure is defeated by anomalous data.

It must be borne in mind that this is a very short-term prediction.

7 Interpretation of results

7 .1 Types o f data set

As analysed by this MLE procedure, on the basis of the LSRG model, there seem
to be two distinct types of data set.

Type 1 is characterised by

— large n, of the order of 10 cm or 100 cm
- small h, of the order of 0-01 um
- small s, of the order 0-01.

As the ML search proceeds, n increases and s and h both decrease from the
default starting values given in Section 4.3.

Type 2 is characterised by

— small n, of the order of 1 -5 cm
- large h, of the order of 10 um
— large s, between 2 and 10.

In this case, as the search proceeds n decreases and s and h both increase.

It is not clear why this should be. It is presumably a shortcoming of the inference
procedure. Small data sets and those with less obvious reliability growth tend to
be of type 2. Medium-term predictions from both types can be similar, but long­
term predictions from type 2 are usually ‘all faults found, zero rate’. If there is
good reason for doubting this, e.g. if it implies an absurdly low number of
faults per line of source code, we should consider fixing s at a low value during
MLE. This is an interesting point of contact between inspection defect counting
and reliability measurement.

In some cases (e.g. Moek83A), ft may be around cm + 1. Moeks presents graphs
of h as it changes as the data set grows. It is interesting to note that in set A, h
comes down to meet the graph of c,·, whereas in B it increases with c,- as the set
grows.

7.2 n

It is unfortunate that some researchers using fault-counting models have
regarded this as of primary importance. Although a large n indicates that hypo­
thetically very many faults are there to be found, the fact that the correspond­
ing value of s is always small means that most of those faults would have such
low manifestation rates that they would not be seen in the lifetime of the
product.

n is, in theory, an upper limit on the number of sources manifest. In practice, a
re-estimate after further observation generally yields an increased n, and values

ICL Technical Journal November 1984 185

of n derived from the earlier part of a trial may be exceeded by the number of
actual sources found later.

n should be regarded merely as one parameter for predicting the number of
sources that will be observed in some specified period of future use.

7.3 h

h has the dimensions of product use. It can be interpreted as ‘product exposure
prior to start of trial’1. From equation 3, it is evident that at product use -h ,
the failure rate of the product was infinite. However, the widely differing value
of h between type 1 and 2 data sets means that we should be wary of interpreting
this parameter too literally, also.

7.4 s

s < 1 for type 1 data sets, s > 1 for type 2.
s governs the shape of pdf{z), Z being the manifestation rate of an individual
source.

s > 1 =► p d f (0) = 0, p d f (z) unimodal
s < 1 =*■ p d f (z) -» 00 as z ->0

For a given period of observation, we can draw a line z = k on the graph of
pdf(z) such that the chances of seeing any source to the left of the line are less
than 1%, say.

i.e. Pr { source manifest \ z < k \ < 0-01

As the period of observation increases, the line moves to the left. When it passes
the hump of the unimodal pdf, the product behaviour in the two cases diverges
(Fig. 10).

In the type 1 case, we expect to see 1% of a rapidly increasing set of very-low-
rate sources. The total manifestation rate, although declining, never gets close to
zero. The number of sources is effectively infinite. (In the limiting case of this
model, with infinitely many sources each of infinitesimal manifestation rate, no
reliability growth would be observed. There may be a variant of the model in
which growth is seen, but which imposes no limit on the number of sources.)

For type 2, the manifestation rate falls sharply, and after a long period of
observation the expected number of sources manifest is very close to the hypo­
thetical total. We have effectively achieved zero defects.

It must be emphasised that the above is what we would in theory see on the
basis of the LSRG model. In practice, particularly for large operating system
software, what is seen resembles type 1 behaviour rather than type 2. Products
exhibiting type 2 data, instead of yielding perfection with increased observation,
yield larger n.

186 ICL Technical Journal November 1984

I conjecture:

(i) The hump is an artefact of the model, due to the choice of the gamma
distribution to describe individual source rates.

(ii) For s > 1, we should not rely on a prediction so far ahead that it takes us
‘over the hump’.

7.5 Length o f trial

Once sufficient data have been gathered to give reasonable n, h and s we can
predict the length of further trial required to achieve a target reliability at release
(assuming that sources manifest in the trial are removed, or declared as known
deficiencies, or otherwise do not contribute toward the incident rate in the
field).

If ut and tq are product use during trial and life, respectively, and M(ut) and
M(ut + Uj) the expected sources manifest up to end of trial, end of life, then
the number of sources we may expect to ‘miss’ during a trial is:

M (ut + U[) - M (ut) = n [Qi/(h + ut))s - (h/(h +ut + «/))*] (12)

This provides an estimate of the expected effectiveness of a trial of given length
for a given product life.

8 Other models and techniques

8.1 Models

There are very many published models. The reader requiring an overview of the
field is referred to the excellent survey paper by Dale and Harris 10.

One class of model, usually known as the Duane type, involves fitting a straight
line to the graph of log(accumulated sources) against log(accumulated use). This
in effect fits a power curve to the data

E { c } = a u b (13)

The corresponding formula for the rate is:

R (u) = ab u 6-1 (14)

The justification for this procedure is empirical, and for some data sets it gives
remarkably good fit and accuracy of prediction. For others it fails badly. For
example, its sensitivity to the dubious early data in B200A leads it to predict
reliability decay, i.e. b > 1, whereas LSRG is fairly resilient to this.

A variant of this procedure11, used in ICL, involves estimating the failure rate r
week by week by dividing reported failures by running time and fitting a straight

ICL Technical Journal November 1984 187

line to the graph of log(r) against log(accumulated running time). This has been
done in the past using only system-crash incidents, and with no distinction
between new sources and repeats. Comparison with the LSRG model on the
basis of data now available is therefore difficult.

Littlewood12 has conjectured that the Duane model may be reducible to an
underlying stochastic model of the LSRG type.

8.2 Least-squares estimation

An alternative routine to MLE has been devised to estimate n, h and s by
minimising the square of the distances of the data points from the graph of
unconditional expected accumulation.

The function minimised is:

m m
D = Σ [c,· - Af (u,·)]2 = £ [ct - m(1 - (h/(h +«,·))*)]2 (15)

/ = 1 i' = l

Use has been limited, but results so far have been found to be similar to those
with MLE.

8.3 Discrete classes o f source
The cost-forecasting program1 models the differing individual source manifesta­
tion rates by assigning various numbers of sources to different classes, all sources
in one class having the same rate. If for w classes we assign

number of sources = nPr {x,· + j < z <x,· (
class rate = E { Z \ x i + l < z <x,·)

where x w = 0 and is large enough to enable us to ignore the right-hand tail of
p d f (z) beyond that value, then the result gives a fair simulation of the actual
gamma source rate distribution.

9 Conclusions and further work

The extent of our predictions and their accuracy are limited by the length of
trial and similarity of product usage to real life. No conceivable estimation
technique can make up for an inadequate trial. Measurement of reliability must
be a part of the trial plan, and mechanisms must be in place to provide data to
the necessary standard.

The value of a stochastic model is that it enables us to define metrics which in
turn can be used to express trial targets. These targets can be related to
expected support cost and customer-perceived reliability. They should be
expressed as reliability or failure rate, both as estimated at end of trial and
expected after given periods of field use. MTTF is misleading when applied to
software, and should not be used.

188 ICL Technical Journal November 1984

The ultimate test of a model is the accuracy of its prediction. Formal methods
are available for assessing the accuracy of ‘time to next failure’ predictions13.
Similar methods must be devised for predictions of ‘sources manifest in the next
period’, and will be the subject of a future paper.

Since the inference procedure described here gives dubious results on certain
data sets, particularly small ones, improved procedures should be investigated.
The use of simulated data sets will provide a check on inference procedure
performance independent of the vagaries of real data.

Acknowledgments

I am once again indebted to Dr. Bev Littlewood of The City University, not only
as the author of the model here applied, but also for his continued help and
advice on the theory and comments on and corrections to the first draft of the
paper (needless to say, any mistakes that remain are my own). Thanks are also
due to his assistant Pee Yuaw Chan; to Dr. Barbara Kitchenham of the Software
Engineering Centre, ICL Kidsgrove, for her support; to Dr. G. Moek and Dr. P.N.
Misra for the use of their previously published data; to the Editor of the IBM
Systems Journal, J.A. Lacy, for permission to reprint the data; and to John
Loomis, John Marriott and Mike Drury of Group Quality management for
encouraging the academic involvement which has made this work possible.
Lastly, since every author owes a debt to his family and loved ones, I would like
to thank mine for giving me all the time I needed to write.

References

1 MELLOR, P.: ‘Modelling software support’, IC L Tech. / . , 1983, 3, (4), 4 0 7 4 3 8 .
2 LITTLEWOOD, B.: ‘Stochastic reliability growth: a model for fault removal in com ­

puter programs and hardware designs’, IE E E Trans., 1981, R-30, 313-320.
3 MUSA, J.D .: ‘A theory o f software reliability and its application’, ib id , 1975, SE-1,

312-327.
4 JELINSKI, Z. and MORANDA, P.B.: ‘Software reliability research’, in ‘S ta tis t ic a l c o m ­

p u te r p e r fo rm a n c e a n a ly s is ’, Academic Press, New York, 1972.
5 MOEK, G.: ‘Software reliability models on trial: selection, improved estim ation, and

practical results’. Available from N ational Aerospace Laboratory NLR, Informatics
Division, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands, ref. NLRM P 83059.

6 BARLOW, R.E., BARTHOLOMEW, D.J., BREMNER, J.M. and BRUNK, H.D.:
S ta t is t ic a l in fe ren ce u n d e r o rd e r re s tr ic tio n s - th e th e o r y a n d a p p lic a tio n o f iso to n ic
re g re ss io n ’, John Wiley & Sons, 1972.

7 CAMPBELL, G. and OTT, K.O.: ‘Statistical evaluation o f major human errors during
the development o f new technological systems’ N u c lea r Sci. & E ng., 1979, 71, 267-279.

8 MISRA, P.N.: ‘Software reliability analysis’, I B M S y s t . / . , 1983, 22, (3), 262-270.
9 GOEL, A.L. and OKUMOTO, K.: ‘Tim e-dependent error detection rate model for soft­

ware reliability and other perform ance measures.’ IE E E Trans., 1979, R-28, (3),
206-211.

10 DALE, C.J. and HARRIS, L.N.: ‘Reliability aspects o f m icroprocessor systems’, 1981.
Available from D epartm ent o f Industry, report T816164.

I I DRURY, M., STRASS, P., BOWMER, R.A. and GODDING, J.F .: ‘A model for soft­
ware failure rates’, ICL Quality Reliability internal report CQA/A/R293, 28.06.76.

ICL Technical Journal November 1984 189

12 LITTLEWOOD, B.: ‘Rationale for a modified Duane m odel’, IE E E Trans., 1984,
R-33, April.

13 KEILLER, P.A., LITTLEWOOD, B., MILLER, D.R. and SOFER, A.: O n the quality
o f software reliability prediction’, Proc. NATO Advanced Study Institute on Elec­
tronic Systems Effectiveness and Life Cycle Costing, 19-31 July 1982, Springer-Verlag.

Appendix

The formulae of Section 3.5 and other results are derived from the assumptions
of Section 3.3 as follows (see Section 2 for notation).

Basic result

The manifestation rate of a given individual source is a random variable Z (z
denotes a realisation of it).

Since each source is Poisson:

Pr { c incidents caused by source during product use u | Z - z }

(.zu)c
= —— exp (- zu)

cl

In particular

Pr {source not manifest during use u \ Z = z \ = P r\C = 0 | Z = z } = exp (- zu)

Pr {source is manifest during use u \ Z = z \ =Pr {ΟΦΟ \Z = z} = 1 -exp(-zu)

Also, at the start of the trial, when u = 0, Z has a gamma pdf, shape parameter
s and scale parameter h:

pdf(z) = — , exp (- hz)

Applying Bayes’ Theorem for a continuous distribution with discrete observa­
tions (the ‘observation’ has two possible outcomes: the source manifests itself or
it does not):

p d f (z | source not manifest in (0 , «))

p d f (z) Pr { source not manifest in (0, u) IZ = z }

f “ p d f (z)Pr\ source not manifest in (0, u) \ Z = z } dz

J o

190 ICL Technical Journal November 1984

Denominator =Pr { source not manifest in (0, u)}
(i.e not conditional on rate)

= f ------ h s zs“ 1 exp (- hz) exp (- uz)dz
Jo (s - 1) !

hs / ” » 1

= --------- I ------- (h + u f z s~1 exp (- (h + u) z) dz
(h + u)s Jo (s - 1) !

The integrand is a gamma pdf, hence integral = 1, denominator = hs j{h + u f and
pdffz. | source not manifest in (0, «))

= p d f (z) Pr | source not manifest in (0, u) \ Z = z } Qi + u)s / hs
1

= -------- (h + u f z s 1 exp (- (h + u) z) (Al)
(*- 1)!

i.e. the p d f o f an individual source manifestation rate Z for sources remaining
after product use u is a gamma p d f with shape s and scale h + u.

This basic result underlies all the others.

Failure rate

The p d f of rate Z applies to each source. If c sources have manifested themselves
during use u, so that n - c remain, then the total rate R (i.e. manifestations of
new sources) from the whole product is the sum of n - c independent identically
(gamma) distributed random variables (IIDRVs): i.e. the sum of the rates of all
sources remaining. The p d f of n - c gamma IIDRVS with shape s is also gamma,
with the same scale, but shape (n - c) s.

Hence:
(A+ u) (" - c>* , . ,

p d f (r | c sources manifest) ----------------- r '” c ,s 1 exp (- (h + u)f) (A2)
[(« - c) s - 1] !

where r denotes a realisation of the random variable R.

Since the mean of a gamma distribution = shape/scale, we have formula 2 for
the expected rate R (μ \ c) of occurrence of incidents after product use u and c
sources found:

R (« | c) = (n - c) s / (A + u) (A3)

ICL Technical Journal November 1984 191

Accumulated sources found and reliability

The probability, not conditional on rate, that any source will not manifest itself
during use u was shown above to be hs/(h + u)s. So:

Pr | source is manifest during use u } = 1 - (hj(h + u) f

Since there are n sources, it follows immediately that

Μ (μ) = η (1 - (hl(h + u))s) (A4)

which is formula 1 from Section 3.5. Similarly, we can show that

Pr | given source not manifest in (w, u + t) | not manifest in (0 ,«)}

= ((h + u) I (h + u + t))s (A5)

(Putting u = Uj_ 1, t = «,· - m,-_ j , gives the starting point for the likelihood
function quoted in Section 4.2.)

It follows that if n - c sources remain at u, then:

Pr j no incident in (u ,u + t) \ c incidents in (0 ,«)}

/ h + u \ (" ' c)i
= S (f | u , c) = ----------- (A6)

\ h+u + 11

which is formula 4 in Section 3.5.

The unconditional reliability after use u is derived as follows:

n

S(i | μ) = £·{ I m, c) } = X S (t\u , c)Pr { c = c}
c = 0

« / h + u \ (" “ c)s / n \ / h \s(" “ c) / / h \ s γ

c? o \ ^ +u + f/ \ ο / \ Λ + μ/ γ \h + u) J

n / n \ / h ~ c) / h s γ

e = 0\ c / \^ + w + f / \ \ A + U/ /

= 1 - (- j + (— j ‘”
\ h + u / \h + u + t j

192 ICL Technical Journal November 1984

which is eqn. 5 in Section 3.5

For this, note that Cis binomially distributed, i.e.

Pr | c incidents in (0, u) } “ c (1 - p)c

/ h Y
where p = Pr { any given source not manifest in (0, u) } =1------- I as above.

\ h + u /
The binomial theorem is applied to sum the series into the final expression. This
can be interpreted as:

For no incident to occur in (μ , u + t), all n sources must manifest themselves
either before u or after u + t.

It is interesting to note that eqn. A4 can be derived from a model embodying
the following two assumptions (treating the expected number of sources
manifest after use u, M{u), as a deterministic quantity and the expected rate of
occurrence of incidents as its derivative, M ' (u)):

(a) rate of occurrence of incidents is proportional to the number of sources
remaining

(b) rate of occurrence of incidents is inversely proportional to product use, u +
some constant, h.

From (a) and (b)

Μ ' (u) = s (n - M(u))/(h + u) (A7)

where s is the constant of proportionality (i.e. the equivalent of eqn. A3 is an
immediate consequence of the assumptions).

Applying the standard solution of the linear first-order differential equation, we
obtain

M (u) = K (h + u)~s + n where K is the constant of integration.

Since 71/(0) = 0, K = - nhs and eqn. A4 follows immediately.

Product use to next incident

Let the random variable T denote ‘product use to next incident’ and t denote its
realisation.

p d f i t | c) = j Q p d f(t | R = r)p d f (r \ c) dr

ICL Technical Journal November 1984 193

r {h + u i n ~c)s
= I rexp(- r t) ------------------- " c’s 1 exp(- (h + u) r) dr

[(« - c) s - 1] !

(n - c) s (h + uf-n ~ c ŝ
- -- X

(h + u + t) s + ^((n - c)s)!

r (h + u + t)i n - c>s+ 1 ,
I ------------- r(n - c)s 6χρ (- (h + u + t) r) dr
J° ((n -c)s) !

= (n - c) s (h + m)(” ” c ŝ I (h + u + ί γ η ~ s + 1 (A8)

since integral = 1, the integrand being pdf. Hence

r , Γ Γ (n - c) s (h + u i n - ^ s t
E \ T \ u , c) = t p d f (t) d t = I ------------ ------ dt

1 Jo Jo (h + u + ή(η-ε)5 + 1

Integrating by parts, we have

. . / A + a (h + u){n~c)s 1"
e { t \ u, c) =- t l ---------------) + -- ---------— -

\ h + u + t / ((n - c)s - 1) (h + u + ί γ η c ŝ 1
J o

If (n - c) s > 1, this converges to (h + u)/((n - c)s - 1), otherwise E { 7Ί u, c J
does not exist. (A9)

All the above results and more are contained in Iittlewood2. They are repeated
here (in more detail) for completeness and since a somewhat different notation
has been used.

194 ICL Technical Journal November 1984

Towards a formal specification
of the

I CL Data Dictionary
B. Sufrin

Oxford University Computing Laboratory, Programming Research Group, Oxford

Abstract

In this paper we present a formal specification of the ICL Data Dictionary
System, paying particular a ttention to the facilities it provides fo r con­
trolling the retrieval and updating of dictionary elements. We conclude by
suggesting some modifications to the design which would render the
system simpler while retaining its full power. The specification notation Z,
which is based on set theory , is used, and familiarity with the mathematical
notions of predicate, set, relation and function is assumed throughout. A
glossary of symbols is provided.

1 Preface

The potential benefits of applying formal, or at least mathematically rigorous,
methods to the design and production of software are currently topics of much
discussion and have been eloquently expounded elsewhere1,2. In common with
many others, we believe that the time is ripe, perhaps even over-ripe, for the
application of these methods in an industrial context. This paper arose out of a
challenge from ICL to work with a group of their practising programmers to in­
vestigate the applicability of the methods to a real commercial product, the ICL
Data Dictionary System (henceforward DDS). The company sponsored a ten-
day pilot project, during which we used mathematical techniques to investigate
two areas of DDS which its designers believe to be difficult to understand and
explain, namely the means provided for controlling access to dictionary elements
and the support provided for multiple versions. This paper is a report of our
investigation of access control.

2 Introduction

It is by now a matter of common knowledge that a substantial proportion of the
total costs of ‘bugs’ discovered during the lifetime of a computer-based system
can be attributed to mistakes made during the earliest stages of its development.
It is for this reason that we believe that the most appropriate time to construct
— and to use — a formal specification for a large system is before the system is
built. Why, then, attempt a mathematical specification of parts of a software
product which is already several years old? First, the DDS documentation of

ICL Technical Journal November 1984 195

access control is rather difficult to understand, partly because it is not all in one
place. A document from which the answers to questions about access can easily
be deduced will be useful in its own right, and perhaps provide a basis for better
documentation. Secondly, a byproduct of the specification activity will be the
construction of a conceptual framework within which the consequences of
simplifying the design of the system can be investigated. Thirdly, even though
we hardly expect the majority of DDS users to be able to read a mathematical
specification, to produce it at all we are forced to ask questions of the imple-
menters of the system which the standard documentation fails to answer ade­
quately. These questions and their answers will certainly be of use to the authors
of subsequent editions of the documentation. Finally, if used properly the
specification should also help to ensure compatibility of successive versions and
new implementations of the Dictionary.

3 Overview of the Data Dictionary System

The potential application areas of the Data Dictionary System are outlined in
detail in the first chapter of its reference manual3 . In essence it is a database
system specially adapted to the needs of supporting the construction, docu­
mentation and maintenance of collections of programs which must be kept
mutually consistent. Such collections are to be found at computer installations
everywhere, and without computer-based support they can quickly become
very difficult to manage.

For the purposes of this paper it is enough for us to note that the system
provides a means of naming, storing, manipulating, and enquiring about any
number of elements, each of which may have several named properties which
possess values. Some properties are possessed only by certain types of element,
for example the *TITLE-PAGE property of REPORT—PROGRAM elements.
Other properties may be possessed by any or all elements but are never acted
upon by DDS, for example the *DESCRIPTION and *NOTE properties, whose
values are uninterpreted text. Finally, there is a class of properties which are
administrative in nature and may be possessed by any or all elements and which
are interpreted (acted upon) by the DDS, for example the *PRIVACY and
♦AUTHORITY properties which are possessed by almost all elements. It is by
setting administrative properties such as these that an administrator may control
aspects of the behaviour of a Data Dictionary at a particular installation, and
users may control how the elements they define can be manipulated by others.

To begin constructing a mathematical model we must first introduce some
nomenclature. Let P denote the set of all possible names for properties possessed
by elements in the database, and let V denote the set of all possible values which
these properties may take. For the moment we need not investigate the internal
structure of the sets P and V, although we will do so later.

In the manual, the term ‘element’ means an object consisting of a collection of
named properties which have values. Such an object may be modelled as a finite

196 ICL Technical Journal November 1984

mapping from property names to values. Let E denote the set of all possible
elements storable in a DDS database; we define it formally by:

E = P*> V

Notice that this definition merely explains the essence of ‘elementhood’, but
gives us no clues about how to represent elements using the data structures
which are available in a conventional programming language.

If we take some liberties with the way in which we write values, and suppose
that authority, description, note and privacy are among the possible property
names, then we can give a couple of (possibly untypical) examples of elements:

{authority i-> Bernard, description ►-> ‘Formal documentation’)

j authority I-*· Bernard; privacy t-> 99; note h· ‘What is a note for anyway?’}

The term ‘element identifier’ means the name by which an element is known to
the DDS. If we let E l denote the set of all possible element identifiers, then the
current state of a DDS may be modelled as an object from the set

El *► E which can be expanded to El·**· (f * V)

i.e. a mapping from element identifiers to elements, which are themselves
mappings from property names to storable values. Notice that to describe the
state of a DDS at this level of abstraction it is not necessary for us to give details
of the internal structure of element identifiers, although we will be forced to
reveal this structure later.

4 Access control
In the first part of this section we present a sequence of successively more accurate
descriptions of the abstract information structures of a DDS which support
access control. This is done without making explicit the fact that the dictionaries
are self-describing — in the sense that these information structures are completely
described by elements present in the dictionaries themselves. In the second part
the state of a running DDS is considered, and it is shown how some simple
commands issued by users affect that state. In the third part we demonstrate in
detail the relationship between the abstract description and the stored elements
with which the dictionary implements the structures introduced in the first.
Finally several more complex commands, whose effects depend on the details
just demonstrated, are described.

The technical terms and the notation used are explained in the Glossary
(Appendix 2).

4.1 Abstract information structures o f the DDS

Our first approximation is rather simple; we simply observe the set of element

ICL Technical Journal November 1984 197

names known to the system and the correspondence between these names and
their stored values. More formally, we define a schema DD which characterises
the possible states of a DDS.

--------D D --- 1
elements: IF El
store: E l ++ E

elements = dom store
___ i

The predicate below the bar records the invariant relationship expected to hold
between the two observations: the element names which are known to the
system are exactly those which correspond to elements in the store.

A formalisation at this level of abstraction could serve as the basis of a model for
the data stored in any entity-attribute database! Since it fails to take into account
the specific characteristics of DDS that we are trying to explain, we shall discard it.

In our second approximation the fact that some elements have owners is
recorded. These are called authority elements in the documentation, and are the
basis for one of the methods by which access to elements is controlled. When
ordinary users run one of the DDS programs, they may do so under the aegis of
an authority. Their access to elements in the dictionary depends amongst other
things upon this authority.

We begin to formalise this by introducing additional observations, namely the
finite set of authority element identifiers which have been introduced by the
dictionary administrator into the system, and a mapping from the identifiers of
stored elements to those of their owners.

--------DD--1
store: E l ++ E
elements: IF E l
auth: IF E l
owner: E l ++ E l

elements = dom store
ran owner C auth C elements
dom owner C elements - auth ___________ “______________________________1

The new predicates below the bar record the additional invariant relationships
between the observations: all owners of elements must be authority elements,
all authority elements must be present in the store, but no authority element
has an owner.

Notice that the last predicate is such that not all elements need an owner; indeed
it is consistent with a state in which no elements have owners. It turns out that it
is easier to explain the system if a special ‘mythical’ authority is invented — the

198 ICL Technical Journal November 1984

nil authority - and insist that every nonauthority element has an owner (which
might be the nil authority). This is formalised in two small steps; first we intro­
duce a constant element identifier, nil, to stand for the identifier of the mythical
nil authority.

nil: E l__________________________ _________ _______ I

Next we give a new description of a DDS state, which incorporates the second
approximation but strengthens the invariant with two additional predicates: the
first states that nil is an authority element, and the second that all nonauthority
elements must now have owners.

r-D D --- 1
DD

nil&auth
dom owner = elements - auth

Note: In our formalism, this description is not self-referential or recursive, but
is an extension of DD, i.e. a redefinition which incorporates the prevailing
definition. Of course, for such an extension to be useful, the predicates which
are added must be consistent with those already present.

We now engage in a little speculation (with the best of pedagogical motives):
if the DDS designers had had an authoritarian or individualistic cast of mind,
they might have stopped their design activity at this point and insisted that only
the owner of an element can retrieve or update it. Under these circumstances we
would have been able to end our modelling activity by making just one more
observation of the state of a dictionary: the relation canaccess, which can be
completely determined by the values of the remaining observations of DD, holds
between an authority and an element exactly when a user running under that
authority can retrieve or update the element.

—AuthoritarianDD-- 1

DD
canaccess: E l**El

γ user:auth; elt. elements.
user canaccess elt owner elt = user

___ i

Note: in this extension we have added a new observation as well as a new in­
variant to the definition of DD.

A marginally more libertarian group of designers might have interpreted owner­
ship by the nil authority somewhat differently and allowed anybody to retrieve
or update such elements:

ICL Technical Journal November 1984 199

— NotQuiteSoAuthoritarianDD---------------------- 1

DD
canaccess: E l**E l

γ user.auth; elt.elements.
user canaccess elt <*■ owner elt E {user, n il}

___ i

As might be expected, the ICL designers wanted to make their system a little
more flexible than either of these descriptions indicate, and we find both that
they have included a number of ways in which elements may be shared between
authorities and that they distinguish between retrieval and updating.

An authority may delegate rights to retrieve an element to one or more other
authorities. We formalise this by introducing the relation delegates, which holds
between an authority a and an authority a' if and only if a has taken steps to
permit a ’ to retrieve all the elements a owns.

-D D -- ,
DD
delegates: E l ** E l

delegates E (auth ** auth)
___ l

To formalise the fact that rights to a single element may be given by its owner to
another authority we introduce another relation, mayretrieve, which holds
between an authority a and an element e only if e’s owner has explicitly taken
steps to allow a to retrieve it.

- D D --1
DD
mayretrieve: E l <-> E l

dom mayretrieve C auth
ran mayretrieve C elements - auth

___ i

As we shall see in the next section, part of the stored description of an authority
element is a description of the types of element which it may not update. Since
our description is not yet at a level of detail which includes types, we can
discuss the right of an authority to update an element in the database only in
rather general terms. To begin the discussion we add a relation maynotupdate
to our observations. This relation holds between a declared authority and the
names of elements which it has explicitly been forbidden to update; these can
include elements which are not yet in the store.

200 ICL Technical Journal November 1984

—DD ---— i
DD
maynotupdate: E l ++ E l

dom maynotupdate C auth
___ i

Note: Readers familiar with DDS will recognise that delegates is closely related
to the ^RETRIEVE property of authority elements, that mayretrieve relates to
the * RETRIEVE property of nonauthority elements and that maynotupdate is
related to the *INHIBIT properties of authority elements.

If the designers had stopped here, we would characterise an authority’s rights to
retrieve and update elements by beginning to define the relation canretrieve
which holds between an authority and the elements it is permitted to retrieve,
and the relation canupdate which holds between an authority and the elements
which the system will allow it to update. At this stage the only thing we can say
about the updating is negative: namely that if an authority has explicitly been
forbidden to update an element then the system will prevent it from doing so.

r— DD--1
DD
canretrieve: E l ++ El
canupdate: E l ++ El

V user.auth; elt:elements.
(owner elt £ {user, nil) v

(owner elt) delegates user v
user mayretrieve elt) => user canretrieve elt

V user.auth; elt:elements.
(;user mayretrieve elt) =*■ {user canupdate elt)

-- 1

Although the system we have described above might have satisfied many de­
signers, it turns out that orthogonal to the system of ownership the DDS has a
notion of levels o f privacy. Stored elements have a privacy level, which is a
number between 0 and 99. Irrespective of the possibilities for retrieval afforded
by the ownership system, a user running under an authority may retrieve any
element whose privacy level is less than that of the authority. (Incidentally, the
documentation indicates that the privacy level of an element may be higher than
that of its owner, a fact which we find puzzling). The nil authority is given a
privacy level of 0, which reflects its role as the ‘owner’ of elements intended to
be universally retrievable. More formally

ICL Technical Journal November 1984 201

—DD--,
DD
privacy: EI«- IN99

dom privacy = elements
privacy nil = 0

V user: auth; elt: elements.
privacy elt < privacy user => user canretrieve elt

--- 1

A dictionary administrator may decide for operational reasons to nominate one
authority as the master authority. This authority (if one has been nominated)
may retrieve and update any element in the dictionary, irrespective of ownership.
A master authority should not be confused with the dictionary administrator:
although the two roles might be played by the same person in many organisa­
tions, their functions are entirely different.

The only element which does not have a privacy level in the range 0..99 is the
master authority (if there is one). For our purposes it will simplify matters if we
attribute privacy level 99 to a master element if one exists: while this is not
strictly in accordance with the choice of representation made by the ICL
designers, its consequences are precisely the same. Note that the master
authority (if there is one) may not be forbidden to update elements. Note also
that by virtue of its privacy level the master authority has the right to retrieve
any element at all.

-D D --1
DD
master: IF1 E l

master C auth
privacy [master] C 99
master n (dom maynotupdate)= { ί____________

This almost concludes the first part of the description of the information
structures which characterise a DDS and the invariant relations which hold
between them. In Fig. 1 these information structures are summarised, formally
simplifying some of the predicates and recording two more things. The first of
these is that the conditions hitherto outlined are the only conditions under
which retrieval can take place. The second characterises updating more positively:
an element may be updated by its owner or by the master authority. Notice that
it is possible for a nonmaster authority which owns an element to be prevented
from updating it.

Since we have not yet given any details of the structure of values, we have no
way yet of recording the fact that the owner of a stored element is stored as its
authority property. Nor can we record the fact that the set of authorities to

202 ICL Technical Journal November 1984

--------DD--1
s to re : E l «+ E '
e le m e n ts : |F E l
eu th : |F E!
o w n er: E l E l

d e leg a tes : E l ++ E l
m a y re tr ie v e : E l ++ E l
m a y n o tu p d a te : E l ++ E l

p r iv a c y : E l ■» |n "
m a ster : IF1 E l

c a n re tr le ve E! ++ E l
ca n u p d a te : E l ++ E l

e le m e n ts - d o m s to r e
ran o w n e r c a u th e le m e n ts
d o m o w n e r c e le m e n ts - a u th

n il e a u th
d o m o w n e r = e le m e n ts - au th

d e le g a te s e (auth ++ a u th)
d o m m a y r e tr ie v e C_auth
ran m a y r e tr ie v e (^ e le m e n ts - a u th
d o m m a y n o tu p d a te C a u th

d o m p r iv a c y = e le m e n ts
p r iv a c y n il = 0
m a s te r C a u th
p r iv a c y [m a s te r } c 99
m a s te r n (d o m m a y n o tu p d a te) = { }

V user: a u th ; e lt: e le m e n ts .
u ser ca n re tr ie ve e l t ++

u se r - o w n e r e l t v
(o w n e r e lt) d e le g a te s u ser v
p r iv a c y e l t < !p r iv a c y u ser

V u ser: a u th ; e l t : E l .
u ser c a n u p d a te e l t ++

u se r e [o w n e r e l t \ u m a s te r λ
_________ (u ser m a y n o tu p d a te e lt)_____________ |

Fig. 1 Summary of the information structures of a DDS

whom an authority has delegated all its access rights is stored as the retrieval
property of that authority element, and that the set of authorities which have
been given the right to access an element by its owner is stored as that element’s
retrieval property. We will only be able to go into these details after revealing
more of the internal structure of stored values, element identifiers, and property
names in Section 3.3.

4.2 DDS dynamics: Part 1

In this section and its companion we describe the way in which certain
commands affect DDS information structures. In fact there are two distinct
kinds of DDS run: administrative runs during which administrative commands

ICL Technical Journal November 1984 203

may be issued, and ordinary runs during which they may not. For the purposes
of this note, the main difference is that certain kinds of element (in particular
♦AUTHORITY elements) may be inserted during administrative runs, but
otherwise may not.

Although one might expect the administrator to be the same as the master
authority, this turns out not to be so. For simplicity, therefore, we have avoided
consideration of administrative commands and concentrated on the most
important nonadministrative commands. Later we suggest a small simplification
of the design which would avoid the distinction between administrative and
ordinary runs.

4.2.1 State o f a running DDS: In characterising the state of a running DDS we
must account for the fact that users ‘log in’ under the aegis of an authority,
which is deemed in our model to be the nil authority for those users who run
under ‘no authority’. In fact a password-based scheme is used to check that an
individual has the right to log in as a particular authority, but the details of
logging in are beyond the scope of this note.

Once the running authority is established, elements are processed by establishing
the ‘element context’, i.e. the identifier of the element to which subsequent
commands will refer. One thing which the documentation does not make quite
clear is whether or not the element context identified by the user must always
refer to an already defined element. This seems plausible, however, since there is
a special element whose identifier is null·, the null element context prevails at the
beginning of a run, after certain classes of errors, and after the stop command
has been issued. We therefore introduce a constant

null: E l------ --- - __ J

and characterise the a state of a running DDS by:

------ D B S -- 1
DD
user: E l
elementcontext: E l

user e auth
null € elements
V a: auth . a may access null
user canretrieve elementcontext

---_ _ i

To capture the effect of a command on a DDS, we relate the observations made
before the command is performed (denoted by the unprimed names) to those
which can be made afterwards (denoted by primed names). As is customary we
factorise our description of the commands into those properties which all the
commands have in common and those which are peculiar to particular
commands.

204 ICL Technical Journal November 1984

The schema ADDS summarises the common characteristics of the effects of
nonadministrative commands on a DDS: the set of declared authorities may not
change, nor may the master authority, nor may the authority of the running user.

—ADDS---1
DDS
DDS'

auth' = auth
master' - master
user' = user

___ i
Some commands change the element context, or just display parts of the stored
dictionary, but don’t change the information structures concerned with access
control; their additional common properties are summarised in the schema
ODDS

r-O D D S -- .
ADDS

owner' = owner
delegates' = delegates
privacy' = privacy
mayretrieve' = mayretrieve
maynotupdate' = maynotupdate

___ i

4.2.2 Display command: The simplest command to describe is the DISPLAY
command, which displays parts of the current element in a readable form. Below
we just indicate that the user must supply some property names, and that on
completion of the command he is presented (readable') with the values of the
required properties as stored for the element currently in context. We do not
concern ourselves with the precise form in which the display is presented.

—Display--- ,
properties: IF P
ODDS
readable': P*> V

#properties = 1 v properties = P
readable' = {store elementcontext) \ properties
store' = store

--- _ j
Those familiar with DDS should note that the ALLPROPERTIES variant of the
DISPLAY command corresponds to properties = P whereas the ♦property-
keyword variant corresponds to #properties = 1. To simplify our description we
have not formalised either the PROMPTLIST or the EXPLOSION variants of

ICL Technical Journal November 1984 205

this command. To do either would require a more detailed model than we have
so far presented, although the detail is not complex.

4.2.3 Setting the element context: One command which plays at least three
roles in the system is the FOR command: the three variants of which we are
aware all set ‘context’ in one way or another, they are:

FOR VERSION Aversion element identifier>
FOR AUTHORITY <authority element iden tified
FOR <element id en tified

Since we do not treat version control here, we shall not consider the first of
these. The second corresponds to the beginning of a DDS run: it just sets the
user authority after checking a password. The third command is used to set the
current element context: it sets the null context if presented with an element
name which the current authority is not allowed to retrieve, or one which has
not yet been defined.

|—FOR--Ί
eid: E l
ODDS

store' = store

user canretrieve eid Λ
eid G elements Λ
elementcontext' = eid

v
eid (i elements Λ
elementcontext’ = null

v
(user canretrieve eid) λ

elementcontext' = null
___ J

This concludes the account of the commands which have no effect on the stored
information. Before describing the remaining commands it will be necessary to
take a small detour and explain the relationship between the stored elements
and the access-control information.

4.3 Representation o f access-control information

In this section we formalise the fact that data dictionaries are self-describing. To
put this another way, the abstract information structures which were introduced
to explain the control of access to elements are actually represented by means of
elements and properties stored in the dictionary.

In a DDS the properties named «AUTHORITY, «PRIVACY, and «RETRIEVAL

206 ICL Technical Journal November 1984

are defined for most elements, and so distinct constants are introduced into the
specification which will henceforth stand for these property names:

authority, privacy, retrieval: P '

authority Φ privacy Φ retrieval Φ authority

Properties may take on a variety of values, but in the first part of this section we
shall be concerned only with the numbers, IN, single element identifiers EI and
finite sets of element identifiers IF EL The set of storable values V contains the
disjoint union of these three sets

Number « IN » I Elements« E l » I Elements « IF E l» C V

Note: A detailed explanation of the notion of disjoint union is presented in
Reference 4. For our purposes it is sufficient to understand that the above
disjoint union contains one value for each number n: IN, one value for each
single element identifier ei: El, and one value for each set of element identifiers
eis: IF EI. These values are distinct and denoted respectively by the terms
Number n, Element ei, and Elements eis.

All that now needs doing is to strengthen the invariant of the existing DDS
description. In Fig. 2 the qualities inherent in the use of the term ‘self-describing’
are summarised.

— D D -- -
D D I
has: E l ++ P

V ei: e le m e n ts .
e i has p r iv a c y λ N u m b e r(p r iv a c y e i) = s to r e e i p r iv a c y v
(ei h as p r iv a c y) λ p r iv a c y e i = 0

V a; a u th ..
a has re tr ieva l λ E lem en ts (d e leg a tes I a I) = s to r e a re tr ie va l v

- 1 (a has re tr ie va l λ d e leg a te s I a]) =

y ei: (e lem en ts - a u th) .
e i has re tr ie va l λ E lem en ts (m a y r e tr ie v e '1 I e i]) = s to r e e i re tr ieva l v

- 1 (e i has re trieva l) λ m a y re tr ie v e -1 I e/J = { }

V ei: (e le m e n ts - a u th) .
e i has a u th o r i ty λ E le m e n t (o w n e r e i) = s to r e e i a u th o r i ty v

- ' (e i has a u th o r ity) λ o w n e r e i = nil

\ / e i : E I ; p : P .
e i has p ++ e i £ e le m e n ts A p S d o m (s to re ei)________________________________

Fig. 2 Data dictionaries are self-describing

ICL Technical Journal November 1984 207

To simplify our account of the default values provided by the system an
additional observaton is introduced: the relationship has, which holds between
an element identifier ei and a property name p exactly when ei has been stored
with a property named p. The first additional predicate records the fact that the
privacy level of each stored element is represented by the numeric value of its
privacy property. The second predicate records that the retrieval property of
each author element represents the set of authorities who stand in the relationship
of delegates to it. The third predicate records that the value of the retrieval
property of each nonauthority element represents the set of authorities which
may retrieve it, and the fourth predicate that its authority property represents
its owner. Notice the different interpretations given to the retrieval property
of an authority element and the same property of a nonauthority element.
Hitherto we have given a rather abstract characterisation of the information
structure which prevents certain authorities updating certain types of element,
but we are now in a position to give a fuller account. To do so we need to
examine the structure of the space of element identifiers (El) in a little more
detail. In fact this space is two-dimensional; an element is identified by an
element-type-identifier (known in the documentation as an element keyword)
and a within-type identifier. If we let K denote the set of element type
identifiers, and I denote the set of within-type identifiers, then we can define

EI = K x /
Note: All elements with the same type have property names drawn from the
same set of names; these are stored as the *SYSTEM-PROPERTIES and ♦USER-
PROPERTIES properties of the ELEMENT element which describes the type.
A complete formalisation of this is possible within the framework we have
already established, but goes beyond the scope of this paper.
An authority is prevented from updating certain types of element if the element
which describes it has a property called «INHIBIT. The value of this property is
the set of element type identifiers to which the authority is denied update rights
- despite any retrieval rights it may have. First another constant is introduced:

=- ~~ " — i
inhibit: P

inhibit £ \ authority, retrieval, privacy}
----------------------------- — — -- 1

and indicate that sets of element type identifiers may also be stored:

Types « IF Κ » C V

then strengthen the DD invariant a little further:
— DD--- 1

DD

V a: auth; et: K; i : I .
a maynotupdate (et, i) °

_________ a has inhibit λ et €E Types' 1 {store a inhibit)

208 ICL Technical Journal November 1984

Note: The obscurely formulated predicate et G Types-1 (store a inhibit) means:
‘the type keyword of the element identifier is one of the set of keywords which
are stored as the *INHIBIT property of the authority’.

Our account of self-description is now as detailed as it needs to be for the
purposes of this note. Interested readers may care to take the account further
and formalise the fact that details of the properties possessed by elements of
each type are recorded in the database, as are details of the representation of
each property.

As a hint we will show how the authority elements in the dictionary are
identified. First introduce the constant:

AUTHORITY: K___________________________(

to denote the AUTHORITY element keyword. All that remains is to strengthen
the DD invariant yet again.

------ D D --1
DD

auth = {(λ, i): elements \ k= AUTHORITY]
___ i

In other words, the authority elements are exactly those whose keyword is
AUTHORITY.

4.4 DDS dynamics: Part 2

In this section the description of the DDS is completed with a formalisation of
the behaviour of the INSERT and DELETE commands. The REPLACE command
is simply a combination of DELETE followed by INSERT, so we leave its
formalisation as an exercise for interested readers. The current formalisation is
partial, in the sense that it accounts only for the behaviour of successful
commands. Although behaviour in the case of erroneous commands can easily
be described within the present framework, doing so would not be particularly
useful, especially in view of the simplifications we have made (Appendix 1).

4.4.1 Inserting elements: Judging by its documentation, the INSERT
command appears to have two variants. The first takes a new element identifier
and a set of property-name, property-value pairs - in other words, an element —
and stores the element as the value of the identifier. If no authority property
is given, then the owner of the new element will be the current user; if no
privacy property is given, then the element will be given the privacy level of the
current user. The command sets the current element context.

ICL Technical Journal November 1984 209

-------InsertNewElement--- 1

eid E l
newelement: V
ADDS

eid έ dom store
store' = store ® {eid -*■ newelement')
elementcontext' = eid

where
newelement' = {authority user; privacy privacy user) ® newelement

___I

This description is such that if the privacy and authority properties are specified
in such a way that elementcontext' is no longer accessible, then the insert
operation will fail (the last invariant of DDS will not be satisfied). It seems to
indicate that a user running under one authority can add an element to the
database but give ownership rights to another authority. While this was rather
difficult to rationalise, we could not discover anything in the documentation
which forbids it. On asking the designers what really happens - an option which
might not be open to the average DDS user - we discovered that only the master
authority can give ownership rights to another authority when creating a new
element. When the current user is not the master and authority and privacy
properties are supplied, then they must be the ones which the system would
provide by default anyway. Formalised concisely we have:

-----InsertNewElement---1

InsertNewElement

user ̂ master =>
newelement (authority J| C {user) λ
newelement [privacy J C j privacy user]

-- ---------------------------- i
The second variant of the insert command takes a set of property-name,
property-value pairs and incorporates them into the current element, providing
that it has no existing property with one of the names supplied.

-------- InsertNewProperties-- 1

newprops: V
ADDS

user canupdate elementcontext
“’O p: (dom elt) . elementcontext has p)
store' = store ® {element i-* ((store element) U newprops) }
elementcontext' = elementcontext

---------------------------------------— _________________________ I
The documentation does not make it clear whether or not administrative
properties may be added to an element by authorities other than its owner once

210 ICL Technical Journal November 1984

it has been inserted. On asking the designers, we discovered that the only
administrative property for which the description given above fails to account is
the authority property: the master authority can give ownership of an unowned
element to any authority, but nonmaster authorities can only take the owner­
ship of such elements for themselves. More formally:

---- InsertNewProperties--1

InsertNewProperties

authority &dom newprops =>
user €= master v

_______newprops authority = user_______________________

4.4.2 Deleting elements: DELETE appears in two variants: in the first, the user
explicitly mentions an element for the command to delete:

-------- DeleteElement--- 1
eid: E l
ADDS

user canupdate eid
store' = store \ {eid}
elementcontext' = null_____________________________ I

In its second form the user mentions some properties to be removed from the
current element. Unfortunately the documentation does not make it clear
whether or not users may delete administrative properties from elements to
which they have update rights, nor is it quite clear what happens if the last
remaining property of an element is deleted. At first we assumed, albeit uneasily,
that administrative properties could be deleted and that elements with no
properties could remain in the store, so to that extent the formalisation was
inaccurate. Discussions with the implementation team proved my unease to be
well founded; we learned that if administrative properties are deleted from an
element by the user then they revert to the default values which the system
would have provided if the element had just been inserted.

---- DeleteProperties--- 1

props: IF P
ADDS

user canupdate elementcontext
store' = store ® j elementcontext I-*· element'}
elementcontext' = elementcontext

where
element' = (store elementcontext)\props ®i

___________________ {authority h · user; privacy *-» privacy user} j

ICL Technical Journal November 1984 211

While we would have liked to go on to describe the control of multiple versions in
DDS, the present design proved too hard to formalise simply. The specification
therefore has its limitations and it would be unwise of users to rely upon
formal deductions from it to discover the consequences of actions they might
take while running the system itself. It nevertheless remains useful as a
pedagogical tool because it provides a discursive introduction to the concepts
which underlie access control.

In our view the principal benefit of constructing the formal specification is the
fact that a framework has been developed within which designs of future dic­
tionaries can easily be investigated. Whereas it has been an interesting challenge
to build a mathematical model of a software system such as the Data Dictionary
System, the enterprise would remain simply an academic exercise if it were to
stop at this point, so we have tried to indicate how to use the framework by using
it to make a tentative proposal for simplifying the system. This is presented in
Appendix 1.

Acknowledgments

ICL sponsored the ten-day pilot experiment in technology transfer which led
(inter alia) to the production of this note. It has been a pleasure to work with
Roger Stokes who despite the multiplicity of demands imposed on his time and
talents, always remained interested enough in the experiment to convince me
that it was worthwhile.

References

1 HOARE, C.A.R.: ‘Programming is an engineering profession’, Technical M onograph 27,
Programming Research Group, Oxford, 1982.

2 JONES, C.B.: ‘S o ftw a re d e v e lo p m e n t: A rig o ro u s a p p ro a ch Prentice-Hall International,
1980.

3 Reference manual for the ICL Data Dictionary System (DDS.600) ICL Document
RPO120, May 1982.

4 SUFRIN, B.: ‘Mathematics for system specification, C om putation MSc Course Notes,
Programming Research Group, Oxford, 1983.

5 SUFRIN, B.: ‘Notes for a Z handbook. Part 1: the m athem atical language’, Software
Engineering Working Paper, Programming Research G roup, O xford, 1984.

6 MORGAN, C. and SUFRIN, B.: ‘Specification of the Unix filing system’, IE E E Trans.,
1984, SE-10, (2).

Appendix 1
Potential simplifications

Those familiar with DDS will have noticed that an important simplification has
been made already, by ignoring the ‘facility’ to refer to as-yet-underfined author­
ities when adding or modifying properties. Although we have no definite know­
ledge about the operational consequences of this facility, we hazard a guess that it

5 Prospects

212 ICL Technical Journal November 1984

causes more aggravation than it saves: readers who have been victims of implicit
declarations in Fortran may care to comment on this.

The most obvious additional simplification would be to drop the independent
notion of privacy level, which seems to be orthogonal to authorities and owner­
ship. We are tempted to wonder if there are any DDS installations where both
privacy and authority are employed within the same dictionary.

A further simplification would be to remove the distinction between the system
administrator and other authorities. This might well pay dividends in terms of
enhancing the functionality of the system and reducing the complexity of its
documentation and implementation. Our design goal is based on a new inter­
pretation of the meaning of an authority element, which we prefer to think of
as a role, or locus of responsibility, rather than a particular person. Indeed it is
often the case that one individual plays several distinct roles in an organisation.

In the design outlined below every authority is made subordinate to (‘owned
by’) some other authority; the root of this tree of authorities is the system
administration authority (which owns itself). Power to alter properties of
elements reposes ultimately in the administrator, which is able to delegate them
to subordinate authorities, which in turn can delegate them further if need be.
Any element which several authorities need to retrieve or to update should be
owned by an authority which is higher in the tree than all of them and which
delegates its retrieval or update rights to them all.

To formalise this design, we first need to introduce the idea of a ‘loop-free’
function, sometimes called a ‘tree’. Consider a homogeneous function

f: X ** X

We say that an element x ' : X is reachable via f from an element x : X if there is
at least one non-zero number, n: INj for which x ' = / ” x. When this is the case,
we write

x f * x '

More formally, we can define:

V f : X » X : x , x ' : X .
x f * x ' o 3 « : iNi . = / ” jc t

A function /: X ++ X is said to be loop-free, or a tree, if there is no x: X which
reachable from itself via / . More formally:

M
Tree - { /: X «· X | (3x: X . x f * *)}

ICL Technical Journal November 1984 213

Our first approximation to a description of the design outlined above recalls the
description of the standard data dictionary: the main difference is that all
elements (including authority elements) are owned, and that if we confine our
attention to authorities other than the administrator, the ownership function is
a tree.

The administrator is reachable from every element via the ownership function,
i.e. the administrator is ultimately responsible for everything in the dictionary.

-----DD-- η
store: E I E
elements: IF E l
auth: IF El
owner: E l -*> El
admin: E l

elements = dom store
dom owner = elements:
ran owner C auth C elements
admin Eauth
owner \ {admin} E Tree [El]
V ei: elements. ei owner * admin______ |

The information structures from which the relations canretrieve and canupdate
will be derived are similar to those in the original design, except that there is no
longer a role for privacy levels, the nil authority no longer exists, and update
permission is characterised positively rather than negatively.

------ DD-- 1
DD
delegates: EI EI
mayretrieve: EI ** EI
mayupdate: EI +>■ EI

delegates E auth «· auth
dom mayretrieve C auth
dom mayupdate C auth
delegates C owner"1

___________I______________________ I
The last predicate states that an authority may only delegate its rights to
authorities for which it is responsible.

An authority can retrieve an element if it or any of its subordinates own the
element, or if it has been given explicit permission to retrieve it, or if it has been
delegated rights to retrieve the element. An authority can update an element if
it or any of its subordinates owns the element, or if it has been given permission
to update the element.

214 ICL Technical Journal November 1984

-----D D --1
DD 1
canretrieve: E l ** E l
canupdate: E l**E l

dom canretrieve C auth
dom canupdate C auth

V user: auth; elt: elements.
user canretrieve elt « ·

elt owner * user v
(owner elt) delegates user v

user mayretrieve elt

V user: auth; elt: elements.
user canupdate elt o

user canretrieve elt Λ

elt owner * user v
________________________user mayupdate elt____________________________ j

It might be nice if no authority possessed any capabilities that its owner does
not also possess. In other words, if within a dictionary:

I canretrieve C owner ; canretrieve
I canupdate C owner ; canupdate

Interested readers may care to check whether or not this is the case, and if not,
to modify my formalisation so that it is.

Finally we propose a small project for the interested reader. Devise representations
(along the lines suggested by Fig. 2) for the abstract information structures
mayretrieve, mayupdate, and delegates. These should make the relations
canretrieve and canupdate simple to compute, and also make the system
invariant simple to check.

A p p e n d i x 2

Glossary

The specification notation Z, based on set theory4,s'6, is used throughout the paper.

_ - _ syntactic equivalence _ is defined to be _
Λ logical conjunction and
v logical disjunction or
_ =*■ _ logical implication if _ then _

ICL Technical Journal November 1984 215

_ ο _ logical equivalence _ if and only if _
V universal quantification for a l l ...
3 existential quantification for some ...
IN the natural numbers (non-negative integers)
INj the strictly positive natural numbers.
m . . n the numbers between m and n m . . n = { /:lN lm < /< « |
IN " 0 ..9 9
C set inclusion
C strict set inclusion
{} empty set

set difference
IP S all subsets of S ss G IPS «· ss C S)

IPj S nonempty subsets of S
IF S finite subsets of S
IF! S nonempty finite subsets of S
_ cardinality (number of elements of a finite set)
IF1 S Subsets of S with no more than one

element IF1 S - {ss: IF S I #ss<l|
U set union
Π set intersection
G set membership
(a, b) ordered pair a b
{s:S Ipred \ set comprehension: the set of elements s of S which satisfy pred
{ term . s:S I pred |

term comprehension: the set of term generated by the elements s
of S which satisfy the predicate pred.

S - ^ T the set of binary relations between
S and T T= IP (5 x T)

S * * T the set of partial functions from
S t o T S++TCS*+T

S*>T the finite functions (mappings) from
S t o T S « > T C S * * T

{a'r+b} the mapping {(a, b)\ which takes a to b
a R b relationship R holds between a and b a R b - (a, b)ER
f x application o f / to x (x , / x) G /

dom the domain of a relation or function
for R : S ^ T dom R = {s \S \ fa t \T . sRt) \

216 ICL Technical Journal November 1984

ran the range of a relation or function
for R:S <*■ T ran R - \t:T l(3s:S . sRt)}

R -1 inverse of a function or relationship s R t ·* t R '1 s
I 1 image:

for R: S ο T) SS: tPS Λ | 5 5] | = { ί : 7 Ί (3 ί : 5 5 . sRt)}
for R : S * T , s : S Λ[s]| = /?[{ s }]

\ domain restriction of a function or relationship
for R: S*rT; SS: IPS s R \SS t sRtA s^SS

[domain restriction of a function or relationship
fo rR: S T , S S : IPS s R f S S t «·sRtAsSSS

® over-riding of relationships or functions
fo rf g : S + * T f Bg = f \ (d o m g) Ug
for functions /, g: S **■ T xGdom g=>f®gx -gx-,

xE(dom f) - (dom g) = > f®gx ~ J X
; forward relational (or functional) composition
• relational (or functional) composition. (NB: f ; g - g f)

f * iV-fold composition. / ° = id \ f(n + =f° f n

217
1CL Technical Journal November 1984

Notes on the authors

Dr. P.M. Flanders Sorting on DAP
Dr. P.M. Handers received the B.Sc. degree in Physics and the Ph.D. degree in
Computer Science from Queen Mary College, University of London. He has since
been engaged in research and advanced development at the ICL Systems Strategy
Centre in Stevenage, where his main interests have been in high-level language
machines, language design and parallel processing. Much of this work has been
centred on the ICL DAP and includes the design of DAP-Fortran and method­
ologies for using array processors.

D.J. Hunt Tracking of LSI chips and printed circuit boards using the ICL
Distributed Array Processor

David Hunt read Mathematics and Physics at Trinity College, Cambridge, where
he was a senior scholar. He has worked for ICL ever since graduating in 1968
and is a Senior Research Consultant at the Systems Strategy Centre. He joined
the DAP project at its inception, and has been involved with most aspects, but
especially hardware and applications.

Dr. R. W. Jones User functions for the generation and distribution of encipher­
ment keys

Roy Jones is a security consultant in ICL’s Defence Technology Centre. He has
been concerned with secure systems and the use of encipherment in computer
system architecture since 1975, first as a consultant working for CCTA and then,
since 1977, within ICL. He is a member of the BSI committee 0IS21 whose
task is to produce standards for the use of encipherment and of the correspond­
ing international committee ISO/SC20.

P. Mellor Analysis of software failure data: 1 adaptation of Little wood
stochastic reliability growth model for coarse data

Peter Mellor joined ICL in 1968 after leaving Cambridge where he studied
Mathematics. He has worked for ICL ever since, man and boy, apart from a short
time out in the cold hard world of commercial programming. For several years
he worked in software development, and later in support, and designed and
wrote databases for incident report management, an expert system for software
fault diagnosis, and remote diagnostic tools. This led to involvement in life-cycle
costing of software support and to his present interest in the estimation and pre­
diction of software reliability. At present he is employed within the Group
Quality organisation.

218 ICL Technical Journal November 1984

Dr. S.F. Reddaway Sorting on DAP
Dr. Reddaway graduated from Cambridge, and after doing a Ph.D. at Durham
joined English Electric Computers in 1965. He progressed from hardware tech­
nology to novel architectures, and since originating the DAP he has for the last
10 years managed an array processing research group. This group built the pilot
DAP system and then co-operated on the first generation DAP product. In 1981
work was redirected to smaller second generation DAPs. A major activity has
been applications analysis for array processing, recently mostly in signal and
image processing. He is with the Systems Strategy Centre at Stevenage, and is
working on ideas for a third generation.

B. Sufrin Towards a formal specification of the ICL Data Dictionary

Bernard Sufrin has a degree in Mathematics from the University of Sheffield and
a degree in Computer Science from the University of Essex. He joined the Pro­
gramming Research Group at Oxford University in 1978, previously having been
Chief Research Officer in Computer Science at Essex University, Research
Fellow at Bolt Beranek and Newman Inc. and Senior Research Officer in
Computer Science at Essex. His research for the past six years has focused on
making practical use of mathematics in the description and development of
computer systems, and he has lectured extensively on this topic. He holds a
Fellowship at Worcester College and is University Lecturer in Computation.

Dr. R.H. Thompson Modelling a multiprocessor designed for telecommunica­
tions systems control

Dr. Thompson graduated from Liverpool University in 1966, and, after some
years at the Corporate Research Laboratories of ICI, he went to the Control
Systems Centre at UMIST (University of Manchester Institute of Science and
Technology). Having graduated from the University of Manchester with a Ph.D.
(in 1973) he joined the Tele traffic Division of British Telecom, where he is
currently engaged in studying the design and performance of processor-controlled
telecommunications exchanges.

ICL Technical Journal November 1984 219

Museum and archive for the
history of the computer

There is general agreement with the view that the electronic digital computer is
one of the most important inventions of mankind, possibly the most important.
It has been developed, and continues to develop, with extraordinary speed, its
history extending little beyond the career span of individuals still active or
recently retired; and Britain has made contributions of fundamental importance
to this development. While a certain amount of historical material is preserved in
museums and other collections, there is a serious risk that unless steps are taken
to capture the documents, artefacts and personal experiences from this recent
past they will be irretrievably lost or dissipated. This would be to the dis­
advantage both of scientific historians and of present-day workers in the field,
and also would lose an opportunity to interest and increase the awareness of the
public in a field which is becoming increasingly important in their everyday
work and leisure activities.

At a meeting arranged recently by ICL to discuss this situation, attended by
representatives of the computer industry and profession and of a number of
relevant public bodies, there was strong and unanimous support for the general
idea of a British national museum and archive of computer history. The meeting
resulted in an agreed aim to formulate a specific proposal as quickly as possible,
probably by early 1985. Meanwhile, all the participants stressed the seriousness
of the risk of loss or destruction of potentially valuable material. This note,
therefore, is being circulated widely, to ask anyone, whether as an individual or
as a member of a commercial, industrial or other organisation, who has material
which might be of historical value, to preserve this and to send a descriptive note
— as brief as possible — to

Dr. J. Howlett
International Computers Limited
ICL House
Putney
London SW15 1SW
England

‘Potentially valuable material’ could include, for example, handbooks, logic
diagrams, house journals, and personal writings such as notebooks and corres­
pondence; also historic items of equipments and other artefacts. It can be
assumed that copies of all open publications, such as learned and professional
societies’ journals, are already available. If there is a risk of destruction of
material because of lack of storage space, ICL may be able to arrange temporary
storage for limited amounts.

220 ICL Technical Journal November 1984

