
M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Volume 1 No. 1

••• A MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This issue marks the first edition of 1975 and the beginning of a new monthly form­
at for the ECS articles. From now on the publication will be on a monthly basis with
12 issues per year. Minimum issue size will be 20 pages printed photo-offset as in
the past. The editorial policy will continue to emphasize materials useful in the cre­
ation and programming of home brew computer systems. In this first issue of 1975
readers will find:

1. ECS-6 Serial 1/0 Interface Conclusion: The last issue of the 1974 series
of articles described the theory of operation and subsystem design of the UAR/T
oriented 4-channel I/0 interface unit. This issue contains additional materials
including logic diagrams, tables, notes on detailed logic, and notation of a test
program useful in de bugging the design.

2. Notes on Notations: Taking into account ·numerous inputs from subscribers
together with further arguments and rationalizations, a decision to use octal
notation and "Iptelese" is described in this issue.

3. Memory Dump Program "ELDUMPO": The application of the serial I/ 0
interface device with a teletype is illustrated in the listing of this program 1s
code. In true bootstrap practice, ELDUMPO is used to dump ELDUMPO!
(To say nothing of the other listings in this issue.)

4. Manual Bootstrap Program "STUFFER": "STUFFER" is a program used
in conjunction with the ECS keyboard {see ECS-5) and display lamps to load data
at arbitrary locations in memory. It can be loaded by hand in locations 100 to
163 of page 0 using the ECS-3 program's bootstrap hardware method. Then,
this program can be used to load in octal further programs such as ELDUMPO.

5. Programming Notes: Using Restarts. Both ELDUMPO and STUFFER make
use of restart instructions (RSTx) to access utility routines. The method is
described in this section of the issue.

6. Notes of Interest to Readers: Miscellaneous comments and a couple of
errata presentations.

~ i:s. ~~ i.5 ~~'f·
Publisher

@ 1975 The M. P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 1 -2- January 1975

ECS-6 SERIAL I/O INTERFACE CONCLUSION:

In the last issue the general design and theory of operation of the UAR/T oriented
serial 1/0 interface was presented. The major technical topic of this issue is the
detailed description of this hardware as it is implemented in the ECS prototype system.
The drawings found on pages 4 and 5 show the details of the circuit. In the text below
reference should be made to the drawings and to the gentral description of the system
presented in the previous is sue.

UAR/T and Bus Input:
Drawing #1 on page 4 contains the logic of the UAR/T chip and its interface to the

system data bus. The address bus input lines AO to A7 are wired from the I/O socket
#1 to the UAR/T parallel inputs TDO to TD? (the notation used by the manu:6acturer 1 s
documentation is TDl to TDS, but renumbering is done here for consistency with the
rest of the system.) The address lines are written into the UAR/T as data to be sent
out the serial port whenever the following conditions hold:

a. The mode selected by the control word (IC-9-, dwg. 2) is "output. 11

b. The CPU 1/0 instruction decode logic of the ECS-5 design (or its
equivalent) generates an OUT OZ clock which is inverted by - 7c- and en­

abled through gate -Sa- to the "TDS (transmitter data strobe) line of the
UAR/T.

The negative going clock pulse which reaches the UAR/T chip from -Sa- automatic­
ally starts the stored program of the UAR/T chip which transfers .data to the output
buffer shift register and begins generation of the serial data format. The serial
data generated by the UAR/T appears on pin 25, Transmitter Serial Output (TSO).

The latest received data of the UAR/T is present at all times on the RDO to
RD7 lines (mfgr's designations RDl to RDS - see above.) The output is always
enabled due to wiring the receiver data enable line of the UAR/T to ground (pin
4). The actual control of this data enable is provided in fact by ·the INOZ signal
provided by the ECS- 5 I/ 0 decode logic - going to the ST09 gates which interface
the CPU bus. Note that the INOZ instruction is one of the combined input/ output
instructions of the 8008 - the corresponding output of the accumulator is sent to
the UAR/T if the-controlword indicates output rather than input. But when input
is exercised, the OUT02 clock time is also used - this pulse is used to reset the
RDA flag of the UAR/T after input, to acknowledge that the CPU has processed
the data. The acknowledgement from a CPU 1/0 handling program must come
within one character period of the 11RDA 11 signal's transition to the logical 11111

state if the "receiver overrun" error is to be avoided. Note that just as the
I/O transfer of data out to the UAR/T is ignored when input is involved, the output
of data to the UAR/T also reads the UAR/T information into the accumulator, but
this information is in general meaningless.

Note that the bus interface gates invert the sense of the data being read out
of the UAR/ T. In order to guarantee that the sense of the data being input to the
computer is the same as that written out (ie: 11111 is logical 1, "0" is logical 0)
a level of inversion is required between the UAR/T and the bus interface buffer.
Also note that an improvement in the design would be to use the data out strobes

(pin 4 and 16 for data and status, respectively) to implement a local 3-state bus
sharing a single set' of inverters/bus interface gates to the CPU world.

ECS Volume 1 No. 1 -3- January 1975

The status bit outputs of the COM 2502 UAR/T are read into the CPU with the
input operation IN3 (sometimes noted IN03). As with all the input operations of the
8008, there is a paired output of accumulator contents :.. in this case defining the
control word content from the accumulator. The IN3 negative clock is used to
enable control information onto the bus during the input operation, and is generated
by the ECS-5 hardware or its equivalent from basic Intel S008 signals. The status
bit outputs are always enabled due to wiring of the status word enable pin (pin 16) to
groundo As noted on the previous page, this output of the UAR/T can be multi­
plexed to a single set of inverters /8T09 1s in an improvement over the design used in
the prototype.

As is the case with the data word output of the UAR/T, a series of inverters is
shown in drawing #1, one per status word line, placed in the design in order to make
the program operating the UAR/T be programmable based on bit definitions identical
to the definitions produced by the UAR/T. If programming based on a single level
of inversion (complements of the definitions) is tolerable, the inverters may be omittedo
An alternative which retains the proper bit definitions without inversion twice is to use
a non-inverting bus buffer instead of the 8T09.

Control and Multiplexing Logic :
Drawing #2 on page - 5- contains the remainder of the logic associated with this

design. It includes the clock oscillator, control word register, input multiplexing
and output selection logic.

The basic clock of the system is generated by a 555 circuit wired as an astable
configuration acting as an oscillator. The clock rate is adjusted by R3 to the nominal
frequencies required by the system. The logic of this design requires a clock setting
of 56. 32 Khz for a nominal 110 KBaud rate with the low frequency clock programming
value set in the control word. The UAR/T logic requires a clock at 16 times the
basic bit rate, thus with the divide by 16 mode of the clock rate counter set by a
binary value of 11111111 in the control word rate bits, a total division of 256 will be in
effect. 110 x 256 is 28.16 Khz. The extra division by 2 is found in the flip flop used
to turn the extremely short (ie: 50 ns or so) clock reset pulse into a square wave
which is within tolerance limits of the UAR/T (eg: greater than l microsecond in
length.)

The clock outputs are the Q and Q pins of the 7473 section used to produce the
square wave. One of these outputs (Q, pin 12) is used to drive the UAR/T clock
pins for both transmitter and receiver sections (pins l"."17 and 1-40) The other output
is routed to the 1/0 socket for use by the modems connected to the controller.

IC -9- is a 74100 used as a control word. This IC will store 8 bits of data when
its clock lines are strobed with a positive logic pulse, derived in this case from an
inversion of the negative logic OUT03 signal produced by the ECS-5 type controller
or its equivalent. The four rate selection bits are wired to the 74193 counter used

E.(~-G. !t£tl1AL. I./O l:NT£~1"AC:.lt

11-'J

I/0
1 ,

\

" ' ..
3
L

i.

-l Co.,,.! T. He\tMeV"'$, J'r.

J>l"WINIC. it:i UAR./T &. fi!IU$ l'-'PUT

lNQl'l.: A.EAD/Wt.11'1£ DAT-4 (0111"1111.)

I.N91 = ftEA• STltTlll/ w•1Tf: C:.ONTftOL. lllOU (ouT.1113)

UAl./T
e11FFEl$

sl)1
%MP\IT St1t1w.Gi UI

ftSI
-7-

OllT'l'UT STll1-aG
So +~J ZS

TSO

U·'
REAi>

:Ct.11113

tlo-3,PISIJ

DATA
BUS

D'il

"' D5
0.-
u
n
•1
•ta

TIMING: flELRTIVE
fN!l3 --U-- 5ifi
Ouvn -u-- iiif'i1.

i't·'t 'fTV
iHCLOOC

'7·'1

1'.S-
Cl.OC.lt

17 ... 0 t•
a T N TT"TTTTTT
(. c 0 \)ODl>tDDD , , • 7,llj.SZ:i..111

~ -1- COM 2.502 VAR/___T
FOR. DEl'l,.ITION!I 'H:E. nlCT

T T ll ll ll II. R a I ll I E .. It ll
~q 0 F P D DDDDDDI>

k I E 7 <o54-3tl•

l l
l t

am

Mii.

TIS

1F TTY TMC"' L.1.lol6TJf • 71 CL~~ Llt ... ti.Tli•&)

n

u

u 3
,;--

tONL.V Wt.ITt:
1F OUTPUT MOD~

A'J

A" A.l>Dlt.f!IS

"~ &u.S
u OllTtUT

Al DATA
Ai. (Yol. Plws
At Sitt IKO~Z.)

OUTllZ :tlo1 1 P'J

mro 'Ho
ou;r

'1-S

5 014TIU.

'X0•11 "

~ I/O·?., ~'f

...s8T0~'S

NOTE: COMUllZ.
COMtJEC:TIONI FOi'. LOC".IC
(JS AR.E PIWS .,._, l<o t 35 I. 'H.
LOCrlC i WIUD TO Pl'-IS
3 ...

1
3<o '4 3~. LOG.IC. GI

" G.11.0Ut.ll> I LOGIC i 15

Dll'li.lO TM~°'\ +5V . u.
LOGr. i.

i.OOOA

v .. w

M
(')
Cll

<:
0
~ s
Cl)

z
?

I
,J:>.
I

T'I> Nl>8i.

c.;/o·l "'NS ..
" Re

it A1
3

u lt
u

u ~
11

u Act
l~

L't A5 u

u ""
2t

'" A'I z.1

-u--

f.·1'?,1-'IO

'I02.,Pl3

,

i-38
'1-4-

r;
l.O --.. II I~
t--~-----~=--'4:----te

'

t , ...
a " S~D

u ... 501 SD
SU.

-\~V .10?.,Plo~-......,--"'-t •n

1

"' a

555 ~3;.._.--~-~~--
-t l- lauv~T 11.::s J:oR.

?lf.153

-1Z-
XO'!l,1''3 >--+---10-t RoVtt ~ If
%01.,P't ' II Wi
tat,fl It 00
.tol,Pll : : I) lllYlt"llLE

,' I

_./-+5:

/1~t11 Z.l(i
I UMl I

~ "'1.\.UP I

', lL4 'I'. llll/ ... _ - _.,,,,
i·lO

EC.5- '1 ·~ 5e'i"t~ 1-0 h.terfo.c.e.
It':! Cc.,.,.\ T~ He.\W\erf, > :s''l".

+ts"]~"~:
SEl.ltT

l"lltC.
X/O·l,fl5'

1/0•Z.
t-"----~PJ ~ ..,_ ____ _. '°' OUiPllTS
t-'-''-----~ Pll

I/O•t

------ P1. ~'E~l-11\.,. _____ ,. 1:11\T.\

------p' OUTfllT!.

TT'(

C.1.1lllli'->'I'

LOOP
D~WE

G
S U.OA 'l.11.1

fP•l,P1.

)--oHt.
TTV

)----0 LO
X/O•'i,P&.

t)lll\141"16 .'2..: Co~TILO\.. &.. MIJl..TULEX\~G \,,;OG-:t.C.

M, P. 'U81.15MINC. CO·

I
U1
I

ECS Volume 1 No. 1 -6- January 1975

to program the different data rates possible with this design. The two channel selec­
tion bits are wired to the multiplexor of the input data and ready signals, and to the
output data and "select" selectors.

The In/Out bit, bit 1, is used to enable the output write function for the UAR/T
with the OUT02 clock, and is also routed to the output plugs for use by the modems
in setting up their operation. The select bit is multiplexed to one of the four channels
of output via the 74155, IC -13-. The select outputs are in positive logic form. The
teletype device, channel O, has its select shown in the drawing as driving an inverter
(-7f-) which in turn drives an LED indicator shown remote by the connector symbols.
The purpose of this logic is to pr·ovide a visual indicator at the teletype telling the
operator (ie: you) that the CPU is addressing that machine. This indicator is entirely
optional and may be omitted if desired.

Ready Logic is provided by one section of the multiplexor 74153, -12-. This cir­
cuit is used to select the source of the "ready" signal which will be placed on the bus
as a status bit (position 6) when the IN3 operation interrogates status.
0 case (teletype) the ready function
may be driven by a relay connected
in parallel with the "on line" side
of the teletypewriter 1 s front panel
switch. The relay should be an SPDT
contact variety with a UOVAC coil.
The normally open contact is closed
when the coil is energized by the
switch, thus grounding the ready

TTY READY SE MS OR

line input • For the tape recorder
interface modems, the ready line
is driven by a "turn on delay"
one shot which is cued by the
falling edge of the edge of the select
signal to the device in question from

To !
,o~oL .. U,_e _____ ~-·~·······==

4 ~~O<Jl\IJ j

For the channel

the 74155 selector. The second section of the 74153 is used to multiplex the serial
inputs of the dev:ice, from one of the four possible sources - TTY or tape channels
1 to 3.

Serial Data Input is routed via the 74153 IC -12-. One section of this IC is used
to select the source of the serial data input to the UAR/T • This input is taken from
the teletype switch contacts for channel 0, and is the serial output of the tape recor­
der storage device's receiver section for the other 3 channels. The teletype data
is generated by a carbon brush mechanical switch controlled by the mechanism of
the keyboard button pressed. When using input from the teletype, the operation
of the mechanical switch produces a contact closure for the current loop "mark"
state (idle) and breaks the loop for the opposite ("space") state. This means that
to make the proper sense to the UAR/T, the re must be one level of inversion prior
to the selector if the preferable "pull up" TTL input form is used.

ECS Volume 1 No. 1 -7- January 197 5

Serial Data Output of the UAR/T emmanates from pin 25 of IC -1-, and is first
inverted by -7b- before being routed to the output data selector, 74155 -13-. Since
the section of the 74155 used for the serial output data has one net level of logical
inversion (unlike the other section of the same chip) the inverter is required if the
signal sent to the modem or teletype is to be identical to the signal derived from the
UAR/T.

The channel 0 serial data output is wired to the 7437 high power NAND gate sec-
tion to generate a TTY current loop signal for driving the print mechanism. Since the
"true" or "logical l" state of the current loop is current flowing in the loop, this state
must be generated by a logical zero output for the driver tied through the TTY electronics
to the high level voltage. This single level of inversion provided by the driver suf-
fices to create the proper signal - true data output of the multiplexing logic of the
7 415 5 is the "mark" state which inverted generates a current loop "on" state when
the UAR/ T is idle.

The serial outputs of the other three channels are wired to I/O socket #2 along
with the other signals necessary to drive the modems.

Select Output Logic is also provided by the 74155. As mentioned earlier,
the select for channel 0 is wired to an indicator lamp. The source of the signal
for all channels is the select bit of the control word. For the tape drive modems,
the select signal for channels 1 to 3 is used to control the "motor on" state of the
tape recorder. In the logic of the tape interface units, the rising edge of the select
line for the channel in question should trigger a one shot "motor start" delay, as
well as turn on the tape recorder's motor for the beginning of operations. The
"motor start" delay one shot has sufficient delay involved to allow the motor
to get up to speed and relatively stable operation. For cheap tape cassette
devices this time may be as much as 5 to 10 seconds - if the motor and drive
ever stabilize. For the more expensive forms of cassette recorders, a shorter
delay may suffice. Given a cassette recorder, the characteristics of motor speed
versus time from turn on should be examined to determine the minimum delay
required for reliable operation • In the previously published ECS-2 design, one
method of turning on the tape drive motor was detailed - a "tape drivebox" with
a power supply and transistor
switch to drive the motor via the
"external power supply" jacks
often found on battery operated
cassette recorders. The diagram
at the right shows an alternate and
m.uch simpler mechanism to con-
trol the motor via a "dictiation" con­
trol input normally connected to a
switch in the microphone. The relay
used is a micro-reed design, in this
case a 11Grigsby-Barton #GB31C-G2150''

removed from surplus equipment.

+UV
r "" 2.000.n CO\L

11

~EE.I> ltE\.A'i
('3 ·S ~A PU.LL-IN)

..Jiil>-... --
,, ·~; o~o

TAPE l'>ltTATl°'1,t :
\~PU'T MOTOti? _ _

C.O~TROL TO C.O'-\TML JAC&.c._..

ECS Volume 1 No. 1 -8- January 1975

The relay used in the prototype of this circuit had a coil resistance of 2000 ohms
(approximately) which gives a current of 6 milliamperes with a 12 volt drop when
the open collector 7406 energizes the coil. The 7406 can drive up to 25-30 milli­
amperes with no difficulties, which means that using this particular IC as a driver,
relays with resistances as low as 400 olu:ns could be used, provided a 12 volt drop
gives sufficient current to pull the switch contacts. To see whether a given "unknown"
relay will work in this application, its pull in current should be measured using a
variable voltage power supply with a current meter. Hook an olu:neterto the s~itc.~

contacts of the relay and observe the current and voltage at which transitions in
the switch contact state occur. If the current at which the contacts "pull in"
does not exceed about 25-30 ma at supply voltages of up to 12 volts, then the
coil can be wired into the circuit shown on page 7.

Wiring and testing the Serial I/0 Interface:
The prototype of this design was built using wrapped wire construction techniques

as described in M. P. Publishing Co. publications 73-1 and 74-5. As in any complex
circuit, whatever your method of construction, use care in wiring and checking the
wiring. The following steps are a suggested set of testing stages for this circuit.

1. Verify .all wiring and check the circuit's power supply connections by
applying power (with no IC' s yet in sockets) and checking the proper pins
as listed in the table on page 9.

2. Check out the oscillator and clock generation logic first. Plug in the
entire complement of integrated circuits with the exception of the UAR/ T
chip for preliminary checkout. Check the oscillator output after applying
power to the circuit. Adjust the frequency using an oscilliscope or a fre­
quency meter. The frequency should be 56. 32 Khz, which corresponds
to a period of 17. 76 Jl.S for those who use scopes for calibration.

3. Set up the following simple program in the CPU using the bootstrap
mode of data entry:
000 010 INB next rate
001 301 LAB rate to accum
002 002 RLC move rate to
003 002 RLC to the
004 002 RLC high order
005 002 RLC of accum.
006 OW+ NDI purge the
007 360 360 garbage bits
010 064 ORI or in the select

011
012
013
014
015
016
017
020
021

020 select code
llH~ IN3 write CW, read stat.
177~~ OUT30 display stat.
113~~ IN2 read UARlT
175~~ OUT31 display data
006 LAI define the
003 003 reset code
117 INO reset inter.
377 HALT

~H/O codes of ECS-5 altered for extraneous inverters
This program responds to interrupts by calculating the next rate code for
the serial I/O controller and outputting it to the controller. Look at the
frequency on the clock line of the UAR/T socket - and observe changes as
an interrupt is raised on the keyboard. Note that the instructions marked
with an""~" use codes consistent with ECS-5 1 s drawing #1 - see the errata
section of the last issue for comments regarding the inverters in that
design's drawings and their effect on codes.

ECS Volume 1 No. 1 -9- January 1975

The following experiment can now be performed - with the UAR/T still out of the socket
connect the clock pins of its socket to a • lmfd condenser to the input of a stereo ampli­
fier channel. Listen to the clock generator output as the program is cycled and note
aurally the different rates.

4. Now turn off the system power and plug in the UAR/ T, taking into account the pre­
cautions listed below. Re-apply power to the system, and load the following sbnple
program to test data transmission. Look at the UAR/T output at the pin of IC -13-
which is selected by the channel code bits sent to the Control Word via IN3.

000 006 LAI set CW pattern 005 175~~ OUT31 display data
001 362 "llOb,chO,sel,out" 006 006 LAI set int. enab. 002 006 LAI define 007 003 003 enable
003 ??? ??? test data 010 117~~ INO code
004 11)·:~ IN2 write/read UAR/'r 011 377 HALT wai"::; next cycle

~~ See note in last example re instr. codes

Sc Test the input operation of the UAR/T by applying a TTL square wave at 27. 5
CPS to the input of channel 1. Using the above program, change word 001 to the
octal code 11 367 11 (HO baud, ch. 1, select, input.) The data pattern of the 27. 5 herz
square wave will be interpreted by the UAR/T as four bit-periods per cycle of the
wave form, as follows:

(start ~rity

t I--- data -I J /?'stop

0011001100110011

The teletype bit length was 7 - in this example, changing to channel 1 increases the
data bit length to 8 bits. The UAR/T interpretation of the above square wave should
be displayed in the data lamps by the OUT31 as 11 01100110 11

CAUTIONS RE MOS I. C. 'S
When you purchase an Intel CPU or a complex MOS device such as the

UAR/T chip you should find it comes packed in a special block of conductive
foam plastic shorting all pins with respect to high voltage static charges. In
insertion and handling of the IC' s, be sure to discharge body capacitance to
ground • Do the same before approaching the wiring to make changes and
alterations. In my own lab I have a rug - and in its typical low hutnidity
winter state, I draw 1/4" sparks to ground after walking any distance! This
note was suggested by Gordon French in phone conversation recently.

Also, observe the following precaution when handling and inserting the
40-pin IC parts such as the UAR/T: it is quite easy to mechanically
stress the package to the point where it breaks in two - not so bad with a
$13. 50 UAR/T but if you buy a $360 CPU chip of the cadillac variety, it
could be heartbreaking. Be sure to apply pres sure evenly at all points and
avoid letting one corner "get ahead" of the rest by too great a margin.

ECS Volume 1 No. 1 -10- January 1975

Tables & summaries of the ECS-6 Design:

Package Summary List for the Serial I/O Controller:

IC No. Pins Description +5V GND -12v

1
2
3

~
6
7
8
9

10
11
12
13
14
15
16

40
14
14
14
14
14
14
14

f i
8

16
16
14
14
14

COM2502 UAR/T - Std. Mier.Systems
8T09 Bus Interface - status

II II II

II

II

II

II

II

"

- status
- data
- data

7404 inverters, misc.
7404 inverters, misc.
7437 NA.ND, high power
74100 Control word register
74193 Rate Counter
NE555 Oscillator
74153 Input/Ready switches
74155 Output/Select switches
7473 JK Flipflops (div by 2)
7404 Inverters
7402 nor's

Miscellaneous parts:

1
14
14
14
14
14
14
14

ft
8, 4

16
16
4
14
14

3
7
7
7
7
7
7
7
7
8
1
8
8

11
7
7

2

Rl,R2, R6 to Rl3 = 1000 ohm tw
R3 = 25K, trimmer potentiometer
R4 = 200 ohms

3 - 16 pin component sockets
3 - 16 pin I/O sockets

R5 = 120 ohms, 2 watt
Cl = .005 mfd
C2 = .005 mfd
Board, terminals, etc.

1 - 40 pin socket
1 - 24 pin socket
1 - 8 pin socket
LED 10 ma LED indicator

Also required: a total of approximately lOmfd of electrolytic capac­
itance locally on the power supplies, to ground plus several ceramic
(eg: .ol) bypasses to ground from power supplies.

I/0-1 List

1 to 8 = bus 0 to 7
9 to 16 = addr 0 to 7

I/0-2 List

14 = IN/OUT
15. = Master Reset

I/0-2 List

1 = TS0-1
2 = TSI-1
3 = SELECT-1
4
5

= RDY-1
= TS0-2

6 = TSI-2
7 = SELECT-2
8 = RDY-2
9 = TS0-3

10 = TSI-3
11 = SELECT- 3
12 = RDY-3
13 = 16-f CLOCK

I/0-J List

1 = TTY-HI
2 = TTY-LO current loop
3 = TTY-RDY
4 = TTY-SELECT
5 = +5V
6 = TTY-TSI
7 OUT02
8 = OUT03
9 = IN02

10 = IN03
14 = GND
15 -12 v
16 = +5 v

~
I

ECS Volume 1 No. 1 -15 - January 1975

The listing of ELDUMPO continues, with another aside - The data definition of
"STRING" is an example of a general form called the "character string. 11 Suppose
you want to edit a book, or a magazine for that matter - or a letter to a friend. One
great way to do so is to use a string oriented program to store and maintain text as
character strings. This basic form will recur in numerous ECS applications.

011\140 000
011\141 OlJ 1
011\142 000
011\143 007
011\144 000
011\145 000
011\146 lJ07
011\147 001

TB YTE- ~O 11\l50 340
OCT AL: 0 1 1 \ 1 51 = 002

011 \l 52 002
011\153 = 044
011\154 003
011\155 045
011\156 304
011\157 .. 012
011 \160 012
011\161 012
011\162 • 045
011\163 = 304
011\164 045
011\lb5 001

TSTRJNG: 011\166 347
TS LOOP: 011\167 055

011\170 307
011\171 035
011 \l 72 041
011\173 110
011\174 1 6 .,
011\175 011
011\176 007

SPACES: 011\177 006
011\200 040
011\201 035
011 \202 = 041
011 \203 = 110
011 \204 177
011 \205 011
011 \206 007

TYPEIT: 011\207 330
011\210 006
011\211 362
011\212 1 1 1
011\213 303
011 \214 .. 11 J
011\215 = 036
011\216 01·1

TYPEWAIT: 011\217 006

"null"
"bell"
"null"
11bell 11

"bel
"null"
"bell"
"bell"

a few bells and nullsles always
help annunciate the end of
a program's execution •••

LEA save data in E work register

~tg _}- shift high order two bits to low

~~IOOOOll"}and mask for 0/1/2/3 digit

grT}~ ::tc:c.::: d:::,a::n:::::~iddle
RRC octal bits to low order
OCTOUT and print them
LAE - fetch saved data
OCTOUT and print the low order data digit
RET
LEM --- here's the text string typing routine -
NEXT A -get next address after saving length code.
LAM fetch the next byte of string
TYPE and go type it on TTY
DCE decrement length count in E. .
JFZ TSLOOP.Y if any count remains, continue
L printing the string
H
RET return, if count exhausted •••
LAI come here to print spaces
II II

TYPE print the space
DCE decrement the space count tFZY if not zero have at it again
RET
LOA come here to print a character
LAI
llO baud, ch 0, select, output
IN3 ~go write the TTY output control word
LAD -- save status read
IN2 --.....___ restore data and go write
LDI ----- make a wait loop to verify done-ness
6310 63 times should suffice
LAI ~ beginning of wait loop

ECS Volume No. 1 -16- January 197 5

The final segment of ELDUMPO code is printed here... in order to run the pro­
gram, be sure to reference the section on restart instruction usage located later
in this issue. The restart routines TYPE, KEYWAIT, OCTOUT, and NEXTA
are all defined in that section and referenced at various locations in ELDUMPO.

011 \220 362 110 baud, ch 0, select, output
011 \221 = 11 l IN3
011 \222 044 ND!
011 \223 030 mask for TBMT and TEOC bits
011 \224 074 CPI
011\22~ = 030 both bits on and it might be time to try again.
011\226 110 JFZ TYPEWAIT
011 \227 217 L either bit off indicates
011 \230 011 H definite try again
011\231 = 031 DCD decrement loop count
011 \232 110 JFZ TYPEWAIT
011\233 21 ., L - try arhin "n" times, to "be sure"
011 \234 = 011 H about t e status bits - see below •••
011\235 = 007 RET return after really done •••

Note that a WAIT loop was inserted in this routine as a part of testing the UAR/T.
An experiment you may wish to perform is to minimize the number of times through
the extra wait loop iterations used to be "really sure" the UAR/T is done. Ncte
also that throughout this code, the input and output instruction operations used are
those required for ECS-5 1s decoder as printed in that article.

MANUAL BOOTSTRAP PROGRAM "STUFFER" :

The listing of "STUFFER" is found on page 17 of this issue. The basic idea is
to make a program which essentially delivers the minimal subset of an editor pro-

gram such as IMP needed to stuff data into locations
in the memory of the CPU. This routine takes a
total of sz10 by~es of memory, and is ·amenable
to loading via toggle switches - after which use of
keyboard and octal coding will make for more effi­
cient loading. The command keystrokes are as
follows:

"N" - ECS 5 code 316g is used to compute the
next address and display the content at
that address.

"I" - ECS- 5 code 3113 is used to insert the
last entry at the current, address, increment
address and display data at the next location.

All Else - treat the low order 3 bits as an octal
digit shifted into the 8 bit entry register C

AT WcUbc

To initialize the program 1 s H/L address to memory, put the CPU in single step

mode, interrupt and go to location zero, define the H and L constants at locations
140 and 142, single step past location 101 of STUFFER, then go into execution.

ECS Volume 1 No.

STUFFER:
000\100 115*
000\101 0 ·1.4
000\102 = 316
000\103 1 !:10
000\104 1 50
000\105 000
000\106 074
000\107 311
000\110 150
000\111 160
000\1 1 2 = 000
000\113 = 074
000\114 377
000\115 150
000\116 137
000\117 000

OCTAL: 000\120 044
000\121 007
000\122 310
000\123 302
000\124 002
000 \125 002
000\126 = 002
000\127 = 044
000\130 = 370
000\131 = 261
000 \132 = 320
000\133 = 177*
000\134 = 306
000\135 = 175*
000\136 025

INIT: 000\137 = 056
000\140 = 000
000\141 = 066
000\142 = 200

LOOK: 000\143 = 307
000\144 = 177*
000\145 = 306
000\146 = 175*
000\147 = 025

NEXT: 000\150 = 060
000\151 = 110
000\152 = 143
000\153 000
000 \154 = 050
000\155 = 104
000\156 143
000 \157 = 000

INSERT:000\160 372
000\161 = 104
000\162 = 150
000\163 000

END NOTES:

-17 - January 1975

IN2 - read keyboard data after an interrupt.
CPI} test for an "N" code on keyboard "N" .
JTZ NEXT - if the "N" is found, jump to the

routine which increments H/L and displays
the data at the next address •••

CPIL_ test for an "I" code on keyboard "I" J .
JTZ INSERT - if the "I" is found, jump to the

data insertion routine to define memory at
H/L from last entry •••

CPI } "null" test for null character code •••

JTZ INIT - to initialize H and L use single
step mode, start with a momentary keyboard
key stroke

NDI Assume octal, and throw away the
"OOOOOlll" 5 high order bits with AND •••
LBA - temporarily save digit in B •••
LAC - fetch previous entry from C •••

RLC} RLC make room for new digit, saving old high order
RLC order information •••
NDI ') _ Delete previous bits hanging
11 1111111000 11 S-- around in low order digit •••
ORB - merge in new octal digit from B save •••
LCA - save new entry in C for next time or use •••
OUTJO - entry displayed on the right •••
LAL - fetch low order address •••
OUT31 - current L displayed on the left •••
KEYWAITtl Wait for next key stroke •••
LHI ~Come here to define initial value
??? of the address registers H and L
LLI for loading data. Define 140 and
??? 142 manually via bootstrap mode of ECSJ
LAM - fetch the currently addressed byte
OUTJO - and display it in the right display
LAL - fetch the current low order address
OUT31 - and display it in the left display
KEYWAIT 8 Wait for next key stroke •••
INL - increment low oraer address •••
JFZ LOOK - go look if not overflow •.•

INH - increment high order if required
JMP LOOK - and always go look thereafter

LMC - insert the data entry in M(H,L)
JMP NEXT - go calculate next address and

then display info with LOOK •••

* Output instruction codes are illustrated for the
wiring of the prototype system - see note, p. 14 ECS-6.

@ KEYWAIT is mnemonic for RST2, used to access the
keyboard interrupt wait routine. See page 20 •

ECS Volume 1 No. 1 -18- January 1975

PROGRAMMING NOTES: Using Restarts:

This is the first in a series of program­
ming notes on the use of the Intel 8008 instruc­
tion set in the context of an ECS system or its
equivalent •••

The restart instructions of the 8008 are effectively one byte CAL instruc-
tions with an implied target address given by the operation code. The implied sub­
routine address of the instruction is one of the octal locations 000, 010, 020, 030,
040, 050, 060 or 070 in page 0 of memory address space, specified by the middle
digit 11 ? 11 in the operation code 11 0? 5 11

, The fact that only a single octal digit is avail­
able for this use immediately limits the application to a maximum of 8 critical
(ie: much used) subroutines in a given software load. In a design such as that which
was published in ECS-3 and ECS-5 during 1974, one of the restarts is attached to the
I/O interrupt structure by using it as the 11 single instruction jam11 which occurs when
the CPU is to be interrupted. For the ECS series software, the interrupt structure is
at present only used for keyboard interrupts which occur when a key is pressed on
the typewriter keyboard of ECS-5. Alternatives to interrupting include use of a
priority encoder to pick a restart routine in cases where fast vectoring is required.
However, the fact that it is impossible to save the program state of an 8008 at inter­
rupt time (without hardware augmentation that is) leads to the conclusion that the
8008 is best programmed as a 11one process 11 machine at the hardware level - with
software polling of interrupt status for most of the fairly slow peripherals likely
to be used in a home brew computer context,

With one of the restarts thus taken up by the keyboard interrupt, there are seven
instructions RSTl to RST7 which can be used for 11 something else. 11 What is that
11 something else. 11 Basically an analysis of your programming of a problem will often
show a set of instructions which are used over and over again - a criterion which of
itself defines a potential subroutine. Of the set of all possible subroutines a program
might use, certain of these subroutines will be executed most often in the static sense -
they occur repeatedly throughout the code and occupy a lot of memory space with 3 byte
CAL instructions.. These frequently coded (but not necessarily frequently executed
however) invocations are likely candidates for use of the RST call mechanism
in place of the CAL instruction. In making a routine accessible by RST, the amount
of memory occupied by the :linkages to the routines in question will be de­
creased, but as is always the case, there is a price in execution time. Instead of
taking one ll-state CAL instruction, the time required now includes RST - for a total
of 16 CPU states, or 64 microseconds.

The basic use of the RST instruction for a subroutine invocation (where the sub­
routine is longer than 8 bytes) is illustrated by the following:

In place of CAL XX, use RSTn (where n is an available restart

At location 000/0nO, code a JMP XX instruction to cause transfer of
control to the routine as if CAL had invoked it.

No other changes are required in the sub.routine in question, since its execution
does not care how it got there

ECS Volume 1 No. 1 -19- January 1975

As can be seen in this use of the RST instruction, you will be trading an RST
followed by a JMP for a direct CAL· - to achieve the same functional effect in a pro­
gram's operation. Adding up the overhead, two CAL's require 6 bytes, and the
total memory required for the same two CAL's implemented via RST is two
RST's plus the one JMP at the RST target location. Thus for two or more CAL's
to a routine, a net savings tending assymptotically to 2 bytes per CAL will be
realized. (Using this mechanism in the degenerate case of a single CAL to a
routine will incur a one byte memory overhead penalty!)

In order to successfully use the RST operations it is imperitive to structure the
first 1008 bytes of memory address space (which I assume will be RAM) to· take advan­
tage of the method. The software supplied in the current and future articles of ECS
assumes such a structuring is being used, as described below. The text which fol­
lows presents the definitions of presently used RST routines which have been refer­
enced in the listings of ELDUMPO and STUFFER given earlier. Note that most of
the restart routines do not occupy a full 8 bytes (the maximum allowable without in­
terfering with the next RST zone of memory.) Thus there is plenty of room for
allocation of permanent or temporary RAM usage in the spare bytes left over following
the RST routines proper and preceding the next RST location. Of these nominally
"spare" locations, several are given permanent system-level allocations in the
text below, in particular locations 3 to 7 and 15 to 17 8 •

INTERRUPT RESTART:
The first restart zone of memory is that from addresses 000/0008 to 000/007 8,

which are accessed whenever an interupt occurs in the ECS series designs or their
equivalents. The "restart" routine for this case is the simplest - a branch
to the prime entry point of the currently executed program. For instance, to run
ELDUMPO in this issue, the address of ELDUMPO's START location should be
patched in as the target of a JMP instruction's operation, at locations 000/000 to
000/002. The patching is done manually in the bootstrap mode of an ECS style
CPU. Manually patching in the address of STUFFER instead will change the key-
board interrupt response to reference that program instead. The design of the
IMP program which will be listed and explaine~ in the next issue of this magazine
will assume Hat it is the "primary" program of the system and will be the target
of this branch. It will proceed from there to identify the source of the interrupt
and return to the appropriate routine with the character it reads. (An element
of the return from ELDUMPO to IMP is included in the current listing of ELDUMPO
at locations Oll/ll 7 to 011/125.) The remainder of the RSTO zone of the 8008 address
space is allocated to usages for system parameters as follows:

000/003 - IMPSTATE - this is an integer value which
contains the current operating state code of the IMP
program.

000/004 - IMPENTRY - this 8-bit byte contains the last
entry interpreted by IMP from keystrokes representing
octal digits.

000/005 - unassigned

000/006 - MEMADDRH - this is the high order of a system
level memory pointer used by IMP as well as ELDUMPO

ECS Volume 1 No. 1 -20- January 1975

000 /007 - MEMADDRL - this is the low order portion of
the memory address pointer •

BYTE EXCHANGE RESTART: XCHG
The second restart zone is reserved for prime use as a routine to exchange

the two 4- bit halves of a byte of data. The purpose for this routine (which is net
accessed by the software listed in this issue) is to provide a simple means of
manipulating BCD digits when writing routines for BCD arithmetic. The code
of XCHG is as follows:

XCHG: 000 /010 002 RLC
000/011 002 RLC
000/012 002 RLC
000/013 002 RLC
000 /014 007 RET

The location 015 in this restart zone is reserved for a JMP instruction op code
(I04s) followed by two variable bytes set whenever an indirect form of branching
is required. This location (015, symbollically "GPJMP") is used by IMP for exam­
ple to branch to an appropriate routine in response to keyboard commands stored
in a table.

KEYBOARD WAIT RESTART: KEYWAIT
The third restart zone of address space extends from 000/020 to 000/0278 and is

accessed by the RST2 instruction code. The definition of this restart is assumed by
both the IMP and ELDUMPO programs to be a routine which sets up the keyboard
interrupt hardware then halts pending an interrupt. The routine occupies four of
the 8 available bytes in the RST2 zone - the balance from 000 /024 to 000 /02 7
are available for use as temporary RAM locations at present, as for example
ELDUMPO's use of location 25 to hold the number of lines remaining to be printed.

KEYWAIT: 000/020
000/021
000/022
000/023

PRINT A CHARACTER: TYPE

006
003
117
377

LAI load the
003 interrupt enable code
!NO write - resets interrupts
HALT - wait for interrupt

The fourth restart, RST3, has the purpose of implementing a single character
TY PE function via RST mechanisms - where the character to be typed is assumed
to be in the A register prior to entry. Its implementation as a RST routine is via
the JMP mechanism - the invocation causes a jump to a location within the ELDUMPO
routine which performs the actual typing:

TYPE: 000/030 104
000/031 207
000/032 011

JMP TYPEIT
L
H

The remainder of this restart zone, addresses 033 to 037, are unallocated to software
use at present, and might be used fo;r temporary RAM storage or other purposes which
do not conflict with the RST functions.

ECS Volume 1 No. 1 -21- January 1975

OCTAL OUTPUT ROUTINE: OCTOUT

The fifth restart, RST4 , is used at present only by the ELDUMPO program, and
might in fact be redefined for a more important application at some future time. It
consists of the code needed to form a single octal digit in 7-bit ASCII code for the
teletype, followed by a TYPE instruction (RST3) to print the octal digit in question.

OCTOUT: 000/040 044 NDI
000/041 007 mask off low order - scrap high
000 /042 064 ORI
000/043 060 or in the first numeric code
000/044 035 TYPE and go type result
000/045 007 RET

As in the previous case, the remainder of this zone is unused at present and might
be employed by an application requireing temporary storage in RAM.

NEXT ADDRESS ROUTINE : NEXT A

The sixth restart, RST5, is the final one presented in this set of definitions.
It is a routine to perform a double precision _incrementation of the address
stored in the H and L registers. It is currently used, for example, in the string
typing routine of ELDUMPO found at locations 166 to 176 in page Oll.

NEXT A: 000/050
000 /051
000/052
000/053

060 INL Increment L
013 RFZ Return if no overflow
050 INH Increment H
007 RET Return always.

The remaining portion of this zone is left
to permanent or temporary use.

undefined at present, for future allocation

NOTES OF INTEREST TO READERS •...

Concerning Circuit Boards:

For the time being I am removing the circuit board products previously announced
from this market place. The ECS-2 board is f,unctional but represents an overly
complex approach to an audio frequency tape recorder modem and I will shortly be
replacing my own versions with simpler designs. For examples of a simpler modem
see the current issue of Radio Electronics {February 1975) page 53 for use of the

EXAR modem chips. The memory board which I previously announced
works fine - in fact it was used to store the program ELDUMPO in this
issue - but I have added some options which make the original board obsolete. The

details of the lK memory design will still appear in the next is sue as announced.

ECS Volume 1 No. 1 -22- January 197 5

In view of the fact that I am no longer providing the ECS-2 board, I will agree
to refund purchase price to the handful of subscribers who have purchased this item
upon receipt of a request for the refund.

Concerning Errata&: Program Patches:

Since the previous insue, ECS-6, some further errata in previously published
designs have come to my attention. First, two items received from Herman Demons-
toy of Painted Post, N. Y.:

- The output pins of the 2501 memories shown in drawing #5 of ECS-3 are _
incorrectly identified. Pin 14 (indicated as the D output) should be the D
output - and vice versa. To fix the drawing, write 1114 11 wherever you see 1113 11

on a 2501 output, and write 1113 11 wherever you see 1114 11 printed next to
a 2501 output. The functional impact of this error is a logical inversion of
the data stored in memory and read back out.
- The sense of the control lines numbered 134 and 136 on drawing #6 of ECS-3
is incorrect. The correct wiring can be obtained by either adding an inversion
with a 7404 section or equivalent, or in the case of line 136, by eliminating the
inverter shown in drawign #8 of ECS- 3.

Mr. Dernonstoy receives a subscription extension of his subscription by one issue
for his identification of these errors and detection of an error in the MEMZAP

program which had been previously noted by my brother Peter.

The MEMZAP program listing has an error in it, page 65 of ECS-3. Word
6 of the program should read 11 371" ·and not 11 307 11 as printed. This error was first
identified by Peter Helmers.

The ADDS subroutine of the extended precision addition routine has several
errors. Peter Helmers relays the following routine which works, created by his
associate Loren Woody at the University of Rochester:

ADDS: 000/100 046 LEI Set E to 0 (new carry)
000/101 000
000/102 361 LLB Get AVAR
000/103 307 LAM
000/104 362 LLC Point to BVAR
000/105 207 ADM Add BVAR
000/106 100 JFC ADD CARRY
000/107 112
000/110 000
000/111 040 INE Set E to 1

ADDCARRY: 000/112 203 ADD Add old carry
000/113 100 JFC SET CARRY
000/114 117
000/115 000
000/116 040 INE Set E to 1

SET CARRY: 000/117 334 LDE Save Carry
000/120 370 LMA Save Result in BVAR
000/121 007 RET and return ...

~:. ..

ECS Volume 1 No. -23- January 1975

Concerning Where To Get Parts (ie: 8008 1 s)

Peter Helmers has just recently completed his version of an 8008 system (at
least the initial stages.) As part of his shoestring approach, he did a survey of the
various vendors advertising in the Radio Electronics,~, and Popular Electronics.
magazines. I will not repeat the vendor addresses here, since all of them advertise
regularly in the above magazines. What follows is Peter's summary:

a) Godbout Electronics was the fastest to reply. They also seemed the
most open - especially considering their offer to talk via phone and an ex­
plicitly stated guarantee.

b) Electronic Discount Sales - second best source - reminds me of an oper­
ation like yours is in publishing ••• Had as a good a price as Godbout. Did offer
guarantee in post card reply.

c) RGS Electronics - "stuffy". Gave an impressive reply, but are obviously
trying to sell their kit rather than chip itself since they are way over the "market
price" (eg: $50) of the 8008. My only dislike I guess is their price since on re­
reading their reply I would not hesitate to purchase from them.

d) M&R Enterprises - I wouldn't purchase from them. I am not sure that I
believe their story about "savings to the customer" since quantity prices of
the 8008 are $60 leaving them no profit. Also, considering that the M1cro System
International unit is offered (surplus) from Electrcnic Discount Sales, I wouldn't
be surprised ir'these two companies bought from the same sources. Also, this
company is the only one that did not mention any sort of guarantee.

Peter ended up buying his CPU for $50 from Godbout and shipped immediately to
me in late December. I ran it in my system in place of my regular CPU for about one
week and could detect no differences executing a typical set of programs. His latest
report is that the CPU is up in and running in his version of the 8008 type system,
and operating at a clock rate of about 717Khz with no sweat (my $120 CPU purchased
from Cramer new in 1974 (March) craps out at 500 Khz - sigh!)

Concerning The 8080, ALTAIR and Better Systems.

Since the last issue was mailed, I read of the Altair computer in Popular Elec­
tronics. It is a welcome addition to the home microcomputer market place, since
the fact that the entrepenuers at MITS are willing to speculate on market acceptance
of such an advanced (and expensive) product i~ an indication of the growth of the field
of avocational computing. First, a note about the PE article - it was fairly obviously
prepared by an individual with the following characteristics: little knowledge of
computers, a package of materials handed to him with correct data on the device
and its capabilities, and boundless enthusiasm. The net vector sum of all these
inputs is a set of fairly outrageous statements. From what I have seen of the 8080, and
a comparison with products such as the Motorola 6800, I tend to prefer the latter due
to its much better documented and designed instruction architecture from a programming
and systems standpoint.

ECS Volume No. 24- January 1975

On the same theme, a long letter from Gordon French arrived on my desk on
the 10th of January or thereabouts (incidentally, composed and printed using an 8008
based text editor running to a teletype.) Several point.s are worth noting for readers:
First, Mr. French lives in Menlo Park California, whicl1 is relatively close to the
Intel facilities. The following excerpt from his letter concerns a visit he made to the
Intel people:

" I spent 2 hours talking about the Altair 880 with Intel engineers
in the Intel Lobby. Gist of many subjects discussed is the following.
Intel does not now nor will they ever, surplus out of spec parts to the
market. Intel does not desire to cater to the Amateur Computer User
to an extent that would mean product design intended for the ACU.

They welcome the MITS effort, because it gives them a single source
for a large volume sale (with no hassles). They say that the big prob­
lem is in instructing the engineer user on how to program the machine
(no wonder, since they push hex as the source code!) Most of the
people they train have had high level language schooling and find the
assembly language tedious, difficult, or utterly impossible. They

said there is definitely a market for tutorial texts on assembly language
techniques. As for the 8008 or Altair 880 users - they advise the
serious user to purchase their lntellec 8080 ($3840) otherwise they are
not interested. The feeling I came away with was that their whole mar­
keting philosophy (understandably) is that they will go after the 100000
piece order. As for future products that they think might get into amateur
machines (when I asked about future RAM costs and new easier to
use RAM) they say that they sell all the product that they can produce
and that this is going to keep the price of RAM up until that situation
changes. They also say that they will continue to produce products

that are specifically high volume productions. Draw your own con­
conclusions. "

With the current going price of the Intel 8008 at $50, he draws some fairly obvious
conclusions regarding amateur computing systems - it will remain extremely eco­
nomical for some time to orient a system around the 8008 - with the newer 8080
or s~ilar technology processors remaining fairly expensive for some time. Ulti­
mately, the 8080 or other CPU products such as the Motorola 6800 will be coming
down in price as production expands - at which point the 8008 will be relegated to
the same place in amateur computing as the one tube triode transmitter occupies
in amateur radio ..• a cheap and fairly low power introductory "rig".

Regarding RAM prices, the latest issues of Electronic News and other trade pub­
lications are running advertisements indicating a lK static (2102 or 2602) price of
$4. 95 in 1000 quantities. The current small quantity price according to Peter
Helmers who just acquired 2K bytes worth is $7 - new from a regular distributor.
Conclusion: if you see a surplus house advertising these devices above the new price,
it is suggested you talk 1 em down to a reasonable level if possible. The basic systems
prices are corning down - the market can only expand as more and more individuals
can afford the technology. The parts in question are made by Advanced Micro

Devices, whose distributors are Hamilton/ Avnet, Cramer and Schweber.

M. Po Publishing Co. Box 378 Belmont, Mass. 02178 Volume 1 No. 2

ECS A MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This issue of ECS is the second for 1975. It is somewhat different from previous
offerings in this series of publications in that it is the first issue to be almost exclu­
sively devoted to software - two fairly large programs for an 8008 computer archi­
tecture are listed with commentary. The roster for this issue is •••

1. The Interactive Manipulator Program (IMP-1): How can you make your
task of loading and c:ha.ngingmemory content easier? One way is to use an
interactive editing algorithm such as IMP-1.. In this section you will find
the functional description, annotated listing and examples of the usage of
IMP in conjunction with keyboard input, binary {or octal) display outputs -
and if you have a character output device such as TTY or TV -Typewriter,
- optional links to ELDUMPO (see last issue) are included.

2. Memory Module ECS-7 Hardware Description: As noted, the main theme
of this issue is software - but software generally requires memory, so the
1024 byte memory page design is included with this issue. The writeup in­
cludes the logic diagram, tables, and notes on expansion to more 1024-byte
banks and a very useful feature called "hardware write protect."

3. Memory Test Program (BITCHASER): What distinguishes good bits from
bad bits? Hmm! Maybe the good ones are white and the bad ones •.• ??? Not
likely! But BITCHASER knows - in the form of a write/read verify of all the
words in a selected segment of memory. You can put BITCHASER to work
seeking out and counting bad bits - pursuing them relentlessly through the
ins and outs of memory address space within a specified set of limits.

4. Programming Notes: Symbol Tables: How can you use the concept of
a symbol table - in elementary form - to aid in the writing and debugging of
programs in absolute binary? A hint was provided in last year 1 s ECS-5
article. This issue illustrates with IMP and BITCHASER, as explained
in this section of the magazine.

The next issue is scheduled for mailing on March 10 1975. The technical content will
consist pr:Unarily m. d. new tape interface design along lines suggested in a Radio
Electronics article using the XR-210 Modem chip. The article is to include the tech­
nical description of the hardware plus software extensions of IMP for the purposes
of dumping and restoring data to I fr om the tape interface. \

&.J ~ ·~' (11' L:, tq1-;
Publisher ~e~

© 1975 M. P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 2 -2- February 1975

THE INTERACTIVE MANIPULATOR PROGRAM IMP - 1

Functional Description of IMP-1:

IMP is designed to be utilized from a keyboard such as the interface design of
ECS-5 previously published, or any suitable typewriter keyboard with appropriate
coding changes for the keystrokes. The purpose of the program is to manipulate
and examine the content of memory as well as to invoke - and return from - various
systeJn utility routines and applications programs. These goals are accomplished
using a set of internal RAM data areas sandwiched in among the restart routines
described last issue , and a set of definitions for the keyboard buttons used by the
program. The basic user data areas of concern are:

IMPENTRY (location 000/004). This byte contains the last data byte defined
in octal notation by the keystrokes 11 0 11 to 117 11 {as well as the low order
3 bits of all unused keyboard codes.)

MEMADDR {locations 000/006 and 000/007). These two bytes contain the
H (location 6) and L{location 7) portions of a complete memory address.
They always maintain the current pointer to any memory location in the
computer's memory address space, and are defined using the "H" and
"L" keyboard commands.

Memory (arbitrary locations.) The entire memory address space (all
16, 38410 bytes) is potentially accessible to IMP through MEMADDR.
Please note however, that while you can address any location with
MEMADDR this does not necessarily make the operation meaningful!
If you do not have an ECS-7 memory page {or other design hardware) at
a given location, writing sends data to the "bit bucket" and reading will
result in a null code of 3778 •

Displays. Left and right 8-bit binary displays are used with IMP for purposes
of examining data 16-bits at a time. Although the original program devel­
opment was done using binary lamps for 16 bits, an easier-to-use display
can be made by decoding 6 octal digits with BCD to 7-segment integrated
c.ircuits driving LED display digitS.

The current set of IMP commands used for manipulation of data is listed
beginning on this page. At the end of the program listing/writeup several examples
of the use of the commands are included.

IMP COMMAND LIST

"D" - link to ELDUMPO to print data on TTY or send character format octal data
to an alternate display device. Use the last MEMADDR to define the starting
address (minus one) and use the content of IMPENTRY as
the number of bytes to dUillp.

"E" - examine the content of the two bytes at MEMADDR and MEMADDR + 1.

ECS Volume 1 Noo 2 -3- February 1975

"H" - set the H portion of MEMADDR from the last content of IMPENTR Yo

11I 11
- insert the last content of IMPENTRY in memory at MEMADDR and then incre­
ment MEMADDR and display the two bytes at the new MEMADDR am MEMADDR+L

"J" - replace the byte at MEMADDR with the last content of IMPENTR Y - but do
·not increment MEMADDR or display the results.

11 K 11
- clear the value ·of IMPENTR Y to 000

8
o

11 L" - set the L portion of MEMADDR from the last content of IMPENTR Y.

11 M 11
- examine the current content of MEMADDR in the display.

"N" - increment MEMADDR and display the two bytes at the new MEMADDR and
the new MEMADDR + L

"Shift X11 - requires two keys to be depressed for safety - cause IMP to transfer
execution to the location in MEMADDR after changing IMPSTATE to inhibit
all keyboard decoding until return to IMP is desired"

Further commands will be added to this list in the future as IMP is extended in scope
to cover such functions as tape interface manipulation, invocation of applications
programs and compilers, etc. The basic design of IMP is a simple one - its command
interpreter uses single key strokes as the fundamental "token" or particle of its
semantics. By looking at the code as listed and explained in this issue, readers
will be able to extend the above list for their own purposes by adding to the command
table (see below) and supplying appropriate routines o

COMMAND TABLE: IMP is a "table driven" program. This means that the list
of commands (keystroke codes) is contained in a table, al ong with a pointer to
the appropriate software routine• ••

IMPCMDS: 000\354
000\355
000\356
000\35'/
000 \360
000\361
000\362
000 \363
000\364
000 \36!:>
000\366
000\367
000\370
OU0\371
000\3'/~

000\373
000\3'/4
000\375
000\376
000 \377

3041_
240 s .
3051_
156 J .,,__
313}-
221

314 }--
076
311 }-
152

Jl 2}
lSU --

316}-
153
2JU (__
200 s '--
3102_
106j~

3151__
112 5 -

"D" and L address of "DUMPER"

"E" and L address of "EXAMINE"

"K" and L address of "CLEARENTR Y"

"L" and L address of "SETL"

"I" and L address of "INNEXT"

"J" and L address of "INSERT"

"N" and L address of "NEXT''

"Shift X" and L address of "GOBLO"

"H" and L address of "SETH"

"M" and L address of "DISPM"

NOTE: The character codes in this table are taken from ECS-5, page 13.

ECS Volume 1 No. 2 -4- February 1975

The actual listing of IMP begins at page address 0138 byte address 0008 with the
entry point and the beginning of command decoding •••

IMPSTRT: 013\000
013\001 •
013\002 =

gg~ 1,.-...-- How do you deal with noisy layouts? By a soft­
l l ,1j ware failsafe to turn off interrupt hardware I

013\003 = 300h . These "NOP" instructions. allow room for a future
g ! ~ ~gg~ ~gg call to high priority interrupt handlers.

013,007 = 002 s(IMPSTATE) define address of IMPSTATE
013\006 • 006 LAI }-

013\010 • 075 SYM . in H/L using SYM table.
013\011 • 317 LBM fetch1MPSTATE to B
013\012 = 115 INl read keyboard
013\013 • 011 DCB r if IMPSTATE was 1, B now zero
013\014 = 150 JTZ EXEC · soreturntoapplicationprogram.
013\015 230 L
013\016 = 013 H
013\017 = 011 DCB T if IMPSTATE was Z, B now zero
O 13 \020 1 ~O JT Z IMPGO so return to IMP operation.
013\021 • 026 L
013\022 • 013 H

013 \024 = 300 NOP allow for expansion patch to addi-
013\023 = 300 NOP }-

013 \025 • 025 KEYWAIT tional checks of IMPSTATE.

When IMP has figured out that it would be a neat thing to do to decode what the key­
stroke meant, execution flows to IMPGO to begin a loop through the table.

IMPGO:

IMPDECO:

013 \026 = J 10
0 1 3 \0 2 7 = 0 5 6
013\030 = 000
013\031 • 066
0 1 3 \0 3 2 • 3 54
0 13 \0 33 • 2 7 7
013\034 = 150
0 1 3 \0 3 5 • 1 20
013\036 = 013
0 1 3 \0 3 7 = 0 60
013\040 = 060
013\041 = 306
013 \042 • 0 74
013\043 • 000
0 1 3 \044 • 30 1
0 1 3 \0 4 5 = 1 1 0
013\046 = 033
013\047 013
0 1 3 \0 50 = 1 0 6
013\051 054
0 1 3 \0 5 2 • 0 1 3
0 1 3 \0 5 3 = 0 2 5

t~t r- Save the character input ...

h(IMPCMDS) Note the lack of use of SYM
LL! mechanisms - this is the
l(IMPCMDS) only place the command table
CPM t is ever used ••••
JTZ GOTFUNC compare and go branch to function
L if match is found •••
H
!NL r point to next entry in table
!NL
LAL L ~move to accumulator
CPI ..S - to test last time through
000

8
· one plus last table address •••

LAB ~ restore character input •••
&FZ J and recycle if more in table •••

CAL OCTINTRP:rotherwis e no match so fall thru
L and pretend input is an octal
H bit pattern in low order •••
KEYWAIT ~then go to sleep till woken up again

~i!I!~~? by user •••

Note how all keystrokes
by calling OCTINTRP to

which do not match the table are treated as octal digits
stuff the low order 3 bits into IMPENTR Y ••.

ECS Volume 1 No. 2 - 5- February 1975

The octal interpreter routine OCTINTRP is a simple-minded affair which reaches
out like an "octalpus" and grabs every keystroke that isn't tied down to a well defined
meaning •••

OCTINTRP: o 13 \0 54
013 \U 5!::>
01 J\0!::>6
013\057
013\060
u 13 \061
013\062
013\063
013\064
013\065
013\066
013\067
013\0W
013\071
013 \0 72
013\0'/3
013\074
013\075

044
007
310
006
004
075
307
002
002
002

= 044
= 370

261
370
1 Tl

= 250
175
007

ND! 1---. discard high order keystroke data
octal mask) C...--
LBA then save the data

LAI }-· s (IMPENTR Y) . use SYM mechanism to address the
SYM old IMPENTRY value •••
LAM then fetch that value •.•
RLC f shift left 3 drops 3 bits into a
RLC . logical bit bucket - preparing
RLC for the AND which erases the
ND! bits with a mask for the new
h. o. mask high order positions. .
ORB (_____.../...--not a planet in the sky but a log1~al
LMA S- "OR" of B followed by saving.
OUT30 ECS-5 blooper for OUT30 device.
XRA clear accwnulator
OUT31 ECS-5 blooper for OUT3l device code.
RE~. return after displaying entry •••

_ ~~OLTALf"'

Two particular keystrokes which escape the octalpus are the H and L commands,
which are serviced by the routines SETL and SETH. These two routines share a
common set of code beginning at DISPM with the M command used to simply display
the content of MEMADDR.

SETL:

SETH:

DIS PM:

013\076
013\077
013\100
013\101
013\102
013\103
013\104
013\105
013\106
013\.lOrl
013\110
013\111
013\112
013\113
013\114
013\115
013\116
013\117

006
= 006

075
060
371
104
112
013
006

= 006
075
371

= 006
006
0'15
104
156
013

~(1iEMADDR)h ..- point to MEMADDR with H/L
SYM j -- via SYM mechanism
!NL increment to point to low order
LMB ygot here with IMPENTRY value
JMP DISPM in B via "SYSSETUP" rtn.
L
H
LAI --..
s (MEMADDR) ~. . point to MEMADDR here too •••

SYM J.
LMB load the H value •..

~(~EMADDR)L looks redundant, but takes care
SYM J ~of all cases - define H/ L to display
JMP EXAMINE current MEMADDR value.
L
H

Note the continued use of the SYM restart (described later in this issue) to define
address pointers from the symbol table. This stretch of code references the address
of MEMADDR from three places independently - demonstrating SYM thrice.

ECS Volwne 1 No. 2 -6- February 1975

When the little IMP has gotten around to figuring out which function key was picked,
the next task is to call the appropriate routine. This is accomplished by setting up
an indirect jwnp through location 000/015 using the address found in the comm.and
table at the next address after the comm.and code matched by the IMPDECO scanner.

!NL (...point to next entry in table after key code
LEM) to define the low order branch address*

GOTFUNC: 013\120 = U6U
013\121 • 347

LDI *all branches are assumed to be in page 0138
page 013 may have to branch elsewhere if full •••

013\122 = 036
013\123 . 013

CAL SETJMPJ
L . -._go define GPJMP address for
H indirect jump to desired routine.

013\124 = 106
013\125 • 212
013\126 • 013

CAL SYSSETUPS
L go define system parameters prior
H to the indirect jump
JMP GPJMPr- indirect jump to selected routine.
L . squeezed in following XCHG restart.
H ~in page 0

013\127 • 106
013\130 = 135
013\131 • 013
013\132 = 104
013\133 015
013\134 = 000

The next stretch of code consists of the· SYSSETUP subroutine followed by the func­
tion routines for memory insertion and examination. The EXAMINE routine is
reached as a result of the E, H, L and M commands as well as the more obvious
fall thru from the Nor I command routines.

SYSSETUP: 013\135 = 066
013\136 • 007

INSERT:

INN EXT:
NEXT:

EXAMINE:

013\137 = 347
013\140 = 061
013\141. 33'/
013\142 • 061
013\143 • 061
013\144. 317
013\145 • 364
013\146 • 353
013\147 • 007

013\150 • 371
013\151 • 025
013\152 = 371
013\153 • 106
013\154 • 164
013\155 = OlJ
013\156 • 30'1
013\157 • 175
013\160 • 055
013\161 = 307
013\162 = l '17
013\163 • 025

LLI 1._
l{MEMADDR + 1) ~ did not use S_YM here
LEM define L parameter
DCL
LDM ------define H parameter

DCL l point to IMPENTR Y DCL
LBM define last IMPENTRY
LLE L____ - · · - MADDR LHD S -----i.__.--point to memory at ME

RET en~ of setups

LMB
}--insert entry and go to KEYWAIT sleep I

LMB insert entry with NO-DOZ
CAL INCMA rfall thru to i~crementaddress
L and store back into
H MEMADDR
LAM EXAMINE is indiscriminate!
OUT31 it will display any data

NEXT A
LAM 1 ""'"get a second byte
OUT30 and out it too (sic)
KEYWAIT and go to sleep after displaying

ECS Volume 1 No, 2 -7- February 1975

Now in the context of the IMP program, the simple H/ L incrementation provided by
the NEXT A restart function will not suffice - the new address obtained by incremen­
tation should be saved in MEMADDR. INCMA calls NEXT A then saves the H/L address
in MEMADDR and returns with H/L pointing to the computed address ...

INC MA: 013\164
013\16!:) =
013\166
013\167
013 \l "/O
0 13 \ l ·11
013\172
013\173
013 \l ·14
013\17':>
013\176 =
013\177

05!:>
346
335
U06
006
0 '15
3 ., 3

060
;,n4
353
364
007

NEXT A RST compute of next H/ L
LEL (
LDH _r------"!~~---save the address

~~EMADDR0--- Computed address to MEMADDR
SYM -~ '- would be nice - keeps it around
LMD Save high order
!NL point to next address
LME Save low order
LHD r--- Redfine the
LLE pointer in H/ L same as
RET MEMADDR & return

When it is desired to bomb out by attempting to execute an unproven new routine,
hold your breath, set the new routine's address in MEMADDR with H/L commands,
press "shift" and "X" simultaneously and watch your program go blow up •••

GOB LO: 013\200 = 106
013\201 212
013\202 = 013

CAL SET JMPY Come here to go ?
L First define ? address
H · via subroutine ...

013 \203 = 066
013\204 003
013\205 0 '/6
013\206 = 001
013 \20 ., 104
013\210 = OlS
013\211 000

LL! (.__r- Define IMPSTATE
l(IMPSTATE) 5
~MI y Reset IMPSTATE to 1 for ?

JMP GPJMPr And go to? defined by MEMADDR
015 via indirect
000 at location 000/015

Actually, the damage of faulty programming can be minimized somewhat when you
first attempt to run a program. The mechanism is the "write protect" option on the
ECS-7 RAM module design in this issue - simply put the switch in its "protect"
position and then execute the routine with knowledge that it can't destroy the software
carefully loaded into the RAM module via IMP or STUFFER. However you get to
the program, one useful thing is to set up jumps. The routine SETJMP creates the
indirect jwnp address in GPJMPL using the content of D and E for Hand L respec­
tively •••

SETJMP: 013\212
013\213
013\214
013\215
013\216
013\21'/
013\220

006
010
075
374
060
373
00 .,

~~PJMPL) h point to general purpose jump
SYM J L-- via the SYM mechanism
LME --E argument to L of jump address
INL
LMD D argument to H of jump address
RET

ECS Volume 1 No. 2 -8- February 1975

Garbage in - garbage out is pure computerworld cliche. However what do you do
if you get garbage in to IMPENTR Y? Why of course get the garbage out by pressing
the 11K 11 key command to activate ••.

CLEARENTRY:
013\221 006
013\222 = 004
013\223 = 075
013\224 = 375
013\225 104
013\226 • 156
013\227 013

LAI ~ s(IMPENTRY) point to IMPENTRY via SYM
SYM
LMH
JMP
L
H

y H known to be 0 so use it to
EXAMINJ zap entry and go examine •••

The following is a routine used normally to intercept interrupts from an application
program reached from location 013/014 if IMPSTATE is 11111 • It is designed for a
normal transfer to the start of the application program via GPJMP as set by the
original "Shift X" execution initiation or a subsequent setting of the application pro­
gram. As shown, however, it needs a patch at location 013/232 to supply a JFZ
and at 013/231 to insert an appropriate interrupt-producing character key code. You
could use the "J" command to change it ~fter loading and setting the proper address!

EXEC: 013\230 = 074
013\231 • 300
013\232 = 104
013\233 015
013\234 • 000
013\235 = 076
013\236 = 002
013\237 = 025

CPI "?.-- On resumption of application prog-
"Shft & Ctrl" j ram check for escape mechanism
JMP GPJMP y Ignore escape until JFZ is used I I
L - change
H . 013/232 to JFZ if needed.
LMI } Reset IMPSTATE on escape •••
2 to normal interpreter mode •••
KEYWAIT Then wait for user action.

The final routine inserted in page 013 for the preliminary release of IMP as IMP-1
is DUMPER - a short routine to define the data count for ELDUMPO (see last issue,
Volume 1 No 1) then branch to the entry point of ELDUMPO. This mechanism was
used to activate ELDUMPO for the listings of code found in this issue - the address
(minus one) was defined, in MEMADDR, and the data count was left in IMPENTR Y •
Then the "D" key is pressed thus starting off this sequence •••

DUMPER: 013\240 = 066
013\241 = 02~
013\242 • 056
013\243 • 000
013\244 = 010
013\245 = 371
013\246 • 104
013\247 = 000
013\250 = 011

LLI y- Define address of ELDUMPO
l(COUNT) data count word •..
LHI via the old fashioned mechanism
h(COUNT) without SYM - used once here.
INB ~Increment copy of ENTRY for
LMB 5 ELDUMPO and save it •••
JMP s· Then go jump to ELDUMPO
L with return via the code at
H locations 011/117 - 011/125 of

the last issue ••••

ECS Volume 1 No. 2 -9- February 1975

In order to illustrate the usage of the IMP program, several worked examples
are provided below. The program should be loaded using the STUFFER program
found in the last issue, after which the new restart routine SYM described on page
must be loaded in locations 70 to 1018 of page 0 (overlaying two bytes of .STUFFER
locations 100 and lOls). The branch address in locations 000/001 and 000/002 should
be setup to point to IMP (013/000) and the value 002

8
should be loaded in location

3, IMPSTATE, to initialize IMP in its editor mode. It is strongly suggested that
when you first try out the IMP program as loaded, you put the memory modules of
ECS-7 design in the "write protect" mode - this will prevent inadvertent errors in
loading from destroying the information in memory loaded by STUFFER.

Beginning checking out IMP by demonstrating the octal data entry •. Press any
digit code on the keyboard - 117 11 - will do. Note that the rightmost 3 lamps of the
right hand binary display will go on with 117" - or if you have octal readouts -
a 7 will appear in the low order. Press another digit - IMP will shift the previous
content left 3 bits or one octal digit, putting the new digit in the low order. The
display is filled by pressing a third. In this mode of operation (pressing only octal
digit keys on the keyboard) IMP displays only the current IMPENTR Y value in the
right display and keeps the left display cleared to zeros.

Now, suppose you want to define a full 14-bit address within memory address
space. The key sequence is as follows for the address 012/372 (11Intelese11 notation.)

012 H 372 L

L~
~ l___transfer IMPENTRY to L of MEMADDR

'----..:_after 112", IMPENTR Y is complete in display as 372s
tr an sf er IMPENTR Y to H of ME MAD DR

after the 11 2" here, IMPENTR Y is complete in display as 0128
Following the last "L" key stroke, the current memory address of MEMADDR will
be displayed in: the display, with the H portion at the left, the L portion at right.

Having just defined the address of some byte, ·suppose you are in the
process of loading the BITCHASER program illustrated in this issue. You want
to place the code 1038 in .that location. To simply load the addressed location,
takes 4 key strokes:

l 0 3 J
-~ 'L- transfer IMPENTR Y to addressed location with J

\.__complete definition of IMPENTR Y for this location

1£ you want to verify the transfer, the current location can be examined by typing "E"
at this point.

Now, suppose you want to define the next three locations following this
current location 012/37Z from the BITCHASER program code. The following series
of keystrokes will point to 012/37 3and load consecutive locations •••

Nll 7112 5Ill 6I
~ \.. c: ~define and insert at 012/375

_ '----- define and insert at 012 I 3 7 4
'---------define and insert at 012/373

ECS Volume l No. 2 -10- February 1975

The "N11 keystroke of the example at the bottom of page 9 is required to increment
the MEMADDR value to point to the next location, 012/373. The series of operations
can be continued indefinitely - 3 octal digits followed by "I" - to load as many locations
as desired. If, along the way, you lose your place in the program, you can display
the current memory location by transferring MEMADDR to the display with the "M"
command of the IMP program. Similarly, if you find you made a mistake in entering
data for a given word before pressing "!", the entry can be cleared to 0 with "K" or
you can simply re-enter 3 more digits.

After completely loading an application program with IMP, you will of course want
to execute the program. The program can be invoked from IMP - with automatic
return - provided the following conventions are used:

l. To invoke the program, enter its starting address into H/ L via the
appropriate conunands. Then press the "Shift" and "X" keys simultaneously
to cause IMP to change state and go to the program.

2. When the invoked progr3.In is finished, return to IMP by loading location
3, IMPSTATE with the value 112 11 , then issuing the KEYWAIT restart. An example
of this return is illustrated at locations 117 011/117 to 011 /125 of the ELDUMP 0
program published last issue. ELDUMPO was constructed without the SYM mechan­
ism - and this return could be performed with one less byte of explicit code by
using SY M to reference IMPSTATE via the symbol table.

If the application progr3.In must wait for keyboard interrupt input, issuing KEYW AIT
will cause it to halt until a keywstroke occurs - after which control will transfer to
the location last loaded into GPJMP1 s address.

MEMORY MODULE ECS- 7 HARDWARE DESCRIPTION

The center pages of this month 1 s issue (pages 12 and 13) contain the logic diagram o~
the ECS-7 memory module design. This module is basically a static 1024-byte
"bank" of memory locations implemented with the 2602 or 2102 type of memory chip.
(These two numbers are pin-compatible - and subject to various differences in the
access time of alternative versions - are also electrically compatible.) The array
is interfaced to the bus with the standard ECS series design technology: 8T09 bus
drivers for memory outputs, and inverting inputs via 7404 sections to keep the
sense of data consistent in this case. Note that there are alternatives to the bus inter­
faces used throughout this series of designs. One commonly used alternative is to
make an "open collector" bus using 7401 (low fanout) or 7438 (high fanout, or drive
capability.) Similarly, a non-inverting (but lower power) tristate interface commonly
available is the 74125 circuit.

ADDRESS LINES:
One interface socket of the design is used for the 16 address lines used for cycle

decode and. address selection. The low order 10 bits of addressing are wired directly

ECS Volmne 1 No. 2 -11- February 1975

to the 10 address input pins (AO to A9) of the memory IC' s. The diagram for
clarity does not illustrate a direct connection - see the note provided. The "IN"
lines of the 8 memory !C's in the bank are wired to the outputs of corresponding 7404
inverter sections of IC-ll- and IC -12-. The "OUT" lines are wired to the data inputs
of the 8T09 bus buffer gates. Since this system employs an interface for each bank,
the chip select lines are shown wired permanently to ground. If desired, it is possible
to create a local "bu~ extension" for the memory outputs using their tri-state capability
and the chip-select inputs to enable one bank of memory at a time with a common 8T09
interface to the CPU bus. To do this, the appropriate bank selection output of the
74154 bank selector would be used to control which set of 8 2102's (2602's) is enabled
at a given time.

BANK SELEG TION LOGIC:
In its self-contained form as a single lK by 8 RAM design, the circuit illustrated

has all the parts needed to interface to the computer independently. However, if it
is desired, the bank selection logic is designed to accomodate sharing of the decode
provided by a single 74154. Here is how bank selection word works: the high order
address bits of AlO to Al3 provide an address of 1of16 1024-byte segments of the
total 16, 384 memory locations of an 8008 processor. The 74154 is always monitoring
the address lines and selecting one of 16 banks in the memory address space, whether
or not you provide the actual hardware {during I/O the PCW input to one 74154
gate prevents decode, and during interrupt the master enable input to the other 74154
gate also disables decode.) The output of the 74154 appropriate for the RAM bank address
is selected by the choice of wiring from the select line to the appropriate bank select
pin of the 74154. When the bank is selected, one of the uses of the select signal is to
enable write pulses to pass through gate -14- and inverter section -12£-
to the memory chips, provided hardware write protect is off. The other use of the
select signal of a given memory bank is to enable the CPU-Input signal to control the
output interface gate for the bank. Without sharing the bus output buffers of the memory
circuit, it is thus possible to share the 74154 logic between several banks simply by
omitting a repeat of the 74154 for the additional banks and wiring the select line of the
additional banks to the appropriate pin of the 74154 in the first bank.

WRITE PROTECT HARDWARE:
The use of a hardware write protection concept in computers has been around for

some time. In some computers, it is implemented as a software-controlled bit in
the actual hardware of memory, protecting various segments .of memory from access
and/ or modification by programs operating in other segments. In such a context, memory
protect features are used to provide a means of minimizing interference between
multiple users. Another handy use occurs in the microprocessor context - two very
useful goals can be accomplished for your system:

1. You can turn a RAM module into a ''pseudo-ROM" by flicking a switch.
2. With the RAM module in protected mode, and with a separate power supply
for memory, you can safely disconnect the memory from the computer main frame
and maintain your software while changing various aspects of CPU hardware and/or

peripherals.

ECS Volume 1 No. 2 -12- February 1975 ECS Volume 1 No. 2 -13- February 1975

E'X.P E ~IME.~T£R'.S COMPUTE~ $VS'TEM E.CS -'? : 11ZS2..lf- BYT"I:.. MC.tol\O~V &ANK & 1)£C.Ot>E.

1'3

('
f\O

6\T '1 ~1

Ai

-1-
Al t

2.."~2 ., i
Ol

Uol lt7

At
M

IUT

@ 1175 M.P. PUB\.l&H1"1G CO.

13 1~

cs c~

f,\T 4 &1T s

-i.- -1-

~"0' 2.J,Q.!'2
~ ""'

2:l!Z'2. 1(1 2.10~

Al
i5

At

9AN'< P ~OTE'C. f
Si

Nt-=~ft.~
NO •PR.OTE~

WllTE.·Cl.OCk

X/O -?, PIN i'J

Ao
Ai

At

Al

IH

AS

A4

117

-· ~

13 t'3

c; c.s
Ao Ao

SIT '+ Al
s t.i

SIT ~ Al

AJ

41
-Lf-

Alf
? -5-

-· 2. 2."0'2 AS 1.
'-" 0'2 RS

o~
A'

OR_ "' 1, i.10i. 4l i.1 ~1.. A1
1'!>

~i
1¥ A, tlf

ft•

"' ,tLl w ov.r
H.

'7too

r;o-~ P>J.J 1£

u i'3

c.s cs '' Ao ""
'a

Al + ,., 4
6\T t 61T i SIT /15

A1. At
s

' 1
A1 " AJ

;,

-~- ?- -7- ? -i'-
A\ Alf.

2. Zb'1S< AS '-"'P'Z AS ?.C...01
~ A' o~

"'
OR

i' Zt!lJ'2. 1\1 e..1~'2. ,,, c_ I 11:12.
is Al At
i'f A1 "4T

J;N w OIAT
:t.N ""

OUT r:» w
i.1. 3 1'2.

3

!3

~

~·
A2.

A1 6

,., ~

45 '2.

~

A'1 i"

.Af
{5

A' i'f

cur
WOTEi

1Z.
Go To

.-- 'Jl+Olf'S

I/O-i ~

Ao 1
At 'Z.

At 3

A'5 4
Alf' 5

AS <.
A(. 7
AJ g

At ,
"~ 10

AIH.i.SS \.l~t.5

AU S 2(,6?..'S

l'ow £12. I/o· 2. ~

1"' = + 5v
£t :: G~D

IJSE B~tASS

C.A-f'A(l\Ol.~ ~

'I./o-?

t>A-1;\ SUS
Pi~

•o 1
)I a.

~'Z. Dl I 't
l>'t s

D5 ' b'- br
.,

a

••·••••• ,•......... II"'" 8ANtt ADl>R£SS JUMPER
........... :····) (ADDIU.S.S£5 031f./OOo TO 03"1>/3"1?- SlfDl.Oi.i)

1 t. ~ 't 5 & '1 i ' lfl 11 13 l't IS I' 17 -s.1io·!
CJ.JS

o 1. t l tt s " '! ~ ct 10 il n. 13 .1" 1' 4 ..-u;;...._ ________ _ "'o II
'H

,4154 SA~K SElEtToR :....-t~::...----------------- All I'?

~'' 11
-l3-

Q1. (;2.. All ,.,. b zo

~It 15
i'I 5

MA.SH.£. 'f

A1s
,,

-l'l..-

ECS Volume 1 No. 2 -14- February 1975

The advantage of the "pseudo-ROM" usage of the protection switch :i.s that you can try
out programs initially in a mode which prevents alteration of the program itself - just :
as if it were an ROM program - yet the ability is retained to switch off the write
protection feature and load or alter the program with IMP-1 or its equivalent. The idea
for this feature was obtained from the documentation of the Motorola M6800
"EXORciser" program development system's memory module. The idea of independent
power supplies for volatile memories I have seen in several sources, such as the power
fail logic of the TI minicomputers, HP21MX minicomputer, to mention one or two. (A
note of interest - the only reason such a supply is needed is the volatility of semi­
conductors. Core memory designs can be made non-volatile, and you will often find
a mini with core memory coming out of the factory with some bootstrap software
pre-loaded via that technique.) In the logic of ECS-7 as shown, the memory is protected
whenever the switch input to IC -14- pin '2. is logical "l" (switch Sl is open.) When the
switch is closed, the input to that pin is logical "0", thus enabling the gate whenever
select enables it.

MEMORY PRESERVATION PROCEDURES:

Whenever it is desired to maintain programs in the RAM module via a separate power
supply, the following procedure is suggested: when powering down the CPU for work:

1. Put the RAM bank in "protect" mode (SI is open.) Halt the CPU!
2. Unplug the data bus connector, I/0-2 of the ECS-7 design.
3. Unplug the address bus connector.
4. Power down the CPU or the rest of the system for maintenance

or other hardware work.
5. When finished, power up the CPU, put it in a HALT state.
6. Connect the address bus to the RAM module.
7. Connect the data bus connector to the RAM module.
8. If modification of the memory is required, it can now be safely taken

out of "protect" mode and used as a normal RAM module.
"Safely" in this case means with respect to hardware bombing of data.

This procedure was used to great advantage when preparing the hardware and software
of the previous issue - IMP was maintained in memory while the CPU was
powered down for modifications and tests of the ECS-6 hardware.

ECS- 7 PACKAGE SUMMARY

Socket Pins Part/ Description 5 volts Ground

t;}-16 2602 or 2102 1024-bit RAM 10 9

9' 10 14 8T09 Tri State Bus Interfaces 14 7

11 ' 12 14 7 404 Inverters 14 7

13 24 74154 Bank Decode 24 12

14 14 7427 3-input NOR 14 7

15 14 7400 (1 section used) 14 7

16 16 I/ 0-1, address AO to Al5

17 16 I/0-2, data bus, power, misc. 16 9

ECS Volume 1 No. 2 -15- February 1975

MEMORY TEST PROGRAM (BITCHASER):

Once you have constructed the basic RAM module of ECS- 7, you can test the
memory in a random and un-systematic manner by using STUFFER to load IMP, then
using IMP to write in and read the content of various locations (hopefully outside of
IMP itself!) The purpose of BITCHASER is to provide a systematic method of testing
all the memory locations within a specified address range - in this initial version by
reading and writing a fixed pattern set prior to starting the program. The program is
set up to periodically look at the ECS-5 keyboard and respond to any key by typing
a summary message on the teletype:

· ~Note: message obtained by looking at
EHHOH5=0000033130 ~ non-existent (always bad) memory!

COUNI=0000033130

or a suitable substitute for the teletype such as a CRT terminal or TV. Typewriter -
in which case the Type routine of ELDUMPO would have to be modified. The program
takes advantage of the restart routines used with ELDUMPO and IMP. BITCHASER also
employs the SYM restart mechanism for table lookups, as is described later in this
issue. BITCHASER is shown loaded in page 0128 of memory, and all address constants
for jumps reflect this location. The program begins execution by a short loop to clear
out the ECOUNT and TCOUNT data (error count and total cycle count respectively) which
are located in RAM page 0 at locations 200 to 207 •••

BIT CHASER:

MI LOOP:

012\000
012 \UO l
012\002
012\003
012\004
012\005
012\006
012\00'/
012\010
012\011
012\012
012\013

006
012
075
250
016
010
370
060
011
110
006
012

s~:COUNT)l_ point to ECOUNT/TCOUNT
SYM r----- address via SYM lookup
XRA-----. clear accumulator
LBI~load loop count
0.10 J
LMA clear a word from accum.
INL point to next address
DCB rdecrement count - this loop could
JT Z MILOOP: be made more efficient - see
L · if you can figure out how!
H

Following the initialization of counts, the actual work of BIT CHASE begins
with the start of the major memory test loop at BIGMLOOP ...

BIGMLOOP: 012\014 006 LAI ~ software failsafe to turn off
012\015 002 2 interrupts repeatedly when
012\016 1 1 ., !NO haywire prototype is victimized
012 \0 l ., 006 LAI ~ by TTL noise immunity problems.
012\020 032 s(STRTADDR) use SYM to point to STRTADDR
012\021 075 SYM of tested region.
012\022 31 '(LBM r---- fetch Hof STRTADDR
012\023 060 INL then point to L
012\024 32'i LCM fetch L of STRTADDR
012\025 006

LAI ~ 012\026 034 s(CURRENTADR) point to current CURRENTADR
012 \02 7 075 SYM

ECS Volume 1 No. 2

0 12\030 a: 3 7 1
012\031 060
012\032 = 37~
012\033 a 115
012\034 "' 074
012\035 377
0 1 2 \0 3 6 II 11 2
0 1 2 \0 3 7 • 1 6 5
012 \040 • 0 12

LMB
!NL
LMC
!Nl
CPI
null
CFZ
L
H

-16- February 1975

V
define Hof CURRENTADR

then point to L
and define L of CURRENT ADR

r- read keyboard
once per cycle
and test for not null

REPORT_ycalling the report typer if so

Now, if one had a high order language (such as PL/l, FORTRAN, etc.) for
the 8008, the code shown above at locations OlZ/017 to 012/040 is what the compiler
would generate for a statement of the following form (ala PL/l .):

STRTADDR = CURRENTADR;

The reason for such languages for computers of course is to economize programmer
time in generating programs - as you can see by comparison to the dump form.
The program continues with an inner loop - LITTLOOP ••• - to test and increment
the current addresses with a test for end of range conditions.

LITT LOOP: 012\0111 • 006
!#ATTERN)1---get address of test pattern 012\01&2 • 040

012\043 • 015 SYM via SYM mechanism
012\044 • 317 LBM -and get the pattern to ''b" reg
012\045 • 006

~URRENTADR~ then point to current address vo.111< 012\046 ,. 034
012\047 • 075 SYM also vla. SYM
012\050 • 327 LCM

~point to current address in H/L 012\051 • 060 !NL
012\052 • 367 LLM
012\053 • 352 LHC
012\054 . 371 LMB test write to memory
012\055 • 301 LAB
012\056 . 277 CPM followed by compare to check it
012\057 • 112 ~FZ POSTERR r record the error for POSTERRity
012\060 • 127
012\061 • 012
012\062 . 106 CAL TALLY r and keep track of number of
012\063 • 134 L cycles for comparison to
012\064 • 012 H error count •••

The inner loop continues on the next page, with a short section of c,?de which is the ,,,
equivalent (at addresses 012/065 to OlZ/102) to what a high order language
for computers would specify as:

CURRENT ADR = CURRENTADR + 1 ;

Again, note the amount of code which can be implied by a short an succinct functional
notation - in this case the concept "add one to current address" denoted above is imple­
mented at a low level by the detail of 1410 8008 machine instructions ••.

ECS Volume 1 No. 2

012\06!:> 006
012\0 66 034
012\067 0'15
012\070 317
012\0"/l = 060
012\072 32'1
012\0 73 020
012\0 74 11 u
012 \U 75 100
012\0 ·16 012
012\0'/'/ 010

NOHO: 012\100 37H
012\101 061
012\102 3 'fl

-17- February 1975

~(~URRENTADR)(. set up current address pointer
SYM J
LBM "'S----fetch H of .current address
!NL
LCM fetch L of current address
INC increment low order

JFZ NOH°j ,,.--..-. and test ov.erflow ..•
L ./ with skip of high order
H increment possibly
!NB increment high order of address

DCL r
LMC r---z save new low order address

LMB ~then save new high order address

After incrementing the current address of a location under test, the next task for
BITCHASER' s inner loop is to check for end of address range ...

012\103 006
012\104 = 036
012\105 07!:>
012\106 307
012\107 271
012\110 110
012\111 041
012\112 012
012\113 060
012\114 307
012\115 272
012\116 = 110
012\117 041
012\120 012
012\121 300
012\122 300
012\123 300
012\124 104
012\125 332
012\126 012

~(~NDADDR0 point to end address value
SYM ~ (_..-- via SYM for comparison

LAM -Z-- fetch Hof end address
CPB S and compare to current address
JFZ LITT LOOP C
~ J keep going if not equal in H

!NL if H portions equal, check L
LAM get L part of end address value
CPC and compare to L of current

~FZ LITTLOOPI keep going if not equal

NOP~These NOP's are inserted to allow for a
NOP future change - a CAL instruction to invoke
NOP a routine to change the test pattern .•.
JMP CHECKEND}
L the end of execution check could

H have been put in line without
this jump ••.

The above code completes the main routine of BITCHASER (with the exception of the
short "CHECKEN:D" routine at 332 to 345 in page 012.) Now the next object of atten­
tion is the set of subroutines called from this main routine. The code starts with
the multiple-entry-point POSTERR/TALLY routine. The "entry point" of a sub-
routine is a place where it can potentially begin. This routine has entry points to
define the SYM pointer of the data to be incremented as a 32-bit number, called
as TALLY and POSTERR - then with the symbol defined, common code is used to do
the work.

POST ERR: 0 1 2 \ 1 2 ., 0 0 6
012\130 012
012\131 104
012\132 136
012\133 = 01~

LAI (_
s(ECOUNT) 5 L- point to error count 32 bit number

JMP I4Bf~
~ 5 ~then jump around alternate entry

ECS Volume 1 No. 2 -18- February 1975

TALLY: 012\1 34 006
OU:!\13~ 014

I4B: 012\136 O'/!:>

LAI 1_
s(TCOUNT).) '-+point to total count 32-bit number
SYM - and here the common 32 bit increment code starts

OU:!\lJ7 060
012\140 060
012\141 = 060
012\142 = 317
012\143 = 010
012 \l 44 = J ·11
012\14~ = 013

INL~
INL · in order to start from low order with
I NL a pointer to high order, must change addr.
LBM ~fetch low order byte
I NB · increment it
LMB and of course, save it .••
RFZ and return if no overflow •.•

012\146 = 061
012\147 = 317
012\150 = 010
012\151 = 371
012\152 013

DCL y ok - overflow, so point to next higher
LBM byte, fetch it
DCB and decrement it,
LMB and save it too,
RFZ and also return if no overflow .•.

012\153 = 061
012\154 = 317
Orn\155 = 010
012\156 = 311
012\157 = 013

DCL rthis count is getting large! go to
LBM next higher order byte, fetch it,
DCB decrement it,
LMB and save it too •••
RFZ and return if no overflow •••

012\160 061
012\161 = 317
012\162 .. 010
012\163 371
012 \164 ii 007

DCL y last resort - the highorder byte
LBM is fetched,
INB is incremented,
LMB is saved,
RET and youre 1 out of luck if you over flow

4. 2 9 billion! ! ! ! !

The next subroutine listed is a REPORT generator which prints the two counts shown on,
page 15 as 10-digit octal m.unbers. The routine has a branch in the middle of it to a
patch due to a faulty memory location - ultimately caused by purchase the author made
from a fly-by-night distributor called "Electronic Component Sales" perpetrated by a
character named "Pete Kay" last September.

REPORT: 012\165
012\166

= 006 = 022
012\167
012\l 70
012\171
012\172

= 075

FLYBYNIT.ElO 13\365
013\366 =
013\367
013\370
013 \3 71
013\372 =
013\J'/3
013 \374
013\375
013\376 =
013 \3 7'I

104
365
013

106
166
011
006
012
106
214
012
104
200
012

LAI r-point to the address of a character
s(STRINGl) string message text via SYM
SYM
JMP FLYBY NITE - when you li"'-.!) memories from a
L flybynight distributor who flies, you some-
H times have to branch around bad locations.

CAL TSTRINGycall the character string type
L routine found in ELDUMPO of

~AI r last is sue •••

s(ECOUNT) establish address of error count
CAL TOCTlO by defining symbol and then
L calling routine to print it as
H 10 octal digits (ignore 2 high order
JMP FLYBACK bits •••)
L
H

ECS Volume 1 No. 2 -19- February 1975

FLYBACK: 012\200 006
LAl 1 012\20 l 024 s (STRING2) ~ point to second message string as

012\202 0·1~ SYM address in H/L
012\203 106
012\204 = 166
012\205 011

CAL TSTRINGf call the character string type routine
L found in ELDUMPO
H

012\206 006
012\207 014
012\210 = 106
012\211 =.214
012\212 012
012\213 = 007

LAl r. s(TC. OUNT) . point to symb.ol. of total count(sic)
CAL TOCTlO and call the 10-digit octal printer
L
H
RET finally, return from report ••••

The next subroutine is called "TOCTlO" and is responsible for the output of a 10-digit
octal integer representation of the low order 30 bits of the 32 bit count passed as a
symbol in the accumulator. The first thing this routine does is to lookup the argument
syinbol and copy its data (all four bytes) to a working copy us.ed for shifting the infor­
mation 3 bits at a time to generate octal quanta.

TOCTlO: 012\214 = 075 SYM - look up argument symbol left in A
012\215 = 317 LBM
012\216 • 060 INL
012\217 = 327 LCM
012\220 • 060 lNL copy argument into registers

012\221 = 337 LDM first,
012\222 • 060 INL
012\223 = 347 LEM
012\224 ·=· 006

LAI r-012\225 • 026 s (WKOUT) .. _point to work output area
012\226 075 SYM
012\227 • 371.

L~}-012\230 = 060 INL
012\231 = 372 LMC
012\232 :11 OoO I NL then copy argument to the work
012\233 = 373 LMD area .••
012\234 = 060 INL
012\235 = 374 LME
012\236 = 006

LAI ~ 012\2.37 • 016 s(I) . point to loop index "I"
012\240 = 075 SYM used for octal digH location
012\241 = 076 LMI purposes, then definition
012\242 = 002 2 of initial 2-bit discard.
012\243 = 006

LAI r-012\244 020 s(J) point to loop index 11J 11 used
012\245 = 075 SYM to count bits, and load its
012\246 = 076 LMI initial value
012\247 = 036 3010 for 10 octal digits of shifting.

At the start, WKOUT a has the following for the two counts typed on page 15.

[Ji
0 0 0 0 0 3 3 1 3 0 octal

000 000 000 000 000 011 011 001 011 000 binary
high order bits discarded .• ~-••T 111c1e1T

Flt~ST &VTE. \jfill FOUA.Tll B'flE.

After initialization, TOCTlO enters the loop on the next page, shifting left (see above)
three bits at a time, printing octal digits from high order to low order left to right.
The two high order bits are discarded without printing due to the initialization.

ECS Volume 1 No. 2 -20- February 1975

The print loop shifts WKOUT left one bit at a time, and every third bit will look at the
current high order of WKOUT and print an octal digit .••

TOCTlOL: 012\250 006
012\251 = 026
012\252 = 106
012\2~3 312
012\2!::>4 :I: 012
012\255 006
012\256 016
0 1 2 \2 5 7 0 '/ 5
012\260 317
012\261 011
012\262 = 371
012\263 = 110
012\264 = 300
012\26!) 012
012\266 076
012\267 :I: 003
012\270 006
012\271 = 026
012\272 = 075
012\273 • 307
012\274 • 002
012\275 • 002
012\276 = 002
012\277 • 045

LAI 1-,
s(WKOUT))C:point to work register again.,,
CAL SHL4Br shift it left four bytes
L with the subroutine ...
H .

~cf: ~ point to I for print test
SYM j -
LBM rfetch I
DCB and decrement I
LMB and save it again •.•
JFZ TEND - if zero, is untrue, go !_est end
L
H
~Mill ~ set I to 3 for next minor cycle

LAI ~ s(WKOUT) point to work register again •••
SYM7
LAM J'l..in order to fit fetch high order after shifts

RLC~
RLC , •• and rotate high order bits to low
RLC order position .••
OCTOUT then go OCTOUT as was done in

ELDUMPO •••

When it is time to end, this is indicated by exhaustion of the count stored in the var-
iable "J" (do not confuse with the keystroke designation in IMP).

TEND: 012\300 = 006 LAI}
O 12\301 = 020 s(J) point to variable "J" (not the command code)
012\302 a 075 SYM
012\303 = 317 LBM-..,.fetch J,
012\304 = 011 DCB ~decrement J
012\305 = 371 LMB '-..andstoreJvaluebackinJ .•.
012\306 • 110 JFZ TOCTlOL
012\307 = 250 L
012\310 = 012 H
012\Jl 1 • 00·1 RET

keep going with print loop till done

and of course back to caller when done •.•

Then the 32-bit multiple precision shift routine, left shifting 4 bytes one position ••.

SHlAB:

SHlABL:

012\312 • 075
012 \31 J == ObO

012\314 = 060
012\315 = 060
012\316 = 2!>0
012\317 = 026
0 1 2 \320 = 004
Ol2\J21 = 30'/
012\322 • 022
012\323 370
012\324 061
012\325 :II 021
012\326 = 110
012\32'/ = 321
012\330 012
012\331 007

SYM go look up the argument of shift

INLr-INL got to point to low order before shifts •••
!NL
XRA clear accumulator and flags

~CI ~define loop count

LAM fetch current byte,
RAL rotate old carry in, bit 7 to carry

LMA and ss a save the shifted bytes .••
DCL dee rement the index •••
DCC decrement the loop count •.•
JFZ SHL4BL:
L and continue till count is exhausted .••
H
RET then return to caller .••

ECS Volume 1 No. 2 -21- February 1975

This shift routine (p 20) assumes that the argument is a 4-byte string pointed to via
a symbol passed in the accumulator, looked up immediately on entry. Taking into account
the symbol table lookup time and the sequence of instructions executed by this routine,
at a 500Khz clock rate, it takes 262 cycles x 4 us - 1. 048 milliseconds per single bit shift.
For individuals w ih delusions of grandeur, note that to accomplish what an IB M 360
does in one "SLL" instruction - an "n" bit shift - the would-be emulator will require
1. 048 n milliseconds! (Only about 3 orders of magnitude slower - depending on your
choice of comparisor+ model.)

The actual code of BITCHASER completes with the CHECKEND routirie, added as an
afterthought to cause the program to return to IMP with an "E" key on tre keyboard.

CHECKEND: 012\332 =
012\333
012\334
012\335 =
012\336
012\337
012\340
012\341
012\342
012\343 =
012\344
012\345

115
0 '14
305
110
014
012
006
002
075
076
002
025

INl--.......__read display (modified ECS-5 code)
CPI L
"E" f ~check for end of memory test .••
JFZ BIGMLOOP
L and continue until done •.•
H

~(~PST ATE)~ point to IMPST ATE
SYM j '--
~MI }rs et IMPST ATE to 2

KEYWAIT and wait for IMP actions .••

The remainder of page 012 is filled up with the data definitions of the two text strings
printed by BITCHASER (see illustration on page 15 of the results •)

STRING!: 012\346 015 "length" STRING2: 012\364 013 "length"
012\347 = 007 "bell" 012\365 = 015 11cr 11

012\350 = 012. "lf" 012\366 = 007 "bell"
012\351 = 007 "bell" 012\367 012 "lf"
012\352 • 012 111£11 012\370 = 040 " II

012\353 = 015 11cr11 012\371 = 040 II II

012\354 = 040 II II 012\372 = 103 "C"
012\355 = 105 "E" 012\373 = 11 7 "0"
012\356 = 122 "R" 012\374 125 "U"
012\357 = 122 "R" 012\375 116 llNll

012\376 124 "T" 012\360 117 11011 012\377 075 11:11
012\361 = 122 11R11
012\362 = 123 "S"
012\363 = 075 11;11

The RAM locations 200 to 225 in page 0 are used to store the data values of BIT­
CHASER, pointed to by symbo~s stored at locations 312 to 341 in the symbol table of
the RAM page O. These work areas are as follows:

200 - 203
204 - 207
210
2ll
213 - 214

ECOUNT
TCOUNT
I
J
STRTADR

215 - 216 CURRENTADR
217 - 220 ENDADDR
221 PATTERN
222 - 225 WKOUT

STRTADR and ENDADDR should be loaded with IMP prior to starting BITCHASER,
in order to define the limits of the test.

ECS Volume 1 -22- February 1975

PROGRAMMING NOTES: Symbol Tables:

This is the second in a series of program­
ming notes on the use of the Intel 8008 instruc­
tion set in the context of an ECS system or its
equivalent •••

The programs IMP and BITCHASER which are listed and explained in this issue of
ECS make use of a rudimentary form of symbol table mechanism implemented via an
RST7 instruction {octal 075, noted mnemonically as SYM). The purpose of the symbol
table - used at run tilne - is to make up for a lack of an assembler or high order
language compiler's "address resolution" functions. It achieves this purpose by con­
centrating detailed address determinations as much as possible in a single run tilne
mechanism. "Address resolution" in this context means the definition of the content
of the memory address pointer registers Hand L of an 8008 CPU. Because
the symbol table mechanism uses a run time lookup to compute addresses of data, its
speed of access to the data will be lower than directly defined references. For ex­
tensively used variables, there will be an improvement in memory utilization effic­
iency approaching one byte per usage when compared against direct definition of H and
L with the LIU and LLI instructions. Thus the usual speed versus memory tradeoff in
this case becomes the 57 cycles (. 228 ms) versus 16 cycles (. 064 ms) of SYM compared
to direct definition - with the average savings of one byte in four for the SYM usage
applied to a large number of frequently used variables.

But the considerations are not quite as simple as the comparison of speed and mem­
ory utilization requirements. The real advantage of the symbol table approach comes in
when you consider the problem of compiling and changing code for a program in absolute
machine language using paper and pencil. (If you have a compiler or assembler with
hardware to support it, the symbol table concept is still used - but the lookups are usually
done once at compile time to generate the fastest possible run time code.) As noted in
ECS-5, if it is desired to relocate the memory allocation of a widely used variable -
say MEMADDR of IMP for example - you {or a suitable utility program) would have to
adjust every instance where the address in question was defined and used. For the 8008
instruction set, this is further complicated by the fact that you have to consider the
definition of two independent registers , Hand L, required for addressing. (A better
computer design such as the Motorola M6800 can use a single instruction
16-bit immediate operation for this purpose in loading index addresses.) For an exten­
sive hand - compiled application program of 1000 bytes or more in the typical home­
brew microprocessor system, such adjustments and relocations could be quite time con­
suming.

If the addressing is concentrated in one known place - the symbol table - then you
only have to change the pointers in the symbol table in order to automatically change all
references to the data made throughout the program. The mechanism gives you a form
of ''leverage" in control of your program design which can be quite powerfully used as
the designs evolve. In the example of IMP, if I wanted to change the MEMADDR loca­
tion from address 000/006 to some other place, it would only be necessary for me to
change the symbol 11 611 entry of the symbol table at locations 306 and 307 (see below.)
To achieve this power, however, the SYM mechanism has to be used 100% for all vari­
ables potentially subject to such relocation.

- -,

ECS Volume 1 No. 2 -23- February 1975

The diagram below depicts the basic idea of the symbol table as used in the IMP
and BITCHASER software of this issue - and as will be used for the most part in sub­
sequent ECS software designs. for the 8008.

SVM BOL TABLE

CPU H,L llEGISTER.S

THE IDEA OF A SYMBOL TABLE LOOKUP

In use in a program design, all symbolic references to data are made in th:ree· steps
corresponding to the three numbered arrows of the diagram:

1. Define the symbol as a value in the accumulator, eg.with an LAI in­
struction - as for example at locations 221 and 222 of page 13 in IMP.

2. Call the symbol table lookup function with an RST7 instruction, noted
mnemonically as SYM in the listings of ECS software. This invokes the 1010 byte
SYM routine:

000/ 070
000/ 071
000/ 072
000/ 073
000/ 074
000/ 075
000/ 076
000/ 077
ooo I 100
000/ 101

056
000
004
300
360
307
060
367
350
007

LHI L_
h(SYMB01S) ..S l.__.,,.define symbol table page
ADI L_jadd starting address to the
l(SYMBOLS)\ - symbol giving table address
LLA -----=----which is moved to L pointer
LAM -------get H part of symbol address

!NL ~point to L part of address
LLM --__,...redefine Las symbol's content
LHA -------.,..and move H part to H
RET finally return with H/ L pointing.

3. On return from the SYM function, use the H/ L pointers of the CPU to ad­
dress the data which is to be manipulated by the program you are writing.

In creating symbols, remember that every even numbered address offset is a potentially
legal symbol - but that if the start of the symbol table is in the middle of a page of memory
space as in this case, there will be a maximum size to the table less than a potential
128 table entries in a full page table. The notation "s(x)" is used to represent the
value of the symbol associated with mnemonic "x".

ECS VolUJTie 1 No. 2 -24- February 197 5

The symbol table required by the IMP and BITCHASER software in this issue is
printed below, and is loaded in locations 300 to 341 of page O. The particular loca­
tion of the symbol table is arbitrary subject to the following constraint: since the
SYM routine uses an 8-bit addition to compute addresses, and makes no data validity
checks, the symbol table must be so located as to avoid crossing a page boundary
in the 8008 memory address space. This means that the maximum number of symbols
possible with a given symbol table is one page full or 128 symbols. (Two bytes are re­
quired for each symbol definition.) By altering the constants at locations 071 and 07 3
in page 0 (the SYM routine) the origin of the symbol table can be placed at any point
in memory - and such alteration if done carefully might be done under program
control.

SYMBOLS: 000 \300 = ooo-i---Just for kicks, the symbol table can point to itself
000\301 300) as well as anywhere else •••
0-00\302 000 2~
000 , 303 = OOJ f. Symbol 11 002" is IMPSTATE

000\304 0001___ .
000\305 004 S Symbol "004" is IMPENTRY

000\306 OOOL--,..
000\30 7 • 006) Symbol 11 006 11 is MEMADDR

000 \310 = 000 i.....__Symbol "010" is GPJMPAL
000\1i l Cl I fa) -

The following are additional symbol definitions used by BIT CHASER •••

000\312 OOOl..
000\313 2005-Symbol 11012 11 is ECOUNT
000\314 = OOOL
000 \31 !> 204 S -Symbol 11014" is TCOUNT

000 ' 316 • OOO?,.__Symbol 11016 11 i·s I
000\31'/ 210)
000 \320 = 000 ~ .
000\321 2115-Symbol "020" is J

000\322 = 012}-
ooo \323 = 346 Symbol 11 022 11 points to STRINGl

000 \324 = 0 l 2t.
000 \32!> a 364) '-Symbol 11024 11 points to STRING2
OU0\326 = 000(... .
000\327 = 222~LSymbol "026u points to WKOUT

000 \330 • OOO°'L
000 \33 l = 21 2) - This symbol unused at present .••

000 \332 000"l
000\333 • 213)'-Symbol 11032 11 points to STRTADDR
ooo\334 = oooi.__
000 , 335 215) ~Symbol "034" points to CURRENTADR

000\336 = OOO't
000\33'/ 211_r-Symbol "036" points to ENDADDR
OOO\J40 OOOL
000\34 l 221)-Symbol 11040 11 points to PATTERN

M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Volume 1 No. 3

ECS THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This March 197 5 is sue of ECS provides a new modem design to replace the ECS-2
design published in 1974. This modem, given the hardware designation 11 ECS-8 11 as the
next in a series of plans, will provide the typical Experimenter's Computer System
with the logical equivalent of a paper tape input/output facility - but implemented on re­
usable magnetic tape media (eg: cassettes) with data rates up to 1210 baud. .The March
issue is exclusively devoted to this hardware design and its software implications,
including .•.

1. BiDirectional FSK Modem Design ECS-8 - Hardware Description: infor­
mation including system components, notes on the design theory of operation,
interconnect summary, tuning procedures and 'the question of "standards"'.

(Turn to page 2.)

2. Retuning the ECS-6 UAR/ T Clock Rates describes a logical error in January's
issue and a new set of frequencies calculated based upon the requirement that the
highest data rate selectable should be 1210 baud.

(Turn to page 10)

3. Logical Testing of the CPU/UART /Modem/Tape System is a section concer­
ning the listing and use of two short test programs useful in the initial verification
of the tape interface by writing and reading an integer sequential test pattern.

(Turn to page 11.)

4. Errata: Two short notes. (Turn to page 17)

5. IMP Extensions for Tape Interface Control: What does it take to perform the
utility operations of data dumps to tape, reading from tape, and comparison of tape
data to core? This section begins the description of IMP'(lnteractive Manipulator
Program) extensions with the new command codes, modifications of old program
code and the major portion of new routines. The information is not complete,
and will be continued in the April issue.

(Turn to page 17).

The complete description of the ECS-8 Modem design required more space in this issue
than originally intended. As a result several items have been deferred until the April
1975 issue of ECS: the conclusion of the IMP tape utility extensions, further notes on
programming techniques for small microcomputer systems, a new column entitled
"Navigation in the Vicinity of Ge-Aquila" concerning the Intel 8080 instruction archi­
tecture in an Experimenter's Computer System programming context, etc. I hate to
pull a "perils of aPauline" ending on the IMP extensions but there is a definite
economic limitation on issue size. I am presently looking into methods of compactifying
progrCl,m notational formats - probably along lines of a more syrribolic notation supported
by uncommented absolute binary listings. M CS· 1~ L
© 1975 M. P. Publishing Co. Publisher

1

C' March 12 1975.

ECS Volume 1 No. 3 - 2- March 1975

BIDIRECTIONAL FSK MODEM DESIGN ECS-8 - Hardware Description

The hardware portion of this article concerns a new tape interface modem design to
replace the earlier ECS-2 design. The result of applying Occam's razor to a complicated
design is a design of simpler concept, not "multiplying redundancies beyond logical ne­
cessity" to paraphrase the philosopher. The new ECS-8 design is printed as the detailed
circuit diagram in this issue's centerfold, and is described in the text.

A modem, by definition, is a "modulator-demodulator. 11 In the flmodulate" mode of
operation, the device accepts time-varying serial logic level data from the serial I/ 0
interface (eg: ECS-6 as described in January's issue) and converts it into the "modulated"
- in this case FSK - output signal which is sent to the audio memory device for recording.
In the "demodulate" mode of operation, the device accepts the modulated FSK signal on
an audio recording as read by the audio device, and converts the FSK back into a time
varying stream of logic level data for interpretation by the serial interface device. The
net result is a facility to store digital data on magnetic tape, potentially to transfer that
data to other individuals' systems, and to recover such data at a later time.

The ECS-8 design accomplishes the audio mass storage function in conjunction with a
suitable cassette tape recorder. During the course of development of this device in proto­
type form, three different cassette recorders were tried. The following is a summary of
the results of this trial, giving the suitability of the recorders in question:

1. Realistic CTR-104: This Radio Shack product when tested with a con­
tinuous "mark" tone exhibits quite audible "wow and flutter" variations in fre­
quency. When recording and reading data at 1210 baud, this $35 recorder will
occasionally exhibit an input parity error but gives good data in general.

2. Panasonic : This :recorder costs approximately $40, and the extra
$5 over the Radio Shack product gives a more than proportional increase in the
quality of workmanship. Using the test programs in this issue, it was found
capable of recording and reproduction at speeds up to 121 0 baud with no observed
parity error flashes with the INTEREAD program found in this issue.

3. Superscope C-104: This $99 recorder is one which will be useful in the home
computer context for several reasons: it has a tape position counter which can be
used to index block locations on tape for large blocks of data, it has a pitch variation
control of 20% which can be used to compensate for differences in tape speed
when exchanging tapes with other individuals, and it has some nice "cue" and

"review" controls which position the tape with heads active, potentially allowing
a fast "block count" tape position search with manual intervention, computer con­
trol of the motor. This one also reproduced data at 121 0 baud with no observed
errors using the test programs in this issue.

The test results here are a heuristic first look at the suitability of various recorders with
actual data. Later formal testing using programs to evaluate the units and other factore
such as tape brand and quality will be reported in subsequent issues. If you want to se~
lect a recorder for use in your own system, this first inspection would seem to indicate

ECS Volume l No. 3 - 3- March 1975

that the choice of a recorder is fairly broad. There is one consideration which will have
to be checked out if you want to take ad,vantage of software which M. P. Publishing Co.
will be supplying in recorded form. That consideration is the manufacturer's tolerances
on tape speed. For the typical Panasonic, Superscope or Sony cassette recorders in the
$50 to. $100 range with AC adapters, this will probably be close enough to the nominal
1. 875 IPS to get compatibility with other recorders. I have my doubts about that aspect
when the Radio Shack or other inexpensive recorders are considered.

THE FSK RECORDING SYSTEM:

In the diagram of the ECS-8 design, the central element is a Phase Lock Loop, the
XR- 210 circuit made by EXAR Integrated Systems, Box 4455, Irvine Ca. 92664. This
chip ·is widely available and will cost from $5 to $6 in plastic packages, depending upon
your source of supply. I have seen at least one advertisement in Popular Electronics
classifieds for this chip, and there is the Radio Electronics information cited in a pre­
vious issue of ECS. The IC serves the following functions, as programmed by the IN/OUT
line of the serial interface device (ECS-6 or equivalent.)

OUTPUT: For output operation, only the VCO section of the PLL is used. The
control logic of the design in this mode programs a "mark" frequency when the
data line is "l" and programs a "space" frequency when the data line is 11 0 11

• Thus
the time sequence of information on the TSO bit line of the serial inter-
face will be dfrectly mapped into a time sequence of frequencies in the VCO. The
VCO output is tapped and run through a 741 buffer amplifier to the tape recorder
which is assumed to be in the "record" mode for output.

INPUT: For input operation, the PLL is used to decode the information coming in
from the audio information source, turning the FSK modulations into a time sequence
of information on the serial data line TS! at the interface. The control logic of this
design programs the VCO to the "f0 " frequency so that the loop will idle in lieu
of a signal half way between the mark and space frequencies.

The phase lock loop itself is an example of the feedback principle in action. When an in­
put signal is received, the signal is compared against the VCO signal frequency. The out­
put of the phase detector is an error signal with a sign appropriate to cause the integrated
control signal (the voltage into the VCO) to move thus causing the VCO to move in the
necessary direction to make the two signals equal in frequency. The PLL thus "locks"
onto the signal frequency, causing the VCO to track it. In FSK applications, the control
voltage exhibits two "steady" states - and transitions between these states. The compara­
tor section of the XR-210 loop circuit is used to translate the rough VCO voltage into a logic
level signal which can be interpreted by the serial interface port. When you have built your
first Modem, use of a dual trace scope with chopped input will illustrate a pair of signals

like this: ""\ ~
Filtered VCO Control 5

'' TPZ" SI6~AL

TTL Level Input Data
7' ~ ,, TP~'' S:ICrNAL

The amplitudes are not to scale, and this diagram is typical of a 1210 baud sig­
nal with the filter components of this issue's circuit drawing.

ECS Vo 1 urne 1 No. 3 -4- March 1975

In addition to the XR-210 Phase Lock Loop circuit, several auxi 1 i ary el e­
ment s are found in the ECS-8 design to build a modern system.

An output buffer amplifier provided by the 741 operational amplifier IC -4-
is used with capacitive feedback to integrate the VCO square wave, amplify it
to several volts, and to isolate the VCO terminal of the XR-210 from the tape
recorder connection. A voltage divider in the form of potentiometer R20 is used
to set a suitable input level for the tape recorder being interfaced. Note that
the input to the tape recorder is shorted to ground when data is to be read from
tape. This prevents an unwanted coupling between the tape input and tape output
which was observed to occur with all three of the tape recorders mentioned on
page 2. A similar feature switches the output of the tape.

An input clipping amplifier is provided by the 741 operational amplifier IC -5-
to provide isolation of the PLL input from variations in tape recorder output am­
plitude. The dual diode feedback around the operational amplifier restricts the
amplitude range to essentially the diode forward voltage drop (positive and negative)
thus clipping the signal to approximately twice this drop peak to peak. This output
of the clipping amplifier is applied to potentiometer R23 which sets the
actual PLL input level. During output operations, switch S4a grounds the input to
the PLL to prevent coupling of the tape recorder signal via the tape drive electronics.

The motor start delay oneshot is used to give the computer program a 11tirne out"
at the beginning of tape read or write orerations. When the ttSELECT" line goes low
indicating the start of an I/ 0 to the modern, this cues the one shot through the
differentiator provided by Cl3 and R22. The RDY output to the interface logic
then goes low for a time period - set by potentiometer R21. At the end of the time
period, nominally 2 seconds, the tape drive motor is assumed to have "settled down"
to a steady state condition after the initial startup transients, thus the data trans-
fer is not liable to errors caused by transport variations.

The motor control relay is used to turn on the tape recorder's motor under
computer control whenever the -SELECT interface line is in the low state. Due
to the inverting driver of the 7426 section, the selected condition is the "off"
state of current in the relay coil - hence the "NC" contacts of the relay
(terminal connections 3 and 4)should be used to make / break the "remote" input

to the tape recorder.

Control Logic is provided by the two 7 426 open collector NAND gate sections,
a TEST/ CPU mode switch Sl, and two TEST control switches S2 and S3.
When the mode of Sl is CPU, the control logic is connected to the computer's
serial interface for control by a suitable program. When the mode of Sl is TEST,
the control functions of TEST DATA (S2) and TEST IN/OUT (S3) govern the con­

trol of VCO frequency settings.

The purpose of including the test switches is to provide a means of initially tuning the
device and/or of re-tuning it to a different set of standards at a later time.

ECS Volume 1 No. 3 -5- March 1975

FREQUENCY SELECTION CONTROL:

The truth table of the control inputs (whether Sl is in CPU or TEST mode) is noted
in the centerfold diagram of the ECS-8 design. The A and B columns of the table in­
dicate the logic level on the lines at the points marked "A" and "B" in the diagram. As
is usual for such tables, the "X" indicates a "don't care" input. The output of the logic
is listed in the third column as "fvco" - the XR-210 VCO frequency which will result
for the given combination of bits.

The XR-210 has two inputs for frequency setting. One is the "keying" input of pin
10 which is normally used to generate FSK in an output-only applic~tion according to the
EXAR application notes on this device. The second is the "fine tune" input which is
supposed to be used to set the center frequency (free running frequency) of the loop in
receiving situations. In this design, the same XR-210 is used for both input and output
by programming both of these inputs digitally, so that a total of three frequencies is
obtained - mark, space, and free running frequency "fo"• Two potentiometers RIO and
RS are used to set the "mark" and "space" frequencies using a procedure described be­
low. Optionally, a third potentiometer can be used in this section for the fine tuning of
the free running frequency - in place of the fixed lOOK resistor R9, illustrated by the
"dotted 11 arrow in the drawing.

OPEN COLLECTOR LOGIC:

Note that all of the "NAND" logic in this circuit design is provided by 7426 high vol­
tage open collector NAND driver gates. For the control logic applications, this means
that "pull up" resistors must be provided to the 5 volt logic supply level. The pull
up resistors for this use are R4 and RS. For the relay drive application, the "pull up"
is provided by the relay c:oil acting as a load instead of the resistor used in logic
applications. The high voltage gate was chosen so that a large (ie: lZ volt) voltage could
be applied to the relay coil to guarantee operation with a current greater than the 3 ma
required for it to change state. The relay is used as described on page 7 of the Jan­
uary ECS issue. The remaining section of the 7426 circuit can be used as noted in
the drawing to drive a relay with DPDT contacts if it is desired to automate the function
of switch S4. Open collector logic is also used for the XR-ZlO's output stage, so you
will note R3 is used to define the output logic level voltage for the PLL •

NOTES ON CONSTRUCTION OF THIS ClRCillT:

The ECS-8 design prototype was built with wire wrap construction techniques as docu­
mented in M. P. Publishing Co. publications 73-1 and 74-5. With only 5 integrated cir­
cuits, a very small board might be used, or a very roomy 4" by 611 board could be used
as was used in the prototype. Other interconnection techniques can be used if desired,
however for convenient and permanent one-of-a-kind construction wire wrap is really the
"only way to go".

A PC board version of this design is in the process of layout as this article goes to
press. An announcement of price and availability is expected to be included in the next
issue of ECS. The board will be labelled with the component designations in the ECS-8

ECS Volume 1 No. 3 -6- March 1975

centerfold of this issue, and very little additional documentation is expected to be re­
quired beyond that supplied in this issue of ECS. With whatever technique you employ
- wire wrap, point to point solder, PC - it is highly recommended that you use sockets
for all integrated circuits •. This prevents heating of the IC' s if soldering is employed,
and provides a convenient means of removing and replacing the chips if you should make
a damaging mistake. Three 8-pin "minidip" sockets are required; one fourteen pin DIP
and one sixteen pin DIP socket are required.

INTERCONNECTIONS:

The RDY, SEL, TSI, TSO and IN/OUT lines of the modem should be routed to the
corresponding lines of one of the serial interface unit ports (eg: ECS-6 I/0-2
lines for one of the channels of tape interface.) If an alternate UAR/T control inter­
face design is used, these lines will have to be run to the equivalent definitions in the
controller. To sununarize, the lines are:

RDY - this line goes to the RDY input of the channel chosen for the modem
in an ECS-6 type multi-channel serial interface.

SEL - this line goes to the SELect output of the channel chosen for the modem.

TS! - this is the serial input line from the demodulator to the TSI line of the
serial interface controller for the channel in question.

TSO - this is the serial output line from the appropriate serial interface channel
to the modem modulator.

IN/OUT - this line is logic 11111 for input, logic 110" for output, and is used to
program the frequency control logic of the XR-210.

In addition, the connections for ground, positive 12 volts, positive 5 volts, and negative
12 volts must be made.

The interconnections to the tape recorder are made via the three jacks Jl, J2 and
J3 (the latter is not drawn explicitly in the diagram.) The jacks can be omitted if you
do not mind "pigtails" wired to the modem board with appropriate plugs for the tape
recorder. The following connections must be made: a phono-plug to miniature phone
plug patch cord is required to go from J1 to the tape recorder 1 s audio output jack -
typically marked "Aux Speaker" or 118-ohm Earphone;" A phono-plug to miniature
phone plug patch cord is required to go from J2 to the tape recorde·r•s audio input jack,
typically marked "Auxiliary Input" or "Microphone" ; A phono-plug to sub - miniature
phone plug patch cord is required to go from J3 (relay contacts NC and COM) to the
motor control input of the tape recorder, typically marked "Remote" or "Dictation. 11

The modem may be physically mounted along with the rest of the syste1n in a com­
mon card rack or "breadboard" layout, or it might be reasonable to put the modem in

a separate box associated with the tape recorder •

ECS Volume 1 No. 3 -7- March 1975

TUNING PROCEDURES: USING THE TEST CONTROLS

Having made the interconnections, verified proper wiring and power voltages, and
inserted the integrated circuits, the tuning of the modem frequencies is the last step
prior to testing the unit under computer control. In order to identify points in the cir­
cuit for purposes of tuning and understanding the circuit, a new feature has been added
to the ECS-8 circuit diagram - notation of several test points as "TPn" where "n" is
replaced by an appropriate arbitrary number starting at unity. The basic test point for
use in tuning the circuit is test point #1 (TPl) - the amplified VCO signal. The basic
test instrumentation can be as simple as an oscilliscope or frequency meter - or both
can be used. With the components shown in the circuit diagram, turning on the modem
power, independent of any switch settings of Sl to S4 , will produce a waveform looking
approximately as follows:

. What the test switches do is set up data conditions which affect the period of this
waveform logically, and enable the corresponding frequency settings to be
obtained by trimming resistors.

Trimming the Free Running Frequency f0 :

Set the TEST /CPU mode switch SI to the TEST mode and set the test IN/OUT switch
S3 to the IN position (83 open so that line B is logic 11111). This will program the phase
lock loop's VCO to the free running frequency logic inputs - and the TPl signal will be
f 0 assuming no interloping frequencies are coming in the Jl connection. The free run­
ning frequency can be trimr.oed by two n-iethods in this mode:

1. By trimming the capacitor CO by adding extra low value capacitance
lumps in parallel with the main CO with its nominal • 03 mf value.

2. By trimming the resistance of R9. However, to keep a reasonable
control range for the other adjustments, R9 should not be made much lower
than the lOOK ohms shown in the diagram.

In the prototype, with a 5% tolerance IOOK fixed resistor for R9 and a 10% tolerance
cO of • 03mfd without trimming, the oscillator was found to be at S. 555 Khz when power
was first applied. The final value of 5. 50 Khz (see "Standards" section below.) was
achieved by trimming with small silver mica capacitors on a "cut and try" basis. The
circuit diagram shows two such "phantom capacitors" as dotted lines in parallel to the
main CO. In the PC board version now being prepared, space is left for two such trim­
ming capacitors.

}'rimming the 11Mark" and "Space" frequencies.

Once the f
0

frequency setting has been trimmed, the following procedure may be

used to set the "mark" and "space" frequencies of the FSK modulation. First, set the

ECS Volume l No. 3 -8- March 1975

the test IN/OUT switch S3 to the "OUT" position (S3 closed so that the B signal line is
now logic "0" in the test mode.) This logically programs the VCO control lines to eithe.
the "mark" or "space" frequencies depending upon the state of the A signal line. The
two FSK frequencies are set according to the "Standards 11 section below using the followint
iterative procedure to converge on the final settings. An iterative procedure is required
in order to overcome the interaction between the two controls RB and RIO •

1. Set the test data to "space 11
- the logic 110 11 level which occurs on line A

when S2 is closed. Adjust R8 until the desired "space" (lower than f
0

) frequen­
cy has been obtained.

2. Set the test data to "mark" - the logic 11111 level which occurs on line A
when SZ is open in the test mode with S3 closed. Then set the observed
frequency at TPl to the nominal "mark" frequency.

3. Repeat steps 1 and 2 in sequence until both settings are within the nominal
1% tolerance discussed below in the "standards" section.

Note that this procedure of adjusting the mark and space frequencies should have little if
any effect on the f0 setting. But, if you want to check and ''be sure" you might look at
f0 again after these adjustments have been completed.

THE QUESTION OF "STANDARDS:"

Several individuals and representatives of groups of amateur computer enthusiasts
have written concerning the subject of standards for data interchange between multiple
systems, enabling the distribution of coded software rather than listings which must
only be re-entered by hand. With the definition of an audio tape interface scheme comes
the question of a standard for data interchange via that method. There are several
comments which can be made regarding such standards:

lo Within broad limits, the physical parameters of the recording or inter­
change method are essentially arbitrary. Thus for example in tape recordings,
it is. fairly arbitrary wh~ther one uses a series of octave-related tape speeds
starting at 2 IPS, 1. 875 IPS or even 1. 75 IPS. The idea of the standard is to
arbitrarily pick one such value of the range and stick to it in a given context of
application.

2. Given the same general method of reproduction or interchange, the most
useful standard is that which gains· the largest market acceptance. Thus all the
sour grapes in the world will not change the fact that in certain areas of the com­
puter markets that which IBM designs de-facto becomes industry standard. IBM's
arbitrary choice of design and interchange standards is as good as anyone else's
choice given the same physical concepts of recording or interchange so its wide
mal"'ket acceptance makes such a standard attractive to other instances.

So, what are the physical parameters affecting the FSK recording method, the general
ranges of interest, and the market factors shaping a choice of recording par.a1:'1e.ters?
Answers to these questions - at whatever level of detail required - are imphc1t m any

ECS Volume l No. 3 -9- March 1975

selection of a set of standards. In the list here, you will find a summary of the physi­
cal param.eters and .value I have chosen as a "first cut" at the problem. Some notes con­
cerning the choices follow the list.

I.

2.

3.

Center

ECS-8: FSK RECORDING
PARAMETERS ••

Freguency: f 5. 5 0
0

Mark Freg: fmark 107. 5% f o

SEace Fre g: fspace 92. 5% f o

Khz 1%

5. 9 3 Khz 1%

5. 0 9 Khz 1%

4. Data Rate of U A R I T : 1210 baud 1%

s. Assynchronous format Earameters:

Stop Bits:
Data Bits:
Parity:

2
8

odd

The basic specification of the FSK signal is its center frequency and deviation. The
above set of parameters reflects a choice of 5. SO Khz center and deviation of
7. 5% in either direction to produce the two data frequencies. The choice of these par-
ticular nwnbers reflect the following general considerations:

1. The frequency should be kept as high as possible relative to the data rate
of the interchange, to provide a large nwnber of cycles (between 4 and 5 in this
case) at the space frequency for the PLL to lock on.

2. The frequency of transmission should not be higher than about 6Khz when
the typical lOKhz band limit of the usual inexpensive recorder is considered -
this guarantees that the wide band signal of the FSK will be recorded with suf­
ficient accuracy to recover the data later. The information theory prediction
that at least the second harmonic information would be requireg was veri-
fied in the prototype by attempting interchange at approximately 8 Khz f0 with
other parameters identical. Result: errors in subsequent read operations.
(At 6 Khz, there is still sufficient reproduction at the harmonic 12 Khz to
ensure accuracy, but the drop off with increasing frequency puts a 16Khz signal
outside the range of reproduction.)

3. The deviation of 7. 5% (relative to center frequency) was chosen to make
the basic frequency shifts large compared to possible erroneous shifts such as
tape recorder "wow" and "flutter" or steady state differences in tape speed.
With the prototype circuit, deviations as large as 12% were found possible, but
were at the limits of control ranges and less stable than the 7. 5% figure. Smaller
deviations were also tried • The final 7. 5% choice is a good balance between
the small deviation consideration and the limits of this circuit.

4. The baud rate and format considerations are taken from the ECS-6
design - subject to the considerations stated on the next page of this issue.

ECS Volume 1 No. 3 -10- March 1975

With these physical parameter considerations for an FSK modem taken care of, what
are the market considerations - considerations of more than one user? A standard is
only a standard when it is useful to the individuals employing it. For your own in-house
use, you could potentially use any set of parameters within the capability of the basic
design. My purpose in publishing this list of parameters is one and only one:
to provide a definition of the FSK parameters which I will use in recording programs
for distribution to subscribers, whether generated by myself or by other individuals
now in the process of creating articles for this publication. If a design such as the ECS-8
modem is used, there is room for a fairly broad variation in these parameters to allow
retuning for other sets which may or may not be used by other sources of
software. I make no claim to special knowledge or universal acceptance of this particu­
lar set of parameters - and the flexibility of the basic modem design allows later re­
specification should th~re be widespread dis satisfaction among subscribers with the par­
ticular choices in this set.

A final note on the standards subject: this discussion has only concerned the physi­
cal (low level) details of recording standards. There is another whole "can of worms 11

involved in the programmed format of data which is conveyed by tapes using this method.
To keep the size of this issue within the bounds of sensibility I am deferring discussion on
that topic for now.

RETUNING THE ECS- 6 UAR/T CLOCK RATES

The following frequency settings are achieved as a result of retuning the ECS-6
oscillator to 38. 720 Khz (25. 83 p.s for those who set frequencies via oscilliscopes} and
taking into account a logical error in the writeup of the ECS-6 design as published. The
logical error in question was the assumption that a 16 division ratio is possible with
the 4-bit 74193 counter used to establish clock frequencies, when in fact the maximum
is division by 15 and two of the 4-bit codes are identical. The retuning is done so that
the highest bit rate will be approximately 1200 baud (1210 baud is • 83% off the typical
commercial rate of 1200 baud) and the 110 baud rate will be retained at one point in the
series for.use with the teletype. The complete list of frequencies and codes is thus:

Code Iden. Baud Rate Code !dent. Baud Rate

0000 0 1210 (tape) 1000 8 151.25
0001 1 1210 (tape) 1001 9 134.44
0010 2 605 1010 10 121.00
OOll 3 403,33 lOll ll ll0.00 (TTY)

0100 4 302.5 1100 12 100.83
0101 5 242. 1101 13 93.08
OllO 6 201.66 1110 14 86.43
Olll 7 172.86 1111 15 80.67

With this retuning, the control word for the channel 0 teletype output becomes octal 262
instead of 362, and word 011/220, word 011/211 of the previously published ELDUMPO
routine must be changed to reflect the new TTY rate code.

ECS Volume 1 No. 3 -11- March 1975

LOGICAL TESTING OF THE CPU/UART/MODEM/TAPE SYSTEM:

Once the modem has been checked out at the level of tuning described on pages 7 to
9 of this issue, the next step is to check out the ability of the system to record data gener­
ated by a program and later read that data. Two self-contained programs are provided in
this is sue for the purpose of testing the interface by a very simple method: An integer
nUillber sequence displayed in the binary lamps has a very characteristic visual pattern
when the rate of generation is lower than the eye's characteristic "flicker" limit. By
writing then reading the sequence of binary numbers 0008 to 3778 repetitively, this sequence
will be put on a test tape for corroboration visually in the display when reading. The other
8-bit display can be used to flash any parity errors and to continuously monitor the difference
between one word and the next when reading data. The first program of interest is the
data generation routine INTEGEN:

Note: Starting with this issue, I will be mnemonically referencing
the 8008 I/0 commands of the system I actually wired by their proper
symbols. No changes are made in the actual codes printed in previous
issues of the magazine - which differ from the published and corrected
ECS-5 codes by a level of inversion in the 3-bit selection of device within
an 8008 I/0 channel. It is not a major point, since an individual system
of hardware can potentially use any one of the 8008 1/0 codes (with the
proper characteristics) for a given function.

:NTEGEN: 004\000 006
004\001 002
004\002 11 7

INTGLOOP: 004\003 006
004\004 026
004\005 111
004\.006 310
004\007 D!:>
004\010 = 301
004\011 = 044
004\012 = 030
004\U13 074
004\014 030
004\01 !:> 110
004\016 003
004\01'/ "' 004
004\020 :J02
004\021 113
004 \022 JOH
004\023 1 ., .,

004\024 020
004\02!:> 1U4
004\026 003
004\02'/ 004

LAI First turn off interrupts as usual
00 000 0010
IN7 1/0 Interrupt control code
LAI · } 0001 01 10 1210 baud, ch. 1, select, output

IN4--Tape unit control word code (formerly called
LBA 11IN3 11 due to ECS-5 error)
OUT36 Write status to left display.
LAB Recover status

~f€uooo }-:- Mask with TEOC/TBMT positions

~:C:uooo }- And test for valid TEOC & TBMT

JF Z INTGLOOP~,...- Keep looping around until
L the UAR/T is ready for more.
H

iN~C ~then give the Uar/T some more stuff.

~~~37 }- and display the same stuff on right lights 

INC Increment the data for next output word 
JMP INTGLOOP And reiterate the whole cycle ad 
L infinitum .•. you stop this program 
H manually with the single step 

control. 

This prograrnlet can be entered into memory at the absolute addresses shown by using 
the IMP program previously published. Then the "Shift X" operation with appropriate 
address setup can be used to enter execution at location 004/000. 



ECS Volume 1 No. 3 -12- March 1975 

Once the INTEGEN program has been entered and execution initiated from IMP, 
a first check of the system can be done aurally by connecting a high fidelity amplifier 
and speaker to test point TPl. The characteristic FSK signal should be heard, which 
in this case (going gung-ho at 1210 baud ) sounds somewhat like a multi-engine prop-
eller driven aircraft during takeoff - especially when the volume is turned up through 
a good set of speakers! To make the test tape, the following manual procedure is 
suggested: 

1. Temporarily suspend prograr.n execution by flipping the CPU panel controls 
to the single step mode. After this is done, the steady state "mark" tone of 
5. 93 Khz should be heard in the speaker if you use the setup suggested above. 

2. Put the recorder into its recording mode and start it up. Leave the remote 
control input temporarily empty so that the controls are active independent of 
computer motor control operation. 

3. After 10 to 20 seconds of mark tone recording, turn the CPU back to the run 
mode so that the actual data will be recorde - an integer sequence of numbers 
generated by INTEGEN at the maximum data rate of the system, 100 CPS (Charac­
ters per second.) When the program is running, observe the integer pattern in 
the display. 

4. After a coffee break or suitable 5 to 15 minute period of time, come back, 
turn off the recorder, put the CPU in single step, use the bootstrap mode to change 
location 3 (IMPSTATE) back to 0028 , interrupt the CPU and re-enter IMP. You 
now have a test tape with an integer sequence of numbers on it at 1210 baud. 

With this process of making the tape completed, rewind the cassette (or reel 
if you use reel-to-reel) and enter the INTEREAD program code as found on the next page. 
The INTEREAD prograr.n is designed to set up for read operations at 1210 baud, and read 
any characters detected by the UAR/T with display on the binary la.-rnps. The program 
also does a rudimentary error check as follows: 

- The difference between one character and the next is continuously calcu-
lated and displayed as the lefthand bit of the OUT37 display lar.nps. If this lamp 
ever flickers, it indicates that an invalid sequence of integers was read - it should 
be solidly "on" during input operations. 

- The three receiver status bits - OVERRUN, FRAMING ERROR and PARITY ER­
ROR - are displayed in the righthand section of the OUT37 display lamps. If bits 
2, 1 or 0 of this lamp array ever flash, then one of the error conditions was detected. 
In practice, except when the phase lock loop is free running, these lamps were usu~lly 
always "off" indicating a lack of errors. At rates higher than 1210 baud, all three 
recorders tested would occasionally produce read parity errors. At the 1210 baud rate, 
the Radio Shack recorder would occasionally (once in several minutes) flash a parity 

error. 

Once entered, set MEMADDR of IMP to 005/000 and start 

IMP 11 shift X 11 operation. 

INTEREAD with the 



ECS Volume 1 No. 3 

INTEREAD: 005\UOO 006 
00!>\UUl 002 

"""\ 00!>\002 = 11'1 
rNTRLOOP: 005\003 = 006 

005\004 027 
005\00!:> 1 11 
005\006 :HO 
005\00'/ 044 
005\010 040 
005\011 074 
005\012 = 040 
005\013 110 
005\014 003 
005\015 005 
005\016 113 
005\017 320 
005\020 1'15 
005\021 = 302 
005\022 = 223 
005\023 012 
005\024 = 340 
005\025 = 301 
005\026 c 044 
005\027 007 
005\030 264 
005\031 a 177 
005\032 332 
005\033 104 
005\034 c 003 
005\035 005 

-13- March 1975 

~~00 010r Turn off interrupts code 

fa~! OJ ul ,._ ::o:·::::.t :::::::r1:~:1::::0:;:t 
IN4 r is set up in ECS-6 control 
LBA- save status just read 
ND!--__,,,. mask off RDA bit 
00 100 000 

~0Pf 0 0 000}- and test RDA for data available 

JMP INTRLOOP loop around if not available 
L 
H 
INS read code for ECS-6 channel 
LCA - save data in C-register 
OUT36 - write data just read in the left binary display 
LAC - restore saved data 
SUD - subtract previous data left in D-register 
RRC - rotate difference into high order 
LEA - and temporarily save it in E 
LAB - restore status from B 

~J'~oo lll~ and mask off the error indicators 

ORE - and merge the result with high order difference 
OUT37 - and display inthe right hand display lamps 
LDC - and create the new "old" data value. 
JMP INTRLOOP and back to gobble up some more bits 
L from the tape ••• 
H 

When INTEREAD has been initiated in operation, with a blank tape noise signal, 
display outputs should "run wild". The reason is that when the PLL oscillator is free­
running without locking to either the mark or space frequencies, the control voltage is 
at the center of its range, "hunting" around for the proper lock. If you examine test 
point 2 at this point, you should find a "random" waveform with an amplitude of several 
100' s of millivolts with the recorder playing back a blank tape. 

When the first "mark" tone appears on the tape, the loop should quickly lock solidly 
onto a fixed level at TP2. Then, when the data begins to appear, you will be able to 
set up the chopped dual trace scope display illustrated on page 3 - if you have or can bor­
row the use of a dual trace display. With an oscilliscope as a tool, you can adjust the 
input level to get the cleanest waveform at TP2 - or, using only your CPU and program 
INTEREAD as a tool, you can adjust the level while watching the error lamps - with 
too little level, errors occur - and the same goes if you over drive with a combination 
of high tape recorder amplitude and high input level setting. 

COMPUTERS IN SCIENCE FICTION? Imaginative applications of technology are often 
anticipated years ahead of realization by fiction writers - thus Jules Verne's 
well known anticipations of TV and fast powerful submarines. Good and well known 
science fiction writers like Robert Heinlein and Poul Anderson have often come out with 
neat computer applications. I am interested in readers' contributions to a bibleography 
in this area including short descriptions of the computer-related theme of the story being 
referenced. 



ECS Volume 1 No. 3 

l~PVT 

CLIPPING. 
AMP 

-14-

l>t 

1>2.. 

MINI - bIP 

Q-Note: S4 may .optionally-::­
; be replaced by DPDT relay 
~driven from IN/OUT line 

·.·······/buffered by IC 2 section d 

+1Z TP3 

R.1'1 lf.';rK R" 3.'f K 

Iii! 15" 'l.. a!JI.< 
IAaPUT 8145 

R18 i.+.;tl.( R 14- 3."7 K 

(. 't 

TP1 

.13"'15 
C11 .Q!1 M~ 

March 1975 ECS Volume 1 No. 3 

ECS-8: 
b~ 

BIDIREtTIONAL FSK MO)EM 

llZ>K 

Lt 

5 

Ca.v-1 T. He lMe re J1". 

·······: :······· 

13 II+ 

Tll•OJ. 
ff\li c 

StAs-1-

Rt.S 
a:z. 
K 

u 

c0 
OPT\ ONA\. 
T~IN\IW\I~ 

+11. 

Ci 

.ooaz 
M5-

FILTER.. 

ce T .. ·~,sz-Tc3 
~ 

f\LTEREl> 

I? IC 3 2 1. 
+s 

VCO V+ ~ COMI'. 
GA~ P~. J>CT. IWP. 

0\IT 

XR-21,0 

" XAll v-
..:. 

R3 
~.'JI( YCO 

IS' 

RU 

Z..71( "'::" RIO 
~51< 
1111.<llll< 
AU. 

10 

b3 

rn. 

-15- March 1975 

+5 MOTOR START bE\.AY Ot..iESMOT 

~H .S~K (~ 30 N\5-
6----------.J\JV'--------+---.... ~+~f-_---e-----------. 

C13 

.001 M~ 

2 

+-U. 

-3-

tiaE5SS' 
i 

UL I 

!.U(, I l. 
I 

COM • 
3 

~,....~~~~~.....;.N.c.._!.! + ~ 
~:.Q. i ~ 

"' MO e S ~ 
--~·.,-s-r·1 x1 MOTOR. co~T.J, .... 
~ ~ELAV 

TSI. 

' 

~ 
E<.S' 

-------- vco 
t--------o... !U' St.~ 

: C.PU -

J2. 

© 

IN 

1'75 M.P. PU8LISHIN<:r CO. 

BUFFER 
AMP 

OUTPUT 
~II 

1RSK 

f'OINE~ REGVl~Eb: 

+ 1.Z. v oi J + S V ,z 11\\frR~AC E 
L1t..1ZS 

-1.2. v /I 

G.t-.:ib 11. 

I.C. - ?.­
'7Cf.U. POWER 

PIN i~: +S 
PIN '? 'S Gt.al) 

3 

! -.__ ________________ c __ ,u __ ~bA~T~A;...;... ________ 
7 

+~J_ TE~T I.N/OuT 
B i Si\. TEST ~ 

CPU 

F .. EQUE.t.JC~ CPU .XN /Oij'T 'i SEL.EC.U:Ol\S 
IE<.~'-: 

LO~_A_ ~ .jYCO 
I 
I 

x 1 s., \"Jl"E~ F'.l\Ct -0 
0 0 ~SflAC.& 
1 0 s __ .I( 



ECS Volume I No. 3 -16- March 1975 

ECS- 8 MODEM DESIGN PARTS LIST •.• 

CO = .03 mfd base plus optional 
trimming as required. 

Cl,C2, C3 = .0082 mfd (10% tol.) 

C4 = 30 mfd 10 volt electrolytic 

C5,Cll = .01 mfd (20% tol.} 

C6,C9 = 3 mfd, 25 volt electrolytic 

c7,c8,c10,c12,c14 = .1 mfd 50 volt 

Cl3 = .001 mfd 50 volt 

Dl,D2,D3,D4,D5 = silicon switching 
diode, ln914 or equivalent 

Jl,J2,J3 = RCA style phono jacks 
for interconnect to tape recorder 
via patch cords (optional.) 

Pl = DIP plug interface to ECS-6 
I/O sockets from modem terminals 

Integrated Circuit Listing: 

IC -1- XR-210 Phase Lock Loop 
Modem Circuit 

IC -2- 7426 Open Collector High 
Voltage NAND Driver 

IC -3- NE555 Ready Delay Timer 

IC -4~ 741 "minidip" op amp 

IC -5- 741 "minidip" op amp 

RO = 8.2K VCO gain 

Rl,Rll,Rl9 = lOK 

R2,R3,Rl7,Rl8 = 4.7K 

R4,R5 ,R6 ,R 7 = 1. OK 

RB 5K space adjust pot 

R9 lOOK 

RlO 35K mark adjust pot 

Rl2 2.7K 

Rl3 l.5K 

Rl4, Rl6 = 3.9K 

Rl5 2. OK 

R20 10 K output level pot 

R21 500K ready delay pot 

R22 27K 

R23 lOK input level pot 

Sl = DPDT Test/CPU mode switch 

S2 SPST Test Data Switch 

S3 SPST Test Switch 

S4 = DPDT Tape Signal Routing 

Kl = SPDT Miniature Reed Relay Tape The four test points in-
motor control. The prototype uses dicated in the diagram may be 
a surplus Grigsby-Barton #GB31C-G2150 implemented with teflon feed 
But any relay which will operate with thru insulat"ed standoffs, or 
a 6 to 10 volt potential and less than appropriate test prod jacks. 
16 ma can be used with the 7426 driver. 



ECS C Volume 1 No. 3 -17 - March 1975 

ERRATA CORRECTIONS FOR PREVIOUS ISSUES: 

The following errata have been detected in the referenced is sues, and are noted 
here for the record: 

January 1975, page 4: The "NDBl" pin of the COM2502 UAR/T is pin 38. The 
TTY line's source is 16-4 not 14-4. 

February 1975, page 13: The reference to "PCW" as the output of IC 14 pin 6 
should have read "PCC". This error is also found in the text of the BANK 
SELECTION LOGIC description on page 11 • 

-----------------------------------------------------

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL: 

The IMP program is extended , as documented in this section, to handle an added 
capability - the dumping of absolute binary data onto the tape interface for long term stor­
age, followed by later recovery of that data. A comparison function is also incorpor­
ated 'to allow the data written on tape to be checked against core data so that one will be 
certain of the veracity of the tape copies. The new functions added to the IMP program 
ae the following: 

"T" - this function is used to set IMPSTATE to a value of 3 so that a second letter 
can be decoded as a two letter tape control sub-command. The two letter tape 
control command sub-conunand combinations are listed later on page \8. 

"Shift W" - this command requires two keys to be depressed for safety, and is used 
to invoke the data write utility. Pressing this key assumes that the program par­
ameters of data count and a starting MEMADDR value been set up using the H, L, 
TL and TH control commands of IMP. It also assumes that the tape recorder 
has been set up in the "record" mode to receive data from the appropriate modem. 
The channel/rate selections are also assumed, as defined by the TR and TU commands 
to be described. 

"Shift C" - this command requires two keys to be depressed for safety, and is used to 
invoke the data comparison utility routine. It assumes the same program setup as 
the corresponding "Shift W" write operation which produced the block, and assumes 
that the physical setup of the tape recorder is for a read operation. 

"Shift R" - this command also requires two keys to prevent accidental activation. It 
is used to invoke the data read utility, which is identical to the data comparison 
utility with the exception that data is stored in appropriate memory addresses rather 
than compared against the addresses. 

In addition to these direct extensions to the IMP command facility, the subcommands of 
the 11T 11 operation include the functions described on the next page. 



ECS Volume 1 No. 3 -18- March 1975 

The tape control subcommands are used to define the content of several RAM data 
areas, display the content of these data areas, and to perform tape utility control actions. 

"TB" - this command/subcommand combination is used to display the current 
content of the 16-bit tape block length count. 

11 TD 11 
- this command/subcommand combination is used to display the current 

content of the tape control word used for determining tape unit and rate. 

11
TF 11 

- this command/subcommand combination is used to display the current 
formatting error count - errors in the three UAR/T status bits detected 
during read and comparison operations. 

"TH 11 
- this command/ subcomrn.and is used to transfer the current IMPENTRY 

value to the H portion of the block length count. 

11 TJl 1 
- this command/ subcommand is used to initialize the tape control parameters 

of block count, error counts (format and comparison data), and control word. 
All the control data is zeroed out. 

"TL" this command/subcommand is used to transfer the current IMPENTRY value 
to the L portion of the 16 bit block length count. 

"TR" - this command/subcommand is used to define the UAR/T rate portion of the 
control word from the low order content of IMPENTR Y. 

11 TS 11 
- this command/ subcommand is the tape leader spacing command, and. is 

used to turn on the tape motor for a period of time (ten seconds) sufficient to 
move the cassette position past the leader after a rewind. It invokes a routine 
which uses timing loops to count approximately 2. 5 million 8008 CPU states 
in terms of the structure of the counting subroutines and data used to call them. 

11 TU11 
- This command/ subcommand is used to define the control word unit as the 

current two low orde~ bits of IMPENTR Y. · 

"TX'' - this command/subcommand is used after a comparison operation to display 
the count of words read which differed from internal merr1ory data (the count is 
valid assuming a previous "Tl" initialized the count data areas. 

The decoding of these subcommands is done in a manner which is identical to that used for 
the main set of IMP commands - the software extensions for the tape facility include a gen­
eralization of the "IMPDECO" routine given in last month 1s issue to· allow symbolic specif­
ication of the command table address and the command branch target taken when a match 
page address taken when a match is found. 

One other change.has been made in the previously published IMP program - the symbol 
table has been moved out of page 0 (bootstrap page in ECS systems) to reside at address 
012/260 in the protected memory of the system software. This minimizes restart activ­
ity to the initialization of the first 1028 bytes of page 0 after the CPU has been powered down 
for additional interfacing or other activities. 



ECS Volume 1 No. 3 -19- March 1975 

The fir st items to present in the course of redefining the software load to include exten­
sions for tape interface functions are the changes in the IMP decoding algorithm. Basic­
ally, the IMPDECO algorithm is made to begin with a SYM function call to define the 
command table address. In current software, there are now two command tables - for 
the IMPST ATE value of 2, the same codes are defined as in the previous case, but the 
table is extended by four entries for the four new regular IMP commands. The second 
command table is used for the IMPSTATE value of 3 (ie: following the "T" conunand) 
to decode the second character of the two character tape control commands. In this 
second command decode application, a different page for the conunand branch is also 
required, thus the IMP "GOTFUNC" routine must also be modified to provide this new 
generality. 

Because the decode routine has been generalized, it is now necessary to use a setup 
procedure to define the parameters for IMPDECO. In this patched version of the IMP 
software, a branch is made to "IMPSETUP" with a return to "IMPRESUME" when the 
state 2 decode is used. IMPSETUP is used to define the high order portion of the GOT-
FUNC branch address in DECOGO, and to setup the symbol for the state 2 command 
table, IMPCMDS. IMPRESUME is the normal entry point to the decoding routine in 
this new version. Note that a jump to IMPSETUP could also have been made from the 
jump at location 020. Note also that the NOP's and KEYWAIT at location 013/023 
have been replaced by a jump to location 010/000, the place where the setup for 
an IMPST ATE value of 3 is executed, defining the "T" subcommand table instead of 
the normal IMP table. 

013\023 104 JMP TSETUP IMPSETUP: 
013\024 000 L 013 \l 20 = 310 LBA 
013\025 010 H 013\121 • 006 LAI 

IMPGO: 
013\122 030 s(DECOGO) 
013\123 • 0·1~ SYM 

013\026 ... 104 JMP IMPSETUP 013\124 IS 0 "f 6 LMI 
013 \027 120 L 013\125 = 013 h(IMP) 
01 J\030 ... 013 H OlJ\126 • OUt> LAI 

IMPRESUME: 
013\12'/ • 032 s(IMPCMDS) 
013\130 • 104 JMP IMPRESUME 

013\031 • 0·1s SYM lookup addr 013\131 • 031 L 
013\032 • 301 LAB restore chr. 013\132 • 013 H 

Note that the IMPSETUP routine is located in a region of memory address space which 
had formerly been occupied by the "GOTFUNC" routine (see last issue.) The GOTFUNC 
routine has been moved to location 013/251 and modified to define the high order target 
address from the data stored in the variable DECOGO, rather than the default page 013 
in the original version. The address located at 013/035 must accordingly be changed 
to 251 so that the new location of GOTFUNC will be reached from IMPDECO. The new 
ver sioh of GOT FUNC is listed on the next page at the top. 

Also at the top of page 20, right hand side, is a listing of the jump instructions which 
are located in page 013 so that the new tape commands can be reached outside of page 013. 

When the normal IMP decode occurs, it references a page 013 address - one of these 
jwnps if one of the new commands is detected. 



ECS Volume 1 No. 3 -20- March 1975 

GOTFUNC: 
013\251 060 INL 

Here are the four jumps used to 

013\2!:>2 J4 ., LEM reach outside page 013 when normal 
013\253 006 LAI point IMP decode finds read, write, compare 
013\2!:>4 OJU s(DECOGO) to DECOGO or 11 T 11 command characters ..• 
013\2!:>!:> 0'/5 SYM 
013\256 33·1 LDM ((was LDI) WRITEJ: u 13 \310 104 JMP WRITE 
013\2!:>'/ 106 CAL SETJMP 01 3 \311 01 !:> L 
013\260 212 L Ol:.i\312 010 H 
013\261 = 013 H READJ: 013\313 = 104 JMP READ 
013 \262 1U6 CAL SYSSETUP 013\314 12J L 
013\263 135 L Ol:.i\315 UlO H 
013\264 013 H COMPJ: 013\316 104 JMP COMPARE 
013\26!:> 104 JMP GPJMP 013\31'/ 116 L 
013\266 0.1 s L u 13\320 = 010 H 
013\26'/ 000 H TJ: 013\321 104 JMP TSETUP 

013\322 = 32!) L 
013\323 012 H 

And here is the new command table at location 013/344, including the four new command 
codes as well as all the old commands .•• 

IMPCMDS: 013\344 22'/ "Shift W" 1---._ _ 
013\345 310 l(WRITEJ) J ~write command (to tape) 

013\34 7 316 l(COMPJ) compare tape to memory 013 \346 203 "Shift C" f:= 
O 13 \3t>O 222 "Shift R" . 
013\3t>l 313 l(READJ) read tape into memory 

013\352 324 11 T 11 } .,,_-------.-initiate tape control state 
013\3!:>3 321 l(TJ) 
013\3!:>4 304 "D" 
013\J!:>!:> 240 
U 13 \J!'.>6 305 "E" 
013\357 1!:>6 
013\360 Jl J 
013\361 221 
013\362 314 
OlJ\363 = 0'/6 
013\364 311 
013\365 1!:>2 
013\366 ·312 
013\361 
013\370 
013\3'/l 
OlJ\Jr/2 
013\3'/3 
u 1 3 \3 ., 4 
013 \J '/!:> 
U L.i\3'16 
u 13 \J '/'/ 

1 !:>O 
Jl6 
1 !:>3 
230 
200 
310 
106 
J 1 !) 
112 

"K" 
"L" 

"I" 

"J" 

"N" 
"Shift X" 

"H" 

"M" 

this section of table is 
identical to the pre­
viously printed version 
but in page 013 instead. 

There is one final modification of the old code which must be noted: the symbol table 
has been moved from page 0 to page 012, location 260, for the same reason that the 
regular IMP command table was moved. Thus word 000/071 of the SYM has. to be changed 
to 012g and word 000/073 of SYM must be changed to 2608 to complete modifications. 



ECS Volume 1 No. 3 - 21- March 1975 

With the preliminaries completed, the next item of interest is the beginning of the list 
of routines required to implement the new IMP functions. The first routine in address 
sequence is the TSETUP routine used to fool IMPDECO into decoding via the "T" subcom­
mand table T APECMDS for the first character following a "T". This occurs when 
IMPSTATE is 3 following the "T" command ..• 

TSETUP: 010\00U 310 
010\001 006 
010\002 l.)02 
010\003 075 
010\004 0'/6 
010\005 002 

t~A save thye character just read 

s (IMPST ATE) change state for the next 
SYM input character _by: referencing 
LMI and redefining IMPSTATE 
2 for normal code interpret after 

010\006 006 
010 \OU'/ 012 
010\010 O'/ !:> 
010\011 301 
010\012 104 

LAI ~state 3 special ••• 
s(TAPECMDS) 
SYM · point to tape command table 
LAB recover tape subcommand character 
JMP IMPDECO and jump to the new generalized 

010\013 033 
010\014 013 

L IMPDECO as if normal entry 
H but with alternate command table 

If you look at this routine carefully - and observe its coordination with IMPDECO - see if 
you can find a way to eliminate 2 bytes and thus compactify the software ••• such an im­
provement is possible. 

When the IMPDECO routine was entered in the normal 11 2 11 IMPSTATE, a write command 
"Shift W" might have been decoded. If so, the WRITE thing to do is to branch to WRITEJ 
in pa.ge 013, and thence to this little wroutine ••• 

WRITE: 010\015 006 LAI vfirst thing in writing - to tape, not 
010\016 014 s(TAPECTRL) necessarily for publication - is 
010\01 '/ 075 SYM . to reference the command word 
010\020 30'1 LAM set up by TR/TU commands, 
010\021 044 NDI L -then extract the rate/unit bits, 
010\022 3'14 ll lll 100 J-
01.0\023 064 ORI r=· and s·uperimpose output select ..• 
010 \024 002 00 000 010 
O 10\02!:> 3'10 LMA the new command code is good for 
010\026 111 IN4 · this 1/0 to control logic & later.• 
O l O \02'1 l 06 CAL W AITOUT r go wait for the proper TBMT /TEOC 
O 1O\030 14 ·1 L and RDY flags to indicate that the 
010\031 012 H motorstartisdone ..• 
010\032 106 CAL OUTCOUNTtgo wait "x" milliseconds more and 
010\033 200 L then write out a 16-bit data count 
0 1 0 \0 34 0 1 2 H 
010\035 006 LAI rdefine a temporary copy of the 
010\036 016 s(TCOUNT) block data count by referencing 
010\0~H O'/!:> SYM its location then copying data 
010\040 :J'/1 LMB prepared by OUTCOUNT from 
010\041 O(>O !NL CPU registers Band C to 
OlU\042 J'/2 LMC storage reserved for TCOUNT 
Ol0\04J 016 LBI J ~thendefinealOcentisecondwait 
0 1 u \044 0 1 2 1010 
o 1 o \l.)4!) 106 CAL W AITCS yinterval, then wait it out before 
o 1 o \046 116 L commencing the main data 
010\04'/ 012 H block. 



ECS Volume 1 No. 3 -22- March 1975 

The writing of data onto the tape immediately brings to mind the question of the data 
format. The basic data format implied for this program can be stated explicitly: a block 
of data consists of (on output) a leader of (nominal) 2 seconds while the motor gets up 
to speed, followed by an additional delay for output of "x" seconds to allow "slop" in 
tape positioning on input, followed by two characters containing the block count, then a 
delay of . 1 seconds then the actual data bytes, followed by another "x" second delay and 
a repeat of the block count for verification. The block is closed out mechanically by 
turning off the motor after a final delay of 2 seconds. As a tentative value of "x" for 
this software, I have used. 1 seconds - although I it is not yet obvious that this is the 
best value. I chose a delay between the count words and the actual data block for the 
following reason: when listening by ear to the data, a characteristic rhythm pattern is 
heard at the start of the block - a single blip of data followed by the actual block. This 
gives an indication - roughly - that the data is likely to be in the right format. A further 
reason is to allow easy detection of the block start and end when scanning the tape fast 
using a tape recorder with "cue" and "review" controls such as the Superscope model 
mentioned. 

The code of page 21 has gotten the output operation down to a point where the start of 
a block has completed and the program is now ready to output the main sequence of data 
of interest .•. 

OUT LOOP: 0 1 0 \0 !:JO = 1 0 6 
0 l 0 \0 5 1 1 4 ., 
0 10 \0 52 = 0 12 
010\053 106 
010\054 000 
010\055 = 0-12 
0 1 0 \0 5 6 = 30 7 
0 1 0 \U 5 '/ = 1 1 3 
010 \060 = 106 
010 \061 164 
010\062 013 
0 1 0 \0 6 3 = 3 0 7 
0 1 0 \0 64 = 1 ., 5 
010\065 = 060 
010\066 307 
010\067 1 rt 
0 10 \0 70 = 00 6 
010 \0 71 016 
010\0'12 106 
010\073 = 132 
0 1 0 \0 '/ 4 = 0 1 2 
010\075 140 
0 1 0 \0 '/ 6 = 103 
0 1 0 \0 Tl = 0 1 0 
010\100 104 
0 1 0 \ 10 1 0 t>O 
010\102 010 

CAL WAITOUTjdo not procede any further until the 
L flags have been cleared by UAR/T 
H and it is ready for output ... 
CAL ATMEMA to find out what the current MEMADDR 
L is by loading it in H/L 
H 
LAM ~go fetch the current byte 
INS (true code) J so that it can be sent to tape 
CAL INCMArnot an ancient andean indian, but 
L the routine in-crements the 
H value of MEMADDR 
LAM ] - fetch the next byte 
OUT36 and display it ... 
INL J- - and increment address LO 
LAM and fetch next 1 byte 
OUT37 -----and display it too ... 
LAI L 
·s (TCOUNT) f -----point to data count 

CAL D2B r---then decrement the count 
L temporary TC OUNT 
H 
JTC ENDOUTr- zresult of zcountdown determines 
L what will happen ... 
H 
JMP OUTLOOP 
L 
H 

if the carry was false, underflow 
has not occurred, so the block 
is not :lone - reiterate it! 

Now in every instance except the last, the jump true carry at 010/075 will fail, causing 
routine to loop back for the next byte of the block being dumped. Finally, the carry will 
set to 1 by D2B, causing execution to flow to ENDOUT, listed at the top of page 23. 



ECS Volume 1 No. 3 -23- March 1975 

ENDO UT: 010\103 
010 \l 04 
010\10~ 

010\106 
010'10 ., 
010\110 
010\111 
010\112 
010\113 
010\114 
010\115 

106 
200 
012 
016 
310 
lOb 
116 
012 
250 
111 
025 

H

CLAL OUTCOUNT} at end of block, write the count 
again for confirmation ... 

2~~1IO rthen set up for 
CAL W AITCS a 200 centisecond (2 sec) 
L 
H block trailer interval ... 
XRA clear accumulator 
IN4 and output null code to tape units. 
KEYW AIT .,. having completed the output, back to 

IMP command interpreter ... 

The following routine is accessed by the tape control command "TS" and is used to 
space the tape a fixed interval after rewinding and setting up for forward motion. 

LEADER: 010\272 
010\2./3 

250 
111 

010\2'/4 = 006 
010\275 014 
010\2'/6 075 
010\277 
010\300 
010\301 
010\302 
010 \303 
010\304 

30'/ 
064 
002 
111 

= 056 
012 

XRA "L.-.clear the accumulator so that 
IN4 5 a momentary null code can be output to 
LAI ~he tape controller .•. 
s (T APECTRL) then point to the tape control 
SYM word via SYM mechanisms ..• 
LAM--load the accumulator with the selection 
ORI ----then force "output select" onto whatever 
00 000 010 rate/channel had been selected .•. 
IN4 ~then output the command code, turning on 
LHI (___ the motor ••. 
1010 I'set up for 10 second leader delay (adjust this 

constant to suit your tastes ... ) 
The H register is thus used as a temporary count for the number of seconds of delay in 

the leader, serving to cycle the following leader delay loop ... 

LDELAY: 010\305 016 LBI vthe inner loop of leader delay is a 1 second 
010\306 = 144 10010 S delay programmed by the WAITCS routine •.. 
010\307 = 106 CALWAITCS calledtodelayatotalof 
010\310 116 L 100 centiseconds as programmed 
010 \311 O 12 H by the value in B on entry 
0 10 \312 051 DCH -....after the inner loop delay, decrement the 
010 \313 = 110 JF Z LDELAY l the seconds counter (H register) 
010 \314 30 5 L '(--and branch back if needed ••. 
010\315 = 010 H _.; 
010 \316 250 XRA ............ clear the accumulator ... 
010\317 111 IN4 ----then output the turn off (null) code .•• 
010\320 025 KEYWAIT ----- and back to keyboard interpreter .•. 

The next routine to be listed is a service routine which is activate by "TH" and is 
used by IMP to set the H portion of the tape block count working storage ..• 

COUNTH: 010\321 -
010\322 
010\323 
010\324 
010\325 
010\326 
010\32'/ 

006 
022 
0'/5 
3 '11 
104 
156 
013 

LAI }-s(COUNT) point to block count via SYM 
SYM 
LMB -._then define H portion from last entry, left in 
JMP EXAMINErthe B register by GOTFUNC ... 
L then go to EXAMINE in IMP proper 
H in order to output the count ... 



ECS Volume 1 No. 3 -24- March 1975 

A similar routine is used to perform the same function for the L portion of the block count 
when invoked by the "TL" command to transfer IMPENTRY to the count' s low order. 

COUNTL: 010 \JJO 
010\331 
010\332 
010\333 
010 \334 
Ol0\JJ5 
010\336 
010\33'/ 
010 \340 

006 
0~2 

0·15 
060 
3'11 
061 
104 
156 
013 

~('61ouNT) L_ point to block count (length) 
SYM j __. 
INL --...........increment to look at low order ... 
LMB --......and load the low order from entry 
DCL ..__...and look again at start of COUNT 
JMP EXAMINE~ 
L and jump to EXAMINE it 
H via the IMP routine ... 

The next section of code consists of two utility functions for display of tape control 
data, "DSPLYCTRL" invoked by the 11 TD 11 command and "DSPLYBLK" invoked by the 
"TB" cOinmand .•. 

DSPLYCTRL: 010\341 = 
010\342 
010\343 
010\344 
010\34!:> 
010\346 
010\347 
010 \3!:)0 

006 
014 
0·15 
30'/ 
l'I !) 
250 
1 ., ., 

025 

~~APECTRL)}- first point to tape control 
SYM word via SYM mechanism .•• 
LAM-+ then fetch TAPECTRL ••• 
OUT36 ,....._,_____and output to display 

~~*37}clear the other display to all zeros •.. 

KEYWAIT------=-and back to IMP as usual. •• 

The following routine displays the block count in the two display lamp sets.,. 

DSPLYBLK: 010\351 = 006 LAI 
O 10 \352 = 022 s(COUNT) 

This label identifies shared code to execuite(sic) SYM and go to EXAMINE of IMP .•. 

GO EXAM: 0 1 0 \ 3 5 3 0 ., !:) 
010\354 104 
010\3!)5 = 1!:>6 
010\356 013 

SYM 
JMP EXAMINE 
L 
H 

The next set of code is a utility routine 11ATMEMA11 which is called at several places 
in the tape control extensions (and later software to be published soon) in order to place 
the current content of MEMADDR. into the Land H registers - pointing AT MEMA ••• 

ATMEMA: 012\000 006 
012\001 006 
012\002 U'/5 
012\003 30"/ 
012\004 = 060 
012\00 5 36'i 
012\006 350 
012\00'i 00·1 

LAI ~ s(MEMADDR) point to MEMADDR 
SYM 
LAM---put H part of MEMADDR into A temporarily 
INL tq point to the L part of MEMADDR 
LLM _,,..which enables the L result to be defined ••• 
LHA--.after which the H result can be loaded from A 
RET ~and it is now safe to return to caller. 

The tape utility commands 11TR" and 11 TU11 are used to set the "rate" and "channel" 
sections of the ECS-6 tape interface control word respectively. The next page lists the 
service routines for these commands. "RATE" is reached when the alternate commanq; 
table decodes an "R" following the "T 11 • "CHANNEL" is reached similarly when the . 
character "U" follows a "T". In either case, the current IMPENTRY low order 
data is used to define the corresponding field of T APECTRL. 



ECS Volume No. 3 

RATE: U 1 i:::'\U lU 
Ul~\Ul 1 
Ul2\Ulid 
012\0lJ 
0l2\014 
012\U1 !> 
u 12\016 
012\U 1 '/ 
012\020 = 
012\021 
u 12\022 

UUb 
Ul4 
U'/!:> 
JU., 
Ui.14 
u 1 '( 
J'/U 
301 
u 1 !> 
044 
J60 

-25- March 1975 

~(~APECTRL)L - point to the TAPECTRL word 
SYM J .._ 
LAM-..,.. and fetch the old control value first. ... 
NDI .~save all except old rate by 
O..QQQ 1111) "anding" with a mask ... 
LMA...-...and temporarily save back in T APECTRL 
LAB 1,..-so that IMPENTR Y copy can be fetched to A 
XCHG) and exchanged to high order (see ECS 

ND! t_ . Vl#l p. 20) 
1111 0000 J ~clear extraneous' lMPENTR Y stuff ..• 

This label identifies common code of RATE and CHANNEL used for recombinations ••• 

NEWCTRL: 012\023 26·1 ORM ..,...move saved portion of TAPECTRL into aligned 
U 12\024 J'/t) LMA set of new bits and save it again ... 
012\02~ 104 JMP DSPLYCTRf 
o 12 \026 J4 l L . and go show off the results of this 
012\02'/ O 10 H shifty maneuver ... 

The channel routine is analogous to RATE, but zaps new stuff into different bits ••• 

CHANNEL: 0 l l::!\UJO 
012\0Jl 
u 12\032 = 
012\0JJ = 
012\034 
u 12\0Jtl 
012\0J6 
u 12\0J'/ 
012\040 
0 U:!\041 
012\042 
012\043 
012\044 
012 \04~ 
012\046 

006 
014 
U7!> 
JU'/ 
044 
363 
3'/0 
301 
044 
003 
002 
002 
104 
02J 
012 

!<"¥APECTRL)l -~point to TAPECTRL word 
SYM Y-----
LAM and fetch the old content .•. 
NDI as with RATE, save all bits except channel bi ts 
1111 00 1 1 by ''anding" with mask ... 
LMA then stuff it back into memory temporarily 
LAB and turn attention to IMPENTR Y copy 
NDI l...,which must be first 
0000 0011 J masked to get rid of high order junmk 
RAL (.____.then shifted left into the right position 
RAL 5 within the word .•• 
JMPrafter which the same combining maneuver 
L is used as for the RATE case ... 
H 

The software control structure used to define the tape block format references the fol-
lowing routine sever al times. W AITCS accepts a parameter in the B register whX::h 
specifies the number of nominal 10 millisecond wait intervals (centiseconds) required ••• 

WAITCS: 012\116 = 
u 12\11 ., = 

The timing loop here is not 

WC SLOOP: 012\UW 
012\121 
Ul2\122 
012\123 
01:2\124 
012\l~!> 

012\126 
012\12'/ 
012\ 1 JU 
Ul2\1Jl 

026 
14'/ 

quite 

L) <:: 1 
JU'/ 
1 1 L) 

1 i:W 
Ul2 
011 
110 
116 
012 
uo ., 

oa an inner oop count which LCI 11 d . 1 . 
10310 approximates a 10 millisecond delay ••• 

10 milliseconds with the above constant! 

DCC decrement the delay count 
LAM - this is a long (8 state) NOP ..• 
JFZ WCSLOOJ 
L · the inner loop reiterates for a total of 
H 24 states per cycle (except last one) 

DCB decrement preloaded outer loop count 
JFZ WAITCSrnd if any centicseconds remain to be 
L counted, go back to wait some more. 
H 

RET otherwise return after an approximately correct 
WAIT interval... insert compensation here if 
want digital clock accuracy . 



ECS Volume 1 No. 3 -26- March 1975 

Another WAIT function required for coordination is the WAITOUT routine. Here the 
object is to centralize the instructions required for testing the status bits when output is 
being done to one of the ECS-6 controller's channels. Note that this routine is general, 
only requires that TAPECTRL be initialized prior to entry. The analogous routine in the 
previously published ELDUMPO program is af locations 011/217 to Oll/235 and could be 
potentially consolidated by a CAL WAITOUT if ELDUMPO is re-written to use the SYM 
mechanism. A characteristic of software written without automated assembly and com­
pilation aids is the price in time· paid to modify routines - thus the point is academic at 
the pre sent time. 

WAI TOUT: 012\14 7 
o 12\ l ~o 
012\l~l 

Orn\1~2 

012\153 
012\154 
012\l~~ 

012\1~6 

012\1~7 

012\160 
012\161 
012\162 
012\163 

~~~ ~(~APECTRL) k point to control word 
07~ SYM j ~
JO ·1 LAM and fetch it to A .••
111 IN4 and peruse the status bitz ...

~~~ ~lD~ll ooo} and isolate RDY, TBMT and TEOC 

0·14 CPI ~and test for all in proper state .•. 
l JO 01 Oll 0000 of readynes s ... 
110 JFZ WAITOUT}and loop around ad infinitum if 
14 7 L not ready to return .•. 
012 H 
0 l '/ RET (middle digit is a mistake, but the RET instruc-
t ,, tion spec sez "don't care" - so why bother to 

"~nt cuve change it at this point? ) 

The next routine to be listed in this issue is the "OUTCOUNT" routine used to dump 
the 16-bit block data count onto the tape after waiting "x" centiseconds, where "x" 
is here compiled as 10. This effectively allows a 1/10 second error in the positioning 
of a tape block relative to the ~nd of the last previous block - since reading operations 
will wait 2. 0 seconds from motor startup and writing will wait 2. 1 seconds. In order to 
avoid missing data, the read "listening" must begin prior to the commencing of actual 

data bytes. 

OUTCOUNT: Ol2\20U 016 
u 12\20 l 012 
012\202 106 
U l 2\2U J 11 6 
012\204 012 
012\20~ 006 
012\206 022 
012\20'1 07~ 

012\210 JO'I 
012\211 310 
012\212 l D 
012\213 060 
012\214 JU., 

012\21~ J20 
012\216 l lJ 
012\21'/ uu·1 

LBI /~set up the "x" second wait with 
1010 ) "x" equal to . 100 second (10 centiseconds) 
CAL WAITCS/ _ 
~ _r--- with the setup, go waitonit 

~(~OUNT) L --:-- ~setup for I/Oby pointing to COUN1 
SYM ~ :---
LAM .--.,_,..fetch high order of count to A 
LBA~save it for later use in B 
INS-------...and then send it out as the first byte of data ... 
INL~point to low order 
LAM and fetch it to A 
LCA but save it in C 
INS before zapping A with the output side 
RET of INS and returning .... 

Note that this routine also has a hidden extra function in its definition of the 

content of B and C as the high and low order block count for later use. 



ECS Volume 1 No. 3 -27- March 1975 

The next segment of the IMP extensions is the routine accessed by the "Tl" command 
of the extended program ... 

INITIAL: 

I NI LOOP: 

012\220 
012\221 
0 1 2 \2~2 
Ol2\22J 
012\224 
012\22!:> 
012\226 
012\22'/ 
012\230 
012\231 
012\232 
012\233 
012\234 
012\23!:> 
012\236 
012\23'/ 

006 
014 
U't!:> 
Ul6 
012 
U'/6 
uou 
060 
u 11 
110 
22!:) 
om 
006 
000 
1 1 1 
02!:> 

LAI }-s(TAPECTRL) point to first data byte .•. 
SYM 
LBI 1_.data count for initialization by crude method of 
10 J zapping 10 bytes in a row ... 
LMI{ _by immediate movement of 
0 . J' zero to the memory location ... 
INL increment the memory address pointer 

DCB and decrement the count ••• 
~F Z INILOOP} back for more until done 

LAI} three brownie points and a pat on the back if 
0 the reader can figure out a better way to 
IN4 clear A for the I/O control word reset ••. 
KEYWAIT 

This initialization takes advantage of the fact that all the tape specific data is located in 
addresses 200 to 2118 and can thus be zapped as a block .•• without separate symbolic ref­
erences. 

Then comes a bunch of miscellaneous jumps from page 012 to page 010 for the new 
subcommands. . . due to IMPDECO' s single-page orientation .•• 

JLEADER: 012\240 
012\!:!41 
012\242 

JDSPLYBLK: 012\243 
012\244 
012\24!:> 

JDSPLYCTRL: 012\246 
012\24'/ 
0 l 2\2t:>U 

JCOUNTL: Ol2\2t:>l 
012\2!:)2 
012\253 

JCOUNTH: 012\2!:>4 
OU:?\2!:>!:> 
012\256 

104 
2·rn 
010 
104 
3!)1 
010 
104 
341 
010 
104 
330 
010 
104 
321 
010 

JMP LEADER - this jump is used to get out of page 
L 0123 after "TS" command is decoded by the 
H IMPDECO routine as modified ..• 
JMP DSPLYBLK - same here for "TB" command ••• 

l i: ~ - oops - if 8008 were decent would be correct 

JMP DSPLYCTRL - same here for "TD" •.. 
L 
H 
JMP 
L 
H 
JMP 
L 
H 

COUNTL - same comment for "TL" ..• 

COUNTH - same for "TH" 

The following is inserted out of sequence for editorial reasons ... it fits. 

TSETUP: 012\32!:> U06 LAI In order to setup IMP for a second 
012\326 U02 s(IMPSTATE) character to follow the "T" command, 
012\J2'/ 0·1:, SYM the IMPST ATE value must be set to 3 
012\330 076 LMI to force the alternate decoding of the 
Ol2\3Jl UOJ 3 next character in the stream. 
Ul2\332 UU6 LAI ~Must also point to the word which 
012\333 030 s(DECOGO) holds the "GOTFUNC" high order 
Ul2\3J4 0·1::, SYM address and load that word with the 
012\JJ!:> 076 LMI (non symbolic) H address of the tape 
012\336 012 h(TAPECMDS) subcommand table ... 
u 1 2 \Jj ., U~!:> KEYWAIT Then return - as always to the 

IMP keyboard wait routine .•. 



ECS Volume 1 No. 3 - 28- March 1975 

This issue concludes with the new synibol table for IMP and the command table of the 
IMP tape extensions ... 

SYMBOLS: O 12\26U 012 
Ol::!\C!ol 26U 
012\262 uuu 
Ole!\26J LlUJ 
Ole!\264 000 
012\265 004 
012\266 000 
012\267 006 
0 l C!\2'i0 00:0 
012\271 016 
012\272 012 
012\273 354 
012\2c/4 000 
012\,2'/ 5 200 
012\276 000 
OlC!\277 201 
012\300 OOLl 
012\301 203 
Ol2\J02 000 
012\303 204 
012\304 000 
012\305 206 
012\306 000 
012\30'/ 210 
012 \310 000 
012\311 C! 12 
012\312 013 
012 \313 344 
Olld\314 012 
012\315 3:;4 

TAPECMDS: 012\354 330 
012\355 054 
012\356 306 
012\35'1 04 ., 
012\360 311 
012\361 220 
012\362 323 
012\363 240 
012\364 302 
012\365 243 
012\366 304 
0 l 2\J6'1 246 
01 2 \3 ·10 314 
012\3°11 251 
012\3 72 310 
012\3'13 254 
012\3'/4 3::!2 
012\J 75 010 
u 12\J '/ 6 325 
0 l 2\3FI UJO 

- "00" is symbol table self-pointer 

- "02" is IMPSTATE 

- "04'' is IMPENTRY 

-
11 06 11 is MEMADDR 

- 1110 11 is GPJMPMA 

- "12 11 is TCMDS 

- "14" is TCTRL 

-
1116 11 is TCOUNT 

- 11 20 11 is INOPS 

- 11 22 11 is COUNT 

- 11 24 11 is BADDATA 

-
11 26 11 is BADFORM 

- 11 3011 is DECOGO 

- 11 32 11 is IMPCMDS 

- 11 34 11 is TAPECMDS 

"X" l(EDATAD) -Input errors in data display ... 

"F11 
l(EFORMATD) - Input errors in format display ... 

"Ill 
l(INITIAL) 

"S" 
l(JLEADER) 

"B" 

- Tape data initialization routine ••• 

Tape leader routine 

l(JDSPLYBLK) 
- Tape block size display ... 

"D" 
l(JDSPLYCTRL) - Ta~e control word display ... 

"L" 
l(JCOlJNTL) - Low order block length setter ... 

"H" 
l(JCOUNTH) 
"R" 
l(RATE) 

"U" 
l(CHANNEL) 

- High order block length setter ..• 

- Rate setter (not monopoly bureaucrat) 

- Channel setter .••. 

As noted in the introduction, the tape control software is only partially 
listed in this is sue due to space considerations. The remainder will become 
a major portion of the April issue of ECS •.. CTH 



EC S - The Monthly Magazine of Ideas for the MICROCOMPUTER EXPERIMENTER 

News & Notes to accompany Volume 1, No. 3 - March 197 5. 
written on completion of the present issue ..• 

Some midnight madness 

THE DEMISE OF MICROSYSTEMS INTERNATIONAL: Current issues of electronic trade 
publications report the demise of Intel's 8008 and 8080 second source, Microsystems 
International . This Canadian firm is withdrawing from all IC business due to a lack of 
profits - a necessary ir.put to any durable enterprise. 

RISE OF A NEW CPU? General Instrumentation and Honeywell have come up with a new 
"CP-1600" 16-bit single chip computer reportedly 5 times faster than another recent 16 
bit announcement by National. The EE Times note had a price reported as $250 for just 
one, with no information on when the part would be available. 

WANT TO SEE WHAT TEXAS INSTRUMENTS has to say about microprocessors? April 
15 to 18, nationwide, TI is sponsoring 4 half-hour TV lectures on the subject early in 
the morning. I can't print the entire schedule of stations, but interested readers might 
lookup a local TI or distributor number in the Yellowpages and inquire - if you don't already 
have the information from trade publications. 

REGARDING FLOPPY DISKS: Don Whitehead (980 New Haven Avenue, Milford, Connec -
ticut) will be running the floppy disk pooled purchase previously announced. Write him for 
complete details. A summary is as follows: Drives will be the new Memorex 
model (original mechanical design with late user-oriented electronics). Price for the 
drive will be $575 assuming 11 orders total by the appropriate deadline, $700 if less than 
11 units are purchased. A $150 deposit will be required pending the 11-unit order deadline 
- or if you can not wait, the single unit price can be used to get the fastest possible turn­
around for the order. The price will include shipping to continental USA. A manufac­
turer's documentation package of 4 books is $12 extra, and a recommended package is 
the manufacturer's support kit including 10 disk cartridges, the documentation package, 
a test cartridge, and cleaning kit for a price in the $150-170 range, above the drive cost 
alone. As previously announced, if the drive deal goes through, M. P. Publishing Co. 
will provide an interface article. One final point - once ll orders are reached, the 
offering will be extended indefinitely - but it requires serious individuals to act ver:y 
soon to assure the first order needed to begin the ''OEM" pricing operation. 

SOFTWARE FOR SALE: With the availability of the ECS-8 PC card (layout and price to 
be in April's is sue) tapes of ECS 8008 software will be made available beginning with the 
IMP program. Price for a BASF Cl5 Cassette & Mailer with IMP recorded redundantly 
is $7. 50. Later versions incorporating improvements in the program will be available 
to previous purchasers on a cassette-recycling basis for $2. 50. First class mail 
is part of the price - with extra postage required for airmail or overseas purchasers. 
Tapes will be recorded in binary image format using the ECS-8 type of modem, from 
the working software in the ECS 8008 prototype system. 

WANT TO BLOW YOUR OWN HORN? As a new feature, subscribers' descriptions of 
their own Experimenter 1 s Computer Systems (not necessarily the M. P. designs, 
Intel CPU's or other fixed restraints on hardware) are solicited. Write it up in a few 
pages , covering the system design, unique features, problems you have encountered, 
etc. Oh yes, while it won't make you rich, there is a royalty of 10% on of sales pro­
rated by the fraction of space devoted to the article in each issue, payable in an initial 
lump based on current circulation with residuals thereafter .•. 

CTH March 13 1975 



M. P. Publishing Co. Box 378 

ECS 
Publisher's Introduction: 

Belmont, Mass. 02178 Vol. 1 No. 4 April 175 

THE MONTHLY MAGAZINE OF IDEAS 
FOR THE MICROCOMPUTER EXPERIMENTER 

Here you have the April 1975 issue of ECS, complete and unexpurgated. The main 
theme of this issue is the introduction of the "SIRIUS-MP" language as a notational form 
for expressing programs. The idea of SIRIUS-MP is to slightly generalize the low 
level code approach to program notation so that it will be fairly expedient for subscribers 
to hand "cross compile" programs on whatever variation of the "home brew computer" 
concept they have implemented. The variations on this theme include ••• 

1. The SIRIUS-MP Language... This article, beginning on page Z, is a first 
statement in these pages of some of the concepts involved in the language. 
It also provides information useful in understanding the several SIRIUS examples 
found in this issue. 

Z. BOOTER: An "Emergency" Bootstrap Loader. • • It is common knowledge 
what to "do when the lights go out. " But what do you do after the lights go out 
when your computer and volatile software were on the same power source as 
the lights? Turn to page 11 for a description of an einergency bootstrap loader 
concocted one weekend to combat electron deficiency anemia. 

3. IMP Extensions For Tape Interface Control (Continued ••• ) In the last issue, 
I did not quite fit all I intended to print within the confines of ZS pages. The re­
maining segments of the tape interface are presented in a SIRIUS fashion along 
with the equivalent 8008 code, beginning on page 14. 

4. Comments on the ECS-8 Design: Turn to page 19 for a short note on one 
aspect of the ECS-8 design which I should have pointed out in the March article, 
and was the source of a complaint from my brother Peter Helmers. 

5. Notes on NAVIGATION IN THE VICINITY OF Q;.-AQUILA ••• #1. So, you 
went out and got your self an Altair computer? Now what? Turn to page ZO for 
the fir st in a continuing series of articles on the use and abuse of the Intel 8080 
instruction set in an ECS context - with occasional intermingled information on 
hardware interfaces to be supplied from time to time (but not this time however.) 

6. Erratum: Turn to page Z4 for a slx>rt note about an ECS-7 diagram error. 

7. A Note Concerning The Motorola 6800 MPU: Also on page Z4 is a short note 
concerning the use of the M6800 in an ECS context, now possible to contemplate 
on a practical basis in the near future. 

This issue is going to press April 211975. The next issue is fairly well defined as of 
this date, and will include: an article by subscriber James Hogenson concerning the 
design of a unique oscilliscope graphics interface featuring a 4096 point (64 x 64 grid) 
matrix of spot locations; a continuation of the software discussions begun in this issue; 
and possibly a review of one or two tools which will be of interest to readers. 

~'J.?~,t. 
Carl T. Helmers, air. 
Publisher April 20 1975 

© 1975 M. P. Publishing Co. All Rights Reserved. 



ECS Volume 1 No. 4 2 April 1975 

The SIRIUS-MP Language ••• 

an approach to machine independent low level code. 

This issue begins a subject which will continue in the pages 
of EC Sfor some time to come: the subject of expressing pro­
grams in a fairly well defined low level "language" which is in 
principle independent of any particular microprocessor or other 
small computer you might have. This will facilitate your use 
of published programs written for an 8080 if you own an IMP-16, 
or programs written for 8008 if you own an M6800, etc. - pro­
vided the programs in question are expressed in the SIRIUS way. 

The name I have chosen for this language is "SIRIUS-MP". 
The SIRIUS is a combination of an April pun and the following 
input: if Altair is the brightest star (visual magnitude) in the 
constellation Aquila, then let me modestly name this mode of 
program expression after t.he brightest star in the sky, the 
star o(-Canis Major or SIRIUS. So, if you are SIRIUS about 
Altair (or other computers available inexpensively both now and 
in the near future) you will find this series of articles illumin­
ating. So much for the advertisement now to turn to some 
information content .••• 

WHAT IS A COMPUTER LANGUAGE? 

The answer to this question (as is always the case with complicated subjects) can 
range from the superficial to the formal mathematical intricacies of compiler-writing 
and language design. Since this publication is not a technical journal on software eng­
ineering, it must necessarily leave out a lot of the detailed information on the subject, 
to concentrate on the application of the concept. (Upon sufficient interest - one inquiry­
I'll spend an evening sometime and compile a bibleography on the subject of compilers 
and computer languages. ) With this disclaimer I'll proceed to the subject of computer 
languages in the context of a home brew microcomputer system. 

Starting from first principles, what is a "language" (eg: English, German, Pidgin, 
integral calculus, set theory) in general? I'll confine the subject arbitrarily to the 
concept of "written languages" and put forth the following formulation: 

A LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE OF 
EXPRESSING THOUGHTS. 

This definition is filled with implications: language is an invented technology (probably 
the first) of humans (or other critters.) language is utilized in communicating thoughts 
between individuals. Language is appropriate to thinking beings. Now what could 
this possibly have to do with your urge to program and use a microcomputer ? 



ECS Volume 1 No. 4 3 April 1975 

A fair amount of course! The specific application of the language concept to the 
problem of programming a computer is the concept of a "programming language." 
The specific part of this application is the limiting of computer languages to certain 
classes of thoughts ••• 

A COMPUTER LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE 
OF EXPRESSING COMPUTER PROGRAMS. 

Just as there are nurrierous variations on the "natural language" concept (Eg: ENGLISH), 
the diversity of human thought has lead to a wide range of computer languages from the 
most general to the specific and application oriented. In each such language, the 
author(s) have selected a set of elements needed to solve the particular problem and 
combined these in a (more or less) self consistent manner and come up with a solution 
to the problem of expressing programs of a particular class. 

The creation of a programming language for the particular case of a microprocessor 
system in the "homebrew" (ie: limited hardware) environment is the object of this 
series of articles in ECS. When you design and or build a hardware system, your first 
problem is solved - a computer that "works". To get beyond this first phase the problem 
becomes developing the programs enabling your system to do interesting things. A 
language can be used for ~.3 purposes in the process of programming your computer: 

a. An appropriate language enables you to abstractly specify a program in 
a first iteration of design without worrying "too much" about details. Get 
the control flow figured out first, then worry about low level subroutines I 

b. An appropriate language will enable you to hand compile programs ex­
pressed in that language for use on your own computer, even if the program 
was developed and debugged on another computer. You know the "algorithm" 
works even though you have not yet translated it to your own use. 

c. A language appropriate for the home microprocessor will be of sufficient 
simplicity to allow hand compilation or compilation by a very simple compiler. 

These considerations - the definition of a "home brew computer" context - are a major 
input into the design of the SIRIUS -MP method of program expression. 

SETTING THE PROJECT IN CONTEXT: 
HOW WILL SIRIUS-MP COMPARE TO EXISTING LANGUAGES? 

The approach taken in the choice of elements for the SIRIUS-MP language is that of 
a "pseudo assembly language." An assembler is the simplest of all software developme· 
aids to write, so this choice tends to satisfy criterion "c" above. But what about "a" 
and 11b 11? This is where the "pseudo" part enters the description: it is a language 
one step removed from the detailed instruction level in many of its operations. SIRIUS 
is an assembly-type language for a class of similar machine architectures - with opera­
tions found in general on such machines forming its "primitives." The subject of addres 
resolution is left intentionally non-specific and symbolic so that variations in the way 



ECS Volume 1 No. 4 4 April 197 5 

data is accessed can be left to the hand or machine-aided process of generating code 
for your own system. Many of the statements written in this form will generate only 
a single instruction on the "object" machine - but others will require a series of sever­
al instructions to specify required actions on a given machine. It is my intention to 
include within this "pseudo assembly language" concept several programming cons'tructs 
borrowed from high order languages in current usage - but stripped of the complex syn­
tax of a true high level language and specified in the simplified form of the SIRIUS-MP 
syntax, such as it is. This adaptation of a language to a specific purpose and class of 
users is a widespread practice in the compiler /language design business. Several ex­
amples come to mind of specific languages for specific usage contexts: 

XPL - this language is the compiler-writer's language to a great extent. It 
is a specific and limited subset of PL/l by McKeeman, Wortman and 
Horning which isdocumented in a book entitled "A Compiler Generator. 11 

The adaptation here is to concentrate on those features necessary for the 
writing of compilers and exclude all else. (Intel PL/M is very close to XPL) 

HAL/S - this language was developed for guidance; navigation and control appli­
cations of NASA by Intermetrics Inc., the author's employer of several years. 
HAL/S is specialized to include the vector and matrix data forms used in space­
craft navigation - and to provide highly visible 11 self-documented" code which was 
not possible in the assembly language style approach used in the Apollo program, 

SNOBOL - here is a language which is primarily oriented to "string handling" 
prograxns - a very broad range of applications, in some sense including 
the writing of compilers as well. 

ALGOL - this language is the antecedent of many currently used languages , 
whose original intent was a specialization in generality - the ways in which 
algorithms could be best specified, in the abstract form. 

These languages are all examples of much more extensive and complex methods of 
program expression from a compiler writer 1 s standpoint - although from the user's 
standpoint they are orders of magnitude easier to program with than doing the equivalent 
in a low level "pseudo assembly language" or formal assembly language for a specific 
machine. It is the problem of generating code by hand or with minimal prog.rani aids 
which limits the possibilities of SIRIUS program specifications to the low level approach. 

WHAT ARE THE COMPONENTS OF A COMPUTER LANGUAGE? 

For those readers with a software or computer-science background, this dis­
cussion is in the nature of a reyiew. For readers with little programming background 
this will present new information. 

When you build a computer from a kit or from scratch, your problem is to put together 
a set of hardware components according to a certain system design ( usually inherent in 
the microcomputer chip design) such that all the components play together as a working 

system. At a level of abstraction far removed from - yet still within the context of -
the detailed hardware, a language for computers is also a construction of component parts 
which must "play together" according to a particular design if the language is to be 



ECS Volume 1 No. 4 5 April 1975 

useful as a means of expressing programs. At the most abstract level of discussion, a 
language consists of two major component parts designed to provide an interface between 
a human being's thoughts and the requirements of computing automata. These are: 

SYNTAX: - this component of the language is the set of rules concerning the 
correct formulation of basic 11 statements 11 or "expressions" in the lang'l;lage 
in question. 

SEMANTICS: - this component of the language is the set of rules governing the 
intelligible combinations of syntax elements - the combinations which produce 
a well defined and translatable meaning which can be used in turn to generate 
machine code for some "object" or "target" machine of a compiler. 

The syntax and semantics of a programming language can be chosen with a somewhat 
ill-defined border: one of the major trade-offs to be done in designing a language and 
associated compiler is deciding how much of the work is to be performed by the syntac­
tical analysis and how much is to be left to semantic interpretation. At one extreme there 
is the complex syntax of a high order language in which much of the semantic intent of 
a statement is inherent in the syntax used; at the other extreme there is the case of the 
simple "assembly language" style of syntax in which very little function is inherent in 
the syntax - which merely distinguishes labels, operators and operands. 

SIRIUS-MP is at the "assembly language" end of the trade - its syntax is kept simple, 
so that a min:itnal compiler (or hand compilation) will be used to translate it to machine 
codes, and the semantic interpretations are largely look-ups based on the specific content 
of the statements coded in a program, with very little variation on certain basic forms 
for operands and operators. 

SPECIFICATION OF SIRIUS-MP: 

The specification of a language can be a very formal and very dry process. A languag. 
specification is ult:itnately required in order to clearly convey the meaning of statements 
coded in the language, the legal variations on such statements, etc. - etc. A certain level 
of consistency in specification is required, for instance, if _ I want to write a compiler 
for a given language. At the present time, however, my reasons for formulating SIRIUS 
are much less demanding than the formal specification of a language: I am interested 
in creating a method of describing programs which will be heavily commented and used 
principally for publication in ECS (and possibly other publications.) Thus the specifica­
tion is left in a fairly "soft" form for the time being within a general framework describe( 
in this issue. The time for a formal specification will be the day I sit down and write 
an appropriate compiler - or a reader decides to do so through impatience and the desire 
to write one for publication (with the usual royalty of course.) 

In lieu of a really formal specification of the SIRIUS-MP language, the next few pages 
contain an informal description of several notational devices employed in the examples of 
SIRIUS-MP programs in this issue, and comments on why the forms are used. The areas 
covered are: STATEMENTS, ADDRESSING & REFERENCE, DAT A REPRESENTATIONS, 
and OPERATIONS. Omitted in the present discussion are several languages forms to 
be described at a later time, including certain "structured programming" concepts and 
details of argument/parameter linkage conventions for subroutine calls in SIRIUS-MP. 



ECS Volume 1 No. 4 6 April 1975 

STATEMENTS: 

The basic notational unit of a program which is written in SIRIUS-MP is the "state-
ment. 11 The statement concept embraces the others mentioned on page 5, as can be 
illustrated by the following prototype format: 

LABEL: 
TARGET OP SOURCE * COMMENTS ; 

As in most decent assemblers, the intent is to make the statement "free form" and 
thus requirin~ no fixed column or line boundaries. Hence the following devices are 
used as a part of the syntax: 

The end of a statement is indicated by a ";" (semicolon) ~s in a host of 
PL/1-like languages.* 

A label, if present, is distinguished from the first (TARGET) operand or 
the operation mnemonic (OP) by a ":" (colon) •. With this choice of trailer, 
labels must not duplicate any operation codes (OP) which can have similar endings. 

An asterisk (*) is shown as a separator between the main part of the state­
ment and the comments field at the right. 

For exa:rnples of the use of this format, see the several program listings included with 
this issue below. The fields in this prototype statement are as follows: 

LABEL - this field (and its ":" separator) is optional and is used to define a symbolic 
program label. A label is ultimately required to define all symbols used in a pro­
gram with the exception of certain implicitly defined symbols such as CPU registers 
and flags. 

TARGET - this field (optional) specifies a symbolic reference or absolute address for 
the memory location (s} or I/O devices which will receive data as a result of an op­
eration. Certain operations will not require a target field for proper notation. 

OP - this field is required in order to specify an "operation" to be performed at some 
time. Certa"in operations will correspond to executable code in the translation. Others 
will be used to reserve storage and indicate aspects of the program generation pro­

cess. 

SOURCE - this field is required to specify a minimum of one operand for each opera­
tion. Its format will vary depending upon the type of operation intended :- variations 
will include various forms of symbolic reference as well as compound forms used 
to control functions such as "FOR" loop constructs or "IF" statements. 

COMMENTS - here the field interit and use is fairly obvious - to explain what is going 
on it is useful to make notations. 

*Note: The alternate form of statement boundary indication to the ";"is to start 
a new statement on a new line. The examples in this issue all omit the "; 11 specified 
above - a detail to be corrected in future issues. 

<. 



ECS Volume 1 No. 4 7 April 1975 

ADDRESSING AND REFERENCE: 

For those individuals who have experience with high level languages (eg: FORTRAN, 
COBOL, PL/l, ALGOL, BASIC etc.) the common experience is to blithly go ahead and 
program an application with the various "variables" declared within a program. by impli­
cit or explicit means. This approach is appropriate for a high order language in most 
instances because the problem of addressing and refere:ucing.data in the computer has 
been solved in a fairly general and quite reliable manner by the compiler writers. When 
the time comes to drop down one level of abstraction to the assembly level, the problem 
of addressing has to be again considered in a more explicit manner since many more 
details of machine architecture are inherent in such programming. In deciding what 
forms of addressing and data reference to include in SIRIUS-MP, the low level approach 
is augmented l:>y several methods of more abstract reference. The following are some 
key referencing concepts: 

ABSOLUTE ADDRESS: The concept here is of a fixed location in the memory address 
space of the computer or a given I/O instruction channel designation. In a system 
built around a Motorola 6800 for example, most I/O operations will be carried out 
with reference to absolute addresses for the I/0 interface memory locations - at 
least in simple programs this will be the case. In the INTEL or National IMP-16 
architectures explicit choices of I/0 channel require designation of numbers, often 
in an absolute form. 

EXAMPLE: The Octal expression 020023 could represent 
an absolute address. 

SYMBOLIC ADDRESS: The concept here is to reference the name of a data item in an 
instruction rather than its actual address. In principal all such names map into a 
fixed and unique address at execution, either through the operation of a compiler's 
address resolution or through a run time lookup mechanism such as the SYM routine 
used in the previously published ECS 8008 software. In SIRIUS notation, a symbol 
is defined by its appearance as a LABEL of a statement, or its existence as a pre­
defined entity such as a register designation • 

EXAMPLE: Given label ANYSYM, a reference in some other (eg: assigmnent) 
statement might be: 

ANYSYM :; 0 (as the TARGET operand. ) 

INDEXED SYMBOLIC ADDRESS: The concept here is to reference the starting loca-
tion of a block of memory by the first symbol involved, and to indicate an offset 
(from zero up) in bytes by a second symbol or literal in parentheses following the 
fir st. Thus: 

or 

ANYSYM(OFFSET) is a reference to the location ANYSYM 
plus the current value of OFFSET when the statement is 
executed. 

ANYSYM(23) is a reference to address ANYSYM plus 23. 

An alternate form of expression for this would be to show an addition ( + ) operator 
rather than use a FORTRAN or PL/1- like subscript reference with parenthesis. 



ECS Volume 1 No. 4 8 April 1975 

SPECIAL SYMBOLIC ADDRESSES: Here the concept is the not.ation of certain symbols 
with a fixed meaning, which in an assembler would effectively become "reserved" 
symbols not subject to redefinition. The forms used in the listings in SIRIUS in this 
issue are the following : 

W(ANYSYM) means "the ~hereabouts of ANYSYM" and is the notation used 
to indicate a reference to the absolute address of the symbol. 

M(ANYSYM) means "memory reference to the location found in the value of 
ANYSYM." This is the basic "pointer" form used, and will assume that 

the v.alue in ANYSYM is a full address (eg: 16 bits for most machines.) 

T(ANYJMP) means "the address portion of a jump instruction at ANYJMP". 
This notation was introduced to allow the equivalent of a FORTRAN 
assigned GO TO to be used by altering a jump instruction. 

A, B, C, D, E, H, L are symbols used freely to represent registers on the Intel 
8008 and 8080 type of machine architectures. In translating this reference 
to a Motorola 6800 or National IMP-16, or other computer architecture, 
an appropriate software equivalent would be used if registers 
are not available. 

L(ADDRESS), H(ADDRESS) are used to reference the Low and High order por'tions 
of a full address (eg: 14 or 16 bits) on typical microcomputers when it is desirE' 
to examine only one byte. This is especially useful as a notation for the Intel 
architectures, but the same functional meaning goes on other machines. 

The various forms of addressing and reference described c.an be used to specify the 
"operands" - SOURCE and TARGET - of a statement. The concept of a "SYMBOL" 
is the generalized idea of one of these forms of reference (excluding absolute references.) 
A "symbol table" for a program is a list of such symbols, usually including some 
additional information about the item. In a future article on the hand generation of code 
this concept will be explored in more detail. 

DATA REPRESENTATIONS: 

A "data representation" is a method of conc.eptually treating a group of data bits in 
the storage of a machine, and is. usually fairly dependent upon hardware features of a 
given machine. The basic data representation of all the extant 8.,.bit microcomputers is 
the 8-bit binary integer (two's complement is the rule.) This is augmented in certain 
machines such as the 8080 and the 6800 by a limited set of 16-bit operations implemented 
to handle address calculations. For the 16-bit microcomputers and minicomputers, the 
word length as a rule sets the basic representation as a 16-bit integer, although smaller 
8 bit quanta can usually be employed. This immediately suggests that the basic assump-

tion to be built into SIRIUS-MP is that data ought to be operated upon in 8 and 16 bit 



ECS Volume 1 No. 4 9 April 1975 

quanta. This will prove a useful decision for most processors likely to be in common 
use by readers of this publication (if there is enough interest, I'll make some comments 
at a future time on adaptation to 12-bit machines such as the DEC PDP-8 and its imita­
tors.) The two representations are thus (pictorially) .•• 

I
M. S8 LSB MSB LSB 
~ _ ___L._..~~-------------::=;.::;.,I ,~--~--------,--.-----r--.-----.--,--, ....... ,=:---. 

76543210 

8-bit integer 

15 14 1312 11 10 9 8 7. 6 5 4 3 z 1 0 

16-bit integer 

The fact that there are two possible ways to reference integers built into the hardware 
operations of the typical 8 and 16 bit microcomputer formats, (8008 excluded) leads 
to a desire to specify a notation for the length of data involved. I could choose among 
two basic alternatives in this area: 

a. Specify data type in some form of declar~tory way. This would be analogous 
to an XPL statement such as "DECLARE X FIXED;" or a FORTRAN state­
ment such as "INTEGER X 11 • 

b. Specify data type(length) a.s a part of the ch>ice of operands used. Here the 
information on length of operations is specified when the data is used - thus the 
program has a bit of extra redundancy in its notation (the extra characters needed 
to specify this type information) but the operations performed are much more 
visible at the local level. 

The choice I made was for the second alternative, primarily to reduce the need for a 
symbol table to the barest minimum of information - consistent with the simplifications 
needed for a compact assembler or hand compilation. A secondary reason is the one · 
stated in 11b 11 - local type indications give a better documented program. In the integer 
operations used by prograxns in SIRIUS, a single colon (as in "AND:") is used to indicate 
where ai 8-bit operation is involved, and a double colon (as in "AND::") is used to 
indicate the 16-bit form of an operation. A final comment on integers: where a signed 
integer representation is required in two's complement notation, the sign of the number 
is represented by the most significant bit ( bit 7 of length 8 words, bit 15 of length 16 
words. ) This is the bit tested by the 11$ 11 flag on the various microcomputers. 

Byte String Data: One additional data type will be required for programming the 
various microcomputers using SIRIUS-MP. This data type is the generalized concept 
of a 11byte string. 11 The representation is 
designed for manipulation of blocks of data in 
memory, in a form consistfng of a length byte 
at the "anchor" (starting address) of the string, 
followed by from 0 to 255 data bytes at consec­
utive addresses. This is a format which is iden­
tical to that used in many byte oriented compilers 
(eg: XPL) and is a virtual necessity for handling 
character texts. Applications will not be restric­
ted to character texts, however, for one partic-

ular use could include variable length decimal 
arithmetic using packed BCD byte strings. C~ft' 



ECS Volume 1 No. 4 10 April 1975 

Byte strings are most conveniently handled on computers which have byte addressability 
of memory locations - eg: the IBM 360 I 370 series as well as the smaller ( 8080, 8008, 
6800) microcomputers. For 16 bit minicomputers and microcomputers, the concept is 
still useful, but requires explicit address calculations as a part of unpacking and manip­
ulating two bytes per word. Operations on byte strings will use the notation of a number 
sign 11 #11 to indicate the variable m.unber of bytes involved. 

OPERATIONS: 

With the above introduction regarding data representations, it is now possible to 
consider the basic operations possible. The list here represents those used in the nota­
tion of the programs in this is sue. In a later issue I'U expand the explanations of some 
of these operations and corresponding machine code for typical machines. There 
are also sever al operations which I have not used in the notation of the current set of 
programs, but which will be the subject of future notes in this area. The following 
is a list of the operations used with program notation in this issuep omitting the type 
indicators 

AND 
Assignment(=) 
CALL 
CLEAR 
DECR 

GOTO 
HALT 
IF 
IFNOT 
!NCR 

INPUT 
IO EX CH 
KEYWAIT 
OR 
OUTPUT 

The operations AND, OR, GOTO, HALT p INPUT and OUTPUT all have direct ana­
logs in the CPU operations when 8-bit quantities are used with machines such as the 
8008, 8080 or 6800. The examples 1 8008 generated code versions illustrate one such 
representation. Some further notes will help illuminate the code generation process for 
the other operations. 

For all operations which have direct analogs in the machine architecture, the code 
used for the machine level version must consist primarily of establishing the address­
ability of operands (source and ta,rget) and then execution of the operation. This process 
is illustrated in the several examples. For 8 bit machines with 16 bit operations, the 
code generated must be generalized to 16 bits - for the 8008 this is done in the illustrated 
programs by appropriate subroutines for increment, decrement and comparison, so code 
generation consists of writi_ng down machine codes for a subroutine call and argument 

linkage. 

Assignment always will map into a sequence of operations needed to move data from 
the source to the target. The 8008 generated code of these exam.pies is an extension of 
the previously described symbol table mechanism for address lookup (see February 1975 
ECS.) For 16 bit quanta this process can often be done using a CPU register pair for 
the 8 bit machines, but will invariably require a subroutine when byte strings are involved. 

The IF statement form used in the examples is found in both a negative and positive 
sense. In either case the TARGET (lefthand) operand is the place where execution will 
go if the condition tests true. Two forms of the condition (SOURCE) operand are used: 

11-

" ~· 



ECS Volume 1 No. 4 11 April 1975 

a. Flag Reference: Here the intent is to use a mnemonic key word, 
for example "ZERO" to reference one of the CPU flags of a typical micro 
after an instruction which might alter such flags. 

b. Tests: Here the intent is to specify two operands symbolically which 
are to be compared. I have grouped such references in parenthesis to sim­
plify mechanical interpretation by a compiler, and have used the assignment 
symbol "="with its length code with the usual duplicify to indicate the compar­
ison test operation. 

A disclaimer is appropriate at this point - I am not satisfied with the IF condition test 
format illustrated in these examples of several programs, and will be experimenting with 
sOine alternatives. 

GENERATION OF CODE: 

The semantic intent of the language forms used to represent the several programs in 
this issue can be deduced from the comments in the listings and the general descriptive 
information in the previous pages. One remaining problem is the generation of code. 
For the time being, I am limiting information on this (very large) subject to the exain­
ples illustrated below for an 8008 case and the notes accompanying the examples. I 
think there is sufficient information content to facilitate interpretation and generation 
of corresponding machine code for processors such as the 8080 (very close) or the 
6800. 

BOOTER: AN "EMERGENCY" BOOTSTRAP LOADER 

The first example of a SIRIUS-MP· program is a short and self-contained program. 
called "BOOTER. 11 · All programs ultimately solve problems. ·This particular program 
solved a problem which I had one weekend, and served as an "acid test" of the utility 
of the ECS-8 tape interface. As soon as I had the interface software up and running (the 
dump portion presented in March ECS' s pages) I began dumping the entire CPU software 
load to cassettes at regular intervals as a "failsafe" against Boston Edison's next power 
failure. The planning for that contingency - which· by the way did happen in an ice storm 
in January to my consternation - paid off in a different way: I made the foolish mistake 
of turning off the power via a switch on my bench, now taped over solidly. Since I was 
working on SIRIUS-MP as a program writing tool, I took the opportunity to test out the 
expression it provides by writing the BOOTER source program appearing at the top of 
the next page. I won't claim perfection, however the original form of the program was 
essentially the same as the listing illustrated. 

Loading is accomplished as follows: in the tape format described in the last issue, 
the first legitimate data is the length code (two bytes which I knew had "007" and "377" 
values for my tapes.) Since none of the tape spacing and preparation routines of the IMP 
program would be available in the blank computer memory being boo·tstrapped, the only 
way to synchronize tape data with the program was to listen continuously for the "007" 
character (state 1, LOOKFIRST tests for 11 007"), then check for a succeeding "377" 
byte (state 2, WELLMAYBE tests for "377"), then commence loading bytes starting at 



ECS Volume 1 No. 4 12 April 1975 

The BOOT ER program, listed in .SIRIUS-MP ••• 

l 
2 
3 
~-

6 

i 
9 

BOOTER: 

BLOOP: 

B 
x 
36 

A 

A 
A 
A 
BLOOP 

GETCHAR: 
M(X) 

=: 
=:: 
OUTPUT 
CLEAR 
IOEXCH 

=: 
IOEXCH 
AND: 
IFNOT 

INPUT 
DECR: 

10 
ll 
12 
13 

LOOKFIRST IF 
DECR: 

~ WELLMAYBE IF 
DECR: 

16 
17 

FORSURE IF 

FORSURE: 
18 36 
19 37 
20 
21 B 
22 

LOOKFIRST: 
23 B 
24 BLOOP 
25 B 
26 

WELLMAYBE: 
27 B 
28 BLOOP 
29 B 
30 

HALT 

OUTPUT 
OUTPUT 
INCR:: 
=: 
GOTO 

=: 
IFNOT 
=: 
GOTO 

=: 
IFNOT 
=: 
GOTO 

l 
2000 
377 
A 
4 
27 

t4o 
(A=:l40) 

2 
B 
ZERO 
B 
ZERO 
B 
ZERO 

M(X) 
L(X) 
x 
3 
BLOOP 

l 
(A=:007) 
2 
BLOOP 

1 
(A=:377) 
3 
BLOOP 

* INill AL STATE IS l 
* (Ih'l'ELESE 004/000) START ADDR 
* TURN ON A DISPLAY 

* * RESET 'l'HE IO UNIT 

* "0001 01 l l" UNIT CONTROL 
* CHECK STATUS OF TAPE * MASK OFF RDY & RDA BITS 
* LOOP BACK UNTIL READY 

* READ THE DATA (NO EXCHANGE) 

* * HAVE STATE l DETECTED 

* *HAVE STATE 2 DETECTED 

* * HAVE STATE 3 DETECTED * (OOPS! SHOULDN'T GET HERE) 

* WRITE TO DISPLAY 
* LOW ORDER ADDR TO DISPLAY 
* POUIT TO NEXT BYTE IN MEMORY * RESET STATE 3 INDICATION 
* BACK FOR MORE INDEFINITELY 

* DEFAULT STATE 1 CONTINUE * LOOK FOR OCTAL 11 007 11
) 

* IF FOUND, STATE SET TO 2 
*AND GO BACK TO FIND 11377") 

* DEFAULT BACK TO STATE l 
* LOOK FOR OCTAL 113 77" 
* MAIN LOAD LOOP IF FOUND NOW 

* 

Variables 

A : CPU register for 1/0 
B : CPU register or mem. 
X : Address pointer (CPU) 
ZERO: CPU flag for zero result 

Notations 

M(X) : memory at location in 
pointer variable X. 

L(X) : low order 8 bytes of X 

And the equivalent 8008 version of this algorithm •• 

Label 8008 Code Bytes SIRIUS-MP 
Statement 

BOOT ER: 00 '110 • 016 LBI • l. 
00 ,111 ... 001 I 
00· '111! • 056 LHI 8 2. 
00 ,113 = 004 h(LOAO POINT) 
00 ,114 .. 066 LU 
00 ,115 " 000 l(LOAO POINT) 
00 \116 .. 006 LAI 8 3 • 
00 'II 'I • 3·r1 377 
00 \120 . I 75 OUT36 
00 \121 • ~so XRA • 4. 
00 \122 • 111 1N4 • 5. 

BLOOP: 00 '123 • 006 LAI • 6. 
00 \124 • 021 110001 0111" 
00 ,_12!> .. ll 1 1N4 • 7. 
00 ,126 .. 044 NOI • 8 • 
00 \127 " 140 11 01100 000" 
00 \130 • 0·111 CPI • 9 • 
00 \IJI • 140 "01100 000" 
00 '132 ,. lJO JFZ BLOOP 
00 \133 • 123 L 
00 \134 • 000 H 
00 '135 • 113 INS IRead Tape) • 10. 
00 \136 .. 3·10 LMA 
00 \137 • 011 DCB • 11. 
00 '140 • ll>O JTZ 1.00KFIRST a 12. 
00 ,141 . 166 L 
00 ,1112 • 000 H 
00 \143 • 011 DCB a 13. 
00 \144 • ISO JTZ WELLMAYBE I 14. 
00 \14!> • 202 L 
00 \1116 • 000 H 

·00 \1117 • Oll DCB • 15. 
00 \ISO • 150 JTZ FOR.SURE • 16. 
00 \l!>I . 1!>11 L 
00 \1!>2 • 000 H 
00 \153 " 3•17 HALT • 17. 

:f·ORSURE: 
00 \154 • 30·1 LAM • 18. 
00 \155 • 175 OUT36 
00 \156 • 306 LAL • 19. 
00 \157 • 177 OUT37 
00 ,160 • 0!>5 NEXT A • 20. 
00 '161 = 016 LBI • 21. 
00 \l(Jl! .. 003 3 
00 '163 . 104 JMP BLOOP • 22. 
00 ,1611 " 123 L 
00 '165 " o~o H 

Label 8008 Code Bytes 

LOOKFIRST: 
00 '166 • 016 
00 \16'/ • 001 
00 \l"/O .. 0·14 
00 \I "II • 007 
00 \172 .. 110 
00 \1'13 .. 11!3 
00 \l'/4 • IJOU 
00 \175 .. 016 
00 \116 • 001! 
00 \1'17 .. 104 
00 \200 " 123 
00 \201 • 000 

WELLMAYBE: 

MOW "TO 

~i\A~f" 

M'C:tv\O~Y 

00 \202 .. 016 
00 \203 • 001 
00 '1104 • 0·14 
oo '205 • Jn 
00 '\206 • I JO 
00 \207 • 123 
00 \210 • 000 
00 \IU l " 016 
00 \212 .. 003 
00 \,213 •· 1011 
00 \2111 .. ll!J 
00 \215 .. 000 

BV , 
'' sooT i:oR.cE.'' 

SIRIUS-MP 
Statement 

LBI I 23. 
l 
CPI • 24. 
7 
JFZ BLOOP 
L 
H 
LBI • 25 • 
2 
JMP BLOOP • 26 • 
L 
H 

·LBI • 27. 
l 
CPI • 28. 
377 
JFZ BLOOP 
L 
H 
LB! • 29. 
3 
JMP • 30, 
L 
H 

I 

I 



ECS Volume 1 No. 4 13 April 1975 

the known load point (location Z0005 = intelese 004/000) as initialized at the beginning 
of the program. 

The program is a "state driven" algorithm which has 3 states of execution set by 
the content of the variable "B" (which maps into a register in the generated code for 
a microcomputer such as the 8008 code illustrated. ) The sequence of states during 
execution of the main loop "BLOOP" during normal execution is as follows: 

Start: ~ 1_!...!.__11-!J. 1 J Z l 3 3 3 3 3 3 3 3 3 • • • • • 3 3 3 3 3 3, End 

Scan for 11007 11 ~ ~ s 
Found it, look for 11377" 
Found it, transfer any further bytes to memory 

The program is set up so that if a false ·synchronization pattern is detected (11007" 
followed by any byte other than "37711 ) the "WELLMAYBE" branch of the loop 
concludes "maybe not" and goes back to scanning the input. The reason for 
scanning in this manner is to enable the program to be started via an interrupt, after 
which you can turn on the manual controls of the tape drive confident that the invalid 
data produced by the MODEM/UART combination during the leader and start up periods 
will not be falsely interpreted as good data - the specific 16-bit pattern of two bytes in­
volved is not likely to occur due to random noise. 

The 8008 code corresponding to the BOOTER program's SIRIUS-MP notation is shown 
at the bottom of page 12.with symbolic notations of labels, mnemonic op codes and refer­
ence numbers to the SIRIUS-MP statements in the listing at the top of the page. The 
specific hardware assum.ptions used for this code are documented in previous ECS 
issues and are not repeated in detail here. For this simple program, the "X" data 
quantity (a mem.ory pointer) is translatep as the content of the H and L register pointer 
of the 8008. One of the restart routines defined in January ECS is utilized by the gener­
ated code - "NEXT A" calculates the next address in Hand L. On an 8080 this could be 
performed without a subroutine using the INX instruction with H and L selected. On a 
6800 the corresponding function would be performed using its INX instructionl with the 
variable X assumed to signify the index register "X". 

BOOTER uses output instructions directed at a binary display to illustrate the prog­
ress of the program. At initialization, the display left half (OUT36) is loaded with 8 
"on" bits. (SIRIUS statement 3). Then, following the synchronization detection, the 
data transfer branch FORSURE displays the current byte at left (OUT36, statement 18) 
and the current low order address at right (OUT37 generated by statement 19). 

The small loop from statemmts 6 to 9 is used to cause the program to wait un~l the 
flags of the UAR/T subsystem (see article ECS-6 and January 1975 ECS) indic;ate that 
a character has been received. The tape unit cci>ntrol code "027s" defined at statement 
6 is used to signify the data rate (11000111 for 1210 baud), channel (1101 11) and . · selection 
for input (the last two bits.) j 

If you use BOOTERto load IMP from one of the cassett~s •upplied by M. ~- Publish­
ing Co. ($7. 50 each post paid) you will have to additionally load by hand the content of the 
other restart instructions routines before changing the interrupt branch to point to the IMF 
entry point at location 013/000 (Intelese.) 



ECS Volume 1 No. 4 14 April 1975 

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL (Continued ••• ) 

In the March is sue of ECS, I started a presentation of 
extensions to the Interactive Manipulator Program for tape 
block write, compare and read operations. This article 
contains the remainder of the listings. With the exception 
of the three routines on this page, the additional 8008 code 
is given in its SIRIUS-MP form and in absolute octal with 
mnemonics decoded. 

One aspect of the SIRIUS-MP language which I have not dealt with explicitly in this 
issue's discussion is that of argument/parameter linkage for subroutine calls. Because 
a machine-dependent argument/parameter linkage is used for the 8008 versions of the 
three routines on this page, I present them here in the same commented listing form used 
for previous issues of ECS. The 
routines are utility functions for the 
two-byte increment/ deer ement func -
tions and comparison. The parameter 
linkages to these routines are formed 
by passing symbols (see Feb. 175 ECS) 
in registers for lookup. 

D2B is the two byte decrement 
operation, which is entered with the 
symbol of the operand contained in 
the 80081 s A-register. The operand 
is decremented by subtraction due 
to the properties of a zero underflow 
(the Zero flag detects this state one 
number too early at 0, not -1.) On 
return, the carry flag indicates a 
16-bit underflow if any 

I2B :ls the corresponding two byte 
inc~ent operation, which is also 
entered with the symbol of the oper­
and in the 8008 1 s A register. T~e 
8008 1 s ·increment instructions are 
used, since the zero state is a reli-
able overflow indicator. On return, 
the zero flag indicates a 16-bit over-
flow if any. 

C2B is a two byte comparison op­
eration~ with a more complicated link­
age. The!two operands are passed as 
symbols in the B and C registers. The 
result is passed back as the content of 

DZB: 

lZB: 

CZB: 

the "E" register : 1 if not. equal, 2 if 
equal. This can be tested by a decrement 
instruction followed by a jump on zero • 

012\132 " 0"/5 SYM 
012,133 = 060 INL 
012,134 • 307 LAM 
012\135 = 024 SUI 
012,136 • 001 1 
012\137 " 3'10 LMA 
012\140 = OOJ RFC 
012\141 = 061 DCL 
012,142 " 30'/ LAM 
012,143 " 024 SUI 
012,144 " 001 l 
012\145 " 3'/0 LMA 
012\146 = 007 RET 

Routine {o incrcmt•nt two bytes -
011'313 " 015 SYM 
011'314 = 060 INL 
011,311:> .• 317 LBM 
011,316 • 010 INB 
011'317 • 371 LMB 
011'320 = 013 RFZ 
011,321 " 061 DCL 
011,322 " 31 '/ LBM 
011 '323 .. 0 10 INB 
011,324 = 371 LMB 
011,321:> = 00'/ RET 

Go pick up argument address 
Point ahead (assume not at page bound) 
Fetch the low order byte. 

Subtract l - decrement will not do! 

Save result 
Return on no borrow condition. 
Point to high order byte 
Fetch it 
Also decrement with subtract 

ao that borrow (C) may be set •.• 
Save result 
With carry indicating net underflow, 

enter with symbol parameter in A 
Look up the parameter address 
Point to, 

load from memory, 
increment and 

save the low order byte. 
Return direct if no overflow 
Point to, 

load from memory, 
increment, 

and save the high order byte. 
Then return always. 

Routine to compare bytes - in two's. 
010,234 = 046 LEI 

Enter with symbol parametera ·in 
regiaters B and C. 

0'10,23·5· .. 001 1 
010,236 = 301 LAB 
010,237 • 0·15 SYM 
010,240 • 337 LDM 
010,241 • 302 LAC 
010,2.42 • 071:> SYM 
0.10,243 • 303 I.AD 
010,244 • 2'17 CPM 
010,245 = 013 RFZ 
010,246 = 055 NEXTA 
010,247 • 337 LDM 
010,250 • 301 LAB 
010\251 = 0"15 SYM 
010\252 = 055 NEXTA 
010\253 = 303 LAD 
010\254 = 277 CPM 
010\25!'> " 013 RFZ 
010\256 " 046 LEI 
010\257 = 002 z 
010\260 • 007 RET 

Return default 1 ('not equal. ) 

Fetch first parameter address 
and fetch the parameter. 

li'etch second parameter address 
and comp"re agai:'ISt 

first parameter value ••• 
Return (E: l) if unequal, 
Point to next address of second parm. 
Fetch eecond parm second byte 

Point to first parm again 
look NEXT A him too! 11 

Compare first parm, second byte 
And again return (E=l) if unequal. 
Otherwise both bytes of both 

two sets are equal and can 
return with equality result. 



ECS Volume 1 No. 4 15 April 1975 

The notational power of a more abstract method of programming is illustrated by com 
paring the expression of the new IMP extension segments on page 16 with the correspon­
ding "generated code" for the 8008 printed later. The routines' listed in SIRIUS-MP 
form for the tape extension begin with the main portion of the program ••• 

READ/COMPARE main routine isat the leJft hand side of page 16 held sideways. This 
33- statement SIRIUS - MP program is in'\Oked when the IMP command decoder detects a 
"shift R" for read or •ushift C 11 for compare. The difference in the two routines is deter-
mined by the entry point - line l for READP line 28 for COMPARE. The logic at the 
entry points sets up a jump address in the 11GPJMP11 indirect branch location (this over­
writes the previous use of GPJMP to get to READ or COMPARE from IMP.) This 
switch (the choice of branch paths) is required. so that the same general control flow can 
be use for both the READ and COMPARE operations - the difference being in what is 
done with the information read from tc:.pe. The switch point in the flow occurs at state­
ment 14, and can be illustrated in 
flow chart terms by the diagram at 
the right. 

The common portion of the pro­
gram provides the overall structure 
of a read operation~ initialize the 
UAR/T, read a dummy character 
at the first RDA timep read the 
two length code bytes written by 
the OUTCNT routine {see below) when 
the tape is prepared, then enter a 
loop which continues until the data 
count is exhausted. 

When the READl branch of the 
flow is taken during a read opera­
tion, the current memory location 
pointed to by IB UFF receives the 
input character found in a variable 
called "B" (a CPU register for the 
8008 version of the program.) 

When the COMPl branch of the 
flow is taken during a compare oper­
ation, the current byte pointed to by 
IB UFF is compared to the input 
byte in the variable 10 B 11 

- and an 
error count is incremented in the 
variable 11 BADDAT Auv (16 bits worth) 
to keep a tally of the badnesses. 

The data count is kept in the var­
iable "ICNT" which starts out at -1 
and is counted up until it equals the 
block count stored in !'NCNT" after 
it is read from the tape. The test for 

end of transfer is found at statement 
20, a SIRIUS "IFNOT" operation. 

. . 
" o •••• eo 000000000000 eoo" 

YE.S NO 

ltlA• 4' 
Wl~f'\.A-. 

"'*'\. CIWl'T 



1 

2 

~ 
i 
1 

8 

9 
10 

11 
12 

13 
14 

15 

16 

u 
19 
20 

21 
22 
23 
24 
25 
26 

27 

28 
29 
30 

31 
32 
33 

READ: 
T(GPJMP) =:: 

RC: 
TAPECTRL OR: 

A 
INITIA!,IZE: 

4 
I BUFF 
ICNT 

DUMMYil'I: 

HIGIJI,NGTH: 

NCNT 
LOWLNG'.l'H: 

NCNT(l) 
FORALL: 

READl: 
M(IBUFF) 

GOTCHA: 
37 
36 

FORALL 
ENDALL: 

36 

CLF..AR 
IOEXCll 

OU'l'PU1' 
=:: 
=-:: 

CALL 

CALL 
=: 

CALL 
=: 

CALL 
GOTO 

=: 

OUTPUT 
OUTPUT 
INCR:: 
INCR:: 
IFNOT 

CA!,L 
OUTPUT 
CALL 

37 OUTPUT 
TAPECTRL AND: 
4 OUTPUT 

KEYWAIT 
COMPARE: 

COMPl: 

T(GPJMP) 
BADDATA 

GOTCHA 

=:: 
=:: 
GOTO 

IF 
INCR:: 
GOTO 

WCREADl) * SET READ JUMP SWITCH 

11 0000 00 l 1 11 * FORCE INPUT SELECT 
A 
4 * RESET Tlill IO UNIT 

TAPECTRL if SET SELECTED CONTROL STUFF 
MEMADDH * START INI'UT AT MEMADDR 
-1 * INITIAL COUNT TO MATCH OUTPUT 

INPUT2 

INPUT2 
B 

INPUT2 
B 

INPUT2 
Gl'JMP 

B 

;; GO FETCH BYTE (WAIT LOOP) 

* GET HIGH ORDER LENGTH 
4f SAVE B INPUT IN NCNT n.o. 

* GET LOW ORDER LENGTH 
* STORE AT NCNT+l 

if NORMAL DATA BYTE FETCH 
;:. SELECT COMPARE OR READ VIA 
* VARIABLE JUMl' TARGET 

* IF READ THEN STORE IT 

B * DISPLAY INPUT DATA 
0 if CLEAR OTHER DISPLAY TO ZERO 
IBUFF * POINT TO NEXT IN'PUT ADDRESS 
ICNT ;; INCREMENT WORKING COUNT 
(ICNT=::NCNT) '.!-TEST F~ND OF BLOCK 

INPUT2 4f READ FINAL LENGTH BYTE 
B * AND DISPMY 
INPUT2 * READ SECOND FINAL LENGTH BYTE 
B * AND DISPLAY IT TOO 
11 1111 ·11 0 011 if TURN OFF INPUT SELECT 
TAPECTRL ;; TURN OFF THE DRIVE, •• PATCH 

W{cOMFl) 
0 
RC 

* IN A 2 SECOND WAIT HERE * IF NEEDED - · SEE TEXT, , , 
* SLEEP PERCHANCE TO DREAM 

if SET COMFARE JUMP SWITCH 
* ZERO OUT BAD DA TA, , , COUNT 
* Eh'TER NORMAL FLOW 

(M(IBUFF)=:B) * TEST TAPE AGAINST MEMORY 
BA.DDATA . * . MISSED S-OME BITS-111 
GOTCHA if BACK FOR MORE, , , 

l 
2 
3 

~ 
6 

b 
9 

10 
11 
12 

l 
2 

i 
b 
9 
10 
11 

l 
2 
3 

6 

b 
9 
10 
11 
12 

Ull'UT2: 
A 
A 
B 
A 
INl'UT2 
A 
A 
INPUTIT 

INPUTIT: 
A 
B 

NEWOUTCNT: 

ONOFF: 

TOPF: 

TON: 

B 

A 
B 
5 
A 
c 
5 

A 
A 
TON 

B 

B 
EITHER: 

A 
A 
A 

=: 
IOEXCH 
=: 
AND: 
IFNOT 
=: 
AND: 
IF 
INCH:: 

INPUT 
=: 
RETURN 

=: 
CALL 

=: 
OUTPUT 
CALL 
=: 
=: 
OUTPUT 
CALL 
RETURN 

=: 
AND: 
IF 

=: 
GOTO 

=: 

=: 
AND: 
OR: 

TAPECTRL =: 
4 OUTPUT 

KEYWAIT 

"'l'EC'n<L • FETCH IO CONTROL WOWD ~ 
4 i:· EXCHANGE FOR STATUS ~ 
A u SAVE STA1'US IN B ;:::., 
11 01 100 00011 * MASK DESIRED BITS 1j 
(A=: "Ol 100 000") * WAIT TILL READY 
B l' RESTORE STATUS FROM B 
11 00 COO 111 11 i~ MASK ERROR BITS 
(A=: 11 00 000 11111 ) if INVERTED NO ERRORS 
BADFORM * INCREMENT DATA FORMAT ERRORS 

5 
A 

~fi~cs 
COUNT 
A 
A 

·WAITOUT 
COUNT(l) 
A 
A 
WAI TOUT 

* READ THE LATESTCHARACTER 
* PASS BACK VIA B REGISTER 
* BACK TO CALLER 

if MAKE IT 1.5 SEC DELAY 
* VIA CENTISECOND DELAYER 
* SEND OUT THE FIRST 
* COUNT BYTE 
if AND SAVE IN B 
if WAIT UNTIL NOT BUSY . 
* GET SECOlID BYTE AT COIDIT+l 
*SAVE IT INC 
* AND OUTPUT TO TAP:E 
* WAIT UNTIL NOT BUSY 
*THEN BACK 

TAPECTRL u FETCH OLD TAPE CONTROL 
1100 000 010" n CHECK OLD STATE OF SELECT 
ZERO * CHANGE TO ON IF OFF 

2 
EITHER 

0 

* CHANGE TO OFF IF ON 
if THEN DO THE CHAllGE 

* CHANGE TO ON IF OFF 

't:l 
'i; 
0 

OQ 
i; 

"Ill 

s 

Ul 

§ 
TAPECTRL 
374 

* FETCH OLD CONTROL AGAIN g 
u MASK AND SA VE HIGH ORDER 6 BITS 
if ·COMBINE WITH NEW CONTROL B 

A 
A 

* SAVE HEW CONTROL 
* TURN TAPE MOTOR OFF OR ON 
* BACK TO SLEEP YOU IMP! ! ! ! 

Note: Reference numbers to SIRIUS statements are 
provided at the local level for each block of functional 

Notations: T(GPJMP) : address part of jump 
W(READl) : mem. address of READl 
NAME(n) : nth byte of NAME code illustrated here. They correlate to the 8008 examples 

of executable machine codes, within each block. 

1:1 
0 
Ul 

.... 
O> 



ECS Volume l No. 4 17 April 1975 

8008 Generated Code for READ/COMPARE routines (p. 16, leftl 

Label 8008 Code Bytea SIRIUS-MP Label 8008 Code Byte. SIRIUS· MP 
Statement St•terient 

READ: ' 004,000 • 006 LAI • 1. READI: 

004\001 • 010 e(GPJMPAL) 004\107 • 311 LMB • 15 • 

004\002 .. 0·1:; SYM OOTCffA: 

004\003 • 016 LMl 00•"110 • 301 LAB a 16. 
004,004 • 107 L(READl) 004,111 • 177 OUT37 

004,00!> • 060 INL 004\118 • 2!10 XRA a 17. 

004,006 • 0"16 LMl 004,113 • 17!> OUT36 

004,00"/ • 004 H(READl) 
00 .. \114 • 006 LAI a 18. 

RC: 
OO•l'll 5° • 01!0 e(IBUFFI 

004\010 • 006 LAI • z. 00 .. ,116 • 106 CALIZB 

004'°1 l • 014 a(T.APECTRL) OO .. \ll7 • 313 L 
004\012 • 0·15 SYM 004\180 • 011 ff 

004\013 • 30·1 LAM 004\181 • 006 LAI • 19. 

004,014 • 064. ORI 004,122 • OlC. a(ICNT) 

004,01 S • 003 11 00000011 11 0011\123 • 106 CALIZB 

004,016 • 370 LMA 00 .. \124 • 313 L 

004\017 • 2!>0 XRA • 3. 004\125 • Oll ff 

004,01!0· • 111 1N4 • 4. 00 .. \126 • 016 LBI • zo. 
INITIAUZE: 004,12"1 .. 016 e(ICNT) 

004,021 • 006 LAI • s, 004\130 • 01!6 LCl 

004\022 • 014 a(TAPECTRL) 004\131 • 0211 a(NCNTI 

004\023 • 0"15 SYM 004,131! • 106 CALCZB 

004\024 • 301 LAM 004,133 • 234 L 

004\025 • 111 1N4 
004,134 • 010 ff 

004,026 .. 006 LAI • 6. 004,135 • 041 DCE 
004,136 • I !JO JTZ FORALL 

004\027 • 006 a(MEMADDlt) 00•"137 • 0·14 L 

004,030 • 0·15 SYM 
004\160 • 004 H 

004,031 .. 317 LBM ENI>f.LL: 

004\032 • 060 INL 004,141 • 106 CALLINPUTZ 1 Zl. 

004,033 • 31!7 LCM 006,1611 • 061 L 

004\034 • 006 LAI 004\l4J • 018 H 

004\035 • 01!0 s(IBUFF) 004,144 • 301 LAB • zz. 
004\036 • 0·15 SYM 

004\165 • 17!> OUT36 

0011,037 • 371 LMB 004\146 • 106 CALLINPUTZ • ZJ. 

004,040 .. 060 lNL 004\147 • 061 L 

004\041 • 372 LMC 004'1~ • 018 H 

004 '042 • 006 LAI 8 7. OO.a\l!tl • 301 LAB a H. 

004\043 • 016 a(ICNT) 004\1!>2 • I 77 OUTS7 

004,044 • 0·1:. SYM 00•"153 • ooc. LAI • zs. 
004,0115 • 006 LAI 

00•\15 .... 014 a(TAPECTRL) 

004,046 • 377 11 1111111111 00"\155 •on SYM 

004\047 • 370 LMA 004\156 • 307 LAM 

004\0l>O • 060 INL 00•"157 • 044 NDl 

004,051 • 370 ~A 
OO.a\160 • 37.a "ll lll 100" 

PUMMYIN: 
00•\161 • 370 I.MA 
00"'162 • 111 1N4 a Z6. 

004\052 .. 106 CALINPUTZ • 8. OO.a\163 • 025 KEYWAIT a Z7. 
004,053 • 061 L COMPARE: 
0011,0511 • OU! ff 004 \16" • 006 LAI • za. 

HlCiHLNGTH: oo .. ,165 • 010 a(CiPJMPAL) 
004 '055 • 106 .CAL INPUTZ • 9. 00 .. \166 • O'I!> SYM 
004\056 • 061 L 0011\167 • 0"16 LMI 
00•1'0!>7 • 012 ff gg:~~ ~~ : ~~~ fiitOMPl) 004,060 • 006 LAI • 10. 
004,061 • 022 e(NCNT) OO.a\1711 • 076 LMI 
004\062 • 07!> SYM 00 .. \173 .• UOll H(COMPl) 
004\063 • 371 LMB 006\174 • UOC. LAI • 29. 

LOWLNCiTH: 00"'17!> • 024 •(BADDATA) 
004,064 • 106 CAL INPUTZ • u. 00 .. \116 • on SYM 
004\065 • 061 L 004'1 77 • 250 XRA 
004,066 • 012 H 004\200 • 3·10 LMA 
004'°67 • OC..6 LAI • 12. 004,201 • 060 lNL 
004,070 • 01!1! e(NCNT) 004,1!02 • 370 LMA 
004\071 • 0·1:. SYM oo•,eo3 • 104 JMP ac •JO. 
004,072 • 055 NEXTA 004\20" • 010 L 
004,073 • J71 LMB 004\J!Ol.__• 004 H 

FORALL1 COMPl: 
004,074 • 106 CALL INPU1'Z • 13. 004\206 • 301 LAB • Ji • 
004,0·15 • 061 L 004"!07 • 277· CPM 
004,076 • Olli H 004,210 • I :.o JTZ GOTCHA 

.,...'°" • 000 LM f.Globolly 
00 .. \2ll • 110 L 

0011\100 • 020 s(IBUFF) optimizedlcode 004,212 • 004 H 

004\101 • lOu CALL MEMSYM moved "he-ad 004,213 • 006 LAI • 32. 

004\102 • 002 L .,f the GPJMP OOll"!l" • 0211 a(BADDATA) 
004\103 • Oil! H · 0011\21!» • 106 CAL12B 
004\lO'i. • 104 JMP CiPJMP • 14. 004,216 • 313 L 
004\105 • 015 L 0011,211 • 011 H 
004\106 " ooo H 004 ,220 "' I 04 JMP CiOTCHA • 33. 

004 '221 • I I 0 L 
004,2112 • 004 ff 



ECS Volume No. 4 18 April 1975 

8008 Generated Code for MISCELLANEOUS routines (p 16, right) 

Label 8008 Code Byles 

INPUTZ: 
012\061 • 006 LAI 
012\062 .. •014 s(TAPECTRL) 
012\063 • 0'/5 SYM 
012\064 • JO'/ LAM 
012\065 .. 111 IN4 
012\Q66 .. 310 LBA 
012\067 • 044 ND! 
012\070 . 140 11 01 100 000" 
012\071 .. 074 CP! 
012\072 " 140 11 01 100 000" 
012\0'/3 .. 110 JTZ INPUTZ 
012\0"/·4 .. 061 L 
012\0'15 " 012 H 
012\0'16 .. 301 LAB 
012\0rl = 044 NDI 
012\100 = 00·1 "00 _000 Ill" 
012\101 .. 074 CPI 
012\102 = 007 11 00 000 Ill" 
012\103 .. I 50 JTZ INPUTlT 
012\104 .. l IJ L 
012\105 .. 012 H 
012\106 • 006 LAI 
012\101 = 026 s(BADFOH.Mll. 
012\110 " 106 CALL IZB 
012\l I I .. 36!> L 
012\112 " 010 H 

INPUTIT: 
012\113 .. 113 1N5 
011:!\I 14 .. 310 LBA 
012\115 • 007 RETURN 

OUTCOUNT: 

SIRIUS-MP 
Statement 

II 

8 1. 

8 z. 
8 3. 
• 4. 

s s. 

8 6. 
a 7. 

8 8 • 

• 9. 

• 10. 
• 11. 

Label 8008 Code Byles SIRIUS - MP 
statement 

~~~ * 

TOFF:

TON:

EITHER:

Ol 1 \264 • 006 LA! • 1 •.
Ol l\265 • 014 s(TAPECTRL)
Ol I \266 • O'/b SYM
Ol l \267 • 307 I,AM
Ol l \270 • 044 NOI a z.
Ol I \271 • 002 "00 000 010"
Oll\2'12 • 150JTZ TON a 3 •
011\273 • 302 L
011\274 • 011·-H

Ol 1 \275 • 016 LBI a 4.
011 \276 • 000 O
Ol I \27'/ • 104 JMP EITHER a S.
0 l 1 \300 • 304 L
0 1 l \30 1 • 0 11 H

011\302 • 016 LBI
Ol l \303 • "002 z

• 6.

Ol l \304 • 307 LAM a 7.
Ol I \305 • 044 NDl a 8.
011\306. J'/4"lllll100"
011\307 • 261 ORB "xxxxxxBo" a 9.
Oil \310 • 370 LMA a 10.
011\311" • Ill IN4 all.
Ol I \312 " 025 KEYWAIT

Tape Extension

012\200 " 104 JMP NEWOUTCNT Here is a patch to get to the VARIABLES
012\l:lO I " 116 i; new vc1·sion of OUTCOUNT.
OIP\202 = 010 H

NEWOUTCNT:
• l. 010\I IC:. " 016 LBI

010\I 17 • 017 1510
010\120 .. 106 CALL WAlTCS s z.
010\121 .. 116 L
010\122 = 012 H
010\123 " 006 LAI • 3.
010\124 • 022 s(COUNT)
010\125 • 075 SYM
OI0\12ti • 307 LAM
OhJ,127 " 310 LBA 8 4.
010\130 .. 113 IN5 & s.
010\1:.11 " 106 CAL W.-\JTOUT s 6.
010\132 = 14"1 L
010\lJJ = 012 H
010\134 " 006 LAI s 7.
010,135 = 0?.2 s(COUNT)
OIU\136 = O"I!:• SYM
010\13"/ = 060 lNL
010\140 • 307 LAM
010\141 " Jl!O LCA s 8.
OIU\142 • I I 3 INS s 9.
010\143 .. · 106 CAl.L WAITOUT a 11.
010\I 1111 = 14'1 L
010\14~ " Oll:l H
OIU\146 " 007 RETURN s lZ.

Patches to Previous Code

TAPECMDS:

JONOFF:

READJ:

COMPJ:

012\352 " 31 ·1 "0"
012\353 = 321 L(JONOFF)

012\2"/2 " 012 "34" is TAPECMDS (n_cw value)
012\2'/3 J~2 =
012\321 .. 104 JMP ONOFF IMP entrr to the
012\:.1~2 = 264 L ONOFF ro•1line sand-
0 I 2\323 = 011 H wiched in spare bytes.

New IMP READ 013\JIJ = !04 JMP READ
013\314 :. t:OU L entry addre&b in

01 J\:ll ti " 0011 H this jump.

013\316 " 104 JMP COMPARE New IMP COMPARE
OLl\J 1 ·1 = I 64 L routine entry ;.ddres&
013\320 = 004 H now in thi• jump.

(in order of appearance}

GPJMP, symbol 10

TAPECTRL, symbol 14

A, CPU register

MEMADDR, symbol 06,
to tape transfers.

!BUFF, symbol 020

ICNT, symbol 016

NCNT, symbol 022

B, CPU register

BADDAT A, symbol 24

BADFORM, symbol 26

COUNT, symbol 22

ZERO, CPU flag

input

Note: NCNT,COUNT are
equivalent; ICNT and
TCOUNT (see March ECS)
are equivalent.

ECS Volume 1 No. 4 19 April 1975

The INPUT2 subroutine is at the top right hand side of page 16 held sideways. This
12-statement SIRIUS-MP subprogram is invoked by· a subroutine CALL whenever another
program wants to "read" a byte from the tape unit according to the content of TAPECTRL.
The reading method incorporated in the software of IMP to date is a "polling" technique
in which a loop tests status bits of the 1/0 device (UAR/T "RDA" an4 a motor turn-on
oneshot ''ready" signal.) The loop consists of SIRIUS-MP statements 1 to 5 of INPUT2.
The routine breaks out of the loop, reads the data and returns with the data byte in the
variable "B" (a register in the 8008 generated code). The three UAR/T reception
status bits (parity error/framing error/overrun error) are checked and an error count
in BADFORM is incremented if no errors are detected.

The OUTCOUNT routine of the March issue of ECS was modified to improve performan·
ih the course of rewriting the comparison software in SIRIUS for this issue. The prob­
lem with the original version was the fact that an explicit output wait is required for
reliable reading of the data. Thus a patch is placed at location 012/200 to juinp to the
new version of the program, loaded in some spare memory address space at 010/116.
The NEWOUTCNT has two changes: a) I increased the time delay before output to
1. 5 seconds (SIRIUS statements 1 and 2) ; b) I have inserted calls to W AITOUT after
each output of a byte (SIRIUS statements 5 and 9 of NEWOUTCNT.)

The ONOFF routine is a new routine added to support a new tape control command,
"TO" entered from tqe keyboard device. .The idea here is to have a way to turn on the
motor for purposes of listening to data with the ear, for rewinds of long duration, or
for recording non-digital comments with the cassette recorder's built-in microphone.
The ONOFF routine itself is very si::nple, comprising a set of 12 SIRlUS statements
which map into 23 8008 bytes in the sample generated code. The "TO" function comple­
ments the current state of the motor control bit in TAPECTRL and outputs the r.esult to
currently selected tape drive via the "IN4" instruction connected to the tape controller.

In setting up to run IMP with the new extensions, the patches to TAPECMDS, JONOFF,
and READJ /COMPJ locations of IMP must be made as indicated in the detail listing
of page 18. The T APECMDS table is extended for the new "0" subcommand by starting
it. one byte earlier; the symbol table symbol 11 34 11 for TAPECMDS is adjusted to reflect
this addition. The new execution jump JONOFF is added to get the program into the
ONOFF routine, and the READJ/COMPJ jumps are changed to reflect altered placement
of these routines from the original layout. One other change is required to the symbol
table published previously: the address of symbol "20 11 should be changed to "220" in
byte 012/301 of the 8008 code. This symbol has been changed from its original use
and now becomes the memory pointer "IB UFF" with two bytes instead of the original
1 byte of reserved space.

COMMENTS ON THE ECS-8 DESIGN:

The output of the TSI (serial data to the computer interface) line is not suitable for
an interrupt driven UAR/T software interface without use of some masking logic. The
problem is this: the FSK input decode is done by the phase lock loop of the XR-210.
When null inputs (eg: tape leader period, or any time without a mark signal) occur, the
phase lock loop hunts around for a lock - thus causing the comparator to have its input
switch back and forth with the result being a digital noise signal on the TSI line. If
the UART is listening, it will decode erroneous characters in this mode. The software
of this article ignores the pr~blem by not listening unless good data is coming.

ECS Volume 1 No. 4 20 April 1975

Notes on NAVIGATION IN THE VICINITY OF 0(:- AQUILA .••

This article begins a regular series of information and
commentary on the use of the Intel 8080 in an ECS context,
with occasional specific reference to packaged systems such
as the MlTS Altair product. In addition to the MlTS product,
there is at least one other source of the 8080 chips and boards
advertising in the pages of Radio Electronics/Popular Elec­
tronics. This first installment concerns some general com­
ments on the 8080 instruction, set and specific suggestions con-

• cerning 16-bit arithmetic operations (addition/subtraction) in
applications other than address calculations.

AO -1. 1: Addressing Modes.

#1

One of the most basic questions to be asked whenever you ponder the use of a new
computer instruction architecture is "what are its addressing modes? 11 The answers all
lie in the hardware designer's backyard whenever a specific existing machine such as the
8080 is considered. How do I get at the data in memory when I want to perform some oper­
ation in the machine? Are there different ways of reaching the same data item? And so
on. The effects of addressing and data reference will color the whole process of gen-
erating programs for the architecture of the machine in question. For instance, if the
machine is a "stack machine" (not a machine with a stack, but one designed for opera­
tions between stack elements) then the addressing can almost exclusively be implied by
the way operations are done. On such a machine, the only bits needed for an instruction
are the data bits which specify an operation. But in the real world of existing and
implemented machines available to the ECS type of application, the coloring of coding is
much more conventional - addressing is performed as part of the instruction or as
part of an implied setup in a CPU register under program control. In the Intel 8080
(as in the 8008) the design of addressing modes is a fairly arbitrary pot-pouri of methods
fraught with special cases not ammenable to concise summary without losing information.
In order to write programs these addressing modes must be known and understood so that
the best of alternatives (if any) can be evaluated and used in a given programming situa­
tion. In the comments below, a few of the conventional addressing concepts in
computer designs are isolated and illustrated with regard to the 8080.

AQ-1. 2: Immediate Addressing.

Immediate data addressing exists in some form in most contemporary computers,
with the usual definition being a constant bit pattern of one word length, following the
operation code in a program. The 8080 includes this form of addressing with all the
immediate operations which exist on its antecedent the 8008, plus some extensions which
make the architecture more useful as a general purpose computing element. The primary
extension of immediate addressing is to the inclusion of a long (16-bit) form of the con­
cept in certain limited classes of move (load/ store) operations with respect to GPU reg­
isters. The 8080 partitions 6 of the 7 CPU registrs into three pairs ''index registerf"··
which may be loaded with 16-bit numbers using immediate addressing. The primary in
tention of such operations is the loading of an address, but programmers can and

ECS Volume 1 No. 4 21 April 1975

do use operations for whatever purpose is required to solve a problem - so whenever

1

one needs a 16-bit "literal" data item this form of double byte immediate operation can
be used to load CPU registers.

One particular use of the two-word immediate form in its intended application is
the initialization of the stack pointer as a part of setting up execution of a prog­
ram. In large scale systems the equivalent of a stack poi~ter (ie: system defined
addressing parameters) is usually determined by the "operating system" prior to
the call which invokes a user-program. But in your use of a microcomputer of
the 8080 (or Motorola 6800) design, with minimal software, you can make no as­
sum.ptions about the initialization. To be used, the stack must exist in random
access read/write memory so that the temporary linkage data associated with
the CALL operation and its arguments can be stored. In order for this linkage
to occur, the stack pointer (SP) must point to the RAM area. One way to initial­
ize the stack pointer following the start of execution is contained in the following
SffiIUS-MP notation and its 8080 translation:

SIRIUS: 8080:
SP -:: location LXI SP, location

In both instances, the "location" is the 16-bit integer num.ber which is the address
of the stack area.

AQ-1. 3: Absolute Addressing.

The design of a computer instruction set involves many trade-offs, the evaluation of
options with inputs ranging from the preferences of programming individuals to the phys­
ical constraints of the LSI chip. In the best of all possible programming worlds, one
would like to see a consistent set of addressing modes applicable in principle to any of the
basic operations possible. In particular, a more extended use of an absolute (in-instruc­
tion stream) form would be desirable than has been implemented with the 8080. There
are two basic operations available in the 8080 instruction set which reference memory
from within the instruction stream. These are the load (LOA, LHLD) and store (ST A,
SHLD) operations in 8 and 16 bit variations. For program code which involves fixed
data areas at locations allocated by hand or by an assembler/compiler, these operations
will be used extensively to prepare data for the execution of actual 11work11 -since the
actual work cannot reference memory directly. The use of load and store for this pur­
pose is highly conventional in many minicomputers, although usually at least one of the
algebraic /lo'gic operation operands can be acquired by a direct or indirect memory ref­
erence in the instruction stream. (As a point of contrast, the Motorola 6800 microcom­
puter can perform most of its arithmetic/logical operations with one in-instruction addrese

reference to memory.)

AQ-1. 4: Pointer Addressing.

One area where the 8080 has some excellence is in the number of CPU registers it

has and the fact that three different pairs can be used as "index registers" for fetching

ECS Volume 1 No. 4 22 April 1975

data to an accumulator (all pairs) or referencing memory operands (H/L only) of the
arithmetic operations. It is thus fairly easy to keep pointers around locally in the
CPU without the need to transfer them to another location when making a reference
based upon the index. The pointers are, however, only good for one operation in
general - referencing data in load/ store situations, and thus not as useful·
as they might otherwise have been. The memory reference modes of all the 8-bit
arithmetic and logical instructions use one of these pointers, the H/ L register pair,
to address the one memory operand (the implied ·second operand is the accumulator
register A.) All the procedures and tricks applicable to setting up H/ L pointer addresses
in the earlier 8008 microcomputer design apply as well to the equivalent H/L forms of
the 8080.

One particular programming trick which will prove useful in manipulating blocks
of data involves the use of one pointer pair - D/E - to point to one operand block
and a second pointer pair - H/L to reference the second block. Suppose the
problem is to "AND" al 1 the bytes of one block with the bytes of another and to
store the result in the second. The basic set of inst ructions used to set up the
loop would be:

LXID
LXIH

address 1
address 2 set up addresses

With this setup, the heart of a loop to transfer the data with an AND condition as
required by the problem statement would be:

M.OV, A, M Fetch first operand byte
XCHG Establish second operand address, but

ANA
MOV
INXH
XCHG
INXH

M
M,A

save first operand address
AND with sec-ond byte

Save in seco:rxi operand byte
Increment address
Move back in exchange
Increment address

This code does not include the instructions needed to establish a loop - to trans­
fer a block with this operation would require a loop count and loop count decre­
ment followed by conditional test for continuation.

This same general scheme of switching the D/E with H/L registers can be used
quite widely your program must step simultaneously through two regions of mem­
ory. The technique only works with D/E & H/L unless you want to take a calcu­
lated risk and exchange with the stack pointer instead of D/E.

AQ-1. 5: 16-Bit Operations & 16-Bit Addition/Subtraction.

The 8080 has a specific and limited set of 16-bit operations which can be used to some
advantage both for the intended purpose (address calculation and setup) and in more gen­
eral problems. The 16-bit operations are

16-bit Load and Store between reg~ster pairs and memory or immediate
(Load only) data.

16-bit Addition intended for address calculation.
16-bit Increment/Decrement useful in loop counting & address changing.

EC::S Volume 1 No. 4 23 April 1975

For the more general usage of the 16-bit addition operation in pro grams requiring
the extended precision addition I subtraction, the H/L register pair can be treated as
if it were a 16-bit accumulator for the purposes of calculation with the actual results
being stored ultimately in memory operands. The boxes below illustrate two calculations
in 16 bit precision, under the following assum.ptions:

a. Variable Pis a two-byte operand at locations P and P + 1.
b. Variable Q is a two-byte operand at locations O and· Q + 1.
c. The content of A, H and L registers is irrelevant prior to and

foll owing the calculation.
d. Absolute addressing will be used with the result stored back in P, as if

P were a "software accumulator. 11

Note the differences in the size of the little routines involved - for the additi.on case,
the setup and execution is fairly compact. For subtraction the need to form the two's
complement negative of the Q operand complicates the picture •••

The SIRIUS-MP statement:
generates •••

LHLD
XCHG
LHLD
DADD
SHLD

Q

p

p

The SIRIUS-MP statement:
generates •••

LDA Q

CMA
MOY D,A
LDA O+l
CMA
MOY E,A
INX D
LHLD p

DADD
SHLD p

P +:: Q * 16-BIT ADD

Get first operand bytes to 0
Move first op to DIE
Get second operand (soft. accum.)
Add 0 to P giving P
Store result back into new P value

P -:: Q * 16-BIT SUBTRACT

Get first byte, negative operand.
Complement it.
Move it to D of DIE pair.
Get second byte, negative operand.
Complement it.
Move it to E of DIE pair.
Increment complement giving -Q value
Get software accumulator value
Value of P - O now in H/L
Save back in software accumulator.

After either of these operations, the carry flag can be tested to find out if an overflow
occurred, thus in principal allowing extended precision of greater precision than 16 bits.

One particular 16-bit operation may prove of use in certain contexts. This is the
16- bit addition of the HI L register pair to itself by means of the DADH instruction •
There are two instances where this variation of 16-bit addition stands out for potential
utiJ.itf:

a. Suppose I want to address an extended array of data kept in 2, 4, 8 or zn
byte quanta. The shift properties of this addition (it multiplies HI L by 2) can
be used "n" times to modify an integer array index ala FORTRAN or PLll into
a useful address offs et.
b. 1his left shift operation can form the basis of an integer multiply operation.

ECS Volume 1 No. 4 24 April 1975

A0-1. 6 A Ceremonial 11 Nit 11 :

It serves no good end to act the part of a contentious critic, but... at the risk of
being in the position of a pot calling the kettle black I do protest MITS' use of the
Anquish Languish (technical dialect) in the Altair 8800 manual I examined recently:

Implement: This verbalized noun is conventio:qally used in technical' con­
texts such as 11to implement a system. 11 (le: to create the system.) A
computer designer implements an LDA or STA instruction; the programmer
codes said implem.ented instruction (ie: selects it) as part of his own pro­
cess of implementing a software system. Programmers never use unimple­
mented instructions as a matter of course. (If you take Webster literally
one might come out with the MITS definition of. the term implement.)

Variance: A variance exists and is defined in the legalese terminology of
"obtaining a variance (exception)" to some law by bootlicking and bribing
the appropriate petty bureaucrats. It is also the square of the standard
deviation in the terminology of statistics. A variance is not a variation on
an instruction's operation, that is unless one wished to redefine conventional
usage.

I have been collecting reports from several subscribers on the Altair product and witR....,..
the exception of what appear to be relatively minor technical problems, most purchasers
of the system indicate satisfaction with the product and service on it.

ERRATUM:

Charles S. Lovett receives a one issue subscription extension for being the first sub­
scriber to report an error in the ECS-7 design article of February 1975 ECS. The line
from pin 2 of IC -14- which is shown connected toground should instead have been a
• 01 mfd capacitor to ground. (Switch Sl would have no effect if wired as drawn.)

A NOTE CONCERNING THE MOTOROLA 6800 MPU •••

With this issue, I have started to make references to the M6800 MPU system., pri­
marily because I expect it to be available to the Experimenter's Computer System market
in the near future. I have been in fairly close contact with the local Motorola sales office J
in connection with some hardware/software desigh work I am currently doing, and I have
indications that supplies of this product will soon be fairly widely distributed.

If you want to find out about the M6800 in detail, I wholeheartedly recommend purchase
of the M6800 Microprocessor Applications Manual (approximately 700 pages 8. 5 x 11 @
$25. 00) and the M6800 Microprocessor Programming Manual (approximately 250 pages
@ $10. 00). The applications manual includes lots of useful information including inter­
faces (hardware and software) to floppy discs, cassette tape drives, teletype, Burroughs
self-scan di splays, adding machine tape printers, etc. etc. I have verbal assurances
from the- local Motorola sales office that these books will be sold to private individua)n
request. If you are interested I suggest that you look up the telephone number of the near­
est office and inquire. If you have any problems, let me know and Hl try to make forrnal
arrangements to distribute copies. These documents will set the standard for some tirne
to come, and would easily serve as the basis of a "software engineering" course in appli­
cations.

ECS - The Monthly Magazine of Ideas for the MiCROCOMPUTER EXPERIMENTER •• 0

News & Notes to accompany Volume 1, No. 4 - April 1975. Some further midnight mad-
ness .••

FLOPPY DISC DRIVE REPORT: I spent some time talking to Don Whitehead this week
concerning the floppy disk purchase and its progress. Here is the latest status report
on the operation:

a. There is sufficient interest to warrant going through with the purchase as orig­
inally intended • . • BUT •••

b. When Don went back to the Memorex representative to make the firm commit­
ment on an order of the drives he found several business points had changed from the
time of his preliminary arrangements, to whit:

- The delivery dates are getting pushed steadily back by the manufac­
turer as priority is given to the larger purchasers of the unit. Current
estimate is June - original was April.

- Memorex will not allow the technical details of the interface (ie: detailed
manutls) be distributed for at least six months for competitive reasons. This
is de .pite all assurances to the contrary earlier. The demand for a non-dis­
closure agreement effectively rules out distribution of technical specs, thus
in itself wipingout any possibility of using the Memorex drive.

c. The individuals sending in the deposits have all had their checks returned for
the time being, until a new arrangement can be made with an alternate source.

The idea and intent are not being abandoned due to this setback. Among other things, Don
wants to locate the source for his own consulting software business. Between now and the
next progress report, we'll both be doing a bit of research on several other options avail­
able i.n regard to floppy disk drives.

JIM FRY INDICATES to me in a letter that he will be repeating the memory IC offer in
May of this year. Again, his address is P.O. Box 6585, Toledo, Ohio 43612 - write
him for details on the 2102's selling new at approximately $5. 00.

PC BOARD FOR ECS-8. After one false start with a vendor who could not deliver, the
ECS-8 modem PC boards have arrived (April 15) and been shipped to all subscribers. who
ordered the product. The boards have a layout looking (roughly) like this: (preliminary.)

The price is $9. 00 plus postage for 4 ounces (approximate), and there is no discount
applicable to this item.

TWO PUBLICATION REFERENCES WHICH MAY BE OF INTEREST TO SUBSCRIBERS:
Hal Singer (Cabrillo Computer Center, 4350 Constellation Road, Lompoc, Ca. 93436)

puts out the Micro-8 newsletter, devoted to information concerning the original home­
brew 8008 system of Radio Electronics summer '74.

The Computer Hobbyist, 520 Sorrel Street, Cay North Carolina 27511 is a publication
for which I only have an existence proof - several new subscribers referencing a letter
from Gordon French.

M. P. Publishing Co. Box 378 Belmont, Mass. 02.178 Vol. 1 No. 5 May '75

ECS THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

For every process there is an initialization segment - a starting point in time,
during which time the program for the process sets up data values and begins its oper­
ation. In a sense, this issue represents such an initialization - it is the first issue to
conte!:in a subscriber-written article, the Digital Graphic Display Oscilliscope Inter­
face design and writeup prepared by Jaines Hogenson. The graphics device was con­
ceived by Jim as a neat idea to add to his own computer system which he was building
for a high school science fair. He first mentioned it to me in a letter late last year.
I suggested to him (or was it the other way around?) that it might be appropriate to
turn it into an article for ECS. After a fair amount of time spent researching the var­
ious options - plus one lengthy phone conversation with me - Jim settled on the design
shown in this issue. He constructed the prototype using wire wrap techniques, and
interfaced it with his 8008 built using the RGS kit. The interface is very simple, and
can be adapted to virtually any computer with a parallel 8-bit output and a clock pulse
arriving to the interface during periods of stable data. The device is programmed using
a simple two-bit op code field and six-bit data/control field within the 8-bit interface.

I have a PC board version of the design completed as of the date of publication of
this issue (so I can get one myself) - with artwork by Andy Hay using Jim's layout. I
expect to have the board debugged ~nd ready to offer to customers with the June issue
of ECS. The roster for this issue is equal in size to the base of that n\Dllber system
which all computer "nuts 11 know and love •••

1. Digital Graphic Display Oscilliscope Interface, by James Hogenson. Turn
to page Z for the details which turn your scope into a LIFE matrix, a checker­
board, a ping-pong game or whatever your imagination. a 64x64 bit-matrix and
appropriate software can represent.

z. Concerning the Hand Assembly of Programs, by yours truly, in which the
"assembly" of programs by hand is discussed at some length, along with several
more comments on SlRIUS matters and an example in the form of CONCATTER -

a routine to concatenate byte strings.

This issue is going to press May 12 1975. The limits of space precluded the next in­
stahnent of "Notes on Navigation in the Vicinity of o<.- Aquila. " In the next issue, the
8080 machine architecture will again be visited in the form of further "notes." Also
in the next issue, a SIRIUS-MP specified bootstrap sequence will be presented, along
with the 8008 code for same. In this case, I mean a "real" planned-in-advance boot-
strap load method with all the bells and whistles. Up and coming designs for
the near future include an electronic music peripheral (not necessarily as good as
Peter Helmers' "Metapiana") as well as an article with a small amount of hardware and
a lot of software concerning the programming of interesting digital clockL

fAJ. 'l. 1~'<1:'
Carl T. Helmers, Jr.
Publisher May ll 1975

© 1975 M. P. Publishing Co. All Rights Reserved.

ECS Volume 1 No. 5 2

INTRODUCTION

DIGITAL GRAPHIC DISPLAY OSCILLOSCOPE INTERFACE
duigne.d and w1u.tte.n by Jameh Hoge.n6on

May 1975

If you want your computer to cough up alpha-numeric information,
chances are, you won't have too much problem finding a suitable output
device. But if you want your computer to draw pictures, you may find
yourself facing a dead end. You could use one of those fancy commercially
available graphic CRT terminals, but the IBM you'd need to run the thing
might not fit on your workbench. If you do have a spare IBM collecting
dust on your closet shelf, fine, but if you're like the rest of us, you
need something inexpensive, uncomplicated, and within the scope of the
average 8008 or similar system. Thus we have the ECS Digital Graphic
Display Oscilloscope Interface. For $50 worth in semiconductors, your
computer can have under its own completely programmed control a full
raster on the screen of your oscilloscope.

The digital graphic display oscilloscope interface (DGDOI) is
programmed and operated through an 8-bit TTL compatible input. The
picture is produced by a pattern of dots. These dots are set in patterns
according to the computer's instructions, resulting in a computer gen­
erated drawing. The entire pattern of dots is stored within the DGDOI's
own internal memory. Once the pattern has been generated and loaded
into the DGDOI, the computer no longer needs to retain any related data.
This also means the pattern may be generated ·and loaded in small parts,
one part at a time. During the scan cycle, the digital information is
converted to analog waveforms and displayed on the oscilloscope.

PRINCIPLE OF OPERATION

The raster begins its scan in the upper left-hand corner, scanning
left to right and down. The full raster contains 4096 dots; 64 rows of·
64 dots each. The horizontal ~can is produced by a stepping analog ramp
wave. Each step of the ramp produces one dot. There are 64 steps in
the wave. The vertical scan is similar. It is a stepping ramp wave
consisting of 64 steps. However, there is only one step in the vertical
wave for each complete horizontal wave. The result is 64 vertical steps
with 64 horizontal steps per vertical step. This produces 64 rows of
64 dots.

The ramp waves originate at a 12-bit binary counter, the center of
the entire circuit. The six .lower (least sig~nificant) bits of the
counter are connected to a digital-to-analog converter (DAC), which con­
verts the digital binary input to a voltage level output. The output of
the DAC is the horizontal ramp wave. The six upper (most significant)
bits are connected to a second DAC. This DAC produces the vertical ramp
wave. Incrementing the 12-bit counter at high frequencies results in a
raster on the screen of the oscilloscope.

The control of the pattern of dots needed to represent a picture is
dependent upon the intensity of each dot. From this point, we will assume
a dot can be either on or off. An 11 on 11 dot wi 11 show up on the screen as
a dot of light. An 11 off 11 dot will be a dim spot or blank on the screen.

ECS Volume 1 No. 5 3 May 1975

When a particular dot is selected for prograll'ITling, it is progra11111ed
as either on or off. The on-off control can be represented by a single
bit. It is this bit which is.stored in the internal memory of the OGOOI.
There is one bit in the memory for each of the possible 4096 dots on the
screen. When selecting a dot for progranming, you are actually addressing
the memory location of that particular dot. You then set the dot for on
or off. When displaying the image, the 12-bit counter which produces the
raster addresses each dot in the memory as it is displayed on the screen.
The on-off bit taken from the memory is converted to a Z-axis signal which
controls the intensity of the dot. The Z-axis signal is fed into the
Z-axis input on the scope.

Much of the circuitry is taken up in the 12-bit counter, the OAC's,
and the memory. Figure 1 shows a block diagram of the DGDOI. The re­
maining circuitry is the control circuitry ~hich decodes the 8-bit input
word and allows for completely programned operation.

PROGRAJtlt1ING

Of!. Code.
Table. 1

oaaz Klnaltfl Mnemonic Ex.pla.nJJ.t,lon

00DDDDDD ODD STX Se.t X

OlDDDDDD loD STY Set Y

lOxxxOOO 2x0 CNO Con.tJwl - No Op

lOxxxOOl 2xl TSF Con.tJwl - TUIUl oU ~c.tln

10xxx010 2x2 ZON Con.tlr,.ol - Set Z on

lOxxxOll 2x3 ZOF Con.tJwl - Set Z 066

lOxxxlOO 2x4 ZNI Con.tJwl - Set Z on wU:h. .i.nclLe.men.t

lOxxxlOl 2x5 ZFI Con.tJwl - Se.t Z 066 wLth .i.ne1te.men.t

lOxxxllO 2x6 TSN Con.tltot - TU/ln on ~c.tln

lOxxxlll 2x7 CNO Con.tJwl - No Op

llxxxxxx 3xx CNO No Op

D = DATA X = NULL

The progranming instruction format is shown in Table 1. Bits 7 and 6
of the input word are the high-order instruction code. We will assume that
the addressing of dots is done on the basis of X and Y coordinates. The X
coordinate is the 6 bits in the lower half or horizontal section of the 12-bit
counter. The Y coordinate is the 6 upper bits or vertical half of the counter.
In programning from an 8-bit input source, all 12 bits of the counter cannot
be set at once. The counter is set one half or 6 bits at a time. It is for
this reason we assume an X and Y coordinate for programning. When the instruc­
tion code (bits 7 & 6) is set at 00, the data in bits O through 5 of the in­
put word is loaded into the lower half. of the counter as the X coordinate.

ECS Volume 1 No. 5 4 May 1975

When the instruction code is set at 01, the data in bits 0 through 5 is
loaded into the upper half of the counter as the Y coordinate. In effect,
the Y coordinate will select a row and the X coordinate will select a dot in
that selected row. The coordinates loaded into the counter will address the
memory and select the dot location we want to program.

After loading the coordinates of the dot for programming, we set the
dot itself. Setting the instruction code at 10 directs the control cir­
cuitry to decode the three lower bits of the data word for further instruc­
tion. We will call the lower three bits the low order control code.

The first low order control is a No Op instruction. The eighth control
and the fourth high order instruction are also No Op's.

The second control will turn off the scan. The seventh control will
turn the scan on. When the scan is on, the counter is incremented at a high
frequency and the programmed image is displayed on the scope. The scan must
be turned off before a dot can be progranrned.

The third control, set Z on, wi 11 program a dot to appear at the dot
location presently loaded into the counter. The fourth control, set Z off,
will program a blank to appear at the dot location presently loaded into the
counter.

The fifth and sixth control instructions set Z in the same manner as
controls three and four. However, after setting Z, these instructions will
also increment the counter by one. This will allow the entire 4096 dots to
be programmed using only a repeated 11 set Z11 instruction. The counter will
naturally follow the regular scan pattern of the raster. This is especially
useful in clearing the contents of the OGOOI memory so that a new image can
be programmed. It can also be used in making horizontal lines or other
patterns in the image.

CIRCUIT OPERATION

Once the data word on the input is stable, only one clock pulse is
needed to execute the instruction. The high order instruction is decoded by
the 7410 triple three-input NANO gate and two inverters. The clock pulse is
enabled by the NANO gate to the appropriate counter section, or to the strobe
input of the low order control decoder. The clock pulse is enabled according
to the instruction of bits 7 and 6.

The 12-bit counter consists of two 6-bit counting sections. Each sec­
tion consists of two cascaded TTL 74193 presettable binary counters. Bits
0 through 5 of the data input are common to both sections of the counter.
The set X instruction will pulse the load input of the lower or X section of
the counter. The pulse on the load input will cause the data on bits 0
through 5 to be loaded into the counter section.

The Y instruction, similar to the X instruction, will pulse the load
input of the upper or Y section of the counter.

The two sections are cascaded by connecting the upper data B output of
the X counter section, pin 2, IC 8, through inverter 1a 1 of IC 2 to the count
up input, pin 5, IC 9, of the Y counter section.

The low order control code is decoded by a 74155 decoder connected for
3 to 8 line decoding. Bits 0 through 2 are decoded by the 74155. The con­
trol code is enabled by the pulse coming from the 7410 high order instruction
decoder. The low order control is enabled only when the high order code is
set at 10 on bits 7 and 6.

Decoder lines 1 and 6 are connected to an R/S flip flop which provides
the scan on/off control. The R/S flip flop enables a high frequency square
wave to increment the 12-bit counter.

ECS Volume 1 No. 5 5 May 1975

Control instructions 2 through 5 are 'set Z' instructions, therefore
involving a data write operation. Decoder lines 2,3,4, and 5 are connected
to a group of AND gates (IC 5a,b,c) functioning as a negative logic OR gate.
The output of the gate is the Read/Write control line for the memory. When
this line is in the low state, the data present on the data input line of
the memory will be written into the memory location presently being addressed
by the 12-bit counter.

The data input of the memory is connected directly to bit 0 of the
8-bit input word. A bit will be stored in the memory only when a 'set Z'
instruction is executed. The Z-axis circuitry requires a high state pulse
for a blank. As shown in the binary format, Table 1, bit zero will be a
binary zero for 'set Z on' instructions and binary one for 'set Z off' in­
structions. The backward appearance of this binary fonnat will be overlooked
when progranming in octal notation.

The high frequency square wave controlled by the R/S flip flop and
decoder lines 4 and 5 are negative logic ORed. The resulting pulse increments
the counter according to the control instruction.

The same clock pulse 1s used to write data into the memory and incre­
ment the counter in control instructions 4 and 5. The data is written into
the memory on the leading edge of the pulse •. The counter is incremented on
the trailing edge. Figure 2 shows this waveform.

Output bits O through 9 of the 12-bit counter are connected to the ad­
dress inputs of the memory. The memory uses four MM2102 1024 x 1 Mt MOS
RAM's (Random Access Memories). Bits 10 and 11 of the counter output are con­
nected to the chip select circuitry which enables one chip at a time for ad­
dressing and data input/output operations. The chip select circuitry uses 2
inverters and a TTL 7400 Quad two-input NANO gate.

The data outputs of the RAM's are OR-tied and connected to an AND gate.
The data output is synchronized with the high frequency clock for better
blanking performance. The output of this gate is connected to the Z-axfs
blanking circuitry. This circuitry converts the TTL level signal to a.scope
compatible signal.

Bits O through 5 of the 12 bit counter.are connected to the X coordinate
DAC. Bits 6 through 11 of the counter are connected to the Y coordinate DAC.
The DAC's are Motorola MC1406 IC's. They operate on voltages of·+S and -9.
A current output is produced by the DAC's. The current output is converted
to a voltage output and amplified by the 741 Op Amps. The output from the
X coordinate circuitry is connected to the horizontal input of the scope.
(The scope should be set for external horizontal sweep.) The output from the
Y coordinate circuitry is connected to the vertical input of the scope.

CONST RU CTI ON

A printed circuit board is being planned for this project, but for the
time being, the method of construction is left for the reader to decide upon
for himself.

Remember that the memory IC's are MOS devices and should be handled as
such. Static electricity will not do them any good.

Remember to use bypass capacitors. A 100 mfd electrolytic and several
.01 mfd disc capacitors are usually reconmended. An acceptable "rule of
ttunb" is one disc capacitor for every two to three TTL chips and one electro­
lytic per p.c. board.

The parts list is shown on the next page. The schematic diagram is
also included in one of the following pages.

ECS Volume 1 No. 5

Cl,C2
C3
C4
cs
Bypass
Bypass

Dl-03

IC 1
IC 2
IC 3,
IC 5
IC 6

IC 4

IC 7-IC 10
IC 11-IC 14
IC 15, IC 16
IC 17, IC 18
IC 19

Ql, Q2

Rl, R2
R3, R4
RS, R9
R6
R7
RS
RlO
Rll, Rl2

20pf
.Olmf
.OOlSmf
330pf
lOOmf
.Olmf

6

PARTS LIST

disc capacitor
disc capacitor
disc capacitor
disc capacitor
electrolytic capacitor
disc capacitors

silicon rectifier (1N914 or similar)

7410 TTL Triple 3-Input NANO Gate
7404 TTL Hex Inverter
7400 TTL Quad 2-Input NANO Gate
7408 TTL Quad 2-Input AND Gate

74155 TTL Dual 2-to-4-line Decoder
74193 TTL Presettable 4-bit Binary

2102 MOS 1024-bit Static RAM
MC1406 Motorola 6-bit DAC

741 Op Amp
NESSS Oscillator

2N5139 Transistor

3.3k ohm resistor
5.6k ohm resistor
2.2k ohm resistor all resistors
l.Sk ohm resistor ~ watt, 10%

18k ohm resistor
100 ohm resistor
7.Sk ohm miniature potentiometer

lOk ohm miniature potentiometer

SET-UP, TESTING, AND OPERATION

May 1975

Counter

Supply voltages needed are +5 voe at 400 mA, +15 and -15 voe at 10 mA.
The TTL and memory IC's operate on +5 voe. The DAC's use +5 and -15 voe.
The Op Amps use +15 and -15 voe. The DAC's and Op Amps will also operate
with voltages of 9 or 12 instead of 15. This will allow you to use your ex­
isting computer's power supply for the DGDOI as well.

When you are satisfied that your DGDOI is ready for operation, do not
inmediately connect it to an I/O channel on your computer. For initial test­
ing, use the test circuit shown in Figure 5 {Included in following pages).
The only requirement is that the test rig be able to provide an 8-bit binary
input word and a clock pulse. If a computer is used for initi~l testing, it
is difficult to pinpoint a problem as being in the circuit. A problem can
often be found in the software used with the .DGOOI. ···

The clock pulse should be active in the high state as shown in Figure
Three. If your computer operates with an active-low pulse, an inverter is
needed for inverting the clock pulse.

When you are ready to test, turn on the power and load a 'turn on scan•
instruction. The turn on scan instruction should produce a raster. If a
distorted concentration of dots appears, adjust the DAC voltage reference pots.

ECS Volume 1 No. 5 7 May 1975

The high frequency square wave is provided by ~ 555 timer JC connected
as an astable mubtivibrator. Adjusting the frequency may be necessary to
obtain a stable appearing raster. (Note: you don't need a fancy scope for
this project. A cheap 250kHz scope was used with the proto-type.)

The next step is to check the blanking. You should get a mixture of
on and off dots simply by turning on the power. The frequency of the scan
and voltage supplied to the Z-axis circuitry both affect blanking performance.
The Z-axis amplifier may be disconnected from the -15 volt supply and con­
nected to up to -25 volts. The frequency may be adjusted with the 7.5k pot.
It should be noted however, that raising either of these too high will have
adverse effects. Keep in mind that the Z-axis is connected through a cap­
acitor (in most cases) within the scope. Charging the capacitor with too
much voltage at a given frequency will cause the blank to carry over into the
next dot. Thus one blank pulse blanks out two dots. Avoid this situation.

Perfonnance varies, depending upon each particular scope. The best way
to find the best contrast and blanking perfonnance is by experimenting. If
you are unable to obtain any blanking, connect the Z-axis output to the ver­
tical input of your scope. If no pulses are present, your trouble is back
in the DGDOI circuit.

After you have obtained a satisfactory raster, execute each instruction
manually to verify its operation. Clear the mernory by setting the input at
205 (octal) and connecting a lOkHz square wave to the clock pulse input.
(Remember: Scan must be turned off before progranming ·any dots) Execute a
set X, set Y, a number of set Z on with incrernent's, and turn on scan. Your
progranmed dots should now appear.

If all operations seem good, connect your computer. You may write
programs to your hearts content, but just in case, there is a test pattern
program included in this article. If your DGDOI doesn't operate correctly
after connecting your computer, check all software first. This is usually
the cause of most problems.

The data output of the DGOOI memory may be connected as a computer in­
put, but this is optional. To read the status of a dot, you would load the
coordinate of the selected dot, then read the single bit data output.

TEST PATTERN PROGRAM

The program listed on the following page(s) will program the DGDOI for
a test pattern. The pattern will be a checkerboard pattern of 16 alternating
light and dark squares.

The program counts off 4 sections of 16 dots per section. Each section
is alternated to get a pattern of light-dark-light-dark or dark-light-dark­
light. Rows are also counted off in groups of 16. Each row in the same
group is set with the same pattern, but each group ts set with an alternate
pattern.

The set Z with increment instructions are used. The least significant
bit of the E register is used in OECLOOP to alternate between set Z on and
set Z off.

The various loops in the program are briefly described in the following
paragraphs.

DOTLOOP counts off each section of 16 dots and programs the section of
dots according to DECLOOP.

XSECLOOP counts off 4 sections per row and jumps back to DECLOOP to
alternate the set Z instructions between sections.

ECS Volume 1 No. 5 8 May 1975

ROWLOOP counts groups of 16 rows and increments the E register an extra
time to reverse the order in DECLOOP between each group of rows.

YSECLOOP counts off 4 groups of 16 rows to halt computer when checker-
board has been loaded into DGDOI.

To invert the pattern on the screen, load E with 001 instead of 000 in
location 00 220. This will have the effect of inverting the parity register.
The result would produce a pattern of the opposite light and dark arrangement.

START 00/200 = 006 LAI 00/255 = 302 LAC
00/201 = 201 (TSF) 00/256 = 024 SUI
00/202 = 121 OUT 10 00/257 = 003
00/203 = 006 LAI 00/260 = 150 JTZ
00/204 = 000 {STX) 00/261 = 267
00/205 = 121 OUT 10 00/262 = 000
00/206 = 006 LAI 00/263 = 020 INC
00/207 = 100 {STY) 00/264 = 104 JMP
00/210 = 121 OUT 10 00/265 = 221

CLEAR 00/211 = 016 LBI 00/266 = 000
REGISTERS 00/212 = 000 ROWLOOP 00/267 = 026 LCI

00/213 = 321 LCB 00/270 = 000
00/214 = 331 LOB 00/271 = 303 LAD
00/215 = 351 LHB 00/272 = 044 NOi
00/216 = 361 LLB 00/273 = 037
00/217 = 046 LEI 00/274 = 024 SUI

PARITY REG 00/220 = 000 00/275 = 017
DEC LOOP 00/221 = 040 INE 00/276 = 150 JTZ

00/222 = 304 LAE 00/277 = 305
00/223 = 044 NOi 00/300 = 000
00/224 = 001 00/301 = 030 IND
00/225 = 150 JTZ 00/302 = 104 JMP
00/226 = 246 00/303 = 221
00/227 = 000 00/304 = 000
00/230 '"' 066 LLI YSECLOOP 00/305 = 303 LAD
00/231 = 332 00/306 = 044 NOi

DOT LOOP 00/232 = 301 LAB 00/307 = 340
00/233 = 024 SUI 00/310 = 330 LOA
00/234 = 020 00/311 = 024 SUI
00/235 = 150 JTZ 00/312 = 140
00/236 = 253 00/313 = 150 JTZ
00/237 = 000 00/314 = 326
00/240 = Old INB 00/315 = 000
00/241 = 307 LAM 00/316 = 303 LAD
00/242 = 121 OUT 10 00/317 = 004 ADI
00/243 = 104 JMP 00/320 = 040
00/244 = 232 00/321 = 330 LOA
00/245 = 000 00/322 = 040 INE

DECLOOPJMP 00/246 = 066 Lll 00/323 = 104 JMP
00/247 = 333 00/324 = 221
00/250 = 104 JMP 00/325 = 000
00/251 = 232 END 00/326 = 006 LAI
00/252 = 000 00/327 = 206 (TSN)

XSECLOOP 00/253 = 016 LBI 00/330 = 121 OUT 10
00/254 = 000 00/331 = 377 HLT

OU/332 = 204 (ZNI)
OU/333 = 205 (ZFI)

ECS Volume 1 No. 5

CONTROL
CIRCUITRY

Z OUTPUT

9

INPUT

COUNTER

FIGURE t.
DGDOI BLOCK DIAGRAM

PULSE WIDTH DETERMINED
BY EXTERNAL CLOCK PULSE SOURCE

MINIMUM 750 NS.

May 1975

DATA STORED ·COUNTER INCREMENTED
FIGURE 2.

•5V n--------INSTRUCTION IS EXECUTED
DURING THIS PULSE.

MINIMUM 750 NS.
O SIGNAL ON CL._O_CK_P\LSE--INPUT-- FIGURE 3.

IC POWER AND N/C PIN CONNECTION CHART

IC +5 GND +9 -9

122,3,4,5 14 ' 6 16 8
8,14

N/C

9,4 .
729 4216
8,10 16 8,14 -- _ _6,7 ,9~10,12..!..11_
11, 12I13t14 10 9
15,16 11 2

_3 _____ 1 __

17,18 7 c-=-= ~.L5_iL = 19 4,8 1 ---- --
2102 MEMORY ADDRESS PIN CONNECTIONS

A-0 -- p1n 8 : A-1 -- p;n 4 A-2 -- pin 5 : A-3 -- pin 6
A-4 -- pin 7 : A-5 -- p;n 2 A-6 -- p;n 1 A-7 -- p;n 16

A-8 -- p;n 15 A-9 -- pin 14

ECS Volume 1 No. 5

,, ' /,

CIRCLED LETTERS. INDICATE' CONNEC'f;IONS
WITHIN CIRCUIT:.'''"". L···~'· '"""'·'

10 May 1975

._-----tG

.___R_l_W ____ -4.E

.____._.._......;;;.;.;__;.;,IN~C~RE..;;;;;.;.M~E~N~T----4F

DIGITAL:: GRAPHIC". DfSPLA¥-~·
OSCILLOSCOPE INTERFACE ""'

CIRCUIT DIAGRAM
FIGURE 6a.

+5V

PUSH MOMENTARY SWITCH TO
EXECUTE INSTRUCTION SET ON·
TOGGLE SWITCHES •.

MANUAL TEST CIRCUIT FIGURE s.

TO
CLOCK PULSE

INPUT

112 7400 TTL
NANO

;,

ECS Vol 1 No. 5

5

IC 10
74193 II

o-----...

1 1

-gv-;-

•5V
II

May 1975

DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE

CIRCUIT DIAGRAM
FIGURE Sb.

ALL 2102 PIN CONNECTIONS ALIKE, EXCEPT CHP ENABLE

3 11---+------1~----1--..--------

H

,..... -----...--gv

Z AXIS OUTPUT

R9
2.2k

ECS Volume 1 No. 5 1 2 May 1975

CLEAR DGDOI PROGRAM

This program is used to clear the memory of the DGDOI. It simply sends
out a 'set Z off with increment' instruction 4096 times. It uses the B ana
C registers to keep track of the 4096. The register contents are decremented
once for each I/0 instruction.

The program turns the scan off before clearing, but does not turn scan
back on. The DGDOI will then remain ready for progranming.

START 00/344 = 006 LAI 00/357 = 150 JTZ
00/345 = 201 (TSF) 00/360 = 365
00/346 = 121 OUT 10 00/361 = 000
00/347 = 006 LAI 00/362 = 104 JMP
00/350 = 205 00/363 = 355
00/351 = 016 LBI 00/364 = 000
00/352 = 377 00/365 = 021 DCC
00/353 = 026 LCI 00/366 = 110 JFZ
00/354 = 021 00/367 = 355
00/355 = 121 OUT 10 00/370 = 000
00/356 = 011 DCB 00/371 = 377 HLT

These two programs are just to get you started. Although uncertain of
the medium, we expect to have further programs available in the future. Carl
Helmers has plans for a 'Life'game and possibly a 'Space War' game using the
DGDOI. The author of this article is. planning a Tic-Tac-Toe game and a pro­
gram which would use an octal keyboard for rapid construction of images. (It
will be the closest we can reasonably come to an electronic pen.)

These programs, of course, will be in addition to your own. There are
many applications of a DGDOI. Outside of games, it could be used to graph
solution sets of mathematical problems. It could be used to graph results of
data aquisition programs. It could plot results in a digitally controlled
analog computer system. It could ••• well, who knows how many things it
could be used for? The exciting point is that such applications are finally
within the economical range of the 8008 system.

PRINTED CIRCUIT BOARD FOR THE "DGDOI" DESIGN:

As this issue of ECS goes to press, the first layout of a two-layer PC board with
plated-thru holes has been completed. A first printing of the board will be executed
prior to the next issue of ECS, at which time I expect to have details of priciq oa die
board.

SOME LAST MINUTE IMPROVEMENTS:

In cassette conversation with Jim Hogenson, the following items were pointed out
regarding updates of the article as it stands: 1) by connecting the 110 11 output of IC 6 (6-9)
to IC 9 "decrement input" (9-4) the "ZxO" (octal) opcode becomes decrement Y. Z)
by connecting the "7" output of IC 6 (6-4) to IC 7 "decrement" (7-4) the "Zx7" (octal)
op code becomes decrement X. 3) The DAG chips may exhibit non-linearities due
to manufacturing variations - sometimes observable in particular cases.

- CTH

ECS Volume 1 No. 5 13 May 1975

CONCERNING THE HAND ASSEMBLY OF PROGRAMS

by Carl T. Helmers, Jr.

The purpose of computing is to solve problems. Problems are
solved by analysis followed by generation of a method - an algorithm -
for accomplishing the desired ends. The computing approach to prob­
lem solution consists of automating the steps of such methods by pre­
paring a "program" for the computer to execute. This article concerns
the process of preparing programs for execution on the assumption
that you have previously generated a detailed symbolic specification of
your problem's algorithm in the SIRIUS-MP language (or any other
method of program specification for that matter.) The remaining task
of program preparation is the translation of the symbolic form into a
detailed set of machine codes (numbers).

In April 197 5 ECS, an introduction to the SIRIUS-MP language was
presented as a means of expressing programs for inexpensive "home
brew" computer systems. The present article continues this SIRIUS
information by discussing the process of hand assembly of machine code
from the symbolic representation. Hand assembly is a process which
the serious student of computing should perform as an exercise at some
point in time - whether or not the computer under study has an
assembler available. The tutorial value of "walking through" the assem­
bly process is well worth the effort - whether or not the hardware limits
of you system make it mandatory.

The "hand assembly" process is in some respects a retrograde motion in compu­
ter science - a step "against the normal direction" of progress towards more and
more automated programm.ing aids and methods of expression: It is a process which
is the translation of existing assembler algorithms (no particular assembler among
a myriad of assemblers is singled out as a model here) back into the realm of a
manually executed process - just as the first programmable machines had to be
program.med before the invention of software development tools. As an adaptation
of the "typical" assembler algorithm to manual operations, the manual assembly
process to be described is useful in several areas •••

- it illum.inates the process of assembly as performed automatically,
so that the reader will be less tempted to blame all manner of programming
problems on the poor simple-minded assembler programs.

- it provides the microcomputer enthusiast with a method of software
development (albeit cumbersome) to be used until his or her personal
cmnputer is integrated to the point needed for a real assembler.

- it highlights the problems of code generation from symbolic notation.

- it can serve as a model for the implementation of an assembler
system by the reader for his own variation on the microcomputer concept.

ECS Volume 1 No. 5 14 May 1975

AN ASSEMBLER SYSTEM

The concept of an assembler system is illustrated at its highest level by the func­
tional diagram... a "black box" of processing which accepts some input and produces
some output:

The input at the left of the
diagram is the "source pro­
gram" - a generalized and sym-

Assemble bolic representation of your
pro gr am • The output at the
right (the principal output of

the assembler) is the "object program" equivalent of the source program - a set of
binary (octal or hex) numbers which potentially can be loaded into appropriate memory
locations and executed. (I am leaving out the concepts of linkage editors, relocatable
loaders and other post-assembly tricks for the time being.)

What is this assembler "black box? 11 In an automated conventional assembler system
the black box is computer program used to translate a text file (eg: ASCII characters as
input fr om a teletype or other keyboard) of the source program into its equivalent binary
object file representation. The term "file" here means a set of many (eg: "n") computer
words containing some form of information - often used to signify such data sets as
stored on magnetic tape or disc. The usual assembler program is implemented and
runs on computer "X", producing an object program for compiter "X" (self assembly)
or for computer "Y" (cross assembly.) In the corresponding hand assembly conception
the ass.embler "black box" is defined as you - the reader - performing a variation
of the steps required to translate the symbolic representation into its machine code
form.

THE SOURCE PROGRAM

The source program,for the assembly is usually written in the appropriate "Basic
Assembly Language" for the computer in question - each computer manufacturer comes
up with its own version of the type of program involved, usually running on one of
the manufacturer's own machines. For the microcomputer case, this is not usually
possible, since the number of variables in individud CPU implementations using the
same chip is immense. For the purposes of this publication and the generality of
notation, the article assumes a source program written in the SIRIUS -MP fonnulation
which is to a large extent independent of any particular chip design. If you were to
substitute "Language X" for SIRlUS-MP in the ensuing pages, you can do so and apply
the same process - although your translation function will technically be that of a
compiler or interpreter if any language other than an assembly language is used. This
article's methodology could in particular be applied to the translation of some of the
immense number of published computer "games" in BASIC for instance, if you want to
get such programs up and running - however tackling a high order language translation
will tend to get you bogged down in detail and in routines you have to write to get
anything done, so it is only recommended in the siJnplest of cases when performed by
hand.

ECS Volume 1 No. 5 15 May 1975

THE OBJECT PROGRAM'

The output of :the as-sembly pr~ces~ is an "object program" - a potentially execu­
table set °.f ·codes· for the computer •.. The form in which an object program is specified
should be chos.~n accordiiig to the needs of the assembly process and the intended use
of the results>' In a' "real" assembler (ie: a computer program running on some com­
puter) two major classes of output come to mind:

1. ·Absolute Machine·Code.,, Here the object module output consists of
informa.tion needed to de!ine ·the specific content of each memory location
in the program,. tied ~~rectly. to a. specific range of memory address space
in the computero In this variation of output, all the work is done at the
time of assembly, and loading the program then becomes a task of copying
this ''m.emory image'' (archaic .term: core image) into the computer.

Z~. Relocatable Ma~hiri:e cdde. H~re the object module is built by the assem-
bl_er program ~elati.ve to an arbit:r'a,rily chosen starting address (often 110 11),

with tb,e final re solution o.f addresses for symbolic references, jumps, etc.
lefLto an appropriate ":r.elocat~ng'.' loader. The object module in this form
is' more complicated for i.n additi~~ to the binary image of the program, in­
formation on the address references inside the program must be retained
so that the ~oader can ~lter them during the load process.

In addition to th~ liJpec~ific form of th~ modules, there is the question of linking multiple
program segiTI.enti{-'which can open up a whole "can of worms" best ignored at this
stage. . For tJi~ pu,ipose of hal1d coziipilation, the "KISS" rule applies - "keep it simple,
stupid.',', 'l'he assUm.ption will be that linkages between modules are made by commonly
addre.ssed absollite address regiOns (for example, the first 2.56 bytes or base page of
a Motorola 6800~ ·the first Z56 bytes. of an 8008 designed according to my plans pub­
lished, e~i;Her, ,or.an arbitrary'regionif no particular location is suggested by the
characteristics ofhardware or ~oftware. } .

In order to ~~;~,i~~~·~~o'c~s~.,si~nple, the Hand Assembly method as described here
is limited to the production of absolUte machine codes (type 1 object modules as listed
above.)' The' actual form willbe'a list of hardware addresses in memory address space
and th·e 'cof're~pond.ing machine code i ·for that address. I have written the article under
the assumption that the '

0

M. P.· ·Publishing Co. Kluge-I Assembler coding sheets are
used for' thefinal ·outp'\1t ;"'but thi~ i's 'by no means to be interpreted as an absolute "re­
quirement" o'{tfie method; Th~y are ·available at Sf each plus postage, and were cre­
ated pr~DU\rily to.satisfy my own purposes after I got tired of writing the same low order
address sequences over and over and over again. An alternate source of paper
for th-e process is used computer paper recycled from a handy local computer center,
or if you' are in position to make arrangements for time - you could whip off a quick
FORTRAN or PL/l (or ? J program to write the address sequences onto blank paper in
a rnanner similar to th'e Kluge-I sheets but on a line printer instead.

The process of assembling and generating the code for a program has two major
(conc.eptual} steps which must be performed, assuming that a suitable symbolic nota­
tion for the algorithm exists.

ECS Volume 1 No. 5 16 May 1975

Step 1: Translate the symbolic notations into equivalent sequences of the
machine's operations • Pay attention to any address calculations which may
be required, but leave "open" the question of addresses of operands for
which no address is yet assigned. The purpose of this step is primarily to
allocate the memory address space requirements of the program by deter­
mining the number of bytes of code required for each elementary statement
of the program which is translated.

Step 2: With all the required program and data locations allocated (typically
in a sequence of consecutive memory locations starting at a chosen "origin" or
first address) "fix up" all the unresolved references hanging around in the
code prototypes created in step 1.

This set of steps is a universal one, and is performed by every code generation pro­
cess - whether it is an assembler, a compiler's code generation phase, or even an
interpretively executed programming language such as BASIC. The variations (and
there are many) in particular approaches to compiler and assembler code generation
strategies concern ways of implementing these conceptual processes of allocation
and reference resolution (the "fix ups"). In a classical two-pass assembler and/or
compiler, there is an explicit separation into these two steps - pass one is the allo­
cation phase (also syntax checking), followed by pass two which fixes things up. If
one restricts the types of references possible at any given point in the program source,
it is possible to achieve a "one pass" compiler - the restriction being the rule that no
"forward" references be made to portions of a program yet to be referenced, or that
such forward references be made through a special mechanism in the generated code
such as a run time symbol table lookup/ calculation. In the hand assembly version of
the process described here, a classic two-pass approach is taken, but the first pass
is further broken down into two operations which might be conceptually considered
"passes'' through the data. The text continues following a short aside •••

WHY ARE TWO PASSES NECESSARY IN THE UNRESTRICTED CASE
AS A MINIMUM NUMBER OF SCANS THROUGH THE DATA?

The necessity of the second "fixup" pass becomes obvious when you con­
sider the problem of forward references. (References to previously allocated
symbols are no problem - I already have their addresses figured out.) The
assembly process can only sequentially process the statements of the program,
starting with the fir st. A "forward reference" to some sym- .,...,. &,..Cler

bol in the program is a symbolic reference made prior to Mtt

the definition of the symbol in question - relative to the order It.tat,

of scanning the source. Pictorially, a forward reference is . oc\
illustrated by the assembler (an "imp") finding the statement /
"X : : Y" closer to the beginning of the scan than the defini- /
tion of the symbol Y. At 0(the little imp says ''where's Y? 11 1

and files it as an open question. A bit later in the first pass ~ f Jii1£11¥'s.
he can say "aha - I know where Y is" but - he has already gone ' y ""Er" Y l r,

. d n1tw.- " r.a.NEJ> \\
past the point where Y was referenced. Then on the secon 1t.:F. w
time around, the little imp can use this information to fix up
the incomplete information in the stateznent with the forward . ·
reference. Either the minimum. two passes through the data, "'"" ~
or a logically equivalent 11trick" is required to resolve the forward reference.

ECS Volume 1 No. 5 17 May 1975

The hand assembly process is outlined in the paragraphs following immed­
iately below. The process is broken down into three sequential steps which
I have found to be components of a useful procedure: generate skeleton
code, allocate addresses, then fill in the final code of the program repla­
cing mnemonic notations and symbolic address references. Of these steps
the first two correspond roughly to the allocation pass of a two pass assem­
bler, and the last corresponds roughly to the reference resolution (fix up)
pass. Following this descriptive summary of the process, a detailed exam­
ple is presented for the case of a subroutine used to "concatenate" bytes
strings of the form described on page 9 of April 1975 ECS.

SKELETON CODE GENERATION:

The first pass of the hand assembly process begins with a "skeleton code genera­
tion" operation. The purpose of this operation is to figure out the mnemonic opera­
tion codes required for the corresponding operations of the source program. If you
program exclusively in the mnemonic assembly language appropriate to a given machine
you have already performed this operation by writing your program on paper. If you
use a "higher level" specification such as SIRIUS-MP (or FORTRAN, PL/l, BASIC,
and any other language you might care to use) this step is .required in order to turn the
basic operations of the source program into sequences of operation appropriate for your
computer's instruction set. For the SIRIUS-MP language, this corresponds to a table
lookup (in your head) of an appropriate method of carrying out the functions of each
statement, and in many cases will result in a fairly one-to-one correspondence of oper­
ations in the source program and in the machine code. If you automate this process,
it. becomes roughly equivalent to a "macro expansion" process tacked on the front end
of many assemblers. I have found scrap computer listings to be most effective in this
stage since it involves no address allocation, merely listing the syrnbolic equivalents
of the program bytes on paper.

ADDRESS ALLOCATION:

The hand assembly process as conceived here is oriented to the generation of the
absolute, executable machine code for specific locations in the computer's memory
address space. This bypasses the question of generating relocatable code and keeps
the process simple. Error possibilities increase with complexity, especially when
a program is assembled by biological computing machinery with all its foibles. This
address allocation stage consists of taking the skeleton code sequences for the program
and assigning a memory address for each byte in turn. One way to do this is to re­
cord the byte addresses on the paper used to write the original skeleton sequences.
Another method is to use the M. P. Publishing Co. Kluge-I Assembler coding sheets
with pre-printed low order addresses in octal to provide the allocation function - if
you write an operation code at some place on the sheet, it's address is "used up" and
no longer available for allocation. The skeleton code generation and allocation pro­
cess can be done simultaneously on the Kluge-I sheets provided you are fairly sure of
the code being generated (or don 1t mind erasing a bit if you make a mistake.) The prob­
lem of the combined skeleton/allocation approach is that whenever you write down the
use of a specific address, it commits the location to a specific utilization, which may

ECS Volume l No. 5 18 May 1975

be "premature. 11 I like to get a program done completely in the skeleton form prior to
allocation of any addresses, so a review of its operation can be done. Then after the
review, I proceed to do the allocation by copying to the Kluge-I sheets. (Even so, I
make many mistakes and change things when I see a better way - one of the things which
guarantees an incentive on writing an assembler for SIRIUS and at a later stage some
form of compiler for a decent programming language.)

An Aside:
It may be possible for you to gain access to a minicomputer facility

and/or large computer facility. (Particularly for the readers of ECS who
are still in school and can wangle computer time.) One way to implement
an assembler for a language such as SIRIUS-MP is to use an existing as­
sembler with a macro facility - eg: the IBM 360 Assembler, or a DEC
PDP-10 assembler or a host of others - and write a special set of macros
to implement the primitive operations as expansions based on the skeletons
of octal(hex) codes required for your target computero Then all the symbol
table lookup and management of the original assembler can be used as is.
The troubles with this approach are several: most macro expansion opera­
tions of assemblers tend to be inefficient; it is a lot of work to write a com­
plete set of generalized macros and debug them as well; and so. ono

FILLING IN THE CODE:

Once the addresses have been allocated to the skeleton, the final step is to fill in
the octal (or hex if you prefer) codes of each byte in the program by looking up the
mnemonics of the operation codes as noted on the Kluge-I sheets prepared during the
allocation stage. This step in the hand assembly corresponds to the "second pass" of
the classic two-pass code generation process, but with the added provision that the
mnemonic op codes which wouid be translated in the first pass of an ordinary assembler
program are left until this last pass for translation. When the process reaches this
stage, all address references are known (as allocated in the allocation step) so that
all references can be made in the code resulting. Each byte of the allocated code has
one of the following possibilities:

it has a portion of a literal value which must be translated into its
machine code equivalent.

it has a reference to an address-related value, which for an 8-bit
micro means either half of a 16(or 14 for 8008) bit address.

it has a mnemonic operation code which must be looked up in a table
of equivalent octal or hex operation codes. ·

it represents a byte of data which is not to receive any initialization,
which is simply reserved for use as a run time data storage area.

Whatever the intent, the result for each byte is 3 digits octal (or two digits hex) repre-~
senting the machine coding for that piece of the program. In the "don't care" cases
of reserved data areas (the last option listed above) no explicit action is required to
generate the loaded codes of the program.

ECS Volume I No. 5

HAND ASSEMBLY BY EX.AMPLE:

THE BYTE STRING CONCATENATION
SUBROUTINE "CONCATT ER 0

11

19

An example always helps to illustrate a new process
or method. To illustrate a hand assembly operation,
I have selected a simple little subroutine to perform a
string operation called "concatenation". In words, the
operation of concatenation is the building of a new
string (for example "Z") composed of a left half input
(for example "X") and a right half input (for example,
"Y"). In symbols, the following diagram illustrates
the operation ••••

Example: Byte String Concatenation Subroutine CONCATTER

x: I m I Tfils Is I Y: I nl X BIG STRING I

'
Z: BIG STRING I

k =: 111 + n

If you are familiar with arithmetic and algebra, you
of course know there exists a set of operations which
are in some sense "fundamental", such as addition,
subtraction, etc •. Similarly, in boolean algebra, there
is a set of flDldamental operations - AND, OR, NOT.
The sam.e holds when byte string operations are con­
sidered as well: the manipulation of "text" is best done
using a few fundamental operations, including concat­
enation, "substring" extraction (the opposite of con­
catenation), comparisons, etc. The concateration oper­
ation is one of the most useful.

The concatenation operation is shown in its most
abstract form by the flow chart running down the
right margin of this page. This flow chart describes
the steps of concatenation - test the result length for
an error, move the left half to the result, then move
the right half to the result. The numbers on the dia-
grani correspond to the statement numbers of the
equivalent SIRIUS-MP program listed on the next page
of this article.

CONCA7.'ER:

1- 2.

3.

MOVEX: 4.

s.

I
r &.
~-----

••

8.

10.

11.

May 1975

Check length

z s: 0
Rull 1t

ECS Volume 1 20 May 1975

The fl.ow chart illustrated on the previous page is an afterthought - the original
written form of the SIRlUS-MP program shown in the box below was created without
using a flow chart as a toolo This SIRlUS form of the CONCATTER is assumed as an
input to the assembly process for the purpose of the example.

1
2
3

1
i
9

10
11
12

M

CONCATTER:
z =: y * FORM SUM OF LENGTHS
z +: x * AND TEST FOR OVERFLOW
LERRS IF CARRY * OF 8-RIT MAX VALUE

MOVEX:
I FOR: if~> * TRANSFER LOOP CONTROLLED
Z(I) =: * BY X LENGTH BYTE

END: * EKD OF LAST PREV. FOR
HOVEY:

JC =: x * Z INDEX FOR Y TRANSFER
I FOR: l.Y * Y TRANSFER LOOP CONTRLD

INCR: IC * BY Y LENGTH BYTE
Z(K) =: Y(I) * TRANSFERS EACH Y

END: * 1Jlt'l'IL DONE
RE'l'URN * WITH Z CO.HTAINIKG RESULT

LERRS:
z =: 0 * HULL STRING WITH ZFIRST

RE'J'ORl(* Brl'E LENGTH=O

lew SIRI1JS-MP operationa in CONCATTER:

th;-tar!:~1~!:~~n:1f:g~-~1~r 1::=:! .. !~~i~)t:~thr;~·::
ot the old target• a value •nd the source operand value.

+:

P<ll: --- Inor-ental "FOR" loop header~ Thia aeta up the
at•rt of .a FOR loop with an aBSumed integer 8-bit inde:ii:
(":" length code)• a starting value given b7' the .t1rat
aouroe operand aubtield (see note #1 below), and an ending
value given bJ the second. source operand subfield. !l'he
target operand ia optional - if' a.itted• the generated code
will keep. its internal count which is then not available to
progr- aegB1enta within the loop. A third source operand
aubtield will be kept available (optional) separated b7·
a ca.aa and used .tor the incre)llent value it other than one.

EKD: --- Increaiental "FOR" loop trailer. All the statements
tra. the POR to the EHD are considered part or the loop. An
implicit (ie: "structured") branch back to the last previoua
FOR ocours U the iteration count la not exceeded. A1 with
the FOR statement, the EliD ha• a type modi.tier to indicate
the loop index precision,

lote 1: In order to provide tor complex operat1on1 such a1 the FOR loop
operation, 11Ultiple "source" parameters are ametilllea required. The
idea or an operand aubrield accompUahea the neceHar7 inputa to the ·

. FCll loop operation. Thia concept will recur when the varioua byte manip­
ulation operations are introduced in later d11ouaaions ot byte atringa.

•Pt• 2: The FOR/EHD construct is a "rultural" tor code jgeneration uaing the
CPU atack temporar7 data concept as it ex1ata on machinea auoh aa the
PDP-11, M6800 or 8080, When the "FOR" 1a encountered, a loop return
addreaa ia puahed onto the stack, tolloved bJ the initial count value and
tha tinal count value. Then when tha 11EHD" ia encountered during execution
tha stack ia referenced (otraet trm 11taok pointer) to :hiore•nt tha loop
count and compare it to the t1nal count. Ir the tinal count 11 not
exceeded. execution jumpa 1nd1rectlJ through the loop return addreaa lalao
rererenced ott the stack poillter) back to the 1'irat e:ucutable atate.ent
ot the bod7 ot the loop. Ir the branch back ii not taken. tho "BHD" cleans

~t, ~ •:::~e!!n:d ~~=:~~o~~e T::a:~a~1!~:~::1!!~1;r!:!":!n~~!U:r!:t:• to
FOR loop1 to aa many levels as there is temporar7 RAM 11111111or7 to atore the
atacked data. More on thil subject in a latel' iaaue •••

As in the examples of SIRIUS programs published in April ECS, I have not included
a generalized treatment of argument linkages in this example. The example of a
subroutine uses specific RAM string areas - X, Y and Z - as its arguments, so that
any program utilizing this version would have to first copy X and Y's values from some$
other place then call CONCATTER - and copy the Z result after getting back. With '
this formulation, X, Y and Z might be considered the software equivalent of the accum­
ulators (ie: CPU registers) of some hypothetical 3-register "string machine." For
large scale text processing applications, someone will sooner or later microcode a
processor with the string operations.

ECS Volume 1 No. 5 21 May 1975

Given the starting point of the previous page, the first hand assembly step is begun
with the expansion of the SIRIUS code as a skeleton of the final code. I have illustrated
a small portion of the skeleton listing of CONCATTER at the left in the following
illustration:

5'CELET0t-.J l.<LU&r.-I ALLO C.ATIO~

.:#1 ~""•: 200 Lill: ------- --- -- -----------
------- ~~ - - - ~-~~-L ..

. 202 $~IV\ ------- --- - -- ----------
203 L6~ ------- --- -- - ----------

.. 2Clli. LA::C ------- --- --- ----------
------- ~~~ - - - g~----
------- --- - - - ~~.!,' ____ _

LAM ------- --- - - - A-.;~----

The code illustrated here is for an 8008 processor (my own "ECS" system) and uses
the software conventions (eg: SYM table lookup) described in earlier issues. The
Kluge-I allocation of addresses for the Skeleton code is illustrated at the right • In
the allocation step, numbers are used to reference SIRIUS statements of the source
progra:m. and the question marks (11? 11) serve to denote address references prior to
definition. The LERRS example here is a "forward reference" to later code which
resolves (after allocation of the whole routine) to be location 007 /334.

The code generated for the remainder of CONCATTER (8008 mnemonics from the
original Intel documentation) is printed on the next page. This listing contains the
results of the third hand assembly pass (filling in code and allocated address refer­
ences) along with mnemonics and statement number references back to the original
SIRIUS-MP code.

The subroutine named "OFSET" was coded to perform the index calculation of the
type implied by the SIRIUS notation NAME(INDEX) • It adds (16 bit calculation) the
current 8-bit loop count maintained in B (CPU register) to the address found in the H/L
pointer pair. For 8080 machines, this subroutine would not be necessary since there
is the 16-bit address calculation possibility for the H/L pair.

The FOR/ END group code is generated in a form using an index variable I which

happens to be redwidant in this example. The actual loop indices in this simplest case
are maintained in the CPU B register (moving index) and CPU C register (end index).

ECS Volume 1 No. 5 22 May 1975

CONCA TT ER: 8008 Code Equivalent
#1 007\200 006 LAl #8 00'/\270 006 LAl

007\201 = 040 S(Y) 00 7\271 040 S(Y)

007\202 = 075 SYM 007\272 075 SYM
007\203 317 LBM 007\273 = 327 LCM

#2 007\204 = 006 LAl #SB 007\274 = 006 LAI

007\205 = 036 S(X) 007\275 = 044 S(I)

007\206 075 SYM 007\276 = 075 SYM

007\207 = 307 LAM 007\27'1 = 371 LMB

007\210 201 ADB #9 007\300 = 040 INE

#3 007\211 = 140 JTC #13 #10 007\301 • 006 LAI

007\212 = 334 L 007\302 = 040 S(Y)

007\213 = 007 H 007\303 • 075 SYM

#2 007\214 • 310 LBA 007\304 • 106 CAL OFSET

007\215 1:1 006 LAI 007\305 • 367 L

00-7\216 • 042 S~Z)
007\306 • 007 H

007\217 1:1 075 5 M 007\307 • 337 LDM

007\220 = 371 LMB 007\310 • 351 LHB

#4 007\221 • 016 LBI 007\311 • 314 LBE

007\222 • 001 1 007\312 • 345 LEH

007\223 • 006 LAI 007\313 • 006 LAI

007\224 • 036 S(X) 007\314 • 042 S(Z)

007\225 • 075 SYM 007\315 • 075 SYM
007\226 • 327 LCM 007\316 • 106 CALOFSET

#4B 007'.\227 • 006 LAI 007\317 • '367 L

007\230 • 044 S(I) 007\320 • 007 H
007\231 • 075 SYM 007\321 • 373 LMD

007\232 • 371 LMB 007\322 • 351 LHB

#5 007\'233 :• 006 LAI 007\323 • 314 LBE

007\234 Ill 036 S(X) 007\3211 • 3115 LEH

'00,7\235 Ill 075 SYM fll 007\325 • 301 LAB

007\236 • 106 CAL OFSET 007\326 • 272 CPC
007\237 • 367 L #12 007\327 • 053 RTZ
007\240 • 007 H #11 007\330 • 010 INB

007'241 • 33'/ LDM 007\331 • 104 JMP fSB
007\242 • 006 LAI 007\332 • 274 L

007\243 • 0112 S(Z) 007\333 • 007 H

007\244 • 075 SYM #13 007\334 • 006 LAI

007\245 • 106 CAL OFSET 007\335 • 042 S(Z)

007\246 • 367 L 007\336 • 075 SYM

007\247 • 007 H 007\337 • 076 LMI

007\250 • 373 LMD 007\340 • 000 0

#6 007\251 • 301 LAB 007\341 • 007 RET

007\252 = 272 CPC
007\253 • 150 JTZ #4E
007\254 • 262 L
007\255 = 007 H
007\256 • 010 INB OFSET:

007\257 = 104 JMP #4B 007\367 • 306 LAL
007\260 = 227 L 007\370 • 201 ADB
007\261 = 007 H '007\371 • 360 LLA

#4E/7 007\262 = 006 LAI 007\372 • 003 RFC'
007\263 = 036 S(X) 007\373 • 305 LAH
007\264 Ill 075 SYM 007\374 • 004 ADI
007\265 = 347 LEM 007\375 • 001 l

#8 007\266 = 016 LBI 007\376 • 350 LHA
007\267 = 001 1 007\377 • 007 RET

ECS Volume 1 No. 5 23 May 1975

In cases where it is desired to call one or more levels of subroutines within a loop
mechanization such as the two FOR loops of CONCATTER, it will be necessary to
save the content of the B and C registers whenever a conflicting use is encountered.

In the FOR/END loop mechanization, note that there is a "generated" label for
the branch back. The statement number of the for statement itseli does not suffice
since there is some "initialization" (set up B and C) prior to entrance into the first
loop cycle. The assignment into the symbolic loop index "I" implied by the left
operand (target) of the FOR statements is done at the beginning of each cycle and
serves to mark the branch back points. The branch back points are noted in the 8008
code generation by the statement number followed by the letter "B".

In the FOR/END group shown, the test for end of execution is made after a cycle
is completed and before the calculation of the next value of the index.---i;-the first
case, statements #4/#6 of CONCATTER, a statement number is required for the
exit case - indicated as "#4E" or (in this example) #7 of the original statements. In
the second FOR loop of the example, I moved the return statement (#lZ) ahead to fol­
low the comparison, rather than placing a branch forward at that point. In so doing
I was acting as an "optimizing" compiler of the SIRIUS language - using as input the
global knowledge of the program in order to figure out a "special case" allowing the
movement of code. A similar special case was recognized at statements #Z/3 where
the jump on condition of #3 is placed ahead of the data storage portion of #Z in order
to avoid insertion of a mechanism to save the carry flag across the SYM lookup.

On the following page is one additional set of SIRIUS coding and equivalent 8008
generated code. The routine is a "DRIVER" to call the CONCATTER routine with
test data in X and Y (printed separately as two lines), followed by printing of the
results of CONCATTER as a single line. The SIRIUS code is extremely simple -
virtually a series of calls. A routine called TSTRING is used to do the typing of
byte strings, as found within the "ELDUMPO" program of January 1975 ECS. If
you employ any form of hard copy or CRT output, an equivalent routine would of
course be employed to transfer byte strings to the appropriate external unit. In
the driver, the term "HL" is used to denote the H/L pointer pair of an 8008, which
would be the H/L pair if you generate for an 8080, or the "X" register of
a Motorola 6800. This use of the pointer for argument passage is a workable one
but only a te:mpor:1.ry "kluge" at present.

What good is concatenation you ask? The idea is illustrated by the diagram given
previously. Its use is its justification. The primary application is in the process of
"building" a character string, as often occurs when you want to format the output of
a program. The CONCATTER routine only handles two strings, but by feeding the
output of one concatenation into the next, strings of arbitrary length (to 255 with CON­
CATTER) can be built from munerous components. As an example, suppose that a
conversion routine has provided a program with the strings "X" and "Y" as answers
to a problem, and that the text "FIVE GLEEPS AT!?? X? ?! WERE SIGHTED NEXT
TO !? ? Y? ?! GLOOPS. 11 is to be printed. Start with Z="FIVE GLEEPS AT 11

; concat­
enate I? ? x? ?I on the right giving a new Z; concatenate " WERE SIGHTED NEXT TO 11

on the right giving a new Z; concatenate I?? Y? ?I on the right giving a new Z; then
concatenate 11 GLOOPSo" on the right givmg a new Z which is printed.

ECS Volume l No. 5 24 May 1975

Output of Driver Program 'fHIS l.S------______ X value ...
~ B~ G ~THI Nu • ...,,_ y value •..
fHl.S l.S A BIG .Sl'Hl1~G· ~ Z = X cat y

CONCATTER Test Driver (8008) SIRIUS Code of D!iver .••
#l 00 '/\000 = 106 CAL DRIVER:

#Z

#3

#4

#5

#6

#7

#8

#9

#10

#ll

NEWLINE:
#1

#2

#3
NL TEXT:

007\001 354 L
007\002 007 H
00'/\003 = 006 LAI
007\004 OJt> S(X}
007\005 075 SYM
007\006 106 CAL
00 7\007 166 L
0 O 7 \0 1 O = o 1 1 H
007\011 106 CAL
00'/\012 = 354 L
007\013 007 H
007\014 006 LAI
007\015 040 S(Y}
00 7 \0 1 6 O 7 5 SYM
007\017 106 CAL
007\020 = 166 L
00 '/\O 21 = 0 11 H
007\022 = 106 CAL
00 7\023 = 200 L
007\024 = 007 H
007\025 = 106 CAL
007\026 = 354 L
007\027 = 007 H
007\030 006 LA.I
007\031 042, S(Z)
007\032 075 SYM
007\033 == 106 CAL

1
2
3
4
5
6
7
8
9
10
11

1
2
3

CALL NEWLINE
HL =:: W(X)

CALL TSTRING
CALL NEWLINE

HL =:: W(Y)
CALL TSTRING
CALL CONCATTER
CALL NEWLINE

HL =:: W(Z)
CALL TS TRI NG
EXIT

NEWLINE:
HL =:: W(NLTEXT)

CALL TS TRI NG
RETURN

NLTEXT:
"006,ooo,012,ooo,015,ooo,007"

New SIRIUS-MP 0 erations in DRIVER:

CALL - this translates to the simple sub­
routine linkage of the target computer.
(No SIRIUS argument linkage assumed.)

O 0 7 \0 3 4 1 6 6 L
007\035 011 H EXIT - this translates to the aet of in-
007\036 r: 006 LAI structiona needed to return to the
007\037 = 002 S(IMPSTATE) "monitor" or "executive" of your aoft-
007\040 075 SYM were systems - if the ECS software is
007\041 = 076 LMI used, the return is to the "IMP"
007\042 = 002 z or ita equivalent code on non-8008
007\043 = 025 computers.

007\354 = 056
007\355 007
007\356 = 066
007\3!)7 =
007\360 =
007\361
007\362
007\363 =

342
106
166
011
007

007\342
007\343
007\344
007\345
007\346
007\347
007\350

= 006
= 000
r: 012
= 000
= 015

000
= 007

Llil The notation "<aeries of octal numbers>"
h(NLTEXT)I p:eceded by a label· is used to denote
LLI literal data to be loaded with program.
l(NLTEXT)
CAL

~ · IMP Symbol Table EXtensions for Use
RET With CONCATTER (temporary).

Length
NULL
LF
NULL
CR
NULL
BELL

l

.
I

l
)

' ~

012\316 ::: 006}- II II .
012\317 = 000 36 lS x
012\320 • 0061......
012\321 = 011 J "40" is Y
012\322 • 0061_
012\323 = 100 r "42" is z
012\324 = 000}
O 12\325 • 230 "44" is I

