M.P. Publishing Co. Box 378 Belmont Massachusetts 02178 ECS-1

EXPERIMENTER'S COMPUTBER SYSTEM
by Carl T. Helmers, Jr.

Part 1: Design Goals and Introduction

One definition of progress in technology might be the following:
"creation of new technological areas and the reduction in cost of old-
er technologies." As a reader of this article, you are undoubtedly
interested in the prospect of acquiring and using a fully programable
general purpose computer system at a reasonable cost. The recent ad-
vances in microcomputer technologies fit the above definition of tech-
nological progress by making possible a general purpose bus-oriented
minicomputer CPU (old technology, lower cost) packaged in a relative-
ly small number of integrated circuit packages (new LSI technology.)
This particular advance for the first time makes it possible for the
computer enthusiast, educator or hobbyist to consider building and using
a computer system at a reasonable cost. The purpose of this series of
articles is to provide a thorough exploration of the possibilities in-
herent in LSI microprocessor technology as a vehicle for building a
computer and incidentally teaching computer systems design principles
and software design techniques.

The first installment of the Experimenter's Computer System series
is intended to serve as an introduction to the project. It outlines
the scope of the project, its design philosophies and what you — the
computer enthusiast and potential builder of such a system — will
learn by reading these articles and using them as a source of ideas for
your own work. The results will of course be rewarding in proportion
to the time and effort you put into the project. The modular nature of
the Experimenter's Computer. System allows you to take many options in
customizing a system to your own personal needs. In fact, once the basic
components of the system are assembled, the addition of more memory,
I/0 channels, peripherals and other components is effectively limited
only by time and your own budget. This general modularity is a conse-
quence of the bus oriented design of the micro-computer selected for
the Experimenter's Computer System.

1. OPTIONS:

Before going into the details of the Experimenter's Computer System
it is worthwhile to consider the various options which are open to the
individual or organization operating on a limited hardware budget. The
design found in these articles is one of the most economical ways to
acquire a computer in terms of dollar amounts. However its relatively
lower cost must be traded off against the time required to construct and
test the various modules.

1.1 PURCHASING OR RENTING A COMPUTER SYSTEM

This option is the most expensive of the group considered here. By
purchasing or renting a complete computer system, the time involved in
building and debugging system hardware is avoided, but a higher dollar

(C) 197 M.P. Pubhlishince Mn BT vk lenldter il s

M.P. Publishing Co. =2< ECS-1

price is the result. Incidental to the process of buying a complete
system, little is learned about the hardware design aspects of compu-
ter systems. The author is famillar with several systems which may be
rented at prices in the $250 to $1,00 per month range, or purchased for
prices in the neighborhood of $10,000. Such systems are typically
complete general purpose computers with integrated keyboard, CRT dis-
play and mass storage —— eminently suitable for use in teaching the
principles of software design and programming while incidentally pro-
viding a useful tool in handling personal business, calculation and
record keeping. The rentals and purchase prices of such systems are
however outside the range of most individuals.

1.2 PURCHASING A MINICOMPUTER MAINFRAME CPU

The purchase of a minicomputer CPU outright is one way in which to
bypass much of the effort required for construction of a system from
scratch. The prices are however generally higher than for the micro-
computer oriented system described in this series of articles. For ex-
ample a typical new 16-bit minicomputer with ;096 words of storage,
hardware multiply/divide and an excellent instruction set costs about
$2000 in a table top package. A used computer can also be acquired, at
a lower cost (eg: about $1200 or so depending upon the machine.) In
either case, this particular method of acquiring a computer gives the
purchaser a head start at a correspondingly higher cost. The engineer-
ing of inexpensive peripherals described in this series of articles 1s
still valid, and can be adapted to the requirements of any minicomputer
without great difficulty.

1.3 THE MICROCOMPUTER OPTION

The method of acquiring a computer system described in this series
of articles is to employ a micro-computer LSI integrated circuit as the
CPU and static MOS memory for programs and data. With this main frame
for the machine, a set of inexpensive peripherals completes the system.
By choosing this course, a low basic cost is achieved at a price in the
time required to build a complete system. The cost of the standard
TIntel MCS-8 computer CPU part used in this design is quoted at $120 by
one nationwide electronics distributor's catalog; the judicious selec-
tion of components for memory and peripherals can produce a working
system with a complete cost in the range of $500-700 using all new
parts.

1.y THE COMPUTER DESIGN OPTION

OCn a cost basis equivalent to or slightly less than the micro-com-
puter option, it is possible to completely design and build a computer
CPU from scratch. For those individuals with an extremely limited bud-
get a very simple design for a CPU with correspondingly limited capa-
bilities can be built using perhaps $50 to $100 worth of parts total.
However, such a path is probably most appropriate for an engineering course
in computer design where the goal must be limited in scope. It 1is fre-
quent practice to take this option in many engineering schools. This
option suffers from the disadvantage of simplicity. To implement a
reasonable instruction set for such a computer would involve sufficient
complexity to make the microcomputer option more attractive due to cost.
As a result, a simple processor designed and built completely from scratch

does not have the generality and expansion capabilities of a microprocessor.

M.P. Publishing Co, -3- ECS-1

2. SOME DESIRABLE CHARACTERISTICS:

2.1 STANDARD PARTS

The Experimenter's Computer System should be oriented towards the
utilization of standard electronics parts. By using commonly avail-
able parts the problems of a one-of-a-kind approach — scarcity and
uniqueness — are minimized. Such parts are in general the least ex-
pensive due to competitive forces and mass production. Due to wide-
spread usage the integrity of the parts design can be assumed in gen-
eral. This consideration of standarization extends to the choice of
a CPU in this era of LSI — the INTEL MCS-8 chip which forms the CPU
of this design is a standard distributor catalog item which is well
proven in wide application since its introduction in late 1971.

2.2 SIMPLICITY

The concept of simplicity comes in two packages when 1t comes to
the design of computer systems. First there is the simplicity of the
basic design in terms of the number of physical hardware components
which must be assembled and checked out. Second, there is the sim-
plicity of the programming which can be helped or hindered by the de-
sign of the computer's instruction set — its "architecture." Both
kinds of simplicity are desirable in order to obtain a practical com-
puter system,

2.3 MODULARITY

The design of a computer system should similarly reflect the prin-
ciples of modularity in two areas: first, the hardware should be modu-
lar so that it may be built and debugged in stages, with the interac-
tion of modules limited to carefully defined interfaces. Secondly,
the software of the system should be modular so that programs and sys-
tems of programs may be built and debugged in a similar manner. Both
aspects of modularity are widely used in the computer industry as a re-
sult of the greater efficiency of design, debugging and configuration
possible through this approach. The practical use of this principle
is assumed throughout the articles of this series, at early stages in
the hardware design, and in later articles concerning software design
and "structured" programming.

2.4 FULL PROGRAMMABILITY

The design of the Experimenter's Computer System should be a fully
programmable general purpose computer with read-write memories through-
out. One of the main purposes of designing a fully programmable com-
puter (as opposed to a series of special purpose devices with limited
generality) 1s to take advantage of this programmability. If a new
function 1s desired from the device, merely writing a new program may
be sufficient to achieve the desired performance from the system. For
instance, to change a calculator program's display from fixed decimal
(the easlest to implement) to full floating decimal or even scientific
notation is accomplished by the modification of the software involved,
not by the substitution of new hardware components.

M.P. Publishing Co. =l ECS-1

The use of read-only-memory (ROM) programs is thus confined to one
specifically limited area: the cold start program needed to initialize
the computer and branch to a particular memory address where executive
and service routines are located. While ROM modules could be substi-
tuted for general read-write memory anywhere within the computer, it 1is
assumed in this design that full programmability should be retained by
excluding Read-Only-Memories.

2.5 PERIPHERALS

A computer by itself is a useless piece of machinery — it must have
a set of peripheral devices with which to communicate to the "outside
world." Peripherals bear the same relationship to the computer proces-
sor that sense organs and muscles bear to the human brain. In the course
of this series of articles on microcomputer systems for computer enthus-
iasts, a fairly large emphasis 1s placed upon the design and construc-
tion of 1nexpensive peripheral hardware:

2.5.1 Mags Storage: The design must include some provision for
a mass storage device so that data can be retained permanently off
line for purposes of keeping programs and data available for fut-
ure use., This is one peripheral which can not be omitted. The
ideal form of mass storage in the context of the Experimenter's
Computer System must be inexpensive, reliasble and easy to construct.
As a technology which meets these requirements, the audio tape
recording medium is chosen for this purpose: a battery driven
audio cassette tape recorder can be used to store digital data

at a rate of 100 baud (1 baud = 1 bit/second.) High quality
reel-to-reel and cassette recorders can store the data at a

much higher rate (eg: 300+ baud.) In either case, a simple FSK
(frequency shift keying) method of modulation is used. Output
signals are created by selecting one of two digitally generated
frequencies; input signals are detected by a phase-locked loop
with an assynchronous data-generated clock. The basic I/0 cap-
ability for mass storage for a minimum configuration of the Ex-
perimenter's Computer System 1s a single-channel; additional
channels may be added in parallel by adding more modems, or on

a shared basis through logic required to select one of several
tape recorders.

2.5.2 Displays: The subject of inexpensive displays leads to a
variety of possibilities. Since the system design 1s modular,
any and/or all of the suggestions shown below are potentially
useful:

a. Binary Lamp Display: This form is the most limited

in functlon and convenlence, but is the simplest to im-

plement. It will be one of the first display's to be in-
corporated in the Experimenter's Computer System.

b. Decimal Numeric Display: This type of display is the
least expensive form which offers more utility than the
simple binary lamp display. Its level of complexity is
not much different from the binary form — consisting
of the addition of BCD-Seven Segment decoders to the par-
allel binary words required for the simpler binary dis-

play. Software can be used to achieve BCD, octal, hexa-

M.P. Publishing Co, -5- ECS-1

decimal , floating point BCD or scientific notation BCD
outputs in such a display.

c. Text Display: There are several possibilities for the
implementation of a textual display. These include building
the refresh memory and ROM dot-matrix character generator
needed to drive a television, and purchasing Burroughs plas-
ma displays(32 characters for $168). Any display device
which will accept serial character outputs of 6 to 8 bits

in width can be potentially interfaced with this system.

d. Oscilliscope Graphics Display: A graphics display is
used for drawing "pictures’ under computer control. For
those individuals with an X-Y oscilliscope one of the sim-
plest forms of graphic display possible is one involving

an oscilliscope and three digital-to-analog output conver-
sions driven by the computer. One DAC channel 1s used

for each of the X and Y inputs of the scope; the third DAC
output is used for intensity modulation. This form of dis-
play is essential for the programming of a "space war" game,
the "game of life" or other interesting recreational activ-
ities which use the computer system as a central theme.

Other display options are as numerous as the number of display tech-
nologies available. All are potential outputs of the Experimenter's
Computer System.

2.5.3 Keyboards: The inverse of a display operation is to ac-
cept input from the human operator of the system using keyboards
or other arrays of switches. As is the case with displays, there
are many options available ranging from a simple switch array

for entering and editing programs to ASCII typewriter keyboards
needed for more advanced software techniques and textual data
entry. Custom keyboards can be built and integrated on short
notice for special purposes. For instance a "Space War" pro-
gram will require a special control panel built for each player
with a common oscilliscope screen as the "solar system" map
display. Similarly, a calculator program interfacing with a BCD
numeric display or text display will in general require a numer-
ic keyboard for entry and a function keyboard for selecting the
operations desired., Using the Experimenter's Computer System the
programming of a variety of specilal purpose calculator functions
of a statistical and mathematical nature can be achieved.

2.5.4 Special Purpose Peripherals: In addition to more or less
standard peripheral devices the Experimenter's Computer System de-
sign supports the concept of special purpose I/0O devices. For in-
stance it is possible to interface a series of Digital-Analog con-
verters to the processor in order to control the timing of voltages
in a scientific experiment. Such DAC outputs can be used to con-
trol any fundamentally analog process requiring voltage-level set-
tings. Similarly, the inverse of DAC outputs is an irnput ADC con-
version. Fairly simple and inexpensive ADC channels can be con-
structed using tracking converters to read voltage levels as binary
numbers. (See M.P. Publication #73-2 for ideas on DAC and ADC
conversions.) Similarly, discrete single-bit digital inputs and
outputs can be created through simple parallel interfaces to the bus.

M.P. Publishing Co. -6- ECS-1

2.6 SOFTWARE AVAILABILITY

The use of a standard computer part for the Experimenter's Computer
System described in this series of articles is desirable from several

points of view:

a. The manufacturer of the computer part has a wide following of
customers developing programs using the same basic instruction set.
Many of these programs contain interesting and useful techniques
which may be incorporated into customized programs of the individu-
als building the system. To the extent that the manufacturer of
the computer part makes such routines contributed by its customers
available on a general bagis, the programming problems for indiv-
idual experimenters are simplified.

b. Applications program developed explicitly for this computer
project by the author and his associates can be used directly by
any individual building similar equipment. Descriptions of such
programs provide the theme for many of the articles in this series
following an initial concentration on the minimum hardware require-
ments 1in the first few articles.

2.7 ACHIEVABILITY

As a final consideration for the Experimenter's Computer System, the
criterion of achievability is essential. The Implementation of a digi-
tal computer is not a trivial undertaking —— especially when attempted
by the individual experimenter or small group of computer enthusiasts.

A prime purpose of this design and the series of articles based upon it
is to come up with a computer system of useful capacity which 1s achilev-
able at moderate cost by any individual seriously interested in the sub-
ject. The use of a standard micro-computer part is a state-of-the-art
short cut which simplifies the project immensely. Even so, full imple-
mentation of the design in these articles will require care, diligence
and persistence on the part of the builder. With the articles in this
series as a gulde, the individual experimenter or small group of compu-
ter enthusiasts now have a means to create a general purpose computer
system and in the process learn a great deal about computer hardware,
software design principles and computer technology in general.

3. HARDWARE SYSTEM DESIGN:

The microcomputer chip chosen as the basis for the Experimenter's
Computer System is a bus oriented central processor designed and manu-
factured by the Intel corporation: the 8008 processor first announced
in 1971. This microcomputer chip has attained widespread acceptance in
the digital systems industry due to the fact that it is TTL logic com-
patible, has an instruction set comparable to many minicomputers, has a
general purpose bus-oriented data architecture which is inherently mod-
ular, includes special purpose program control mechanisms designed for
modular programming and —— most important — 1is available at a rela-
tively low cost. All of these advantages make it a desirable machine
for use by computer enthusiasts interested in acquiring an inexpensive

system.

M.P. Publishing Co. ~7- ECS~1

The basic block diagram for the Experimenter's Computer System 1is
shown below in figure #1. Central to the design is the 8-bit paral-
lel data bus and its related control lines. This bus 1s bi-directional
so that transfers both to and from the CPU are accomplished on the
same set of 8 lines. Due to the bus orientation of the system there
is an inherent hardware modularity, symbolized by the arrows extending
the bus and control lines off the page. This makes the
system capable of growth and expansion on an incremental basis: the
establishment of a minimum hardware configuration serves as the basis
for further expansion and improvement as more I/0 and memory modules
are added. Figure #1 represents a minimal system which serves as the
first milestone in the construction of an Experimenter's Computer Sys-

tem:

r

Experimenter's DATA BuUS Figure #1
Computer Tgm;gg Minimum System
System Conflguration
l , |
CENTRAL CONTR OL

couwp sTART [, o 9
LOGTC RESTART

PROCESSING LOGIC &
UNaT BUFFERS

INTERRUPT LINE R
r DATA BUS -
MAIN l
My e W
PANEL 1/0
& DISPLAYS | MODULES

BOOTSTRA? | BOOTSTRAP
MEMORY | conTr ¢ TTPRE
PAGE ONTROL ONTROL I/0 PAGE CONTROL LINES

CONTROL TAPE
PANEL UNTT

e

©® 19%4 M.P. PUBLISHING CO. *

3.1 CENTRAL PROCESSING UNIT

The CPU is the microcomputer system's most fundamental component, the
Intel 8008 processor chip. This device is a complete general purpose
minicomputer type machine with an 8-bit parallel data architecture, 7
internal registers, a 7-level program control stack, 5 instructions and
addressability of 16,38, bytes of memory. The clock rate of the stan-
dard Intel part is 500 Khz, which means that the typical instruction
takes 20 microseconds depending upon the number of clock cycles required
for completion. This speed is not particularly fast — 1t is approxi-
mately the same speed of execution found in the onboard computers of the
Apollo spacecraft which were used to navigate to the moon and back.

M.P. Publishing Co. -8- ECS-1

However, a 20 micro-second instruction time is more than adequate speed
for most uses of the Experimenter's Computer System, where — as in the
process of navigating a space ship —— answers are more important than
the time it takes to compute them (within limits of course!)

3.2 CONTROL LOGIC AND BUFFERS

This block is incorporated in the design for several purposes. First,
it is desirable to isolate the CPU chip 1tself so that it is protected
from stresses beyond its ratings. Second, the CPU requires an external
clock at 500 Khz in order to operate, provided by an appropriate set of
clock generation logic elements. Third, the control of the entire compu-
ting system must be decoded.

The data bus shown emanating from this block is a tristate TTL bus
employing Signetics 8T09 interface gates. A maximum of 2 modules may
be hung on the bus without resorting to additional buffering. The bus
time multiplexes data and address traffic in 8-bit segments under the
control of the CPU's timing signals. '

3.3 DATA BUS MONITOR LAMPS

This logilc is provided so that the data bus can be monitored for de-
bugging and educational purposes. The logic included for this purpose
will enable the following forms of monitoring:

a. Selective monitoring of data at specific processor state
times in the multiplex scheme, via decoding of the ‘processor
state information.

b. Real time monitoring of the bus independent of the proces-
sor gstate.

The panel readouts for this function consist of a set of 8 LED indicator
lamps and form the first display unit to be included in the system under
computer program control. Panel switches will 1include a rotary state
selector switch for the first mode, and a two-position switch to select
modes.

3.4 MEMORY ADDRESS SPACE ALLOCATION

The ‘memory address space of a digital computer is the set of binary
integer numbers which are valid addresses for memory operations. The
memory address space of the Intel MCS-8 system is thus the set of numbers
O to 16,383 which are the potential contents of its ll-bit program
counter and stack mechanisms, Thils space may be conceptually divided
into 6l "pages" of 256 bytes per page by the time-multiplexed division
of a 1ll-bit address into an 8-bit low order component and a 6-bit high
order component, The 6-bit high order component is the "page address"
and the 8-bit low order component can be termed the "byte address." The
nature of the memory devices connected at each page address of this de-
sign can be fairly arbitrary since the CPU cannot distinguish between a
read-write register in an I/0 device and the ports of a read-write ran-
dom access memory. The CPU is completely independent of the particular
timing constraints of memory devices as well, since it can wait indefin-
itely for the "memory ready" signal to be indicated. For the purposes
of the Experimenter's Computer System, the memory address space 1s given
the following fixed allocations:

M.P. Publishing Co, E G- ECS-1

3.4.1 Bootstrap Page: 1In order to establish a basic kernel of
systems software in a system which depends on such software for
its operation, a means is required to "bootstrap" an initial pro-
gram load (IPL). The means of doing this in the Experimenter's
Computer System is a special page of memory at addresses 3F00 to
3FFF (hexadecimal notation.) This page 1s characterized by two
manually selected modes of operation:

a. "Normal" computer-controlled operation in which this
page acts like any other main memory page of the system,
containing either program or data storage.

b. "Bootstrap" manual operations in which the memory is
controlled by hardware logic of the "Bootstrap Control”
module. In this mode, a special control panel and the
tape recorder I/0 unit are connected to the bootstrap
memory. Operations include manual "toggling in" of pro-
grams and data, examining and changing data manually,
dumping the IPL program to tape, and restoring that pro-
gram from tape.

Since the bootstrap page is subject to control by a separate man-
ual control panel independent of the CPU, 1t is possible to manu-
ally load and alter its 256 bytes of memory. Thils page is intended
to be used for systems software: routines used as tools for the
development and debugging of further programs. The following list
represents a minimum set of such bootstrap systems routines:

a. Memory Dump/Restore Routines.
b. Display, Debug and Edit Routines.
c. Tape Recorder I/0 Control & File Management.

Depending upon the particular memory space requirements of these
routines, additional programs for functions such as extended pre-
cision arithmetic,and block data movement might be incorporated in
this page.

3.4.2 I/0 Page: 1In order to simplify the hardware and programming
of the Experimenter's Computer System, input/output operations can
be treated conceptually as a special kind of memory connected to the
bus. One page of the memory address space 1s reserved for use 1n
I/O operations. This page is allocated addresses 3E0O0 to 3EFF (hex-
adecimal notation) and is thus the next-to-highest page address in
the system. Not all of the 256 addresses will necessarily be given
an actual hardware implication — unused addresses with no attached
device result in a null data configuration (all "1" bits on the bus)
and are treated as "HALT" instructions if the processor should by
chance jump to such a location. In the minimum configuration of
figure #1, only the addresses connected with the main control panel
, -control panel displays, and the tape recorder programmed I/0 chan-
nel are active, As modules are added to the system, new addresses
on this page may be utilized for the new functions: sharing the com-
mon I/0 Page decoding logic, attaching directly to the bus for data

transfers, and employing local logic to decode the byte address.

M.P. Publishing Co. -10- ECS-1

3.5 MAIN CONTROL PANEL/DISPLAYS

The minimum system configuration for the Experimenter's Computer
System shown in figure #1 includes a control panel and displays driven
by the systems software which is loaded into the bootstrap memory. This
panel consists of the following:

a. 1lh4-bit binary LED display for addresses. This output is al-
located 2 byte addresses at hexadecimal 3EO0O0 and 3EOl in the I/O

page.

b 8-bit binary LED display for data. This output is allocated
one byte address at hexadecimal 3E02 in the I/0 page.

c. Hexadecimal data entry keyboard array (16 pushbutton switches)
and an auxiliary array of 16 function switches. Control logic is
used to encode two lL-bit patterns in a single word allocated at
one byte address of 3E03 in the I/0 page. Pressing a key writes
data into the appropriate memory word; program acknowledgement and
resetting is accomplished by storing a null pattern to reset the
word. The first four bits of the word (high order) are reserved
for the function switch selection; the second four bits are used
for the data switch selection coding.

3.6 TAPE MASS STORAGE

The mass storage function of the Experimenter's Computer System is
performed by using a magnetic tape recording medium. In figure #1 this
function is represented by two blocks:

a. The Tape Unit 1s a serial modem and control logic used to
write and read serial blocks on an Audio Cassette Mass Store.

b. The Tape Control block of the diagram is designed to pro-
vide dual control functions for the Tape Unit: A fixed length
TPE; dump/restore mechanism is used in the Bootstrap mode; a
programmed I/0 mechanism run by the CPU and its interrupt mechan-
ism 1s used after IPL operations are completed and the bootstrap
memory page 1is properly set up with basic systems routines.

3.7 COLD START LOGIC

The central processor requires a speclal set of instructions to be
executed in order to start up the system for the first time or to re-
initialize the system at a later time. This is provided by logic which
disables normal bus activity and forces a fixed program load of several
instructions to be executed following the interrupt generated by a re-
start switch. The major function of this program is to jump to the be-
ginning of the bootstrap memory page (address 3F00). A 32x8 ROM is used
for this program — an 8223 IC or a reprogrammable simulation of this
circuit, In the later stages of this project, the cold-start program
will be improved to include automatic sequencing of bootstrap memory
restoration prior to Jjumping to the beginning of bootstrap memory.

-y e mm m mm ma m v m W WN w mm m m w———

This concludes part 1 of the Experimenter's Computer System pro-

SAan~nd Mlhha siamed Acad2 AT A R I LTE P T I e . ;

M.P. Publishing Co. Box 378 Belmont Massachusetts 02178 ECS-2

AUDIO CASSETTE MASS STORAGE SYSTEM

by Carl T. Helmers, Jr.

This publication is the second in a series devoted to the proposi-
tion that computer technology is within the price range of the serious
experimenter and computer enthusiast. In the first instalment of this
serles a discussion of the goals, design tradeoffs and the overall sys-
tem design were presented. In the current article, the first construc-
tion project in the series is described: the Audio Cassette Mass Stor-
age System which will be used to permanently record and store both pro-
grams and data, ;

This article describes an audio tape cassette interface which is ca-
pable of reading and writing data at 100 bits per second on an inexpen-
sive recording medium. The use of a device of this type is a neces-
sity in the Experimenter's Computer System if it is to be conveniently
used and programmed. If two or three of these I/0 devices are con-
structed for the system, some fairly powerful file-handling applica-
tions for the computer will be programmable.

The information presented here describes the basic serial I/0 unit
as designed and built by the author. The unit accepts serial TTL data
from a controller in order to write frequency shift keyed (FSK) data
on the tape device. For input of the same data, the unit demodulates
the audio signal with a Phase Lock Loop to provide a serial data stream
to the controller,

The primary goal of this particular design effort was to duplicate
the functions of a paper tape reader/punch of the type found in the
typical minicomputer installation. As a bare minimum these functional
characteristics are:

100 Baud (bit/sec) data rate

Permanent storage

Reasonable reliability

Manual control of the I/0 functions with
the exception of start and stop.

This design accomplishes these goals to provide the first peripheral
device for the Experimenter's Computer System. Some comments on im-

proving the performance of the device are included at the end of this
article, however the design as it stands is functional and proven in

operation.

(© 1974 M.P. Publishing Co. All Rights Reserved

M.P. Publishing Co. -2~ ECS-2

1. THEORY OF OPERATION:

1.1 SYSTEM CONTEXT:

{""’ The Experimenter's Computer Sys-

tem defines the context in which this
BRIy DAt I/0 device is used. The full des-
cription of the Experimenter's Com-
puter system was outlined in Part 1.
Figure #2 at the left is an adapta-
tion of part of the System Block
Diagram found in ECS-1 on page 7,
concentrating on details of the tape
interface.

/0
PAGE
DECODE

|

TAPE
conTROL 1/0 PAGE The I/0 Page Decode logic is shared
J BYTE ADDR, by all the I/0 devices which are ac-

cessed by memory operations as oppo-
sed to I/0 instructions. Its pur-
| pose is to decode the high order page
A address provided by the CPU and to
SETTE
MAsSs STORE store the low order byte address for
decoding by various devices. The Tape
' Control unit contains the logic for
interfacing the Audio Cassette Mass
|

Storage System to the CPU data bus.
lh¥ The major part of this interface 1is
: the 8-bit parallel to serial data

Figure 2. System Context format conversion required.

Details of the Tape Control, I/0 Page Decode and other components of
the computer main frame are the subject of later articles in this ser-
ies. To understand the operation of the Audio Cassette Mass Storage
System device requires no further consideration of the particular com-
puter and controller which will utilize it.

1.2 TAPE DATA CONCEPTS:

The basic method of storing data chosen for this system's design is
to frequency modulate an audlo signal by means of a digital switch. 1In
order to keep frequency deviations due to "wow and flutter" of the tape
mechanism small compared to the actual encoded signal, and additionally
to provide an easily generated ratio, an octave (2:1) frequency sep-
aration was chosen for the information. For the 100 baud data rate used
in this design, the lower frequency, "f", is 3000 cps and the higher
frequency, "2f", is 6000 cps. There is a 1l:1 correspondence between the
frequency on the tape recording and the TTL logic level of a data bit
internally: f is understood to be the logic O signal, and 2f 1s under-
stood to be the logic 1 signal. All clock and timing involved in this
system (with the exception of two start up delays) are defined in terms
of f, as can be seen in the notations at various points on the detailed

logic diagrams of figures #6a and 6b.

1.2.1 DATA FORMAT:

Figure #3 found on the next page gives the details of the self-clock-
ing data format used in this design. The drawing is a timing diagram

M.P. Publishing Co. -3- ECs-2

for several of the signals in the system. Time is interpreted as the

ymmon horizontal axis, with digital signal levels represented by ver-
vical displacements of the appropriate lines. The diagram of figure
#3 covers two bit periods (tb) as recorded on the tape or read from
the tape. P

t--m 1 1 & BrT maARK
o 1 1 [L §, oaTA

:_Jr ! [[| rrea. contaon

e : :
I ﬂ : Il : I INPUT SAMPLE
tj::"‘?“““?“"JLQE fl : DATA CLOCK
E<- s¢c > : : tsp—g LT PER1IOD (10 MS)
e tsc = SAMPLE CLOCK DELAY
: £y e e (6.6 ms)
: P . 8p : —
i ; : t = DATA CLOCK DELAY
I TYPICAL i TYPICAL : b (8.6¢ MS)
! LOGLCAL & LOGICAL B!
BLY BI1 :

o J

Figure 3. Tape Data Format

The concept of a self-clocking data format is this: each bit period
of information recorded includes data plus information required to regen-
erate timing of the period. In this way the process of reading the data
can be made independent of timing variations in an imperfect recording
medium. In the technology of information transmission, the most wide-
spread example of a self-clocking data format is the modulation used for
television video information: the synch information is sent along with
the analog data signal and the receiver locks onto this clock.

The self clocking nature of the data format used in this design 1s
found in the number of state transitions per bit period. A bit period
is the basic unit of time required to record a gingle bit of information
on the tape. For a 100 baud rate there are 100 bit periods per second

with each bit period taking 10 milliseconds. The format chosen here

M.P. Publishing Co. =l - ECS-~2

uses two transitions in frequency per bit period, as shown by the arrows
in the "Freq. Control" signal shown in figure #3. There is a transi-
tion from f to 2f followed by a second transition from 2f to f for each
bit. By picking the f-to-2f transition as the fixed reference point in
the period it is possible to regenerate input timing information syn-
chronized to the actual data signal.

The bit period (tgp) of 10 milliseconds is divided into three parts
to format each bit of information. These parts are:

- Bit Mark phase: The first part of the period (& 1) is the
Bit Mark phase, represented on the tape recording by the
frequency 2f. The beginning of this phase is the f-to-2f
transition which marks the start of a bit.

- Data phase: The second part of the period (§) is the
Data phase, Data 1s represented on the tape during this
portion of the period by the choice of f (logical 0) or

2f (logical 1). In terms of transitions of frequency, if
the 2f-to-f transition occurs at the end of the Data phase
then the data is a logical 1l; if the 2f-to-f transition
occurs at the beginning of the Data phase then the data 1is
a logical O for the bit in question. For purposes of in-
putting data, sampling the state of the demodulated signal
during the the Data phase (eg: at tgg) is a timing require-
ment of the data format.

- Null phase: 1In order to provide for the f-to-2f transi-
tion which marks the start of the next bit period, there must
be a Null phase at the end of each bit period, during which
the frequency f is always recorded.

The width.of all three phases is set identically in this design by divi-
ding the bit period into 15 equal parts with a counter and some phase
generation logic.

In addition to the Input Sampling clock (see figure #3), there is a
second clock referenced from the beginning of the bit period. This is
the Data Clock which is used during both input and output to indi-
cate a request for more data (output) or to cause storage of the data
Just read (input.)

l.2.2 BLOCK FORMATS:

Figure #L (next page) shows the Tape Block Format used to group a
series of recorded bits of the type just described. The concept of a
"Data Block" is defined as a contiguous series of bits written or read
as a logical unit in a single operation. The concept includes the in-
formation bits plus any "overhead" information required to physically
define the data., 1In this system, the overhead consists of the wasted
tape (inter-record gap) between the end of one block (while the recor-
der slows down) and before the first bit of the next block (after the
motor has gotten up to speed and stabilized.) One such block is read or
written whenever the Audio Cassette Mass Store receives its I/0 Start
cue from the controller. Figure #lp is also in the form of a timing dia-
gram for several signals with a common horizontal time axis:

M.P. Publishing Co. G ECS-2 .

r I |

I/0 START

AR

MOTOR (TAPE) SEE_ER}’/ \
LISTEN FOR INPUT ie—TIp—s] \ \

OUTPUT WRITE (DATA) F— 100 ——>

-~ MOTOR. IS “ON'— 3

o

Figure i, Tape Block Format

The "I/0 Start" pulse shown at the top of the diagram is a signal de-
fined by the Tape Controller and used to initiate an I/0 operation. All
subsequent timing is relative to this cue. As shown by the Motor (Tape)
Speed curve, this pulse turns on the Tape Recorder. However, since it
takes a finite amount of time for the tape to get up to speed, no I/0
operations can be performed reliably until after a delay interval. For
output the delay is TOD, as shown. For input operations, the device be-
gins to listen for data prior to the time when the first bit is expec-
ted. The input delay TID is thus shorter than the output delay TOD.
This strategy guarantees that the unit is always listening to the tape
before the first actual input data bit comes along --- so that no data
will be lost while reading. Somewhat arbitrarily, the input delay was
set at TID=2 seconds in the prototype and the output delay was set at
TOD=3 seconds. The TID delay is more than sufficient to allow for the
motor start transient.

Note that with this scheme of recording with self-clocking data, the
input operation is always re-synchronized to the tape at each block
boundary, so that any synchronization errors (eg:missed bits) will be
confined to the block in which they occur, and minor differences in
block timing due to motor peculiarities will not be additive over the
entire tape cassette.

l.2.3 MANUAL OPERATIONS:

This device requires manual intervention in order to operate in an
orderly and well-defined manner. The need for manual operator inter-
vention is a result of efforts to keep the price down: there is a trade-
off between electromechanical controls and price. Thus in order to
perform an input or output pass through the tape cassette, the follow-
ing series of manual preparations must be performed:

M.P. Publishing Co. -6- ECS-2

1. Place the MOTOR DRIVE switch (S2) into its manual position
(B in figure #6a) to provide power to the recorder.

2. Mount the desired data cassette 1in the recorder and rewind
it to the beginning. One advantage of cassette medlia versus
reel-to-reel is that there is a well defined beginning of tape
position: the stall point in a rewind.

3. Place the MOTOR DRIVE switch (S2) into its computer control
position (Y in figure #6a). 1In this position the state of the
motor is governed by logilc circuitry, and should be initially off
provided the Tape Control module and other elements (hardware and
software) are properly initialized.

li. Pick an input or output mode of operation depending upon the
purpose of the pass through the cassette. Do this by setting the
Tnput/Output mode switch and by setting the tape recorder con-
trols accordingly:

- Set the recorder to RECORD if an output operation is to
be performed, and the I/0 Mode is set to output.

- Set the recorder to PLAYBACK 1f an input operation is
desired and the I/0 Mode is set to input.

Note that in either case, the tape recorder power 1s off so that
"starting" the machine by means of its controls will have no im-
mediate effect. Later, the logic circuitry will activate the
recorder at the appropriate time.

5. Prior to the first I/0 operation after the above setup, the
cassette must be initialized. This is accomplished by turning on
the recorder for a time period set by a one-shot which is fired by
switch S2 (TAPE INITIALIZE). The nominal 5-second period of this
operation 1s sufficient to advance the tape beyond 1ts non-magnetic
plastic leader.

After these setup operations are completed an arbitrary number of I/0
operations can be performed on the tape provided that manual interven-
tion does not move the tape physically. One block of data is written
or read in each such operation with a length set by the value presented
to the Data Count inputs (socket -2L-) at the start of the operation.

With manual information to repeat step L it is possible to change from
input to output mode and vice versa for successive blocks on a single
pass of the tape; however the previous 1/0 operation must have been
completed and care must be taken to avoid moving the tape while chan-
ging the mode. If such mode switching is contemplated appropriate pro-
grams can be written to present instructions on data displays and to
recover from errors induced by inadvertently moving the tape. Much will
be said on such topics in future articles of this series.

M.P. Publishing Co. -7~ ECS-2
1.3 SUBSYSTEM BLOCK DIAGRAM:
SWITCHED +5V POWER TO T.R, -
QAP':"“L MOTOR DATA
INIT. CONTROL COUNT
AUDIO
TAPE CONTROL TIMING FSK To
CONTROL Lo61c LoGrc MOBULATOR T. R.
INPOT INPUT
TRILGGER Dfxﬁu
A A
IN - .-
SERIAL DATA
OUT /N -
PLL ©Sk AUDLIO
— DEMODULATOR[®— FROM
T.R.
(R
- —
Figure 5. Subsystem Block Diagram

Figure #5 shows the subsystem block diagram of the Audio Cassette Mass
Storage System. This figure outlines the major functional divisions of
shis I/0 device. Details of the entire circuit are found in a later

figure, #6a and #6b, and discussed in section 1.4 below. The major func-
tional divisions of the design are:

M.P. Publishing Co. -8- ECS-2

- TIMING LOGIC: Central to the whole concept of this unit
is the timing logic used to sequence operations. This sec-
tion uses a high frequency clock which is divided to get
the frequencies of f and 2f used for data modulation, and
further divided to get the 15-parts of each data bit period
(at a frequency of f/30).

- DATA COUNT: A 16-bit counter is incorporated in the de-
sign to provide a count of the number of bits to be trans-
ferred., Up to 65,536 bits can be read or written in one
operation. This count is loaded from a fixed (hardwired)
value or is under control of the Tape Control module, de=
pending upon what is plugged into socket position -2l-.

- CONTROL LOGIC: This section operates directly from inputs
provided by the Tape Controller, Data Count and the Input

Trigger. The state of the subsystem is determined by various
gates and time delay elements incorporated into this section.

- MOTOR CONTROLS: This section contains a motor state latch
and the transistor switching circuit which turns on the tape
recorder power supply. The tape initialization timer and

a separate floating power supply for the tape recorder are
part of this section.

- FSK MODULATOR: The logic contained in this section con-
sists of two flip-flops set by timing logic to create the
control signals for the Bit Mark and Data phases, as well
the FSK switching logic which generates the output audio
by choosing f or 2f depending upon phase and data.

- PLL FSK DEMODULATOR: This block contains the Phase Lock
Loop (PLL) which converts FSK audio inputs back into a vol-
tage proportional to frequency. A comparator generates a
logic signal (raw data) from the PLL output, which is then
inputted to the Trigger and Data Logic.

- INPUT TRIGGER and DATA LATCH: These blocks have a common
gated Schmidt Trigger input taken from the demodulator. The
Trigger Section, working in conjunction with various control
logic and timing elements, defines a pulse corresponding to
the f-2f transition of the input signal, synchronizing the
system to the tape data. The Data Latch retains the data as
sampled during the input data phase, so that the Tape Con-
trol unit can read that data with the Data Clock which oc-
curs later during the Null Phase,

1.} DETAILED DESIGN:

- Following a few comments about the conventions used in the logilc di-
agrams of figures #6a and #6b, this section covers the detailed oper-
ation of the circuit. References should be made to both the logic
dlagrams and the system concepts presented above in order to understand
the design with the aild of these notes.

M.P. Publishing Co. -9- ECS-2

1.4.1 LOGIC DIAGRAM CONVENTIONS:

Figures #6a and #6b show the complete logic and circuit diagrams of
the Audio Cassete Mass Storage System. Due to the size of the circuit
it has been divided into the two parts shown., Internal connections be-
tween the two sections of the diagram are indicated by the notation of
a single capital letter and the symbol <J . External connections
via the interface socket (socket -25-) are denoted by a number next to
a dashed line indicating the pin number., A second socket, -2lj- is used
to interface the 16-pins of Data Count input, but is not noted explic-
itly in the diagrams.

With the exception of logic inverters, all IC package numbering 1s
found inside the symbol for the component in question, denoted by a
number preceded and followed by a hyphen, eg: -11- stands for IC soc-
ket position number 11, For the MSI functions represented by rectang-
ular boxes, internal logic designations of pins are noted within the boxes
and external pinouts are noted outside the box. For gates and inverters
only the external pin numbers are shown since function follows from the
shape of the symbols used. In the text of this article, the notatilon
"-11.7-" is used to indicate a reference to the pin of an integrated
circuit socket, in this instance pin 7 of socket position 11.

1.4.2 TIMING LOGIC DETAILS:

PHASE STATE: The Phase State i1s defined by the contents of the
7493 counter -1~ at any given time. The position of the output
execution within a bit period is defined by the 1l5-successive states
of this counter. Connected to the counter is a Phase Decode block
consisting of a 74154 selector -15- which defines 15 negative-logic
(low state = logic 1) lines, only one of which is selected at any
given state of the inputs. The outputs of -15- are used as fol-
lows:

State 1 (pin -15.2-) defines the beginning of the Bit Mark

phase for output.

State 6 (pin -15.7-) defines the end of Bit Mark and the
beginning of the Data phase during output.

State 9 (pin -15.10-) defines the data sampling clock for in-
put operations. When this state is present, the Data Latch
comprised of -1l6bc- and -16d- is reset, after which the cur-
rent input data will define the new state of the latch.

State D (pin -15.15-) defines the Data Clock pulse and resets
the Trigger Latch for input operations.

State E (pin -15.16-) defines the Wait State used for input
synchronization to data. This is the last state to occur
in an input bit period, and is not used during output.

State F (pin -15.17-) is a null state used to reset the Phase
State counter and achieve a divide-by-15 operation during
output operations; during input this state is never reached.

CLOCK GENERATION: An oscillator formed by -19a-, -19b-,and
-19¢c- generates the basic timing frequency of 24,000 cycles per
second used for all digital clocking in this device. This frequency
1s noted as "B8f" in the diagram. The potentiometer R10 controls
the frequency of oscillation over ' 'a fairly wide range, and ulti-

M.P. Publishing Co. -10- ECS-2

mately determines the data rate of the device. The 2f, f and
f/2 clock signals required by the system are generated from the
8f signal of the oscillator using a L-bit divider, a 7493 cir-
cuit in socket position -21-. This counter shares a common re-
set with the Phase State counter (PHASE RESET inthe drawings)

in order to guarantee that all timing logic will be reset to a
unique and well defined state when necessary (ile: all zeros in
-21- and -14-). The f/2 output of -21.11- is the source of the
PHASE CLOCK signal gated to the Phase State counter by control
logic elements.

1.4.3 DATA COUNTER LOGIC DETAILS:

The Data Counter shown in this design is a 16-bit synchronous coun-
ter made up of four 74193 circuits mounted in socket positions -2-,
-3-, -lL- and -5-. The parallel load inputs of all 16-bit positions
of this counter are shown as open circles in ifigure #6a, Bits O
through 15 are understood to be connected to pins 1 to 16 respective-
ly of the Data Count input socket -24-. By means of this socket
these input values can be wired up to a DIP header plug with a fixed
number pattern, or they may be connected via that type of plug to
the outputs of registers in the Tape Control unit. In either case, the
information presented at this plu (-2l4-) is loaded into the counter
once per I/0 operation when the I/O Start pulse is received. The counter
is then decremented once for each bit in the transfer by the Data Clock
pulse. When the last stage (high order counter -2-) underflows the
Motor State Latch is reset and the I/0 operation terminates.

1.4.l} CONTROL LOGIC DETAILS:

The gates and logic blocks in the lower part of Figure #6a comprise
the Control Logic elements of this unit. Identifying by integrated cir-
cult socket position, the following notes describe the logic in some
detail:

-6- is the output start delay timer. Its main purpose is to
inhibit the operation of the modulator until the tape has settled
down during an output operation., =-12a- forms the logical product
(AND) of the output delay with the state selection data, so that
the OUTPUT-INHIBIT is only active if output has been selected.

-7- is the input start delay timer. It serves the same purpose
for input operations which -6- performs for output, but has a shorter
time period so that input "listening" begins prior to the first
bit on the recorded medium. Its output is inverted and used to
set an input clock-inhibit latch formed by -8c- and -8d-. The in-
verted form of this signal is also used to inhibit PHASE RESET dur-
ing setups at the beginning of an input operation. In the output
mode the operation of this logic is ignored.

-13c- defines the GATED PHASE CLOCK input to the Phase State
counter -1l -. When enabled by a lack of input or output inhibit
signals the PHASE CLOCK is inverted and passed to the Phase State
counter. The inhibiting conditions are:

For output, the output time delay of -6- gated by -1l2a-.
For input, count state E (-15.16-) gated via -1llc- and -12b-.

M.P. Publishing Co. ~11- ECS-2

In the input mode when the state count reaches state E (binary
"1110") and halts, the next input trigger pulse generated from
the input resets the state and allows the clock to run again.
This is the Wait state mentioned above which is used to syn-
chronize the I/0 electronics to the actual bit period thereby
immunizing the system against errors of an imprecise tape mech-
anism.,

-13b- defines the PHASE-RESET signal as a logical sum (or)
of three signals, using a NAND operating on negative logic
sources:

1. State F (-15.17-) is used to cause the Phase State
counter to have a 15-state cycle by resetting after
the fifteenth state (state E, -15.16-).

2. TO-START is also used to reset the counters, thus
defining a unique initial state at the start of all I/0.

3. IN-TRIG is a signal generated from the input trigger
pulse by -13a- when in the input mode after the delay at
the start of an operation is over. In the input mode,
the pulse gated via this line causes a transition from
the Wait state to state 0 at the start of a bit period.

-9b- is a NOR used as a negative logic AND function in order
to gate the input trigger to the PHASE-RESET logic above, as
well as the input clock inhibit logic. A pulse will be defined
and pass this gate only if the Phase State count is waiting in
state E as described above.

-9d- is used as a positive logic AND function to generate
the Data Clock signal unless inhibited directly by the input
clock inhibit latch (see discussion of -7-). Note that for
output data there is no direct and explicit data clock in-
hibit term. The Data Clock is inhibited during output start-
up by forcing Phase State counter reset until the output de-
lay 1s completed. 1In both input and output modes, the Data
Clock is inhibited after the end of an I/0 operation when the
Motor On signal is reset.

1.l.5 MOTOR CONTROL DETAILS:

The TAPE INITIALIZE CIRCUIT is composed of the time delay cir-
cult -1- and a pushbutton switch S1. The value of Rl is adjusted
to give a nominal tape-leader length delay of 5 seconds — suffic-
ient to space the cassette forward past the plastic leader strip.
The output of this circuit shares control of the tape recorder
power function via the logical sum formed in -9c-.

MOTOR STATE LATCH: +two NAND sections, -8a- and -8b- form a
set-reset flipflop which governs the state of the tape recorder
power during normal operation. This latch is set by the I/0 Start
pulse (interface pin 10) and is reset by the end of data count-
down when an underflow pulge i1s generated from -2.13-. This bit

also controls the modulator flip-flops to inhibit data generation

M.P. Publishing Co. -12- ECS-2

and clocking after the end of the data block on output. (See
figure #6b, pins -15.18- and -15.19- for this usage.)

The TAPE RECORDER DRIVE BOX is a separate module ‘built into
a small plastic case which may be kept near the recorder. This
box is separated from the rest of the logic diagram by means of
an apropriate dotted line in figure #6a. This section of the di-
agram houses the tape recorder drive circuitry, a power indicator
lamp and a separate power supply for the recorder. The control
signal from the main subsystem logic consists of two interface
plug pins: pin 8 is ground and pin 15 is the logic signal to
drive the redorder. 1In addition, this box includes the MOTOR
DRIVE mode switch (S2) and the LED indicator L1 which is in par-
allel with the tape recorder power supply. The tape recorder is
represented in the drawing as a coill to indicate the inductive
nature of the load it places on the driver, The protection diode
D1 is used to guard against transistor damage due to inductive
back EMF in the motor coils. A two-transistor buffer switches
the tape power supply under logic control. This unit can be built
and debugged separately — and can incidentally serve as a bat-
tery replacement when the recorder is not used for computer pur-
poses.,

1.4.6 MODULATOR DETAILS:

The FSK MODULATOR consists of the logic found in the upper right
corner of figure #6b. Two set-reset flipflops form the Bit Mark and
Data phase signals used to control the FSK switch. In the Bit Mark
phase gate -20a- always has a logical O presented to pin -20.1- so
the NAND output -20.3- always has a logical 1 value. This results
in the unconditional choice of the 2f signal at the FSK Switch as is
desired during Bit Mark. In the Data phase, the situation changes
with -18c- acting as an AND gate to enable the data input to pass to
the modulation switch via -20a-. Following the Data Phase, since
neither modulator flip-flop is set, both inputs of -20a- are logilcal
1 and the modulator switch is thus unconditionally in the Null state
configuration outputting frequency f. Note that in the beginning of
an output operation, OUTPUT INHIBIT i1s used to reset both flip-flops
unconditionally until the time delay is up. This guarantees that a
Null phase leader will be recorded continuously prior to the first
data bit.

1.4.7 DEMODULATOR DETAILS:

The demodulator logic of this system consists of the Phase Locked
Loop -23-, the comparator circuit -22- and associated discrete compo-
nents. The audio signal from the speaker terminals of the tape re-
corder is input to the PLL through a resistor and the diode clipping
network of D2 and D3. The clipper protects the 565 PLL against ex-
cegsive signal by limiting signal voltage to the diode forward vol-
tage drop. Potentiometer R11 is used to adjust the free running fre-
Quency. The output of the PLL is a voltage proportional to the in-
put frequency detected. This voltage and a reference voltage are both
fed from the PLL to the comparator via a filter (R1l2 and C9). The
comparator in turn produces a logic signal which is then cleaned up

M.P. Publishing Co. -13~ ECS~-2

and made TTL-compatible by the Schmidt trigger input of the first gate
stage it drives. The two Zener diodes Z1 and Z2 are used to define the
+6.3 and -6.3 power supplies for the PLL and comparator from the +11 and

-11 inputs shown.

1.4.8 INPUT TRIGGER & DATA LATCH DETAILS:

The input trigger logic consists of the Schmidt trigger gate -17-
and a set-reset latch formed by -1l6a- and -16b-. (The Schmidt trigger
output also drives the Data Latch.) During the end of a bit peri od,
the f signal is present on input and produces a low level logic signal
at the comparator output. This guarantees that during the Null phase
of input the output pin of the Schmidt gate (-17.6-) will be high.

When the Trigger set (State D, -15.15-) is reached this forces the
Trigger latch output (-16.,3-) into the logical 1 state. Tracing through
the control logic of -9b-, -13a- and -13b- shows that the Phase Reset
line will be zero when the input "Wait" state (State E, -15.16-) is
reached, and the system will be quiescent. As soon as the f-2f tran-
gition occurs however, the system state will change as follows: the
output of -17.6- will drop to logical O and thus reset the Trigger Latch
producing a logical O signal at -16.3-. This level will then propagate
through -9b-, -13a- and -13b- to the Phase State counter's PHASE RE-

SET line. This resets the Phase State, which is propagated through the
Phase Decode logic of -15- and removes the State E output (while enab-
ling the State O output). The Phase Clock is no longer inhibited with
the end of State E, and the trigger signal is cut off when State E is

no longer available to enable the AND logic of -9b-. The output of

-9b~ is thus a pulse whose width is set by the sum of the propagation
delays of -13a-, -13b-, -1lL- (reset to output), -15- and -9b-. Using
nominal figures from IC specifications this sum is approximately 7L
nanoseconds.

2. CONSTRUCTION AND TESTING:

2.1 TABLES:

To aid in assembling and testing your own version of this I/0 unit,
several tables are included at the end of this plan in addition to the
complete logic diagram of figures #6a and #6b. These tables are the
following:

Table I: Package Summary. This table contains a summary
of all integrated circuit and other socket positions in
the circuit, showing number of pins, power and ground con-
nections and other information.

Table IT: Other Electronic Parts. This table lists all the
miscellaneous parts used in the design.

Table III: Interface Sockets. Two sockets, -2li- and -25- &dre
used to interface this circuit to the world of the Tape Con-
trol module. The complete list of signals wired to these
sockets is summarized in this table.

M.P. Publishing Co. ~1Y- ECS-2

2.2 NOTES ON CONSTRUCTION TECHNIQUES:

Due to the complexity of this circuilt it is strongly recommended
that the solderless wrapped wire method of interconnection be employed
in the construction of this design and all the plans in the Experimen-
ter's Computer System series. For those individuals who are familiar
with the technique, no introduction is necessary; for individuals who
are not -familiar with wire wrap interconnection, the publication en-
titled "Solderless I.C. Prototyping Techniques" (M.P. Publishing Co.
Number 73-1) is available and provides information needed to utilize
this method of wiring.

The main logic board of the system should be fabricated as a single
module using copper-clad board to provide a good ground plane. The en-
tire circuit (excluding the Tape Recorder Drive box) can be laid out
on a single piece of blank P.C. board or Vector stock measuring L" by
8". Since the entire Experimenter's Computer System will involve many
boards with interconnections, 1t is recommended that a card cage system
be employed, in which case the dimensions used for this board will have
to be consistent with the card cage used. The discrete components
. of the main logic board for the Audio Cassette Mass Storage System are

mounted on insulated standoff terminals in the prototype. This includes
the timing capacitors and resistors of the oscillator, demodulator and
delay oneshots. The trimming potentiometers were simply glued to the
circuit board with a small amount of contact scement.

Wiring should begin with the power and ground connections of all the
dual in line sockets (summarized in Table I.) Following power wiring,
methodically connect all signal wiring as in the diagram of figures #6a
and #6b. One of the best ways to ensure that each connection is covered
is to highlight the circuit diagram line for the connection in red ink
(or other color) after it has been wired and inspected. It is suggested
that a wire 1list be made as well if more than one copy of the unit is
contemplated. Extra copies of the logic diagram page of this publication
may be purchased from the publisher for $.50 in single quantities to
replace your origihal diagram if you make the suggested markings during
construction.

In laying out the board, make provision for '"decoupling" capacitors
at several points in the wiring of the +5 volt power bus for the TTL
circuits., With any TTL circuit noise can and will be propagated along
the power lines due to switching transients --- and can randomly affect
operation. Good construction practice thus includes placing several
sets of decoupling capacitors around the power bus to store energy for
the TTL switching process . For this cilrcuit, three 10 mfd electro-
lytics in parallel with .1l mfd ceramlic capacitors will serve this func-
tion when wired from three different locations on the power bus to
ground.

2.3 TESTING THE CIRCUIT:
2.3.1 COMPONENTS:
As the builder of this design, you are interested in making it work

and correcting your own wiring errors, not in testing out the components
you buy, It is extremely important with a complex system such as this

M.P. Publishing Co. -15- ECS-2

one that you be able to rely upon the quality of the logic components
you buy. Accordingly, never under any circumstances buy "hobby" qual-
ity circuits unless you are prepared to become frustrated by circuit
components which must themselves be tested before use. Even with first
line circuits purchased from a distributor or surplus dealer, occas-
sionally you will find electrical problems with the IC components. In
the process of testing, by proceeding one step at a time with a healthy
skepticism of component quality, most such bad components can be iso-
lated.

2.3.2 INTERCONNECTIONS FOR TESTING:

At this stage in the development of the Experimenter's Computer
System, the only way to test out the Audio Cassette Mass Storage Sys-
tem 1s manually. Later in the series, articles devoted to diagnostic
programming for this device and other devices will be appearing —
techniques which provide for more comprehensive and thorough testing.
For the purpose of manual testing, the DIP header plugs for socket
positions -2L- and -25- must be prepared to give access to the system's
interfaces. For independent testing, thus two dummy plugs are needed:

1. DATA COUNT: The data count interface socket -2l- must be
set up with a bit pattern supplying a data count for testing.
Unconnected pins can be assumed to be logical "1" for purposes
of this testing, and pins connected to ground are logical "0".
For purposes of testing, wire pins 1 to 7 together on the plug
and connect them to a clip lead. A maximum length count is
achieved by leaving the clip lead dangling; a count of binary
"0000000111111111" (511) is achieved by connecting the clip lead
to ground. At 100 baud the maximum length count will run for
655.35 seconds and the shorter count will run for 5.11 seconds.
Other count values can be set by wiring this plug differently.

2. INTERFACE SOCKET: The general interface socket -25- must
be provided with a plug connected to wires which are stripped
at one end and connected to socket pins via solder at the other
end. Clip leads can then be attached to the stripped ends of
all 16 wires when needed during testing. In wiring this plug,
all wires should be labelled with tags of masking tape to iden-
tify pin number and interface function as found in Table IIT.
This will help eliminate the probability of confusion during
testing.

2.3.3 ORDER OF TESTING:

One way of speeding up the process of testing a circuitt such as this,
of speedily finding wiring and component errors, and of using your time
to best advantage is to use an.orderly and methodical approach to tes-
ting. The following is an outline of the sequence of testing needed to
manually verify the operation of this circuit. The theory of operation
as described above and the logic diagrams of figures #6a and #6b should
both be consulted for detailed information used at each step.

() 1. POWER WIRING: Verify and check out all power supply wiring
before ever plugging in a single integrated circuit. It is not
an absolute certainty that the circuits will go up in smoke with

bad power connections, but such has been known to happen.

M.P. Publishing Co. -16- ECS-2

() 2. CLOCK GENERATION: Verify operation of the system clocks as
the first operational test after inserting integrated circuilts.
Without an operating clock, the system is dead. Set the oscilla-
tor frequency to 21,000 cps (8f) and verify 12Kc¢ (Lf at -21.12-),
6Kc (2f at -21.9-), 3Kc (f at -21.8-) and 1.5Kc (f/2 at -21.11-).

Note that the system must be in output mode (interface pin 3 grounded)

for these first few tests.

() 3. TIME DELAYS: Check out the time delay circuits, socket loca-
tions -1-, -6- and -7- next. The following table summarizes the

nominal adjustments:

Delay Circuit Trigger Pulse Width
() -1~ Interface Pin 14 5 Seconds
() ~-6= Interface Pin 10 3 Seconds
() -7- Interface Pin 10 2 Seconds

() L. MOTOR DRIVE: Check out operation of the Tape Recorder Drive
Box next. First, verify operation in the manual mode: the indicator
LED (L1) should be on and the Tape Recorder should operate normally
when its various buttons are pushed. Then, verify logilc control of
the recorder by placing S2 in the computer mode (¥) and pressing
S1 to trigger a tape initialization pulse via interface pin 1. This
should illuminate the lamp L1 for 5 seconds, and --~- if the recorder
is in an operating mode --- turn on the motor for 5 seconds.

() 5. OUTPUT MODE: Next verify operation of the circuit in its out-
put mode of operation. Ground the wire connected to Interface Pin
3 via the test plug, thus setting the circuit into output mode. To
initialize output operations, momentarily connect interface pin 10
to ground, imitating an I/0 Start command. (If this proves unrelia-
ble it may be necessary to wire a pullup resistor of 1K ohms to the
+5 volt supply to this pin using clip leads.)

The timing diagram of figure #3 can be produced on an oscilliscope
with multiple channels and a chopped mode of operation. The scope
trigger should be connected to -15.1- via a temporary wrapped con-
nection or a test connector. Temporary connection of -5.3- (the
low order data count bit) to the TTL Data Input interface, pin 11

will establish the alternate 1 and O data shown in figure #3. To

observe (Bit Mark) connect a scope channel to -18.6-; to obser-
ve @ (Da%a) connect a scope channel to -18.8-; to observe the Fre-
quency control trace, connect a scope channel to -20,3-; to observe
the Input Sample clock connect a scope channel to -15.9- and to ob-
serve the Data Clock, connect a scope channel to interface pin 7.

As a final check look at the actual FSK output (interface pin l) re-
taining the same scope trigger source. The audio signal should be
observed to switch frequencies at each transition of the Frequency
Contrel signal, -20.3-.

If it is desired to check the output block format by producing the
timing diagram of figure #li the use of a multi-channel storage osc-
illiscope 1s necessary, with a very low sweep rate. This display
is interesting from a tutorial standpoint, but is not necessary for
checkout purposes.

M.P. Publishing Co. -1~ ECS-2

() 6. PREPARING A TEST TAPE: In order to test the operation of the
system with input data, it is necessary to create test tapes using
the output mode of operation. Retain the setups of step 5 sothat
an alternating 1/0/1/0/1... etc. sequence will be written onto the
tape. Run through a cycle of several blocks beginning with the
manual initialization of the tape (see 1.2.3 on page 5) and pro-
ceeding by initiating new write operations after the preceding
operation is done. TFor initial testing of the demodulator signal
circuitry, use the maximum length block count to record about
five minutes worth of test data in each block., A second cassette
can be prepared to test out input control logic using the short
block length suggested 1in section 2.3.2 above.

() 7. DEMODULATOR TESTING: The first step in testing input is to
test the Phase Lock Loop demodulator and adjust it for best re-
sponse. For this portion of the input testing, the maximum-length
block is desirable as prepared above on one cassette. If short
blocks are used, by the time you get around to looking at the PLL
output on the scope you find that the block has finished --- a
rather unproductive situation!

Reinitialize the tape as 1in section 1.2.3, change the mode to input
by removing the ground connection of interface pin 3, set the maximum
length value into the Data Count by removing the dummy data count
plug ground connection, and give an I/0 Start cue by momentarily
grounding interface pin 10 as before. The tape recorder should now
start playing, and after the three seconds of leader delay, data
should start coming into the PLL input via the FSK Data Input of
interface pins 12 and 13. Check this input of audio signal by
probing pin -23.2- with the scope. Note that there will be con-
siderable "wow and flutter" audible in the signal if a cheap tape
recorder is used, and that this will also show up on the scope
trace.

Adjust the Phase Lock Loop free running frequency setting dynamically
while observing the PLL output on pin -23.7-. Make initial adjust-
ments of R1l with the maximum volume setting of the tape recorder out-
put, until the "cleanest" output signal is obtained (the closest
approximation of a square-edged logic-like signal.) To avoid finding
false locking points the free-running frequency may be set prior to
this adjustment by removing input and observing the frequency on

pin -23.4- which should be approximately l-l,.5 Kc. After a large-
signal lock has been established, decrease the amplitude of the tape
recorder audlo until the PLL output begins to break up. Increase

the amplitude again slightly from this point, then readjust the

free running frequency with R11 for the best PLL output "square-
wavyness". This procedure establishes the best center frequency.

() 8. INPUT OPERATION: With the demodulator producing clean output
signals from the decoded FSK signal, the next step is to test the
logical operation of the entire system in input mode. For this
purpose, the test tape prepared with short blocks should be employed
instead of the long block cassette. Manually initialize the tape
unit as usual, and cue an input operation with interface pin 10. Ob-
serve various logic signals in the system as before, using state
O as the scope trigger. An initial indication of proper operation
is for the system to operate on one block of data and then quit (as-
suming the short data count is presented at socket -24-.)

M.P. Publishing Co. -18- ECS-2

Using manual operations it is impossible to get more than a
heuristic impression of the correctness of the ilnput data. The
circuit shown below as figure #7 uses an 8-bit counter to sum up
the difference in the number of 1's and 0's read by the unit.
While this 1s not a guarantee against compensating errors, the
probability 1s that for short blocks one type of error will
dominate (eg: zeros interpreted as ones or vice versa,) Using
the interface pins as output from the tape device, prepare the
tester by pressing the Reset button. Then initiate the tape

1,/0 using the short data block prepared previously . At the

end of the block, providing the alternating data was recorded
and re-read properly with no compensating errors, the value in
the counter display will be binary 01111111, This can be proven
by noting that the initial condition is 10000000 and that there is
one more zero on the tape block than ones, so the last bit read
will shift the result down by one count. (511 alternating bits
outputted with an initial state of O in the data count means 256
zeros and 255 ones.) After verifying short blocks, the input of
maximum length blocks can also be tested with the same unit. In
either case, the result in the counter is the difference in the

number of zeros and ones actually read, with the overflow/underflow

lamp indicating whether a gross inbalance was detected.
shown in this diagram are not included in parts lists.

The parts
This device

may be put together 1in short order to perform the indicated tests.
_IC @M isy
OPERATION: UP FoR “4” BATA +5 THi3 € e
Down For “ B DATA ‘I 10 7 %
744 >,_
DATA] Lp
4 o
3
| 5]
o 193
— DN
|
|l 18
9 % 4
e *
A 2 | maag)y it
i RESET B ¢
I AFTER RESET: O |
OVERFLOW
2,_ LED BIT ov 812 345¢°7 bk
INTERFACE- COUNTDISPLAY @ L 9 00 00 9 8 (L%)
7 - Clock (L= LAMP LED ON)
SN

Figure 7. Uniform Data Test Unit

M.P. Publishing Co. -19- ECS-2

3. EXTENSIONS AND MODIFICATIONS OF THE SYSTEM:

The basic circuit as described in this plan was built and complete-
ly debugged by the author. As is the case with all engineering systems
it should be understood that this not necessarily the only way in which
to generate and record data, and that the parameters of this particu-
lar design can be adjusted further. Within limits it 1s possible to
increase the performance of the basic design; for use within other sys-
tems contexts, portions of the control and data count logic might be
changed. Some comments on the subject of modification are recorded
here:

1. SIMPLE BIT RATE INCREASES: The "sure" way to achieve an in-
creased data rate 1s to up the clock frequency and use as much of
the tape recorder bandwidth as is possible. With a cheap impor-
ted cassette recorder, a "2f" signal of 10Kc may be possible in
which case using the same frequency ratios a rate of 166 baud for
data would be obtained. Such a move on a $30 cassette recorder
might be marginal, and should be statistically checked out with

a suitable computer driven bit error checking program. If a reel
to reel recorder, higher bandwidths are possible. A "2f" frequency
of 20Kc may be possible on a quality audio recorder in which case
the data rate could be doubled once more to 333 baud. Whenever 2
new frequency 1is chosen, the following cautions obtain: the PLL
timing components will have to be changed, the oscillator timing
capacltor may be outside the necessary tuning range, and no tape
recordings made at lower data rates will be readable. To reiter-
ate, the limiting factors on this sort of data rate increase are
tape recorder bandwidth and the quality of the tape mechanism. The
parameters of the 100 baud specification in this article are "safe"
values which will most likely work on virtually any tape recorder.

2. BIT PERIOD FORMAT MODIFICATIONS: A second alternative to in-
crease the data rate i1s possible if the mechanical noise of the
tape drive is not a major source of frequency perturbations on
input signals: the tape format can be altered. The circuit in
figures géa and #6b measures out precisely 20 cycles of the high
frequency signal in 1/3 bit period, and 10 cycles of the low fre-
quency signal in 1/3 bit period. Both these amounts exceed the
minimum number of cycles required for the PLL to lock up. By chan-
ging the ratio of phase lengths to 2:3:3, with 8 cycles of 2f in
the Bit Mark plus potentially 6 cycles of f in the remaining two
phases, the same data can be potentially packed into 8/15 of the
time required for one bit in the present design. This set of ra-
tios can be obtained by using the frequency f as Phase Clock and
rewiring the outputs of -15- for the new ratios: State 1 starts

Bit Mark, State 5 ends Bit Mark and starts Data, and State B ends
Data phase to start the Null phase. By simply rewiring, this will
increase data rate to 188 baud assuming the same clocks. Performing
this modification in combination with that suggested above yields

a potential upper limit of 625 baud on a tape recorder which can
record a 20Kc signal.

3. DATA COUNT: The number of stages in the Data Count of this de-
vice is arbitrary and set for convenience in the Tape Controller.
With control logic modification this counter may even be omitted if
some other "end" signal inherent in data is provided by the computer.

M.P. Publishing Co. -20- EGS-2
. Table I: Package Summary
Description Pins +5 Volts Ground
1 {585 Tape Inltialize 8 8,1 1
[ova%2 2 7,193 Data Count 4096's 16 16 8,1l
3 74,193 Data Count 256's 16 16 8,1l
. 74193 Data Count 16's 16 16 8,1l
5 74193 Data Count Units 16 16 8,1
6 555 Output Start Delays 8 8,L 1
7 555 Input Start Delays 8 8l 1
8 7500 Motor & Input Latchesss 1l 1L 7
g 7402 NOR Gates | 1l 1l 7
0250 10 IM309K Tape Power Regulator 3 Terminals, TO-3
11 ‘v?ﬁbh Inverters 1L 1 7
12 7400 NAND Gates Uy 1l 7
13 7410 NAND Gates 1l 1l 7
ord _ / 1 7493 Phase State counter 1 5 10
%5 15 Arl5L Phase Decode 2l 2l 12
16 00 Trigger & Data latchesx% 1l 1L 7
g /17 7413 Schmidt Trigger NAND il 1 7
18 \Z4T10 NAND Gates 1L 1L 7
19 0l Inverters (oscillator) 1L 1L 7
20 o0 NAND FSK Switch Gates 1l 1L 7
© 21 7193 Clock Frequency Division 1l 5 10
0qﬁ_ 22 710 Input Comparator 1L Not Ap. 2
ogi/ 23 565 Phase Lock Loop 1L Not Ap. 3
2y DATA COUNT INPUT INTERFACE 16 Not Applicable
25 INTERFACE SOCKET 16 16 8

e o v e v — — gm w w Ta e S e e e M S T e et Ml e e e G M e e M e e M M e e e e M

% -6- and -7- may be combined in one socket position as two 555's
or as a single 556,

#3% These packages may be combined as a single 74279 package.

M.P. Publishing Co. ~21~ ECS-2

Table II: Other Electronic Parts

7 <

Cl 10mfd 10v electrolytic ord 109 R1 500K trim pot““‘(”ﬁﬁi -
82 .01 mfd ceramic R2 1000
ve3 .01 mfd ceramic R3 500K trim pot
ck .01 mfd ceramic Rl 500K trim pot
C5 1O0mfd 10v electrolytic R5 1000
C6 10mfd 10v electrolytic R6 1000
C7 1500mfd min, 10v electrolytic R7 100
C8 .015 mfd —_ ,rd 5 R8 100
C9 .o2mfd .4 = R9 220
C1l0 .02 mfd ol R10 2000 trim pot
C1l .00l mfd ceramic — @ rdk 5 . R11 10K trim pot
Cl2 1 mfd 10v electrolyticdp vd & R12 12K
C1l3 1 mfd 10v electrolytig? R13 12K
&1L .01 mfd ceramic R1lL 1000
«€15 10 mfd 1O0v electrolytic R15 10K
D1 Silicon Switching Diode S1 SPST Pushbutton
D2 Silieqp.-8Witching Diode S2 SPDT Center off toggle
D3 Silicon~Switching Diode)

‘ B3 r—dr2a—Ffilament trans-
Ld—LED: 10 ma former.
Ql 2n2222 rd ord Z1,Z22 L.7v Zeners(1ln750)
Q2 2n519o-——”’“57

Miscellaneous: Full wave bridge rectifier, line cord & plug, case and
housing for Tape Recorder Drive Box, external power supply and auxil-
iary-input/speaker plugs for the Tape Recorder.

Table IITI: Interface Sockets

Socket -2l- Socket -25-
Pin Count if "1" Wire To Pin Signal Description
1 32,760"s -2.9- T 11 volts power (Max +12V)
2 16,38l 's -2.10- 2 Not used
3 8,192's =2 . 1= 3 Input/Output Mode Select (Panel)
L LL,096's -2.15- i FSK Audio Signal Out
5 2,048's -3, 9= 5 Not Used
6 1,024 's -3.10- 6 Serial Data to Controller
7 512's -3,1- 7 Serial Data Clock
8 256's -3.15- 8 Ground (Power & Signal)
9 128's -lp.9- 9 -11 volts power (Max -12 magnitude)
10 bli's -ly.10- 10 I/0 Start Line (Neg. Logic)
11 32's -l.1- 11 Serial Data from Controller
12 16's ~ly.15- 12 Tape Recorder Signal Ground
13 8's -5.9- 13 PFSK Audio Signal In
1 L's -5.10- 1, Tape Initialize Pushbutton
15 2's -5.1- 15 Tape Drive Signal

16 1's -5.15- 16 45 volts power.

=
i av)
| .
sV 1 +
4 L 500K 1 ._mmm_ ;:d
WA d TRk, = =
7" ’l“' : - .38 4 10 AC =
@ b 41 8 1 mid | A T M f e
- S _ 1- o I 40 velt . 1 ¥ PRSTECTION [;g‘
] 2 [- %8 !
o o-i sss [o o u e
- ' 3 . s 18 220 L Miw, 2]
TA®E . 5 J9¢ . LED INDICATOR 0
TNITTALIZE 1l S| ca --ss‘r“:\;\.“sg
(PususuUTTON) .0l Yo 5.00 SEC 8, Q
FOR TAPE LEADER o
@ PELAY | o
z/o L TAPE RECORDER DRIVE Box
S ART] NoT <on - s e o - e > M WP mm e e em = =
i oTOR -0 -7 .
AUDIO CASSETTE MASS STORE - SERIAL FSK MODEM
: A DWG. 4 OF 2 — CONTROL LOGIC
1]
! oaTa
LA e | CLOLK
it-10 | T
1 ‘M ‘}7 14 lﬂ ;17 1 14 14 IL* ;l7 -id- -iie- 6
SIRIAL I e e of L ums FORPS) e raw o\ rrumn YO 9 4 1 A :
DATA -2~ Tig3 P q . . 419 P k0 ° :
COUNTDOWN 2 o] ~3- THI ule_22 “4- 13 4) 7S 193 106. N>
" T Cho AL Az A C an AL A2 ASU S e AL At A3l n T N
T PHA:
+5V ‘71 “l 1 ?l “l 11 “l "l “l 1l “l ql “1 il “l 'A'q: '3 I""::‘:m“ !
l l 3 L
¢ L 2 3 & 5 ¢ 7 8 1 1 4t AR 1% 19 35 'M“‘i:l-‘r: — <,
-3 INPUT-MODE INPYT - MODE 7\ H
Tasur/ ix 2 QUTPUT- MoDE B A
por OUTPUr- MODE
:'::Tcu s_f i -[: T2 SUTPUT-INHIBLT N A 1 OWF‘:‘\‘.-;'NNGIT a—\u >
Lo N ¢ sg1qe G
9= OUT 2 3 OUTPUT START DELAY "oR”
5| TET [y(APPROX. TNIER RLCORD GAP) Yo-srart 12 PUASE - RESLT
o | 555 |, PN ERTOTPEIAY N L L e = Sy
: I F
| 3 = 4 A8
45y RS 42, + ¢5 = (u-)u <X &
t 500k /% } lomid E
R4 >,
S9eK Af' T €6
41 s 10 Mfd
2 o
sy —F I
(L 2w —
81] S5S |s 3 %
INPUT STARY DELAY STATE-D IN-TRIGEER
I —iib~ | () D 1¢-3 (% -
© 197+ M.» PuBLISWING CO. - =
]
n

Figur~ 6a.

G'. {2-3 OLTPUT- INHIBLT
- swrs M |1IT
—_— 3 s MARK 12 e
€-¢ MoTOR-ON U P '
A 1 d cay 0
i — -) Edw
L= A
. 13-¢ GATED- PAASE-CLOCK ‘15;,'_ DATA RATE '_: our
- : 7e154 |, O P . S WL 10 ue
PuAsE H— @
' 44 DECODEsf & § / >0
Clocu
iz 23 3
[- a 4
= *_] | S
%93 b 24b]
PHASE 2t 4
state ¢ ¢ 1=
dlse zely Al
RESETS sb JL\ ¢y TTO
2 3 .- i SERIAL
Py EU DATA TNPUT
Y @
e e §le PMASE- CLOtK
‘e 4 H
1ef 1} 8| u[
e b d
STATE-F -2i-
E D — 49>
c - STATE-E N RESETS
- 2] 2
B [>EAED AN
F DPunsg-Q':srr 43-8 fPJ\
MOTOR-0N 8-3 N
7 e . ra AUDIO CASSETTE MASS STORE
TNPOT-DELAY -
o T A" s s SERIAL FSK MODEM
N IN-TRIGGER 3 o Tee LS NJ (2t +6.3V N DWG. 20F a = IIO LOGIC
z L] 1 cip Fege ’
TRIGGER LATCH «@2 U T <02 Wi ”?“Q
6 4 4 * -” s
16h et |y <
3 : R15 et
© - 1 ¢ =12 4 3 AN/ -:”' 1 F3W DATA
8 CrEd =23 b3 13K Ao mey , INPur
1o T DATA e 3 2. | PATA N & ARA e ‘&5 PLL FSk s /3 vz | b3 o STM &
-] all- € REC. =
5:53;‘_ premm— c o Q e DEMODULATOR ~ raw ,Jy 10 o E NAL GR:\::’!D
DATA 1] 5 ¢ 1 iw
'K:lfus TR ER
LATCH B8 Lun50
1 — TRIGGER —G.3v “FD kZI
2 l 1nv
1174 M.P, PUBLISHING CO.

Figure 6b.

r_ﬁ"

-¢2- *op ButystraAnd ‘d'H

2-SD0H

M.P. Publishing Co. -2l - EC3-2

PREVIEW OF COMING ATTRACTIONS

The Audio Cassette Mass Storage System as described here is but one
component of the Experimenter's Computer System — the object of this ser-
ies of articles. On the occasion of this first printing of #ECS-2 (April
1974) the following additional articles are scheduled:for publication in

the near future:

ECS-3: MICROCOMPUTER CPU, BOOTSTRAP & INTERRUPT LOGIC. This
article describes the basic microcomputer CPU, the buffering needed
to interface it to the outside world, the bus control concepts in-
volved, bootstrap memory operation, and the design of interrupt lo-
gic allowing 8 levels of software-decoded priority.

ECS-Li: 256-BYTE STATIC RAM. This article concerns the firgst
form of Random Access Memory module to be employed in the Experi-
menter's Computer System. For initial programming and testing one
or two pages of memory constructed according to this plan will suf-
fice to demonstrate the operation of the computer system, its I/0
capabilities and self-test programming. This form of memory is not
the most economical in large quantities, but it does permit the
incremental addition of memory. Accordingly, a later article 1in
the series will discuss the more economical use of larger LSI
RAM chips in bigger modules.

ECS-5: I/0 PAGE DECODE LOGIC. One of the simplest forms of I/0
to deal with conceptually is that of a dedicated area of tle compu-
ter's memory address space which maps directly into real-world 1/0
operations: under this scheme all I/0 reduces to memory transfer
operation. This facility is provided in the Experimenter's Com-
puter System by dedicating one 256-byte page of memory to I/0O usage
with a common control and address-decode mechanism. Each individual
byte of that page is potentially an I/0O device register used for
data transfer or control purposes. A typical device will use two
or three of these addresses grouped together for programming con-
venlence.

ECS-6: TAPE CONTROLLER: This article describes the Tape Con-
troller used to interface the Audio Cassette Mass Store of ECS-2 to
the bus oriented logic of the Experimenter's Computer System main-
frame. This subsystem operates under direct control of the I/0 PAGE
DECODE LOGIC described in ECS-5 and interfaces with the bufferred
data bus of ECS-3. It has primary responsibility for parallel/serial
conversion of data, and the generation of periodic interrupt signals
for the CPU during the course of tape I/0 operations.

M.P. Publishing Co.. Box 378 Belmont, Mass. 02178 ECS-l

m——— —_—— ¢

——— —_—

The Experimenter's Computer System: Part L
256-BYTE R. A. M. PAGE

by Carl T. Helmers, Jr.

INTRODUCTION:

This article is the fourth number in the Experimenter's Com-
puter System series. It continues the description of hardware be-
gun in earlier articles with information on a standard module
containing 256 bytes of memory, the smallest memory increment which
can be conveniently added to the system. The article contains the
following information:

1. Hardware description.
2. Summary Tables & Notes on Construction.
3. Programming Notes: Testing the Module.
The information found in this article must be supplemented by

reference to the third article in the ECS series, #ECS-3: "Micro-
Computer CPU & Bootstrap Logic.)

HARDWARE DESCRIPTION:

The center page of this article contains the detail logic dia-
gram of the 256 byte memory page design. There are two primary
divisions of the logic in this design: "

1. The Memory Array logic consists of 8 Signetics 2501 IC
packages (or the equivalent 1101) and an agsociated bus in-
terface for data.

2. Control Logic consists of two 7485 binary comparators’
used to generate a page select signal, plus a set of NAND
gates (one 7,00 package) used to develop a data bus enable
signal and a memory write pulse - both in terms of the gen-
eral "WRITE-CLOCK" and "CPU-INPUT" signals provided by the
ECS system's central processor design.

() 1974 M.P. Publishing Co. All Rights Reserved.

M.P. Publishing Co. D ' ECS-l

MEMORY ARRAY:

This -is the first of several alternate designs for memory modules
which will be presented in the course of this series of articles. As
the first, one design criterion was to make the increment sufficiently
inexpensive for experimenters of limited finances - hence the decision
"to 1limit the module to 256 bytes of memory. A logical choice for the
memory circuit is the 2501 static RAM IC of Signetics manufacture, or
the equivalent 1101 circuit produced by several other suppliers. This
memory 1s presently available from surplus houses for prices in the
$2-3 range, so the total cost for the memory portion of the design (8
chips) will be in the $16 to $2, range depending on your supplier's
prices. For the record, a current distributor price (October 197l) for
these IC's is $6.00 in unit quantities.

The memory array is located in the upper right hand region of the
detail logic diagram, Figure #1. Each of the g integrated circuits in
the array contains a "one bit slice" of the 8-bit words in the page.
The addressing of the 8 chips is identical, and is derived from the low
order 8 bits of the buffered address register maintained in the ECS

CPU design. For clarity in drawing, the address lines are shown going
from one memory chip to the next - where it is understood that a common
connection will be made to identical pins of the 8 IC's for the

array.

One point which should be discussed is the loading of the buffered
address bus caused by common wiring of all 8 chips. The nominal TTL
fanout of the address buffers in the CPU design (7437 circuits) is 30.
In order to put off additional buffering as long as 1s possible as the
system grows, a good design rule is to keep the loading at a minimum for
each additional module of the system. What is the loading in this case?
It turns out that a 2501 circuit - being MOS - represents a much smaller
load than the ordinary TTL unit load. Using the worst case figures of
the manufacturer's specifications, a 500 nanoampere input load current
in the low state, eight 2501 inputs wired togetﬁer would represent a
total of 4000 na or .0 microamperes.... in the worst case. Since the
typical TTL low state unit load is 1.6 ma, based on these considerations
wiring the 2501's directly to the address lines represents a unit load
of only .004/1.6= .0025 unit loads. This discussion is fine for DC worst
case - but there remains the consideration of dynamic effects. Each
2501 represente an effective capacitance of 10pf (per specs) on the line
plusthe total capacitance of all the extra wiring. As more and more
units are wired to the address busses, a considerable capacitive loading
of the buffer gates will result - a situation which depends in detail
upon specific wiring lengths,layouts and interconnection techniques.
This capacitive loading will tend to slow down the transitions of the
addres lines, as can be verified by experimenting with an oscilliscope,
a 7437 gate package, a pulse generator and a capacitance value of per-
haps .01 microfarads across the output of the 7,37 section to ground.
This .01 mfd (10,000 pf) represents what the 7437 might see when the
number of address loads approaches 10 to 15 boards with both IC input
capacitance and wiring grid capacitance effects totalled. After some
consideration of this issue, it was decided to wire the 2501's directly
and to treat the whole memory array as a single TTL unit load - opting
for a conservative approach. This choice also keeps address loading
for the low order bits the same as the single TTL loading represented
by the wiring of the page selection comparators to the high order bits.

M.P. Publishing Co. -3- ECS-L

The output data is taken from the 2501 memory circuits via the com-
plement pins - the D pin (14) - of each chip. The output data is con-
nected to the bus via the 8T09 interface gates which invert the data.
Thus by presenting the complementary form of the information to the in-
terface gate inputs, the double inversion will result in the correct
gense of data presented from the memory to the bus.

CONTROL LOGIC:

The control logic of the ECS-L design is used to determine when this
page of memory has been selected - and given its selection, to route the
memory write signal and the bus enable signal to the appropriate users.
The determination of page selection is performed by the MSI digital com-
parator circuit, the 7455-

The 7485 comparator can be used to perform a magnitude comparison if
desired, however in this application its use is limited to a test for
equality of two bit patterns. One of the two bit patterns is supplied
by the 6 address jumper plug inputs used to determine the page address
which is to be associated with this memory module. Two remaining 7485
inputs on the "B" side of the comparators are fixed-wired to a logical
zero and logical "1" respectively.

The second bit pattern is provided by 6 bits of the high order ("H")
portion of the CPU's demultiplexed address output, plus a single bite.in-
put from the "master enable" signal. The eighth bit of the comparison's
."A" input is fixed wired to ground corresponding to the ground (logical
"0") input to that bit from the "B" side. If all sevenbits of the address
plus master enable input agree with the module address input and a desired
"1" state for the master enable signal, then the output of the compar-
ison, pin 6 of IC L, will be a logical "1" signal. Otherwise, the
"page select" line will be logical "O".

(The "master enable" signal is created in the CPU design of article
ECS-3. It is used to over-ride all normal memory selection logic during
an interrupt PCI cycle so that the interrupt "RST" instruction may be
" jammed" onto the bus instead of the usual memory outputs. The sense of
"master enable" is as follows: "1" indicates allow page selection;

"O" indicates inhibit page selection.)

The output of the comparison logic is the "page select" line. This
line is used to enable two logical product terms: 1) for PCI and PCR
cycles in which memory output is read from the bus, the bus enable sig-
nal is formed by the product "page select" and "cpu-input" where the
"cpu-input" term is a master bus control signal generated in the ECS-3
CPU design. 2) for PCW cycles in which the memory is written using CPU-
generated data on the bus as input, the memory write pulse is formed by
a logical product of "page select" and "write-clock" where the "write-
clock" signal is generated in the CPU design of ECS-3. In the write pulse
logic, two extra inversions are required to transform the signals into
a usable form, .

A NOTE ABOUT POWER:

Th? schema?ic of a simple zener diode network is shown at the upper
left in the diagram. This network is used to generate a -9.lv bias for
the 2501 chips in a manner similar to that used in the ECS-3 design.

M.P. Publishing Co. ~4- ECS-l
TABLE I: Package Summary List...
DIP# Iden. Pins Description +5v Ground -9v
1 I1/0#1 16 Data Bus & Miscellaneous 16 15
2 Iﬁg#z 16 Address Inputs - =
3 74,85 16 Page Address/Mstr En. Comp. 16 8 -
Iy 7,85 16 Page Address Comparator 16 8 -
5 7400 1, Control Logic ' 1 7 -
6 8T09 1, Tristate Interface Gate 1 7 -
7 8T09 1 Tristate Interface Gate 1l 7 -
8 Addr. 8 8-pin Address Jumper Plug - - -
9 2501 s 16 256xl Memory Circuit,bit O 5 L,8
10 250133 16 256x1 Memory Circuit,bit 1 5 - L,8
11 250134 16 256xl Memory Circuit,bit 2 5 - L,8
12 2501 %% 16 256xl1 Memory Circuit,bit 3 5 - L,8
13 250133 16 256xl Memory Circuit,bit L 5 - L,8
1 250133 16 256xl Memory Circuit,bit 5 5 - L,8
15 2501 16 256x1 Memory Circuit,bit 6 5 - L,8
16 2501 16 256x1 Memory Circuit,bit 7 5 - Iy, 8

#¥-12 volts is routed via pin 1l to the zener network which gener-

ates the

#¥The 2501 circuit is functionally equivalent to the 1101 number
manufactured by several companies.

-9 volt bias for the memories.

As an aside, with due care to

pinout differences and loading factors, any 256xl memory which is
TTL compatible can be used with this basic design.

TABLE II: Interconnection Lists...

I/0 Socket #1 - Bus & Miscellaneous I/0 Socket#2 - Addressing
Pin 1 - Bus data bit O (DO) Pin 1 Address Bit O (AO)
Pin 2 - Bus data bit 1 (Dl1) Pin 2 Address Bit 1 (Al)
Pin 3 - Bus data bit 2 (D2) Pin 3 Address Bit 2 (A2)
Pin } - Bus data bit 3 (D3) Pin 4 Address Bit 3 (A3)
Pin 5 - Bus data bit L (D) Pin 5 Address Bit L (Al)
Pin 6 -- Bus data bit 5 (D5) Pin 6 Address Bit 5 (A5)
Pin 7 - Bus data bit 6 (D6) Pin 7 Address Bit 6 (Ab6)
Pin 8 - Bus data bit 7 (D7) Pin 8 Address Bit 7 (A7)
Pin 9 - NC Pin 9 Address Bit 8 (A8)
Pin 10 - CPU-Input Bus Control Pin 10 - Address Bit 9 (A9)
Pin 11 - NC Pin 11 - Address Bit 10 (A10)
Pin 12 - Master Eneable Input Pin 12 - Address Bit 11 (All)
Pin 13 - Write Clock (inverted) Pin 13 Address Bit 12 (Al12)
Pin 1l - Power, -12 volts Pin 1l - Address Bit 13 (Al3)
Pin 15 - Power, ground Pin 15 NC

Pin 16 - Power, +5 volts Pin 16 - NC

M.P. Publishing Co. -5- ECS-L

SUMMARY TABLES & NOTES ON CONSTRUCTION:

Two tables are included with this article to summarize some of the
information required to build this design. Table I is the "Package
Summary List" identifying each IC and I/0 socket position with its
characteristics, use and power connections. Table IT is a summary of
the two interface sockets - position 1 (I/O#1) and position 2 (I/0#2).
The information in table II identifies the signals associated with
each pin of the interface plugs. The text below contains some com-
ments on construction.

The ‘prototype of this module was first built using the wrapped wire
method of solderless interconnection., This method is described in com-
plete detail in M.P. Publishing Co. publications #73-1 and #74-5. At
the present time, October 12, 1974, there are no plans for making a PC
card available for this module. A more advanced memory design which is
in the process of construction at this time is expected to be available
in PC form at a later date.

The process of wiring this module is straightforward and should pre-
sent no major problems to those individuals using wire wrap techniques.
The board requires 16 sockets in all, which can be neatly arranged in
a Lxl, pattern of socket positions. The 8 memory chips can be grouped
together in one half of the board. The only long wiring chains to be
created are those which carry the address lines from socket position 2
to the address pins of the 8 memory circuits. It is probably best to
wire these address busses first , then turn to the wiring of the less
structured "random" logic of the page selectlon/control logic.,

After the main wiring task has been accomplished for the RAM board,
additional wiring will have to be supplied to connect the RAM to the
CPU of the system. In a typical physical configuration of a card cage
with back plane, this will involve adding connections in the back
plane for the DIP jumper cables which go to the two I/0 sockets. Two
back plane socket positions are implied by this design - one for the
" address bug, and a second for the data bus plus miscellaneous power,
ground connections and signalsconnections.

The wiring of the address jumper plug (socket position 8) is one of
the last tasks to be performed before testing. This plug is a small
DIP header plug with 8 pins in two rows of l each. Pins 7 and 8 have
been wired to logic 1 and logic O respectively when you put the system

%ether according to the logic diagram. This palr of pins supplies the
"1™ or "O" required for each &f the page select inputs on pins 1 to 6.
There are 6l possible page locations for the RAM module, with six bit
binary tags from 000000 to 111111, It 1s suggested that if this 1s the
first 256 byte page to be constructed it should be placed at binary page
address 000001 - if it is the second, it should be placed at address
000010, etc. This way the memory address space of the 8008 CPU will be
filled with active memory from the bottom up without holes.

In testing out this unit, begin by checking out all power voltages
"before plugging in the approprlate IC's., Then proceed to check out your
wiring to make sure that all signals are reaching the module from the
. CPU. Finally, verify the operation of the memory by experimenting with+the

program suggested in the programming notes which follow.

I/0 42 ADDRESS _ o #1 bATA BUS

o S T e]) i) o e S A S e i T o= = T RS S RIS ES R S e i S S 5 S S I (o T o o [= 9 o SO e e o 3 iy s
! W B ww o« W 2 8 F C 5 &3 2 | :/ 4 . 2 3 & 5 6 ® § 1 PN
i A M2 o R0 AT AB A7 M A5 M A3 A2 M AS I by 1Y b2 D3 b4 »s b¢ P 1 SymBeL
b o = = - - - - - - - - - - = - P | e e e == = - g em e - mm o e cgE e m e = oe oo - o = —— = o — B e - = d
r r— _T (Wr r r o [r (
X/o #4 v : v 15
== RL . e
. e 15 o T pru
1~y P YV i and 8 of
f ! L . Lewner “\\4\“‘“’3 3
b—ed Aouf UPly Sw KMied J . " 3 " L &
tov z4 : 2T@9
& () @ @ ® @) 2] Mk
R "l 1w 9 3 3 2 5 13 13 s 9 4 $ e |
I{_O.i‘: L3 S % (LN (84 2 1% 1% [}] B RN . I
] wasTeR ewamce 1 3 b B Tz b I b - 3 B [1 D I >
] = 7 T L4 T 7
'ME ! A Al Aj M ‘ Al A 2 L] B Ay
i [[[© ® o
Lo g LI =n @ R @® e @ w @ @ -—in@ = (WO
e wl
il 2l L d ™ : Lot 1 a3 4
[" [(] n] 3 L
— 2 2 2 2 2 = 2 : — M 2
work: 5V fowew J't s ¢ . 5 c bt s 3 N 5 Mo ¢ 5 ¢ " : 6 5
FRom T/o#i P i 2 - sl A5 AS L 0 bl 4r o — Iy AS gl AS
AND GRounp To€d PIN 16) ; 0 g @ \) a4 g 4 ; s
iy 1 1 Ko I Ko < A 4 ot Ll
. 3
*5v é‘:lu -1 e &7 AR -t < = L - A
, PAGE SELECT = —=las - e A A = L2 Ay At
ComPaRATIR LA T cs e cs Rhe cs Ak s Rk cs
Jasans —~ oY
13 2 0 1] 13 16 18 e 'S & s 6 IS % 23
1000
n at A\ Ay
I‘ PAGE sevecey T L
74 €5 our = e
® -
< 83 g2 @ ap —@
“ WOTE: ADDRESS \INES
WIRED TO SQWME PN Ow
ALL § MEMORY CHIOS
3 k3 i wRUITE
Ty 8w * ¢ N
DiIP .
8175 oF Lecrr PAsE Aspmess |, DIF € ()
s o = & 5 e e — 2 PLUG 5
NOTE USE OF (OMPARITOR TO WACTOR IN
MASTER ENABLE ASIE IV WERE A
Hich eRDER APDRESs 81T,
Bus OuYPUT ENABLe u

THE EXPERIMENTER’'S COMPUTER SYSTEM

ECS-4 256 -BYTE R.A.M. PAGE
by Cavl T. Helwmers, Jv.

NOTE

SEE SWUMMARY L1ST FoR 46V & PowaR
GROUND CONMNECTIONS ofF IcC’'s

ALL 45V PowER B4PASSER BY 41PuS
ELECTROLST C and .m"..s GRAMIC CAAC\UN(!.

/o 4 |

Fl%um #1

M.P. Publishing Co. -6~ ECS-L

PROGRAMMING NOTES - TESTING THE MODULE:

The best way to test out a memory module given the fact that a CPU
has been constructed is to use the CPU as a tool for examining the newly
constructed module. The purpose of these notes is to discuss the use
of the ECS-3 CPU design - the 8008 architecture plus the previously con-
structed 256-byte RAM Bootstrap memory - to check out additional memory.
Since the ECS system as constructed up to this point still has not inte-
grated peripherals, all system checkout must be done using the bare CPU
and its indicator lamps - with programming done in absolute binary nota-
tion without any automated programming aids.

The problem is thus: verify that all 256 locations of the new page
"work", To fit the definition of a working memory location, a given
address must satisfy the following criteria:

1, It must be possible for the CPU to write data into the. loca-
tiona at some point in time.

2., It must be possible for the CPU to read the data - without errors
- at some later point in time.

3. The time interval between steps 1 and 2 should be of arbitrary
length subject to the constraint that system power is not turned
off in the interim.

One way to accomplish a test of every word in the memory of the new modu
is to use a program whose broad outlines could be gpecified by the fol-
lowing verbal commands:

do forever;
write a test pattern into the module;
do for i =1 to n (n arbitrary);
check the test pattern & count errors;
end;
generate a new test pattern;
end;

(Here a notation for programminﬁ has been introduced which is similar

to the computer language "PL/1" in which a loop ke indicated by the word
+ "do" and extends thru a matching "end". Indentation is used to show

the "nesting" and keep track of which"end"matches which "do".)

The idea of the program is to repeatedly write test patterns into
the memory then check them out "n" times to make sure that no bits are
lost. The problem is thus completely specified in its general outlines-
an abstract program which could theoretically be run on any computer
with a imemory module to be tested and not necessarily on the ECS-3
d651gn s 8008 CPU. The problem is not complete - what remains to be
done is to translate the abstract conceptual program into a specific
set of binary instructions for the 8008 CPU to execute. The process
of translation for this simple program will be performed by hand just
as you will have to do with any programming application of the ECS
series design if you do not have enough memory to run an assembler or
interpretive computer language.

M.P. Publishing Co.

= ECS -1

THE MEMORY. TEST PROGRAM - DETAILS:

INTRRA WP
STARTS

RESTARY

CALL LOAp

l

N.MEm - 255

|

[CALL'TﬁsT I
[N.MEMvN.HM -1 I

CALL GENERATE

RECYCLE

The code of the memory test program is
found on pages 8 to 10 of this article. A
flow chart is shown at the left on this
page, providing a "roadmap" of program exe-
cution. Further comments are provided in
the text on this page...

STARTING:

The memory test program begins when the
Interrupt Pushbutton (see article ECS-3) is
depressed - causing an "RST O" instruction
to be executed. The computer begins exe-
cution at location O following this restart.
(Location 0 is labelled "START" in the pro-
gram listing on page 8 of this article.)

LOADING MEMORY:

"The first function performed by the pro-
gram is to call the subroutine "LOAD" lo-
cated at addregsses 0020 to 002E (see page
9.) This routine places the 8-bit PATTERN
(location 0061) into every word of the
page being tested. (Locations OO4L8 and
0028 are flagged with asterisks to indi-
cate that they are subject to change in
setting up the program - they specify the
page address of the page being tested and
must not be set to 0.)

TEST LOOP:

The test loop consists of executing a
memory test (CALL TEST) 255 times. The
TEST routine scans every location of the
desired page for agreement with PATTERN
and adds 1 to ECOUNT (32 bits in locations
0063 to 0066) for each discrepency. The
subroutine ERROR does the multiple-precis~
ion arithmetic required. ‘

GENERATING NEW PATTERN & RECYCLING:
Following the tegt loop in the main
routine, a new pattern is created by adding
INCREMENT to the old pattern in the rou-
tine called GENERATE. Then (as is the us-
ual case,)the program branches back to
START. This enables continued testing over
night - or for a week if you want - inte-
grating the total number of faults found
over unlimited times. Whenever it is de-
sired to check results of such long period
testing, simply place the CPU in "single
step” mode and put the bootstrap memory
into "bootstrap mode" then look at the
contents of locations 63 to 66. To con-
tinue operation, turn off "bootstrap mode"

and place the CPU back in its "Run" mode.

M.P. Publishing Co. -8 ECS-l

MEMORY TEST PROGRAM - MAIN ROUTINE...

Addr Type Code Description

0000 I 106 START : CAL LOAD

0001 D 20 L(LOAD) load a pattern in memory
0002 D 00 H(LOADl

0003 I 066 LLT

000, D 60 L(N_MEM)

0005 I 056 LHI N_MEM = 255

0006 D 00 H(N_MEM)

0007 I 076 LMI

0008 D FRF 255

0009 I 106 LOOP: CAL TEST

000A D Lo L(TEST) count errors in pattern
000B D 00 H(TEST)

000C I 066 LLI

000D D 60 L(N_MEM)

OOOCE I 056 LHT

O0OQF D 00 H(N;MEM) N MEM = N MEM - 1

0010 I 317 LBM

0011 I 0l1 DCB DCB

0012 I 371 LMB

0013 I 110 JEZ LOOP

001l D 09 L(LOOP) repeat test until N_MEM=0
0015 D 00 H(LOOP)

0016 I 106 CAL GENERATE

0017 D 30 L(GENERATE) create a new test pattern
0018 D 00 H(GENERATE)

0019 I 10l JMP START

001A D 00 L(START) keep cycling indefinitely
001B D 00 H(START)

The following are alternate definitions for the end of program in loca-
tions 0019+,..

0019 I 000 HLT - halt after one test cycle

0019 i 005 RST O - using RST as a JMP O

MEMORY TEST PROGRAM - GENERATE ROUTINE...

0030 I 056 GENERATE: LHI

0031 D 00 H(PATTERN)

0032 I 066 TLE

0033 D 61 L(PATTERN)

oo3y, I 307 LAM

0035 I 060 INL PATTER N=PATTERN+INCREMENT
0036 I 207 ADM

0037 I 061 DCL

0038 I 370 LMA

0039 I 007 RET

M, P, PUubLisnIng Co. } -Yy= HUS =1}

MEMORY TEST PROGRAM - LOAD ROUTINE...

Addr Type Code Description

0020 I 066 LOAD: LLT

0021 D 61 L(PATTERN)

0022 I 056 LHT V - reg-a = PATTERN

0023 D 00 H(PATTERN)

002 I 307 LAM

0025 T 066 LLI

0026 D 00 L(MEMPAGE)

0027 I 056 LHI séet up memory page start
#0028 D 01 H(MEMPAGE) address for test
0029 I 370 LOAD LOOP: ILMA <« write memory word

002A I 060 - INL <& calculate next address
002B I 110 JFZ LOAD LOOP

002¢ D 29 L(LOAD ILOOP) scan entire page

002D D 00 H(LOAD_LOOP)

002E I 007 RET

MEMORY TEST PROGRAM - TEST ROUTINE...

0040 I 066 TEST LLT

o041 D 61 L(PATTERN)

ooy2 I 056 LHT : reg-a = PATTERN

ooL3 D 00 H(PATTERN)

ooy I 307 LAM

ooys I 066 ' LT

oou6 D 00 L(MEMPAGE)

ooh7 I 056 LHT set up memory page start
#0048 D 0l H(MEMPAGE) address for test

0049 I 277 TEST LOOP: CPM

ooLA I 112 - CFZ ERROR

0oL B D 80 L(ERROR) IF MEMPAGE NOT = PATTERN

ooLc D 00 H(ERROR) THEN CALL ERROR

ooyp I 060 INL

OOL4E I ‘110 JFZ TEST LOOP

OO4F D L9 : L(TEST LOOP) Scan entire page

0050 D 00 H(TEST:LOOP)

I

007 RET

RS mm e e e e et e Gy e S G e e e mm e e R mm M M G e e e BB A e G M M e e e W M e e M WA e e e o e e ey M s e e b e W

MEMORY TEST PROGRAM. - DATA AREAS.

N_MEM: 0060 - This location.is an 8-bit variable which holds the
index for the main program's test loop.

PATTERN: 0061 - This location is an 8-bit variable which is initial-
ized to a starting test pattern and is modified by
the generate routine.

INCREMENT: 0062 - This location is an 8-bit variable which is 1n1tia1-
ized to an odd integer value.

ECOUNT : 0063 - 0066 - 32 bit error count, initialized to zeros.

1.,P. Publishing Co. -10- ECS-4

{EMORY TEST PROGRAM - ERROR ROUTINE...

Addr Type Code Description

0080 I 066 ERROR ¢ LLT

0081 D 66 L(ECOUNT+3)

0082 I 056 LHI ‘

0083 D 00 H(ECOUNT) add 1 to the least signif-

oo8y I 006 LAI icant byte of the 32

0085 D 01 1 bit error count and set

0086 I 207 ADM carry for propagation

o087 I 370 LMA to next byte's add.

0088 I 066 LLI

0089 D 65 L(ECOUNT+2)

008A I 006 LAT add zero to second byte

008B D 00 0 with carry input

008c I 217 ACM from first add.

008D I 066 LLT

008E D 6l L(ECOUNT+1)

008F I 006 LAI add zero to third byte

0090 D 00 0 with carry input from

0091 I 217 ACM second add.

0092 I 066 LLI

0093 D 63 L(ECOUNT+0)

o9y I 006 LAT add zero to fourth byte

0095 D 00 0 with carry input from

0096 L 217 ACM third add.

0097 I 003 RFC «— roturn if less- than 232
errors...

0098 I 000 HLT & halt if more than 232=1
errors...

NOTES ON FUTURE ISSUES...

At the time this article is going to press, the prototype of the fifth
article's hardware design is being assembled. ECS-5, entitled "I/0 Con-
troller", contains the details of a general I/0 decoding scheme for the
Experimenter's Computer System. This scheme involves responding to the
32 possible output ports and 8 possible input ports of the 8008 - with
provision of an 8-level interrupt system accessed via input port 0. To
provide an example of input and output hardware, the design originally
to be described in ECS-7 has been moved ahead and included with ECS-5.
In its place, article ECS-7 will be devoted exclusively to the le yboard
driven memory editor software topic. Also included with the ECS-5 arti-
cle is the description of a very simple LED output display register.

The memory editor program being designed for ECS-? will be a fairly
general tool useful in your programming of the Experimenter's Computer

System.

M.P. Publishing Co. Box 378 Belmont, Mass. 02178 ECS-5

The Experimenter's Computer System: Part 5

I/0 CONTROLLER
AND SIMPLE I/0 DEVICE PROTOTYPES

by Carl T. Helmers, Jr.

INTRODUCTION:

This article is the fifth number in the Experimenter's Computer
System series. It continues the description of hardware begun in the
earlier articles by providing information on the following subsystems
and their use:

I/0 Instruction Decode - logic to detect CPU I/0 instruction
states and create bus enable (input) or data transfer clock
(output) information for all I/0 ports.

Interrupt Management Logic - an 8-bit interrupt flag register
with associated interrupt control operations is used by
programs to determine interrupt sources and to mask inter-
rupts during critical operations.

ASCIT Keyboard Input Device - one interrupt device and its as-
sociated interrupt are shown connected to an ASCII keyboard
input encoded via a diode matrix.

Binary Display Devices - two output ports (without interrupts)
are implemented as binary display registers - a total of 16
LED's which can be controlled by a program.

Simple Interrupt Handler - the article provides the listing of
a simple Interrupt handler program used to decode keyboard
interrupts, read the keyboard and display the bit pattern
read in the two display output ports.

Binary Calculator Program - a simple calculator program which
Will add and subtract 16 bit numbers entered from the key-
board and display results in the LED output ports.

The information contained in this article assumes a familiarity with
the Experimenter's Computer System concepts and terminology, partic-
ularly the information contained in article ECS-3 previously published.

© 1974 M.P. Publishing Co. A1l Rights Reserved.

M.P. Publishing Co. -2- ECS-5

CHANGES IN DESIGN CONCEPT:

The original intention (see ECS-1) was to use an address decoding
method of I/0 for the Experimenter's Computer System, in which I/0 is
done by memory reference to a selected page of memory as in several
large scale computing systems. The concept is a beautiful one - but
unfortunately its implementation on the 8008 CPU based Experimenter's
Computer System is inappropriate. Thus the present article describes
a generalized I/O controller which makes use of the 8008's I/O instruc-
tion format and provides the control signals needed to manage all 32
output ports and 8 input ports.

INSTRUCTION DECODE AND CLOCKING:

The Instruction Decode and Clocking logic is shown in drawing #1
of this article. When the CPU executes an I/0 instruction, the Address
Latch always receives the information needed to decode a PCC cycle and
the 1/0 unit involved, as well as the o0ld contents of the CPU's accumu-
lator (register "A"). This logic reacts to the A9 through Al5 bit
rattern in order to detect an I/O PCC cycle and enable clock or bus
control information to pass through the decoding network to the indiv-
idual device selected by the I/0 instruction.

OPERATION DECODE is provided by the 7.2 selector labeled -6- in the
drawing. This device accepts a L-bit pattern from Al5 through Al2, of
which the states labeled l;,5,6 and 7 are significant for I/0. (Inter-
nal logic designations of the 74)j2 - and other IC's - are on the inside
of its symbol, with external pins on the outside of the symbol.) The
output pins for these states (4,5,6 & 7) represent detection of an I/0
cycle for ports 0,1,2 & 3 respectively.

INPUT PORT BUS ENABLE:is provided by the 74/;2 labeled -11-. If an
input operation is indicated, the state li output of pin -6.5- will
produce a "1" input to -12.13- which is anded with the CPU-INPUT signal
of -12.12- producing a low input to -11.12-. The "D" input -11.12-
of the bus enable selector serves as a gate for all outputs - and if
0 enables one of the 8 input ports selected by address lines A9 to All,
The output of -11- can be used to directly control bus interface gates
of input units - as for instance is shown by -11l.1- which is connected
to the Interrupt Port (INO) and -11.2- which is connected to the Keyboard
Port (IN1). The remaining outputs for other devices are brought to
an I/0 connector for wiring to additional devices through the backplane

of the CPU.

OUTPUT PORT DATA TRANSFER CLOCK ROUTING is provided by the set of
four 74442 selectors labeled -7-, -8-, -9- and -10-. Output is accom-
plished by writing the content of the A0 through A7 address latch lines
into a device register with the CT3 pulse of an I/0 cycle. The 32 out-
put lines of these four 7442's route the CT3 pulse of I/0 to the appro-
priate devices - locally for the interrupt control and display register
outputs, and via connectors and the CPU backplane for devices which will
be added later.

For each output port, a NAND gate 1s used to "AND" together the
CT3 pulse and the appropriate port selection of operation decode IC -6-.
The result is a "O" enabling pulse on the appropriate device selection
7h112's D line - resulting in a negative logic pulse on the device ad-
dressed by A9 to All.

M.P. Publishing Co. -3- ECS-5

INTERRUPT MANAGEMENT LOGIC:

Drawing #3 contains the logic of the Interrupt Flag Register and
its associated control logic and bus interface. As wired in ECS-3, the
CPU has only one possible interrupt and only one possible hardware in-
terrupt operation - a restart at location O of the memory. (This is
not the only scheme possible, but has attractions in that only one
possible program can be directly invoked by hardware - the instructions
starting at location O and its logical successors. The disadvantage of
this scheme 1s that there is a time and memory penalty to be paid in the
software interrupt decode which will be used.) This original inter-
rupt scheme is retained and augmented by.the interrupt management logic
of the I/0 Controller,

In order to find out what device has assynchronously (with respect
to program operation) called the CPU for some interrupt action, a set
of interrupt flags - the "Interrupt Flag Register" - is provided. These
flags are implemented as sections of 7473 dual flip-flops. The inter-
rupt pulse of the device in question sets the corresponding flag "on".
At any time, under program control, the Interrupt Flag Register can
be read to find out the status of pending interrupts, using the INO
(input port zero) instruction. In the present article, only the key-
board device has an interrupt connected - and as a result, all the un-
used interrupt inputs (I/0 socket pins 1.10 to 1.16) must be grounded
to avoid setting the associated flags with transient noise. When the
Interrupt Flag Register has any flag on, at least one of the inputs to
the 7430 -31- will be zero. Since the negative logic "or" functionis
provided by this 8-input NAND, its output is logical "1™ if any inter-
rupt is pending.

If the Interrupt Enable Flip Flop formed by section -13b- and -30c-
of NAND integrated circuits is logical "1", the NAND gate section
~13c- enables the fact that an interrupt is pending to reach the CPU
via I/0 socket pins 1.1 and 1.2, which must be connected via the back-
plane to the CPU's interrupt jumper plug, drawing 8 of article ECS-3.
The interrupt service routine at location O of the computer's memory

must do the following:

1. Output a command to disable further interrupts, simul-
taneous with the input of the current interrupt flag register
content. (INO command preceded by loading accumulator with "10"
in bits 1 and O respectively.)

2. . Use the interrupt flag register information just read to
decode the pending device or devices - the interrupt service

routine proper.

3. Output a command to enable further interrupts, followed

by a return to the interrupted program. (INO instruction prece-
ded by loading accumulator with "11" in bits 1 and O respectively,
followed by a RET instruction.)

INTERRUPT CONTROL OPERATIONS:

The status of the interrupt operation is controlled by the Interrupt
Enable Flipflop in drawing #3 as mentioned above. Output port O (which
corresponds to input port 0) is used to set and reset this flag bit un-
der program control. If the "INO" instruction is executed with the bit
pattern "11" in the accumulator's low order bits, then output port O

M.P. Publishing Co. -l ECS-5

logic of drawing #3 will present a pulse on the "I-ENABLE" line to
set the control flipflop. If the "INO" instruction is executed with
the bit pattern "10" in the accumulator's low order bits, then output
port O logic will present a pulse on the "I-DISABLE" line to reset
the flipflop and cut-off further CPU interrupts until it is set.

Since this interrupt operation requires intimate program involvement
for its control, a third input on the "set" side of the control flip
flop is provided. This third input is a time delay network which ac-
complishes two ends:

1. It allows manual intervention to enable interrupts in the
event of a software bug which "locks up" the system.

2. By virtue of the fact that the time delay does not allow

a logic "1" input to the Interrupt Enable Flip Flop's manual
reset until several milliseconds after power turn on (with all
other inputs defined "instantaneously"), this guarantees that
when turning the system on interrupts will be enabled initially.

Switch S1 can be a pushbutton switch on your CPU panel - and can be the
same switch which was formerly used for the manual interrupt to the

CPU when you bullt and tested ECS-3 without I/0 devices. Since the
interrupt jumper used previously no longer is connected tothe manual
interrupt Swithc in ECS-3, this substitution is possible.

Note that the output port O (INO) logic of this diagram treats the
content of bits 2 through 7 as "don't care" states. Further, since
only the bit patterns "11" and "10" in bits 1 and O are recognized
as described above, it is possible to output arbitrary information in
bits 2 through 7 so long as bits 0 and 1 are left "O" - without affecting
the interrupt status.

Finally, note that the "I-ENABLE" pulse used to set the Interrupt
Enable Flip Flop after an interrupt is serviced will also clear the
Interrupt Flag Register. This sets up the register for future inter-
rupt events - and makes the additional requirement on the interrupt
service routine that it service all pending interrupts. In
servicing pending interrupts, the concept of "priority" is a useful
one., "Priority" is the order in which simultaneously read interrupts
are serviced - a "high priority" device should be serviced ahead of
a "low priority" one. Priority with this scheme of operation is de-
termined by the order in which the interrupt service routine checks
the individual bits 1t has read from the interrupt flag register.

A high priority (ie: time critical, such as the tape recorder device)
1/0 operation is checked and serviced first, while a lower priority
device such as the keyboard can wait for ages - many milliseconds -
without losing information, so it is the last (or nearly the last)
interrupting device to be checked by the interrupt service routine
when multiple devices make use of this facility. The programs which
are included with this article have only one interrupt possible, the
keyboard interrupt.

M.P. Publishing Co. -5- ECS-5

BINARY DISPLAY OUTPUT DEVICE:

Drawing #2 shows the logic needed to implement the two simple 8-bit
LED display devices tied to output ports 30 and 31. The design shown
uses 74100 devices to store data during an output operation and to
directly drive the LED displays. An alternative is to use 7475 devices
(four would be required instead of two 74100's) - with appropriate
changes in wiring and sockets.

When the appropriate OUT30 or OUT31 instruction is executed by a
program running in the CPU, the clock line input to the register re-
ceives a pulse at CT3 time, transferring the content of AO to A7 into
the "device register" of the 7,100 - and displaying the result on
the LED's. Note that the sense of the outputs will be inverted when
data is written in this hardware - a "1" will turn off the light, and
a "0" will turn on the light in a given bit position. There are sev-
eral ways to achieve a pattern with"on" indicating a "1" bit...

- when you wire your controller, add inverters on the inputs to
the output device registers as indicated in drawing #2 by the
dotted line and its note.

- use a set of 7475 devices instead of two 74100's and drive
the lamps with the complement outputs of the 7475.

- or - as is always the case - you can correct for hardware
foibles with programming. When ready to display, invert the
data in the accumulator first, for example:

LAM get the data into A from memory
XRI exclusive or with all "1's"
Wit inverts the data

0UT 30 write the data to the device,

The diagrams indicate the LED's as a binary display device. There
are other display format choices which may be used instead of the simple
binary lamps. For instance, if you use MAN-l hexadecimal readouts with
an appropriate decoder network hex digits can be displayed. As another
example, if groups of three bits are fed through 7447 decoders, octal
display is possible. Similarly, there is no need to use. a lamp display
at all if you want to do something else - for in3stance another copy of
this I/0 device could be used to control 8 relays through appropriate
drivers, or as inputs to an 8-bit digital to analog conversion in
situations where a voltage level output is desired.

ASCII KEYBOARD INPUT DEVICE:

Drawings #2, #lL and #5 detail a simple "diode matrix" keyboard de-
vice and its input to the computer via device "1" of the input
port. The actual matrix is shown with a full set of 63 codes and cor-
responding keyswitches - however in actuality, only those keys which
have a teletypewriter keyboard position will be wired. In addition to
the 6-bit ASCII used for data keys, the "CTRL" and "SHIFT" keys are used
to provide the two additional bit lines required for a full 8-bit input.

M.P. Publishing Co. =6- ECS-5

The output of the keyboard matrix is in positive logic ASCII form,
but with a default (no key pressed) state of "1" on all input lines to
the keyboard logic of drawing #2. Thus direct input of ASCII code 63
is not possible - since detection of keystrokes is accomplished by
finding changes from the all "1"s state. The "1" state is present when
no key is depressed due to the "pulling up" action of resistors
R29 to R3l. When any key 1s depressed, the bit pattern is selected
by the diodes in the matrix pulling down the normal level to approxi-
mately O volts, through the diode junctions. Contact bounce would
be expected to cause problems through the receiving 7,0l inverters on
drawing #2 - however an RC time constant provided by a 100K resistors
and .1 mfd condenser in each case smooths the key bounce associated
with a keystroke. The output of the inverters is a "negative logic"
ASCII code which is normally all "O"'s and has at least one non-zero
bit if codes O through 62 are selected. The 6 bits are "orred" toget-
her with the comblnation of NOR and NAND functions shown in drawing
#2, producing a "key on" signal. This signal is delayed by the RC
network between inverters -16f- and -1l6e- to produce an interrupt pulse
out of the oneshot -21- several 10's of milliseconds after the key was
depressed. This assures that stable data will be present at the bus
interface when the CPU responds to the interrupt, since it allows for
"slop" in the debounce networks due to component tolerances. The CPU
must respond to the interrupt by performing an "IN1" operation to read
the key. Since the one-shot which generates the interrupt will only
respond to the single rising edge of the "key on" output of -16ée-,,
only one interrupt will be generated - even if two or mor keysare
depressed in an overlapping fashion.

For this simple input keyboard design, an archaic kluge is used for
the encoding function - the diode matrix, This is one way of getting
keyboard input, one of the first ever used in computers. It has sev-
eral disadvantages which might be noted:

- Multiple keys can be depressed simultaneously, with the
result being a logical “ev” of their bit patterns.

- There is no rollover feature to interpret multiple over-
lapping keystrokes.

- It requires a large number of components - 192 diodes for
a full matrix as shown.

In spite of the technical disadvantages, this form of a keyboard is
described at the present time due to the fact that it requires no
special LSI components to build and can be wired directly with surplus
diodes.

A better technical solution of the keyboard input problem is to
use one of several forms of keyboard encoding chips available on the
new equipment markets, or the surplus assemblies often sold. If you
buy a surplus keyboard there are two possibilities: if you are lucky,
the keyboard will work as 1s and can be figured out. If you are un-
lucky, you will have purchased an array of key switches - and will have
to build the diode encoder or its equivalent anyway. Assuming you have
such a keyboard, the interface 1s simple - it will have parallel bit
lines output. These are routed to the bus. interface 8709's. The inter-
rupt oneshot should be triggered off a "key on" output of the board,
or logic similar to drawing #2's key-on logic can be used instead.

M.P. Publishing Co. -7- ECS-5

Note that most keyboards do not have a full set of 63 ASCII codes
possible - a typical typewriter has only Ul to 48 separate keys. The
diagrams have noted along the bottom the lower case characters of a
typical Teletype keyboard arrangement - with a '"check" indicating that
the character in question is present on the TTY type keyboard layout.
as a separate key switch. To generate true ASCII from the keyboard,
some software modification will be required for upper case and lower
case characters, as well as "CTRL" characters. Table I shows the cor-
respondence between input codes from the keyboard shown and data in a
true 6-bit ASCII format, for all 63 of the possible codes in the diode
matrix.

Also, note that there is no "carriage return" code indicated in draw-
ings #L. and #5. The same applies as well for "line feed" and "escape".
This leads to the general topic of special purpose keyboards and addi-
tional keys. Basically, any one of the unused codes of a Teletype
style keyboard can be used for the implementation of additional input
key possibilities. 1In table I, the "CR", "LF" and "ESC" keys are
also indicated with no 6-bit ASCII correspondences. Any number of
additional key arrays can be wired into the matrix either in parallel
with keyboard switches or to the unused codes of the matrix's TTY
format ninputs. This feature will be used in future articles to imple-
ment special purpose keyboards for use in calculator applications and
in computer game applications.

CONSTRUCTION:

The best way to put.together the I/0 controller is to use the wire
wrap technique of construction as described in publication #73-1 and
its supplement #7,-5. At the present time (November 16 197l) there
are no plans to make this particular design available in PC form, since
it is a "one of a kind" item in any implementation of this computer.

The article contains five complete drawings of the logic for this
design on the pages which follow, supplemented by the following tables:

Table I: Character codes

Table II: IC Package & I/0 Socket Summary List
Table III-: Parts List

Table IV: I/0 Pin Assignment Lists

The testing of this circuit can be accomplished using the simple inter-
rupt service program " KEYBOARD-ECHO" described following the tables and
drawings. Then, once you have the basic circuilt in operation, you may
wish to try the simple "BINARY-CALCULATOR" program shown at the end of
the article - a program which will enable you to enter binary digits,
add your entries to an accumulator of 16 bits (displaying the result),
subhtract entries, clear entries or clear the accumulator.

DRAWING 4.

INSTRUCTION

” % 5-15 BUS
1/o-4 < XX=82 U 1/0-5 g CPU-TNPUT ENABLES)
I A4S w : 6 XX=084 —uw— | L
4.6———D ¢ 5 —rT ey I
1 ALg 3), -6 s XX=4@Q —r— Bb——-
L e s | .
s - wC 6 . v INPUT A
b-w——=——8 7| XX=44 PORY |4 %
4 134 AL 15 A T BUS Z‘H_—.qli.
' Y442 3 oAy
1/6 -4 - ENASB. N 5 |1.5
I/0 IF OPER. a 74‘42 L 1
pcBA=@4xx) | DECODE t “—"‘_}“
N -H.' 6 -.'1__.‘ 1-7
. I
ek BT \ S| ok Ly D C BAT| : Ii'*
H FROM TR ™ Ba] 7428°'S —~ 124 12[13 fians I/O‘l*
ey T N .
-4 - i
' A9 | NOTE~ INRT
41»5 5 &c,, ? J‘-‘ PORY AND OUT-
'] PuT PORT @
41 %AID NGO 4. 1 ARE COTINCI-
; X g J] DENT...
o ST
o Do T
Ho-& mygy’s]
113 [14[4S TWO‘B* 12 |13 114]AS 1/0‘3 12 [43044| 45 !/O‘z* 12 {13]44) 45 I/O'z*
’ ,
Y sce Tame 1 DCB *o.i_____.ig.v DC BAG_L_J'_:;.. DC BAﬂ_’:_‘I__iz., DCB Agi—iu
IN ACCOMPANYING ouTeuT 1-’—-———1}-& ouTPUT i‘a—-——-;ﬂ UTPUT 4 2218 | ouTPUT i—.z———g?s’é
it FOR INTER- port 2PP———3u fport 2fP———33 [poRT 2pPP————21 |porT 223
ACE LISTSO--) 1 4 I 4 1]
5 3v?+—-13-|z 2 3?-——-:35« L. 3‘5—-——4‘241 3 3—“‘-—-4'2-'»
ELg s TOLSES) emL M3 SEL. A% JSEL. 41T 23 |5EL 4P——2s
L7442 S)o—10 |ypqp SP——13¢ |oyy, 5 ol L P
6 — 31§ 6 l————-:?-? [4 -7————-42.15- 6 "—:z:)
-7-- i _q.._____:g.m -8~ o L...._..l's.r‘ ‘?' 7 7 21t 'ig" 3 —’___—-:Z-B
[}

EXPERIMENTER'S COMPUTER SYSTEM - EC$:S: I/O0 CONTROLLER

DECODE & CLOCKING

by Carl T Helwiers, 3n

*0p Butysttand "d°NW

§-S0d

53 1747/ R4 5 b
2 | CTRL 100k I“t

z57||———-mT—<IK6 - L >c'
lSNIF\' 4100 ‘-'f

KENBOARD
INTERRUPY
ONESHoT

' Ks R nbc 10
B dooK €3

]
K4 RY 1 12
2s-5 400K X D =67

KEYBOARD LOG\C...

KEYBOARD To BVS
|

It s vegy

L s

|
12)0— 2% 5.8
2 :
L3 |
ap)oe—26 5.7
* .
ki |
e) —2245-0
10 :
13 i '
4 194 D% 5.5
2 :
1 |
3
1ol 20:)0 °3|5-~r
2 I
g 1

bo !

mﬁ
.oolu‘

74121

-4~ .n

‘Inte A

ip$ PULSE

51
1) !
Cyrpars 110G

IN i - BUS ENABLE

ouT31

CLoek
7-2
e 4

FROM -41-2- DG #4

EXPERIMENTER’S

24~

LED's

8 INARY DISPLAYS

G
_zz..
C‘OUTP\)T PORYT 3¢

A B C p» ¢

R10 4 R4?
22oNn

Li » L8-
Led’s
(1.6v 10me)

'7'“%

F G H T/o-4%

15 qu

2

3 v |o

b LLE

4 e Ju ! |
'L_n..rL...‘_gq %
_n_r__ﬂiq -

\—f\—/L——.Q 5
3l

\J_H_____qq %
»—r\-f\—-—-ws

0—1\——'—«4 -2

0—-—-‘—.4 -

23 24 |22 f2 .-"

A

23

(<%

LYhLib

COMPUTER SYSTEM = ELS-5
I/0 CONTROLLER

YO DWG #%

e

DRAWING #2 XEYBOARD
by Carl T. Helwevs, I

INPUT

B < b B
-23 .

- OUTPuﬂ; PORYT 34

¢+ |8 |7

v

“e QP TION-
AvLy PUT
SINGLE In-
VERTERS
IN EACH

F 6 H
419

F 66 OGN

13 [i2 17 i LINE (SEE

TEXT.)

‘-L RAS e
R2S
2won

L06IC & DisSPLAY OUTPUTS

*0p Butystiand °*d°NW

9-50d

INTERRUPT FLAG

INPUT PORT O

—reee REGISTER
ovTBe CloLw MG 2 S 7473's
AG-4 dwe 4 24- 0 i i |
TTOTTS) 2{cn 2 ',3 32a 2 o2 5-1
|
| \ IIo-’LA| 4 13 wPhs 2 ,
P YELE 1-18+ = N O Js. :
|] 6 ! o I 9 32b $ " 5-2
4 —Re A S% NOTE: ALl | " P 1
| 3 UNUSED INT- |- 1 T » i
= 1 ' BRRUPTINPUTS 4.4}
e - most o i,
424 L0G\C “(GND) \
i 8 4 &, !
S {12
Bl 3]|ls -
30 7%\ 3 :
{3
]
123 QuTPUT PORY e |
2 1
81vs @-1 144+
'
(ovTa/Ing |
TN STRUCTION) 1‘5:
T EwABLE I-NsABs : 5-3
|
14 i 11 p?!
o+—/P— L 1 334 5-%
To ALl J,K-w i \
&, " 2, PINS 3 TB‘;D I/o-5
= Eaih 8us ENABLE
INT, ENABLE 11-1 DG L INY
45y FLIP-FLOP =~ SET UNDER PROG. CONTROLS -
" OUT®B DATA: XXX%XX4i3 = DISABLE
1‘:;5‘(. (ING) XXXXXALL = ENABLE " i@ N m
v Ths EXPERIMENTER'S COMPUTER SYSYEM T, Same Wi
&'“““ Reser ECS~-5: I/0 CONTROLLER LI]

l. ‘1.-‘5

DRAWING #3 3

INTERRUPT MANAGEMENT LOGLC

by Carl T. Helwers, Jv,

*op Burtystiand ‘d°'KW

_O’[.—

S-80H

M.P. Publishing Co. -11- ECS-5

S R2%
Ké

>
 $
c

1k $% 1u

Ky

A
R3¢
©
SWIFT
CTRL

-2

Ll B R I P S S —

by Cavl T. Helwers, Jw

e el e e T I R S — - —
il et I e il st —_—— - —_—— o

I/0 CONTROLLER

R e e

i 2 e)

VYV YA sV

COMPUTER SYSTEM — ECS-5

EXPERIMENTER'S

ENCODER MATRIX — PART {

KEYBOARD

ASCLI

DRAWING #H 4

— e e —— —

s s

-— e o = — -

- el om = e am

K5
Ky

s

—— e e = - = o

K3
K2

/ B 4L 23456 %89: 3 =37

- = - . - - o - - o -

- o o o e - e

- e e e o e = we e

! " ‘F. $; “ &] C) ¥ + ’ ‘f .

B
1)
»
(4

ASCII=»

ko'

K4

v v/ v

LOWER CASE TT4? V

M.P. Publishing Co.

=17«

ECS-5

KsS

- e am e ol e e e e e e wm - =

b om = = o

1/0 CONTROLLER

ENCODER MATRIX - PART 2

- e am e e - e we

ECS-5

o0 - - I
& ——m e @~ — b e
20 D SR S
P < Y S S
wi O
> -] e (e e s e s] e
AN > —— o e A e s
wd
RK L Y .
”m e e el — — .
H
b I DR AR AR
e v ——_——®-—---@— - — -
Y e e —— @ = — — -
o< .
by S S W

DRAWING #5

EXPERIMENTER'S
R3

- o -

—_—.— e an e wm e e -

- s wm e we e

1k

- KEY
SUITCHES

_

VW XY ZLN A

v YV YV Vv IEVLY VY

ASCTITI— @ ABC DEFGHITKLMNDO

LOWER CASE

Y v vV vy VY v VYV VvV

by Covl T. Helwmers, Jv,

TTY ?

M.P. Publishing Co. -13- ECS-5

TABLE I

Keyboard Character Codes

ASCII
Symbol Binary Input Hex Code Symbol Binary Input Hex Code
@ 110000003 co blnk 11100000 EO
A 11000001 cl ! 11100001 El
B 11000010 c2 " 11100010 E2
c 11000011 c3 # 11100011 E3
D 11000100 cly $ 11100100 El
E 11000101 c5 % 11100101 E5
F 11000110 céb & 11100110 E6
G 11000111 C7 ! 11100111 E7
H 11001000 c8 (11101000 E8
I 11001001 c9) 11101001 E9
J 11001010 CA 3 11101010 EA
K 11001011 CB + 11101011 EB
L 11001100 cC , 11101100 EC
M 11001101 cD - 11101101 ED
N 11001110 CE s 11101110 EE
0 11001111 CF / 11101111 EF
P 11010000 DO] 11110000 FO
Q 11010001 D1 1 11110001 Fl
R 11010010 D2 2 11110010 F2
S 11010011 D3 3 11110011 F3
i 11010100 Dl Iy 11110100 Fl
U 11010101 D5 5 11110101 F5
v 11010110 D6 6 11110110 F6
1 11010111 D7 7 11110111 F7
X 11011000 D8 8 11111000 F8
Y 11011001 D9 9 11111001 F9
Vi 11011010 DA : 11111010 FA
C 11011011 DB ; 11111011 FB
\ 11011100 DC < (¥) 11111100 FC
. | 11011101 DD = 11111101 FD
4 11011110 DE > (eR) 11111110 FE
11011111 DF ? 11111111 FFats

Notes:

#1. With "shift" key and "ctrl'key not depressed, the codes

will be as shown.

bit 7.

.\'..\'.2
WAL .

Shift turns off bit 6 and ctrl turns off

The question mark code has no direct input
the null position for the keyboard's output.

since it is

3. In programming, true six-bit ASCII is obtained for all codes
directly wired to keys by masking off bits 6 and 7 of the input

with an "and" CPU instruction.
control forms of characters,

For translation of shifted and
one method is to look up the desired

6-bit code in a table addressed by the actual low order pattern
The shift and control keys must be held simultaneously

with depression of the shifted character so that the code is

read.

present when read.

M.P. Publishing Co. =1L -

TABLE I I

IC Package & I/0 Socket Summary List

ECS-5

Description of Socket Position Pins +5 V. .Gnd.
1 I/0-1 Bus Enables & Interrupts 16 - -
2 1/0-2 Ports O & 1 Write Clocks 16 - =
3 I/0-3 Ports 2 & 3 Write Clocks 16 - -
L 1/0-1 Address Inputs 16 - -
5 I/0-5 Data Bus, Power, Misc. CPU 16 - -
6 Tl 2 Operation Decode 16 16 8
7 T2 Port 3 Clock Routing(Output) 16 16 8
8 T2 Port 2 Clock Routing(Output) 16 16 8
9 7hh2 Port 1 Clock Routing(Output) 16 16 8
10 Tl 2 Port O Clock Routing(Output) 16 16 8
11 Tl 2 Input Port Bus Enable Source 16 16 8
12 7100 Operation Decode Logic 1 1 7
13 7000 Misc. NAND Logic 1 1 7
1y nen Operation Decode Logic Inverts. 1 1l 7
15 nen Op. Decode & Misc. Logic Inverts. 1 1 7
16 en Misc. Inverts (Kbd. Input) 1l 1l 7
17 7102 Key On Detection Logic 1l 1l 7
18 7120 Key On Detection Logic 1 1 7
19 8T 09 Keyboard Bus Interface Gate L-7 1l 1l 7
20 8T 09 Keyboard Bus Interface Gate 0-3 1 1l 7
21 7h121 Keyboard Interrupt Oneshot 1 1l 7
22 74100 Output Port 30 Latch (see text) 2l 2l T
23 7,100 Output Port 31 Latch (see text) 2l 2l 7
2l pren Misc., Inverters 1l 1 7
25 1/0-6 Keyboard Interface Plug 16 16 9
26 LT3 Interrupt Flags O-1 1l L 11
27 LT3 Interrupt Flags 2-3 1 i 11
28 7473 Interrupt Flags -5 1l L 11
29 7473 Interrupt Flags 6-7 1l L 11
30 7410 Output Port O Logic 1 1l 7
31 7130 Interrupt Detection Logic 1 1 7
32 8T 09 Interrupt Flag Reg Bus Int. 0-3 1l 1 7
33 8T09 Interrupt Flag Reg Bus Int. L-7 1L 1l 7
3L - Discretes on Carrier: R1 to R8 1 - -
35 - Discretes on Carrier: Cl to C8 16 - -
36 - Discretes on Carrier: R10 to R17 16 1 to 8
37 - Discretes on Carrier: R18 to R25 16 1 to 8 -
38 - Discretes on Carrier: L1 to L8 16 - -
39 - Discretes on Carrier: L9 to L16 16 - -
Lo - Discretes on Carrier: Miscellany 16 - -

Note: See table IV for list of I/0 socket pins & use.

M.P. Publishing Co. -15- ECS-5

TABLE IIT7TI:
Parts List

R1 to R9 100K @
R10 to R25 220 @iw
R26 100K @¥ Full Diode Matrix requires 192

R27 to R34 1000 W switching diodes (eg: 1n91ll)or
any handy surplus diodes.)

% Miscellaneous:

Cl to €8, .1 mfd S0v
Cl0 & C11 ceram. 20%
c9 .001 mrd

Vector "P" pattern board can be
used as basis for diode matrix
(requires about L" by 16")

L1l to L16 LED, 1l0Oma @ 1.6v

Keyboard required is magnetic reed

S1 SPST Button(NO) or equivalent, TTY layout.

,O0 Sockets are shown in table I.

In addition, you will need plugs and cables to carry I/0 to the back-
plane, plus an appropriate addition to backplane wiring to receive
these cables. In making the device, don't forget to make the LED
display bvisible - one handy way of mounting is to make a smoked glass
cover (with cutout) for the keyboard, with the LED's in a line visible
behind it.

TABLE IV:

I/0 Pin Assignment Lists

I/0-1: Bus Enables & Interrupts

1. Interrupt! Norm. Low

2. Interrupt! Norm. Hi to CFU

3. to 8. - respectively Input
Ports 2 to 7 bus enables.

9. NC

10. to 16 - respectively Inter-
rupt 1 to 7 sources (0 is key
board.)

I/0-2: Ports O and 1 Clocks

1. to B. - respectively Output
Ports 00 to 07 clocks.

9. to 16. - respectively, Output
Ports 10 to 17 TIOGcKsS.

I/0-3: Ports 2 and 3 CLocks

1. to 8. - respectively, Output
Ports 20 to 27 €ICCKsS.

9. to 16. - respectively, Output
Ports 30 to 37 TIOCKS.

I1/0-li: Address Lines.

1. to 16. - Lines AO to Al5, respec.

I/0-5: Bus/Power/Misc.

1. to 8. - respectively, Data Bus
lines DO to D7.

9. Ground - power

10. to 13, - no connection

1y, TT3 SIGNAL from CPUs

15. CPU-INPUT from CPU

16. +5 volt power,.

#Note: Thru oversight, this
signal was not mentioned as
output from CPU in ECS-3.
Use an extra I/0-1 pin (see
ECS-3, page 1llj) for this

line.

1/0-6: Keyboard

1. to 8. - respectively KO to K7.
9. Ground

10. to 15. No Connection

16, Power - +5 volts

M.P. Publishing Co. -16- ECS-5

KEYBOARD-ECHO Program: This program will respond to interrupts from the
keyboard input device by reading the bit code presented (over and over
again as long as the key first pressed or any other key is held down) and
displaying the code in both halves of the 16 bit display device. Use the
program when initially checking out the I/0 hardware.

INTERRUPT:
0000 I 006 LAT Set up disable code for
0001 D 02 100000010 output to interrupt logic.
0002 I 101 INO Read IFR & disable interrupts
0003 I 012 RRC Set Carry from AO (INTO flag)
000, I 140 JTC
0005 D 20 L(KEYSERV) Got to ZKeyboard Routine if
0006 D 00 H(XKEYSERV) keyboard interrupt.
0007 I 006 LAT
0008 D 00 00 Turn on all LED's for error
0009 I 161 0UT 30 indication (see p. 5)
000A I 163 0UT31
000B I 006 LAT Set up enable code for
000C D 03 00000011 output to interrupt logic.
000D I 101 INO Clear IFR & enable interrupts.
O00E i 377 HALT Error halts here.

KEYSERV:
0020 I 103 IN1 Read Keyboard (AGAIN even!) .
0021 I 074 CPI Is it null (ie: you let go of &
0022 D FF 11111111 ee. Finally!ll) ?
0023 I 150 JTZ
oo2l D 2D L(ENDKEY) If so skip out.
0025 D 00 H(ENDKEY)
0026 I 05l XRI Invert code for display, see
0027 D FF 11111111 page 5 for comment.
0028 I 161 OUT30 Into Right Displays
0029 I 163 0UT31 Into Left Displays#
002a I 104 JMP
002B D 20 L(KEYSERV) Keep reading until you let go
0o2¢ D 00 H(KEYSERV) the fool keyboard!!!

ENDKEY :
002D I 101 INO (A-reg has desired enable code
002E I 377 HALT in bits 0-1, so don't bother

to use a literal.)

Further Notes & Comments: When ENDKEY is reached, it is because the
accumulator was found to have "FF" (hex) - thus the two bits O and 1

in particular are "on" and will set the Interrupt Enable. Flip Flop

as well as clear the Interrupt Flag Register (IFR) setting things up for
the next iteration of the whole program., Similar processing is used in

the second sample program,

% The notes at addresses 0028 and 0029 refer to physical placement of
the output displays. This program assumes (as do succeding programs)
that OUTPUT DEVICE 31 constitutes the left half of a line of 16 LED's
and that OUTPUT DEVICE 30 is the right half. Together, a 16-bit dis-
play in the conventional sense (high order at left) is possible.

The form '11111111' is used here to indicate binary literal patterns.
Refer to article ECS-3 for definitions of other conventions.

M.P. Publishing Co. -17- ECS-5

BINARY-CALCULATOR Program: With the completion of the keybard and sim-
ple displays, 1t is now possible for the builder of an Experimenter's
Computer System to consider potentially useful applications programs. As
a further example of I/0 handling and to give the outlines of a whole
generic class of programs, a simple "binary calculator" of 16 bit precis-
ion 1s illustrated in this article. The program interprets the following
commands, maintaining an ENTRY register and a SUM register in the program
operation:

"E" key: Clear the ENTRY register, display SUM.

"C" key: Clear the SUM register, clear display.

"S" key: Subtract ENTRY from SUM, display sum.

"A" key: Add ENTRY to SUM, display sum.

"1" key: Enter Binary "1" digit (into low order, shift
previous entry.)

"O0" key: Enter Binary "O" digit (also into low order

shifting previous entry.)

The program as listed assumes the hardware keyboard definitions as found
in this article - if you use a different keyboard, with different input
coding, you will have to change constants at locations 22, 27, 2C, 31,

36, and 3B. Furthermore, if you do not like my choice of keyboard keys,
feel free to pick your own and change the corresponding locations. In
this listing, the notation C"X" means the character X's code. To operate
the program with present hardware, enter it in bootstrap mode then place
the computer in "run". Hitting any one of the 6 defined keys will then
cause the program's corresponding routine to be executed with appropriate
consequences for ENTRY, SUM and the display outputs. Now, the listing...

INTERRUP®t:
0000 I 006 LAT The program wakes up when you
0001 D 02 02 hit a key. Disable Interrupts
0002 I 101 INO and read the IFR.
0003 I 056 LHI Entire program runs in page O
oooy, D 00 H(PAGE-0) so set H and forget it!!
0005 I 0l2 RRC Shift keyboard flag to carry.
0006 I 140 JTC
0007 D 20 L(BINCALC) Test keyboard flag and branch
0008 D 00 H(BINCALC) to calculator if it is it!
0009 I 006 LAT Otherwise, error similar to that
000A D 00 00 handled by KEYBOARD-ECHO.
000B I 161 OUT 30 A1l "1"s to display 30 (compl.)
000C I 163 0UT31 All "1"s to display 31 (compl.)
000D I 006 LAT
OOO0E D 03 100000011 Reset Int. Enable FlipFlop.
O00F I 101 INO with output from INO
0010 I 377 HALT (HLT) #1 Halt in list.

Data Definitions For BINARY-CALCULATOR:

001C = ENTRY-LO .
001D = ENTRY-HOnzﬂ\"'Current ENTRY (16 bits)
001E = SUM-LO ,

001F = SUM_HO'E“_/—-Current SUM (16 bits)

M.P. Publishing Co.
BINARY~CALCULATOR,

Here is the command interpreter routine, to continue the listing.

continued.

-18- ECS-5

It is

a very simple-minded approach useful when a small number of commands is
involved - it simply checks on each possible combination, only executing
the routines if it finds the right code.

0020
0021
0022
0023
002l
0025
0026
0027
0028
0029
0024
002B
002¢
002D
002E
002F
0030
0031
0032
0033
003l
0035
0036
0037
0038
0039
003A
003B
003¢
003D
003E
003F
00L.0
0oL 1
ooL2

HHOHOUOUHUOHOUOHUOHUYOUOHUOHUOOHOHOOHOHOOHO H H

103
07l
D3
150
50
00
07k
cl
150
70
00
o7l
Cc3
150
o8B
00
o7k
c5
150
90
00
o7l
Fl
150
AO
00

BINCALC:

IN1
CPT
C"S"

L(SUBTRACT
H(SUBTRACT)

CPI

C"A"

JTZ
L(ADDER)
H(ADDER)
CPI

C"C”

JTZ

L(CLEAR-SUM)
H(CLEAR=SUM)

CPI
C "E"
JT7Z

L(CLEAR-ENTRY)
H(CLEAR-ENTRY

OPI

C"l”

JTZ
L(ONE)
H(ONE)
CPT

CHOH

JTZ
L(ZERO)
H(ZERO)
LAT
'O0000011"
INO

HLT (HALT)

?I Or should I add??

Read the character.

Should I subtract??

Or maybe clear the SUM?

ﬁg Or just clear the ENTRY?
)

E% Can't calculate without data!

who cares what data!l
either will do...

OK dummy! why'd you press that
undefined key? Set interrupt
enable and quit.

#2 Halt in the list.

After the interrupt, you go to BINCALC - if the key pressed was "S" you
in turn pass on to...

0050
0051

0052 .

0053
0051
0055
0056
0057
0058

HOHHOHHYOH

066
1E
307
066
1C
2er
066
1E

370

SUBTRACT :

LIT
L(SUM LO)

LLI

L(ENTRY-LO)

SUM
LLT
L(SUM-LO)
LMA

And of course save 1it!

Subtract low order of ENTRY
from SUM, mindful of borrow
result...

M.P. Publishing Co. -19- ECS-5

BINARY-CALCULATOR, continued...

0059 I 060 INL

005A I 307 LAM

005B I 066 LLT Subtract high order ENTRY from SUM
005¢ D 1D L(ENTRY-HO) with borrow input from previous.
005D I 237 SBM ‘

O0BE I 066 LLT

OO5F D 1F L(SUM-HO) .}. And - as always - save it!

0060 I 370 LMA

Now after any operation, whether addition or subtraction, it is desire-
able to show some results. The following routine is reached after the
subtraction, or by branching from other routines..

DISPLAY-SUM:
0061 I 054 XRI
0062 D F '11111111" See note on page 5... must send
0063 I 163 OUT31 inverted data to H.O. display.
006 I 061 DCL -
0065 I 307 LAM
0066 I 054 XRI Fetch L.0. display from SUM-LO
0067 D PR '11111111° and invert and output it...
0068 I 161 OUT30
0069 I 006 LAT
006A D 03 '00000011" Interrupt Enable Code
006B T 101 INO sent out with INO...
006¢C k¥ 377 HLT #3 Halt in the 1list.

Another command option was addition. The following routine shows a 16
bit add operation in many ways similar to the subtraction above, but a
bit more compact in principle (not actual due to jump at end) due to
taking advantage of commutivity of addition operations...

ADDER :
0070 I 066 LLI
0071 D 1C L(ENTRY-LO)
0072 I 307 LAM Add the low order first
0073 I 066 LLI
007, D 1E (SUM-LO)
0075 I 207 ADM
0076 I 370 LMA "TL With ENTRY in accum, address now
0077 I 066 INL : points to SUM for save...
0078 D 1D L(ENTRY - HO),) But not for long...
0079 I 307 LAM
007A I 066 LLI Add high order last
007B D 1F L(SUM-~HO) with carry from previous.
007C I 217 ACM
007D I 370 LMA ?5 Save - again with fortuitous
007E T 104 JMP lack of address definition.
O07F D 61 L(DISPLAY-SUM)
0080 D 00 H(DISPLAY-SUM)

The program continues on the top of page 20 with definition of the

two routines CLEAR-ENTRY and CLEAR-SUM - written in an interlocking
manner to share some common code, "CLEAR-EITHER". The separate routines
set the address to be claered - after which general purpose code 1is

used.,

M.P. Publishing Co. -20~ ECS-5

0090
0091

0092
0093
009L
0095
0096
0097
0098
0099
009A

009B
009C
009D
O09E
OO09F

oH

HHOHUOHHUOH

OOoHUOH

066
1C

076
00
060
076
00
006
03
101
377

066
1E
104
92
00

CLEAR-ENTRY:
LLT Set addressability of ENTRY
L(ENTRY)
CLEAR-EITHER :
LMT Clear wipes out two
00 bytes at address in
INL L-register on entry...
LMI
00
LAT Then in a simple-minded Mauwnev
'O0000011! resets interrupts
INO with output of INO
HLT and goes to sleep.
#li halt in list.
CLEAR-SUM:
LLT Set addressability of SUM
L(SUM)
JMP

L(CLEAR-EITHER) And go clear it
H(CLEAR-EITHER)

And finally, the last set of routines in the program 1s the data in-

put methodology.

Basically, since this 1s a binary calculator, it was

decided to input data on a bit serial basis - shifting each "1" or "O"
key stroke into the ENTRY register as it comes., The high order bit is
thus entered first for a number, followed by as many binary digits as
required for its precision.

00A0
00A1
00A2
00A 3
00AL

00AS
00A6

00A 7
00AS8
O00AQ9
00AA
OOAB
OOAC
O0OAD
OOAE
OCAF
00BO
00B1
OORBR2

OgoHOH

o H

OHOUOHUOHHHOHH

o6
01
104
A7
00

ONE:

LET

100000001 First set the digit "1" if you

JMP come here,..

L(SHIFTIN)

H{SHIFTIN) Then jump to either routine...
ZERO:

LEI Set the digit "O0" if you come

'00000000! come here instead...
SHIFTIN:

XRA Clear carry (vy important!)

LLI _

L(ENTRY-LO) Fetch low order ENTRY

LAM to accumulator...

RAL Make room for new bit...

LDI _

100000000 Save bit for high order input...

JTC

L(NOT-ONE)

H(NOT-ONE)

LDI

00000001

M.P. Publishing Co. —-21% ECS-5

BINARY-CALCULATOR, continued...

NOT-ONE:
00B3 I 26l ORE Add in new Low order bit
OOBy I 370 LMA Save low order ENTRY
OOBS I 250 XRA Clear carry...
00B6 I 060 INL Fetch the high order
00BY I 307 LAM portion of old ENTRY
00B8 I 022 RAL Make room for new bit
00B9 I 263 ORD Add in shift out of ENTRY-LO
00BA I 370 LMA And save - always save!l
OOBB I 05l XRI
00Bc D FF '11111111" Invert and send to display.
OOBD I 163 OUT31 ' defines left half (H.O.)
OOBE i} 061 DCL Point to ENTRY-LO.
OOBF I 307 LAM Fetch L.O.
00COo I o5l XRI Invert and send to
00C1l D FF "11111111" to display
0oc2 I 161 0UT 30 low order this time
00C3) 006 LAT
ooclk D 03 '00000011! As usual, set interrupt enable
00C5 I 101 INO and clear IFR then go to sleep.
00Cc6 L 377 HLT #5 in list.

This completes the listing of the BINARY-CALCULATOR program. The program
can be "toggled in" to the system as it stands once you have completed

the I/O devices of ECS-5 - but don't be afraid to try it out even before
you get the I/0 stuff going, for except for the detailed interactive oper-
ation, the program will run - missing pieces of your compute will give
default states.

This program is written and listed in "absolute" machine code - there
is no provision in the program for loading it at arbitrary addresses in
memory. As a result, all those who plan to load it at different addresses
in memory will have to adjust the various constants which reference addres
ses within the program.

As an exercise, you might try altering the program in several differ-
ent ways:

L Add new functions to the command interpreter on page 18 of
this article. The addition of new interpreter code is straight
forward - but you will have to supply the detailed functions of
your extensions. An easy command to add would be that of ex-
changing the contents of SUM and ENTRY. Another might be to com-
plement the ENTRY.

2. Look at the code from the standpoint of "optimization"... the
minimization of memory and time of execution. I wrote this example
with no large measure of thought on the subject of minimizing the
size of code - as a result you should be able to find several ways
of "improving" the memory and time efficiency of the program., For
instance, keeping addresses around in unused registers might be a
way of minimizing the number o f "LLI" instructions - but you must
be careful to guarantee that a CPU register is truly available.

3. Build yourself another output display register, for exaiple,
OUT32. Then re-write this program for a 2L-bit calculation precis-
lon.

M.P. Publishing Co. -22- ECS-5

DEPARTMENT OF PROGRAM PATCHING:

Murplhy's Law reigns! The description of the memory test program
given the last issue (ECS-l, pages 8-10) had an unfortuneate error in
the (of all places) ERROR routine! If you inspect the code in de-
tail you will find the following:

1. The high order bytes are never stored back into memory.

2. Register usage 1s mismanaged in that the TEST routine assumes
that register L will not be touched by ERROR...ditto H

In order to set the record straight, the following is a corrected
copy of ERROR which supercedes the listing on page -10- of ECS-l.

ERROR:
0080 T 336 LDL Save L addressability
0081 1 345 LEH Save H addressability
0082 I 066 LLT
0083 D 63 L(ECOUNT)
008, I 056 LHI
0085 D 00 H(ECOUNT) Add 1 to first ECOUNT byte
0086 I 006 LAT
0087 D 0l 1
0088 I 207 ADM
0089 I 370 LMA
008A I 066 LLT
008B D 6l L(ECOUNT+1) New address without zapping C flag.
008¢ I 006 LAT
008D D 00 0
008E I 217 ACM Add second byte with carry.
008F I 370 LMA AND SAVE SAVE SAVE!!!
0090 I 066 LLI
0091 D 65 L(ECOUNT+2) New address, save C-flag
0092 I 006 LAT
0093 D 00 0
ooy I 217 ACM *Add .third byte with carry
0095 I 370 LMA AND SAVE SAVE SAVE!!!
0096 I 066 LLT
0097 D 66 L(ECOUNT+3) New address without zapping C flag.
0098 I 006 LAT
0099 D 00 0 g
00%9A I 217 ACM Add fourth byte with carry.
009B T 370 LMA AND SAVE SAVE SAVE!!!
009C I 363 LLD Restore L addressability of TEST
009D I 354 LHE Restore H addressability of TEST
009E I 003 RFC Return if not too many_errors (7)
009F = I 377 HLT Quit if more than 23

Ag is usually the case in programming, there are alternatives. There

is in particular, an alternative to this error incrementing routine which
can be performed using the increment instruction, with returns executed
as soon as no carry is indicated. As an exercise in programming, see if
you can figure out such a routine. The answer will be found in the test

program accompanying the ECS-8 design.

M.P. Publishing Co. -23- ECS-5

SOME PROGRAMMING NOTES - BITS AND PIECES:

How can you conveniently program a computer without an assembler or
other automated program development tools? This is a problem of utmost
concern to the individuals who assemble (note double meaning) their own
computers along the lines of thls series of articles - or based on other
design concepts of a similar nature. One idea which is most useful in
this area is the concept of a "symbol table" - a list of addresses at a
known absolute location which is accessed by a "symbol" using appropriate
subroutines.

First, what is the problem involved? Suppose that you have spent an
hour or two "toggling in" a complicated program - only to discover that
you made a mistake in writing your program on paper prior to entering
it into memory - symbol X, a widely used variable in the program , is
at the wrong location! Now, since X is used throughout the program, there
is one obvious but tedious solution to the error - find every reference
to "X" and change the address at that point in the program where "X"
is referenced. 1In the Intel 8008 architecture, this is complicated by
the fact that both the L and H portions of the address might appear -
or one or the other if not both.

Now under these circumstances, you might be tempted to give up in
frustration, pull the plug, power on again and re-enter the program.
But suppose instead, that you had a bit of forsight and programmed sym-
bollically using a symbol table and the following set of "service sub-

routines:"

LOADA: Loads the address of the symbol passed in register .
Output is in the content of H and L registers.

LOADATI: Loads the address of the symbol passed in register A,
with the current value of register B added as an index.
Output 1s in the content of H and L registers.

SETA: Allows changes to the symbol's address by returning
the place in the symbol table where the symbol's address is
located.

Suppose then, that you wished to store a result of an operation in
symbolic location X. You would reference X as follows:

LLI M point to X
CAL LOADA define.L,H from X's table entry
LMA (A had result to be stored.)

Because the code of this little stretch of program is completely inde-
pendent of the particular location of X - it depends only on the symbol
table entry - to change the location of X involves only changing one

item and not a myriad of references throughout code. The SETA operation
would probably be performed once at initialization time for a large pro-
gram - once the symbol is defined it probably will stay in the same place
for most programs. The LOADATI - indexed address load - is useful as an
extension to the concept by enabling a more powerful method of referencing
with an index.

The same symbol table concept can be used to define symbolic JMP and
CAL routines in much the same way.

M.P. Publishing Co. -2l - ECS-5

OF INTEREST TO READERS:

At the time this article is belng written (November 17 197l) a proto-
type for the design of article ECS is up and running - in printed cir-
cuit board form. This design is a 1K by 8 bit memory page which can be
placed at any one of 16 address locations in your Experimenter's Compu-
ter System. Since memory is used repeatedly, I have taken the time to
make this design in PC form for ease of reproduction.... and all ECS-
seriles subscribers can take advantage of the production PC boards, the
second product being offerred in support of these articles. At this
time, I have no firm pricing information on production versions, but
watch the next issue for more details.

At the time this issue goes to press, a new catalog, Catalog 3, is
at the printers - with copies in the first lot expected any day. As
new catalogs are printed they will be sent to subscribers along with
regular issues. So if the catalog does not make it with the mailing
of ECS-5, look for it in your ECS-6 issue.

A thought which has occurred in recent weeks regarding programming
the ECS system, especially the more useful systems programs, is the
following: Such programs could be distributed as sets of fully programmed
ROM modules which can plug into the bus structure of the system. The
price of such a product, 1nc1ud1ng documentation and the chips mounted
on a P.C. board would be in the $50 to $100 range. The next gquestion is
this: is there subscriber interest in such a product? 1I'll extend the
‘subscription of the first reader to give me a note with thoughts on the
subject,by one issue - with a drawing to determine who gets the extension
in the event of identical postmark dates. A prime candidate for this
treatment is the "IMP" (Interactive Manipulator Program) software which
is being written now for ECS-T7.

DA ’S Nevass, 5;

Carl T. Helmers,
Publisher

M. P. Publishing Co. Box 378 Belmont, Mass. 02178 ECS-6

The,Erxp_erimenter's Computer System: Part 6

SERIAL I/O INTERFACE INTRODUCTION & ERRATA FOR
PREVIOUSLY PUBLISHED ARTICLES

by. Carl T. Helmers, Jr.

INTRODUCTION:

This article is the sixth number in the Experimenter's Computer System ser-.
ies. It continues the description of hardware and software begun in the earlier
articles by providing information on the following topics:

Introduction to the ECS-6 Serial 1/0O Interface - the information found
in this article includes the beginning of the technical description of
the ECS-6 serial I/O interface design, with a discussion of the over-
all system description and definitions of interface signals. The design pre-
sentation will be continued in the next issue with detailed logic diagrams
and related information,

Technical Updates and Errata. - a portion of this article is devoted to the cor-
rection of several technical and editorial errors in articles ECS-3 and ECS-5
previously published. Also included are several technical improvements on
the original designs.

A Bit of Fun - The CATERPILLER is a simple demonstration program
which uses the ECS-5 binary output display lamps to illustrate the opera-
tion of shifting bits - to the amazement of friend and family.

Reader's Reactions - a portion of this article is dedicated to notes and com-
ments regarding the ROM software idea and other inputs from subscribers.
The winner of the informal contest announced in ECS-5 is included in this
section's information.

ANNOUNCEMENT OF A CHANGE OF FORMAT & TIMING:

Effective with the next issue of an article, the Experimenter's Computer
System will become a monthly magazine. It is my intention to retain a format
of one major technical topic per issue, with minor topics and departments in-
cluded on a discretionary basis. Complex technical systems such as the ECS-6
design will in general be spread over one or two issues. All present subscribers
will be mailed Volume 1, No. 1 under the new arrangement in January - with sub-
sequent issues on a monthly basis for the term of the subscription. Hardware de-
signs will continue to be numbered as in the past.

ol & Mebonsan,
Carl T. Helmers, Wr.
Publisher Dec. 15 1974

M. P. Publishing Co. -2- ECS-6

CHANGE OF -DESIGN CONCEPT:

As originally conceived, the ECS-6 design was to be a '"tape controller' for the
conversion of parallel CPU data into a serial format and vice versa. This conver-
sion process is fairly general - especially if an "assynchronous' data format is
usgd, generated by a "UAR/T" chip (Universal Assynchronous Receiver/Transmitter.)
The design incorporates the UAR/T function for the serial/parallel and parallel/ser-
ial conversions. It also includes selection logic for four '"channels' assumed to be
one teletype device at 110 baud, plus from one to three serial tape recorder data in-
terfaces of the ECS-2 design or equivalent. A binary counter is used to select data
rates for the conversion from 110 baud to 1760 baud, programmable with informa-
tion defined by the CPU and software. The low end of the frequency range was selec-
ted as 110 baud in order to achieve teletype compatibility, thus extending the device
concept beyond the original idea of a serial tape interface. A teletype current loop
output interface and brush contact input switch are assumed, as used in the Model
33 Teletypewriter.

BLOCK DIAGRAM OF THE SERIAL INTERFACE:

On page 3 of this issue (opposite) is a block diagram of the Serial Data Interface
design ECS-6. This diagram outlines the major functional sections of the device
and provides a referencepoint for the discussion which follows below. The detailed
logic diagram of this hardware will be published in the next issue.

UAR/T DEVICE:

The heart of the serial/parallel/serial conversion technique used in this design
is an LSI UAR/T chip. The basic circuit definition and pinouts of this 40-pin pack-
age IC are fairly universal, with several different manufacturers making pin-com-
patible devices. The prototype was built using a Standard Microsystems COM2502
device which cost approximately $13. 50 new in quantities of one. Other manufac-
turers of this type of chip include:

Signetics (2536), T.I. (TMS-6010)
The Signetics documentation lists several other numbers as pin-compatible and
presumably electrically compatible including ""AY-5-1012", '"TR-1402A'" and
"S1757'" - with identification of manufacturers left unspecified.

The UAR/T device is itself divided into two functional sections. In the block dia-
gram, these are labelled "R'" for '"'receiver' and "T'" for '"transmitter.' These
sections are ' independent in operation, although parity and
word length settings are in common. The receiver can analyze one data stream at
one clock rate while the transmitter is sending out a second data stream at a sec-
ond clock rate.

Internally, each section of the UAR/T has buffering via a register of 8 bits, with
a second 8 bit shift register used for the serial/parallel (receive) or parallel/serial
(transmit) conversions. On output in the. ECS-6 design, the first write operation of
a series places data into the 'transmitter buffer register" - and the UAR/T immedi-
ately transfers this to the 'transmitter shift register' to begin the first character
output. The CPU then writes a second character to fill the buffer again, and enters
an interrupt response mode character by character until all data is transferred.
After the last character is sent, one final interrupt occurs to indicate that the last
character was completed and the tape can be turned off.

EXPERIMENTER’'S COMPUTER
BLOCK DIAGRAM

SYSTEM — SERIAL DATA INTERFACE (ECS-6)

by Carl T. Helmers, Jv.

DATA DATA ADOR. ADDR.
BUS BUS eus BUS
l il (s
INZ IN2)OUTQE. OUTGBL KHZ
UAR/T\][' J
: YiF 81T
R 5 » Cov;g::g" ﬁ_a. RATE
: i 2 _
: 1 e b
§ ol :
X SERIALY -||- : +
DATA
coe mATEd Losg aare’
) ® 1760 2 195
Reapy | [oath 3n]._ [oaTa ouv] [cHannel L] -
seLeeT [| SELECT [~ | sELECT [~ | ENABLE [T o E40
' Al e
, _ 7 220 F (10 .
{ ,# & ! # # Y v *aauvx arre/ sec.
o123 o0L23 o01L23 o01L23 AL ALL
' In/OuT 165 CLOCK

© 197& M.P. PUBLISHING cO.

0D Jurysiigqng °d "W

9-S031

M. P. Publishing Co. -4- ECS-6

For input, the start bit of the data received begins UAR/T operation for a
character of information. Once the tape motion has begun and the tapestart up
transients have completed, the UAR/T will begin analyzing the input bit stream
looking for the "1' to "'0'' transition marking the start of a character's informa-
tion. The UAR/T includes within it the logic needed to discriminate against short
noise spikes and other spurious start pulse co'ndit_ionsA - it simply checks to make
sure that the data is still low exactly one half of a bit time later. The reason for
putting in a clock frequency 16 times the data frequency (see below) is so that the-
UAR/T can digitally count down the time between the leading edge and the center
(8 clock pulses) of the start bit. After the start bit, information is shifted into the
"receiver shift register'' generating the received parity information as it goes along.
At the end of the '"n'" bit (7 for TTY, 8 for normal tape data) string, the parity
found is check ed against the parity bit incoming - and a parity error is detected
upon mismatch. The CPU interrupt for receiving data is generated by the '"'rece-
iver data available' status flag's rising edge triggering a one- shot. The CPU must
respond by reading the data (which also clears the buffer in the ECS-6 design and
turns off the data available flag.) If - due to a software bug or other flaw in the
program - the CPU has not responded to the character within the time it takes to
read another word from the input stream, a ''receiver over run'' error condition
is indicated - and the appropriate error flag is set.

The UAR/T data format is a generalized assynchronous serial format in which
a "'start' bit transition from logical "1" to logical ""0" for one bit period cues the
start of a character - followed by several data bits, an optional parity bit and one
or two stop bits. The stop bits transmitted on output simply represent the mini-
mum inter-character spacing for valid data - there is no need to transmit again -
immediately. ' In the specific design of ECS-6, the general programmability of
the device was intentionally limited to two data formats. These are the standard
Teletype format used for channel 0 output and input,

s, s o . lo.lo.]p [5 '
A‘., D bl bl 3 y 5 6 v" .’E

And an 8-bit serial data format used for channels 1 2 and 3 of the output device,
intended to interface with serial tape recorders:

s, T o
% LN BN BN S A B B 5 ' e

[;-ONE B1Y PERIOD AT BAUD RATE

In the block diagram of page 3, a circle labelled "C' to the right of the UAR/T
symbol represents control logic used to choose the length of the data bit field
as "7' or "8" depending upon channel. The high order bit of data is unused for

teletype output and input.

M. P. Publishing Co. -5- ECS-6

CONTROL WARD / STATUS WORD:

A basic tool for controlling the Serial Data Interface module is provided by the
""IN3" instruction of the Intel 8008 CPU used in ECS-3. This instruction is used
to output a ''control word' and read a "status word' during I/O operations. The
function of this operation is to send out the current accumulator content to the
Control Word and replace it by the current condition of the Status Word. The
basic interactive programming sequence for control and status checking is thus
the following:

n LAI load the accumulator

n+l neen with control word data
n+2 IN3 output control, read status
n+3 beginning of routine to analyze status

This sequence is used whenever the control word is to be changed and/or the
status is to be checked. The basic data definitions for the control word are
as follows:

Bit 0 - SELECT. This bit has two purposes in the system:
a. In its "0'" state, it presents a '"Master Reset'
to the UAR/T chip to initialize I/O operations.

b. In its '"1" state, it acts to enable logic in the
device being addressed by the CHANNEL code -
serving as a "motor on' signal for tape recorder
I/0O for example.

Bit 1 - IN/OUT. This bit has the function of selecting the
direction of data transfer. It is used to control
whether a UAR/T buffer read (input) or buffer write
operation is performed by IN2(OUTO03). It is routed
to all devices of the system. For the tape devices
this bit selects the source of the CPU interrupt used
with this hardware, since only input or output but
not both simultaneously is supported for these de-
vices. ''1'' Indicates input and "0" indicates output
in this bit position.

Bits 2 and 3 - CHANNEL., These two bits select the '"Channel"
being used for an I/0 operation. The following as-
signments are assumed by this hardware design:

Channel 0 (''00") is the Teletype (TTY)
Channel 1 ("'01") is tape
Channel 2 ("10") is tape
Channel 3 ("'11") is tape

Bits 4 to 7 - BAUD RATE CODE. These four bits are used to
form a single hexadecimal digit, used to program the
binary divider which sets data transmission rate. These
codes are listed with corresponding frequencies
in the block diagram on page 3.

M. P. Publishing Co. -6- ECS-6

The basic data definitions of the status word input are as follows:

Bit 0 - PARITY ERROR. This status bit 1s set to logic '""1"" by the
UAR/T receiver section to indicate that the received par-
ity bit does not agree with the parity information regener-
ated by the receiver using the data bits as received. Par-
ity is generated by the UAR/T transmitter section in this
design and as a result the parity error condition indicates
an error between transmission and reception. A basic as-
sumption in this error detection technique is that the prob-
ability of one error is low - and that therefore the proba-
bility of two simultaneous errors is miniscule due to the
multiplicative properties of probability measures. It turns
out that parity will detect any odd number (eg: 1,3, 5, etc.)
of simultaneous errors - but will completely miss an even
number of errors. More sophisticated error correction
and detection techniques involving multiple bit codes provide
additional '""'redundancy'' in the information and the ability to
correct single and even multiple bit error conditions. In the
ECS—type of system, a ''brute force'' technique of using mul-
tiple copies of the data involved could be implemented in
software if an "air tight'’ guarantee against errors is required
to alleviate data loss worries.

Bit 1 - OVERRUN ERROR. It is possible to consider the possibility
that a software bug or other intervention might cause the
CPU response to an input interrupt to exceed the maximum
time allowed by the data transmission rate. This bit of
the UAR/T status output is provided to indicate such an
""overrun error'' condition. In the bit rates available in the
specific design shown in this publication series, the CPU
response must range from a 100 millisecond maximum for
the 110 baud TTY format, to a maximum delay of 6. 82 mil-
liseconds for 1760 baud information in the general 12-bit
serial format - useful in hi gh speed magnetic recording
media. The 6. 82 ms delay gives the CPU an equivalent
of 340 five-state (20 microsecond) 8008 instructions to
execute without threat of overrun.

Bit 2 - FRAMING ERROR. This status bit is set to logical "1" by the
UAR/T receiver section to indicate an error in the format
of received characters. Such format errors are defined as
an invalid stop bit following the parity bit in the serial data.

Bit 3 - END OF CHARACTER. This status bit is used to indicate
that the transmitter section has finished transmission of a
character. It is tested after the last character has been

written, so that software can determine when it is safe to
turn off the unit. During transmission it also serves as the

source of interrupt pulses.

M. P. Publishing Co. -7~ ECS-6

Bit 4 - TRANSMITTER BUFFER EMPTY. This status bit is a
state level which indicates to the CPU software
that the output buffer can be written into. This status
bit is used during the beginning of output of a block of
data to tape - and prior to each character transmission
to the Teletype device.

Bit 5 - RECEIVER DATA AVAILABLE. This bit is set when an
input character has been completed and transferred to
the receiver buffer register. The rising edge of this
signal is used to cue the interrupt which drives charac-
ter input software, and it is reset when the CPU responds
with the IN2 operation code in this design.

NOTES CONCERNING UAR/T STATUS OUTPUTS:
l. The error condition bits are reset by the '"Master Reset' signal, and in
this design, this corresponds to the '""unselected'' state of the system (bit
0 of the Control Word being zero. See page 5.)
2. When the teletype channel is selected, bits 4 and 5 must be tested after
an interrupt to determine the source. When other channels are selected, the
IN/OUT bit masks one or the other of the possible sources for an interrupt.
This rules out a direct interleaved I/O from one tape to another using the
receiver and transmitter sections simultaneously, with the CPU monitoring.
It is intended that this hardware be used with blocked information transferred
to and from CPU buffers of arbitrary length.

Bit 6 - READY. This status bit is provided in this design so that
software can test a ''ready' line associated with the devices
connected to the system. For the tape units, this line
is to indicate the end of motor turn-on transients and the
beginning of data transfers. For the teletype, this line
wil initially be unused - but may eventually be wired to
the '"local/on line'" switch on the front panel of a model 33
Teletype. (Via sattable Sensors).

Bit 7 - Unassigned at present.

DATA WORDS:

The interface design uses the '""IN2'" instruction of the 8008 CPU as decoded by
the ECS-5 hardware to act as the data transfer mechanism. The potential of this
instruction is to exchange the current content of the accumulator ("A'" register)
with the content of an I/O device's data. The effect of the IN2 operation in this de-
sign depends upon the state of the control word defined above on page 5, as ’
follows:

1. If the Output selection is made (Control word bit 1 is '"0'") then the cur-
rent accumulator content is written into the Transmitter Buffer Register,

M. P. Publishing Co. -8- ECS-6

2

If the Input selection is made (Control Word bit 1 is ''1'"") then the

Receiver Buffer Register is read into the accumulator, and the UAR/T
is acknowledged to prevent an over-run error condition.

In the software for data transfers, ‘the direction of transfer must always be init-

ialized in the Control Word (using the '"IN3'" instruction as described on page
5) before the actual data transfer takes place with '"IN2", For the software which

drives the tape devices, this can effectively be done prior to the beginning of 1/0
transfers for a large block of data. For the software interfacing the teletype, this
must be done for each character after decoding the source of the interrupt (receiver
or transmitter) using the status bits read by an "IN3'". Also, since the status bits
can only be read at the same time as a control word is written, it is assumed in this
design that an RAM location will be reserved in software for the ''current' internal
ly maintained value of the Control Word bits, for pre-loading the accumulator prior
to the IN3 operation. The illustration on page 5 shows an '"LAI" instruction -
which is fine if the ""current' value of Control Word bits is always maintained in
the location '"n+1" and no where else. Other instruction sequences could be used
however to define the accunulator depending upon programming strategies.

DEVICE CONNECTIONS:

The bottom edge of the block diagram on page 3 shows the general interface sig-
nals to the individual output units which may be selected by the Control Word
"CHANNEL" field. These signals are as follows: '

READY - Each device is assigned a ready line input to indicate
its status to soft.wa.re, as described above in the description of

the status word fbrmat.

DATA IN - This signal is the serial data input in the UAR/T data
format as received from the Tape Interface's de modulator .
In this design, it is assumed to be in the 12-bit format shown
on page 4 for channels 1to 3, and in the 11-bit teletype format

for channel 0.

DATA OUT - This signal is the serial data output of the UAR/T
in either the Teletype or tape medium format as selected by
the Channel coding. A multiplexor is used for routing so that
serial bits are not sent to unused channels - a teletype listening
to high speed bits would get confused tosay the least.

CHANNEL ENABLE - This signal is sent to each device when its
channel is selected by the control word bits 2-3 and the

control word .- select bit is ''1".

IN/OUT - The Control Word bit is sent to all the devices, in
order to select the logical direction of transfer in the modems
used. (For TTY, this bit can be ignored.)

M. P. Publishing Co. -9- ECS-6

16-F CLOCK - This signal is a square wave clock at 16 times the
bit rate for data, used by the UAR/T chip for its timing, and sent
out to modems of the ECS-2 design to replace the local phase gen-
eration clocks. For serial I/O designs which do not need clock
synchronism, this signal can be ignored.

CONTINUATION OF THIS DESIGN DESCRIPTION IN THE NEXT ISSUE: This
discussion has covered the general outline of the ECS-6 design concept. The
specific details will be covered as the major subject of the next article's content,
the first in the monthly format of this series. Included in the next issue will

be details of both the hardware logic for this design and its control using Intel
8008 software. The IMP program which will be described subsequently will
assume the ECS-6 Tape Interface is available, since it will be used for bootstrap
IPL of IMP and all subsequent software generated for the system. (For those
unfamiliar with the term, "IPL'" means ''initial program load'" - the process of
automatically (as much as possible) entering software from offline storage de-
vices. Inthe ECS-series type of computer based on an 8008 with manual mem-
ory access, a short program is entered to read the first block of data, followed
by execution of the program just read into the machine - which in turn completes
the definition and may even ''zap' the hand built routine with portions of the
final program load.)

CoNnTROL WoRD FoRMAT

, b 5, &} 3 if o

o

feeenenns SELECT
‘"""'""""INIOUT
seersesesanseasceceess CHANNEL
sesssssssiernasiecieninisencsasnsnns RATE CODE

oI ~N

M. P. Publishing Co. o e ECS-6
TECHNICAL UPDATES AND ERRATA:

ECS-3 Timing Error:

The information on instruction execution time given in section 2 of the man-
ual is off by a factor of 2 systematically. The times listed are exactly one half
of the correct values. The following table shows the necessary conversions for
each possible instruction time:

3 state instructions take 12 microseconds @500 Khz.

5 state instructions take 20 microseconds @500 Khz,

7 state instructions take 28 microseconds @500 Khz.

8 state instructions take 32 microseconds @500 Khz.

9 state instructions take 36 microseconds @500 Khz.

11 state instructions take 44 microseconds @500 Khz.
In order to provide an explicitly noted correct value for the instruction timings
of all 8008 instructions and a quick reference listing of all operation codes
(functional duplications omitted) this article's outside back cover is printed with
an alphabetical (by mnemonic) listing of all instructions except the INx and OUTxx
codes. The listing includes mnemonic designation, operation code, the number
of bytes required, the number of execution states, and the time in microseconds
required for execution. The inside back cover completes the listing providing
notation of all the I/O operation codes with space for comments regarding your
own system's use of the codes.

ECS-3 Clock Design Improvement:

Page 11 of this article contains a revised version of the ECS-3 drawing #4,
clock generation logic. The improvement in design is the use of a 74192 counter
in place of the 7490 used in the original version. This change obtains completely
synchronous (within gate propagation delay tolerances) operation. With the prev-
ious design, it was possible - given random starting conditions - to lock up the
clock into an erroneous counting/waveform state due to glitches in the 7442's
output while the 7490's state change propagates assynchronously.. The sever-
ity of the problem depends upon the particular 7490 and 7442 IC's used due
to variations in propagation delays with individual circuits. By replacing the
assynchronous counter with the synchronous 74192 and using the '"borrow'' out-
put to toggle the flipflop the problem is eliminated. = Other aspects of the clock
design are unchanged with this improvement (see the diagram enclosed.)

1/0 SOCKEY

#4

Q0 ' F-=

ECS-3 Bus Control Logic Correction: :))—————-0 “!

434 f\/\r-\ 1 CPy-ouT i t

. MSTR- AR 7437 i

The bus control logic of the ECS-3 Tugh g

design, drawing 3, was found to be in ADDED ') cou-N li :

error during the checkout of ECS-5. i 92 L_.a

The state in which the CPU has been T3A _——F@' b By 7437 gys bR G

i T =70 CPy

interrupted and normal bus control g ‘\,x,, L EREW £

. . "
should be overridden by the interrup cuAnGEs 10 ECS3 bwe 3, race 28

10 MHzZ PHASE GEN. CLOCK LATCHES
OSCILLATOR A
7480
o [ot
L= e2p
4 2 | 742 o4 DG
3
i’+ Dy 3 Is 4'
CR [] —i A n 3r
2 1
74492 3 B 4 &1
=y i—"hm clé Ble 4 s} ,J 742 B 7424 ‘
5% 5 12 2 - &
" oo b 2 % »——|>0'———‘
13
ig
8 l S
NOTE USE OF 74492 1F c
Iy PLACE OF 7498 &]) 74 s
WIRING CHANGES £5¢ n) 4 - oo
940"" 7 * '74 To
42 o4 ,
Q24 [, V- 1 B
)
iK L= suncuroNOUs
WITH 4492 STATE
CHANGES
= SELECT D
a4 - 3 X g .
LOGICAL 4%+’ e L J) S
%33 : { ' T
K Q SELECT 7452_ 174¢1+
EXPERIMENTER’S COMPUTER
SYSTEM
by Carl T. Helmers, In OS¢, FHASE Ul Li2|314)5167] cp[zplu[ul 13)10) 45 |16) 1319 19]

ECS5-3 DwWG. 4 ¢ CLOCK LOGIC SELECT
REVISED: DECEMBER 1 41974 1
(REPLACES PAGE 29 OF £¢5-3) b2

© 197+ M.R

PUBLISHING

Co.

—

—

-— .';“S e

L

s

| .

g

AT T s ~

CLOC K
(Nom,

TIMING
2.0 wS PERIOD)

Le-dus T nex L~

0D Burystiqng °d ‘W

_['[-

9-SDH

M. P. Publishing Co. -12- ECS-6

condition incorrectly allowed a bus enable during the interrupt '"jam!'' cycle.
This problem did not manifest itself until the bus loading had been expanded
with the ECS-5 hardware and it was found that the CPU would occasionally
lock in an erroneous state (for instance, during the course of an overnight
memory test program run.) The logic in the upper right hand corner of
drawing 3 on page 28 should be changed as shown in the inset on the prev-
ious page. of this article. The new logic added is a functional '""AND" of
the normal CPU bus enable signal with the interrupt override signal, the
MSTR-ENAB signal. A single 7408 gate section could be used here, but the
NAND form is shown to take advantage of spare 7400 sections.

ECS-3 RST Instruction Omission:

The principles of operation section of ECS-3 omitted reference to the single
byte call instruction, RSTn (for '""restart.') The following information is an
additional section which would be inserted in ECS-3 on page 55.

2.2.4.3.2 RESTART INSTRUCTION (RSTn)

The RSTn instruction is used to call a subroutine addressed at locations
0,8,16,24, 32,40, 48 or 56 depending upon the value of '"n" (0,1,2,3,4,5,6 or 7
‘respectively.) Its operation is identical to a CAL instruction - the current
program counter is pushed into the stack and execution continues at the
target address picked by the code. It takes only one byte however.

Mnemonic: "RSTn" ¥ (1 byte)
where: ''n'" picks the n 8-byte subroutine starting at location 0.

Operation Code: ''On5"
where: ''m'" is the subroutine address code 0 to 7 from the following

table:
Code Address Code Address
0 0000 4 0020
1 0008 5 0028
2 0010 6 0030
3 0018 7 0038

Binary Format: '00 nnn 101"
where: '"'n'" indicates bits of the subroutine address code.

Timing:
5 states, 1 cycle (20 ps @500Khz)

Condition Flags: Unaffected.

NOTE: See comment below re error on page 2 of ECS-3 in the statement
of the possible branch targets of an RST instruction.

M. P. Publishing Co. =13 = ECS-6

Misc ellaneous ECS-3 Errata:

1. The Greek symbol "4)" used to represent the clock phases was omitted in
textual references_to_q)l and ® 2 . This error is extensive in pages 4 to 8 of
the theoretical discussion of operation, and is also found on pages 10 and 21 of
the ECS-3 manual. A similar error occurs once on page 5 where the symbols
"Xy and "X should have been noted in the last paragraph.

2. On page 3, the correct decimal addresses for the RST instruction are 0, 8,
16, 24, 32, 40, 48 and 56 corresponding to the RSTO through RST7 codes.

3. On page 6, section 1. 3.1..3, "TIT" should read ""T1A'".

4. On page 6, section 1. 3.1.4, '-911 volts' should read ''-9 volts. "

5. On page 14, CT3 should be added to the output of I/O socket #1 for use in
the I/0O controller, as noted in ECS-5.

6. On page 36, second paragraph, '"is defined the' should read '"is defined by
the.'" In the fourth paragraph, same page ''states add their' should read '"states

and their. "

7. On page 37, table 4: The PCW and PCC cycle codes were switched by the -
typist. PCW's code should read ''11"" and PCC's cycle code is "'0l'',

8. On page 38, section 2.1.6, "CPY'" should read "CPU. "
9. On page 40 at the top, ''Arthitecture' should read '"Architecture."

10. On page 43, first paragraph, ''confied" should read ''confined.' On the
same page at the bottom, item 3, '""The In'' should read ""The INx'".

11. On page 45, table 6, mnemonic XR explanation should read "Exclusive
OR (XOR).'" ' ‘

12. Page 46, the Carry Flags heading, first line following should read "True
implies operand greater than accumulator. "

13. On page 53, a general comment: The discussion of the stack mechanism
should have included mention of the maximum size available for calling nested
levels of subroutines. The stack mechanism of the 8008 is 7 levels deep (ie:
7 program counter states can be saved) thus a maximum of 7 CAL or RST in-
structions (or conditional variants which are executed) can be performed in

a series without any intervening RET instructions without losing information.

NOTE: This completes the errata and technical update information on ECS-3
as of the time of publication of this article. In future articles, as additional
corrections are identified, information will be published in a similar format.

M. P. Publishing Co. -14- ECS-6

ECS-5 Manual Reset/Power On Logic:

The logic of ECS-5 drawing
3 (page 10) fails to allow for the
state of the interrupt flip flop
register bits at start up (see the
discussion on page 4.) This can
be corrected by using spare sec-
tions of the IC's numbered 17 &
18, using the logic shown at the
right.

OUTPYT PORY

22

{9
T 44 >fNABLE

io $SEE51—1.'1F—

“oR” Tupe
- |l7d_

The NAND (7420) followed by 12 8 13
inversion (7402) logic shown here ng . uﬁu r_l 7;01-.':5“'
acts as a negative-logic '"or' of 17428 = .

the CPU generated reset and the
manual/power on resets which

MAN RESEY

clear the Interrupt Flag Register LD ST ENABLE
in the logic shown. i FLif-FLop
Without this change, the start- R26
up state of the flipflops leaves the LEK — SH BN
. : ot MANUAL RESET c44 Ei
interrupt one sl‘1ot fired - with out & BBy BESET l Lo 7440
the corresponding CPU response _:_olo._i _]-_
needed to turn off the IFR bit in = 5 = CHANGES TO ECS-5
question. One cannot output an bwe #3 PAGE 18

"INO'" with the interrupt enable

code if there is no software be-

cause power was just turned on.

With the change to the wiring shown, the late-rising power on/manual clear sig-
nal will also clear the IFR - and if a software deadlock should later ensue, the
manual version of the function will enable you to restart operations.

ECS-5 Keyboard Debounce Timing:

The values of resistors Rl to R9 in ECS-5's drawing 2, page 9, should be changed
to 1000 ohms instead of the 100K shown. The capacitor values should be increased,
from 1 to 10 mifd for Cl to C8 will achieve the desired debounce time constant with

the smaller resistance values.

ECS-5 Device Select Numbering:

The buffering inverters labelled 14f and 15a and 15b in ECS-5 drawing #l were
inserted without considering the effect on pinouts in the diagram. To achieve a
logical mapping of device code to select line invert the order of
pin numbering for each group of 8 7442-generated bus enable or select signals.
Thus pin 1 of IC 7 should be thought of as "7" not "0'", and pin 9 should be thought
of as '""0" not 7 - with corresponding changes throughout. The reason for inserting
the inverters in the published version is to normalize loading of the address lines -
without inverters, there would be 5 TTL loads on those three lines in this subsection
of the system, with only 1 load each on the other high-order address lines.

M. P. Publishing Co. -15- ECS-6

THE "CATERPILLER" - AN APPLICATION PROGRAM :

The following program was written to demonstrate an extended precision shift
operation using the '"'rotate'' instructions - which shows the result dynamically on
the 16-bits of the binary display devices described by ECS-5. The result of
this program is a moving pattern of lights in the display., The program is a simple
one which first defines the initial data in registers D and E, then enters a loop which
includes the shift operation, output of the result, and a time delay...

START :
0000 I 250 XRA Clear initial carry.
0001 I 036 LDI Define the first word.
0002 D R "11111111" - all lights out.
0003 I oL 6 LEI The caterpiller is a set
000l D C3 "11000011" of four "on" lights.
WALKLOOP:
0005 I 30 LAE Fetch right byte
0006 I 022 RAL Rotate left into carry, save
0007 I 3.0 LEA and save the bits.
0008 I 303 LAD Fetch left byte.
0009 I 022 RAL Rotate it left too,
000A I 330 LDA and save it.
000B T 163 OUT 31 Write the left lamps.
000C I 30l LAE Get the right value.
000D I 161 0UT30 Write the right lamps.
000E I 026 LCI Define delay time constant.
OO0QF D Co 19210 A typical value.
DELAY:
0010 I 307 TL.AM Use v
0011 T 307 LAM several
0012 I 307 LAM longish
0013 I 307 LAM delay _
001l I 307 LAM instructions
1 0 LAM to
8812 '% %O% LAM stretch (s t r e t ¢ h)
0017 I 307 LAM out
001¢& I 307 LAM the
0019 1 307 LAM loop.
001A I 021 DCC Decrement the counter.
001B I 110 JFZ and keep looping
001C D 10 L(DELAY) Until
001D D 00 H(DELAY) all
001E I 104 JMP done
O01F D 05 L(WALKLOOP) with
0020 D 00 H(WALKLOOP) realtime wait.

Once the program has been loaded using the bootstrap mode of the CPU its oper-
ation is begun by pressing any key on the keyboard to generate an interrupt which
starts operation. The 'on" bits will then march like a caterpiller through the dis-
play. Adjust the speed by changing the value of location 000F.

M. P. Publishing Co. -16- ECS-6

READERS' REACTIONS:

In the last issue an offer was made to extend the subscription of the first indiv-
idual to write concerning a proposal to make software available in ROM form to
subscribers. The winner - the only individual with a November 28 1974 postmark
received - was James Fry of Toledo Ohio, whose subscription is now extended by
one issue. The essence of his comment on the subject is this: standardize an au-
dio tape data format and epxress programs using that format with cassettes for
handling convenience.

George Fisher of Staten Island N.Y. sent along a copy of an article recently
published in "PCC'" (Peoples Computer Company, Box 310, Menlo Park Ca. 94025)
concerning home-oriented microcomputer systems. The essence of the article's
message is the desirability of cheap swappable ROM modules as the software cus-
tomization medium for mass produced computers.

Marshall Horwitz, of La Mirada California sent along the following comments:
"I feel the price of $50 to $100 is way out of line. ... Have you ever given any
thought to writing a compiler program for ECS-3?'" To the price comment, I can
only reply that ROM's cost a fair amount in small quantities at present, with the
Intel PROM's (eg: 1702) storing 256 bytes for approximately $70 in small quantities
for example (unprogrammed.) I think that if the re-programmability feature is
sacrificed (as would be possible in a production program product for home computer
builders) the fusible link type ROM's could be offered somewhat less expensively.
The price of programming - whether with your own code or standards - would be
an added amount to the basic hardware cost. As to compilers, the 8008 CPU has
been around for some time now, with Intel itself pushing '"PL/M!" for large users.
An obvious starting point for compilers is a simple interpretive language design.
No homebuilt microcomputer constructed on a minimal budget will be able to
handle much more. There is much instructional value re programming of the
machine in a compiler project, and I am thinking now of devoting several issues in
1975 to such an interpretive compiler software system.

Donald Senzig of Union Grove, Wis. points out that a firm called '""SCELBI
Computer Consulting Inc. " offers an ROM product whose price and description
suggest the Intel 1702. I have seen a copy of their brochure and note that they
do offer an 8008 kit product as well, which may be of interest to subscribers.

Gary K. Berkheiser of Bristol, Pa. sent along a thoughtful letter of consider-
able length, essentially endorsing the ROM idea as a useful one. He expressed
considerable interest in the logical candidates for use of ROM's - the systems
software needed to run the computer. Given a reasonable design for a tape inter-
face, keyboard, etc. it is only necessary to program certain low level utility
subroutines once - feeding it general and specific parameters whenever a pro-

gram must do such I/O. These routines are used over and over, and their in-

clusion as ROM's will be useful.
tional comments, including the following:

Mr. Berkheiser continues with several addi-

M. P. Publishing Co. -17- ECS-6

"... Your documentation of the Keyboard Echo and Binary Calculator

programs is done quite well. It made them both much easier to read
and a lot more enjoyable. But why jump from Hexadecimal to Octal and
back again. I'm conversant in both_rcountihg systems but there may be
some subscribers who are not and could become confused. Why not pick
one system and stick with it. Hex seems to lend itself quite well as two
digits represent eight bits of data instead of two and a half digits for
octal, o o0 M

Mr. Berkheiser has raised a point which has been somewhat of a bone of conten-
tion between myself and my brother Peter for some time - since I began looking
around for a means of expressing programs for the 8008 architecture and came

up with the system used to date. Peter's argument is to use octal for everything,
claiming with some truth that octal is an easier system to calculate mentally.
AFTER ALL - the octal addition/subtraction tables (I doubt many people regularly
multiply or divide in hex or octal!) are subsets of the usual decimal tables every
civilized person learns to use early in life. But for a machine with the 8008 archi-
tecture, this runs directly into a major problem: the quantum of data is not divis-
ible into three bit groups. The result, if 8-bit quantities which respect the H/L
address division are used, is a crazy "pseudo octal'' which counts up the low order
three digits to 377, then carries over to 1000. The problems of converting mentally
the pure octal output of a modified PDP-8 assembler for the Intel caused my asso-
ciate Chris Bancroft to coin the word 'Intelese' for this form of notation and to
write an HP-65 program (which barely fit like a chinese puzzle into 100 keystrokes)
to do the conversion for him in his work on intel-controlled industrial equipment.
To contrast the notation systems for addresses, here is what happens as the pro-
gram location goes from page 0 to page l in three systems:

Intelese - Octal (pure) Hex
000000 00000 0000
000376 00376 00FE
000377 00377 00FF
001000 00400 0100

Note the impact of page boundary (after octal 377, hex FF) on the adressing sequence
expressed in 8-bit Intelese quanta - the page boundary shows, at the price of losing
a natural octal sequence. In octal, the page boundary is in the middle of a digit, so
manually programming 8-bit words is difficult. - But in hex, both the natural arith-
metic sequence and a page bound significance between digits are achieved.
It has never ceased to amaze me why manufacturers of machines with 8-bit (or 16)
bit data quanta insist upon using octal. This is the case for instance in both the
Data General NOVA and the Intel products. For some perverse reason many manu-
facturers insist on octal - maybe they are just trying to be ''different' from IBM,
which invented the use of hexadecimal notation in computing applications with the
360 series of machines. I am interested in providing readers with a method of

"on paper' program expression which best fits the interests of convenient program-
ming. If Itake Mr. Berkheiser's suggestion (to use hex exclusively) the impact

will be as follows:

M. P. Publishing Co. -18- ECS-6

1. All data expressions will be consistent with program operation
code representations - at the price of eliminating the relation whi ch
which octal digits have to the internal format of 8008 instructions.

2. Amnew set of operation codes must be generated and used, ex-
pressing the same information as two hex digits instead of three
numbers (two true octal, one high order quartal digit.) This elim-
inates certain mnemonic tricks useful for femembering instructions
- for instance remembering the '"3ds' (d is destination, s is source)
form of the load instruction is easy and can be based on a mental
algorithm rather than rote memorization needed with the hex form.

3. A problem disappears (which has not been mentioned previously
in these pages) in the design of the IMP (Interactive Manipulator
Program) now in progress. The interactive sequence required be-
comes much simpler if effectively only one base is used - there is
no need to distinguish between ""D'" and "I'' formats in entereing

or manipulating memory data with the program.

If you are interested in adding your views to this forum, on the program rep-
resentation topic or other items of concern, drop me a line. I will not promise
to include every comment made, but a selected few will appear in subsequent
issues. To summarize the program representation question, the following
courses are possible ...

1. All octal notation,consistent with machine op code structure,

but awkward with 8-bit byte machines such as the 8008.

2. The notation which has been used in these articles to date, hex

for addresses and data, numerical (effectively octal) strings for

op codes which reflect the internal divisions of instruction bytes.

3. Pure hexadecimal as described above.

If you have comments, the deadline for inclusion in the next issue (due January
31 in the mail) is January 10 (plus or minus several days.)

A NOTE CONCERNING MEMORY BOARDS:

The price of the 1K memory array design, ECS-8, in PC board form will
be $19. 00 fully drilled and $14. 00 undrilled plus postage. I have several boards
on order at the time this article goes to press, and expect to contract production
of additional boards according to demand. Advance orders can now be accepted
- the boards use eight 2602 chips, two bus interface 8T09's, two 7404's, one 74154
and one 7400 - with two socket positions for data and address interfacing via DIP
header plugs. If you order in advance I will ship the boards as soon as manu-
factured (once my small supply is gone) - with minimal documentation. The article
to be published in early february will provide the detailed information.

M. P. Publishing Co. -19- il ECS-6

OP CODE REFERENCE TABLES:

On this page are listed the 32 possible input and output op codes for the 8008
computer, in an "instruction' format of three digits, as described in ECS-3. All
these instructions take 24 microseconds (OUTxx) or 32 microseconds (INx) at a
500 Khz clock rate. .

On the last page (outside cover, page 20) is a complete listing of all the non
output/input instructions with mnemonic, op code, numver of bytes of
memory required, number of CPU states, and time in microseconds with a 500Khz
clock.

Mnem., Code Descriptionst Mnem., Code Description
INO 101 Interrupt control oUT20 141 |
INl 103 Keyboard ovre1 13
IN2 105 Tape data infout ourzz s

INL 1EL ouT2) 151

ws 113 ovres 1s3
we 115 ovr26 1ss
we 117 ourer 137
ovrio 121 OUT30 161 Right binary display
ovrii 123 OUT31 163 Left binary display
ouriz 125 ovrsz 165
ovr13 127 ovrss 167
ovTiy 131 ovrsy 171
ovrts 133 ovrss 173
ovr16 135 ovrs6 175
ovriy 137 ovrs7 177

#*The description column contains information on the current assignments
mentioned in the course of this series. If you make your own hardware,
this sheet can be used as a central reference point by filling in your
own definitions as notes in the description column. Future articles

will add further definitions oriented to ECS series software and hard-

ware designs.

M OP L S T M OP L S T F M OP L S T | M OP L S T
ACA 210 1 5 20 JFC 100 3 9/11 36/4) LHA 350 1 5 20 RILC 002 1 5 20
ACB 211 1 5 20 JFP 130 3 9/11 36/ IHB 351 1 5 20 RRC 012 1 5 20
Acc 212 1 g 20 JFS 120 3 9/11 36/LL LHC 352 1 5 20 RSTO 005 1 5 20
ACD 213 1 [20 JFZ 110 .3 9/11 36/u4 LHD 353 1 g 20 RST1 015 1 5 20
ACE 21, 1 5 20 JMP 104 3 11 LHE 35! 1 5 20 RST2 025 1 5 20
ACH 215 1 5 20 Jr¢ 14,0 3 9/11 36/4) LHI osg 2 8 32 RST3 035 1 5 20
ACI 01) 2 8 32 JIP 170 3 9/11 36/l LHL 356 1 [20 RsT, OLS 1 5 20
ACI, 216 1 5 20 JIS 160 3 9/11 + 36/LL LHM 357 1 8 32 RST5 055 1 5 20
ACM 217 1 8 32 JIZ 150 3 9/11 36/l RST6 065 1 5 20
LLA 360 1 5 20 RST7 075 1 5 20
ADA 200 1 5 20 LAB 301 1 5 20 LLB 36) 1 5 20 RTC O3 1 3/5 12/20
ADB 201 1 5 20 LAC 302 1 5 20 LLC 362 1 5 20 RTP 073 1 3/5 12/20
ADC 202 1 5 20 LAD 303 1 5 20 LLD 363 1 5 20 RTS 063 1 3/; 12/20
ADD 203 1 5 20 LAE 304 1 5 20 LLE 364 1 5 20 RTZ 053 1 3/5 12/20
ADE 204 1 5 20 LAH 305 1 s 20 LLH 365 1 5 20
ADH 205 1 5 20 LAT 006 2 8 32 LLI 066 2 8 32 SBA 230 1 5 20
ADI 00 2 8 32 LAL 306 1 5 20 LIM 367 1 8 32 SBB 231 1 5 20
ADL 20 1 5 20 LAM 307 1 8 32 SBC 232 1 5 20
ADM 207 1 8 32 IMA 370 1 7 28 SBD 233 1 5 20
LEA 310 1 5 20 IMB 371 1 7 28 SBE 234 1 5 20
CAL: 106 3 11 I LBC 312 1 5 20 MC 372 1 7 28 SBH 235 1 5 20
cFC 102 3 9/11 36/LL LBD 313 1 5 20 IMD 373 1 7 28 SBI 03 2 8 32
CFP 132 3 9/11 36/h4 LBE 314 1 5 20 LME 374, 1 7 28 SBL 236 1 S 20
CFs 122 3 9/11 36/ LBH 315 1 S 20 LMH 375 1 7 28 SBM 237 1 8 32
CFz 112 3 9/11 36/4L LBI 016 2 8 32 IMI 076 2 9 36
CPA 270 1 Y 20 LBL 316 1 5 20 IML 376 1 7 28 SUA 220 1 5 20
cPB 271 1 5 20 ILBM 317 1 8 32 SUB 221 1 5 20
cre 272 1 S 20 NDA 2,0 1 5 20 suc 222 1 5 20
CPD 273 1 5 20 LCA 320 1 s 20 NDB 241 1 5 20 SUD 223 1 5 20
CPE 274 1 5 20 ICB 321 1 5 20 NDC 242 1 5 20 SUE 22 1 5 20
CPH 275 1 5 20 LCD 323 1 5 20 NDD 243 1 5 20 SUH 225 1 S 20
CPI 07 2 8 32 LCE 324 1 5 20 NDE 244 1 5 20 sUI o2l 2 8 32
CPL 27 1 5 20 LCH 325 1 5 20 NDH 245 1 S 20 SUL 22 1 5 20
CPM 277 1 8 32 LCI 026 2 8 32 NDI O 2 8 32 sUM! 227 1 8 32
cTe 142 3 9/11 36/4lL ICL 326 1 5 20 NDL 2} 1 5 20 ,
CTP 172 3 9/11 36/4L LeM 327 1 8 32 NDM 247 1 8 32 XRA 250 1 5 20
cTS 162 3 9/11 36/uLh XRB 251 1 5 20
CTZ 152 3 9/11 36/l LDA 330 1 5 20 NOP# 300 1 5 20 XRC 252 1 5 20
ILDB 331 1 S 20 XRD 253 1 5 20
DCB 011 1 5 20 LDC 332 1 5 20 ORA 260 1 5 20 XRE 254 1 5 20
DCC 021 1 5 20 LDE 334 1 5 20 ORB 261 1 5 20 XRH 255 1 5 20
DCD 031 1 5 20 LDH 335 '1 5 20 ORC 262 1 5 20 XRI 054 1 5 20
DCE o1 1 5 20 LDI 036 2 8 32 ORD 263 1 5 20 XRL 25 1 5 20
DCH 051 1 5 20 DL 336 1 5 20 ORE 26 1 5 20 XRM 257 1 5 20
DCL 061 1 5 20 DM 337 1 8 32 ORH 265 1 5 20
ORI 06 1 5 20
HLT 000 1 X x LEA 340 1 5 20 ORL 26 1 5 20 .
001 1 x x LEB 341 1 5 20 ORM 267 1 8 32 #Instructions marked with aster-
377 1 x x LEC 342 1 5 20 isk are typical of several al-
LED 343 1 5 20 Output - see separate list... ternate op codes, same function.
INB 010 1 5 20 LEH 345 1 5 20
ING 020 1 5 20 LEI 046 2 8 32 RAL 022 1 5 20 Arithmetic/Logical Mnemonics:
IND 030 1 5 20 LEL 346 1 5 20 RAR 032 1 5 20 AC = add with carry input
INE OO0 1 5 20 LEM 347 1 8 32 RET# 007 1 5 20 AD = add,no carry input
INH 028 1 g gg RFC 003 1 3/ 12;20 3B = subtract, borrow input
INL 0 1 : Y RFP 033 1 3 12/20 SU = subtract, no borrow input
Ane naE ol Top SOud L eEal RFS 023 1 3% 12/20 ND = logical product(AND)
Input - see separate list... false braneh, long time if RFZ 013 1 3/5 12/20 OR = logical sum (OR)
trus branch. XR = exclusive or (XOR)
CP = compare
Key: "M'"-mnemonic "OP'" - op code "L - length 'S - states "T'" - time @500Khz (us)

0D Burystiqndg *d ‘W

02

9-SDH

	ECS
	ECS-4_insert

