
>~ VOLUME 1, NUMBER 4 DECEMBER 1984

■ ■ ■ H m ma

FRED: A LANGUAGE
WITHIN FRAMEWORK

GODBOUT TELLS THE
S-100 STORY

.■ -■.-.. ■■ ■ -:;

-

NEW EXOTIC LANGUAGE
CALLED OMNI

SIX PASCAL COMPILERS
COMPARED

*

■ - *(f Hi

!

^_

EXPLOI|lfORY PROGRAMMING

WEVE GOT YOUR PACKAGE!!

We offer you the most flexible, cost efficient means of introducing your

programming staff to the Ada Language. You can choose the level of

Support you need, when you need it! These Janus/Ada packages are

customer-tested and available now. ..

(C-Pak) Introductory Janus/Ada Compilers

(D-Pak) Intermediate Janus/Ada Systems

(S-Pak) Advanced Janus/Ada Systems

(P-Pak) Janus/Ada Language Translators

Janus/Ada "Site" Licenses

Janus/Ada Source Code Licenses

Janus/Ada Cross Compilers

Janus/Ada Maintenance Agreements

Coming Soon: New Computer and Operating Systems Coverage

Selected Janus/Ada packages are available from the following:

National Distributors

Westico, Inc.

25 Van Zant St.

Norwalk. CT 06855

(203) 853-6880

Soft-Net

5177 Richard, Suite 635

Houston, TX 77056

(713) 933-1828

AOK Computers

816 Easley St., Suite 615

Silver Springs, MD 20910

(310) 588-8446

Trinity Solutions

5340 Thornwood Dr., Suite 102

San Jose, CA 95123

(408) 226-0170

Compuview Products, Inc.

1955 Pauline Blvd., Suite 200

Ann Arbor, MI 48103

(313) 996-1299

International Distributors

Micronix

11 Blackmore St.

Windsor 4030

QLD. Australia

(07) 57 9152

Progesco

155, rue du Fauburg

St. Denis

75010 Paris

(1)205-39-47

Lifeboat of Japan

S- 13-14, Shiba

Minato-Ku

Tokyo 108 Japan

03-456-4101

Copyright 1983 RR Softu;

OFTWARE, INC. specialists in state of the art programming

P.O. Box 1512 Madison, Wisconsin 53701

(608) 244-6436 TELEX 4998168

CIRCLE 58 ON READER SERVICE CARD

Flight Simulation

Guidance Systems

ASW Weapons Systems

SOFTWARE
ENGINEERING
For The New Defense Technology

Goodyear Aerospace is bringing computer-based systems
technology to the new wave of defense programs destined for
future deployment. Our current engineering contracts, combined
with the new projects we were recently assigned, call for more of
the Technical talent responsible for the success of our diverse

electronic and systems products. Look into these immediate
opportunities.

fW

Wm

Software Engineers - a number

of challenging opportunities

for Software Professionals to

work on diverse systems

development and applica

tions. BSEE, CS, or related Tech

nical education and minimum

3 years practical advanced

computer systems experience

including higher level

languages required.

Systems Engineers - BSEE, CS, or
related field with opportunities

for MS & PhD level candidates.

Apply advanced hardware

and software technology to

simulation, guidance, visual

systems, weapons, or other

specialized projects. Previous

experience with a major DOD

contractor, particularly missile
systems preferred.

Scientific Programmer Analysts

- Analyze complex engineering

and mathematical problems

in support of advanced

systems engineering and

development. BSEE or CS and

ability to utilize modern

computer resources to

maximum capability essential.

Digital Design - Using detailed

Systems level input, you will

design VLSI/VHSIC circuits from

the component level. MS/BSEE

and 5 years related experience
required.

Goodyear Aerospace offers qualified candidates a total compensation package commensurate
with your current and projected skills; including generous company benefits,educational assistance,
and an attractive environment conducive to large city, suburban or even rural lifestyles. Our stability
and continued projected growth provides engineering professionals the opportunity to utilize and
expand on their career potential without changing employers. For details or a confidential interview
appointment in your area, please send your resume indicating your area of interest to'

GOODYEAR
AEROSPACE
Dept. 131-OH

Akron, Ohio 44315

Equal Opportunity Employer, M/F/H

CIRCLE 43 ON READER SERVICE CARD

Ada's First Family

MC68000/R0S

A growing company in San Diego has taken a giant step

in bringing Ada to the software development world.

TeleSoft, the company that fielded the first Ada com-

installed, has validated the first in its family of portable Ada

compilers.

TeleSoft's Ada compiler family is portable across most of

today's popular host systems and development environ

ments: MCOHOOO/dnix, MC6H000/ROS, Digital's VAX/VMS

and VAX/Unix, IBM 370 VM/CMS and MVS. And develop

ment is well underway on Ada compilers for nearly a dozen

other systems.

These compilers are all that Ada was intended to be:

Truly portable, with complete support environments, and a

dear growth pathtO exceptional compilation and execution

speeds. TeleSoft has clone this by developing technology

It's Portable.

It's Validated.

TeleSoft-Ada.

which minimizes machine-dependent software and allows

fast adaptation to new environments.

TeleSoft's announcement is the first big step towards a

new era in the software industry—based on components,

true software portability, and Ada standardization.

10639Roselle Street ■ San Diego, Ca. 92121 ■ (619)457-2700

(\^.1mlMVS:iit >niiMc...tp..rJii1.r1 \U f^MKwi ,s.iir.i.k-in.irk <A MotunAi i."ip«n.ii<.n TcfcSoft Ada is a iraJematk tfTWeSufi QspyrtRh! WB5. McSoft

CIRCLE 74 ON READER SERVICE CARD

COMPUTER

LANGUAGE

ARTICLES
COMPUTER

Explorotory Programming
by Michael Ham

Coding style is greatly influenced by the syntax and tools provided by
the available programming language. As an extensible language,
Forth promotes a kind of "revise as you go" coding style that can help
programmers discover how to progressively improve the speed and

efficiency of their programs.

Fred—More than just a macro facility within Framework
fay Darryl Rubin

Within Framework, a new integrated software package from

Ashton-Tate, exists a programming language named Fred that has
many of the powerful features of LISP, Smalltalk, BASIC, and C. Here

we discover how to write and run Fred programs and how to develop

some useful, undocumented Fred routines.

Enhancing Source Code Control under UNIX, Part II
fay Luke C Dion and Alan Filipski

Last month we described how a front-end interface to the standard
UNIX SCCS utility set could solve the problem posed when many

people are trying to store and access their files simultaneously. In this
issue, Dion and Filipski discuss the tools necessary to design and

implement such an interface.

What Day is It, Exactly?
fay Joe Celko

The format for writing dates on a computer is by no means standard.
Using Julianized dates, this author provides the various algorithms

necessary to establish an accurate, consistent calendar program based

on the U.S. military's format for calendar dates.

Customize your High-Level Language
by Charles K. Ballinger

Assembly subroutines are often designed to interface with high-level
programs in order to execute a specific task when called. This author

shows how easily such an interface can be achieved by describing how

he married Microsoft's COBOL-80 language with assembler to control
his printer.

27

33

41

47

51

DEPARTMENTS
Editor's Notes

Feedback

Back to the Drawing Board

Designers Debate
The art of hacking

Public Domain Software Review

Exotic Language of the Month Club

OMNI: One person's language

ComputerVisions

Bill Godbout, chairman and CEO of CompuPro

Software Reviews
A comparison of six Pascal compilers

Advertiser Index

5

9

15

21

55

58

63

69

80

WHY DEBUG YOUR PROGRAM IN

ASSEMBLY LANGUAGE WHEN

YOU WROTE IT IN

ONE OF THESE...

ATRON Announces

Source Level Software

Debugging

Without source level debugging, the

programmer must spend time mentally

making translations between assembly

language and the C. PASCAL, or

FORTRAN source code in which the

program was written. These tedious

translations burn up valuable time

which should be spent making critical

product schedules. The low level hex

and symbolic debuggers available

today are superceded by ATRON'S

solution — Source Probe.

HOW TO SINGLE STEP YOUR

SOURCE CODE AND KEEP

CRITICAL DATA IN VIEW

With Source Probe, you can step your

program by source code statements.

While stepping, a window which you

define can display critical high level

data structures in your program. The

next several source code statements

are also displayed to give you a pre

view of what the program will do

HOW TO DISPLAY DATA IN

MEANINGFUL FORMATS

Why look at program data in hex when

you defined it to be another data type

in your program. Source Probe pro

vides a formated print statement to

make the display of your variables

look like something you would

recognize. You can specify data

symbolically too.

FIND A BUG - FIX IT RIGHT

NOW

Source Probe provides an on-line

text editor to allow you to log program

corrections as you find them while

debugging. With on-line display and

editing of source files, the time lost

printing and looking through program

listings ^^^^^^^^^^^

can be M ;-£■»«
elimina- fl ■ ,:
ted- M ■-

I

SNAP SHOT

OF REAL TIME

PROGRAM EXECUTION -

BY SOURCE CODE !

When Source Probe is running on

ATRON'S PC PROBE hardware, the

real time execution of the program is

saved. You can then view your source

code as it executed in real time —

including all the changes the program

made to your data variables.

HOW TO

FIND A BUG WHICH

OVERWRITES MEMORY

When running on PC PROBE, the

Source Probe can trap a bug which

overwrites a memory location.

Because complex pointers are

normally used in high level language

programming, this bug occurs fre

quently and is very difficult to find.

BULLET PROOF

DEBUGGER

What good is a debugger that can be

wiped out by an undebugged pro

gram? With Source Probe running on

PC PROBE, the software is write

protected and cannot be changed.

ATRON PROVIDES THE

DEBUGGING TOOLS WHICH

FIT YOUR PROBLEM

PC PROBE - A hardware aid

to symbolic

software debugging

SOFTWARE PROBE A symbolic

debugger, runs

without PC PROBE

SOURCE PROBE - A source level

debugger, versions run with

or without PC PROBE

PERFORMANCE AND

TIMING ANALYZER - For finding

where your program

spends its time

WE HAVE HUNDREDS OF

HAPPY CUSTOMERS

ATRON produced the first symbolic

debugger for the PC and the first

hardware aided debugging tool — PC

PROBE. We have hundreds of happy

customers who have made their

schedules because of ATRON

debugging tools. Why waste more

time — call us today1

20665 FOURTH STREET

CIRCLE 4 ON READER SERVICE CARD

a debugging company

SARATOGA. CA 95070 • (408) 741-5900

4 COMPUTER LANGUAGE ■ DECEMBER 1984

Editor's Notes COMPUTER

LANGUA3E

T
oday a growing

number of people

are becoming

involved in the art and science of pro

gramming. Many of the new entrants to

our industry are unaware of the time when

hobbyists would wire wrap their own

printed circuit boards on workbenches in

their garages to produce homemade,

single-board systems that had a only few

kilobytes of memory to play with.

Back in 1975, mainframe programming

was for the privileged few who had the

clearance badges to those sacred, sterile

computer rooms in large corporations and

government facilities.

The microcomputer world has taken a

few quantum leaps since then, and many

people today feel that small systems pro

gramming issues have become even more

complex than mainframe issues. The tech

nical hurdles that now face programmers

challenge intellectual and creative abili

ties to an extreme.

For example, in the programming

world of the 1980s, debates are fierce on

whether the C programming language is

only good for systems programming jobs

and whether "big" languages like Ada

and COBOL can ever be successfully

implemented in their standard forms on a

microcomputer.

COMPUTER LANGUAGE will continue

to be a forum for the discussion of issues

like these and other subjects that are

important to today's programmer.

On that point, this month I'd like to

announce our plans to begin publishing

theme issues on an planned basis. We are

now in the process of designing a 1985

editorial calendar that will map out our

future coverage of subjects judged to be of

current interest to people in our industry.

Next February we will begin with our

first theme issue, which will be devoted to

C. We have tentative plans for theme

issues on BASIC, Modula-2, artificial

intelligence. COBOL, and exotic lan

guages in the following months.

Each theme issue will also include a

product wrap-up table that will analyze all

the important products in the field being

covered (e.g., compilers/interpreters for

all language-oriented issues). In the Soft

ware Reviews department this month, we

begin this product analysis strategy with

our review of six Pascal compilers.

Also in the works for next year will be

our first East Coast COMPUTER

LANGUAGE technical seminar on

C. Geared primarily toward experi

enced C programming professionals, this

seminar will feature lectures and work

shops led by well-known figures in the C

world.

We are also considering sponsoring

other technical speaking events in major

cities around the country. What would you

like to see covered in such a seminar if

you were to attend? Who do you think

would be the speakers most qualified to

lead technical workshops?

I encourage you to write in with your

ideas on the subjects you think we should

be considering for our upcoming technical

seminar and also for future theme issues.

Tell us how we might also improve the cri

teria by which products are compared in

our Pascal wrap-up table.

And. in general, now that you've had a

chance to see how we've covered pro

gramming subjects in the past three

issues, I hope you'll continue to write in

with your thoughts on how we can better

improve our editorial coverage, style, or
anything else you might have in mind.

Thanks!

Craig LaGrow

Editor

EDITOR
Craig LaGrow

MANAGING EDITOR
Regina Starr Ridley

TECHNICAL EDITOR
John Halamka

EDITORIAL ASSISTANT
Hugh Byrne, Lorilee Biernacki

CONTRIBUTING EDITORS
Burton Bhavisyar, Steve Heller,

Tim Porker, Ken Takara

INDUSTRY NEWS CONSULTANT

Bruce Lynch

ADVERTISING SALES
Jan Dente

CIRCULATION COORDINATOR
RenaloSunico

ART DIRECTOR
Jeanne Schachl

COVER PHOTO
Dow Clement Photography

PRODUCTION ARTIST

AnneDoering

PRODUCTION
Barbara Lock, Steve Campbell, KyleHoubolt

TECHNICAL CONSULTANT
Addison Sims

MARKETING CONSULTANT

Sieve Rank

ACCOUNTING MANAGER

Lauren Kalkstein

PUBLISHER
Carl Landau

COMPUTER LANGUAGE BBS: {415) 957-9370, 7 bit,

even parity, 30011200 baud. CompuServe occounf;

"GO CLM".

COMPUTER LANGUAGE is published monthly by COM

PUTER LANGUAGE Publishing Ltd., 131 Townsend 5/.,

Son Frandsco, CA 94107. (415} 957-9353.

Advertising: For information on od rafes, deadlines, and

placement, contact Carl Landau or Jon Denfe al (415)

957-9353, or write to: COMPUTER LANGUAGE, 13!

Townsend St., Son Francisco, CA 94107.

Editorial: Please address all letter* and inquiries to: Craig

LaGrow, Editor, COMPUTER LANGUAGE, 13! Townsend

St., San Francisco, CA 94107.

Subscriptions: Contact COMPUTER LANGUAGE, Sub

scriptions Dept., 2443 Fillmare St., Suite 346, San Fron-

ciseo, CA 94115. Single copy price: S2.95. Subscription

prices: S24,00per year (U.S.J/S30.00 per year (Canada

and Mexico). Subscription prices for outside the U.S.,

Canada, and Mexico: $36.00 (surface mail), $54.00 (oir

mail) —U.S. currency only. Please allow six weeks for new

subscription service to begin.

Postal information: Second-class postage rale is pending

at San Francisco, CA and additional mailing offices.

Reprints: Copyright 1984 by COMPUTER LANGUAGE

Publishing Ltd. All rights reserved. Reproduction of mate

rial appearing in COMPUTER LANGUAGE is forbidden

without written permission.

Chonge of address: Please allow six weeks for change of

address to take effect. POSTMASTER: Send change of ad

dress (Form 3579) to COMPUTER LANGUAGE, 13?

TowniendSf., San Francisco, CA 94107.

COMPUTER LANGUAGE is a registered trademark

owned by the magazine's parent company, CL Publica

tions. All material published in COMPUTER LANGUAGE

a copyrighted 0 1984 by CL Publications, Inc. All rights
reserved.

'■,'■■■ I '.Vrk'■''■*-■ - RblK ■■■■

NEW from BORLAND!

■M" ■■;■■■.'■'■"■

"TURBO is much better than the

Pascal IBM sells."

Jerry Pournelle.

Byte. July 1984

- - . -

BORLAND
INTERNATIONAL

GIFT PACK

$9995
A SAVINGS OF $50!

What a gift for you and your friends! The extraordinary TURBO PASCAL

compiler, together with the exciting new TURBO TOOLBOX and new TURBO
TUTOR. All 3 manuals with disks for $99.95.

PASCAL Version 2.0 (reg. $49.95). The now classic program
development environment still includes the FREE MICROCALC SPREAD SHEET.
Commented source code on disk

• Optional 8087 support available for a small additional charge

TOOLBOX (reg. $49.95). A set of three fundamental
utilities that work in conjunction with TURBO PASCAL. Includes:

• TURBO-ISAM FILES USING B+ TREES. Commented source code on disk

• QUIKSORT ON DISK. Commented source code on disk

• GINST (General Installation Program)

Provides those programs written in TURBO PASCAL with a terminal installation module
just like TURBO'S!

• NOW INCLUDES FREE SAMPLE DATABASE.. . right on the disk! Just compile

it, and it's ready to go to work for you. It's a great example of how to use TURBO
TOOLBOX and. at the same time, it's a working piece of software you can use
right away!

3R (reg. $29.95). Teaches step by step how to use the TURBO
PASCAL development environment-an ideal introduction tor basic programmers.
Commented source code for all program examples on disk.

BACK GUARANTEE These offers good through Feb. 1, 1985

For VISA and MASTERCARD order call toll free: l-(8OO)-255-8OO8 l-(8OO)-742-1133
(Lines open 24 hrs.. 7 days a week) Dealer and Distributor inquiries welcome (408) 438-8400

CHOOSE ONE (please add $5.00 for handling and shipping U.S. orders)

All Three-Gift Pack $ 99-95 + 5.00SPECIAL! Turbo Toolbox $49.95 + 5.00

All Three & 8087 139-95 + 5.00 SPECIAL! Turbo Tutor 29.95 + 5-00

TUrbo Pascal 2.0 49.95 + 5.00 Turbo 8087 89-95 + 5.00

Check Money Order VISA MasterCard

Card #:

My system is: 8 bit 16 bit

Operating System: CP/M 80 _

Computer:

Exp. date: Shipped UPS

CP/M 86 MS DOS PC DOS

Disk Format:
Please be sure model number & format are correct.

NAME:

ADDRESS: __„

CITY/STATE/ZIP:

TELEPHONE:

California residents add 6% sales tax. Outside U.S.A. add $15.00 pf outside of U.S.A. payment must be by bank draft payable in
the U.S. and in U.S. dollars). Sorry, no C.O.D. or Purchase Orders. H2B

I i
-

IJPSffR

g) BORlPflD
D) INTERNATIONAL

4113 Scotts Valley Drive

Scotts Valley, California 95066

TELEX; 172373

CIRCLE 6 ON READER SERVICE CARD

' ■ ■ ■

MICROTEC

RESEARCH

3930 FieeOom Oicie, Swie 101. Santa Cte'a CA 95054

Mailing Aad'ete PO Bon 60337. Sunnyvale CA 94088

1408) 733-2919 • Telex iITT) 4990808

CIRCLE 77 ON READER SERVICE CARD

FEEDBACK

NSWEEP defended

Dear Editor:

I disagree with Tim Parker's comment

about front-end programs for CP/M 80.

He apparently hasn't seen NSWEEP

(NewSWEEP), a 12K bundle of dynamite

that not only replaces REN, TYPE, PIP,

and ERA, but also has such features as

squeeze and unsqueeze, sets file status,

and more.

Let's see how fast brute force can move

half a dozen files to another disk if the

names are unrelated so wild cards can't do

it with PIP, then erase all of them. Try

squeezing three of the six at the same lime

while unsqueezing the other three! With

NSWEEP205 you hit "t" to tag the files

you want to move as you space through

the alphabetical list of files, "Q" to indi

cate the squeeze routine, "R" to indicate

"reverse", (squeeze the unsqueezed files

and unsqueeze the squeezed ones), a drive

and user specification for the destination,

and NSWEEP does the work. When it's

done, hit "a" for retag, "e" to erase, "t"

to indicate the tagged files are the ones to

erase, and "n" to indicate no prompting

before erasing.

Now I'll grant that you could write a

submit file to do it, or with ZCPR or some

other program you could use multiple

commands on a single line, but you'll

spend a lot more time doing it and if you

misspell one of the names of the files

you'll be done in. NSWEEP lets you view

or print out squeezed files without having

a separate program for that function or

unsqueezing the files first.

SWEEP version 4.0 ran about 28K and

had fewer features than NSWEEP at 12K.

DISK and WASH are primitive by

comparison.

By the way, NSWEEP told me how

many K bytes the programs to be copied

were (cumulatively) and a simple mash on

two keys would tell me whether there was

space enough on the destination drive,

though I wouldn't have the size of files

before/after squeezing if I were doing that

at the same time. If true programmers

eschew these easy features, it's no wonder

so many programs are lousy.

Benjamin H. Cohen

Chicago, Hi

Oooops

Editor's Note: To err is human, right? In

our November issue we published a letter

from Gary Nemeth of Cleveland, Ohio,

that was supposed to include a Forth ver

sion ofthe Quicksort algorithm. Instead,

we re-published the Fortran version ofan

issue earlier. Our humble apologies.

Will the real Forth Quicksort please

stand up ? Presented in Listing I is

Nemeth 's Forth Quicksort, which was con

verted to IBM PC display management. In

this version, the data-dependent words

COMPARE and EXCHANGE arefac

tored. Vie first line is the machine-

dependent part and thus must be ported

(debuggedfirst). Tlie rest ofthe program

will run on any Forth computer.

(ECHO RCV>PAD RCVBLOCKS) (8/03/84 GSN)

NEED PRINT2 (5/31/84 GSN)

FRAME BEGIN AKEY ASCII * = UNTIL ;

VARIABLE PAD IK ALLOT

RCV>PAD FRAME IK 0 DO AKEY PAD I + C! LOOP ;

.PAD 16 0 DO CR I 3 .R SPACE PAD I 64 * + 64 TYPE LOOP ;

STASH PAD SWAP BLOCK IK CMOVE UPDATE FLUSH ;

Promotional cover

Dear Editor:

I was getting a little worried about your

monthly publication after three months

had gone by. Recently, however, I have

begun to receive COMPUTER

LANGUAGE.

I was a little upset at first because the

first issue I received was the premier issue

(the one I had purchased at the book

store). But I reread it and passed it on to a

friend. Soon my second issue came. And

then there were two, and they were both

good.

RBLOCK

RBLOCKS

XBLOCK

XBLOCKS

=BL0CK

=BL0CKS

;S

RCV>PAD

1+ SWAP

PRINT2

1+ SWAP

RCV>PAD

1+ SWAP

.PAD

DO
ti

DO

DUP

DO

I
*"

I

I

DUP STASH LIST ;

RBLOCK

BLOCK

XBLOCK

BLOCK

=BL0CK

LOOP ;

IK TYPE ME ;

4 DELAYS LOOP

IK PAD -TEXT AB

LOOP ;

QUICKSORT ; (from Forth Dimensions V5#5

NEED F0RTH79 NEED RECURSE

K@ 2* CRTSEG LC@ ; : K! 2* CRTSEG LC! ;

MIDDLED (a a —) OVER - 2/ + K§

COMPARE (a —) K@ MIDDLE @

EXCHANGE (a a —) 2DUP K@ SWAP K@

SORT (alow ahigh —) 2DUP > IF

2DUP 2DUP MIDDLED

BEGIN SWAP BEGIN DUP COMPARE 0<

SWAP BEGIN DUP COMPARE 0>

2DUP > NOT IF 2DUP EXCHANGE

2DUP > UNTIL SWAP ROT

7/26/84 GSN)

VARIABLE MIDDLE

MIDDLE ! :

ROT K! SWAP K! ;

2DR0P ELSE

(— 1 h 1 h)

WHILE 1+ REPEAT

WHILE 1- REPEAT

1 -1 D+ THEN

(— start sl+ el- end)

20VER 20VER - ROT ROT - < IF 2SWAP THEN

RECURSE RECURSE THEN ;

: SS (Sort Screen) 0 1359 SORT ;

Listing 1.

C smallest first)

ALIAS QSS SS

I have one question: on page 8 of both

issues appears an ad for COMPUTER

LANGUAGE. The ad shows a picture of

the premier issue which looks a lot like

my premier issue, except its cover is a

little different (read totally different). I'm

not complaining, it's just those articles in

the ad interest me a great deal. I was won

dering where I could get that issue (or an

explanation). Thank you.
Dan Efron

5f. Louis Park, Minn.

Editor's Note: Before we began making

preparations to publish the first issue of

COMPUTER LANGUAGE, we needed to

test the waters with a hypothetical pro

motional issue. At that point the publisher,

Carl Landau, and I were not even sure

COMPUTER LANGUAGE would ever

come to be.

Since that early time we have published

four real issues, yet many readers are also

interested in those article subjects which

appeared on the promotional cover.

So, in the interests ofthose who have

written in sofar with this concern, I have

consignedforfuture publication each and

every one ofthe article subjects referred to

on the promotional cover.

In the November issue you may have

noticed our natural language processing

article, and soon to come will be articles

on C screen editors and macro libraries.

CP/M-80 C Programmers ...

save time
with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Ultra-lasI compilaiion, linkage ana

execution thai produce directly

e>ecutaDle 806OZ80 CP/M command

files.
A comprehensive debugger ifial

traces program execution and

interactively displays coin local and

enlemal variables by name and

proper type-

Dynamic overlays trat allow tor run-

lime segmentation of programs loo

large to fit into memory

• A 120-function library written in botri

C and assembly language with full

source code.

Pius . . -
• a thorough, easy-to-read, 181-page

user's manual comolete wifh

tutonals, hints, error messages ana

an easy-to-use inOei — it's the

perfect manual for the beginner ana

the seasoned professional.

An attractive selection of sample

programs, including MODEM-

compatible telecommunications,

CP/M system utilities, games and

more.

A nationwide BDS C User's Group

(110 membership (ee — application

included with package] that oilers a

newsletter, BDS C updates and

access to public domain C utilities.

Reviewers everywhere have

praised BDS C lor its elegant

operation and optimal use of

CP'M resources. Above all, BDS C
has Been hailed for it's remarkable

speed,

BYTE Magazine placed BDS

C ahead ol all other 8O8O/Z8O C

compilers tested for fastest

object-code execution with all

available speed-up options in use.

In addition, BDS C's speed ol

compilation was almost twice as

fast as its closet competitor

(benchmark for this test was the

Sieve of Eratosthenes).

"I recommend both the

language and the ; .-"■«= illation

by BDS very highly."

TlmPugh. Jr.

"Performance ExctUtnt

Documentation: Ezctlienl

Eiit of Ux: EzctOtnt."

infoWorid

Software Report Card

"... a super™ buy ..."

Van Court Hare

in Lifetines/The Software

Magazine

Don': waste another minute on

a slow language processor. Order

youi BDS C Complltt today!

Complete Package (two 8" SSDD disks.

181-page manual!: S150

Free shipping on prepaid orders inside

USA.

VISA/MC. COD'5, rush orders accepted.

Call for information on older disk

formats.

BDS C is Oeagnea lof use win CWM-80

operating systans, version 22. or nigrwr It is

not currently j,j c.» lor CD '.'->; or MS-

DOS.

BD Software, Inc.

P.O. Box 2368

Cambridge, MA 02238

(617)576-3828

CL for professionals

Dear Editor:

I have almost finished reading the pre

mier issue of COMPUTER LANGUAGE

and am surprised and extremely delighted

with it. This is the only publication I have

read that is targeted to the professional

software designer.

The article on True BASIC was quite an

eye catcher as I have been using a lan

guage almost exactly like it for several

years. BASIC09 (Microwarc Systems,

Des Moines, Iowa) contains the con

structs for structured programming, the

ability to create library functions and link

to them at run time, and most of the other

desirable features in True BASIC. In

addition. BASIC09 has an interactive edi

tor to catch the simple mismatched quotes

or misused keyword, as well as a com

piling debugger to pick up the likes of

unterminated structures and other logical

errors. BASIC09 produces a compiled "I

code" upon exiting the editor and need not

be compiled each time the program is run.
Don LoughUn

Hauppage, N.Y.

More on mainframes

Dear Editor:

Before I say anything negative, I want

to say quickly that I think COMPUTER

LANGUAGE is very successful, and the

proof of my high opinion of your work is

that I am willing to spend the time to write

this letter.

If I have any overall reservations with

COMPUTER LANGUAGE it is that the

premier issue is too oriented toward

microcomputers. The old world of main

frames and so on may be duller but it

remains and will probably always be the

place where most of the computing (and

programming) is done.

Your layout is attractive and intelligent;

I like it. Your articles are so-so. One bad

sign is a tendency toward quick super

ficial articles. 1 would say that there is a

minimal market for a popular magazine

on computer languages and COMPUTER

LANGUAGE must be at least as tech

nically tough as the Scientific American

(more would be better).

David Kleinecke

Santa Barbara, Calif.

CIRCLE 5 ON READER SERVICE CARD

10 COMPUTER LANGUAGE ■ DECEMBER 1984

Eco-C Compiler
Release 3.0

We think Rel. 3.0 of the Eco-C Compiler is the
fastest full C available for the Z80 environment.

Consider the evidence:

Benchmarks*
(Seconds)

Benchmark

Seive

Fib

Deref

Matmuft

Eco-C

29

75

19

42

Aztec

33

125

CMC

115

Q/C

40

99

31

N/A

Times courtesy o! Dr. David Clark
CNC - Could Not Compile

N/A - Does nol support floating point

We've also expanded the library (120 func
tions), the user's manual and compile-time

switches (including multiple non-fatal error

messages). The price is still S250.00 and

includes Microsoft's MACRO 80. As an option,

we will supply Eco-C with the SLR Systems

assembler - linker - librarian for S295.00 (up to

six times faster than MACRO 80).

For additional information,

call or write: .

(317)255-6476 K^Jl

liege Ave. • Indianapolis, Indiana 46220

CIRCLE 22 ON READER SERVICE CARD

TOTAL CONTROL
FORTH: FOR Z-80®, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS. GAMES. COMMUNICATIONS. ROBOTICS
DATA ACQUISITION • PROCESS CONTROL

• FORTH programs are instantly

portable across the four most popular

microprocessors.

• FORTH is interactive and conver

sational, but 20 times faster than

BASIC.

• FORTH programs are highly struc

tured, modular, easy to maintain.

• FORTH affords direct control over

all interrupts, memory locations, and

i/o ports.

• FORTH allows full access to DOS

files and functions.

• FORTH application programs can

be compiled into turnkey COM files

and distributed with no license fee.

• FORTH Cross Compilers are

available for ROM'ed or disk based ap

plications on most microprocessors.

Trademarks IBM. Iniernaiional Business Machines

Corp.. CP'M. Digital Research Inc. PC/Forth + ana

PC/GEN, Laboratory Microsystems. Inc

FORTH Application Development Systems

include interpreter/compiler with virtual memory

management and multi-tasking, assembler, full

screen editor, decompiler, utilities and 200 page

manual Standard random access files used for

screen storage, extensions provided lor access to

all operating system functions.

Z-80 FORTH for CP/M' 2.2 or MP/M II, $100.00;

8080 FORTH for CP/M 2.2 or MP/M II, S100.00.

8086 FORTH for CP/M-86 or MS-DOS, $100.00;

PC/FORTH for PC-DOS, CP/M-86, or CCPM.

$100.00; 68000 FORTH forCP/M-68K. $250.00.

FORTH + Systems are 32 bit implementations

that allow creation of programs as large as 1

megabyte. The entire memory address space of

the 68000 or 9086/88 is supported directly.

PC FORTH + S250.0J

8086 FORTH + for CP/M-86 or MS-DOS S250.0D

68000 FORTH + for CP/M-6SK

Extension Packages available include soft

ware floating point, cross compilers, INTEL

8087 support. AMD 9511 support, advanced col

or graphics, custom character sets, symbolic

debugger, telecommunications, cross reference

utility, B-tree file manager. Write for brochure

Laboratory Microsystems Incorporated

Post Office Box 10430, Marina del Rey, CA 90295

Phone credit card orders to (213) 306-7412

FOR TRS-80 MODELS 1,3 & 4

IBM PC, XT, AND COMPAQ

The MMSFORTH

System.

Compare.

• The speed, compactness and

extensibility of the

MMSFORTH total software

environment, optimized for

the popular IBM PC and

TRS-80 Models 1,3 and 4.

• An integrated system of

sophisticated application

programs: word processing,

database management,

communications, general

ledger and more, all with

powerful capabilities, sur

prising speed and ease of use.

• With source code, for custom

modifications by you or MMS.

• The famous MMS support,

including detailed manuals

and examples, telephone tips.

additional programs and

inexpensive program updates,

User Groups worldwide, the

MMSFORTH Newsletter,

Forth-related books, work

shops and professional

consulting.

FORTH

CIRCLE 35 ON READER SERVICE CARD

A World of

Difference!

• Personal licensing for TRS-80:

$129.95 for MMSFORTH, or

"3+4TH" User System with

FORTHWRITE, DATA-

HANDLER and FORTHCOM

for $399.95.

• Personal licensing for IBM

PC: $249.95 for MMSFORTH,

or enhanced "3+4TH" User

System with FORTHWRITE,

DATAHANDLER-PLUS and

FORTHCOM for $549.95.

• Corporate Site License Exten

sions from $1,000.

If you recognize the difference

and want to profit from it, ask us

or your dealer about the world

of MMSFORTH.

MILLER MICROCOMPUTER SERVICES

61 Lake Shore Road, Natlck, MA 01760

(617)653-6136

CIRCLE 61 ON READER SERVICE CARD

11

5NOBOL, LISP, and OASIS

Dear Editor:

This is my second time on your BBS

(first time was some months ago). I am

very impressed with the first two issues of

your magazine—keep up the good work.

I am also impressed with the concept of

and the services available on your BBS. I

would enjoy seeing some articles in

COMPUTER LANGUAGE on SNOBOL

replacements (ICON and SL-5) and on the

new implementation of LISP, Common

LISP. Also. I would very much like to see

some coverage of the OASIS operating

system from Phase One Systems and

OASIS Technology. I use OASIS regu

larly, and I feel it is one of the best (albeit

poorly known) operating system available

for Z-80 micros.

Larry A. Schrupp

Colstrip, Mont.

He'll pay the bill

Dear Editor:

I ordered your magazine with the

intention of taking the first issue and can

celling. Your ad plan worked; I am

hooked. COMPUTER LANGUAGE has a

"feel" unlike any other computer maga-

lultration; AnneDoering

zine I've read. I'll still take BYTE, but I'm

going to pay your bill when it comes.

Thanks for a good magazine and the

Bulletin Board Service. Both are valuable

to me. Your setting up this board is part of

the philosophy that gives you that differ

ent feel.

Liince Reichen

Dctvion, Ohio

Suggestions for the

future

Dear Editor:

Thanks for an excellent magazine and

for your progressive use of bulletin

boards. I have a couple of suggestions for

future issues:

■ An EDITORS section. This could com

pare editors (vi, emacs, tcco)inthe

same manner in which you compared C

and Forth in the first issue.

■ A TOOLS section to look at things like

Smart-C for automating programming

tasks.

■ A CODE LIBRARIES section that dis

cusses things like the Greenleaf C library

(not just public domain stuff).

■ There are a lot of us Macintosh pro

grammers out here looking for develop

ment support tools and information . . .

domain stuff.

Rk- Ford

THE WORLD'S FASTEST

S-100 Z-80 SLAVE PROCESSOR

TurboSlave I
• 8 Mhz 2-80H

• Data transfers to 1

mbyie/second

• S-100 IEEE-696 compatible

• 4k Monitor rom

• Low parts count

• No paddle boards

128k Ram with parity

2 RS-232 Ports.

50-38.K baud

F.I.FO communications

On board diagnostics

Low power consumption

TurboDOS compatible

. GUARANTEED COMPATIBLE WITH ALL S-100 SYSTEMS

RUNNING TURBODOS

INTRODUCTORY PRICE $495

Includes TurboDOS drivers (a $100 value) and

TurboStave I with 1 28k ram.

EARTH COMPUTERS

P.O. Box 8067, Fountain Valley, CA 92728

TELEX: 9109976120 EARTH FV

FOR MORE INFORMATION AND QUANTITY DISCOUNTS

CALL: (714) 964-5784

Registered trademarks: Z-SOH. Zilog Inc.; TurboDOS Software 2000. Inc.

•" IBM PC VERSION COMING SOON —

CIRCLE 24 ON READER SERVICE CARD

12 COMPUTER LANGUAGE ■ DECEMBER 1984

C Source Code

RED

Full Screen Text Editor

IBM PC, Kaypro, CP/M 80 and CP/M 68K systems.

RED is fast! RED uses all of

your terminal's special func

tions for best screen response.

RED handles files as large as

your disk automatically and

quickly.

RED is easy 10 use for writers

or programmers. RED's com

mands are in plain English.

RILD comes with complete

source code in standard C.

RUD has been ported to main

frames, minis and micros.

RED comes with a Reference

Card and a Reference Manual

ih;*i provides everything you

need to use RED immediately.

RED is unconditionally

guaranteed, [f for any reason

you are noi satisfied with RLl)

your money will be refunded

promptly.

RED: $95

Manual: $10

edward k ream

Call or write today for

for more information:

Edward K. Ream

1850 Summit Avenue

Madison, Wl 53705

(608)2.11-2952

order:

Either ihc HDS C compiler or ihe Aztec CII compiler Is required for l"P<M80

s>siems. Digital Research C compiler \ I.I is required lor t'H M MK systems. No

compiler is required for IBM or Kaypro systems.

Specify both [he machine desired (IBM. kaypro or CP/M) and ihc disk format

described IB inch CP/ M single density or c\acl type ol 5'< inch di>k).

Send a check or money order for SV5 (SI05 U.S. lor foreign orders!. Sort). I do

NOT accept phone, credil card, or COD orders, ['lease do nut send purchase orders

unless a check is included. Your order uill be mailed ID you wiilnn one week.

Dealer inquiries mailed.

CIRCLE 27 ON READER SERVICE CARD

We Do

Windows!

FORGET
EVERYTHING YOU THOUGHT YOU KNEW ABOUT PROGRAMMING

introducing:

OPTIONAL

8087
SUPPORT

BASIC.

BetterBASIC offers:

Support of large memory (to 640K).

Extensibility (Make your own BASIC!!]

Speed. Sieve of Erastosthenes Benchmark

- BetterSASIC: 31.9 seconds.

- IBM PC 3ASIC: 191.1 seconds.

Program Block Structures.

User defined Procedures and Functions

Local and Global Variables.

Shared Variables.

Recursion.

Argument type validation.

Optional arguments.

Arguments passed by-value or by-address.

Separately compiled program Modules.

Simple interface to Assembly Language
Procedures.

Support for OEM hardware through

extensibility.

Useful set of Data Types:

- Byte. Integer

- Real (variable precision BCD)

Ideal for business moth

- String (up to 32766 characters)

- Record Variables & Structures

- N-dimensional Arrays of any type.

- Arrays of Arrays.

- Pointer [ol any type)

rJKtyv*

BASIC
"It combines the best

points of interpreted Basic,

Pascal, Forth and Assem

bler... It's the first piece of

software I'd spend my own

money on." Susan GlinerT-Cole
Technical Editor

PC Tech Journal

We are so sure you will like Better

BASIC. we will give you a 30-day

money-back guarantee. Order

BetterBASIC now!

BetterBASIC: $199.00

8087 Module: S99.00

Not convinced? Then try the Better

BASIC Sample and you will find that

BetterBASIC is truly a major break

through in computer programming.

Sample disk: S10.00

General Information:

Interactive programming language based on an

incremental compiler.

Syntax checked immediately on entry, with

concise error reporting.

Built-in Screen Editor allows on-line editing.

Full IBM Graphics/Communications Support.

Built-in Linker for separately compiled program

Modules.

Built-in Cross Reference Lister

Built-in WINDOWS support!!

8087 math support

Computer Requirements:

IBM PC, IBM PC/XT or compatible.

PC/DOS 1.1, 2.0. 2.1

192K to 640K memory

Usable on plain MS-DOS machines with reduced

functionality,

(no Editor, Graphics or Windows)

OEM & Dealer Inquiries Invited.

BetterBASIC is a trademark ol Summit Software

Technology. Inc.

IBM PC. IBM PC/XT and PC/DOS are trademarks ol Inter

national Business Machines Corp.

MS-DOS is a trodemarfc ot Microsoft Corp.

CALL YOUR DEALER OR SUMMIT SOFTWARE AT 617-235-0729
Summit Software Technology " P.O. Box 99 Bobson Park Wellesley, MA 02157

McsteiCharge. Visa. P.O.. Checks.

Money Orders and COD. accepted

CIRCLE 62 ON READER SERVICE CARD

BUFFERED I/O BOARD Introductory Price • $59.95
With despool lunetions. protocols supported: XON/XOFF. ETX: ETB/ACK

»M Mt JM

110-19200 Baud

I H I

110.19200 Baud

Programmable

Timer
—

I

Vectored

Interrupts

1 t n=

Z80 Control

Processor

t «

-
S-100 Interlace

16 Bit I/O Addressing

-

—' 1

Buller RAM>

.

!
2K Program EPROM

P'ogummabfa Functions

Dynimlc Buffering

I

r
80 CHARACTER VIDEO BOARD

25 Lines with status, compatible with Wordstar & dBase
* S49.50

4 i +

Sep.

Sync.

*

Compos le

Video

t

8275 CflTC

Reverse Video

Highlight, Blink

t

Screen

BAM

2/IBChBi.

G«rural Or

EPROM

171S AlignuM

Gin. EPHOM

Z80 Control

Processor

2K Program

EPROM

—

.

Bell

Out

T x8^"

Keyboard

Parallel

Port

1

Type Ahead

Bulfer

S-100 interface

6 Bit I/O

Addressing

■■
Memory

Mapped HO

Includes Bareboard. Heatsink & Documeniation Call or wrile lor more information.

SitttfilutuUf "Pw

P.O. "Sox 601
. U.60t95

(312) 359-7337

CIRCLE 70 ON READER SERVICE CARD

YOU DON'T NEED

EUREKA! ??
CONGRATULATIONSH

We admire your talents. After all, few people can

remember where to find that six month old letter to Wonder

Waffle Works, or which of the twenty versions of

IMPORTNT.BAS is the one you need yesterday.

Or maybe we should envy your spare time. Ah, to be able to

haul out a stack of disks, slip each one into a drive, browse
through the directory, and TYPE the various prospects to find

that one file or program.

Or perhaps you're the adventurous type who thrills to the

challenge of groping through scantily labeled disks, cheering

that magical moment when hidden treasures are uncovered.

On the other hand, it occurs to us that you just may not

know the advantages of EUREKA!, the fast, menu driven disk

cataloger for CP/M. EUREKA! puts your entiredisk library

at your fingertips. Files may be found quickly and easily - by

name or by comments you can put in the file itself. Of course

the manual includes a tutorial to help you get started.

Still only S50. Ask your dealer, or contact:

MENCJOCilNO SofTU/ARE CoiVipANy,
I found II

Add USD Shippi

CiHtrcdrknKx!

Depi. L-l

P.O. Boj 1564

Wiliiis. CA 95490

Phone; (707)459-9130

,d 13.00 »tntu.

CP Mi^jrivivircdiradcnu'Loniipra

Win

A Mi

«pl

ft Co

VISA

:hirge

■p-

CIRCLE 48 ON READER SERVICE CARD

13

The first compiler for dBASE II

SPEED

dB Compiler™ produces applications which execute substan

tially faster than under dBASE II® in 16-bit environments. Some

operations are even faster than under dBASE III®!

INDEPENDENCE

Buy dB Compiler™ once and compile and distribute as many

applications as necessary with no additional cost. WordTech

imposes no licensing fees, and a compiled application will

execute without dBASE II or RunTime®.

SECURITY

Compilation is far better than encryption for protecting pro

gramming insights and procedures.

PORTABILITY —

dB Compiler's™ cross-environment linkers make it easy to

generate executable code for several operating systems.

ForCP/M-80®, CP/M-86®, PC-DOS®, and MS-DOS®.

Suggested retail price: S750; Cross-environment linkers-. 8350.

Corporate/Multi-user licenses available.

dBCDMPILER™
WORDTECH SYSTEMS, INC. P.O. Box 1747 Orinda, CA 94563 [415] 254-0900

CPSM-80, CP/M86\ mti PC-DOS'. IBM MS-DOS \ Micro-Soft Corp.. dBASE II, RunTime. dBASE III-, Ashion Talc, Inc.

■■

CIRCLE 41 ON READER SERVICE CARD

TO THE
DRAWING BOARD

Electronic soapboxes

reat news!

V\\\\VI^Within just a
WWW ^^ short time,
COMPUTER LANGUAGE has become one

of the most active SIGs on CompuServe.

(You can access COMPUTER

LANGUAGES SIG by typing "GO

CLM".)

Now we have an "'electronic soapbox"

via CompuServe. You can hold forth (par

don the pun) on any subject you want and

get immediate reaction. Although Back to

the Drawing Board is concerned with

problems and solutions, sometimes the

black and white distinctions between

what's called a problem and what's called

an opinion gets a little gray. Let's look at

some examples . . .

Jim Kyle, Tim Parker. Ron Bernstein,

Barry Boland, John McNamec, Greg Law

and I were part of the following con

versation on CompuServe under the sub

ject heading Language Wars.

Jim: C should be duck soup for any

Pascal programmer! The structure is

nearly identical. The major difference, as

I keep telling my Pascal buddies, is the

lack of strong typing—which is the fea

ture that has kept me, as a systems-level

programmer, away from Pascal.

Ron: With so many programmers writ

ing COBOL code eight hours a day, one

ought to think twice before PICing on its

reputation.

Tim: If I get a few COBOL program

mers insulted . . . great! We may get a lit

tle heat in the SIG after all. I still would

like anyone to defend COBOL as a useful
language!

Barry: Give COBOL credit where

credit is due. There has to be something

for everything else to be better than!

Greg: COBOL, the only program to

require 300 lines of initialization per line

of code. I programmed in COBOL once

and found it a big mistake. I keep the card

deck to remind me of that mistake! 800

cards to test memory. Redid it in assembly

in about 75 cards. Talk about hassles.

extis a thread of

messages about

a problem every

programmer faces: how best to handle

documenting right there in the source

code, Parties involved here are Pete Hol-

sberg and Jeff Young.

Pete: It depends on the language. A

self-documenting language like Pascal

needs (my opinion) only an intro for the

whole schmeer, for each procedure, and

for each function. You know, "Converts

the string in NAME to a ..." kind of

thing.

In assembly language. I like intro com

ments and lots of in-line comments. The

trouble with assembly language is that

most mnemonics aren't. One must work

with a mnemonic set day in and day out to

remember them well enough to figure out

what the program is doing. 1 like the doc

umentation that Intel has on the SDK-85

monitor program.

Now, if you always write in only one or

two languages, and you do that constantly,

then you will be able to read your own

code in your sleep. I'm talking about non-

programmer programming: the engineer

who wants to write her own application

program because there isn't any commer

cial program available. That person needs

great documentation so she can debug the

d d thing!

Jeff: As a professional programmer/

analyst, I frequently run across the ques

tion, "How much in-line documentation

is enough?" The general approach that I

and most of the programmers I work with

have taken is to insert comments in front

of each major section identifying the gen

eral function and then further define com

ments within the section as needed. For a

non-programming type person, I would

tend to agree with the concept that the

program should be documented down to

the detail code line. This type of person

has a very limited knowledge of program

ming and could easily get confused as to

the actual function of the code.

There is no real way to ensure that the

comments have been updated, but if a pro

gram change alters the function of a sec

tion of code, most programmers will doc

ument it with some comment. Any

changes that don't alter the function per

formed should not have to be documented

in comments as the code itself would be

sufficient.

Pete: But that's exactly the point! It just

ain't good enough that "most program

mers will document. . . with some com

ment." It is a fact that maintaining docu-

By Burton Bhavisyat

mentation is not enforceable; a program

that works will work with (a) no com

ments, (b) good comments, (c) poor com

ments, and (dj wrong comments!

B
y the way, Dennis

VWWWr^Sarris of A-FutreDat
WWW\J me that he
runs a service of writing documentation

(in either English or Spanish!) for any

one's programs. He takes your source

code, studies it, and comes up with manu

als. If you think that concept can release

you from some struggling, contact me

here at COMPUTER LANGUAGE, and I'll

line you up with his address.

Getting back to the documentation in

source code issue, here's a conversation

held recently between programmers John

McNamee, Jim Kyle, David Zook, Tim

Smith, Pete Holsberg, and Cheyenne

Wills.

John: Have you ever seen the source

code to the UNIX shell? The guy does lots

of things like . . .

#define FOREVER for (;;}

#definelFif(
#defineTHEN){

#define ELSE} else {
#define Fl}

You get the idea. That program doesn't

look at all like C, and it is impossible to

read. I'm not sure advocating defining

FOREVER is such a good idea. The all

caps looks terrible in a sea of lower case,

and any good C programmer should be

able to seefor (;;) and know what it means

(if they can't handle that, they shouldn't

be using C).

Jim: Gotta disagree with that last state

ment. John. It's like saying that anybody

who can't drift through a 90-degree bend

at 95 mph shouldn't try to learn to drive!

The all upper-case ^defines are recom

mended by Kernighan (in Software Tools

and also in K&R) specifically to indicate

that what you see is not what the compiler

will get, and FOREVER indicates what

you were trying to do, while/or(;;) looks

like you left something out, unless you

already know why it's being done.

I have learned the hard way to comment

my code extensively and make maximum

use of mnemonic variables and defines.

When I have to come back next year and

maintain it, I'm not the same person I was

when 1 wrote it and need all the help I can

get in remembering why I wrote it the way

I did. As Kernighan (or maybe Plauger)

wrote in The Elements ofProgramming

Style, "Ifyou're as clever as you can be

when you write the code, how are you

ever going to be able to debug it?"

John: My point is that a program full of

upper-case defines can end up looking

ugly. The worst case of this is the UNIX

shell. Only S.R. Bourne, the author, likes

the way it looks. It's a mess for the rest of

us who have to maintain it.

Jim: In which case, why not take a

good editor to your own copy and sweep

through, replacing the IF, THEN, ELSE,

etc., references with what they stand for?

I agree with you so far as overusing the

define capability to make C look like some

MEMO: £pvjjzammjztJ

QUIT

WORKING

SO HARD.
These people have quit working so hard: IBM, Honeywell, Control Data,

GE, Lotus, Hospitals, Universities & Government Aerospace.

THE GREENLEAF FUNCTIONS™

THE library of C FUNCTIONS that probably has just what you need . . . TODAY!

. . . already has what you're working to re-Invent

. . . already has over 200 functions for the IBM PC, XT, AT, and compatibles

. . . already complete . . . already tested ... on the shelt

. . . already has demo programs and source code

. . . already compatible with all popular compilers

. . . already supports all memory models. DOS 1.1, 2.0, 2.1

. . . already optimized (parts in assembler) tor speed and density

. . . already in use by thousands of customers worldwide

. . . already available from stock (your dealer probably has it)

. . . It's called the GREENLEAF FUNCTIONS.

Sorry you didn't know this sooner! Just order a copy and then take a break —

we did the hard work. Already.

THE GREENLEAF FUNCTIONS GENERAL LIBRARY: Over 200 functions in C

and assembler. Srrermth in DOS, video, string, printer, async, and system interface. All DOS 1
and 2 functions are in assembler for speed. All video capabilities of PC supported.
All printer (unctions. 65 string functions. Extensive time and date. Directory searches.
Polled mode async. (If you want interrupt driven, ask us about the Greenleaf Comm
Library.) Function key support. Diagnostics. Rainbow Color Text series. Much, much more.
The Greenleaf Functions. Simply the finest C library (and the most extensive).

All ready for you. From Greenleaf Software.

... Specify compiler when ordering. Add $7.00 each for UPS second-day air. MasterCard,

VISA, check, or P.O.

♦ General Libraries.... $175

(Lattice, Microsoft, Mark

Williams, CI C86)

♦ DeSmet C $150

♦ Comm Library $160

GREENLEAF SOFTWARE, INC.
2101 HICKORY DRIVE ♦ CARROLLTON, TX 75006 ♦ (214)446-8641

Compilers:

C1C86 $349

Lattice $395

Mark Williams ... $475

GREENLEAF

SOFTWARE ,.>

other language goes, but if it's not made

meaningless by overuse, the special-

definition technique can add a whole new

dimension of readability to a program.

David: I agree with using FOREVER

and other things to make your intent clear.

The more I have to mentally combine

several lines of code into one comment

that tells what the code docs, the worse

the language (or the programmer) is. An

ideal language can be read top-down,

without bottom-up reconstruction of the

programmer's intent (as is necessary with

while(l) orfar(;;)). C is a long way from

being an ideal language, but define lets

you make it more palatable.

Pete: I agree with you 100%!

Jim: The UNIX shell was written by

Steve Bourne, who is (was) quite an

ALGOL fan. As a C programmer. I find it

very hard to read.

Tim: for(;;) is such a common C idiom

that there is no reason to rename it.

Pete: But that's just the point: it's idi

omatic, therefore less than obvious.

John: Bulfurf;;) is so common that any

good C programmer should know it. Use

Udefine on the hard stuff and leave the

basic idioms to the mind of the program

mer (any C programmer who can't see

for(;;) and know what it means probably

doesn't have a mind). You have to have

seen a program full of new syntax for

basic things before you can appreciate

how much it gets in the way of under

standing the program.

Cheyenne: Just to put my two cents in.

When using define s and such you are

actually redefining the language. That

may be fine for you, but think of the per

son who musl then maintain that program.

He may know C inside and out. but now

he has to learn a new "language." Having

been a systems type for some time, work

ing mostly with assembly language. I've

come across "assembly" programs that

could have been compiled by a PL/I

compiler. The number of macros that

were used made the program much harder

to maintain. Plus, think of it the other

way around.

If you have been redefining the lan

guage and you have someone learning

from that code, that person will be hin

dered later when he must maintain other

code. Not that I'm against using macros—

they have their place.

John: That's what I've been trying to

say, but very few people seem to agree.

Tim: Pete—All human languages are

irregular and complex to some degree.

But let's define terms here. An idiom is a

phrase whose meaning cannot be directly

determined from its constituent words.

In English, the phrase "kick the

CIRCLE 44 ON READER SERVICE CARD

16 COMPUTER LANGUAGE ■ DECEMBER W84

bucket" meaning to die is idiomatic. So

for(;;) in C is idiomatic only in a weak

sense. You can figure out what it means

from the language definition, but its

meaning is not immediately obvious. I

don't think a computer language with a lot

of idioms would be very useful, but most

computer languages have constructions

that are idiomatic in this weak sense, and

we just have to learn them to be effective

users of the language. Alas, nothing is

perfect.

f you've been won-

dering how to get

at all the wonderful

data bases full of languages and utilities as

mentioned all over the SIG, here's your

answer in an exchange between Dan Mar

tin and Tim Parker and a little goodie

from Eli Willncr.

Dan: So far I've spent about 30 min

($$$) trying to actually find the data bases

that are so freely referenced. What menu

path do I take to get into them and look at

their contents?

Tim: This version of the SIG program

doesn't have the menu selection for the

data bases, which has led to a bit (!) of

confusion. To enter the data bases, type

XA#where#isOto 10. Then menus

appear. Subject headings can be seen by

typing "SN" at the main menu.

Eli: This information may help you in

your quest for public domain languages.

A good source of information is the

Digital Equipment Computer User Soci

ety (DECUS). This user group is partially

sponsored by DEC and has a large soft

ware library, all of which is public

domain. The library has compilers for

Pascal, APL, ALGOL, RATFOR, LISP,

C all available in source form. Some are

specific to DEC machines, of course, and

are written in DEC assembler language.

But many are written in high-level lan

guages and can be adapted to other

environments.

The UCSD Pascal Users Society

(USUS) maintains a library of software

which is not public domain but is avail

able to members for non commercial use

for a nominal fee (usually on the order of

$5 to S10 per diskette). This library con

tains an Ada syntax checker, a LISP inter

preter, and an APL interpreter, among

many other useful programs. These are

written in Pascal.

Membership in DECUS is free; mem

bership in USUS costs S25 per year.

Those interested in joining USUS can

check out MUSUS, our SIG here on Com

puServe (R SIGUSC from this SIG).

An early version of the UCSD Pascal

compiler (version 1.3), which is fully

PERFORMANCE

PORTABILITY

to

ISAM

UNBEATABLE

BYFAIRCOM

2606 Johnson Drive

Columbia MO 6S203

The company that introduced micros to

B-Trees in 1979 and created ACCESS MAN

AGER'" for Digital Research, now redefines

the market for high performance, B-Tree

based file handlers. With c-tree1" you get:

• complete C source code written to

K & R standards of portability

• high level, multi-key ISAM routines

and low level B-Tree functions

• routines that work with single-user

and network systems

• no royalties on application programs

$395 COMPLETE

Specify format:

8"-CP/M» 5V." PC-DOS 8" RT-1

for VISA, MC or COD orders, call

1-314-445-6833

Access Manager and CP/W are trademarks of Ogttai

Research. Inc.

c tree and the Circulaf disc logo <irc? traderraii i

o(FairCom

»1984 Faircom

CIRCLE 29 ON READER SERVICE CARD

YOUR CODE MAY BE WASTING ITS TIME!

THE PROFILER™ CAN HELP . . .
• Statistical Execution Profiler • Time critical code optimization

■ Works with any language • Abnormal code behavior tracking

• Completely configurable • Graphic presentation of results

• Up to 16 partitions in RAM/ROM • Easy to use menu interface

THE PROFILER is a software package which gives you, the programmer, a powerful tool for locating
time consuming (unctions in your code and allows you to performance tune your program. With

the THE PROFILER you can determine where to optimize your code for maximum benefit, then measure

the results of your efforts.

Using THE PROFILER, you can answer questions like:

Where is my program spending its time?

Why is my program so slow? What Is it doing?

Is my progam I/O bound? CPU bound? Are data buffers large enough?

How much improvement did my changes make?

THE PROFILER is completely software based and consists of a system resident driver and a monitor
program. The memory partitions can range from 1 byte to 1 megabyte in size and can be anywhere

in the address space.

NO ADDITIONAL HARDWARE IS REQUIRED!

Requires an IBM PC or compatible system with a minimum 64k

and one drive.
00
dwb
AOOClltl •

PO Bo* 5777

Beaverion, Or«gon 97006

(503) 629-9645

THE PROFILER is available for S175.00 from DWB Associates or

ask your software dealer. To order or for more information, call

or write DWB Associates. VISA/MC accepted. Dealers welcome.

IBM is a trademark of IBM Corp MSDOS is a trademark at Microsoft Core

THE PROFILER is a trademark of DWB Associates.

CIRCLE 20 ON READER SERVICE CARD

17

functional but lacks the enhancements of

the current version (separate compilation,

concurrency, etc.). was developed under a

government grant and is also public

domain. This compiler generates p-code

but can be adapted without much diffi

culty to generate native code instead (in

fact, many current commercial Pascal

compilers used this implementation as

their base).

This compiler (which is in Pascal) is

available on the PDP-11 SIG on Com

puServe (R SIGM11 from this SIG).

Membership in the PDP-11 SIG is free;

just leave a message to Sysop with your

full name, asking for membership. You

will then have access to the on-line soft

ware library.

I'm most familiar with the DEC and p-

system worlds. I'm sure there are plenty

of other PD languages floating around for

other machines and OSs as well.

ooking through

my mailbox this

Imonth, I came

across an item of great interest to develop

ers of software for the MAC. The Pro-

For your IBM/PC

mbpCOBOL:
4times fester,
andnowwith
SOKT&CHAIN

mbp COBOL can be

summed up in one

word: fast.

Because it generates

native machine language object code, the

mbp COBOL Compiler executes IBM/PC"

$750. allow source & object

code, map & cross-

reference checking; GSA

Certification to ANSI '74

Level II; mbp has it all.

It's no surprise companies like Bechtel,

programs at least 4 times faster (see chart). Chase, Citicorp, Connecticut Mutual, and

Sikorsky choose mbp COBOL; make it

your choice, too. mbp is available at

Vanpak Software Centers, or direct.

For complete information, write mbp

Software & Systems Technology,

Inc., 7700 Edgewater Drive, Suite

360, Oakland, CA 94621, or phone

415/632-1555

—today

GIBSON MIX Benchmark Results
Calculated S-Prodle

I ReprvsvHtailiv CU801 statement mix)

Execution lime ratio

mbp

COBOL

LOO

Level If*

COBOL

4.08

B-M""

COBOL

Microsoft*

COBOL

6.18

liBK»y«cm with hird disk required 'IBM/PC U in IBM TM. "Ltvil tl

Is i Micro Focut TM. '•'ARyin McFiilinil TM. ""A MIcrhoA TM

Fast also describes our new SORT; which

can sort four-thousand 128-byte records in

less than 30 seconds. A callable subroutine

or standalone, 9 SORT control fields can

be specified. And our new CHAIN is both

fasc and secure, conveniently transferring

control from one program to another, pass

ing 255 parameters. Plus, new extensions to

ACCEPT & DISPLAY verbs give better, faster

interactive programming.

The complete COBOL. An Interactive

Symbolic Debug Package included standard;

Multi-Keyed ISAM Structure; listing options

grammer's Shop, Hanover, Mass., has

installed a bulletin board system (similar

to the one here at COMPUTER

LANGUAGE) at (617) 826-4086 lobe

used as a forum for discussion related to

MAC development.

Among topics being discussed are

development software (for the MAC) run

ning on an IBM XT (really, it says that

right here), a newsletter, a BASIC com

piler, several C compilers, a Modula-2

compiler and miscellaneous utilities.

There is no charge for participation in this

exchange.

If you've been following the action here

on Back to the Drawing Board and on the

COMPUTER LANGUAGE BBS. you know

that we've assembled a group of experts

who've volunteered to answer your ques

tions. Every so often, I'll do a little pro

file on one or two of our volunteer

experts.

Dr. Timothy C. Prince, Marblehead,

Mass, says, "I would like to volunteer for

your list of "experts." I have a lot of

experience with FORTRAN, medieval

and modern, and RATFOR preprocessors

on a variety of machines from IBM 7090

to Z80 to 68000 to Floating Point

Systems 164.

■'I have done quite a bit of patching Z80

code over 8080 code in WordStar and the

CP/M BDOS and have developed BIOS

code for CP/M 2.2 as well as patches to

make non-2.2 .COM files run.

"I've been doing work on FORTRAN

to C conversion in order to take advantage

of matrix analysis software. Good Luck

with your project!"

And from Art Winston, Fort Lau-

derdale, Fla., comes, "my high touch

contribution is knowledge about commer

cial stock market and commodity data

bases such as Quicktrieve and Dow Jones

and how to get at them using BASIC,

FORTH, and SAS."

Thanks go to Winston and Prince and

all our volunteer experts for helping to

make the COMPUTER LANGUAGE

expert forum a success. R

CIRCLE 39 ON READER SERVICE CARD

18 COMPUTER LANGUAGE ■ DECEMBER 1984

Journals you read cover to cover

From computing applications to computing theory, from

matters of practical importance to those of scientific

research, ACM journals offer you high quality informative

articles. Each undergoes a thorough review to insure its

accuracy, topicality, and pertinence. Every journal is spe

cially tailored to serve the specific needs of the computing

community.

Transactions

, on Database
/Systems

Tftmsacbon

c^jages

and
source for comprehensive surveys, tutorials, and overview

articles on topics of current and emerging importance.

The Journal of the Association for Computing Machinery

presents fundamental ideas that are of lasting value to the

understanding of computation.

ACM also publishes unique reference sources. Com

puting Reviews contains original reviews and abstracts of

current books and journals. The ACM Guide to Comput

ing Literature is an important bibliographic guide to

computing literature (available annually on Standing Order

Subscription). Collected Algorithms from ACM is a collec

tion of ACM algorithms available in printed version, on

microfiche, or on machine-readable tape.

While Communications of the ACM has made its mark

publishing landmark research papers in computer sci

ence, today the magazine is moving into a broader

overview role. The editorial aim is to publish broad-gauge,

high quality, highly readable articfes on key issues and

major technical developments in the field. The various

transactions (ACM Transactions on Mathematical Soft

ware, ACM Transactions on Database Systems, ACM

Transactions on Graphics, ACM Transactions on Pro

gramming Languages and Systems, ACM Transactions

on Office Information Systems, and ACM Transactions on

Computer Systems) cover burgeoning areas of computer

research and applications. Computing Surveys is your

COLLECTED
Al.l.lllltl HIM-.

FROM ACM

CIRCLE 7 ON READER SERVICE CARD

For further information about ACM journals, send for your free ACM

Publications Catalog today!

□ Please send me a free ACM Publications Catalog.

D Please send me subscription information for the following journal(s):

Communications ol the ACM

lournal ol the ACM

Computing Reviews

Computing Surveys

. Collected Algorithms from ACM

ACM Guide to Computing

Literature

□ Member No

ACM Transactions on:

Mathematical Software

Database Systems

Programming Languages 4 Systems

Graphics

Office Information Systems

Computer Systems

Expiration Date

□ I am not an ACM member, please send me membership information.

Name.

Address.

City .State. -Zip.

Mail to: Publications Department,

ACM, 11 West 42nd Street, New York, NY 10036.

THE 8087AND 80287ARE IN STOCK!
REALTIME MULTI-TASKING/
MULTI-USER EXECUTIVE - RTOS
RTOS is a MicroWay configured version of
iRMX-86. Includes ASM-86, LINK-86, LOC-86,
LIB-86, and the ROM Hex Loader S600

87FORTRAN/RTOS™ - our adaptation of
the Intel Fortran-86 Compiler generates in line
8087 code using all 8087 data types including

80-bit reals and 64-bit integers. The compiler
uses the Intel large memory model, allowing

code/data structures of a full megabyte, and
supports overlays. Includes RTOS and support

for one year S1350

RTOS DEVELOPMENT PACKAGE
includes 87FORTRAN, 87PASCAL, PL/M-86,

Utilities, TX Screen Editor and RTOS... - S25OO

OBJ —ASM™ - a multipass object module
translator and disassembler. Produces
assembly language listings which include public
symbols, external symbols, and labels
commented with cross reterencea Ideal for

understanding and patching object modules
and libraries for which source is not

available $200

MATRIXPAK" manages a MEGABYTE!
Written in assembly language, our runtime

package accurately manipulates large matrices
at very fast speeds Includes matrix inversion
and the solution of simultaneous linear equa

tions. Callable from MS Fortran 3.2, 87MACRO,
87BASIC, and RTOS each S15O

CALL FOR COMPLETE CATALOG

Micro
May

P.O. Box 79

Kingston. Mass

02364 USA

(617)746-7341

87BASIC/INLINE" generates inline
8087 code! Converts the IBM Basic Compiler
output into an assembly language source listing
which allows the user to make additional

refinements to his program. Real expression
evaluations run seven times faster than in

87BASIC S200

87BASIC" includes patches to the IBM
Basic Compiler and both runtime libraries for
USER TRANSPARENT and COMPLETE 8087

support Provides super fast performance for all

numeric operations including trigonometries,
transcendentals, addition, subtraction,

multiplication, and division S15O

87MACRO'" - our complete 8087 software
development package It contains a "Pre-pro-

cessor," source code for a set of 8087 macros,
and a library of numeric functions including

transcendentals, trigonometries, hyperbolics,
encoding, decoding and conversions $150

87DEBUG1" - a professional debugger with
8087 support a sophisticated screen-oriented
macro command processor, and trace features
which include the ability to skip tracing through
branches to calls and software and hardware
interrupts Breakpoints can be set in code or on
guarded addresses in RAM $15O

PC TECH JOURNAL REVIEW:
"The MicroWay package is prefer
able... it executes the basic opera
tions more rapidly and MicroWay
provides a free update service."

YouCan
TalkToUs!

8087-3 CHIP $149
including DIAGNOSTICS and 180-day warranty

64K RAM Set $35
256K RAM Set $250

80287 CHIP $350
8087 8mhz $375
PC AT 30 MEGABYTE
WINCHESTER DRIVE S2000

MICROSOFT FORTRAN 3.2 . S239

MICROSOFT PASCAL 3.2 $209
These IEEE compatible compilers support

double precision and the 8087.

DIGITAL RESEARCH

FORTRAN $279

LATTICE C with 8087 support $329

FFT87 an FFT package for the 8087. Does
Forward and Inverse Transforms on complex

dala Callable from SSS or MS Fortran ... $150

IBM Basic Compiler CALL

Alpha Software ESP 595
STSC APL* PLUS/PC 500
TURBO PASCAL or SIDEKICK 45

TOOLBOX 45
TURBO PASCAL with 8087 Support 85

HALO GRAPHICS CALL
GRAPHMATIC 125
ENERGRAPHICS 295
Professional BASIC 295
COSMOS REVELATION 850
MAYNARD WS1 HARD DISK 950
MAYNARD WS2 or WS3 HARD DISK.... 1109
smARTWORKbyWINTEK. 895

SPSS/PC 695

NO CHARGE FOR CREDIT CARDS
ALL ITEMS IN STOCK

CIRCLE 57 ON READER SERVICE CARD

Total Support Packages

The GRAFMATIC (screen graph

ics) and companion PL0TMATIC

{pen plotter) libraries of modular

scientific/engineering graphics

routines let you easily create 2D

and 3D plots in customized or de

fault formats. Pen plot preview with

GRAFMATIC. Plot interactively or

in deferred mode. Others only pro

vide our "primitives" (mode, color,

cursor, character, pixel, line,

paint. ..). We follow through with:

auto-scaling, auto-axis generation,

auto-tic maik labeling, function

plots, tabular plots, auto-function

plots (complete plot in default for

mat with one easy call), auto-tabu

lar plots, log/parametric/contour

plots, 3D rotauon/scaling/transla-

tion, wire frame model (for old

time's sake), hidden line removal

for sohd models (GRAFMATIC

only), cubic and bicubic spline in-

terpolants, least squares fits, bar

and pie charts, screen dump,. . .

You name it, We have it' Best of all,

the clearest and most complete

documentation to be found in mi-

ciocomputerland. User support' Of

course, call us' We offer a no ques

tions asked money-back

guarantee.

GRAFMATIC™

and

PLOTMATIC

for the

IBM PC

Tandy 2000

TI Professional

:■'"::■■■■ ■
■ v £J ■ ,

FORTRAN

PASCAL

Screen and

Pen Plotter

Graphics

Tools

| <:':■■''.)

MICROCOMPATIBLES

/; Silver Spring.: MD 20901

;,./.(3bi) 593-0683

■'-.<'. 'GRAPjilATIC,'.'- I ^ ■ $135
l.',..'^LOTWATIC' ■' ,' 13

; BOTH:--.;1 .-'.' ;

-■Specify compilers:' ' :.

'.OBWMS/SdfferSoJt 'Digital
. Research)'

Plotters: (H-'P. HI. IBM)

. . GRAFMATIC is the

most imaginative and

well designed use of

FORTRAN I have yet

seen in a FORTRAN mi

crocomputer software

package."

James Cieane,

Contributing Editor,

Personal Computer Age

CIRCLE 15 ON READER SERVICE CARD

DESIGNERS DEBATE

The art of hacking

n the October 1984

issue of COMPUTER

LANGUAGE, we

presented the formal approach to software

design. This time, let's look at the other

side—the world of the software hacker.

To some, a hacker is merely a sloppy

and disorganized programmer. To others,

they are highly skilled craftsmen. The

general public often associates the term

with computer vandals.

This month, dedicated hackers Dale

Carlson, Chris Wiley and Dave Pifer

describe their techniques and philosoph

ies, providing some insight into that much

maligned practice of hacking.

Carlson is a professional engineer who

works with real-time processes such as

motor controls. Among the projects he

has done is the firmware for a

microprocessor-driven burglar alarm

system.

Wiley prefers to program non-

professionaily after dark. He is the author

ofPC Musician, a user-supported pro

gram for the IBM PC. He considers hack

ing a high art not found in the production

environment.

Pifer's programs are generally written

for personal use first and then often pub

lished in magazines. He is the founder of

Computer Hobbyists Against Raiders and

Thieves (CHART), a section of the

Writer's and Editor's Special Interest

Group on CompuServe. This organization

is dedicated to regaining the dignity that

hackers have lost due to the media's mis

use of the term.

h—irst off, what is

hacking? Or, per

haps, what is the

difference between a designer and a

hacker?

Carlson: A designer makes plans

while a hacker makes programs. A

designer will lay out the entire project

before doing anything else, trying to

anticipate everything before it ever comes

up. A designer will produce reams of

paper, specifications, designs, and so on.

describing the project in intimate detail

without ever producing anything solid.

A hacker also will try to get a handle on

the problem as a whole, but will build a

By Ken Takara

core upon which the rest of the program

can be built. Rather than try to anticipate

it all, a hacker will tackle the problems as

they arise.

1 like to think of hacking as interactive

programming—you build the program,

interacting with it a lot.

Wiley: For me the important feature

is that hacking is an individual thing. It's

not a suitable approach for a group

project.

Bui 1 think it's the most efficient way

for a .single person to program. This indi

viduality makes hackers difficult to man

age. They don't usually fit into a group

project too well.

Hacking is highly creative program

ming, something like writing a novel. I

don't think you can truly hack an assigned

project because you lose the essence of the

creative part: dreaming it up in the first

place.

This business of calling computer van

dals or burglars hackers is truly appalling.

There is a romance to hacking, just as

there is to writing novels. But I prefer to

emphasize the positive, creative aspects.

Pifer: Hackers are designers. It's just

the actual design technique that differs.

Typically, a hacker will have spent count

less hours going over a project before the

first line of code is hacked. However, the

hacker's planning usually takes place

away from the computer. And almost

never will ihc hacker's planning involve

note taking.

True designers sit down for design ses

sions. They set aside time to think about

the design and nothing else. Copious

notes will be made and, more importantly,

actually referred to while writing the pro

gram. I doubt seriously that a designer

spends any more time in designing a pro

gram than docs a hacker. It's just a more

conscious effort.

As for preserving the reputation of the

true hacker. I can't say enough against the

misuse of the term. CHART has been

very active in correcting the media when

it uses hacker to describe computer

criminals.

requirements of what I want the program

to do. Then I sec ifl can get it to do that

much. I generally use the first algorithm

that comes to mind and see where it leads.

Once I get it to do the basic function

I've visualized. I can stop and see what

further functions or stylistic changes arc

suggested by using it. So the planning for

me very rarely takes place on paper at all.

It usually is a matter of thinking about

what I want it to do and how I want it to

interact in a general way. After that, it's a

matter of picking the core functions and

constructing a skeleton, then hanging the

embellishments onto it.

I don't do any diagraming. Sometimes

I'll use a little bit of pseudocode. Gener

ally I can work just as fast by coding

directly in C.

Carlson: Usually someone comes to

me with a request for a program but

doesn't really know what he wants. He'll

give me some loose specs and say. "Give

me something like this."

If I ask, "How do you want it done?"

he'll say, "Do whatever you want to, as

long as it works."

So then I have to figure out as closely as

possible what he's after. 1 have to ask

questions to get as much information as I

can. Then I build a simple prototype that I

can show him. It usually helps people to

see something. Then he can say, "Oh,

change this, add that." And so on.

Once I have an idea of what someone

wants, I try to look at the program in its

entirety. It's kind of a Gcslalt approach to

programming. You look al the big picture,

then try to break it down into smaller

blocks—usually the functional units.

Finally I select a block and start coding.

Pifer: All of my projects fall into one

of two categories. Either they arc short-

term, immediate-need programs or

long-term, procrastination prone pet

projects. Short-term projects involve

peeling concepts from my long-term men

tal log and applying them to the problem

at hand. Basically, if you keep enough

long-term projects in mind you can build a

powerful library of program modules.

H
ow do you

approach a

project?

Wiley: When I program something. I

first of formulate at least a set of core

21

The pet projects get a lot more planning

put into them. They are nice because they

give you something to do while driving to

work, or while on hold, or during long

meetings. Pet projects are almost always

written in my mind before I start them.

All that remains is to add bells and whis

tles and, of course, debugging.

WHey: Hacking is characterized by

its interactive nature. You try something,

see if it works, and fix it till it does. I code

the main module first, with a few of the

core functions, testing them one at a time

to see how they work together. Then I

either optimize them to work together bet

ter or I add other functions.

The danger of coding the way that I do

is that you can come up with unforeseen

side effects. This is particularly true if

you use a lot of global variables. Having

been a BASIC programmer, I probably

use more global variables in C than I

ought to, leading to some bugs to squash.

Carlson: It's important to know how

to modularize the program since you obvi

ously can't take the whole thing on at one

time.

The most important thing, though, is to

select the right block to start with. You

want to start with a block that is central to

the program. It will become the core upon

which you will add everything else.

Pifer: The true beauty of hacking is

that there is no such thing as wasted time

or energy. Even if you've written half the

program and have to scrap it for a new

approach, you know that you will always

use the scrap code somewhere down the

road.

hat kind of

language

do you feel

is conducive to hacking?

Carlson: The way I work, it helps to

be able to test the core as you build on it. I

build, then I like to test before adding

more. I can hack in assembler, but it's not

easy. I have to write extra code to test the

routines.

A language like Forth is a hacker's

paradise. You can build a small amount

then test it without putting in a whole lot

of effort.

Wiley: I used to hack in BASIC on an

Apple II. There I ran into the phenomenon

that I couldn't read my own code after a

while.

Once I moved into the IBM PC world

and got a C compiler. I suddenly found

that I could hack and get away with it.

The reason is that the modularity of C

imposed a structure itself such that 1 could

break my program down into functions

and subroutines that were relatively small

and easy to understand.

I've used Pascal. I'm inherently on the

lazy side, I guess. I found all the declara

tions and rigamarolc at the beginning of a

procedure to be very tedious. With C, I

can dive in with the function, then later go

back and declare variables that I've used.

Forth is totally incomprehensible, and

I've never owned a reverse polish

calculator.

Pifer: Of course, BASIC is the ulti

mate hacking language. You have to

respect a language that allows you GOTO
GOSUBs and get away with it. But lan

guages such as Pascal and C are also

ideal. It goes back to my scrap theory. It is

much easier lo build a collection of blocks

and then read them in as needed for any

given project. Someday this collection of

program blocks may make my mental

notebook obsolete.

S
0 in hacking you

tend to use the

build-as-you-go

approach rather than the well laid out

design-first approach?

ARTIFICIAL
INTELLIGENCE

Programming:
Learn Fast,

Experiment,

Prototype
with the nonprocedural language chosen by Japan

PR0L0G-86"
implements the "standard", features described in Clocksin and Mellish, has

tutorials and sample programs to learn from that include:

• an Expert System

• a Natural Language Interface
1 or 2 pages of PROLOG is often equivalent to 10 or 15 pages in "C" or

PASCAL. It is a different way of thinking. Become familiar in one avening,

comfortable in days.

CONTEST: "Artificial Intelligence Concepts". All entries that teach key con

cepts and are clear will get recognition. The best will win $1,000. Submit by

2/28/85.

AVAILABILITY: PROLOG-86 runs on MSDOS, PCDOS or CPM-86 machines.

We provide most formats. The Intro price is $125.

-Solution
<Systems
335-L Washington Street

Norwell.MA 02061 _

Full Refund if not

satisfied during

first 30 days.

617-659-1571

RP/M T.M.

CIRCLE 60 ON READER SERVICE CARD

22 COMPUTER LANGUAGE ■ DECEMBER 1984

By the author of Hayden's "CP/M Revealed."

New resident console processor RCP and new

resident disk operating system RDOS replace CCP

and BDOS without TPA size change.

User 0 files common to all users; user number

visible in system prompt; file first extent size

and user assignment displayed by DIR; cross-drive

command file search; paged TYPE display with

selectable page size. SUBMIT runs on any drive

with multiple command files conditionally invoked

by CALL. Automatic disk flaw processing isolates

unuseable sectors. For high capacity disk systems

RDOS can provide instantaneous directory access

and delete redundant nondismountable disk logins.

RPMP1P utility copies files, optionally prompts

for confirmation during copy-all, compares files,

archives large files to multiple floppy disks.

RPMGEN and GETRPM self-install RP/M on any

computer currently running CP/M®2.2. Source
program assembly listings of RCP and RDOS appear

in the RP/M user's manual.

RP/M manual with RPMCEN.COM and GETRPM.COM

plus our RPMP1P.COM and other RP/M utilities on

8"SSSD$75. Shipping $5 ($10nonUS). MC,VISA.

118 SW First St. - Box C

Warrenton, OR. 97116

icro -
ethods, Inc.

(503) 861-1765

CIRCLE 52 ON READER SERVICE CARD

Carlson: Well, you need some sort of
design. If you were to really hack without

any plan at all, you wouldn't get any

where. I don't think any hacker is that dis

organized. Actually, it's a matter of

degree.

I suppose there are some things you can

do without any plan, while other things

require a great deal of planning.

Wiley: In my experience, my

approach of building a skeleton, then

hanging the flesh and organs from it,

hasn't resulted in my needing to rebuild

the whole thing. It's a matter of letting the

program evolve, rather than having the

perspicacity to sit down and imagine in

detail what it will end up as.

I started one program with a general

idea of what it should do. then I planned

the user interfaces. After that, I had to set

up the data structures so that they could be

manipulated the way I wanted. That was

the extent of my design. Then it was a

matter of sitting down at the keyboard and

coding.

A lot of designing takes place at the

subconscious level, in a dream-like state.

I generally keep it in my head. I might

draw a rough diagram of the way the

screen looks, or I might make a list of

commands just to see that they make

sense.

I generally design with my eyes closed,

reclining in a chair just thinking about it.

PifenAs I said before, I believe the
hacker is always very well prepared when

he sets out to write the program. Person

ally, I am most careful with the data struc

tures within my programs. My reasoning

for this is that as long as I know where and

what the data is, there are 1,001 way to go

about getting to it.

Carlson: One problem with
designers is the tendency to over-design.

Sometimes a designer will try to antici

pate absolutely everything, and that's just

impossible. Sometimes it turns out the

world doesn't turn the way you thought it

did when you laid out the design.

In real-time applications, many things

don't show up until you're actually run

ning the program. There are all sorts of

hardware-dependencies that you may or

may not have anticipated.

Depending on how detailed your design

is, you may have to go back and change

the whole thing. You can end up with

twice as much work. Or worse yet, you

decide to skimp on the documentation and

work on the code, and it all becomes

outdated.

Pifer: An important difference
between the designer and the hacker is

that once the designer attains the design,

the program is complete. A hacker's pro

gram is never complete. Even when the

program is finally debugged and running

flawlessly, the hacker will always find a

reason to go back in and change or

enhance something.

I think this is the primary reason hack

ers tend to not document or to poorly doc

ument their programs. Only lately have I

started to fully document my works. I

always knew that I should but always

postponed it until after the next version.

Proper documentation is something that

even the commercial developers have not

caught on to yet, so how can we expect it

of a hacker?

Wiley: I don't document my code. I
find if names are long and descriptive

enough, just looking at the code is suf

ficient to remind me of what it does. I find

C is very friendly for that.

I think it would be impossible to figure

out what was happening in Forth after

putting it down for a day. I looked over

some code once that was designed and

well-commented. I did not find what it

was doing immediately obvious. I still had

Csharp Realtime Toolkit

Application Code

Csharp

Tools

Hardware

Data Structures

C source code for realtime

data acquisition and control.

Tools include: graphics,

event handling, scheduling,

and state systems. Processor,

device, and operating system

independent. $600.00

Systems Guild, Inc. 617-451-8479
P.O. Box 1085, Cambridge, MA 02142

CIRCLE 76 ON READER SERVICE CARD

UTILITY LIBRARY

The C UTILITY LIBRARY is a set of 200+ functions designed

specifically for the PC software developer. Use of the Library will

speed up your development efforts and improve the quality of

your work.

• BEST SCREEN HANDLING AVAILABLE

• WINDOW MANAGEMENT,COLOR GRAPHICS

• DOS 2 DIRECTORIES, COMMUNICATIONS

• KEYBOARD, PRINTER, TIME/DATE

• EXECUTE PROGRAMS, BATCH FILES

• STRINGS, BIOS, AND MUCH MORE

• ALL SOURCE INCLUDED-NO ROYALTIES

Available for Microsoft/Lattice S149, Computer Innovations

S149, Mark Williams $149, DeSmet $99. Add $3 shipping. N.J.

residents add 6% sales tax. Visa, MC, checks—10 days to clear.

Order direct or through your dealer. Dealer/Distributor inquiries

welcome.

ESSENTIAL SOFTWARE, INC.

(914) 762-6605

R0. Box 1003

Maplewood, N.J. 07040

CIRCLE 28 ON READER SERVICE CARD

23

to go over il a few limes before I could

understand it.

Carlson: I prefer to document what I

have now, rather than what I think I'll

have.There is a need for documentation,

of course, but there's no point in making

extra work tor yourself.

A set of notes to remind yourself of

what you're doing is useful. A whole book

describing code you haven't even written

yet is unnecessary.

Of course. I have to write some sort of

manual for the user.

Wiley: If it's a general purpose rou

tine that I'll be using in the future, then I

do document it. But that's probably the

only time. I don't write many general sub

routines, though. Most of my code is spe

cific to the context of the application. If I

need to write general utilities, it's because

of a deficiency in theC library.

I have written manuals for the user. My

personal feeling is that a program that

leads you too much with many menus and

prompts slows you down once you under

stand how to use it. Since I prefer a com

mand driven program, user documen

tation is required.

The C Interpreter:

nstant-C
Programming in C has never been Faster.

Learning C will never be Easier.

Instant-Cm is an optimizing interpreter for the C language that can make
programming in C three or more times faster than using old-fashioned
compilers and loaders. The interpreter environment makes C as easy to
use and learn as Basic. Yet tnstant-C™ is 20 to 50 times faster than inter
preted Basic. This new interactive development environment gives you:

Instant Editing. The full-screen editor is built into Instant-C™ for imme
diate use. You don't wait for a separate editor program to start up.

Instant Error Correction. You can check syntax in the editor. Each error

message is displayed on the screen with the cursor set to the trouble
spot, ready for your correction. Errors are reported clearly, by the editor,

and only one at a tima

Instant Execution. Instant-C™ uses no assembler or loader. You can
execute your program as soon as you finish editing.

Instant Testing. You can immediately execute any C statement or func
tion, set variables, or evaluate expressions. Your results are displayed
automatically.

Instant Symbolic Debugging. Watch execution by single statement
stepping. Debugging features are built-in; you don't need to recompile or

reload using special options.

Instant Loading. Directly generates .EXE or .CMD files at your request

to create stand-alone versions of your programs.

Instant Floating Point. Uses 8087" co-processor if present.

Instant Compatibility. Follows K & R standards. Comprehensive stand
ard library provided, with source code.

Instant Satisfaction. Get more done, faster, with better results.
Instant-C™ is available now, and works under PC-DOS, MS-DOS* and

CP/M-86*.

Find out how Instant-C™ is changing the way that programming is done.
lnstant-CJlA is $500. Call or write for more information.

Rational
Systems, Inc.

(617) 653-6194

RO. Box 480

Natick, Mass. 01760

Trademarks MS-DOS (Microsoft Corp). B067 (Intell Cap). CP/M-B6 (Digital Research. Inc), Insiani-C (Rational Systems. Inc)

D
o you find any

limitations to

hacking?

Carlson: There is a limit to the size

of the project you can take on by hacking.

The bigger or more complex it is, the

more planning you have to do.

You have to plan more carefully as

more people are involved also. It's diffi

cult for two or more people to hack a pro

gram together.

When you have a very complex pro

gram or a large team, you need to have

someone to break the thing down into rea

sonable blocks or tasks. This person

should also design the task interfaces so

that everyone involved can talk to every

one else.

But you know, once the designer has

done the task specs and designed the task

interfaces, someone has got to build it.

And that's probably a hacker.

Wiley: My own philosophy of soft

ware is of the school that favors small,

tight, well-crafted tools rather than the big

blunderbuss, do-everything programs. I

doubt that I would ever tackle anything

too big to think about or keep in my head.

I think this approach results in pro

grams that are more clearly focused and

ultimately more useful.

I think a lot of the truly great break

through programs are hacked.They may

be eventually torn down and redone by

committee for a finished version, but I'm

sure that something like the first version

of VisiCalc was hacked.

It's very hard to imagine any committee

coming up with something new and origi

nal. That always springs from one cre

ative individual.

Pifer: There are a number of lim

itations to what can be hacked. But all of

these restrictions are overshadowed by the

fact that a hacker will usually try any

thing. I like to equate a hacker with a

small businessman and a designer with a

big corporation. The hacker has little to

lose if an idea falls flat, so is more likely

to ignore the fact that what he wants to do

can't be done. Fortunately for all of us,

there have been enough hackers to keep

this industry moving.

N
ext month we

will take a look

into the world of

the mainframe as we bring to these pages

a debate that has been brewing for nearly

eight years: the next ANSI standard for

FORTRAN, known as FORTRAN 8X.

With a committee comprising approxi

mately 40 primary members from a

widely varied FORTRAN community, the

number of diverging viewpoints can eas

ily be a factorial function. R

CIRCLE 56 ON READER SERVICE CARD

24 COMPUTER LANGUAGE ■ DECEMBER 1984

helps compare, evaluatejind products. Straight answers for serious programmers
:ERUircc ^^~^=SERVICES

• Programmer's Releml Liil • Dealer's Inquire
• Compare Produeti . Kmletter
■ Help lind a Publisher • flwh Order

■ Evaluation Literature Irte ■ 0ver300araducti
• BULLFnH BOARO - 7 PM to 7 AM 617-B26-40W

LIST OUR

Free Literature - Compare Products
Evaluate products Compare competitors Learn aoout new alternatives One tree all

brings information on just aoout any piogrammmg need Ask (or any -Packet" or

■■Addon Packet". iADA.Modula CAT 'BASIC |"C" "COBOL : Editors
FORTRAN . IPASCAL [jUNIX/PCor. JDebuggers.L.nkers.etc

MSDOS:C86-B087. reliable
Instant C - Inter.. fast, lull

Lattice 21 -improved

MicrasoftC2.x
Williams • NEW. debugger

CPMBO" EcosoftC-nowsolid.
BDSC- solid value
MACINTOSH: Full. ASM

500

250

150

NA

Compare, evaluate, consider other Cs

call

225

385

EDITORS Programming

PCDOS NA
mam na

RNAiWORD-torrranuab 808a'86 300
MINCE-ike EMACS CPM, PCOOS 175

CPM 195
8086 225

PRICE PRICE

S395 call BRIEF-Intuitive, flexible
NA 500 C Screen with source
500 call

500 349

PMATE-powrful

VEDT - tuH, ftaj CPM, PCOOS 150

8086 150

195
75

215

149
175
195

119
119

Active Trace-debug

BASC0M-B6-Microsoft
BASIC Oev'tSysten

BASICA Compiler-
BenerBASlC - 640K

C8-86-DR1

Prof. BASIC Compiler
MACINTOSH COMPILFR
witti BASICA syntax

ENVIRONMENT
8680 NA

8086 395
PCOOS 79

PCDOS NA

CPM86 600

PCDOS 345

COHERENT-for"C" users

COHERENT-NCI-fiealtime
VENIX-'tnsWwHN
XENIX ■■true S3"-rich

PCIike S500 475

PCIike 695 665

PCIike 800 775
PC 1350 1295

Ask about run-tiroes, applications, DOS compatibil-
185 ity.otberatematrvES.UNIXisatrademartofBellLatB
439
325

CSfiarp Realtime-source
GRAPHICS: GraphiC-source
HALO-fasUull

Greenleaf lor C- full

ISAM:CtodBASE-source
CTree-Source, no royalties
dbVisla-'Wetwork," Source

BTRIEVE-many languages
Clndei +■ - no royalties
PHACT-withC
dBC • by Lattice

SCREEN: CView-validale
Databursi-C, BASIC

PANEL-86-many languages
WINDOWS tor C-fast

MSDOS NA

MSDOS NA

PCDOS 200

MSDOS NA
8086 150

ALL NA

MSDOS 495

MSDOS 245

MSDOS MA
MSDOS NA
MSDOS NA

PCDOS NA

MSDOS 225
PCDOS 295

PCDOS NA

SCIL - Manage versions, changes to source
code, documentation. Minimize confusion,

diskspace. Interactive. CPM80, MSDOS S349

IJi.ij ■■!! LIST OUR ,
LASliUiLU ENVIRONMENT PRICE PRICE
MS FORTRAN-86 - Impr. MSDOS S35Q S 225

Intel Fortran-86 IBM PC NA 1400
DR Fortran-86 - full "77* 8086 500 3491
PofyFORTRAN-XREF, Xtract PCDOS NA 165

600

195

165

215

395
250

250

195

215
265
139

MAC NA 325
Ask about ISAM, oiner addons lor BASIC

L1NT-S6 - fhally afuil tmt to find subtle bugs -
tor all MSDOS Cs. S200.

PR0LOG86 Interpretet lor MSDOS includes

tutorials, reference and good examples Learn
in first lew hours. For Prototyping, Natural
Language or AI.S125

Call for a catalog, literature, and solid value

800-421-8006
THE PROGRAMMER'S SHOP™

128-Lfiockland Street, Hanover, MA 02339

Visa Mass 800-442-8070 or 617-826-7531 MasterCard

AssemblerSTools-DRI 8086 200 159

Atron DebuggerforLattice PCDOS NA 695
CODESMITH-86-debug PCOOS 149 139

CURSESbyUttice PCDDS NA 125
Disk Mechanic - rebuild MSDOS 70 65
H&FORTH-fast PCDOS 220 210

IOLISP-lull 1000KRAM PCDOS 175 call

MBPCobol-86-fas: 8086 750 695

MicroPROLOG PCDOS NA 285
Microsoft MASM-86 MSDOS 100 85

MSDDebugger PCDOS 125 119

MultiLink-Multrtaskmg PCDOS 295 265

PFIX-86 Debugger MSDOS 195 169
PL 1-86 8086 750 495
PLINK-86-overlays 8086 350 315
Polylibrarian-tharougri MSDOS 59 95

PolyMAKE PCDOS 99 95
PROFILER-86- easier MSDOS NA 125
PROFILER-flexible MSDOS NA 125
Prolog-86-Leam. Experiment MSDOS NA 125

TLCLISP-86-full. liked MSDOS NA 235
TRACE86 debugger ASM MSDOS 125 115

XShell-IF-THEN-ELSE MSDOS 295 279

Note. All prices subject to change without notice.
Mention this ad. Some prices are specials.

Ask about COD and POs.

All formats available.

CIRCLE 69 ON READER SERVICE CARD

c

Pfogramming

Guidelines

C LANGUAGE PROGRAMMING
From Plum Hall...the experts in C training

Thomas Pium

Learning to

Program in

FREE
C LANGUAGE POCKET GUIDE!

A handy C language programming

pocket guide is yours free when you order

either (or both) of the manuals above.

A full 14 pages of valuable C language
information!

Learning to Program in C 372 pp.,7%"xio". wee S25.00

A practical, step-by-step guide for everyone acquainted with com

puters who wants to master this powerful "implementer's language"

Inside, you will learn how to write portable programs for the full

spectrum of processors, micro, mini and mainframe

C Programming Guidelines wo PP., iw x 10", price S25.00

A compilation of standards for consistant style and usage of C

language. Arranged in manual page format for easy reference, it

presents time-tested rules for program readability and portability.

■ ■■- ■■ —i ■■■ — ■■■ amm ••_> mm ■•*■ — Hi _ ■» a ^m ^m mm —m mm w Ml BM ■■■ ■■■ ■

PT TM HAT/. The experts in C and UNIX™ training.
1 Spruce Av, Cardiff NJ 08232 ™one oraers'6uy ™ J//u
Please send me: _ _ information on C and UNIX Training Seminars

_ copies of Learning to Program in C ® $25.00/copy

_ copies of C Programming Guidelines <g S25.00/copy
NJ residents ada 6% soles to*

company

ADDRESS

CITY;STATE/ZIP

Cfieck Amencon Eipiess Mailer Card Visa

CARD. EXP.DME I. Signature.

CIRCLE 50 ON READER SERVICE CARD

I
l
l
l

n
u
n

i
i
i
i
i
i
i
n
i

Exploratory
Programming

F
lew computer lan

guages offer a

suitable environ

ment for

exploratory programming, which follows

a winding path through idea and experi

ence, hypothesis and experiment, and

definition and test to arrive finally at solid

and often serendipitous solutions.

To find the best solution, you must

know the problem well. Such knowledge

comes only from grappling with the prob

lem and trying various holds. Once you

truly understand the problem, through

having tried a variety of approaches and

solutions, you arc able to step back, see

the pattern of your experience with the

problem, and watch the problem open to

reveal its constituent sub-problems, from

whose separate simple solutions the final

program is quickly constructed.

Many of us are inclined to postpone the

awkward first encounters with a new

problem, a new situation in which we feel

ignorant and vulnerable. Young children

lack this fear: they are fascinated by

something new and immediately set to

work to find out what it can do—they hold

it, taste it, shake it, listen to it, throw it,

and in general develop a rich set of experi

ence with it so that they can understand it.

Somewhere along the way we abandon

this method, productive as it is; we put

our faith in analysis and acquire a fear of

feeling ignorant.

Most computer languages pander to our

disinclination to work directly with the

problem. They encourage us to spend

By Michael Ham

time playing with paper—doing specifica

tions, PERT charts, system designs, flow

charts, and the like—and only at the very

end actually to try to write the program

code.

Logo and Forth, on the other hand,

were designed to provide an environment

that encourages exploratory program

ming. Logo's designers well understood

the mechanisms of learning and were

deliberately trying to mold the language to

match the exploratory nature of children.

Forth"s designer was a practicing pro

grammer who was deliberately trying to

create a language to maximize his produc

tivity in creating programs.

In Forth, for example, programmers

normally begin the design process by

writing and trying out various procedures,

revising and refining them based on their

effects and flaws until they begin to see

through these prototypes what the prob

lem truly requires. Only then do they

attempt a final implementation, designed

in the light of what they have learned. In

Forth jargon this is called iterative devel

opment. How does Forth encourage this

approach?

Exploratory programming is possible

only under certain conditions. If the lan

guage implementation makes it difficult

or tedious to define, compile, and test

procedures, then the programmer will

avoid writing short procedures because of

the overhead effort. Putting more lines of

code into a single procedure makes the

overhead more tolerable.

Exploratory programming requires the

definc-compilc-run cycle to be easy and

quick, with minimal overhead, for only

then will programmers write short pro

cedures. It is only when the procedures

are short that they can be immediately and

directly grasped by the mind. When the

procedures are simple and elemental, they

are easily combined with other such pro

cedures to create more complex struc

tures, which themselves are combined

into bigger units that fit together ulti

mately to form the program itself.

Exploratory programming works best

when procedures arc named and called

simply by name. In this way irrelevant

mechanisms do not impede or interrupt

the dialogue of thought and effect— the

interplay between the idea as conceived

and as realized. The name becomes (in

our mind) the entity, and uttering the

name invokes the action. We feel as if we

are in immediate and direct contact with

our thoughts as they take form in program

code, and we watch them grow and evolve

in a tiny Darwinian struggle with the

problem.

The power of this exploratory approach

can be seen in contexts other than pro

gramming, of course. Many of us have at

some time or another helped in a mass

mailing—a newsletter, for example. It

obviously doesn't take high-level skills to

design a work procedure to fold the let

ters, address the envelopes, insert the let

ters into the envelopes, seal the

envelopes, and stamp them.

But ifyou've done this sort of thing,

you inevitably find that soon one person is

waiting while another struggles to keep

up. The optimal solution is most quickly

reached simply by setting to work.

27

observing the bottlenecks, and changing

the procedures until things go smoothly. It

usually takes three or four attempts before

the procedure is completely polished,

whereas a priori analysis and design

would be more difficult, take longer, and

probably produce a less efficient solution.

It is worth noting that the solution

arrived at by experiment is optimal in part

because it is not overgeneralized— it fits

the specific requirements of this mailing

and the skills and abilities of these people.

It is important not to try to do too much; in

programming as in art. less is often more.

Another example can be seen in forms

design. No matter how careful the anal

ysis and how considered the design, the

first version of a new form is never right.

The form inevitably fails to collect some

needed information, a space is too small

or too large for what people need to write

in it, the layout is confusing, instructions

are ambiguous, and so on.

Experienced forms designers quickly

learn two lessons. First, when revising a

form, they look at completed examples of

the current version to discover how the

form is actually filled out. Second, they

print only a few copies of any new form.

knowing the need for some revisions will

immediately become obvious when the

form is put to actual use. In other words,

the designers build into their design cycle

early and frequent interaction with the

implementation of their ideas.

Yes-or-no Forth example

To look at an example of the exploratory

approach in programming, let's examine

the development of a new Forth com

mand. Forth is an extensible language,

and Forth programs arc written by cre

ating new commands and combining them

to make new, higher-level commands until

the final command is the program. Forth

programmers find some commands gen

erally useful in their applications, and

they add these commands permanently to

their Forth systems. The example given

here is a command that would probably be

wanted as a permanent addition.

A common exchange in interactive pro

grams is for the program to ask a yes-or-

no question and the user to respond. Thus

it is convenient to have a yes-or-no com

mand to collect and edit such a response.

Our exploration will follow the evolution

of a yes-or-no command in Forth.

The basic yes-or-no (Y/N) command is

simply an indefinite loop that insists on

getting a Y or an N and presents the result

to the program:

: Y/N (-n)O BEGIN DROP KEY

DUP78 = OVER 89 = OR UNTIL;

This works well enough. The phrase 0

BEGIN DROP is a trick that gives a cheap

way of setting up for repetitions of the

loop. If the loop is repeated, DROP gets

rid of any invalid input—input not equal

to the ASCII values of N (78) or Y (89).

The 0 preceding the BEGIN gives DROP

something to work on the first time

through the loop. An on-the-spot test (the

word is compiled immediately upon the

carriage return following the semicolon)

shows that the word works as expected: it

awaits a keystroke and leaves on the stack

the ASCII value of the Y or N that was

pressed, ignoring all other keys.

The definition can. however, be

improved in several ways. First, the val

ues 78 and 89 seem a bit stark by them

selves. A reader of the program may not

immediately realize their significance.

And, of course, they depend on the base

being decimal at the time the block is

loaded from disk. Most Forths include the

word-4.SC//. which accepts the next char

acter and converts it to its ASCII value.

The first enhancement is to replace 78

with ASCII N and 89 with ASCII Y to

improve readability.

Often the output of Y/N is used by an IF

ELSE THEN to pick the appropriate

choice of action. In the preceding version

of Y/N, however, both outputs, being non

zero, signify "true" to an IF. Thus the

first functional refinement is to follow

UNTIL with

ASCII Y =

This phrase makes the final output a

true flag (if the input was Y) or a false flag

(if the input was an N).

This change makes life easier for the

programmer, but the focus of the pro

grammer's attention should be the user.

Y/N churlishly insists that the input be

upper case. It will ignore a lower-case y

or n, even though either makes the user's

intention perfectly clear. Programs should

be written to respect the clear intention of

the user.

One way to do this is to include two

additional phrases in Y/N'a string of com

parisons. These phrases would be placed

between the OR and the UNTIL. The two

phrases are:

OVERASCIIy = OR

n = OR

OVER ASCII

When you have a language such as

Forth, however, in which you are defining

new commands, a new measure of good

design emerges. One must consider which

functions should be embedded in the fab

ric of a given definition and which should

be factored out for separate definition,

with only their name included in the origi

nal definition. Generally speaking, a

function that would make a good, elemen

tal, general-purpose command should be

given its own identity so that it can be used

in any definition as needed.

In this case a better factoring is to iso

late the function of capitalization to create

a command that will capitalize any alpha-

betic'input. CAP can be defined to do the

job cheaply through a trick:

:CAP(n--n)95AND;

You can insert CAP inio the original

definition immediately following KEY.

Then a lower case y or n will be capital

ized before the comparisons with the

ASCII values are made. (You should think

about why CAP works and what it does to

non-alphabetic characters.) Now Y/N

begins to resemble a usable word. What

more can it do?

Without going into the details of devel

opment (these are left as an exercise for

the reader), playing with the command

leads to an evolution of refinement, with

some subspecies created along the way.

For example, sometimes one wants the

flags reversed so that a "no" response

leaves a true flag and a "yes" a false flag.

An example is the question "Do you want

28 COMPUTER LANGUAGE ■ DECEMBER 198-J

to try again (Y/N)?" just before the

UNTIL in a BEGIN UNTIL loop. (Of

course, you could simply rephrase the

question to "Do you want to stop now (Y/

N)?" but never mind that.) A command

NO? is created that accepts only yes or no

answers but leaves reversed flags:

: NO? (-flag) Y/N NOT;

The definition ofNO? is simple because

we arc able to use one of our earlier

commands—already developed, tested,

and at hand. This is an example of the

advantage of an extensible language. Cre

ating the foundation may require some

pains, though it is made easier by tackling

it in small chunks. As we work our way

upward, the tools we command become

more and more powerful.

Because Y/N will almost certainly be

used after a question, its definition next is

modified so that it displayed (once only!)

the phrase "(Y/N)?" before attempting to

collect the user's response. We do this by

including the phrase, " (Y/N)?" in front

of the BEGIN.

If the user will not be working in a situ

ation in which noise is a problem, you

might want to signal that an answer is

sought by sounding a brief beep. It is easy

to add a beep to the word by using your

Forth command to sound a bell.

The beep could be made to sound once

only (to notify the user an input is

requested), even though several invalid

inputs are received. Or the beep could

sound at each request for input so that if

several invalid inputs are received, the

user will hear several beeps, one for each

new input request. (The "(Y/N)?" dis

play should, of course, occur only once.)

In one case the beep is placed with the

"(Y/N)?" before the loop, in the other

just before KEY within the loop.

Sometimes it helps to show the user the

response received so that she or he can tell

that something has happened. Y/N is eas

ily modified so that the response is dis

played and then, if it is invalid, the cursor

backs up and waits in the original position

for another attempt. (Note that the dis

played phrase "(Y/N)?" must then be fol

lowed by a blank so the response is not

jammed against the question mark.) A

useful little word to echo input is easily

defined:

: ECHO (n--n)DUP EMIT;

This command can follow KEYand will

echo to the screen the character collected

by KEY. The program must then back

space the cursor in the event of an error so

that the new input will overwrite the old.

At this point, the little trick of 0 BEGIN

DROP reveals its inherent limitations: it

inadequately separates the functions

within the loop.

Y/N now has two distinct parts: the nor

mal procedure and the setup for a repeat if

the loop has to be retried. For this situ

ation Forth provides the BEGIN WHILE

REPEAT\oop, in which the words

between WHILE and REPEATare exe

cuted only if the WHILE received a true

flag ("execute the following while true"),

and REPEAT always returns to BEGIN. If

WHILE gets a false flag, the loop is

escaped by execution proceeding immedi

ately to the first word after REPEAT.

Thus the WHILE clause functions natu

rally as the setup for a repeat of the loop.

The definition can then be constructed

(Listing 1).

Bells tend to annoy users—no one likes

to be beeped at. The preceding word

beeps only once, but it can be modified so

that a beep occurs only when the input is

invalid. If the user makes a valid response

the first time, all is blessed silence. We

simply move the BEEP from its position

before BEGIN to within the WHILE

clause—which in effect is before the KEY

on attempts after the first one.

This latest version might be improved

by displaying a message "Invalid

response" when the bell sounds for any

invalid response. Note that the message

must be blanked out when a valid

response is received.

Because Forth, as a compiled language,

is fast, it is probably simplest to include a

ZAP word that prints 16 spaces (enough to

wipe out the message) after the ECHO—

the message can then be redisplayed by a

word in the WHILE clause if the response

is invalid. To the user's eye, the message

will barely flicker.

Sometimes a program can help the user

by offering a default answer that the user

can accept by entering a carriage return.

A version of Y/N can be written to display

a default Y and a version to display

default N, each accepting a carriage

return character as being the same as the

default answer. (Obviously, if the default

is a Y, for example, the user must still be

able to enter a Y with no problem.)

Good factoring suggests that only one

version of Y/N is needed to offer either

default (Y or N). This is easily done by

having Y/N expect a logical value that

determines the default (for example, true

= default Y, false = default N). The

question using Y/N can then pass the

appropriate value lo Y/N. The new Y/N is

defined as seen in Listing 2.

In this transfiguration, Y/N accepts a

logical flag and then, after printing the

question prompt, puts the ASCII value for

Y or N on the stack (Y if the flag were

true, N if false). That value is displayed to

the user (with ECHO, note how our ear

lier extensions become generally useful),

the cursor is backspaced to rest on the

default answer, and KEY awaits the user's

input.

This time we don't enter the indefinite

loop until after we check to see whether

the default answer was taken. If the keyed

: Y/N (— flag) ." (Y/N)? " BEEP .BEGIN KEY ECHO CAP

DUP ASCII N = OVER ASCII Y = OR NOT

WHILE .DROP BACKSPACE REPEAT ASCII Y = ;

Listing 1.

29

value was 13 (the ASCII for carriage

return, factored out for separate defini

tion as a documentation aid), then there is

no need to go through the indefinite loop.

The 13 is dropped (to expose the Y or N

placed on the stack by the program), we

ECHO the Y or N that the carriage return

erased on the screen, and then we skip

directly to the word that converts the Y or

N to a logical flag.

On the other hand, if the user keyed

some other value, we don't need our origi

nal Y or N. That value is swapped to the

top of the staek and then dropped. We

enter the indefinite loop, not to exit until a

valid response is received. The loop itself

has been factored out for separate defini

tion because short definitions are easier to

write and offer bugs fewer places to hide.

Exploratory programming encourages us

to write short definitions and compile and

test them immediately—play with them to

see what they do—and then use them with

confidence.

KE/WKchecks the value the user

entered and, if il was invalid, continues to

collect and edit responses until a valid

response is received. Notice that KEY

DVP has now migrated inside the WHILE

clause (because in this version a KEYhas

already been done before the loop was

entered, so within the loop A"£Ybecomes

: CR? (n — flag) 13 = ;

: VERIFY (n — n) BEGIN ECHO CAP DUP ASCII N = OVER

ASCII Y = OR NOT WHILE BEEP DROP BACKSPACE KEY REPEAT

: Y/I (flag — flag) ." (Y/N)? " IF ASCII Y ELSE ASCII N THEN

ECHO BACKSPACE KEY DUP CR? IF DROP ECHO ELSE SWAP DROP VER

THEN ASCII Y = ;

Listing 2.

PROGRAMMERS: New DAVID-DOS II
TM

HIGH-SPEED DOS 3.3

DOS-MOVER/FAST-GARBAGE

Makes high-speed disk access under all

conditions. DOS-mover frees 10,000 bytes

of extra memory for programs. FRE command

does ultra-fast garbage collection. Clock or

manual disk dating. May be licensed.

100 Sectors in 7 Seconds

Speed Load/Save Applesoft, Binary & Integer

100 sector programs in 7 seconds. Tload/Tsave

Random & Sequential Text Files at same speed.

Speeds up programs like Home Accountant.

1OK More Memory

Use HIDOS command in hello program for

turnkey startup, adding 10K free memory to

run 30% larger Applesoft programs than Pro-

DOS. Moves DAVID-DOS II and 4 buffers

above main memory.

Ultra-Fast Garbage

New FRE command collects a memory full of

6000 strings that are half garbage in two seconds.

DOS 3.3 takes 12 minutes. FRE is so fast it is

not noticeable during run of most programs.

Clock Dating

Automatic date stamping of disk files is set up

for 6 kinds of clocks or Hello manual date entry.

New DATE command will auto-insert date in

correspondence.

30 COMPUTER LANGUAGE ■ DECEMBER 198a

All times in seconds

("Iin* Test [nog'ams available)

TEXTF1LES 1100 Sectors) TSAVE

TLOAD

1791 Strings. WRITE

32ctorsej) READ

PRINT/READ

[*42 Secto-i ? xSM) APPEND

APPLESOFT |100 SeclCS) "SAVE

LOAD

INTEGER (100 Sectors) 'SAVE

LOAD

BINARY 1100 Sectors) 'BSAVE

BLOAD

48K PROGRAM SPACE APPLESOFT

(Witn3 Butsaval) INTEGER
BINARY

64K PROGRAM SPACE APPLESOFT

[With A flu's aval) INTEGER

BINARY

DAVID

00S-II

B0

Bl2

29 3

24 3

«2

142 3

6*

50

66

49

73

56

36.352

36 352

36 352

46.592

46.592

46.592

PioD05

NO

NO

2B0

163

459

1429

161

40

NO

NO

184

48

NO

NO

34 816

32.256

NO

41,728

DOS

33

NO

NO

8B4

83 8

1171

12312

33 1

235

33 4

234

28 7

24 a

36 3S2

36.352

36 352

35.756

35.756

35.756

■AOd 5 SBCOfWs 1

Ten New DOS Commands

HIDOS moves DOS above 48K memory.

FRE makes ultra-fast garbage collection.

DATE stamp files. Clock or manual dating.

TLOAD speed loads all Text Files to mem.

TSAVE speed saves Text Files from memory.

TLIST lists all Text Files to screen/printer.

DUMP Binary/Ascii to screen or printer.

DISA disassembles Binary to screen/printer.

AL prints program Address & Length.

10. / is a one keystroke Catalog.

Identical Operation

All new commands operate identical to old DOS

commands on the keyboard & in programs.

Install in Three Seconds

Install DAVID-DOS II on your full disks in

three seconds without touching the programs.

Create bootable high-speed new disks with a

Basic, Binary, or Exec Hello & 35/40 tracks.

Create Data-Disks with 30 extra sectors.

Variable Speed Scrolling

Key operated variable speed scrolling for TLIST,

DUMP and DISA. Lower-case accepted on all

commands. Catalog shows Free-Space. Auto

matic support of Integer or Applesoft Card in

any slot, while in HIDOS or LODOS. Vendor

license includes protection system.

Compatible

All DOS entry addresses have been preserved.

DOS is same length and compatible with most

software. David-Dos is fully copyable. Init areas

were used for David-Dos. Works with all Apple

Us including He, He, Franklin & Basis with

48K/64K/128K & Corvus & Xebec Hard Disks.

Complete documentation and many utilities are

on the disk.

Add $2.00 Shipping. Overseas

add U.S. $4.00. Calif, add 6%. $39.95

C DAVID DATA)
To Order Send Check or Phone Visa/MasterCard.

12021 WILSHIRE BLVD., SUITE 212E

LOS ANGELES, CA 90025 (213) 478-7865

CIRCLE 17 ON READER SERVICE CARD

a part of the setup for a repetition rather

than the normal routine). Note also that in

this version the beep is sounded only for

invalid input.

Playing with this most recent definition

shows that the CAP and ECHO in VERIFY

should be interchanged so the user will

see a capitalized Y or N (as is shown for

the default) even if lowercase were

entered. But in that case numeric entries

give odd responses until CAP is redefined

to replace its little trick with a more

explicit lest. (Note how tricks often fail to

hold up as you play and experiment with

them; cheap tricks, like cheap toys, are

frequently frail.) The new definition for

CAP is seen in Listing 3.

The user, with this latest definition of

Y/N, cannot accept the default value after

once attempting some other answer. This

is a matter of the programmer's choice, of

course, but since we elected to display the

invalid response and thus overwrite the

default answer, it seems best that the

default answer should vanish internally as

well so that the program will be consistent

with the screen display. It is good practice

to match the user's mental model of what

is happening. If the value is displaced on

the screen, it should no longer exist in the

program.

An even better default situation would

be for the question to remember the last

answer it got and pass that value to Y/N as

the default value. Each question could

have its own variable in which the last

answer is stored. The question passes its

variable's address to Y/N, which fetches

the value that determines the default and

then, after completing its input, stores a

copy of the new answer for the next time

the question is asked.

A little experience shows that Y/N

should be written so that one value of the

variable indicates no default is presumed.

This value would be the variable's initial

value for the first time the question is

asked.

The article ends here, but the evolution

of the word can continue. Take a moment

to reflect, however, that it is unlikely the

programmer would have arrived at this

last embodiment of Y/N if he or she had

taken the initial specification and immedi

ately designed the word, without playing

with the idea and letting it develop and

grow.

Exploratory programming allows the

programmer to have much experience

within the writing of a single program.

Hindsight is one of our most powerful

tools; exploratory programming allows

you to use it early and often. H

Michael Ham has worked in program and

systems design, development, and docu

mentationfor many years. He currently

works in software development at the

Scotts Valley, Calif., office ofDysan Corp.

: CAP (n — n) DUP ASCII a < NOT ' OVER ASCII z > NOT AND

IF 32 - THEN ;

Listing 3.

(LISP) FOR A.I.
UO-LISP Programming Environment

The Powerful Implementation of LISP

for MICRO COMPUTERS

LEARN LISP System (LLS.l)
(see description below $39.95

UO-LISP Programming Environment

Base Line System (BLS.l) $49.95

Includes: Interpreter, Compiler,

Structure Editor, Extended Numbers,

Trace, Pretty Print, various Utilities,

and Manual with Usage Examples.

(BLS.l) expands to support full system

and products described below.

UO-LISP Programming Environment: The Usual LISP Interpreter Functions,
Data Types and Extensions. Structure & Screen Editors, Compiler, Optimizer. LISP &

Assembly Code Intermixing. Compiled Code Library Loader. I/O Support, Macros,

Debug Tools. Son & Merge. On-Line Help, Other Utility Packages, Hardware and

Operating System Access, Session Freeze and Restart. Manual with Examples expands to

over 350 pages Other UO LISP products include: LISPTEX tcxl formatter. LITTLE

META translator writing system. RLISP high level language. NLARGE algebra system

Prices vary wiih configurations beyond {BLS.l} please send/or FREE catalog.

LEARN LISP System (LLS. 1): Complete with LISP Tutorial Guide. Editor Tutorial

Guide. System Manual u.ith Examples, Full LISP Interpreter. On-Line Help and other

Utilities LEARN LISP fundamentals and programming techniques rapidly and effectively.

This system does rot permit expansion to include the compiler and other products listed

above.

LISP Tutorial Supporl (LTS.l): Includes LISP and Structure Editor Tutorial
Guides, On line Help, and History Loop. Tins option adds a valuable learning tool to the

UO LISP Programming Environment (BLS.l) Order (LTS.l) lor $19.95.

REQUIRES: UO LISP Products run on most Z80 computers with CPV M. TRSDOS or

TRSDOS compatble operating systems. The 8086 version available soon.

TO ORDER: Send Name. Address, Phone No.. Computer Type. Disk Fomur Type. Package

Price. 6.5% Tdx [CA indents only], Sh.p & Handle fee of S3.03 inside U.S & CN. 510 oulade

U.S.. Check. Money Order. VISA and MasterCard accepted With Credit Card include ex p. dare

Other conligurations mid producls are ordered thru our FREE catalog.

Northwest Computer Algorithms
P.O. Box 90995, Long Beach, CA 90809 (213) 426-1893

Scroll & Recall
Screen and Keyboard Enhancement

for the IBM - PC, XT and Compatibles

Allows you to conveniently scroll

back through data that has gone off

the top of your display screen.

Allows you to easily recall and edit

your previously entered DOS com

mands and data lines.

Very easy to use, fully documented.

Compatible with all versions of DOS.

monochrome <§ graphic displays.

S69 - Visa, M/C, Check, COD, POs

Phone orders accepted

Make Your Work Easier!

To Order or to Receive Additional

Information, Write or Call:

Opt-Tech Data Processing
P.O. Box 2167 • Humble, Texas 77347

{713)454-7428

Dealer Inquiries Welcome

CIRCLE 46 ON READER SERVICE CARD CIRCLE 66 ON READER SERVICE CARD

31

Six Times Faster!
Super Fast Z80 Assembly Language Development Package

Z80ASM

Complete Zilog

Mnemonic set

Full Macro facility

Plain English error

messages

One or two pass

operation

Over 6000 lines/minute

Supports nested

INCLUDE files

Allows external bytes.

words, and expressions

(EXT1 ♦ EXT2)

Labels significant to 16

characters even on

externals (SLR Format

Only)

1 Integral cross-reference

> Upper/lower case

optionally significant

Conditional assembly

Assemble code for

execution at another

address (PHASE &

DEPHASE}

Generates COM, HEX,

or REL files

COM files may start at

other than 100H

REL -files may be in

Microsoft format or

SLR format

Separate PROG. DATA

& COMMON address

spaces

1 Accepts symbol defini

tions from the console

> Flexible listing facility

includes TIME and

DATE in listing (CP/M

Plus Only)

Links any combination

of SLR format and

Microsoft format REL

files

■ One or two pass

operation allows output

files up to 64K

• Generates HEX or COM

files

» User may specify PROG.

DATA, and COMMON

loading addresses

SLRMK

For more information or to order, call:

1-800-833-3061

In PA, (412) 282-0864

Or write: SLR SYSTEMS

1622 North Main Street, Butler, Pennsylvania 16001

• COM may start at

other than 100H

• HEX files do not fill

empty address space.

• Generate inter-module

cross-reference and

load map

• Save symbol table to

disk in REL format for

use in overlay

generation

• Declare entry points

from console

• The FASTEST Micro

soft Compatible Linker

available

• Complete Package Includes: Z80ASM. SLRNK. SLRIB

- Librarian and Manual for just $199.99. Manual only, $30.

• Most formats available for Z80 CP/M, CDOS, & TURBODOS

• Terms: add $3 shipping US, others $7. PA add 6% sales tax

CIRCLE 59 ON READER SERVICE CARD

L R SystemsJ

UniPress

Product

UPDATE

LATTICE® C NATIVE AND CROSS COMPILERS
FOR THE 8086

AMSTERDAM COMPILER KIT

Outstanding software development tools

Lattice C Cross Compiler

to the IBM-PC

■ Highly regarded compiler
producing fastest and tightest code

for the 8086 family.

■ Use your VAX or other UNIX
machine to create standard Intel

object code for your 8086 (IBM-PC)
■ Full C language and standard

library, compatible with Unix.
■ Small, medium, compact and large

address models available.
■ Includes compiler, linker, librarian
and disassembler.

■ 8087 floating point support.
■ MS-DOS 2.0 libraries included.

■ Send and Receive communication

package optionally available to
communicate between Unix and

MS-DOS.

Hosted On

Prices: VAX/UnixandVMS $5000
MC68000/8086 3000
Send and Receive 500

Lattice C Native Compiler

for the 8086
■ Runs on the IBM-PC under MS-DOS

1.0 or 2.0.
■ Produces highly optimized code
■ Small, medium, compact and large

address models available.
■ Compiler is running on thousands

of 8086 systems.

Price: $423

Plink (Optional) for use with
native Lattice

■ Full function linkage editor
including overlay support.

Price: $395

Amsterdam Compiler Kit
■ Package of compilers, cross

compilers and assemblers.
■ Full C and Pascal language.

■ Generates code for VAX, PDP-11,

MC68000, 8086 and NSC16000.
■ Hosted on many Unix machines.
■ Extensive optimization.

Price: Full system— source $9950
Educational Institution 995

OEM terms available • Much more

Unix software, too! • Call or write for

more information.

Mastercard and Visa

UniPress Softuuore, Inc.
2025 Lincoln Highway, Edison, NJ 08817

201 -985-8000 • Order Desk: 800-222-0S50 (outside ND • Telex 709418

lattice is a registered trademark of Lattice. Inc. Unix is a trademark of Bel) Laboratories.
MS-DOS is a trademark of Microsoft.

32 COMPUTER LANGUAGE ■ DECEMBER 196d

CIRCLE 38 ON READER SERVICE CARD

More than just a macro facility

within Framework

hat would you

call a lan

guage that

combines

some of the best features of LISP, Small

talk, BASIC, and C? The developers of

just such a language at Forefront Corp.

have chosen to call it Fred.

Fred is the programming language

component of Framework, the integrated

software package distributed by Ashton

Tate for the IBM PC. But Fred is much

more than the mere macro facility you

might expect from a package rooted in the

world of multifunction spreadsheets.

Despite its unassuming name, Fred is a

full-featured programming language that

lets you manipulate text, numbers, and

graphics on the same screen in exciting

new ways. Fred puts all of Framework

and its flashy multi-windowed environ

ment at your command. The only trick in

using it is divining what is missing from

its skimpy documentation.

Well sit back and discover.

In this article we'll tour the Fred lan

guage, learn exactly how to write and run

Fred programs, and develop some useful

routines that will make Framework work

better for you. We'll even trip across one

of Fred's useful but undocumented

features.

You can get your own copy of the pro

grams presented in this article by calling

the COMPUTER LANGUAGE Bulletin

Board Service at (415) 957-9370 and

downloading the file FRED.FW. If you

don't have Framework, download the file

FRED.LST instead.

By Darryl Rubin

The anatomy of Fred

In the true spirit of integration, Fred pulls

together features from several of today's

most influential programming languages.

Like Smalltalk, Fred operates in a

multi-windowed environment that encap

sulates programs and data in displayable

objects—frames—that can communicate

with each other and be nested hierarchi

cally. For example, you can send data to,

display, and then hide a frame as easily

as this:

@SET(FRAME1,DATA),
@DISPLAY(FRAME1),

©HIDE(FRAMEl).

Like LISP, Fred has a recursive,

function-oriented syntax with flexible

type binding and the ability to pass a vari

able number of arguments to a function.

Programs are stored and treated like data,

so programs can modify and create other

programs. Do you recognize this famous

function as written in Fred?

Like C, Fred is a free-formatted, block-

structured language in which spaces, tabs,

and comments are insignificant, as are-

believe it or not—character fonts and

enhancements (yes, you can italicize and

embolden your source text!). Fred's other

C-like features are its local and external

variables, if/then/else and while state

ments, and value-returning assignment

operator.

There's even a clever way to write

(tDEFINE macros in Fred, as we'll sec. A

C programmer should feel right at home

with the following Fred statement:

©while ;Open a while block
(/Condition clause:

(c:= @get(Table)) <> #N/A!,

; statement:

total := total + c,

Like BASIC, Fred is an interpretive

language with interactive editing and

diagnostics features. When an error

occurs, Fred shows you the location of the

error in the source program and tells you

in plain English what went wrong. A

©TRACE function acts like a super

charged version of the TRON and TROFF

statements of many BASICs. With this

and Framework's full-powered word pro

cessing at your disposal, you can usually

correct and rerun your program in

seconds.

Like any full language, Fred has an

extensive set of data types, operators, and

built-in functions. This is the meat-and-

potatocs part of the language, and Fred

will leave you, if anything, stuffed.

Framework's manual tells you about

Fred's numeric and string data types, but

you'll have to read very, very carefully to

realize that Fred has arrays and struc

tures, too. {Figuring this out qualifies you

to join Mensa.)

Operators include everything you'd

expect plus some you don't always get:

exponentiator (A), string concatenator

(&), range operator (:), and a unique post

fix operator, percent (%).

The set of built-in functions defies

33

description, other than to say it includes

functions for math, statistics, business,

string manipulation, logic, graphics,

sound, print formatting, menus, macros,

program control, function building, and

frame navigation.

Surely, you say, a language of so many

parts must be the Edsel of the eighties, the

PL/I of the PC generation. Not at all. Fred

is surprisingly clean and straightforward.

I would almost call it elegant because

many of its features arc rooted in a single,

underlying construct.

And that is the frame.

What's in a frame

The frame is the unifying construct of

Framework. It is at once the basic unit of

storage, execution, and display within the

Framework environment.

This makes frames much like objects in

Smalltalk. Frames can hold data and pro

grams, be executed, communicate with

other frames, and display themselves in

overlapping windows. Frames can also be

nested hierarchically, inheriting programs

and data from their containing, parent

frames. This gives Fred a powerful block

structuring capability.

A frame is like a two-sided sheet of

paper. Side one is the value area that holds

whatever data is associated with the

frame. This can be a number, string,

graphics, spreadsheet tables, data base

records, or other (nested) frames.

Side two of the frame is the formula

area. It holds the program by which the

value part of the frame is calculated or

processed. Framework normally doesn't

Disk Create Edit Locate Fraies Hords Nuibers Sraphs Print 5;5fe;59 pn

[utili Taiitl ine~vieM) "litnord frau?
i

2

3

4

j

h

> 7

3

9

10

11

12

Read He

copy row

copy table

finish copy

col Hidth

Width Table

vars

7.1 doc type

7.2 source fraie

7.3 dest fraae

7.4 ron count

7.5 col count

7,6 width

7.7 thisroM

cut

paste

buffer

fact

factorial

This is an exaiple of

a word fraie. It can

contain up to 32,000

characters of test and

shons up on the screen

aliost exactly as it

Hill print.

■^spreadsheet

{

=

|

|

=

1

2

3

4

5

b

7

ft

John

Mary

Bill

Spot

fraie]

B

Age

45

40

18

12

G

Height

98

350

180

98

[fraae view]

[8 cut]

[9 pastel—
1

[10 buffer]-

[II fact]—.

•FUNCTION j

[database fraie]

Department Location Budget

Engineering Sunnyvale 300 K

Personnel Palo Alto 1000 K

Marketing Henlo Park 4000 K

Advertising Hariri County 5000 M

Figure 1.

34 COMPUTER LANGUAGE ■ DECEMBER 1984

display this side of a frame, but it is where

Fred lives and works.

Any frame can have a formula and be

nested inside other frames. You can also

associate formulas with spreadsheet cells

and data base fields because Framework

treats these as frames, loo—nested frames

to be exact.

Figure 1 shows a Framework desktop

with text, spreadsheet, data base, and

nested frames. What you're seeing here is

the value area of each of the frames.

Notice that each frame has a label in its

top-left corner. As we'll see later, this is

the name by which a Fred program can

reference the frame's value area or exe

cute (call) the frame's formula.

The frames labeled UTILS {OUTLINE

VIEW) and FRAME VIEW in Figure 1

are examples of frames that contain other

frames. In fact, these arc two different

views of the very same frame. Where

UTILS displays its nested frames in out

line form (labels only). FRAME VIEW

shows the frames themselves. Look

carefully—you're getting a sneak preview

of the programs we'll be presenting

shortly.

Freedom of expression

A Fred program probably resembles a

LISP program more than anything else

because it is simply an expression or a

sequence of expressions. As such, a Fred

program always returns a value, which is

the value of the last evaluated expression.

For example, here is a program called

Factorial whose value is the factorial of a

number entered by the user:

@prompt(@integer(@fact(

@value(@inputline(

"Type a number")))))

To decipher this program you have to

read it inside out because that is the order

in which the functions are evaluated. The

©INPUTLINE function prompts the user

and returns keyboard input as a siring.

©VALUE converts this to a number and

©FACT evaluates the factorial of that

number. ©INTEGER converts the result to

a string and @PROMPTdisplays it.

©INPUTLINE is one of Fred's snazziest

functions because it lets the user zoom

into a full-screen editing mode if he or she

needs to submit more than one line of text.

All of Framework's word processing fea-

tures are then available for editing the

input, including text formatting and dis

play enhancements.

The preceding ©FACTfunction is one

that I wrote. It does the dirty work of cal

culating factorials in true recursive style:

@if(/condition:

@iteml=l, ©item 1=0),

1, ;then
©iteml * @fact(@item1-l));else

These lines illustrate Fred's@/Fstate-

ment, which is simply a list of three

expressions: a condition, a then (true)

clause, and an else (false) clause. Sounds

mighty like the LISP COND function,

doesn't it?

Each clause of the @IF statement can

only be a single expression. If one just

won't do, you can turn a list of expres

sions into a single one by using the form

@LIST(EXPRI,EXPR2, EXPRN).

Like Lisp's PROGN function, ©LIST

sequentially evaluates each of its argu

ments and returns the value of the

last one.

Notice ©FACT'S use of the @ITEM1

function, which returns the value of the

first argument passed to a Fred program.

Other arguments, if supplied, could be

referenced using ©ITEM2 through

©ITEM16 or by the expression

©ITEM(NUMBER). You can use

©ITEMCOUNTto find out how many

arguments were actually passed.

See Fred run

Fine, you say, but how can you enter and

execute programs like ©FACTORIAL and

©FACT! The Framework documentation

probably left you a little bewildered.

Here's all there is to it:

1. Create a frame of the desired type or

highlight the border of an existing one.

2. Press F2 (Formula Edit) followed by

F9 (Zoom).

3. Enter your program. All of Frame

work's word processing features are

available to you.

4. When you're done, hit escape and

label your frame if you haven't already

done so. The frame's label serves as the

name for your program.

Because Fred treats spreadsheet cells

and data base fields like frames, you can

associate programs with them, too. Just

highlight the desired cell or field and pro

ceed from step 2. You won't have to indi

vidually label the cell or field because

cells are named by their coordinates (e.g.,

B3 or, cquivalently. Age.John in Figure

1), while fields are named by the first row

of the data base (e.g.. Budget in Figure I).

Framework offers you several ways to

run your program. One is to highlight the

cell, field, or frame containing the pro

gram and press F5 (Recalculate). Another

is to bind the program to an Alt key. To do

this you'll need to put a call to

@SETMACRO into an empty frame and

execute it via F5. For example, executing

@SETMACRO({ALT-F},UTILS. FACTOR

IAL) will bind the factorial program to

Alt-F.

The third way to execute a program is

to call it as a procedure from another pro

gram. Look back at the ©FACTORIAL

program presented in the last section. Did

you notice how this program called

©FACT?

You might be wondering why pro

cedure calls require that you preface the

called frame's name with an at sign (@).

For the answer, let us proceed to the refer

ence section.

Fred's references

The C language lets you refer to programs

and data using symbolic identifiers. Fred

has identifiers too, but in Fred they are

called references.

Using references, you can execute

another frame's formula, retrieve or

change that frame's value, or perform an

operation on a range of adjacent frames.

Corresponding to each of these respective

purposes, Fred has formula references,

value references, and region references.

A formula reference is the name of a

frame preceded by an at sign (@) and

optionally followed by a parameter list in

parentheses. This is just like a function

call in C. For example, @FACT(2) calls

©FACTio evaluate the factorial of 2.

More in the LISP style, parameters are

passed by value and can be of any type.

You can even pass different numbers of

parameters on each call to the same

frame.

A value reference is just the name of a

frame. Like an identifier in C, a value ref

erence can be the source or target of an

assignment or a term in an expression.

For example, the UTILS frame in Figure

1 has within it a frame called BUFFER.

Valid references to this frame's value

include BUFFER : = "THIS IS A

STRING", BUFFER : = 2, BUFFER : =

BUFFER + I, and BUFFER : =

VARS.DOC TYPE. You see, the value

area of a frame is just like a C external

variable except it is untyped.

A region reference is a pair of value

references separated by a colon. For

example, UTILS.CUT:UTILS.BUFFER

refers to the frames UTILS.CUT,

UTILS.PASTE, and UTILS.BUFFER in

Figure 1. Similarly, C3:C6and

WEIGHT.JOHN:WEIGHT.SPOTeach

refer to the weight column of the spread

sheet frame.

Given Framework's ability to have mul

tiple frames on the desktop and to nest

frames, you might be wondering what

happens if you have two frames, say X

and Y, each of which contains a frame

called Z. No problem, because references

can use a path-naming syntax, as in X.Z

and Y.Z. In fact, when a program in one

frame refers to another frame, it must use

the full path name of the target frame

unless that frame is the parent (containing

frame) or a brother of the referencing

frame.

Some examples of path names in Figure

1 areUTILS.VARS.WIDTH, SPREAD

SHEET FRAME.B3, SPREADSHEET

FRAME.AGE.JOHN, and DATABASE

FRAME.BUDGET.

Kinder cuts

Now that we're getting familiar with Fred,

let's put the language through its paces.

In its utility library, Framework

includes two programs, CUT and PASTE,

that let you cut text from a word frame and

later paste it back. But these programs are

S...1...0...W and can only handle

one cut at a time.

35

Listing 1 shows revved up versions of

CUT and PASTE that not only work

almost instantly but also let you stack

multiple cuts and recall them in reverse

order.

These programs introduce a few of

Fred's most useful functions:

©TEXTSELECTION, @PERFORMKEYS.

and ©SETSELECTION.

©TEXTSELECTION returns as a string

the currently highlighted text in the cur

rently selected frame; this is how CUT

fetches the text to be cut.

©PERFORMKEYS is a keyboard func

tion that passes Framework a string of

keystrokes as if the user had typed them.

CUT uses this to activate the move func

tion (F7) in preparation for moving the

highlighted text to the cut buffer

(UTILS.BUFFER).

©SETSELECTION navigates to the

specified frame and returns the name of

the currently selected frame as a

string. CUT uses this function to

navigate from the user's word frame to

UTILS.BUFFER, which is the desti

nation of the move operation.

Also notice the ©LOCAL function. This

function declares a local variable for use

by a frame's formula. Local variables can

hold any value that a frame can, even a

text string up to 32,000 characters long.

In fact, the name of a local variable can be

used in value and formula references just

like frame names can.

UTILS.DO:

; Do — Repeated do loop.

; Syntax: @do(expression,count)

; Result: Executes the passed expression "count" times.

>

; Note: The expression roust be passed as a string value. For

example, to sound 3 beeps: @do("@beep(880,100)",3)

@local(i,ref),

ref := @iteml,

i := @item2,

@while(i > 0,

@ref,

i := i - 1)

UTILS.DOLOOP:

; Doloop — demo driver for Do routine. Prompts user for a Fred

; expression and a count, then calls Do execute the

; expression the specified number of times.

@do(@inputline("Type a Fred expression"),

@value(@inputline("Type a repeat count")))

Listing 1.

36 COMPUTER LANGUAGE ■ DECEMBER 1984

You can do interesting things with this

capability, as we'll see next.

Can do

You've already seen Fred's @IFand

©WHILE statements, but what about the

good old "do" loop? Fred doesn't have

one, but we can write one, as Listing 2

proves.

DO 'a most interesting feature is how it

assigns its first parameter (a text string) to

a local variable (REF) and executes that

string as a formula (via @REF).

This is a powerful capability. As in

LISP, your programs can synthesize and

execute other programs. You can also use

this feature to implement C-likc UDEFINE

macros. For example, the following

macro substitutes "This is a bother to

type" wherever you type ©ABBREV:

abbrev := "@list(""Thisis a bother to

type"")"

A more useful macro is ©DIALOG:

dialog := "@eraseprompt," &
"@prompt(""Enter your

choice"")," &

"k:=@nextkey"

You can assign formulas to frames as

well as to local variables. Fred provides a

function called ©SETFORMULA for this

purpose. There is also a function called

©GETFORMULA , which returns a

frame's formula as a string that you can

manipulate.

Frame work

Now let's really put Fred to work. Have

you ever tried to copy a table from a

spreadsheet or data base to a word frame?

If so, you've seen Framework politely tell

you that it can't be done. Well it can be

done if you're familiar with Fred, as the

©COPY TABLE program in Listing 3

demonstrates.

This program actually consists of

several subroutine and data storage

frames, numbered 2 through 7.7 in the

UTILS frame (Figure I)■ The whole thing

is too long to list or explain here, so let's

just hit the highlights.

©COPYTABLE, the main routine, is

invoked when you hit Alt-T. It prompts

you for information about the table to be

copied and the name of the frame you

want it copied to. It then makes multiple

calls to @COPYROW, which does the

dirty work.

The secret of @COPySOW7 is its use of

the ©TEXTSELECTION function to

retrieve the contents of spreadsheet cells

and data base fields as screen formatted

strings. Wait, you say, the Framework

documentation says that @TEXT

SELECTION only works in word

frames. Surprise—here is one of Fred's

undocumented and quite useful features.

©COPY TABLE shows off some other

nifty features of Fred. For example, it lets

you specify whether the table should have

fixed or varying column widths. If the lat

ter, it presents you with a data base frame,

WIDTH TABLE, into which you enter the

desired column widths. Constructing a

fancy user interface was never so easy.

Another neat thing ©COPY TABLE

does is use @SETFORMULA to create a

function, @COL WIDTH, that returns the

width of the current column to ©COPY

ROW. This way, @COPYROWdoesn't

have to know whether you specified fixed

or varying column widths. If you speci

fied a fixed width, @COL WIDTH is

assigned a formula that returns a constant

value. Otherwise it gets a formula that

looks up values in the WIDTH TABLE.

Does it strike you that the WIDTH

TABLE serves as an array for @COL

WIDTH! Indeed it does—you've found

Fred's "missing" array and structure

construct: the data base frame. (Welcome

toMensa!) If you like, you can also use

spreadsheet frames to store arrays and

structures.

Frame play

After all the features we've seen so far,

could Fred possibly have more to offer?

The answer is a resounding yes! Fred also

UTILS.CUT:

; Cut — Cut text to a cut buffer. Uses the global variable "buffer".

@echo(#0FF),

@local(src),

@performkeys("{f7}M),

sre := @setselection("utils.buffer"),

@performkeys(

"{dnlevel}{ctrl-horae}(return){ctrl-home}

@setselection(src),

@performkeys("{dnlevel}") ,

@echo(#ON)

UTILS.PASTE:

;Paste — Paste text from cut buffer. The

; buffer is the one pasted.

@echo(#OFF),

@local(dest),

dest := @setselection("utils.buffer"),

@performkeys(

"{dnlevel){ctrl-home}{ctrl-pgdn}{f7}"),

@setselection(dest),

@performkeys("{dnlevel){return}{backspace}

@echo(#ON)

;Keep the display quiet

;Start the move sequence

;Go to the cut buffer

;Finish the move sequence,

(return)"), ; stacking the moved

; text LIFO

;Return to the source frame

;Reenable display

last stacked entry in the

;Keep display quiet

;Go to the cut buffer

;Select the topmost buffer

; entry and start the move

;Go to the dest frame

"), ;Finish the move and

; delete the terminating

; paragraph marker

Listing 2.

37

does menus, graphics, print formatting,

DOS environment control, and external

program calling.

With all these capabilities at your com

mand, you can do more than make frames

work—you can positively make them

sing. I'm serious, because Framework

comes with a sample program, MUSIC-

MAC, that lets you write and play music.

Considering its ability to manipulate

text, numbers, and graphics on the same

screen and its combination of features

from Smalltalk, LISP, C, and BASIC, will

Fred make obsolete other languages? Is it

the programmer's be all and end all? Is it

the only programming language you'll

ever need?

Probably not. Fred doesn't have every

thing for everybody.

It just has a little bit of something for

everybody. H

Deirryl Rubin is section managerfor net

work products at ROLM Corp.

UTILS.COPY TABLE:

;Copy Table — Copies a selected table from a spreadsheet

: or database to a word frame.

;Local variables —

; rows: Number of rows to copy

; cols: Number of columns to copy

; sre: Source frame (spreadsheet or database)

; dest: Dest frame (word frame)

;Global variables (contained in Vars frame) —

; doc type: Source frame type (s => spreadsheet, d => database)

; width: Column width of table or "p" to flag use of per-column widths

; thisrow: Number of current row being processed

; row count: Total number of rows to copy

; col count: Total number of columns to copy

;User defined functions —

; @Copy Row(cols,dest frame): Copies the specified number of columns

to the specified destination frame.

@Col Width(column number)

@local(rows,cols,sre,dest),

vars.doc type := ,

vars.thisrow := 0,

@while(

@and(vars.doc type <> "s",
vars.doc type <> "d"),

vars.doc type := @inputline(

Listing 3. (Continued on following page).

38 COMPUTER LANGUAGE ■ DECEMBER 198.4

A function created by Copy Table based

on whether the user specified a fixed

column width or per-column widths.

@Col Width is used by @Copy Row.

jcurrent row being copied

;ask whether source frame

; is spreadsheet

; or database

; and store user response

"Is the source frame a spreadsheet or database?" &

" (type s or d)")),

rows := @value(@inputline(

"Enter number of rows to copy")))

cols := @value(@inputline(

"Enter number of columns to copy")),

dest := @inputline(

;ask for number of rows

; to copy

;ask for number of columns

; to copy

;ask for name of dest

"Enter name of word frame to copy table to"), ; word frame

vars.width := @inputline(;ask for column width

"Enter column width or type 'p1 to specify per-column widths"),

@setformula(utils.col width,

@value(vars.width)),

@if(@iserr(@value(vars.width)),

@list(@performkeys("{uplevel}"),

jinitialize @col width

; function, assuming

; user picked a fixed width

;Return fixed column width

;but if user didn't type

; a number, he wants per-

; column widths, so

utils.vars.source frame := @setselection(), ; copy local vars to globals

utils.vars.dest frame := dest,

utils.vars.row count := rows,

utils.vars.col count := cols,

@setformula(utils.col width,

@list(@local(w,i),

i := @iteml,

w := @get(utils.Width Table.Width),

@while(i>O,@list(

i := i-1,

w := @next(utils.Width Table.Width)))

w)

),
@setselection("utils.Width Table.width"),

@performkeys("{f9}"),

@eraseprompt,

; for use by @finish copy

; routine

;then set @col width function

; to use per-column width

; get passed column number

; get width of 1st column

; step through Width Table

; to get width of

; desired column

; and return that width

;all set, now take user

; to Width Table

; and let him edit column

@prompt("Edit width values, press Alt-U when done")), ;width values

Listing 3. (Continued on following page).

39

;If user is specifying per-column widths, this function now returns.

;The user must edit the width values in the Width Table and then press

;Alt-U to invoke @finish copy, which will complete the copy process.

;If the user specified a single column width for the whole table,

;processing continues with the @list block below.

@list(

@while(rows > 0,@list(

@copy row(cols,dest),

@performkeys("{dnarrow}"),
src :~ @setselection(dest),

@performkeys("{dnlevel}(end){return}"),

@setselection(src),

vars.thisrow := vars.thisrow + 1,

@if(vars.doc type = "d",@performkeys(

@rept("{dnarrow}",vars.thisrow))),

rows := rows-1)),

@setselection(dest),

@performkeys(M{dnlevel}")))

;do for each row

;copy this row to dest

;advance to next row

;go to dest frame

;and insert a line break

;return to source frame

;bump row counter

;if source is a database,

; return to current record

;downcount row processed

;go to dest word frame

;leave user at end of

;table copied

Listing 3. (Continuedfrom preceding page).

} Syntax ^) custom
j software

Constructs^

Get the power of your Z80

and the elegance of direct access

to CP/M functions from your

high level programs with

SYNLIB
utility library

SYNLIB consists of MICROSOFT compatible object code

that may be called from any high level language that uses

MICROSOFT parameter passing conventions.

SYNLIB gives you extremely powerful array and buffer manip

ulation using the 280 LDIR instruction; program access to the

CP/M CCP console command line; high speed disk block I/O;

a high quality random number generator; HEX to ASCII

conversion optimized by special 280 instructions; program

chaining and more.

And, because our programmer abhors a vacuum, each 8"

floppy comes packed with M0DEM7 and other valuable

public domain software. We've included documentation and

available source, so that you too may join the free software

movement.

SYNLIB $50.00
8" SSSD CP/M format

SOURCE: $100.00

Licensing for commercial use available.

SYNTAX CONSTRUCTS, INC.

14522 Hiram Clarke

Houston, Texas 77045

(713)434-2098

CP/M is a registered trademark or Digital Research. Inc. Microsoft is a registered trademark ol

Microsoft Corp. ZBO is a registered trademark ot Zilog.

CIRCLE 73 ON READER SERVICE CARD

40 COMPUTER LANGUAGE ■ DECEMBER 1984

OPT-TECH SORT

SORT/MERGE program for IBM-PC & XT

Now also sorts dBASE II files!

Written in assembly language for high performance

Example: 4,000 records of 128 bytes sorted to give

key & pointer file in 30 seconds. COMPARE!

Sort ascending or descending on up to nine fields

Ten input files may be sorted or merged at one time

Handles variable and fixed length records

Supports all common data types

Filesize limited only by your disk space

Dynamically allocates memory and work files

Output file can be fult records, keys or pointers

Can be run from keyboard or as a batch command

Can be called as a subroutine to many languages

Easy to use, includes on-line help feature

Full documentation — sized like your PC manuals

$99 —VISA, M/C, Check, Money Order, COD. or PO

Quantity discounts and OEM licensing available

To order or to receive additional information

write or call:

OPT-TECH DATA PROCESSING

P.O. Box 2167 Humble, Texas 77347

(713) 454-7428

Requires OOS. 64K and One Disk Drive

.

CIRCLE 67 ON READER SERVICE CARD

Enhancing
Source Code Control

under UlNlxx part,,
Last month we

briefly described

the Sniircp I nrlc

Conlrol System

(SCCS) utilities admin, ge*, and delta

provided with the UNIX operating system

and described how a simple front-end

interface could greatly enhance the use

fulness of these utilities for a software

project. This article provides some tech

nical detail on how to actually implement

such an interface.

The implementation described here, the

Project Source Code Control System

(PSCCS), was used by Motorola Micro

systems Inc. during a UNIX System V

port involving about 6,000 files and 15

people.

Such an interface is not difficult to

build; ours consisted of only 600 lines of

C code and was tailored to the require

ments of our project. The information

presented here should enable a program

mer to write such a package for any par

ticular project environment with any

enhancements required.

Anyone doing this should, of course,

become thoroughly familiar with the

UNIX documentation on the utilities

admin, get. and delta, as well as the less

frequently used prs. ede and rtndel. Part 1

of this article, which appeared in the

November issue of COMPUTER

LANGUAGE, described their basic func

tion but was by no means a tutorial on

their use.

argc, argv, and env

First, a brief description of argc, argv,

and env is in order since knowledge of

these UNIX operating system features is

fundamental to an understanding of the

By Luke C. Dion and Alan Filipski

PSCCS interface.

In the C language under UNIX System

V, every procedure main has three argu

ments available to it when it begins exe

cuting. If we want to use these arguments.

we start the definition of our procedure

main as follows:

mainfarg, argv, env}

int argc;

char *argv[];

char *env[];

argc is a count of how many arguments

were given on the command line that

invoked the process containing main. For

example, if the invocation line is "pget -e

cat", then argc would be 3. argv is a

pointer to an array of strings that corre

spond to these arguments. In the example,

argv[0J would be "pget", argvfJJ would

be "-e" and argv/2/ would be "cat". Fig

ure 1 illustrates this arrangement. In this

way a program can know by what name it

argv and env

was invoked and with what arguments.

This fact is important to PSCCS since it

is necessary for a program like pget to

modify its command line arguments and

pass them on to the utility get. The third

string, env, is analogous to argv but

instead of command-line arguments, it

contains "environmental variables" and

their values. These are shell variables

known and exported by the shell from

which the program was invoked. For

example, if we type (in Bourne shell

notation):

DBFILE-util

DBDIR = /port/db

export DBFILEDBDIR

and then

pget-e cat

envfOj would be the string -"DBFILE =

util" and envjIJ would be the string

argv[

argv[l]

argv[2]

argv[argc]=0

MU

e|0

env[l]

l|Rl=|/|pjo|r|t|/|d|b|Q

PTBTF|l|L|E|-|u|»|i|l|O|

Figure 1.

41

" DBDIR =/port/db". (There is no count

analogous to argc supplied for environ

mental variables.) This setup is also

depicted in Figure 1. In this way a pro

gram can also know something about the

environment from which it was executed.

PSCCS also uses this capability. For

example, a user might have

DBDIR = /port/db

export DBDIR

in his or her .profile file (analogous to the

Berkeley .login). Then apget executed

later in the session would know that the

project data base file is /port/db. A C

library routine called getenvQ is supplied

in System V to search the env array for a

particular environmental variable.

Data flow in the PSCCS system

Figure 2 shows the data flow resulting

from the user typing the commandpget -e

cat. Recall that the intention of this com

mand is to find some SCCS file in the

project administration area with the string

Data flow for pget

"cat" as part of its name and return the

top-level version of that file lo the user's

current directory.

In this example we are assuming the file

we want to find is /port/src/cmd/s.cat.c.

and there are no other path names of files

under PSCCS control with "cat" as a sub

string. (We will see later exactly what

happens if more than one file has the

given substring.)

The arrows in Figure 2 represent data

flow, the oval boxes represent processes,

the rectangular boxes represent files, and

the numbers represent the chronological

sequence of the data transfers. The files

shown on the left side of Figure 2 consti

tute a simple data base of PSCCS path

names. We will call these files the data

base files. Each file is simply a list of path

names, one per line, in arbitrary order, of

SCCS files that the programmer may wanl

to get.

The data base files arc all in the same

directory, in this case the directory

/port/db. Although not essential, it is a

good idea to group the path names into

files on some basis, such as one file for

"get-e /port/src/cmd/s.cat.c"

utility path names, another for path names

of kernel-related files, one for game

source files, etc. The reason for grouping

the path names into multiple data base

files will be explained later.

The two files at the right of Figure 2 are

the SCCS file /port/src/cmd/s.cat.c con

taining the record of source code changes

to cat.c and the source file cat.c obtained

from this SCCS file.

Here is a step-by-step description of the

data movements that occur when the user

types pget -e cat:

■ Typing the command pget -e cat at the

terminal causes the shell to invoke the

executable PSCCS uu\ity pget and pass it

the strings "-c" and "cat" as command

line arguments.

Something else also happens during this

step, which is not shown in the diagram;

as described before, pget checks its env

strings for the value of the environmental

variable DBDIR. This is the name of the

PSCCS data base directory containing one

or more files that together contain a sim

ple list of path names of all files under

PSCCS control. In this case DBDIR is

equal to /port/db. There is also an

optional DBFILEenvironmental variable,

but we will ignore it for this first pass

description.

■ The program pget uses the UNIX

library routinepopen to invoke the utility

grep to search for the string "cat" some

where within the ASCII files in the direc

tory /port/db and to return topget via a

pipe any lines in those files that contain

that string. This is equivalent to invoking

the command grep cat /port/db/*.

■ As grep executes the search, the line

"/port/src/cmd/s.cat.c" is found in the

PSCCS path name file/port/db/util.

■ This path name, /port/src/cmd/s.cat.c,

is returned to pget via a pipe.

■ Now thai pget knows the full path name

of the file it is looking for. it executes—

via the system call execQ — the command

get -e /port/src/cnul/s. cat. c.

■ The SCCS utility get processes the file

/port/src/cmd/s.cat.c to extract its top-

level version for editing.

■ The utility get writes this top-level ver

sion to the current directory as file cat.c.

This should be what the user wants.

Figure 2.

42 COMPUTER LANGUAGE ■ DECEMBER 1984

The PSCCS code

Procedure main of the compilation unit

pget.c is shown in Listing 1. As you can

see, it is fairly trivial. Most of the real

work is done in procedure expandargs

which modify the argv array by expand

ing each substring of an SCCS file into a

complete appropriate path name. For

example, if the argv array is originally

pget

-e

cot

venture

then after calling expandargs it will

become

pget

-e

/port/src/cmd/s.cat.c
/port/sre/games/s. ad venture, c

Exactly how expandargs does this will be

discussed later. In the next statement the

Oth argument is changed to get. Finally

Aisr/bin/get is executed via an execv() sys

tem call with the new set of arguments.

This process is exactly equivalent to exe

cuting the command

get-e /port/src/cmd/s.cat.c/port/
sre/games/s.adventure.c

by typing it in at the terminal. Sinceexecv

transforms the old process into the new

one, it should not be possible to get to the

next instruction of the old process, hence

the error message on the next line.

pede, pdelta, pprs, pnndel all work in

the same way as pget. It is even possible

(and would save space) to make them all

exactly identical by setting up a single

program that acts differently depending

upon the name it is called. This is left as

an exercise for the reader. But be careful.

In some cases it may not be a good idea to

combine some of the utilities. For exam

ple, it may be permissible to pget version

1.4 of a file but not permissible to remove

that version viaprntdel. This example

illustrates that the PSCCS utilities can be

used to inhibit (or automatically add) cer

tain command line options to the under

lying SCCS tools. This capability is

important lo the padmin utility as we will

explain below.

Listing 2 gives a pseudo-C code

description of ihc operation of procedure

expandargsQ along with the procedure

expand! (), which it uses. The following is

a narrative description of the operation of

that code.

The first thing that procedure expand

args does is to check the environment

string array env to see if a value has been

assigned to the variable DBDIR. The data

base files reside in this file. IfDBDIR is

missing, then an error exit is taken, but

that is not shown in the code. Each argu

ment in the argv array except for

argv[OJ and the option arguments (those

whose first character is a minus sign) is

then processed in turn.

Here the optional DBF/L£environment

variable conies into play. If the user has

set, say ■'DBFILE=util" this says that

the user is primarily interested in

retrieving utility code rather than kernel

or compiler code and that therefore the

data base file util in the DBDIR directory

should be searched first. If a suitable path

name is not found there, then the rest of

the DBDIR directory is searched. The

routine expand! does these searches.

expand1 invokes the grep utility to

search the specified file or files for occur

rences of the string given by arg. If

exactly one path name is found which con

tains arg as a substring, arg is expanded

inlo that path name. If more than one such

path name exists, the user is asked which

one is wanted.

All of these operations arc fairly

straightforward in C. One warning,

however—don't try to expand argv/ij by

copying the new path name character-by-

character into the place pointed at by

argv/ij. The original argv is on the stack

and there is not enough room there. Just

put the path name string into some static

array and redirect argvfi] to point there.

This completes the discussion of the

code for all of the PSCCS utilities except

padmin. The padmin command is signifi

cantly different from the others since it

needs to update the data base files. When

invoked, padmin must process its argu

ments. Likcpget, it must call expandargs

on all arguments except command options

(arguments beginning with a "-"). In

addition, padmin must review these com

mand options to guarantee that the SCCS

administrative parameters are set

correctly.

For example, an SCCS file contains

information that describes which users are

permitted to access that file. The SCCS

admin command permits the user to

change this information. If-unrestricted,

the padmin command could let a user add

another (unauthorized) name to the per

mission list. Since the integrity of the

project SCCS files in part rests on

restricted access to them, then that access

must be protected. Hence, padmin must

guarantee that certain options to admin are

prohibited. Currently we prohibit the fol

lowing admin options:

-fb

-fi
-ff

-fi

-fq

-dj

-df

-di

-dq

-e

-r

-c

-z

-h

Since the SCCS admin command can be

main(

argv,

int

char
r
I

}

argc,

env)

argc;

**argv;

expandar

argv[0]

execv("

fprintf(

gs(argc,

= "eet" •

/usr/bin/

stderr,

argv

eet"

"exec

•

) .

argv) ;

failure") ;

Listing 1.

43

■■■■■■■■■>

!■■■■■■■••••■•
■■■>•■■■■■■■•■■■>■■■■■■•■■«•

:::=

■■■!■•••■■■■■■!*!*•••■■■!■■■•■■■
■■■■■■•■■■■■*M■■■•!■■**■■■ lltivi
■■■■•■■■■■•■■•■■•*■■■■■■■■■■■■■■

used to create newSCCS files (the "-i"

and "-n" options) and change the admin

istrative options of existing files, then

padmin must handle both cases. When

simply changing the parameters for exist

ing SCCS files, padmin works like pget.

However, when creating new files, pad

min has much more work to do.

The first step thatpadmin must take

when creating a new SCCS file is to sup

ply the admin command with the default

creation options. We currently supply the

following default options:

■ -rR where R is a revision level. This

option sets the current revision of the new

file to the same level as other files under

PSCCS control. Controlling the revision

level is important since reproducing ear

lier versions of a product will be based on

these levels. If, for example, a new file is

created at revision level 1.1, it will con

fuse anyone attempting to rebuild revision

I of the system.

■ -fi. This option requires that every

PSCCS file have at least one ID keyword

sequence. The "%W% %Q%" sequence

discussed in our first article is an example

of an ID keyword sequence. With this

option we guarantee that every version of

an SCCS file will be generated with ver-

expandargs (argc ,argv) {

get DBDIR from environment

for i = 1 to argc-1 {

if first char of arg[i] is not a minus sign {

if there is a DBFILE environment variable

expandl(arg[i], DBDIR/DBFILE)

}
if expandl failed to expand arg {

expandl(arg[i], DBDIR)

expandl (arg ,filenam) {

if filenam is a directory {

grep for arg in filenam/*

)else{ /* filenam must be a file*/

grep for arg in file filenam

)
if exactly one pathname is found by grep {

set current arg string to that pathname

return success

]else if more than one pathname is found {

for each pathname found {

display pathname at terminal followed by question mark

accept answer from user (yes or no)

if answer is yes {

set current arg string to current pathname

return success

return failure

Listing 2.

44 COMPUTER LANGUAGE ■ DECEMBER 198d

sion identification information. Knowl

edgeable programmers could devise a way

to circumvent this guarantee, but we can't

think of any reason for doing this.

■ -fb. This option permits creation of

branches on the PSCCS file. It is included

in ihc default options so that a laterpad

min call will not be needed.

■ -aG where G is a UNIX group number.

This option sets up the SCCS file so that

anyone in the users group can access the

PSCCS file.

Once these default options are sci, pad

min will create [he new SCCS file by call

ing admin. However, unlikepget, padmin

must wait around until admin completes.

(Remember, pgei uses the exec system call

to overlay itself with get.) If the admin

command succeeds, thenpadmin must add

the name of the newly created SCCS file

to the project file name data base. In our

current implementation, padmin simply

appends the name to the appropriale data

basefilc(s)inDBDIR.

To execute admin , padmin must call the

forkO system call to create a new process.

The new process (the child process) will

execute the admin command by over

laying itself via an execQ system call. The

original process (the parent process) will

wait for the child to complete by making a

waitQ system call. This system call

returns the child process's return status

that will indicate whether the command

succeeded or not.

As you may guess, the padmin com

mand is the most complicated of the

PSCCS commands. In it resides the real

integrity of the files under PSCCS con

trol . It controls the creation and adminis

trative updating of all PSCCS files. The

discussion on padmin has been somewhat

simplified for this article. Fora more in-

depth discussion, a firm understanding of

admin and the UNIX operating system are

needed.

The setuid feature

Under the UNIX operating system, each

file (including directories) has three levels

of permissions associated with it. We are

concerned with two here: owner permis

sions and other permissions. The owner

permissions specify those operations the

■•»■•••!••*•• ••••*■• ■■■■■■■>■

I::::;:;;::;:::::

owner of the file may perform on it. The

other permissions specify which oper

ations other users may perform on the

file.

Several kinds of operations on the file

may be permitted or denied at several lev

els. We are interested in permission to

write to the file. Note that even if you do

not have permission to write to a file, it

still may be possible to delete it and then

to replace it with something else. To do

this, it is only necessary to have write per

mission to the directory containing the

file. The ordinary SCCS uses this trick.

The other security featureofthe UNIX

operating system we need be concerned

with here is that every executing process

has both a real user ID and an effective

user ID that are set equal to some (not

necessarily the same) valid login ID of the

system. The real user ID of a process is

always the user ID of whomever executed

the program. Usually the effective user ID

is the same. However, if an executable file

has its setuid bit on, then, whenever it is

run, the effective user ID of the process is

that of the owner of the file, not the one

who executes it.

The PSCCS utilities are all setuid util

ities owned by some administrator, such

as "port". {Of course port must be a valid

login name. In our system, port was the

login name for the project administrator

for the M6800O port of UNIX System V.)

The PSCCS files and the directories that

contain them deny write permission to

everyone except port. Therefore the only

way a user can modify the PSCCS files is

through the PSCCS utilities.

This protection greatly reduces the

likelihood of the files being inadvertently

destroyed or corrupted. We have seen too

many cases where an engineer has acci

dentally removed vital files. Under UNIX

the only effective way to restore these

files is to retrieve them from backups, but

then you will lose any changes between

the time that backups were made and the

time the file was lost.

Enhancements and variations

As we have seen, the PSCCS tools have

been built outof standard UNIX System V

utilities and a little glue. The glue consists

of approximately 600 lines of C code in a

few SCCS preprocessors. This approach,

while being exceptionally effective, is

very primitive. In principle, the under

lying data base is really just a collection of

regular UNIX files. The first obvious

enhancement of these tools would be the

use of a more powerful data base manage

ment scheme.

We hesitate to mention a full blown data

base management system since its capa

bilities far exceed the requirements of the

PSCCS utilities. (On the other hand, if

you are currently running on one of the

UNIX based DBMSs, you can and should

take advantage of it.) Some simple exten

sions to the current approach would

probably be more appropriate.

For example, one simple approach

would be to maintain separate data base

files where inclusion of a particular SCCS

file into a particular data base file would

be based on the name of the SCCS file (the

SCCS files beginning with "a" in data

base file "dba", files beginning with "b"'

in "dbb", etc.). This very simple method

will significantly improve PSCCS

throughput by permitting the search to

begin by indexing to the correct data base

file.

Another area of overall improvement in

the PSCCS package is the increase in the

access speed to files based on external

information. For example, in the UNIX

System V shell, the environment variable

CDPATH is used to determine which

directory will be used when changing

directories. When using CDPATH, direc

tories in non-local file systems can be

accessed as if they were in the current

directory. That is, if CDPATH is defined

as

CDPATH = :$HOME

when a change directory command is

issued, if the target directory is in the cur

rent directory or in the home directory,

the change directory will succeed. In this

same manner we can define a SCCSPATH

that will tell the PSCCS commands to

search some set of directories first before

looking into the data base. For example, if

SCCSPATH is defined as

SCCSPATH = dirl:dir2:dir3

45

if we execute pget s. cat. c while s. cat. c is

inoneof dirl, dir2, ordir3, then pget can

retrieve the file without ever reading the

file data base.

The expandargs procedure can be mod

ified to look in the directories specified by

SCCSPATH to see if the requested SCCS

file is present. Note that this improved

accessing efficiency in no way bypasses

the built-in protection of the PSCCS tools.

Another interesting extension to the

PSCCS tools would be to ''associate"

groups of PSCCS tools. Once a file in an

association group is updated, the PSCCS

commandpdelta could .send out electronic

messages to all pertinent users that the file

has been changed. This message could

also contain reminders to review all asso

ciated files as well.

This feature could be best used as a way

to insure that the various representations

of a program are all kept in syn

chronization. For example, the functional

specification, design specification, pseu

docode design, and end product imple

mentation can be placed into an associ

ation. If the implementation is changed.

then the project administrator can be

notified. If the associated specifications

and design documents are not also

changed within some predetermined time

frame (say one or two days), the program

mer can be reminded to do so. Having this

capability will greatly help project librar

ians keep design documents and imple

mentations synchronized.

Other enhancements or improvements

are possible. However, keeping the

PSCCS tools relatively simple will take

careful planning and implementation. The

greatest danger of these utilities is that

programmers and project administrators

alike may view them as a substitute for a

well-designed DBMS. They aren't. What

they do provide is an economical method

of insuring that project SCCS files arc safe.

Benefits

We have presented an outline of the design

of a simple user interface to the UNIX

SCCS. The interface has been set up to
enhance the security, convenience, and

control features of the ordinary SCCS. H

greatly facilitated our execution of a

UNIX System V port, a project involving

15 people and 6.000 files.

With the information we have presented

it should be possible for a knowledgeable

C programmer familiar with UNIX to set

up such a system in a week or so. incorpo

rating additional features as appropriate

for a particular project management envi

ronment, u

Luke C. Dion holds a ft S. in mathematics

and computer sciencefrom the Univ. of

California at Berkeley and is part way to u

M.S. in Computer Sciencefrom Stanford

Univ. Last February Dion lift Motorola,

where he was project manager and respon

siblefor Motorola 's port of UNIX system

V, andfounded Palomino Computer Sys

tems Inc.. specializing in UNIX operating

system consulting and porting.

Alan Filipski holds a Ph.D. in computer

sciencefrom Michigan State Univ. He has

taught at Central Michigan Univ. and Ari

zona State Univ. and is currently a prin

cipal staffengineer at Motorola Micro

systems in Tempe, Ariz., working on the

UNIX System V operating system.

Use ALL the Power of Your

MS-DOS, IBM PC-DOS, or CP/M-80 System

with UNIX-Style Carousel Tools

ch "CP/M" "MS-DOS" <doonewdoc

cliff newdoc doc I more

ed newdoc

kwic newdoc I sortmrg I uniq I unrot >index

make -f makdoc ndx

Carousel Tools and Carousel ToolKitsary trademarks of Carouse!

MicroTools, Inc. CP/M is a trademark of Digital Research; IBM is a

trademark of International Business Machines; MS is a trademark of

Microsoft: UNIX is a trademark of Bell Laboratories.

CAROUSEL TOOLS are a proven set of over 50 programs

designed to be used with pipes, redirected I/O and

scripts. In the style of UNIX each Tool does one thing

well, and the Tools can be used together to do more

complex tasks.

YOU ACCOMPLISH MORE using Carousel Tools: better

programming and documentation support, simpler

data and file housekeeping, more general file

handling.

TOOLS FOR PC/MS-DOS 2.x AND CP/M-80 are available

now. The DOS TooIKit is $149. The CP/M TooIKit is $249

and includes a shell to provide pipes, redirected I/O,

and scripts. Source code is available for $100 more.

ORDER YOUR TOOLKIT TODAY. —wp **>

CALL OR WRITE:

GlCAROUSEL MICROTOOLS, INC.
609 Kearney Street, El Cerrito, CA 94530 (415) 528-1300

CIRCLE 8 ON READER SERVICE CARD

46 COMPUTER LANGUAGE ■ DECEMBER 1984

What
Day

Exactly?
A

lmost any sys

tem needs to

use dates. But

the trouble is

that our calendar is not a regular, orderly

measurement of time. A week is seven

days, but seven is a prime number. The

months do not all have (he same number

of days—they average 30.4375 days or

4.33 weeks. A year is not really 365 days

long, it's 365 and about one-quarter days.

We use years marked B.C. and A.D., but

this scheme has no zero year.

These irregularities are the reason that

the only unit of time defined in the metric

system is the second. All other time units

are considered common units, but they

have no formal definition. Computer peo

ple are used to units of time smaller than a

second—millisecond, microsecond,

nanosecond, etc. Technically, we can use

kiloseeonds and gigaseeonds for longer

units. But nobody does, of course,

because weeks and days arc so much more

natural.

Converting dates

Algorithms have been developed to con

vert dates into numbers for ease of use by

the machine. This procedure is called

Julianizingadate. Most of the time the

numbers fall between 1 and 366, but it is

just as easy to assign numbers over a

range of many years as it is over one year.

If you look on the bottom of many desk

calendar pads, you will see the number of

days past and remaining in the current

year. This is one way of doing the job in

the 1 to 366 range.

Computer people often confuse a

Julianized date with the Julian date. The

Julian date is a number well over 2 billion

used by astronomers for calculations. The

algorithm for calculating it is available

but useless to most programmers because

of the large numbers involved.

The format for writing dates on a com

puter is defined in the ANSI X3.30-1971

standard. This standard allows you to use

the year or the year-in-century. The year

is the full four digits (such as 1984) and

the year-in-century is the last two digits

(84). All fields arc numerics—you use

leading zeros and not blanks. Months arc

numbered from 01 for January to 12 for

December. The days are numbered in the

usual fashion starting with 1 and going to

28. 29, 30 or 31 depending on the month

in which they fall. The order of the fields

is year, month, and day and no separators

are used, which lets you sort dates as if

they were one long number.

While it is not required by the standard,

you should use the full year and not the

year-in-century. There is no longer a great

need to save computer storage space by

cutting off characters, and the year 2000

is not that far away. If you use the year-in-

ccntury, you set in motion systems that

will collapse in the future. Imagine the fun

of having a program that computes inter

est based on negative time intervals.

Leap year calculations are generally a

little messier than people think. Most peo

ple know that every year divisible by four

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

S M T WT F S

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

12 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Programming

a calendar using

the military

format

and Julianized
dates

■H
By Joe Celko

is a leap year. But most forget that there is

also a 400-year cycle. Since the year 2000

is coming up shortly, it is a good idea to

consider it. The four-year cycle exists

because the number of days in ayear is

365 and almost one-quarter. Leap year

takes care of the one-quarter day, and the

400-year rule takes care of the "almost." It

is a very fine adjustment.

Listing 1 presents a simple algorithm in

an ALGOL-like pseudocode for testing a

leap year. It is not very confusing, and the

cost of the extra Boolean expression to

compute the 400-year cycle is tiny.

Although few people work with time that

goes over centuries, I like to get the accu

racy when it is so cheap.

Error checking is always a problem,

and you should always try to catch errors

as soon as possible in a system. Since

dates are messy things, they will need to

pass through an edit procedure before

they get to the data base. It is worth the

effort to have reasonableness edits at

places in the program.

The terms reasonable lower limit and

reasonable upper limit have to be user

defined. If the system does not allow front

dating, then today's date is a good value

for the reasonable upper limit. If the sys-

BOOLEAN PROCEDURE Leapyear

/* year is four digits,
Leapyear:=

((year MOD 4

OR (year MOD

Listing 1.

= 0)
400 =

not

AND

0);

(INTEGER year);

year-in-century

(year MOD 400 <>

*/

0))

47

January

S M T W T F S

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

_

tern did not exist before some date, then it

might be a value for reasonable lower

limit. A more complex situation (Listing

2) might involve the relationships among

the dates for these bounds (you cannot fire

an employee before you hire one and so

forth).

Date formats

We still need to get dates into the data

base, which means that a human being

must key [hem in. But we have yet another

problem. Nobody agreed on a way to

write a date. The most common formats

you will see are with slashes and num

bers, dashes and numbers, full month

names, and three-letter month codes.

The following list is of possible for-

mais, compressing out blanks. The

"mm" is a numeric month, and "mmm"

is a three-letter code. The "dd" is a day in

the month, and "ddd" is the ordinal num

ber of the day in the year (001 to 365 or

366).

mm/dd/yy—U.S. format

dd/nim/yy—U.K. format

mm-dd-yy—U.S. computer format

dd-mm-yy—U.K. computer format

nnnmdd.yyyy—Correspondence format

yyyymmmdd— Military format

yyymmdd—ANSI format

yymmdd—Alternate ANSI format

yyddd—Ordinal ANSI format

The trouble with the all-numeric dates

is that U.S. and U.K. dates are easily con

fused. The current military date uses year.

three-letter month, and day—in that

order—for ease of date processing. It

replaces the older military format,

"ddmmmyyyy".

BOOLEAN PROCEDURE Validate (INTEGER year, INTEGER month,

BEGIN EXTERNAL BOOLEAN PROCEDURE LeapYear;

INTEGER MinSystemYear INIT /* reasonable lower limit */,

MinSysteraYear INIT /* reasonable upper limit */

INTEGER ARRAY MonthSize[l:12]

INIT (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

IF LeapYear(year)

THEN MonthSize[2] := 29

ELSE NULL;

ValidDate:= ((month >= 1) AND (month <= 12))

AND ((day >= 1) AND (day <= MonthSuze[month]))

AND ((year >= MinSystemYear) AND (year <= MinSystemYear))

END of Validdate;

lay.

Listing 2.

INTEGER PROCEDURE Julian (INTEGER year, INTEGER month, INTEGER day);

/* This is Julianized day within year, not an astronomer's Julian day

BEGIN

EXTERNAL BOOLEAN PROCEDURE ValidDate, LeapYear;

IF ValidDate (year, month, day)

THEN BEGIN

INTEGER ARRAY MonthTotal[l:12]

INIT90, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334);

IF (LeapYear(year) AND (month > 1))

THEN Julian:= 1

ELSE Julian:= 0;

Julian:= Julian + MonthTotal[month] + day:

ELSE Fault ("This is a bad Date");

END of Julian;

Listing 3.

48 COMPUTER LANGUAGE ■ DECEMBER 1984

December

S M T W T F S

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

I strongly recommend the current mil

itary format. It is much easier for a human

being to read correctly. It takes no trouble

at all to convert between ANSI and this

display format. Alt you need is a little

string handling and a table of the thrcc-

lettcr codes.

It is also possible to write an input pro

cedure that will accept a wide range of

date formats and convert them into

"yyyymmmdd". This will allow the user

to type in the date in almost any format.

But the procedure should immediately

overwrite the input with the converted

date so that the user can see how the

machine interpreted what was typed in.

Remember, there is no way to tell if the

U.S. "mm/dd/yy"ortricUK. "dd/mm/

yy" format was meant, so you have to

make an assumption based on your

geography.

Examples

Now we are ready to Julianize a date with

the procedure presented in Listing 3.

This approach can be extended over a

wider range by adding a year total table,

which would be indexed by the year minus

a constant. The tables are fairly small and

represent a good trade-off with

approaches that would use floating poim

calculations. This algorithm allows you to

generate ANSI ordinal formal dates by

attaching the year-in-century to the high

order digits of the result.

But algorithms do not have to be

unique. Jusl take a look in any textbook at

all the ways to sort an array. Another

algorithm thai can perform this same

function is shown in Listing 4. It is based

on smoothing out the distribution of days

in the year (365.25 days per year) and

then using a set of IF-THEN-ELSE state

ments to put the irregularities back into

the calculation to adjust the date.

For most people, there is no way to

look at a day and tell what day of the week

it fell upon. The algorithm in Listing 5

computes the day of the week from a date

given in the format that we have been

using for the Julianization algorithms.

In Listing 6. pseudocode for computing

the number of days between two dates is

presented. It depends on an encoding

algorithm that returns a pseudo-Julianized

date. The pscudo-Julianizcd date is a real

number that represents the position of the

day within the year if all months and days

were spread uniformly over a year. It is

not a completely accurate Julian calcula

tion because of these assumptions, but the

differences arc accurate enough for com

puting interest to a few places and other

financial applications.

Commercial users often write programs

under the assumption that the year has 360

days and all months have 30 days. This

algorithm is an improvement over the

common practice.

If you ever get a chance to vote for cal

endar reform in your lifetime, please do

so. Several schemes have been proposed,

all superior to the present system. I favor

the Edwards calendar, which has four

three-month quarters. The months are 30,

30 and 31 days long in each quarter. This

scheme splits New Year's Day away from

any month and uses a zero to represent it.

Leap year day appears every four years in

the middle of the year and is also shown

with a zero day at the start of the third

quarter.

It is left as an exercise for the reader to

design programs for the Edwards calen

dar. But they are very easy. H

Joe Celko is a contractor and consultant

currently residing in Los Angeles, Calif.

He was recently employed us a computer

research scientist at Georgia Tech in

Atlanta, Georgia. Celko is a regular col

umnist/orlnformation Systems News and

Software News.

INTEGER PROCEDURE Jul2 (INTEGER

/* This is Julianized day within

BEGIN EXTERNAL BOOLEAN PROCEDURE

LeapYear;

If ValidDate (year, month, day)

THEN BEGIN

Jul2:= Truncate ((30.475 *

IF (month > 2) THEN Jul2:=

IF (month > 5) THEN Jul2:=

IF (month > 6) THEN Jul2:=

IF (month > 7) THEN Jul2:=

year,

yeai

INTEGER

■, not an

ValidDate,

(month-1)) +

Jul2

Jul2

Jul2

Jul2

IF (LeapYear(year) AND (month ;

THEN Jul2:= Jul2 + 1 ELSE NULL;

END

ELSE Fault ("This is a bad Date"

END of Jul2;

);

+ 2 ELSE

+ 1 ELSE

- 1 ELSE

- 1 ELSE

D)

month, INTEGER day);

astronomer's Julian day *

day);

NULL;

NULL;

NULL;

NULL;

Listing 4.

49

STRING PROCEDURE DayOfWeek (INTEGER year, INTEGER month, INTEGER day);

/* returns the three-letter day of week */

BEGIN EXTERNAL BOOLEAN PROCEDURE ValidDate, LeapYear;

STRING ARRAY DayName [0:6]

INIT ("SUN", "MON", "TUE", "WED", "THU", "FRI", "SAT");

INTEGER ARRAY DayTable[l:12]

INIT (0, 3, 3, 6, 1, 4, 6, 2, 5, 0, 3, 5);

INTEGER ARRAY CenturyTable[l:12]

INIT (1,2,0,6,4);

INTEGER Century, YearlnCentury, Result;

IF ValidDate (year, month, day)

THEN BEGIN

IF (LeapYear(year)

THEN BEGIN

DayTable[l] := 6;

DayTable[2] :=2;

END

ELSE NULL;

Century:= Year DIV 100;

YearlnCentury:= year - (Century * 100);

Result:= CenturyTable[Century] +

YearlnCentury +

(YearlnCentury DIV 4) +

DayTable[month] +

Day;

DayOfWeek:= DayName [Result MOD 7]:

END

ELSE Fault ("This is a bad Date");
END of DayOfWeek;

I

Listing 5.

INTEGER PROCEDURE DateDiff (INTEGER yearl, INTEGER monthl, INTEGER day

INTEGER year2, INTEGER month2, INTEGER day2);

BEGIN

REAL PROCEDURE Pseudo-jul (INTEGER year, INTEGER month, INTEGER day);

/* this will give a Pseudo-Julianized date */

BEGIN EXTERNAL BOOLEAN PROCEDURE ValidDate;

IF ValidDate (year, month, day)

THEN Pseudo-jul :=

((365.25 * year) + (30.475 * month) + day)

ELSE Fault ("This is a bad Date");

END of Pseudo-Julian;

EF ValidDate (yearl, monthl, dayl)

THEN IF ValidDate (year2, month2, day2)

THEN DateDiff:=

Truncate (Pseudo-jul (year2, month2, day2)

- Pseudo-jul (yearl, monthl, dayl)

+ 0.05)

ELSE fault ("Second date is bad");

ELSE fault ("First date is bad");

END DateDiff;

Listing 6.

50 COMPUTER LANGUAGE! DECEMBER 1984

Customize

Hg
language

ACOBOL-assembly example

Ithough this

article deals

with the specif

ics of

interfacing Microsoft's COBOL-80 lan

guage with assembler subroutines, the

concepts and requirements arc applicable

to a wide range of other high-level

languages.

The programs discussed were written

and tested using Microsoft's COBOL-80

compiler version 4.60 and 4.65. The

assembler used was Microsoft's M80,

which is included with the COBOL com

piler, but any assembler capable of pro

ducing an .REL file can be used (i.e..

RMAC, etc.).

Why would you want a high-level lan

guage to interface to an assembler mod

ule? I realized I wanted such a high-level

language interface when I was writing an

application program in COBOL and

needed to control special printer functions

such as spacing and font size.

Although COBOL is an excellent busi

ness language, it has several short

comings. One of them is its inability to

easily pass embedded control codes to the

printer.

At this point I set out to find the infor

mation necessary to write an assembler

subroutine that my COBOL program

could call to handle these special printer

functions. Although the assembler sub

routine deals with an Okidata 83A printer,

it can be easily changed to support what

ever printer you arc using.

The Microsoft COBOL-80 manual is

very skimpy in the areas of sample pro

grams. Only a mention is made of the

method that must be employed when

attempting to call an assembler sub

routine.

Most of my discoveries involved noth

ing more than trial-and-error attempts to

discover what the magical linkage should

be. This article can be a road map that

takes you on a much shorter journey than

the one I took. By the end of the article

you should be able to sec just how easy the

interface is and how easily the assembler

program could be modified to support a

similar function you have always wanted.

You will undoubtedly see areas in the

assembler source that can be shortened or

eliminated entirely. The assembler pro

gram is heavily commented so that the

COBOL programmer who knows a little

assembler can readily modify the code to

suit his or her needs. I will not attempt to

teach you either COBOL or 8080 code in

this article but instead will show you the

things I uncovered that do not appear in

any M icrosoft sample program and are

only hinted at in its documentation.

Microsoft's mention

To start off, let's review just what Micro

soft's reference manual has to say about

calling an assembler program. Everything

the manual contains on this subject can be

found in Appendix B of the COBOL-80

reference manual.

This appendix briefly describes the

interface calling mechanism used when

COBOL calls an assembler subroutine.

The COBOL run-time system transfers

control to the subroutine by means of the

machine language CALL instruction. The

subrouiine must return control to COBOL

by issuing a machine language RET

instruction.

By Charles Ballinger

Parameters are passed from the high-

level language down (o assembler by

reference—by passing the address of the

data and not the data itself. The method of

passing these parameters depends on the

number of parameters you are attempting

to pass. If there are from one to three

parameters to be passed they are passed in

the following manner:

Parameter 1 in register pair HL

Parameter 2 in register pair DE

Parameter 3 in register pair BC

If you are passing more than three

parameters, parameters 1 and 2 are still

passed in HL and DE, but register pair BC

now points to a contiguous data block of

memory that holds the list of parameter

addresses. Remember, if you pass more

than three parameters, this contiguous

block of memory contains the addresses

of the additional parameters in byte-

reversed order.

Also note that neither the compiler nor

the run-time system checks to ensure that

the correct number of parameters or their

sequence has been passed. You arc

responsible for the integrity of the param

eters as well as matching up the sequence

in both the calling and the called program.

If you get weird results, this should be the

first thing you check.

Since the stack space used by COBOL

is contained within the program bound

aries, the assembler program must not

IDENTIFICATION DIVISION.

PROGRAM-ID. TEST.

AUTHOR. CHUCK BALLINGER.

DATE-WRITTEN. 04/10/84.

THIS PROGRAM IS A DEMO PROGRAM TO SHOW YOU HOW THE

CALL TO "PRSET" PROGRAM WORKS. THE USE OF ASSEMBLER

SUBROUTINES ARE ONLY LIMITED BY YOUR IMAGINATION.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PRINTL ASSIGN TO PRINTER.

DATA DIVISION.

FILE SECTION.

FD PRINTL

LABEL RECORDS ARE OMITTED

RECORD CONTAINS 132 CHARACTERS

DATA RECORD IS PRINTLN.

01 PRINTLN.

02 FILLER

WORKING-STORAGE SECTION.

77 FUNCTION-CODE

77 RETURN-CODE

01 TESTLN-1.

02 PARTI

02 PART2

02 PART3

02 PART4

02 PART5

02 FILLER

PROCEDURE DIVISION.

START-OF-PROGRAM.

OPEN OUTPUT PRINTL.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

XC132).

X VALUE SPACE.

X VALUE SPACE.

X(10).

xcio).

X(IO).

XflO).

XCIO).

X(82) VALUE SPACES.

SET PRINTER TO 8/LINES INCH AND PRINT DEMO

MOVE "8" TO FUNCTION-CODE.

MOVE " " TO RETURN-CODE.

CALL 'PRSET' USING FUNCTION-CODE, RETURN-CODE.

IF RETURN-CODE = " " NEXT SENTENCE ELSE

GO TO ERROR-OUT.

MOVE SPACES TO PRINTLN.

MOVE "THESE LINES PRINTED AT 8 LINES PER INCH" TO PRINTLN.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

SET PRINTER BACK TO 6 LINES/INCH

MOVE "6" TO FUNCTION-CODE.

overflow or underflow the stack. To be

sure this doesn't happen, the assembler

program, upon entry, should save the

COBOL stack and then set up its own

stack pointer.

The preceding Information brings to a

close whal the COBOL-80 manual says

about calling an assembler subroutine.

You probably noticed that no samples or

clues are given as to just what registers

are affected.

A working version

At this point frustration set in. So I called

the Microsoft technical support line only

to be told. " Nobody here has ever tried

that." About all the Microsoft people

were sure of was that you had better save

every register upon entry into your assem

bler program because they didn't have any

information about what, if any, registers

were affected. With this lack of informa

tion I then proceeded through the trial-

and-error sessions necessary to get a

working version of the assembler

subroutine.

As you can see in Listing 1, the

COBOL code necessary to CALL an

assembler subroutine is very straight

forward. The calling sequence is:

CALL 'PRSET' USING FUNCTION-

CODE, RETURN-CODE.

Only two parameters are used. The first.

FUNCTION-CODE, is passed in the HL

register pair, while the second,

RETURN-CODE, is passed using the DE

register pair. The program does not make

use of a third parameter, so registers BC

are left in an unknown state but arc saved

anyway once inside the subroutine.

Up to now we have just covered the

basics of the linkage required. I have writ

ten a printer setup program (PRSET).

which can be used to set special printer

modes. (Unfortunately it is too long lo be

primed here, but it can be accessed by

calling the COMPUTER LANGUAGE Bul

letin Board Service or CompuServe.)

The PRSET assembler program can be

refined and reduced in size if you wish to

experiment. My goal in writing the pro

gram was to make it easy for a non-8080

programmer to modify. I'm no 8080

Listing 1. (Continued on following page).

52 COMPUTER LANGUAGE ■ DECEMBER 1984

giant, but the code works, is easy to fol

low, and lends itself to whatever mod

ifications you may wish to implement.

The subroutine only has a few areas you

must watch for. If you arc writing your

own routine, be sure that at the beginning

of the program you have an ENTRYstate

ment program to name the module. At link

time this is required to name the module

so the COBOL linker can find and link it

to the main COBOL program. This pro

gram uses the standard entry points for

CP/M2.2+ for both BDOS and LIST

devices. If your particular version of

CP/M uses an entry of other than 05H

(5 Hex), then change the equates in the

PRSET program.

The first thing the program does is save

the HL register pair. Then it swaps HL

and DE and finally saves HL again. The

first SHLD saves parameter 1 's address.

The registers are then swapped and the

second SHLD saves parameter 2's

address. The program then saves register

pair BC even though they are not used.

Here's the tricky part. You must clear

the HL register pair and then do a DAD SP

instruction to load the value of the

COBOL stack pointer. Now the program

saves the COBOL stack pointer in a field

called COBSTK and proceeds to establish

its own stack area. Register pair HL is

then loaded with the address of parameter

1, and the program checks to see what, if

any, option was requested.

If no valid option was found, then the

code falls through to the error routine. At

the error routine the program gets

addressability to the return code field

(parm 2) and moves an X into the return

code field to indicate it found an error.

The registers arc then restored, and the

COBOL stack pointer is restored to the

same value it had upon entry. A machine

language fl£7"instruction is then exe

cuted, which returns control back to the

COBOL program.

The normal exit point in the program

(0210H) does the same thing with the

exception that the return code field is set

to a blank prior to returning.

The individual routines within the sub-

MOVE " " TO RETURN-CODE.

CALL 'PRSET' USING FUNCTION-CODE, RETURN-CODE.

IF RETURN-CODE = " " NEXT SENTENCE ELSE

GO TO ERROR-OUT.

MOVE SPACES TO PRINTLN.

MOVE "THESE LINES ARE AT 6/LINES PER INCH" TO PRINTLN.
WRITE PRINTLN AFTER ADVANCING 2 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

WRITE PRINTLN AFTER ADVANCING 1 LINES.

PRINT AT VARYING FONTS SIZES ON SAME LINE

MOVE "C" TO FUNCTION-CODE.

MOVE " " TO RETURN-CODE.

CALL 'PRSET'' USING FUNCTION-CODE, RETURN-CODE.

MOVE SPACES TO PRINTLN, TESTLN-1.

MOVE "16.5 CPI" TO PARTI.

WRITE PRINTLN FROM TESTLN-1 AFTER ADVANCING 3 LINES.

MOVE SPACES TO PARTI.

"B" TO FUNCTION-CODE.

" " TO RETURN-CODE.

MOVE

MOVE

CALL 'PRSET' USING FUNCTION-CODE, RETURN-CODE.

MOVE "8.3 CPI" TO PART2.

WRITE PRINTLN FROM TESTLN-1 AFTER ADVANCING 0 LINES.

MOVE SPACES TO PART2.

MOVE "W" TO FUNCTION-CODE.

MOVE " " TO RETURN-CODE.

CALL 'PRSET' USING FUNCTION-CODE, RETURN-CODE.

MOVE "5 CPI" TO PART3.

WRITE PRINTLN FROM TESTLN-1 AFTER ADVANCING 0 LINES.

MOVE SPACES TO PART3.

MOVE "R" TO FUNCTION-CODE.

MOVE " " TO RETURN-CODE.

CALL 'PRSET1 USING FUNCTION-CODE, RETURN-CODE.

MOVE "10 CPI" TO PART4.

WRITE PRINTLN FROM TESTLN-1 AFTER ADVANCING 0 LINES.

END-THE-PROGRAM.

DISPLAY (24, 1), "RETURNING TO CP/M - PLEASE STANDBY" ERASE.

CLOSE PRINTL.

STOP RUN.

< DISPLAY ERROR IF INVALID RETURN CODE WAS FOUND

= YOU DECIDE HOW YOU WANT TO HANDLE IT. ONCES TESTED

= YOU MAY WANT TO IGNORE THE RETURN CODE FIELD

ERROR-OUT.

DISPLAY (24, 1) ERASE

"YOU WERE PASSED A RETURN INDICATING AN ERROR OCCURED"

GO TO END-THE-PROGRAM.

Listing 1. (Continuedfrom preceding page).

53

routine can be expanded or combined if

you wish. The program currently accepts

any number of characters to pass to the

list device, so you are not limited as to

how many control functions you can do

within one CALL. The program will ter

minate when a byte containing zero hex

(OOH) is encountered. As long as you ter

minate each table entry with this value

you can set multiple conditions in each

routine.

Now that I had finally succeeded in get

ting COBOL and assembler to talk to each

other, the program didn't seem that hard.

As long as you save all your registers

upon entry and restore them before you

leave, you can use this subroutine to do

many things besides control your printer.

Perhaps you wanted to do special screen

graphics to produce a form but didn't like

the idea of trying that in a high-level lan

guage. With this subroutine you can now

do it easier and faster.

Figure 1 shows the link statement nec

essary to link the TEST program with the

printer setup program (PRSHT). Figure 2

illustrates the assembler instructions nec

essary to assemble the PRSET.MAC pro

gram into a .REL file that is ready lobe

linked to the main COBOL program.

As you can see from this article and list

ings, the task really wasn't that hard. The

only major drawback was the lack of truly

technical information of any kind.

I am releasing these programs into the

public domain, and it is my hope that you

can make use of the information presented

here. H

Charles Ballinger is a systems analyst and

has been involved in computers andpro

grammingfor (i little over 10 years. He has

been actively involved in microcomputers

since 1978.'

LD80 TEST/N,TEST,PRSET/E

Subroutine name followed by /E to indicate that this is

the end of the load and to return to operating system

when finished with link.

The first module to be linked, this MUST be the main COBOL

program or you will get link errors.

This specifies the name under which this program is to be stored. The

/N indicates this is what you want the program named to the linker.

If you have more than one assembler subroutine that you wish to call from COBOL

then you would list them like this:

LD80 TEST/N,TEST,SUB1,SUB2,PRSET/E

This would link the program TEST with the subroutines named SUB1, SUB2, and

PRSET. You may specify the subroutines in any order and the linker will resolve

the necessary addresses.

Figure 1.

M80 PRSET,LST:-PRSET

Name of source file, this file must have an extension of

.MAC to be recognized by the M80 assembler.

Name of printer output file or device to receive the printed

output. Can specify CON: if you want to display the output.

Name of .REL module that will be generated by the M80 assembler. This is

the name of the module that you would use within the COBOL link statement

Figure 2.

54 COMPUTER LANGUAGE ■ DECEMBER 1984

PUBLIC DOMAIN SOFTWARE REVIEW

w
'c'vcbeen hav

ing a terrific

debute on the

COMPUTER LANGUAGE section of

CompuServe over the "best" program

ming language.

For those who haven't yet tried our

CompuServe section, the conclusion to be

drawn from the debate is that there is no

best language. Each language has its own

merits and drawbacks for any given situ

ation, although probably two or three

would do equally well for the job.

Naturally, personal biases come in to

play, and those who program in only one

or two languages have as their own favor

ites the languages they are most familiar

with. Among the multi-language people

there is about an even split between C,

FORTH, Pascal (Modula-2), and number

crunchers like FORTRAN and APL. (The

latter's proponents tend to be engineers or

scientists.)

It becomes very obvious to any pro

grammer who can write code in several

languages that some are general purpose

by design, such as Pascal and BASIC,

while others arc not—APL, for example,

cannot possibly be mistaken for anything

else but a number cruncher at heart. So

the unsolvable debate will continue to the

amusement of all (and probably to the

education of all, too).

What is the best language? The one you

like the best.

::l:::!iiiii:::::: ti A #ithsomanylan-
■■■■■■■•■■■■■■■■■■ m ■■ m ..

:::::::::::::::::: mf1# guages avail-

:::::::::::::::::: m m able to a

programmer, i(is no surprise at all that

each has a growing number of support

organizations. These users groups devote

themselves to distribution of information

or programs about a specific language, or

more usually, a specific implementation

of that language. Therefore, any public

domain columnist must address these

groups as well as the generally targeted

users groups such as CP/M UG and

SIG/M.

Lcor Zol man's BDS C has been through

many revisions over the past few years

and continues to be one of the most popu

lar C implementations available. As the

By Tim Parker

number of users of BDS C expanded, a able. Again, most of the programs are

nucleus appeared that took the form of the available in source code form, so any Pas-

BDS C Users Group. The group began cal will work after suitable modification

collating material for inclusion on its disk where necessary. Most of the Pascal/Z

volumes and very quickly grew to a Users Group's disks have been released

respectable number. on SIG/M disks, so two sources exist.

While the BDS C compiler is emphat- One volume that always seems to raise

ically not public domain, the associated an eyebrow is Pascal/Z vol. 14, SIG/M

software from the users group is. And vol. 71, which includes among the bit

while the BDS C compiler is intended as manipulator, statistical package (worth

the compilation system, there is no major the look) and randomizer, a LISP written

obstacle (except some syntax and lesser entirely in Pascal! While it is quite a sub-

known functions) to using either the pub- set, the novelty alone of looking at the

lie domain Small-C or another commcr- code (all 26K worth) is instructive to

cial C compiler on the source codes. Most LISPers and Pascal users alike. (Now I'd

of the group's disks include source code like to see a Pascal written in LISP.)

as well as compiled code. Another useful volume from a machine

The BDS C Users Group has not language programmer's point of view is

assigned a cataloging system like SIG/M Pascal/Z vol. 22. SIG/M vol. 97. This has

and CP/MUG uses, so the contents of an updated COMBINE (discussed in the

each disk are sometimes hard to decipher. first Public Domain Software Review

A master catalog (which looks very much column—it combines a number of small

like it was done on Ward Christensen's assembler files into one larger one) and a

XCAT/NCAT system) is available that program called CROSS, which allows

lists file names with their associated disk indentation, annotation, and cross-

but has no descriptions at all. (At least not referencing of Pascal code. The Pascal

in the releases I have seen—such a thing source code is supplied as are compiled

may exist now if someone has taken the versions.

time to compile it.) Finally, Pascal/Z vol. 25, SIG/M vol.

Regardless, several dozen disks arc 133, has a metric conversion program and

available cither from the users group a balanced cattle feed ration design pro-

directly (address at the end of this column gram. (Luckily, those aren't the best

along with all other mentioned organiza- things on the disk.) An extended precision

tions) or through some of the clearing floating point routine, which has worked

houses that specialize in distribution of well in testing, is also included.

public domain material. suchasElliam The (unfortunately) defunct JRT Sys-

Associates. terns' JRT Pascal (which pioneered the

As BDS C Users Group disks have no low-cost CP/M software idea) is available

accurate numbering system, an arbitrary on Pascal/Z vol. 18. SIG/M vol. 82. This

system has been adapted by several is version 2 of the compiler. JRT Pascal

sources. Currently 44 disks have contents 3.0 is also available, but the disk numbers

varying from the ubiquitous games to have not yet been announced.

software tools, utilities, functions, and Despite a lot of criticism, JRT Pascal

other material. One of the disks even has has been the Pascal entry vehicle for thou-

thc Small-C (public domain) compiler on sands of programmers, and its inclusion

it. in the public domain is bound to allow

Notable disks have the ROFF4 text for- many more people to access Pascal. (JRT

matter, a 6800-1802 cross assembler, Ed

Ream's screen editor (both BDS C and

Small-C versions), video terminal librar

ies. 6809 software tools, and PISTOL (see

last month's column). Five disks contain i:::i:ii:;:::i::iiiiiiiiii:H::::iii::iiii:ii::i!i::
utility programs, and three have func-

tions. The complete software tools are :::

available.

Pascal/Z has also developed a users

group with a similar scries of disks avail-

55

Pascal 3.0 is available on CompuServe's

COMPUTER LANGUAGE data base sec

tion along with complete documentation.

An extended precision package allowing

502 digit manipulation is also there. It is

not yet available through any public

domain source as it is a user-supported

program.)

:!:::::::::::::::::: w\ compatn called
::::::::::::::::::: a m Elliam Associ-

■■■■■*■■■■■■■■■■■■■■ ^MISK

"::t:::"::;::::::: m sates has s

catalog of all current CP/MUG and

SIG/M disks and abbreviated descriptions

available. Elliam supplies the disks in

many formats and over the past Tew

months lias proven itself to be extremely

Thunder Software

• The THUNDER C Compiler -Op.*r.iti". under the APPLK I'.w.il 1 1 ujwranngsuflemCreate in*tnAtiivWi()2 pm<jr<unstnrun

aastondaloneprogrwiwor,is suhmuiint"iioPa»t4l|>roswn* AmawrMiV,-i of thu(M./W Ib^KA R Includes<i24 page users
auidi- ruwslelTiTi Muru pn.'pTut*>soe mm nn APPIJi |f]*+■ //.■. //c Source code for libr<ini>s is Included Only $49.95

• ASSYST: The Wmlilfr Syttem■ Acompkt?h5!)2 .-.(.I..i 'iKsembl.?r.m.l listerloiAPPLE!X>S.'i .i Menu driven excellent

error trapping. 24 p users guide, demn programs, source code tot al! programs! Or.\n for h,'.[:niii'rs Only 523.50

• THUNDERXREF- Acrossreference utility forAPPLE [W.il 1 1 XREFgL'm-r.toaw«Bteranci^ for uarii procedure Source

rode anti (IrKTumtnwiiim provided OnlyS19.95

Thunder Software POB 31501 Houston Tx 77231 713-728-5501

Include S3.00 shipping. COD, VISA and MASTERCARD accepted

CIRCLE 65 ON READER SERVICE CARD

A POWERFUL 68000 DEVELOPMENT

ENVIRONMENT FOR YOUR Z80 SYSTEM

CO1668 ATTACHED RESOURCE PROCESSOR

68000 Assembler

C Compiler

Forth

Fortran 77

Pascal

BASIC-PLUS

CBAS1C

APL. 68000

6 MHZ 68000 CP/M-68K 768K RAM

4 x 16081 MATH CO-PROCESSORS CPM80 RAM DISK

Develop exciting 68000 applications on your current Z80 based CPM system using

powerful mini-frame like 32 bit programming languages. And then, execute them at

speeds that will shame many $100K plus minicomputer systems.

The CO1668 ATTACHED RESOURCE PROCESSOR offers a Z80 CPM system owner a

very low cost and logical approach to 68000 development. You have already spent a

small fortune on 8 bit diskette drives, terminals, printers, cards cages, power

supplies, software, etc. The CO1668 will allow you to enjoy the vastly more powerful

68000 processing environment, while preserving that investment.

CO1668 ATTACHED RESOURCE PROCESSOR SPECIAL FEATURES:

6800Q running at 6 Mhz

256K to 76SK RAM (user partitioned between

CPU and RAM Disk usage)

Up to four 16081 maih co-processors

Real time clock. 8 level interrupt controller

& proprietor^1 I/O bus

Available in table:op cabinet

Delivered ill/ sources . logics. St monolithic

program development software

Easily installed on ANY Z80 CPM system

CP/M-68K and DRIs new UNIX V7 compatible

C compiler (w/ floating point math) - standard

feature

Can be used as 768K CPM80 RAM Disk

Optional Memory parity

No programming or hardware design required

for installation

Optional 12 month warrantee

PRICES START AS LOW AS S899.00 for a CO1668 with 256K RAM. CPM68K. C Complier. Sources.

Prints, 200 page User Manual. Z80 Interface, and 68000 System Development Software.

For further Information about this revolutionary product or our Intel 8086 Coprocessor, please send II

[no checks please] or call:

Hallock Systems Company, Inc.

INC I 2&2 East Main Street
Frankfort, New York 13340

(315] 895-7426

RESELLER AND OEM

INQUIRIES INVITED.

CIRCLE 31 ON READER SERVICE CARD

56 COMPUTER LANGUAGE ■ DECEMBER 19BA

reliable and cooperative. The company is

very highly recommended from personal

experience and will be mentioned here

quite often in the future in connection

with some of its releases. EUiam's catalog

costs S7.50.

Elliams collects material of similar

types on several disks. For example,

Elliam has a disk of SUBMIT facilities

that will collate the best (and most recent

versions) of the submit programs from the

disks in the library and present them on

one collection. While it may be argued

that getting a mass of submit programs at

once is not that beneficial because so

many won't be used, it must also be con

sidered that this allows a user who wishes

to use a submit program to find the one

that best suits the requirements.

Elliam offers collections with several

themes, including copy programs, disk

utilities, directory and catalog routines,

and others. Two I have found of value as a

programmer deal with assemblers and

disassemblers and Z80 programs (for the

of 8-bit machines).

The assemblers and disassemblers disk

contains 49 files in 420K and is available

for S22.OO in most formats (obviously on

multiple disks for some). While some of

the programs are of limited use to most

people unless they happen to own specific

systems, there is enough good material to

make the collection a worthwhile addition

to a CP/M-80 programmer's library.

A sampling of the included programs

shows several straight assemblers. ASMX

allows cross-reference maps to be gener

ated and recognizes Z80 mnemonics. A

file includes the index register op code

syntax that ASMX handles. ASMX isn't

perfect (what program is) in that the disk

buffer is a paltry 128 bytes needing many

disk accesses, and it requires all labels to

be in column one (instructions cannot be

there!), but a label can be the same as a

valid op code, if required. Six additional

op codes can be handled by ASMX to

allow listings to be turned on and off. pag

ing, conditional paging, and changes of

listings from hex to octal. ASMX doesn't

handles macros, which is not too bad a

problem as MACASM on the same

disk does.

LINKASM is compatible with ASM

from Digital Research and allows a scries

of files to be linked together during

assembly. LINKASM seems to run faster

than ASM under al! conditions and allows

the construction of a symbol table that can

be used with SID.

Disassemblers on the disk include the

previously discussed RESOURCE (see

the premier issue) by Ward Chrisienscn

modified to handle Z80 mnemonics; (he

Intel Users Group's DISASM, which has

been severely overhauled to handle Z80

mnemonics and disassemble better; and

DISSAMBR. an 8080 BASIC program.

Of those mentioned. RESOURCE and

its derivatives for Z80s have performed

flawlessly in countless attempts to disas-

semble and understand programs.

RESOURCE has a well-written document

file and allows the programmer (or in this

case "unprogrammer"?) enough flex

ibility to create the source code in what

ever is best for the situation.

The disk also has a number of programs

designed to make a programmer's life

much easier. NOTATE and COMBINE

have been previously mentioned in this

column, but for those who missed it,

NOTATE allows comments to be added to

a source program. It displays each

uncommentcd line with the cursor posi

tioned at the comment location and allows

the programmer to add a comment if

required or to simply skip over the line.

The original file is saved as a .BAK file,

while the new version takes the .ASM file

type.

COMBINE concatenates a number of

source codes into one larger program and

allows comments to be stripped at the

same time. When a large program is

designed in modules, this program proves

itself very worthy.

Included is a structured assembler

"programming language" called ML80,

which seems ideal for those who want to

program in machine language but can't

get a grip on the mnemonics. It allows

8080 code to be written in a preprocessor

style that prevents memorization of all the

functions available. As an example, to

increment the accumulator the line

"A=A+1" can be used instead of the

standard "INR A". (That doesn't particu

larly excite me, but there must have been

some need for the program. It docs have a

good macro facility.)

Finally, XREF is the source for a cross-

reference generator that has been mod

ified over previous versions to accept

lower case and add extra error messages.

PAGE and ELSE pseudo-ops are ignored.

Some of the other Elliam collection

disks will be examined in upcoming col

umns, but that's enough for now. In the

next column, you'll see more for Big Blue

and maybe even a look at some Apple

stuff. (There were a lot of Apples sold . . .

they must be out there somewhere!)

Some of the programs mentioned here

are available with a tub-load of languages

on either the COMPUTER LANGUAGE

Bulletin Board Service or on Compu

Serve. So, till next we meet, ciao!

Useful addresses: SIG/M is at P.O. Box

2085, Clifton, N.J. 07015-2085.

CP/MUG is at 1651 Third Ave., New

York, N.Y. 10028. PC-SIG is at 1556

Halford Ave., Suite 130, Santa Clara,

Calif. 95051, (408) 730-9291. Elliam

Associates is at 24000 Bessemer St.,

Woodland Hills, Calif. 91367, (818)

348-4278. Pascal/Z Users Group is at

7962 Center Parkway, Sacramento, Calif.

95823, and the BDS/C Users Group is at

Box 287, Yates Center, Kan. 66783. H

CCom
" . ,C86 was the only compiler we tested that

ran every benchmark we tried and gave the

expected results... Computer Innovations

C86 was the compiler that our staff

programmers used both before and six

months after we conducted the tests."

J. Houston, BYTE MAGAZINE - February 1984

•FAST EXECUTION

of your programs.

*FUU & STANDARI

IMPLEMENTATION OF i

includes ali thp features

& K. it works with the standard

^DOS linker and Assembler; many

is written under UNIX can

compiled with no changes.

■i-LINE -

optimized code provides 8087

e about as fast as possible.

)WERRJL OPTIONS -

include DOS2 and IX)S1 support and

interfaces; j^aphics interface capability;

object code; and librarian.

■FULL LIBRARY WITH SOURCE •

h source libraries with full source cue

the "lar^e" and "small" models, soft

ware and 8087 floating point, DOS2

and DOSALL.

■FULL RANGL OF .SUPPORT

PRODUCTS FROM COMPUTER

INNOVATIONS -

including Halo Graphics, Phact File

Management, Panel Screen Manage

ment, C Helper Utilities and our

newest C .to..dBase development

tool.

'HIGH RELIABILITY -

time proven through thousand;

users.

•DIRECT TECHN1

SUPPORT -

from 9 a.m. U> f>

Join The Professional Programmers Who Agree C861S1 Is The C Compiler Of Choice

Foi Further Information Or To Order Call:

800-922-0169
Technical Support; (201) 542-5920

980 Shrewsbury Avenue

Suite PW5G9

Tinton Falls, NJ 07724

Computer Innovations, Inc.

CIRCLE 11 ON READER SERVICE CARD

57

EXOTIC LANGUAGE
OF THE MONTH CLUB

OMNI: One person's language

i
n 1979, after I

had spent.

two years writ

ing a general data base program in a ver

sion of Microsoft BASIC, with ad hoc

extensions in Z80 assembly language, I

decided that no programmer should ever

have to go through the same ordeal.

OMNI is the result of that determination.

OMNI's purpose is to provide the pro

fessional programmer with the tools

needed to write commercial programs

quickly and easily. These tools include

powerful and flexible data types, includ

ing variable-length virtual memory string

arrays; a uniform and simple syntax-

reverse polish notation with no hierarchy

of operators to remember; and a highly

interactive environment, including a

word-processor-type program editor and

an exceptionally rapid compiler.

It has taken me the equivalent of more

than two years of full-time work to create

the prototype of the OMNI system. Table

1 compares in detail the features ofOMNI

with other currently available languages.

Since I perceive the greatest market for

microcomputer progamming to be in

commercial data processing, OMNI's

design was heavily influenced by the

requirements of such programming.

However, other types of programming,

such as scientific programming, should

also benefit from the highly interactive

nature of the programming process in

OMNI.

Some of the major design criteria (and

their solutions) are:

■ Extremely rapid compilation to make

testing and debugging an interactive task.

This relies heavily on three concepts:

hash coding of the symbol table; segre

gating special compiling functions into

the operators that need them, thus reduc

ing the checking that must be done in the

compiler proper: and using reverse polish

notation to reduce the compiler's job

essentially to looking up the indexes of the

operations whose names are listed in a

definition.

■ Compact object code to allow more

room for data in memory and to reduce

virtual memory overhead for code swap

ping. In order to achieve (his. I allow for

By Steve Heller

two different sized operators: 1 byte for

primitives, which are defined in assembly

language, and 2 bytes for secondaries,

which are defined as a sequence of prim

itives and/or other secondaries. Since the

most common operations arc primitives,

this reduces the average object code size

to less than 2 bytes per operator.

■ Good execution speed for real world

programs to promote commercial accep

tance of programs produced. This was

accomplished by coding the most com

monly used functions in assembler rather

than attempting to increase the portability

of the language itself by coding as much

as possible in higher-level code as is done

in Fig-Forth, for example.

■ Excellent debugging facilities at a high

level so that machine language debugging

is not necessary.

■ Excellent run-time error checking. For

example, all array subscripts should be

checked for out-of-bounds conditions. No

special techniques were needed to imple

ment this.

■ Ability to handle necessary data types

as an intrinsic part of the language, e.g.,

variable-length virtual memory string

arrays and variable-length random access

data files. The method of implementation

of this feature is described later in this

article.

■ Ease of entering and changing pro

grams by using a built-in word-

processing-type editor.

■ Portability of source code so that the

same program will not have to be written

over again for each type of computer.

■ Ability to handle large memory config

urations efficiently, without requiring the

programmer to be concerned with

memory allocation schemes.

■ Encouragement of structured program

ming to reduce the likelihood ol'errors in

the control flow.

■ Support for long, mnemonic variable

and subroutine names to improve

readability.

■ Support of BCD arithmetic lo allow

correct addition of totals in accounting

reports. The OMNI commercial arith

metic package provides BCD add, sub

tract, multiply and divide in 16-digit

accuracy.

■ Support of slide-rule accuracy arith

metic having very high performance and

great dynamic range.

I
t was nccccssary to

write OMNI in

assembly language

to achieve maximum performance, which

is especially important for providing a

highly interactive environment as well as

the computing resources necessary to sup

port the language's other characteristics.

This may seem to contradict the ideal of

portability, one of the characteristics of

OMNI. Why didn't I write OMNI in C to

gain portability?

The question has iwo answers. The first

is that the user of a language is inter

ested in the portability of the programs

written in the language or those acquired

from others. The user doesn't care how

much work it is to transport the language

from one machine to another since he or

she doesn't have to do that.

The second reason is that no compiler

in the world can generate code as well as

an expert assembly language program

mer. If OMNI were written inC, the

OMNI compiler would probably run at

one-tenth the speed it does now. Exe

cution time efficiency would also be

impaired.

The most difficult problem I had while

writing OMNI was the implementation of

the virtual memory. It had to be able to

manage the storage and retrieval of strings

and records, which could vary in length

dynamically.

The design solution was to divide the

mass storage into blocks of 1KB each,

numbered from 1 to the maximum capac

ity of the system (limited to either 65,535

or approximately 2 billion blocks,

depending on the processor). Each block

is divided into up to 63 variable-length

items, which are referred to by their rela

tive item number. Therefore, each item in

the virtual storage may be accessed by its

block number and relative item number.

Each block has a directory at its end,

organized as shown in Table 2.

After the last item pointer and type, a

dummy points to the free space in the

block, which is always kept in a single

segment. This allows the system to calcu

late the length of any item by subtracting

its starting address from the starting

address of the next item, with the free

58 COMPUTER LANGUAGE ■ DECEMBER J9B4

Comparison of BASIC, COBOL, Forth, and OMNI

Microsoft

Microsoft COBOL fig-
MBASIC v. 2.2 Forth OMNI

Rating Value Rating Value Rating Value Rating Value

Compilation speed

(Sieve, in sec)

Size of object code

(Sieve, in bytes)

Execution speed

(Sieve, in sec)

Variable name

length

Local

variables

Subroutine

names

Variable length

strings

Variable length random-

access records

Ease of extending

language

BCD arithmetic

Engineering arithmetic

[floating point)

Simple syntax

Meaningful error

messages

Interactive

debugging

Run-lime

error checking

Source editor

Total

Average

4

3

1

1

0

1

2

0

1

0

3

3

3

2

3

1

28

1.75

«1

300

1,920

2 chars

none

line A

mem only

none

assembly

none

accuracy

few rules

in English

trace

error msg

line editor

0

1

0

4

0

4

1

2

1

4

0

1

2

0

2

2

24

1.5

146

786

5,115

31 chars

none

31 chars

fixed

incon

venient

assembly

user-

specific

none

many

rules

codes

batch

code

screen

3

3

4

4

0

4

0

0

4

0

0

3

1

2

1

2

31

1.94

2

260

85

31 chars

none

31 chars

none

none

high level

none

none

few rules

often

none

wrile own

bomb

screen

4

4

2

4

3

4

4

4

3

3

3

3

3

4

3

4

55

3.44

«1

177

310

31 chars

scalars

31 chars

virtual

virtual

high level

fixed point

speed

few rules

English

single step

error msg

word

processing

0 is lowest, 4 is highest rating.

Sources: Gilbrealh, John. "A High-level Language Benchmark." Byte Sept. (1981): 180 and the author's experiments.

Byte Number Size

0 1

3,4 2

etc.

Name in block

Block item count—tells how many variable length

items this block currently contains

Same as above, but for second item in block

59

space pointer serving this purpose for the

last item in the block.

Retrieving the value of an item in the

virtual memory was not particularly diffi

cult to implement. For example, suppose

that you ask for the value of the 300th ele

ment of string array #12. Of course, in a

real program the array would have a

name, but I am simplifying for purposes

of discussion.

First OMNI looks up the pointer block

number of array #12 in the master object

table. Suppose the entry says "block 97,

relative item #1". Block 97 is read into

memory if it is not already there, and the

address of the first item in the block is

looked up. Since string pointers are 3

bytes long, 300 is multiplied by 3 to yield

an offset into the pointer array of 900.

At offset 900 in the array, a 3-byte

string pointer is read. It says "block 102,

item 27". So block 102 is read into

memory, if necessary, and its item count is

checked to see whether item 27 exists. If

not, an error results. Assuming it does

exist, its length will be calculated by sub

tracting its starting address from the start

ing address of the next item in the block,

and it will be pushed onto the string stack.

This may seem like a lot of work just to

retrieve the value of a variable-length

string array element. But the reward is

that the programmer no longer has to

GOOD NE>V5!

CORPORATION

(U7 W. Virginia St.

Milwaukee, \YI 63304

(414)276*2937

for the
6809

"WAS NEVER
BETTER!

INTROL-C/6809,Version1.5

Introl's highly acclaimed 6809 C

compilers and cross-compilers are now

more powerful than ever!

We've incorporated a totally new 6809

Relocating Assembler, Linker and Loader.

Initializer support has been added, leaving

only bitfield-type structure members and

doubles lacking from a 100% full K&R

implementation. The Runtime Library has

been expanded and the Library Manager is

even more versatile and convenient to use.

Best of all, compiled code is just as

compact and fast-executing as ever - and

even a bit more so! A compatible macro

assembler, as well as source for the full

Runtime Library, are available as extra-cost

options.

Resident compilers are available under

Uniflex, Flex and OS9.

Cross-compilers are available for PDP-

11/UNIX and IBM PC/PC DOS hosts.

Trademarks:

Introl-C. Intro! Corporation

Flex and Uniflex. Technical Systems Consultants

OS9. Microware Systems

PDP-11. Digital Equipment Corp.

UNIX, Bell Laboratories

IBM PC, International Business Machines

For further information, please call or write.

worry about running out of RAM for such

arrays. In OMNI you can create dozens or

hundreds of arrays of thousands of

variable-length string elements each, as

long as your disk storage holds out.

The other unique problem that I

encountered while writing OMNI was the

requirement that definitions of operators

be able to be removed from memory when

no longer needed and their space

reclaimed. This meant that all references

to the address of an operator must be

known to the system so that they could all

be adjusted if a definition was removed or

changed in length.

I wrote a subroutine called MOVER,

which moved all definitions above the one

deleted or changed and updated all entries

in the definition address table and on the

return stack, which was used to store

return addresses during subroutine calls.

This also meant that there must be no

addresses in the OMNI object code,

whether primitive or secondary. All prim

itives must use only position-independent

addressing modes when referring to code

or data contained in them, and all

branches in secondaries must use relative

addressing so that all operators will func

tion correctly even if they are moved to

different memory addresses.

As mentioned before, the OMNI com

piler is fast for three main reasons. First,

since the language uses reverse polish

notation, the compiler doesn't have much

work to do compared to the code needed

to unravel complicated hierarchical

expressions. Also, parameter passing is

done mainly on the stack, which reduces

subroutine linkage complexity.

Second, the look-up of indexes of oper

ations, given their names, is speeded up

immensely (a factor of 10 or more,

depending on the number of operations

currently defined) by using hash coding.

Third, the code necessary to handle

compilation of such things as loops, con

ditional execution, and variable defini

tions is distributed to the operators

responsible for those specialized tasks and

not centralized in the compiler. This

allows extensions to the language without

continually increasing the size and com

plexity of the main compiler, which han

dles only operator name look-up and con

version of numeric constants from ASCII

to internal format.

T
he main tool for

debugging OMNI

programs is the

tracing inner interpreter (II). The II con

trols the execution of applications pro

grams in OMNI and can be switched from

one mode to another by changing one

pointer.

CIRCLE 32 ON READER SERVICE CARD

60 COMPUTER LANGUAGE* DECEMBER 1984

I wrote a specialized II that displays the

name of the next operation to be per

formed (if it has one) and the current con

tents of the stacks before it executes each

operation. It then waits for a keystroke,

after which the II accepts a line of code

that can contain almost any legal OMNI

code.

This same code will then be compiled

and executed. This allows you to watch

the execution of an operator and interrupt

it at any point, change the stack contents,

or display or modify the value of a vari

able, and then continue where you left off.

Since a large percentage of program

errors in a. reverse polish notation lan

guage are caused by incorrect stack

usage, the constant display of the stacks is

very useful in debugging.

The word processor can be run in

"hot" mode, which allows immediate

compilation of a section of the source pro

gram currently being edited and the test

ing of it, without ever leaving the word

processor This allows even greater inter

activity than would be assumed from the

rating of compiler speed in Table 1 since it

takes only a fraction of a second to

recompile a section of program of 20 lines

or so, which covers the vast majority of

operators.

OMNI attempts to give as much protec

tion against programming errors as possi

ble. Because you cannot address memory

directly, but only through carefully con

trolled and monitored access operators, it

is essentially impossible to corrupt the

object code of your program in memory

or store into a data area that is not

appropriate.

Memory is viewed only in the guise of

variables and arrays. Subscripts are

checked at run time since one of the most

common programming errors is to violate

the boundaries of an array and destroy

something else in memory. If a subscript

error is detected, an error is raised. This

also applies to BCD overflow, which is

generally a fatal error anyway.

When an error occurs, the compiler or

interpreter indicates what the subroutines

were that were suspended at the time of

the error in an upward order from the low

est one.

Because the edit/compile/test cycle is

so rapid. I have not felt it necessary for

compilation to continue after the first

error is detected and announced. This

may be changed in the future.

ortability to me

means that the

same program

should produce the same results on any

machine on which it will run at all, and it

will run on more than one machine of dif

fering architecture. This is a major goal of

OMNI.

Portability affects the implementation

ofOMNI in a variety of ways, which can

be summarized as follows:

Once you choose Lattice,

our friends will Cyou through...

LATTICE INC.: LATTICE WINDOWS,
CURSES UNIX SCREEN CONTROL LIBRARY,

C-FOOD SMORGASBORD, dB-C ISAM

COMPATIBLE WITH dBASE II AND

III.. LIFEBOAT ASSOCI
ATES: FLOAT 87 8087 SUPPORT

PACKAGE. HALO GRAPHICS

PACKAGE, PANEL SCREEN LI

BRARY. .. GREENLEAF SOFT

WARE: THE GREENLEAF C

FUNCTIONS... C SOURCE:
BASICC C FUNCTIONS FOR BA

SIC USER ... SOFTCRAFT:
BTRIEVE ISAM FILE SYSTEM,

BTRIEVE ISAM NETWORK RLE

SYSTEM ... BLAISE COMPUT

ING: TOOLS, TOOLS2, VIEW
MANAGER SCREEN PACK

AGE ... MORNING STAR

SYSTEMS: PROLIBRARY, PRO-
SCREEN ... CREATIVE SOLUTIONS:

WINDOWS FOR C... NOVUM

ORGANUM: C POWERS PACKS, MATH
EMATICS POWER PACKS. ADVANCED POWER

PACKS, DATABASE POWER PACKS, TELE

COMMUNICATIONS POWER PACKS W/

SOURCE... PHACT ASSOCIATES: PHACT
ISAM LIBRARY.. RAIMA CORPORATION:

db_ VISTA DBMS ... PHOENIX:
PLJNK86, PFIX86 . . . RELATION

AL DATABASE SYSTEMS: C-
ISAM FILE ACCESS MFTH-

OD...MINDBANK:V-FILE

VIRTUAL MEMORY/FILE SYS

TEM ... HUNTER &

READY: VRTX C INTERFACE
LIBRARY... GRAPHIC

SOFTWARE SYSTEMS:

GSS DRIVERS, GSS TOOLKIT

KERNEL SYSTEM . . . OPT-
TECH DATA PROCESS

ING: OPT-TECH SORT...
ACCUDATA SOFTWARE:

C-TREE ISAM, C-SORT

SORT... TRIO SYSTEMS:

C-INDEX+ ISAM. . .

COMPU CRAFT: c VIEW
FORMS/WINDOW MANAGE

MENT. .. SCIENTIFIC ENDEAVORS:
GRAPHIC PRESENTATION SCIENTIFIC

GRAPHICS... LEMMA SYSTEMS,
INC.: C LIBRARY... ESSENTIAL SOFTWARE,

INC.: C UTILITY LIBRARY... SOFTWARE
LABS: C UTILITIES PACKAGE ... FAIRCOM: C-
tree BY FAIRCOM ISAM WITH SOURCE

Contact Lattice to learn how we can help your C program development.

LATTICE
P.O. Box 3072

Glen Ellyn, IL 60138

312/858-7950

TWX 910-291-2190

CIRCLE 36 ON READER SERVICE CARD

QUALITY SOFTWARE AT

REASONABLE PRICES
CP/M Software by

Poor Person Software

Poor Person's Spooler $49.95
All the function of a hardware print buffer at a fraction of the

cost. Keyboard control. Spools and prints simultaneously.

Poor Person's Spread Sheet $29.95
Flexible screen formats and BASIC-like language. Prepro

grammed applications include Real Estate Evaluation.

Poor Person's Spelling Checker $29.95
Simple and fast! 33,000 word dictionary. Checks any CP/M text

file.

aMAZEing Game $29.95
Arcade action for CP/M! Evade goblins and collect treasure.

Crossword Came $39.95
Teach spelling and build vocabulary. Fun and challenging.

Mailing Label Printer $29.95
Select and print labels in many formats.

Window System $29.95
Application control of independent virtual screens.

All products require 56k CP/M 2.2 and are available on 8" IBM and 5"
Norlhstar formats, other 5" formats add 55 handling charge. California

residents include sales tax.

Poor Person Software
3721 Starr King Circle

Palo Alto, CA 94306

tel 415-493-3735

CP/M is a registered trademark ol Digital Research

CIRCLE 51 ON READER SERVICE CARD

61

"This is a beautifully

documented, incredibly

comprehensive set of

C Function Libraries.1'

— Dr.^Dobb's Journal

COMPLETE

SOURCES

PACK I: Building Blocks I $149

250 Functions: DOS,
Printer, Video, Asynch

PACK 2: Database $399
100 Functions: 8-Trees,

Variable Records

PACK 3: Communications $149

135 Functions: Smart-
modem™, Xon/Xoff,
Modem-7, X-Modem

PACK 4: Building Blocks II $149

100 Functions: Dates,
Text Windows,

Pull-down Menus

Data Compression

i PACK 5: Mathematics I $99
35 Functions: Log, Trig,
Square Root

PACK 6: Utilities I $99

Archive, Diff, Replace, Scan,
Wipe (Executable Files only)

Lattice™, Microsoft™, DeSmet™,
CI-86™ Compilers on IBM PC/XT/ATTI

Small and Large Memory Models.

Credit cards accepted

(S7.00 handling/Mass, add 5%)

SOfTWflRf
HORizons
inc.

165 Bedford Street

Burlington, Mass. 01803

(617)273-4711

N0VUM ORGANUM

CIRCLE 25 ON READER SERVICE CARD

62 COMPUTER LANGUAGE ■ DECEMBER 19Bd

■ Memory and I/O control. No applica

tion program may access memory or I/O

devices except through the intermediary

of OMNI primitives. Memory may be

viewed only as variables and arrays, and

I/O devices are treated as files, with stan

dard conventions for opening, closing,

reading and writing.

■ Arithmetic operations. All OMNI

systems use 16-bit integer arithmetic for

counters and similar uses. 16-digit deci

mal arithmetic for commercial arithmetic

and record numbers, and 16-bit floating

point for engineering applications.

Another of the great drawbacks to por

tability in C is the fact that the precisions

of "short" and "long" integers and reals

arc left to the implementor to decide. This

obviously allows the writing of programs

whose results depend on the actual length

of such numbers, especially if arithmetic

overflow is not detected at run time.

■ File access. OMNI files can have up to

about 2 billion records, each of which can

have up to approximately 32.000 fields.

The total mass storage supported as one

virtual address space varies from system

to system since 32-bit arithmetic is unrea

sonably slow and large on some 8-bit

computers, such as the Z80. On those

machines, the virtual address space is lim

ited to approximately 65MB. On other

machines, such as in the 68000 or 8086

families, the limit is approximately 2 tril

lion bytes!

In any discussion of software por

tability, someone will express the opinion

that portability is unnecessary because all

the software developer needs to do is be

IBM PC compatible. This is an attractive

notion as there arc always trade-offs in

attempting to write portable code.

However. I believe this idea to be

erroneous for the following reason: IBM

compatibility cannot be attained because

even the various models of the IBM PC

line are not hardware compatible. Leav

ing aside the PCjr, which is not a

business-oriented machine, and the PC

370XT. which is designed to run IBM Sys

tem 370 software, the new PC AT is dif

ferent architecturally from the PC and PC

XT as it uses an 80286 processor rather

than the 8088 that the other two use.

Since memory segmentation works dif

ferently on the 80286 than it does on the

8088. programs that modify the seg

mentation registers are not transferable

between these processors without major

changes. This includes all major business

programs for the IBM PC line, such as

Lotus 1-2-3. Even worse. IBM appears to

have deliberately prevented the "com

patible" machines from running IBM's

new software.

The only solution to this problem is for

developers to use a virtual machine such

as OMNI. Then a new machine will

necessitate the rewriting of only one pro

gram, the OMNI system. The developers

will be able to go on to write new pro

grams rather than struggle to keep up with

IBM.

A
s previously men

tioned, the size

ofOMNI object

code is extremely small—less than 2 bytes

per use of each operator on average.

Overhead for definitions of operators is

also small— it amounts to 5 bytes plus the

name of the operator.

The names of any or all operators can

be removed from the object code at any

time and the space thus saved reclaimed.

This adds to program security since an

operator whose name has been removed

can no longer be compiled into a new defi

nition and further reduces space require

ments. (For example, source code for the

Sieve of Eratosthenes, excluding com

ments, is 487 bytes and the object code is

177 bytes.)

A final point I 'd like to make is that a

great deal of room exists for disagreement

on the readability of various program

ming languages. It is as easy to write

unreadable programs in OMNI as it is in

APL and Forth.

However, it is also easy to write read

able ones. You must make liberal use of

variables and restrict to the minimum

your use of the stacks. In fact, it is not

necessary to use the stacks explicitly at all

(although performance may be improved

if you do use them). Take the following

examples of what to do and what not to

do:

(bad) ABC over over + * swap —

+ -> D

(good) CC* BC+B-A +

-> D

(The BASIC equivalent would be: D =

C*C + B*C- B +A)

If you'd like to learn more about OMNI,

leave me a message on the Bulletin

Board Service or send me a note c/o

COMPUTER LANGUAGE. 131 Townsend

St., San Francisco, Calif. 94107. Tell me

what you think about the design features I

developed with OMNI and ways you think

it might be improved. H
n

Steve Heller graduatedfrom Shinier Col

lege around 1970 and became a program

mer more or less by accident. He has been

programmingfor the past 15 years.

COMPUTERVISIONS

A conversation with

CompuPro's Bill Godbout

ow re you

doing, Bill!"

a young

CompuPro employee greets Bill Godbout

as he walks through a large warehouse

room where 20 or so employees arc eating

lunch, playing ping pong, or working

amid an amazing jumble of hardware.

Godbout, chairman and CEO of

CompuPro. responds warmly. He wears a

blue plastic name tag that says Bill God

bout, probably put on absentmindedty, out

of habit. Everyone here knows who Bill

is. And you get the feeling everyone likes

this big. friendly man who looks like he'd

make an excellent Santa Claus.

Godbout is an entrepreneur—a very

successful one whose 25 years or so in

business appear unblemished with failure.

But he's no cutthroat business man. He

talks about CompuPro as a family and his

life seems to have been filled with varied.

unusual experiences, many of which God

bout is pleased to share. He loves to tell a

good anecdote, joke, orbit of trivia. And

he knows plenty of them.

Originally from the East Coast, God

bout came west to California's Bay Area

after being on active duty in the military

for most of the 1960s. He had been

involuntarily recalled to active duty in

1961—the Berlin Wall period—while

working for IBM.

Godbout put in for duty in the Far East

hoping to go to Korea, which he heard

was the best kept secret in the army, or

Japan, with its geisha houses and the Aki

Habara, an electronics trade zone. Shortly

before Christmas of 1961 he got orders to

prepare for a transfer and. as he puts it. he

thought "ah! I've made it!Geisha houses,

the Aki Habara ..."

"I went to bed that night happy as a lit

tle tick," Godbout says smiling, shaking

his head. "Littledid I know

Godbout was discharged in 1968.

Although he held IBM in esteem, he

decided he would not to work for a big

government or a big company again. But.

he said, "If I were to work for a big com

pany I sure as hell would consider IBM

right up at the top of the list."

Godbout moved to the Bay Area

because someone he knew was putting

together a crisis management team to help

save a company in deep financial trouble

By Regina Starr Ridley

and asked him to join. The team had 18

months to turn the company around—they

did it in 13.

The team members figured they had

done so well they might as well start their

own company. But they quickly found out

that knowing how to save a foundering

company is not the same as making a suc

cess of a new one. "We did all the same

wrong things that those guys had done to

get into trouble except for one thing," said

Godbout. "Once we really got into diffi

culties we knew what to do. We could

work our way out."

"It was a very, very low profile com

pany," said Godbout. dropping his voice

to a conspiratorial whisper and declining

to reveal the company's products. The

kicker was that the company was located

in Oakland, the town right next to

Berkeley—not exactly a peaceful area

during the late sixties and early seventies.

"We had visions of people burning cars

in the parking lot," said Godbout. But the

low profile was mostly successful except

for one frustration.

"It wasn't like James Bond and that was

a big disappointment." Godbout said.

"Never once in all those years did a gor

geous anything—blonde, redhead, or

brunette—ever try to seduce me. I could

have been had too! I should have been in

the FBI. I guess that's the way to get the

action."

Godbout sold the business and went

into a period ofsemi-retirement, "retire

ment on the installment plan." It was a

time, he said, of bumming around, fond

ling airplanes, playing at the airport,

drinking a lot, and "doing the good old

boy thing till I was bored to death."

Then came the beginnings of

CompuPro.

good friend of

Godbout's,

iMikeQuinn. had

a place at the Oakland airport where he

sold surplus semiconductors and miscel

laneous electronic spare parts. Godbout

was fascinated.

But maybe the true start of CompuPro

was when Godbout was a tittle boy. "To

drop back many years. I guess really all

my life I've been a dump picker at heart.

As a kid with a paper route I used to pass a

dump behind a GE plant. There were lots

of wonderful and useful things back there.

like meters. It might have a bent needle

but you could straighten it out."

"When I look back at the amount of

time it took to take the thing apart and

then really get the damn thing working,

considering the time factor, it would cost

a technician twice as much. But at that

time, from my point of view. I thought.

"Oh God, what's the matter with these

people?" I would drag these things home,

much to the chagrin of my mother."

Godbout's friend was buying electronic

parts that semiconductor firms couldn't

economically deal with and were selling at

upset prices. Parts also came from compa

nies going out of business. The real job

was redistributing the parts into markets

which had been unreachable. This too

reminded Godbout of his boyhood.

"I recall the first transister I got when I

was a kid. It was treated like a crown

jewel," said Godbout. It was called a

CK722 and was the first commercially

made transistor.

"God I don't recall how much paper

route money it took to obtain that damned

thing but I managed to get one. I got it

from a wholesaler who I think took pity on

me. He sold me just one unit at the one-

thousand-piece price because this kid

showed up with money clutched in hand to

see if he could get a transistor. "

"'I could see people like me of all ages

who were interested in electronics. And

you would see these neat projects in Popu

lar Electronics and Radio Electronics mag

azines, and you'd have to scrounge like

mad to find the parts to build the damn

things."

First Godbout became interested in the

acquisition of surplus parts and spent

63

Multi-Basic
"The BASIC compiler that compiles

both MBASIC and CBASIC"

Now you don't have to give up the features you

like about MBASIC to obtain the powerful

capabilities of CBASIC. Multi-Basic gives you

both.

Multi-Basic works with your existing programs

so your current software investment is protec

ted. But just as important, Multi-Basic opens

the door to a whole new way of programming.

With Multi-Basic you can write very readable,

modularand structured programs. Multi-Basic

makes program maintenance as easy as it is

with Pascal.

In addition to understanding the two most

popular dialects of BASIC, Multi-Basic allows

you to extend the language even further. You

can add your own statements and functions as

needed.

Multi-Basic is also compatible with our Pascal

and C compiiers. This aMows your BASiC

programs to use routines written in Pascal or

C.

In today's fast changing computer business,

you need a language as versatile as Multi-

Basic. Invest a little time today and save a lot of

time tomorrow. You owe it to yourself to see

what a difference Multi-Basic can make.

Multi-Basic is available for the TRS80 models

I, I!, Ill, 4 and 12; Tandy 2000, IBM PC, and

CP/M. It is compatible with TRSDOS, LDOS,

NEWDOS, DOSPLUS, MSDOS, PCDOS, CP/M

and CP/M plus.

Alcor Multi-Basic $139

Other Products:

Advanced Development Package $ 69

Blaise I Text Editor (Mod 1 or 3) $ 49

Blaise II Text Editor (all others) $ 79

Multiprocessor Assembler $ 69

Alcor C $139

Alcor Pascal

(for CP/M, MSDOS, PCDOS) $139

Complete Development System $250

includes compiler, text editor and advanced

development package

Shipping U.S.A. $6.00

Shipping Overseas $28.00

13534 Preston Road. Suite 365

Dallas. Texas 75240

(214)494-1316SystemsI

Mulli-Basic is a trademark of Alcor Systems

TRS80 is a registered trademark of Tandy Corporation

CP/M. CBASIC are trademarks of Digital Research

MSDOS. MBASIC are trademarks of Microsoft

ICIRCLE 1 ON READER SERVICE CARDI

MAQNTO9USA

PEG6T03ED TfWDEMAW

of apple ax*\irm we

CIRCLE 13 ON READER SERVICE CARD

Fortran Scientific Subroutine Package

Contains Approx. 100 Fortran Subroutines Covering:

1. Matrix Storage and Operations

2. Correlation and Regression

3. Design Analysis

4. Discriminant Analysis

5. Factor Analysis

6. Eigen Analysis

7. Time Series

8. Nonparametric Statistics

9. Distribution Functions

10. Linear Analysis

11. Polynomial Solutions

12. Data Screening

Sources Included. Microsoft 3.2 compatible.

$295.00

FORUB-PLUS™
Contains three assembly coded LIBRARIES plus support,

FORTRAN coded subroutines and DEMO programs.

The three LIBRARIES contain support for GRAPHICS, COMMUNICA

TION, and FILE HANDLING/DISK SUPPORT. An additional

feature wilhin the graphics library is the capability of one fortran prog ram

calling another and passing data to it. Within the communication library,

there are routines which will permit interrupt driven, buffered data to be

received. With this capability, 9600 BAUD communica

tion is possible. The file handling library contains all the required software

to be DOS 3.0 PATHNAME compatible.

$69.95
Strings & Things'"

Character Manipulation and Much More!

$69.95

ALPHA P.O. Bos 2517
f ? S !", VI Cypress.CA 90630 (714) 894-6808

California residents, please add 6% sales lax

CIRCLE 2 ON READER SERVICE CARD

sonic time as Quinn's apprentice. On the

business level he found it intriguing as a

case study on how companies dispose of

their excess inventory. On another level,

the quasi-hobbiest or hacker in him

thought, "gee, here's a neat treasure to be

shared."

So in the early seventies Godbout

started a mail order business that was

strictly parts. In 1973 he started playing

around with the new microcomputer

equipment and then made a deliberate

attempt to gather different pieces of com

puter parts and offer them for sale. The

first computer kit was done in September

1973 and went over very well. He also got

into music kits. These two business angles

later became separate divisions: Compu-

Kitand MusiKit.

Godbout started catering to the small

groups of people who were actually build

ing their own machines. CompuKit was

the first company to nationally distribute a

semiconductor memory kit, said God

bout.

The kit was pre-Altairand "a marvel of

its time," said Godbout, with proper awe

in his voice. "It was a 4K byte board

about 1-foot square and just teaming with

power hungry parts. Nowadays, using the

same technology, we could easily stick a

megabyte on the same size board and con

sume a hell of a lot less power."

I ompuPro has

come quite a long

1 way in the 11

years following the first computer kits.

The company primarily became known

as a leading supplier of S-100 micro

computer products used to integrate

packaged systems.

In 1982 the company introduced

the System 816 series, its first fully

integrated business systems. A year or

so later, CompuPro introduced the

CompuPro 10, the first product that was a

real departure from the company's usual

S-100-oriented products.

The System 816 series and the Compu

Pro 10 are considered two subsets of the

same family and arc referred to as the

letter series and the number series,

respectively.

The System 816 series is based on

microprocessors from four manufac

turers—Intel, Motorola, National Semi

conductor, and Zilog—and distingished

with a slash and letter following the 816.

The number series, though concep

tually single-board machines, are essen

tially fixed architecture with limited

growth or modification potential, said

Godbout. They are not bus-based— they

have expansion slots. The CompuPro 10

has six slots.

The CompuPro 10 is aimed at the busi

ness office environment. In contrast, a

large percentage of the S-100 market

business is actually OEM business, which

Godbout estimates to be more than 50%

of the product manufactured. He can cite

numerous large companies that use

CompuPro S-lOOs.

The introduction of th"e CompuPro 10

has not been without a number of prob

lems, Godbout states openly. The 10 has a

Master-Slave architecture where a central

16-bit, 8-MHz 8088 processor is dedi

cated to handle system resources and four

8-bit, 6-MHz Z80B processors act as indi

vidual users.

"We had test problems, we had code

problems, and we ended up, albeit very

quietly, putting binders on shipments after

the initial introduction. We froze ship

ments and we pulled back all the machines

and exchanged them. With everyone we

could identify we just shipped them a

machine and said send the old one back. If

they called up and said, my hortneimer

valve doesn't ragfrazzle, we said please

put that machine in a box and send it back

to us collect."

The 10 had a number of problems.

"And we had a number of false starts. We

thought we had the problem pegged—we

were doing field tests and beta tests and

running everything-parallel at top speed to

catch these things. But it was a matter of

months till we really got the 10 settled

down and stabilized."

All the machines that have been shipped

since May of this year have been stable

and no changes have been necessary since

then, said Godbout. CompuPro is now

effecting one planned change—moving

the operating system from Digital

Research's MP/M to Concurrent.

CompuPro 10s shipped in October have

the Concurrent operating system.

CompuPro has stayed with the CP/M

products rather than follow the PC-DOS

path, and Godbout is quite a supporter

of CP/M.

"I look upon CP/M and the CP/M

family like Listerine. You may not be in

love with it but it's the best damn game in

town."

"I think DRI products are clearly

superior products. MP/M 86, CP/M 86,

and Concurrent are true operating sys

tems," said Godbout. "They provide a

real interface that makes for true hard

ware independence. You can't really say

that for any other operating systems. I

can't think of anything that approaches

Concurrent and its successors."

"I'm personally convinced that from an

applications programmer's standpoint,

and from a hardware designer's stand

point, you can do a lot more, better, in a

Concurrent CP/M environment than any

other environment. It is a general purpose

operating system. The market we're deal

ing with is a general purpose market."

But Godbout considers the future of

CP/M "iffy." As he says, "it wouldn't be

the the first time that a really technically

superior product has gone down the drain

in the face of a really less meritorious

product. But I don't think DRI's demise is

imminent. They just have a big marketing

task ahead of them."

NEW FEATURES
{Free update for our early customers!)

' Edit &' Load multiple memory

resident files.

1 Complete 8087 assembler

mnemonics.

• High level 8087 support.

Full range transcendentals

(tan, sin, cos, arctan,

logs and exponentials)

Data type conversion and

I/O formatting.

• High level interrupt support.

Execute Forth words from with

in machine code primitives.

• 80186 Assembler extensions for

Tandy 2000, etc.

• Video/Graphics interface for

Data General Desktop Model 10

FORTH
• Fully Optimized & Tested for:

IBM-PC IBM-XT IBM-JR

COMPAQ EAGLE-PC-2

TANDY 2000 CORONA

LEADING EDGE

(Identical version runs on almost all

MSDOS compatibles!)

• Graphics & Text

(including windowed scrolling)

• Music - foreground and

background

includes multi-tasking example

• Includes Forth-79 and Forth-83

• File and/or Screen interfaces

• Segment Management Support

• Full megabyte - programs or

data

• Complete Assembler

(interactive, easy to use & learn)

• Compare

BYTE Sieve Benchmark jan 83

HS/FORTH 47 sec BASIC 2000 sec

w/AUTO-OPT 9 sec Assembler 5 sec

other Forths (mostly 64k) 70-140 sec

FASTEST FORTH SYSTEM

AVAILABLE.

TWICE AS FAST AS OTHER

FULL MEGABYTE FORTHS!

(TEN TIMES FASTER WHEN USING AUTO-OPT!)

HS/FORTH, complete system only: $250.

Visa Mastercard

Add $10. shipping and handling

HARVARD
SOFTWORKS

PO BOX 2579

SPRINGFIELD, OH 45501

(513) 390-2087

CIRCLE 47 ON READER SERVICE CARD

65

SOFTWARE

DEVELOPERS!

V-FILE

THE VIRTUAL MEMORY

FILE MANAGER

Let V-FILE save precious development

cime & cost as you create efficient appli

cations with the power of VIRTUAL MEMORY.

DON'T RE-INVENT THE WHEEL

Why spend weeks or months coding and

debugging file and memory management

systems when you can order V-FILE today.

V-FILE is a library that you can link with

your code to provide sophisticated virtual

file and memory management — allowing

you to concentrate on developing your

application.

VIRTUAL DATA

OBJECTS SUPPORTED!

Data is referenced by using VIRTUAL

MEMORY DATA HANDLES. Your code

doesn't need to know whether the data

is actually on disk or in RAM. Swapping

between disk and RAM and updating files

on disk is handled automatically and trans-

parentiyl Complex VIRTUAL DATA

STRUCTURES can be created by linking

with data handles instead of pointers.

CHECK THESE FEATURES!

Multiple, independent swap buffers

Multiple files per swap buffer

Highly efficient swap algorithm

Automatic file updating

Data prefetching supported

Data may be locked :n memory

Memory buffers may be flushed

Makes full use of extended memory on

IBM PC/AT

SOURCE CODE AVAILABLE

NO ROYALTIES REQUIRED

Supports Dos 2.00+ with

Lattice & Microsoft C compilers

Supports Microsoft windows

$299
Contact

MindBank. Inc.

4620 Henry Street

Pitcburgn, PA 15213

TM 412/683-9800

VISA/MASTER CARD ACCEPTED

CIRCLE 63 ON READER SERVICE CARD

66 COMPUTER LANGUAGE ■ DECEMBER 198a

Godbout categorized PC-DOS as the

approximate equivalent of CP/M 2.2—a

job control language. "At the risk of

sounding churlish or foolish." said God-

bout, "IBM has not been noted for the

technical excellence of its hardware or

software.

"You won't see the 10 running IBM

PC-DOS software." said Godbout. But

CompuPro purchased the license for PC

compatibility along with Concurrent and

will be shipping the PC compatibility

module with every Concurrent operating

system for bus-based machines.

"I don't care what you call the oper

ating system itself—what you're going to

end up with as I sec it is a framework, a

hierarchical structure that will provide for

calls for a number ofjob control lan

guages or subset modules to interface with

things like PC-DOS, the older CP/M, the

new CP/M. and even a UNIX-like oper

ating system. And the appropriate one

will be called when you load a program."

Godbout believes that the point is just

now being reached where a realistic piece

of hardware is available fordoing this

type of thing. He feels CompuPro's Sys

tem 286. based on Intel's iapx 80286. is

an example of such a machine that permits

very rapid context swaps without a tre

mendous amount of software or operating

systems or systems programmer manipu

lation or overhead. The 286 hardware has

backup to support software partitioning

between u-sers or tasks and provides four

levels of priveleged access.

The CPU 286 was introduced in

November 1982 at Comdex. The 286s

were tough to come by last year, said

Godbout. and they were high priced

machines—515,000 to $2G\000 without a

terminal or printer.

Although it has not yet been

announced, Godbout said that CompuPro

now has a UNIX System V running on the

32016. It's being tested in Europe and. as

soon as AT&T "anoints it" and the Sys

tem V is released. CompuPro will have a

System V on the street for the 32016.

Godbout says the product is a true

32-bit processor that fits on an S-100 bus.

"The 32016 bus is a 32-bit guy that's dou

ble pipelined and has both an instruction

queue and memory address processor

queue."

The 286 was designed from ihc ground

up for multi-using and multitasking and

has the fast context swap instruction plus

instructions like popa and pusha. which

make for very fast changes of personality.

(The "a" on the end stands for all—pusha

will take all of the stack and move it with

just that one instruction.) The 286 also has

an onboard memory manager that pro

vides for up to a gigabyte of virtual stor

age space per user. So big vitual machines

can be built in the operating system and

you get a hardware base to execute it with.

Godbout said.

The 32016 requires an external

memory manager. It has virtual memory

but its intruction set is very orthogonal.

It's more suited to the UNIX-type envi

ronment than some of the other machines.

he said.

ow that

CompuPro has

branched off

into a very different market area, which

market will it push more strongly?

CompuPro is coming down with feet

planted on both sides of the fence, accord

ing to Godbout. The CompuPro 286,

which is bus based, was to be introduced

at Comdex in November, so CompuPro is

not ignoring the bus machines, he said.

And to go to the 32-bit and bigger

machines CompuPro will have to go to a

new bus. A final decision has not yet been

made except that a new bus will definitely

be added to CompuPro's bus line.

Godbout considers the development

systems to be solid business and doesn't

want to abandon or neglect this area at all.

But he expects that CompuPro will

experience its largest growth in the next

three to five years in the office automation

area.

Selling in the competitive business mar

ket requires a strong marketing program.

In addition to this new area. CompuPro

plans to pursue other markets, including

artificial intelligence. For example.

CompuPro now has LISP for the 68K. sys

tem, the Cambridge LISP. CompuPro

Europe has released UNIX for the 68K

system—it was tested in the U.K., is now

in Canada, and will be showine up in the

U.S.

The name CompuPro did not seem ade

quate to appeal to these new markets and

to cover a diverse product mix. Marketing

tests showed that many people found it

hard to pronounce and weren't able to

relate the written and the spoken word.

So CompuPro went to Namclab. a com

pany that thinks up new names, early this

year. Eight possible new names have been

chosen and are being run through trade

mark searches and word checks in other

languages.

CompuPro would like to announce the

new name January 1. The number one

contender, says Godbout, is nice, eupho

nious, different, and in 9.999 times out of

10.000 times it is pronounced correctly

when read. It is three syllables long, has

more than five letters, and doesn't sound

high-techy like Exxon.

"We had to have a name that would be

totally neutral or Pablum—a standard

brand," said Godbout.

It's hard to imagine this witty man, never

without a sparkle in his eye. helping to

come up with a Pablum name. A real

zinger would probably be a better bet.

Another good bet would be to go with

this entrepreneur, who claims there is no

secret to success. "In all endeavors

you've just got to do it. You give it your

best shot and you set it out the door." H
H

Regina Starr Ridlev is managing editor of

COMPUTER LANGUAGE.

Program Editing is finally both:

Intuitive andPowerful
.. .and configurable to suit your style

BRIEF lets you concentrate on programming by keeping the Editor

"out of the way," while combining power and natural flow:

■ Windows (Tiled and "Pop Up")

■ Unlimited File Size

■ Reconfigurable Keyboard

■ Online Help

■ Search for Complex Patterns

■ Mnemonic Key Assignments

■ Horizontal Scrolling

■ Comprehensive Error Recovery

PLUS a Complete, Powerful, Readable, Compiled MACRO Language

Availability: PCDOS-compatible systems. Price: Only $195.

Win $1,000 and recognition for the Outstanding

Practical BRIEF Macro. Other awards to be given.

Try BRIEF. Use the Demo.. .or the full product

for 30 days. Calf or wrrte us ... 517-659-1571

EBIEF is a iraoemarkoi UiOetWare.

Solution Systems is a trademark of Solution Systems.

■ Full UNDO (N Times)

■ Edit Multiple Large Files

■ True Automatic Indent for C

■ Exit to DOS Inside BRIEF

■ Uses All Available Memory

■ Intuitive Commands

■ Tutorial

■ Repeat Keystroke Sequences

(Systems
335-LWashingtonSt, Norwell, MA02061

CIRCLE 71 ON READER SERVICE CARD

ttO

■■■-■- ■» ■ ■• ■

:■:■■:

r l

WALTZ LISP
The one and only adult Lisp system for CP/M users.

Waltz Lisp is a very powerful and complete implementa

tion of the Lisp programming language. It includes

features previously available only in large Lisp systems. In

fact, Waltz is substantially compatible with Franz (ihe Lisp

running under Unix], and is similar to Maclisp. Waltz is

perfect for Artificial Intelligence programming. It is also

most suitable for general applications.

Much foster Ihon other microcomputer Lisps. • Long integer! (up to 61 1 digit)] Selectable radix • True dynomic

character siring). Full)tring operotroni including lost matching/extraction. ■ Flexibly implemented rondom hie occess.

• Binary files. • S'ondard CP/M devices. • Access to disk directories. • Function! of type lambda (eipr], nlombdo

(le«pr). le»pr. macro. * Splicing and non-tplicing chorocler mocroi. ■ User control over oil ascecti ol ike interpreter.

• Suilr-in preitypnniing and formatting facilities. • Complete set of error handling and debugging functions including

uier progrommoble processing of undefined function references. • Virtual function definitions. ■ Ophonal automatic

loading of inilioluohcm file. • Powerful CP/M commond line parsing. • Fosl sorting/merging using user defined

companion predicate!. • Full suite of mopping functions, iterotors, etc. • Assembly longuage interface. • Over 250

functions in total. • Ihe belt documentation ever produced for a micro Lup (300 ♦ FuII sire pogei, hundred) of

illuitrotive examples].

Waltz Lisp requires CP/M 2.2, Z80 and 48K RAM (more recommended). All common 5"

and 8 disk formats available.

(TM)

ODE

H69

■INTERNATIONAL-

15930 SW Colony PI.

Portland, OR 97224

Un..- Bell Loborotonei.

CP/M' Digital Reieaicr. Corp.

Version 4.4
[Now includes Tiny Prolog

written in Walti Lisp.)

"Manual only: S30 (refundable with order). All

foreign orders: odd S5 for surface mail, $20 for
airmail. COD add S3. Apple CP/M and hard sector

formers add $15.

Coll fee l-800-LIP-4000Dept.#13
In Oregon and outside USA call 1-503-684-3001)

ACTIVE TRACE

"Software that lives up to

its promises. When a Basic
program doesn 7 work the way you

wan! it to, this package... will help

you track the problem down...

Scope is a tool for the beginning,

advanced, or professional program

mer, and it begins where the cross

reference maps leave off."

Howard Glosser, Softalk for

the IBM Personal Computer

July'84, pp 120-121

"Extremely useful program...

Anyone doing much programming

in Basic should appreciate Active

Trace a lot."

Jerry Pournelle. Byte Magazine

April '83, p 234

"A marvelous Basic programming

aid.. .It's just amazing to watch a

program you wrote run under Scope,

and debugging becomes if not trivial,

then at least doable"

Thomas Bonoma, Microcomputing,

Dec. '83, p 22

".. ,a really neat utility...

designed to untangle even the

most convoluted Basic

program.... The documentation is

almost worth the price of the

package."

Susan Glinert-Cole. Creative

Computing, July '84, p 210

Active Trace will lead you through your

program letting you know variable values

(all variables or just those you specify)

as they change. Your program's internal

activity is presented on your screen, or

printer, or it can be saved on disk. It's

simple, effective and works with the

BASIC you already own.

Active Trace S79.95
Includes Scope. XREF mapping and rJxumentalion

Active Trace is available lor most MS-DOS and CPM

2.2 systems and supports the special features ol

Brand specific versions of Microsoft Basic such as

Basica on the IBM-PC

WARECO
ctive Software

P.O. Box 695 Gualala, CA 95445

(707) 884-4019

800-358-9120(US) 800-862-4948(CAJ

Active irace. Active software, ana Scope att trademarks ol

AWAflECO-CPM is a trademark of Digital Researcn-MS'DOS

and Microsolt are trademarks of Microsoll Cofporanon-IBM-

PC is a trademark of IBM Corp

4

CIRCLE 53 ON READER SERVICE CARD
CIRCLE 3 ON READER SERVICE CARD

67

Announcing a

TOTAL PARSER GENERATOR
:: ■ <RflPJD> < COMPILER > < DESIGN >

SLICE YOUR COMPILER

DEVELOPMENT TIME

An LR(1) parser generator and several sample compilers,

alt in Pascal for your microcomputer.

Generates parser, lexical analyzer and skeleton

semantics

Universal, state-of-the an error recovery system

Adaptable lo other languages

Interactive debugging support

Thorough documentation

TURBO PASCAL'" INCLUDED FREE OF CHARGE

Includes mini-Pascal compiler, assembler, simulator

in SOURCE

SPECIAL INTRODUCTORY OFFER $1995

OMHSE

QPARSrZ

and acac

arrangee

Ittit

Dti

«.«

i.M

nomi

IBM **CjDOS -n furcn

rjmmjp »-v] gmerji^j

c*» uurcr E Aly lo add

htviriLiblelartSO.

,,,'y evtipitiF r c*

COW iSR* DuPiU'wi) i

pt>'1irrr

■ppiiulK

■va.lam*

.*»

t#ii*n!fwinduiT'iai

BS Training can H

and 6 5^ tMS IJ.

WRITE OH CALL FOR FREE BROCHURE

Technical derails: call 408/255-5574 Immediate delivery CALL TODAY1

SYSTEMS, INC.
1154 HydB Ave . San Jose. CA 95129

TOLL FREE: 800-538-9787
(California residents call 408/255-5574)

™ Turbo Pascal is a registered irademark oi Borlana international

CIRCLE 23 ON READER SERVICE CARD

SMALLI FDR IBM-PC

Small-C CompilerVersion

2.1 for PC-DOS/MS-DOS

Source Code included

forCompiler& Library

New 8086 optimizations

Rich I/O & Standard Library

CBUG SOURCE LEVEL DEBUGGER FOR SMALL C

Break, Trace, and Change

variables all on the

source level

Source code included

Datalight
11557 8th Ave. "*N.E.
Seattle, Washington 98125

(206)367-1803

ASM of masm is required with compiler
include disk size! l60W32ak], and DOS version with order

VISA & MasterCard accepted, include card no. & expiration daie

Washington state residents include 7 9% sales tax
IBM-PC & PC-DOS are trademarks of international Business Machines

MS-DOS is a trademark of Microsoft Corporation.

CIRCLE 19 ON READER SERVICE CARD

68 COMPUTER LANGUAGE ■ DECEMBER 1984

LOWER

PROGRAMMING MAINTENANCE

AND DEVELOPMENT COSTS

{SET:SCIL}
The Source Code Interactive Librarian

for microcomputers,

■ SCIL keeps a historical record ofall changes made ro the

library.

■ SCIL maintains any source code regardless oflanguagc,

including user documentation and text material.

p SCIL allows software engineers to work with source

code as they do now, using any ASCII text editor.

• SCIL saves disk space by storing only the changes made

to the program.

1 SCIL provides a labeling capability for case of main

taining multiple versions and multiple releases.

■ SCIL offers unlimited description in the program li

brary directory.

■ High visibility displays with varied intensity for ease of

viewing insertions and deletions.

■ SCIL is available on CP/M, MP/MII, MS-DOS,

PC-DOS and TurboDOS.

{SET}
Get {SET} for Success
iSF.T:SCIL-"l i\ a product of System EngineeringTools

M5 Arrovo Drive, San Diego.'CA 92103

For more information call (619) 692-9464.

CIRCLE 64 ON READER SERVICE CARD

/ SUPER FORTH 64 \
TOTAL CONTROL OVER YOUR COMMODORE-64 "

USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JUST A LANGUAGE...

A complete, fullv-iniegrated program development system.

Home Use. Fast Gomel. Graphics, Data Acqmutton, Business

Real Time Process Control. Con^municotioni, nobotics. Scicnhtic. Artificial Inlellictence

A Powerful Superset of MVPFORTH/FORTH 79 t Ext. (or the beginner or profeuionol

• 20 to 600 * toner than Basic

• ia%f full conlrol of all iound. hi rei.

graphics, calor. Iprrie, plotting line A

drde

■ Comrolloble SPLIT-SCREEN Diiploy

■ Indudei interactive? interpreter & compiler

• Forth virtual momory

• Full cursor Screen Editor

distribution wilhout licensing

• FORTH equivalent Kernel Routines

• Conditioner I Mocro Assembler

• Meets all Forlh 79 storvdordi-

• Compatible wiln Ibe book "Storting Forth"

by leo Brodie

• Acce« to oil I/O pom RS232, IEEE.

■ ROMABIE cods geneioior

• MUSIC-EDITOR

SUPER FORTH 64'

■ SPRITE:EDITOR

1 Access oil C-64 pe'iphe eluding 40.40

• Single diik drive backup utility

• Disk & Cosiette based Disk included

• Full disk usage —680 Secion

e Supports all Commodore file typei and

Forth Virtual disk

• Access to 20K RAM underneath ROM

• Vectored kernol words

• TRACE facility

• DECOMPILER facility

• Full String Handling

• ASCII error menage*

• FLOATING POINT MATH SIN/COS 4 SORT

• Convefhationol user defined Commands

• Tutorial eiomples provided, in extensive

• USER Support

SUPER FORTH 64' ™-p.i«*,

-SUPERFO«TK64

LOGO -

C

PASCAL

BASIC

ASSEMBLED

LISP

1
z

^^^^
s

Call:

(415) 651-3160

PARSEC RESEARCH
Drawer 1776, Fremont, CA 94S38

A SUPERIOR PRODUCT

in every way! Al o low

mm >
• (COD W

CIRCLE 49 ON READER SERVICE CARD

SOFTWARE REVIEWS

ascal's popularity

has lead to the

development of

many commercial packages. All of the

implementations have extensions to make

one or more aspects of the language more

versatile.

Which package is the best? What are

the differences? Is the implementation

you are using really appropriate for you,

or did you buy it because of the brand

name? If you're just learning Pascal,

which is the one to select? Will the price

affect your decision to purchase a particu

lar version?

These questions lead me to carry out

this review. I will compare six Pascal

compilers for the IBM PC.The aspects of

comparison will include the language

implementation, compilation speed, code

size and speed of program, and suitability

for big software projects. The compilers I

will review {by no means all the Pascal

compilers on the market) are:

■ MS-Pascal, a product of Microsoft,

was first released in 1981 for the IBM PC,

using IBM labels. The compiler has gone

through two major revisions. One was to

accomodatc the use of the 8087 numeric

coprocessor chip. Microsoft is also

directly selling its compiler for micros

running MS-DOS, such as the IBM PC.

Compaq and HP-150. The language

implementation is rich with additional

functions and procedures to perform a

variety of low- and high-level data manip

ulations. The package is one of the

"heavyweights."

■ Pascal MT+ is sold by Digital

Research. The language has an earlier

implementation in the CP/M-80 environ

ment and thus has been on the market for a

few years for the Z80 machines. The com

piler was more recently implemented for

the CP/M-86, PC-DOS and CP/M68K.

This implementation offers numerous

functions and procedures to perform high-

and low-level data manipulation. This is

another extensive package.

■ SBB Pascal is a product of Software

Building Blocks. The implementation

stems from a previous 8-bit version sold

as Pascal/Z. The latter has a good number

A comparison of Pascal compilers

By Nomir Clement Shammas

of public domain software and user

groups.

■ Turbo Pascal is a product of Borland

International. The product first appeared

in 1983 and is marked by its low,

affordable price. This fact and Turbo Pas

cal's speed of compilation and execution

are the ingredients of its popularity and

success. This product is excellent for

''getting one's feet wet" with Pascal. It is

very suitable for small projects.

■ Practical Pascal comes from the Cana

dian firm. Network Consulting, a licensee

of Softech MicroSystem. It has been sell

ing the UCSD Pascal and p-system for the

IBM PC and compatibles. The company

has made a number of smart improve

ments over the original UCSD Pascal

(version IV) sold by Softech. Practical

Pascal is an affordable, scaled-down ver

sion of the company's full package. This

product is suitable for those who want or

need to use software developed for the

UCSD Pascal.

■ Utah Pascal is sold by Ellis Com

puting. The product is essentially a

repackaged version of the famous JRT

Pascal, a p-code implementation. The

company has been selling for a few years

its low-price Nevada software line for the

CP/M environment. This line includes

COBOL, FORTRAN, BASIC, PILOT

and Pascal. Utah Pascal seems to be the

first in a series of Utah software, similar

to the Nevada series, aimed at the

MS-DOS environment.

The original JRT Pascal first appeared

for the CP/M environment. It was one of

the early low-cost software packages. JRT

systems filed Chapter 11 but seems to be

willing to sell its Pascal through Ellis

Computing. The product is suitable for

the novice who does not mind the slow

ness of the p-code execution.

Table 1 shows some basic data concern

ing the contents of the commercial pack

ages. This information includes the com

piler, linker, assembler, debugger, editor

and whether the compiler produces native

code or pseudocode.

11 the compilers

have imple-

imented

extensions to ISO Pascal. They vary from

one package to another. Table 2 shows a

comparison of implemented data types.

Integers. MS-Pascal and Pascal MT +

implemcnt the most extensions on data

types. This includes wider integer ranges

used for higher addresses. Both have the

WORD type with a range from 0 to

65,535. Both offer, together with Turbo

Pascal, the absolute data type—variables

declared to reside at specific memory

locations. SBB Pascal has adopted the

basic standard types. The predefined

ADDRESStyps is offered by MS-Pascal.

Others, as Table 2 shows, use a func

tion call to return the address of a vari

able. This extension in integer types is

aimed at making the implementations ver

satile for low-level data manipulations.

Reals. MS-Pascal, Pascal MT+, SBB

Pascal and Practical Pascal offer either

long reals, BCD reals or both. This is

aimed at scientific, engineering and finan

cial applications.

Basic data

Compiler

Linker

Assembler

Debugger

Editor

Version

Produce

machine code

MS

yes

yes

no

no

no

3.2

yes

MT +

yes

yes

yes

yes

no

3.2

yes

SBB

yes

no

no

yes

yes

3.0

yes

Turbo

yes

no

no

no

yes

2.0

yes

Utah

yes

yes

no

yes

no

4.1

no

Practical

yes

yes

yes

yes

yes

4.1

no

Table 1.

69

Software

Development

PCDOS/MSDOS

Complete C Compiler
• Full C per K&R

• Inline 8087 or Assembler Floating

Point, Auto Select of 8087

• Full 1 Mb Addressing for Code or

Data

• Transcendental Functions

• ROMable Code

• Register Variables

• Supports Inline Assembler Code

MSDOS 1.1/2.0

Library Support
• All functions from K&R

• All DOS 2.0 Functions

• Auto Select of 1.1 or 2.0

• Program Chaining Using Exec

• Environment Available to Main

c-window™

Symbolic Debugger
• Source Code Display

• Variable Display & Alteration

Using C Expressions

• Automatic Commands

• Multiple Breakpoints by Function

& Line Number

8088/8086 Assembler
• FAST—Up to 4 times Faster than

IBM Assembler

• Standard Intel Mnemonics

• Compatible with MSDOS Linker

• Supports Full Memory Model

8088 Software Development

Package

s19900

Includes: C Compiler/Library,

c-window, and Assembler, plus

Source Code for c-systems Print

Utility

c-systems
P.O. Box 3253

Fullerton.CA 92634

714-637-5362

The support for the 8087 numeric

coprocessor chip is unanimous for com

pilers generating native machine code. It

allows floating point calculations to exe

cute at a higher speed since all floating

point arithmetic and function calculations

are "hard-wired."

The benchmark tests presented later

show, for example, that Pascal MT+ exe

cutes trigonometric functions 114 times

faster with an 8087 chip than without it.

Many implementations have recently

added and/or improved the support for

using the 8087.

Strings. MS-Pascal allows for a string

variable to be up to 32KB long. This is

second only to Utah Pascal which allows

for 64KB strings. The rest maintain the

standard maximum length of 256 bytes

per string.

Open and conformant arrays. Pascal

is a strongly-typed language, which has

advantages and disadvantages. Disadvan

tages include limitations occurring when

procedures and functions deal with

arrays. The variables passed as arguments

must be of the same type and size as stated

in the routine declaration.

This poses a problem for programmers

wishing to develop general purpose rou

tines, such as matrix operations. To over

come the size limitations, dynamic arrays

have been implemented in two ways.

The first, used by MS-Pascal, declares

an upper array type with an unspecified

upper bound. Variables can be declared as

the upper array type with the upper limit

specified. The same upper array type can

be used in declaring the arguments of a

function or procedure. MS-Pascal has

predefined functions to obtain the array's

limits.

Utah Pascal uses a similar technique:

declaring dynamic array types. The vari

ables can be declared with an unspecified

bound too. The procedures ALLOCATE

and DEALLOCATE are used to create and

remove dynamic variables, respectively.

These procedures can be used inside user

functions and procedures.

The second method is to use con

formant arrays. They are declarations

appearing in the function or procedure

arguments defining the type and dynamic

size. Integer or character identifiers are

used to specify the bounds of the arrays.

Data types

Binary numbers

Octal numbers

Hex numbers

WORD

(0 to 65,535)

Byte (0 to 255)

ADDRESS

Absolute type

Long integers

Long reals

BCD reals

8087 support

Structured constant

Sub-range type

Enumeration type

Set type

Open arrays

Conformant

arrays

Max string

size (bytes)

1. Only for strings.

MS

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

no

32K

MT +

no

no

yes

yes

yes

func

yes

yes

no

yes

yes

no

yes

yes

yes

no

yes

256

SBB

yes

yes

yes

no

no

no

no

no

no

yes

yes

no

yes

yes

yes

no

yes

256

Turbo

no

no

yes

no

yes

func

yes

no

no

no

yes

no

yes

yes

yes

no

yes1

256

Utah

no

no

yes

no

no

func

no

no

no

no

no

no

yes

no

yes

yes

no

64K

Practical

no

no

no

no

no

no

no

yes

yes

no

no

no

yes

yes

yes

no

no

256

Table 2.

CIRCLE 16 ON READER SERVICE CARD

70 COMPUTER LANGUAGE ■ DECEMBER I98d

Pascal MT+ and SBB Pascal use this

method. Multidimensional dynamic

matrices are also implemented. Turbo

Pascal has tackled the problem for

dynamic strings only. It uses a compiler

directive to relax the parameter type

checking on strings. Thus strings of any

length can be passed.

I) the Pascal

implementations

,have a similar

program component. MS-Pascal intro

duces the VALUE section, where vari

ables declared in the VAR section arc

assigned initial value.

All implementations except Practical

Pascal introduce the ELSE or OTHER

WISE clause to the CASE construct. MS-

Pascal, Pascal MT+ and SBB Pascal

allow for functions to be passed as pro

cedural parameters. This is valuable in

writing procedures that process user-

defined functions.

A simple example is developing pro

cedures in numerical analysis to perform

numerical integration or root seeking.

Table 3 compares programming elements.

Both Pascal MT+ and Turbo Pascal have

procedures to handle in-line machine code

and interrupts. These offer effective low-

level machine access techniques.

Most of the implementations allow for

DOS calls. SBB Pascal barely mentions

this capability. MS-Pascai. Pascal MT +

and Turbo Pascal allow for bit and byte

manipulation to benefit low-level data

handling applications. Graphics are

offered by SBB Pascal, Turbo Pascal and

Practical Pascal. The last two offer cursor

Programming

Procedural

parameter

ELSE clause in

CASE statement

In-line machine code

Interrupt procedure

MARK/RELEASE

NEW/DISPOSE

ROM call

DOS coll

Bit/byte

manipulation

Byte/char

manipulation

Siring manipulation

Graphics

Windows

Screen cursor

control

elements

MS

yes

yes

no

no

yes

yes

no

yes

yes

yes

yes

no

no

no

MT +

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

no

no

no

SBB

yes

yes

no

no

yes

yes

yes

no

no

no

yes

yes

no

no

Turbo

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

Utah

no

yes

no

no

yes

yes

no

yes

no

no

yes

no

no

no

Pn

no

no

no

no

yes

yes

no

no

no

no

yes

yes

yes

yes

Table 3.

I/O operations

MS

DOS 2.0 file support yes

GET/PUT yes

Port/10 no

Untyped file no

MT +

no

yes

yes

yes

SBB

no

yes

no

no

Turbo

no

no

yes

yes

Utah

no

yes

yes

no

Practical

no

yes

yes

yes

Table 4.

PolyFORTHII
the powerful multitasking/

multi-user operating system

is now available for most

micro-computers running—

CP/M-80

and

CP/M-86
Offers CP/M users:

• An ability to run multiple

terminals

• Unlimited control tasks

• Concurrent printer

operation

These advanced features combine

with FORTH, Inc.'s powerful ver

sion of the FORTH programming

language to offer CP/M users the

ideal environment for all interactive

and real-time applications.

Featuring speed of operation, shor

tened development time, ease of

implementation and overall cost-

effective performance, this system

is fully supported by FORTH, Inc.'s:

• Extensive on-line documen

tation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493

RCA TELEX: 275182

Eastern Sales Office

1300 N. 17th St. #1306,

Arlington, VA 22209

703/525-7778

'CPIM is a registered trademark of Digital Research

CIRCLE 30 ON READER SERVICE CARD

71

DeSmet

C
8086/8088

Development $100
Package IU5J

FULL DEVELOPMENT PACKAGE

■ Full K&R C Compiler

■ Assembler, Linker & Librarian

■ Full-Screen Editor

■ Execution Profiler

• Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT

BOTH 8087 AND

SOFTWARE FLOATING POINT

OUTSTANDING PERFORMANCE
■ First and Second in AUG '83 BYTE

benchmarks

SYMBOLIC DEBUGGER s50
Examine & change variables by

name using C expressions

Flip between debug and display

screen

Display C source during execution

Set multiple breakpoints by function

or line number

DOS LINK SUPPORT $35
Uses DOS .OBJ Format

LINKs with DOS ASM

Uses Lattice1 naming conventions

Check: □ Dev, Pkg (109)

□ Debugger(50)

□ DOS Link Supt (35)

SHIP TO

ZIP.

c
WARE

CORPORATION

P.O. BOX C
Sunnyvale, CA 94087

(408) 720-9696

Ail orders shipped UPS surface on IBM format disks.

Shipping included m price. California residents add

sales tax. Canada shipping add $5, elsewhere add

$15 Checks must be on US Bank and in US Dollars.

Call 9 a.m. - ! p.m to CHARGE by VISA/MC/AMEX.

NGS FORTH

A FAST FORTH

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER

AND MSDOS COMPATIBLES.

♦79 STANDARD

*FIG LOOKALIKE MODE

*PC-DOS COMPATIBLE

♦ON-LINE CONFIGURABLE

♦ENVIRONMENT SAVE

&. LOAD

♦MULTI-SEGMENTED

♦EXTENDED ADDRESSING

*AUTO LOAD SCREEN BOOT

♦LINE AND SCREEN EDITORS

♦DECOMPILER &

DEBUGGING AIDS

♦8088 ASSEMBLER

♦BASIC GRAPHICS & SOUND

♦NGS ENHANCEMENTS

♦DETAILED MANUAL

♦INEXPENSIVE UPGRADES

♦NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICE: $70
PLEASE INCLUDE $2 POSTAGE A

HANDLING WITH EACH ORDER.

CALIFORNIA RESIDENTS :

INCLUDE 6.5% SALES TAX.

fliit
NEXT GENERATION SYSTEMS

P.O.BOX 2987

SANTA CLARA, CA. 95055

(408) 241-5909

control in text mode and some window

capability in the graphics mode. T\irbo

Pascal allows text windows too.

I/O operations. Table 4 is a com

parison of I/O features. Only MS-Pascal

has support for an MS-DOS 2.0 file struc

ture. Its availability is expected since

Microsoft authored MS-DOS.

For random I/O most implementations

use G£Tand PUTto write and read

records, respectively. The procedure

SEEK is used to select the address of the

target record.Turbo Pascal allows for the

record number to be included in the READ

and WRITE verbs.

Pascal MT+. Turbo Pascal, and Prac

tical Pascal allow for untyped file I/O

using BLOCKREAD and BLOCKWRITE.

They allow for reading and writing a spe

cific number of bytes. The same com

pilers allow for port I/O. This is useful in

developing software for communications.

jerhaps using Pas

cal in large soft

ware projects is

the acid test to show its versatility. This

involves developing external general pur

pose functions, library modules, and

units. Chaining programs and the use of

overlays arc other program segmentation

methods. Table 5 compares segmentation

capabilities.

All implementations allow for external

functions. Pascal MT+ and Turbo Pascal

allow for chaining where global or

absolute variables can be passed from one

program to another. Chaining with SBB

Pascal is not as versatile. Data should be

passed via data files.

Pascal MT+ implements powerful and

flexible procedure overlays. Up to 255

overlays, up to 15 separate overlay areas,

and nested overlays are supported. Nested

overlays are also supported by Turbo Pas

cal but not by SBB Pascal.

MS-Pascal and Pascal MT+ allow for

modules, a collection of procedures and

functions without a main body.

MS-Pascal and Practical Pascal imple

ment the UNIT libraries. They are com

posed of the INTERFACE and IMPLE

MENTATION sections. Units are

separately compiled modules and offer a

powerful method for program seg

mentation and building routine libraries.

Other programs call these units via the

USE declaration.

lompiling with the

six imple-

! mentations

ranges from very simple to a multistage

process. A process requiring several steps

reflects the compiling and linking options

offered by the implementation.

CIRCLE 18 ON READER SERVICE CARD

72 COMPUTER LANGUAGE ■ DECEMBER 1984

CIRCLE 45 ON READER SERVICE CARD

Table 6 compares the number of stages

to compile, whether a linker is invoked,

and the optional use of an optimizer. At

the linking stage, the user has a choice of

linked libraries, such as the floating point

support and transcendental functions

libraries.

A software developer may ask the fol

lowing practical question. How friendly is

the implementation in handling com

pilation and run-time errors?

I have tested two types of code errors in

some test programs: using an undeclared

variable and adding an integer variable to

a floating point constant. The run-time

error that I tested is a division-by-zero

error while attempting to divide two reals.

Here is a brief rundown of how each

implementation reacts:

■ MS-Pascal will display the code line

containing the error and will point at the

error with a message. For run-time

errors, a message will be displayed and

the program halts, leading you back to

DOS.

■ Pascal MT+will display the error

number and the line number on which it

occurred. For run-time errors, a message

is displayed inquiring whether you want

to continue or abort.

■ SBB Pascal displays a very brief error

message. You have to list the LST file to

sec the location and error type. During

my division-by-zero run-time test, the

program just kept going! It did not bother

to tell me that I had just committed a

mathematical sacrilege.

Program segmentation

■ Turbo Pascal is the friendliest. For both

error code and run-time errors, the sys

tem displays an error message and then

invokes the editor to point out where

things went wrong.

■ Utah Pascal outputs the processed code

lines to either the screen, printer, or file.

It shows a message below the error-

containing line. The message lacks a little

bit of clarity. It does not point out the

error. You have to examine the code line

to discover where the error is. For the

run-time error, the program displayed a

warning about error in floating point

operation, but the program kept going.

■ Practical Pascal is similar to Turbo Pas

cal in reacting to an error found during

compilation. Handling run-time error is

done using very vague messages.

'he review of the

compilers

included a

benchmark test to compare the speed of

compilation, size of executable code, and

execution time. I carried the tests using an

IBM XT with 512K bytes of memory and

an 8087 chip.

All the compilers, except Practical Pas

cal, ran from the hard disk. Practical Pas

cal sets up a RAM drive upon booting. A

single drive was used. The Hewlett-

Packard HP41CV programmable calcula

tor with a Timer Module was used for tim

ing. The benchmark programs were:

■ The Sieve of Eratosthenes. This is a

very popular benchmark test used for a

Include

External functions

Chaining

Overlays

Modules

Units

MS

yes

yes

no

no

yes

yes

MT +

yes

yes

yes

yes

yes

no

SBB

yes

yes

yes

yes

yes

no

Turbo

yes

yes

yes

yes

no

no

Utah

yes

yes

no

no

no

no

Practical

yes

yes

no

no

no

yes

Table 5.

Compiling steps

Compiler steps

Link

MS

2

yes

Optional optimizer yes

Table 6.

MT +

1

yes

no

SBB

2

yes

yes

Turbo

1

no

no

Utah

1

opt.

no

Practical

1

opt.

yes

PolyFORTHII
the operating system and

programming language for

real-time applications involving

ROBOTICS, INSTRUMENTATION,

PROCESS CONTROL, GRAPHICS

and more, is now available for...

IBM PC*
PolyFORTH II offers IBM PC

users:

• Unlimited control tasks

• Multi-user capability

• 8087 mathematics co

processor support

• Reduced application

development time

• High speed interrupt

handling

Now included at no extra cost:

Extensive interactive GRAPHICS

SOFTWARE PACKAGE! Reputed

to be the fastest graphic package

and the only one to run in a true

multi-tasking environment, it

offers point and line plotting,

graphics shape primitives and

interactive cursor control.

PolyFORTH II is fully supported

by FORTH, Inc.'s:

• Extensive on-line

documentation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493 ^

RCA TELEX: 275132 -=

Eastern Sales Office

1300 N. 17th St.

Arlington, VA 22209

703/525-7778

"IBM PC is a registered trademark ol International

Business Machines Corp.

CIRCLE 37 ON READER SERVICE CARD

73

We thought about calling it MacSimplex . . .

after all it makes your IBM®PC behave like a

Macintosh™ and much more . . .
and with over two years in the making, the Simplex

Database Management System has features like

32-megabyte virtual memory and the most powerful

networked/relational database in the microcomputer
industry. Simplex was designed around how you

think and the Macintosh way, so that you can use

your favorite mouse to handle those mundane tasks

like menu selection and data manipulation. And, if

you don't have a mouse, you can use our keyboard

mouse simulator, MouSim™.

Pop-up and pull-down menus,dialog and alert boxes
are not just added features, they are the heart of the

Simplex way. In addition, Simplex gives you both a

software and a hardware floating point capability,
each with 19-digit accuracy. It permits login,
password, privilege, and can be used on a local area

network. Simplex has full communications and a

remote or local printer spooler. Above all, Simplex is
modular and grows with you! Simplex also has a

full-featured, English-like language which is simple
to use.

You can't buy Simplex™, but it is now available as an integral part ol

it's my Business™ and will be used by it's my Word™, it's my Graphics™,

Businessmen! it's my Business will revolutionize the

way that you handle your business. It saves time,
money, and standardizes your system for all who use

it. it's my Business comes with applications like

accounting, interoffice or intraoffice mail, editing,

invoicing, inventory managment, mail list, calendar,

scheduler, forms and more. You can modify each of

these to create applications specifically designed for

you... maybe we should have called it "it's your

Business".

Professionals! it's my Business has over 200 pages of

examples and demonstrations to show you how to

solve your everyday professional problems. And if

these examples aren't enough, we give you a

complimentary one-year subscription to Questalk™,

our hands-on Simplex applications magazine.

System integrators and consultants, beware! If you

are not using it's my Business with Simplex to solve

your problems, don't be surprised when more novice
programmers solve that complex math, industrial

engineering, or business problem faster. We think

that you can cut your concept-to-development time
by an order of magnitude!

it's my Business (includes it's my Editor) - $695.00

it's my Business Demo Disk - $20.00
it's my Editor - $100.00.

Quest Research software is available through your local computer store or through mail

order from Quest Software Corporation at (2051 539-8086. 303 Williams Avenue.

Hunlsviile. AL 35R01.

Value added resellers and dealers please consul Quest Research, Incorporated al

(800| T.58-808H. 303 Williams AvBnttt, Huntsville. AL. J5HO1.

■TM

Quest Research Inc.

IBM is a registered trademark of International Business Machines. Macintosh is a trademark of Apple Corporation, if's my Buainra*. it's my Word, il's my Graphic*,

it's my Editor, it's my Home, it's my Voice, ir's my Ear, it's my Statistics. Simplex. MouSim. Questalk. and the Quest Ioko are trademarks of Quest Research. Incorporated.

74 COMPUTER LANGUAGE ■ DECEMBER 1984 CIRCLE 55 ON READER SERVICE CARD

variety of computers and languages.

■ Integer array sorting. This program

creates an orderly array of 1,000 integers.

Then the array is sorted to reverse the ini

tial order. The time for the sorting process

is measured.

■ Matrix inversion. This is the first test

program to examine the speed of floating

point arithmetic. The program creates a

20 by 20 matrix with ones in the non-

diagonal elements and twos in the diago

nal elements. The time needed to invert

the matrix is measured. The program is

recompiled to use the 8087 support when

possible.

■ Trigonometric test. A program for

comparing the computing speed of the

sine and cosine function 1,000 times each.

Again, the program is recompiled to use

the 8087 support when possible.

Table 7 shows the results for each test

program. The compiling time recorded

includes the time for the number of com

piler passes plus the linking time.

The timer is stopped at the end of each

stage and resumed as the next one starts in

a multistage situation. It is worthwhile to

point out that MS-Pascal automatically

detects the presence of the 8087 chip and

uses the 87 code library. All other com

pilers supporting the 8087 do so at the

users command.

The results of the sieve test program

show the following:

■ The compactness of the Utah Pascal

p-code

Benchmark test results
Sieve test

MS

MT +

SBB
Turbo

Utah

Practical

Source/compiled

code size

(bytes)

659/27,708

768/10,752

659/5,120

659/10,299

659/384

4 blocks/2 blocks

Integer sort test

MS

MT+

SBB

Turbo

Utah

Practical

Source/compiled

code size

(bytes)

1,119/21,692

1,152/10,752

1,119/5,248

1,119/10,454

1,119/512

4 blocks/2 blocks

Matrix inversion test

MS

MT +

withou! 87

with 87

SBB

without 87

with 87

Turbo

without 87

with 87

Utah

Practical

Source/compiled

code size

(bytes)

1,792/34,984

1,792/18,944

/16,384

1,792/10,112

8,320

2,793/11,108

10.027

1,792/896

4 blocks/3 blocks

Compiling

and linking time
(min:sec)

1:02

0:41

0:33

0:03

0:25.4

0:17

Compiling

(and linking) time

(mlmsec)

1:05

0:42

0:35

0:03

0:29

0:18

Compiling

and linking time

(minrsec)

1:49

0:56

0:51

0:42

0:43

0:03.5

0:03.5

0:36

0:24

Execution

time

(min:sec)

0:11.5

0:15.6

0:15.0

0:15.0

8:15.0

2:26.0

Execution

time

(min:sec)

0:01.5

0:03

0:02

0:02

1:05

0:21

Execution

time

(min:sec)

0:2.84

2:10

0:06.4

0:43

0:02.2

error

0:05.39

2:12

0:20

Table 7. (Continued on afollowing page).

PolyFORTHll
the operating system and

programming language for

real-time applications involving

ROBOTICS, INSTRUMENTATION,

PROCESS CONTROL, GRAPHICS

and more, is now available for...

DEC* PDP-11*

and

LSI-H* Systems
The PolyFORTH II high

performance features

include:

• Multiple users (30

terminals on a LSI-II)

• Unlimited control tasks

• High speed interrupt

handling

• Reduced application

development time

PolyFORTH II software will run

on any standard PDP* or LSI-II

with RX02 disk (RSX* optional),

Micro/PDP-11* and PROFES

SIONAL* 350 and is fully

supported by FORTH, Inc.'s:

• Extensive on-line

documentation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493

RCA TELEX: 275182

Eastern Sales Office

1300 N. 17th St.

Arlington, VA 22209

703/525-7778

"Registered trademarks of Digital Equipment Corp.

CIRCLE 40 ON READER SERVICE CARD

75

■ The size of the code from Pascal MT+

and Turbo Pascal is almost identical and

so is the execution time

■ SBB Pascal has produced the smallest

non-p-code file sizes

■ The compilation speed of Turbo Pascal

■ Small variation in execution time for

non-p-code programs— MS-Pascal is

slightly faster.

■ The Practical Pascal program is faster

than that of Utah-Pascal.

The conclusions drawn from the results

of the integer sorting test seem to agree

with those of the sieve test.

With the matrix inversion, the Turbo

Pascal compiler version that does not sup

port the 8087 gave a run-time error. All

other compilers, including the 8087 Turbo

Pascal version, produced executable code

that ran smoothly. The conclusions to be

drawn are:

Not using the 8087

■ Pascal MT+ is almost as fast as Utah

Pascal. This indicates the floating point

operation of Pascal MT+ may be written

in the same language.

■ Practical Pascal has faster math oper

ation than SBB Pascal. The reason may be

similar to the previous one.

Sine and cosine trigonometric test

MS

with 87

MT+

wifhout 87

with 87

SBB

without 87

with 87

Turbo

without 87

with 87

Utah

Practical

Source/compiled

code size

(bytes)

902/20,934

1,024/22,528

16,896

902/9,856

1,024/8,064

902/10,620

9,565

1,024/640

4 blocks/3 blocks

Compiling

(and linking} time

(min:sec)

1:21

0:58

0:51

0:39

0:38

0:02.89

0:02.86

0:29.5

0:39

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

(sin)

(cos)

Execution

time

(min:sec)

0:10.79

0:10.80

22:29

32:46

00:11.8

00:11.8

5:38

5:49

0:09.6

0:11:5

5:01.5

5.06.4

0:10.56

0:11.05

10:08.67

10:53

1:52.36

1:57.88

Note: A block of storage for the UCSDp-system has 512 bytes.

Table 7. (Continuedfrom a preceding page).

"UNIX System III POWER and sophistication are yours.
Let THE SOLUTION turn your micro into all you

dreamed it could be. bringing the Ultimate

programming environment as close as
your modem. Just a local call

from over 300 cities

nationwide via Telenet,

EXPANSIVE SOFTWARE DEVELOPMENT FACILITIES including Language and Operating System design.

• LANGUAGES: C, Fortran 77, RATFOR, COBOL, SNOBOL, BS, Assembler + Artificial Intelligence

programming via LISP.

• USENET Bulletin Board System—800 + international UNIX sites feeding over 190 categories,

typically bringing you more than 160 new articles per day.

• Interuser and Intersystem mail + 'chat'capability.

». • UNIFY: Sophisticated data-base management system.

• UNIX & System enhancements from U.C. Berkeley and Korsmeyer Electronic Design Inc.

• Online UNIX manuals + Expert consultation available.
• SOLUTION-MART: Hardware/Software discount shopping database.

• LOW COST and FAST response time.

(as low as $8.95 hr. connect time + $.05 cpu sec. non-prime)

, fl • $24.95 = 1 hr. FREE system time + SOLUTION News subscription + BYTE
BOOK (Introducing The UNIX System 556 pp.).

* UNIX is a trademark of Bell Labs.

Payment via VISA or Master Card ^.ELECTRONICDESIGN, INC -

CIRCLE 34 ON READER SERVICE CARD

- 5701 Prescott Avenue

Lincoln, NE 68506-5155

— 402/483-2238

10a-7p Central

Only S95 with FULL SOURCE CODE!

"... an incredible learning tool." Byte

For only S95. O/C is a ready-to-use C compiler for CPM with com

plete source code. Here's wha! BYTE (May 1984) said: "Q'C ... has

a portable library and produces good code quality. If you want to

learn compiler construction techniques or modify the standard lan

guage. Q/C is the obvious choice."

Source code for compiler and over 75 library functions.

Strong support for assembly language and ROMs.

No license fees for ob|ecl code

Z80 version lakes advantage of Z80 instructions.

Q'C is standard. Good portability to UNIX.

Q/C has casts, typedef. sizeof. structure initialization, and function

typing. It is compatible with UNIX Version 7 C. but doesn't support

long inlegers. float, parameterized #defmes. or bit fields. Call about

our new products. Q C profiler. 280 code optimizer, and Z80 as

sembler and virtual linker, a!! with full source code!

theCODE
WORKS

5266 Holiister. Suite 224

Santa Barbara. CA 93111

(805)683-1585

QC.CPM Z80 and UNIX are Irademarksot Quality Computer Syslems Digital
Research Zilog. Inc and Bell Laboratories respectively

CIRCLE 42 ON READER SERVICE CARD

WRITE

The Writer's Really Incredible Text Editor lives up to its

name! It's designed for creative and report writing and
carefully protects your text. Includes many features

missing from WordStar, such as sorted directory listings,

fast scrolling, and trial printing to the screen. All editing

commands are single-letter and easily changed. Detailed
manual included, Dealer inquiries invited. WRITE is

S239.00.

BDS's C Compiler

This is the compiler you need for learning the C language

and for writing utilities and programs of all sizes and
complexities. We offer version 1.5a, which comes with a

symbolic debugger and example programs. Our price is

(postpaid) $130.00.

Tandon Spare Parts Kits

One door latch included, only $32.50.

Wilh two door latches S37.50.

Door latches sold separately for $7.00.

All US orders are postpaid. We ship from stock on many

formats, including: 8", Apple, Osborne, KayPro, Otrona,

Epson, Morrow, Lobo, Zenith, Xerox. Please request our
new catalog. We welcome COD orders.

Workman & Associates

112 Marion Avenue
Pasadena, CA 91106

(818) 796-4401

CIRCLE 68 ON READER SERVICE CARD

PROGRAMMER'S

DEVELOPMENT TOOLS

IBM Personal Computer Language and Utility Specialists

LANGUAGES:
List

8088 Assembler w/Z-80 Translator 2500 AD 100

C-86by Computer Innovations 395

CB-B6 Dy DRI 600

DeSmet C Compiler with Debugger 159

Instant-Cby Rational Systems. InterpretiveC, . 500

Janus/ADA + ToolsbyR&R 700

Lattice C Compiler 500

STSC APL'Plus/PC We Can Support You! 595

Xenix Development SystBm by SCO 1350

Call lot Prices and information about other Languages.

Special Holiday Season Sale Price!

'Mark Williams C Development System $429'

The MWC Development System defines a new

standard for C Compilers. The compiler provides

excellent benchmarks and extremely last

compilations. In addition, the system includes its

own assembler and source level debugger. Best of

all. you can now save an additional $30 off our

already discounted price. Call for details.

Manufacturer's List Price $500.

Special Introductory Offer

Save $50 off manufacturer's list price!

BetterBASIC by Summit Software S149

This new approach to BASIC programming supports

modular structured techniques, large workspaces.

incremental compilation, pointers and more. An

optional 8087 Math Module is available for $89.

UTILITIES:

Btrieve by SoftCraft 245 199

CodeSmith-86 by Visual Age 145 129

Communications Library by Greenleaf 160 139

C-Food Smorgasbord 150 109

C Power Paks from Software Horizons CALL CALL

C-Tree by Faircom 395 359

C To Dbase by Computer Innovations 150 139

C-Utilities by Essential Software Sale Priced! 149 119

Dr. Halo 100 89

ESP tor C or Pascal by Bellesoft CALL CALL

FirsTime tore by Spruce Tech 295 269

Graphic from Scientific Endeavors 195 179

Greenleaf Functions Library Sale Priced! 175 139

Halo Color Graphics lor Lattice. CI-86 200 125

Panel Screen Design /Editing by Roundhill 295 234

Pfix 86 by Phoenix Software 195 175

Pfix86+ by Phoenix Software 395 355

Phact by Phact Associates 395 359

Plink-86 Overlay Linkage Editor 395 310

Pmate by Phoenix Software 225 175

Profiler by DWB & Associates New Low Price! 125 99

Tools by Blaise Computing CALL CALL

Trace-86 by Morgan Computing 125 115

Windows for C by Creative Solutions 195 159

Prices are subiect to chanoe without notice.

Call for our New Catalog consisting of

200+ Programmer's Development Tools

Exclusively for IBM PC's and Compatibles.

Account is charged when order is shipped.

visa- 1-800-336-1166
Programmer's Connection
281 Martinet Drive

Kent. Ohio 44240

(216) 678-4301 (In Ohio)

Programmers Serving Programmers'

CIRCLE 54 ON READER SERVICE CARD

77

Elegance

Power

Speed

c
C Users' Group

Supporting All C Users

Box 287

YatesCentei. KS 66783

CIRCLE 10 ON READER SERVICE CARD

BDSCv1.5
For FAST

Development
• Fastest compile to execute

cycle of any CP/M 80®

Compiler.

• Dynamic

debugger

• 180 page

manual.

KS res. add4% lax.

$120.00
Plus S2.50

Shipping & handling

TERMS: check, c.o.d., charge card, o

(316)431-0018 |

Dedicated Micro Systems. Inc
A

P.O. Box 481 Chanute, KS 66720 o

CP/M-*—►ISIS
for VsXPDS&MDS X^

ICX t.(eXchanger now supports BOTH 8"

MDS and 5-1/4" lPDS lortnals

Manipulation of ISIS-1I hies using your

CP/M system was never easier.

ISE T.6 Emulator gives the CPM-80 user

access !□ al! the 1SIS-II languages and

utilities.

Compete source [C and MAC asm)

included with all packages

ICXMDS SS9

ICXPDS 189

ISE M9

ICX Toolkll (all 3) J25O

1 CP'M Wgi'al Re™rvii. lr»- .

Western Wares
303- 327-4898' Box C • Norwood, CO 81423

CIRCLE 21 ON READER SERVICE CARD CIRCLE 75 ON READER SERVICE CARD

A general purpose programming

language for string and list

processing and all forms of

non-numerical computation.

SNOBOL4+ -the entire

SNOBOU language with its superb paitern-malching

facilities* Strings aver 32.000 byles in length • Integei

ond floating point uiing 8037 or supplied emulator jA1*"

• ASCII, binary, lequentml and random i%*1% _

'O • Assembly Language inter- j^** j t JQtcess I'O* Assembly Longuoge inter- ^"^ i t ,)
face • Compile newcode during ,,c>* - j\ "\ *

progrom execution • Create .v** >"X. 1 r* j**'

SAVE,,P "*' ^" ' ^
~/<ki*f> Wilh

-. ° ELIZAS over

jtl^ 1 00 i□ mpIo pro-

^ cjrQmsQfidiundions

• *iw Forall8086 88 PC MS DOS <

& CP M-Btsyitems. 128Kminimu
5VDSD0 specify DOS CPMfon

ck. VISA.M Cto $95

plui"3l/h

P.O. Bo< 1123'Solido. COB 1201 • 303 5393884

^ Sen

L Catspaw, Inc.

•

•

•

•

• i

• !

•!

• |

*• • EASY TO USE

Macro Programs for

\^m^ 1
1 I

NOW tor PC-DOS

■ Cuitomlzad TtblM ■• RAM dlik wllh .BAT tile.;
4 Toggle eitanded chiraclei let md printer

conltol.

f Our old standby, DcarJohn, mailing list ;

1 managemani with utlltltei. SIIH J67.50 CP/H or

1 PC-DOS

-NEW All You WinKrJ to know idoul]

" Sptllbindar but CoulOnl Find Out". A ;
progrimm«rrf nolabook ol ma|or command! :

. We have a long Hit otcu»tom macroi loruae In ^

3 Ihe oftlca and by Ihe programmer. Send S1.00
- lor catalog.

: (COmPUTER REWURCES.,....

1 P.O. Box 1S69 Kamuela, Hawaii 96743

(808) 885-7905

c

1:
; •

; •

; •

. •

1 •

; •

; •

y

Interested in writing,

reviewing software,

or refereeing

manuscripts tor

COMPUTER

LANGUAGE
For information contact:

Craig LaGrow/Editor
131 Townsend St.
San Francisco, CA 94107

(415) 957-9353
BBS#: (415) 957-9370
CompuServe Acct: GO CLM

CIRCLE 9 ON READER SERVICE CARD CIRCLE 14 ON READER SERVICE CARD

Premier

Oct. '84

Nov. '84

Dec. '84

NAME_

x $4.00 =

x $4.00 =

x $4.00 =

Total

COMPANY

CITY, STATE, ZIP

Send payment and

coupon to: COMPUTER LANGUAGE

Back Issues

131 Townsend St.

San Francisco, CA 94107

ORDER BACK
ISSUES OF
COMPUTER
LANGUAGE
WHILE THEY

LAST!
To receive your back issues, just fill out this coupon and mail

it back with $4.00 per issue.

78 COMPUTER LANGUAGE ■ DECEMBER 1984

The 8087 supported test

■ SBB Pascal has the fastest executing

code (sorry Turbo), with MS-Pascal a

close very second.

■ Using the 8087 for math operation with

Pascal MT+ is a must.

The trigonometric test helped us to

draw the following conclusions.

Not using the 8087

■ Turbo Pascal has the fasted executing

code, followed by SBB Pascal, a close

second.

■ Pascal MT+ performed the poorest in

trig functions. Even Utah Pascal is twice

as fast.

The 8087 supported test

■ A very slight variation was evident in

the speed of running code. SBB Pascal has

the fastest execution of a sine function.

Turbo Pascal has the lead for cosine func

tions. Basically all 8087 generated code

runs at about the same speed.

t the end of ihis

review, I can say

ithat the six

implementations examined offer some

thing for everyone.

■ The novice Pascal programmer who

does not want to spend a lot of money will

enjoy Utah Pascal or Turbo Pascal. Turbo

Pascal will probably be more attractive

due to its speed, built-in editor, graphics

and popularity.

■ For a programmer interested in using a

UCSD implementation. Practical Pascal

would bean excellent choice. It will allow

a good degree of compatibility with, say,

Apple UCSD Pascal.

■ The professional programmer working

on large software projects and/or those

involving low level machine access would

make use of MS-Pascal or Pascal MT+.

■ The professional programmer working

on scientific, engineering, statistical and

financial applications would find MS-

Pascal, Pascal MT+ and SBB Pascal suit

able. MS-Pascal has versatile utilities

written by other software companies.

■ Turbo Pascal, characterized by its

speed of compilation and execution, can

be used for front-end software develop

ment and testing. Batches of routines are

developed and tested. Once the code is

working properly, it is incorporated in a

bigger implementation. H

Information on the six Pascal compilers

Product name Available from

MS-Pascal Microsoft Corp., 10700

Northup Way, P.O. Box

97200, Bellevue, Wash.

98009, (800) 426-9400

Pascal MT+

SBB Pascal

Turbo Pascal

Practical Pascal

Utah Pascal

Digital Research Inc., P.O.

Box DRI, Monterey, Calif.

93942, (408) 649-3896

Software Building Blocks

Inc., P.O. Box 119, Ithaca,

N.Y. 14851, (607)

272-2807

Borland International, 4113

Scotts Volley Dr., Scotts

Valley, Calif. 95066,

(800) 227-2400 ext. 968

Network Consulting Inc.,

P.O. Box 8040, Blaine,

Wash. 98230, (604)

430-3466

Ellis Computing Inc., 3917

Noriega St., San

Francisco, Calif. 94122,

(415) 753-0186

Price Hardware required

$300.00 IBM PC and compatibles,

and all other MS-DOS

machines.

$400.00 Any 8086- or 8088-based

machine running either

PC-DOS or CP/M-86.

Minimum 192K; 256K

recommended.

$350.00 IBM PC and compatibles,

andZ8000-based

machines.

$49.95 Any Z80- or 8086-based

machine running either

MS-DOS, PC-DOS,

CP/M-86 or CP/M-80.

$145.00 IBM PC, PCjr, or most

compatibles.

$39.95 IBM PC, XT, or AT with

minimum 128K.

Pascal and C
Programmers

Your programs can

now compile the

FirsTime™
FirsTime is an intelligent editor that

knows the rules of the language being

programmed, it checks your statements

as you enter them, and if it spots a

mistake, it identifies it. FirsTime (hen

positions the cursor over the error so

you can correct ii easily. FirsTime trill

identify all syntax errors, undefined

variables, and even statements with

mismatched variable types. In tact, any

program developed with Hie FirsTime

editor will compile on the first try.

Unprecedented

FirsTime has many unique features

found in no other editor. These powerful

capabilities include a zoom command

that allows you to examine the

structure of your program, automatic-

program formatting, and block

transforms.

If you wish, you can work even faster

by automatically generating program

structures with a single key-stroke This

feature is especially useful to those

learning a new language, or to those

who often switch between different

languages.

Other Features: Full screen editing,

horizontal scrolling, function key menus,

help screens, inserts, deletes, appends,

searches, and global replacing.

Programmers enjoy using FirsTime. It

allows them to concentrate on program

logic without having to worry about

coding details. Debugging is reduced

dramatically, and deadlines are more

easily met.

FirsTime for PASCAL $245

FirsTime for 0 S29I5

Microsoft PASCAL Compiler S245

Microsoft C Compiler S395

Demonstration disk

Get an extra $100 off the compiler when

it is purchased with FirsTime.

(N.J. residents please add 6% sales tax.)

Spruce
Technology Corporation

1 K) Whispering i'ines Drive

Lincroft, N..I. 07738

(201) 741-8188 or (201) 663-0063

Dealer enquiries welcome. Custom versions

for computer manufacturers and language

developers are available.

FtrstTtme i* a trademark ofSpruce TechnolojQi

fiir]mralii>n.

CIRCLE 33 ON READER SERVICE CARD

79

ADVERTISER INDEX

ACM

Alcor Systems

Alpha Computer Service

Atron

Awareco

BD Software

Borland International

C Systems

C Users Group

CWare

Carousel Micro Tools

Catspaw, Inc

Code Works, The

CompuPro

Computer Innovations

Computer Resources of Waimea

DWB Associates

Datalight

David Data

Dedicated Micro Systems, Inc

Earth Computer

Ecosoft

Essential Software Inc

FairCom

Forth, Inc

Forth, Inc

Forth, Inc

Goodyear Aerospace

Greenleaf Software

HSCJnc

Harvard Softworks

Introl Corp

Korsmeyer Electronics Design Inc. ...

Laboratory Microsystems, Inc

Lattice Inc

MBP Software & Systems Technology

Megamax, Inc

PAGE

NO.

19

64

64

4

67

10

6,7

70

78

72

46

78

77

Cover

57

78

17

68

30

78

12

11

23

17

71

73

75

1

16

56

65

60

76

11

61

18

64

IV

CIRCLE

NO.

.... 7

.... 1

.... 2

.... 4

.... 3

.... 5

.... 6

16

...10

...18

... 8

.... 9

...42

...12

...11

....14

...20

....19

...17

...21

.24

...22

...28

. ...29

...30

...,37

...40

. ...43

...44

....31

...47

.32

....34

35

36

...39

.13

Mendocino Software Co.,Inc 13

Micro Methods 22

MicroTec Research 8

MicroWay 20

Microcompatibles 20

Miller Microcomputer Service 11

Mindbank, Inc. 66

Next Generation Systems 72

Northwest Computer Algorythms 31

Opt-Tech Data Processing 31

Opt-Tech Data Processing 40

Parsec Research, Inc 68

PlumHall 25

Poor Person Software 61

ProCode 67

Programmer's Connection 77

Programmer's Shop 25

QCAD 68

Quest Research Inc 74

RR Software Cover II

Rational Systems, Inc 24

Ream, Edward 12

SLR Systems 32

Simpliway Products, Co 13

Software Horizons 62

Software Toolworks 80

Solution Systems 22

Solution Systems 67

Spruce Technology Corp 79

Stride Micro Cover III

Summit Software 13

Syntax Constructs Inc 40

Systems Engineering Tools 68

Systems Guild 23

TeleSoft 2

Thunder Software 56

UniPress 32

Western Ware 78

Wordtech Systems 14

Workman & Associates 77

The index on this page is provided as a service to our readers. The

publisher does not assume any liability for errors or omissions.

.48

.52

.77

.57

.15

.61

.63

.45

.46

.66

.67

.49

.50

51

53

54

69

23

.55

.58

56

27

.59

.70

25

.26

60

.71

33

72

62

73

64

76

74

.65

.38

75

.41

.68

"C/80. . . the best software buy in America!"
—MICROSYSTEMS

Other technically respected publications like Byte

and Dr. Dobb's have similar praise for The Software

Toolworks' S49.95 full featured 'C compiler for CP/M'

and HDOS with:

I/O redirection

command line expansion

execution trace and profile

initializers

Macro-80 compatability

ROMable code

and much more!

"We bought and evaluated over $1500

worth of 'C compilers. . . C/80 is the one
we use.

— Dr. Bruce E. Wampler

Aspen Software

author of "Grammalih

In reviews published worldwide the amazing $49.95

C/80 from The Software Toolworks has consistently
scored at or near the top — even when compared with

compilers costing ten times as much!

The optional C/80 MATHPAK adds 32-bit floats and

longs to the C/80 3.0 compiler. Includes I/O and trans

cendental function library all for only $29.95!

C/80 is only one of 41 great programs each under

sixty bucks. Includes: LISP, Ratfor, assemblers and

over 30 other CP/M ■ and MSDOS programs.

For your free catalog contact:

^e Software ^Toolwdrks
15233 Ventura Blvd., Suite 1118.

Sherman Oaks, CA 91403 or call 818/986-4885 today!

CP'M is a registered trademark o! Digital Researcn

CIRCLE 26 ON READER SERVICE CARD

80 COMPUTER LANGUAGE ■ DECEMBER 1984

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

: COMPUTER

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 273J6 PHILADELPHIA. PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.00 — over 33%

savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost is

only$24.00 for I year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $39.00.

□ Payment enclosed □ Bill me

Name __

Company ,

Address

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S. funds. Canada

orders $30.00 per year. Outside the U.S., $36.00/year for surface mail or $54.00/year for airr

BID4

COMPUTER

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 PHILADELPHIA. PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA. PA 19101

LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.00 — over 33%

savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost is

only$24.00 for 1 year (12 issues).

D I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $39.00.

□ Payment enclosed D Bill me

Name

Company

Address

City, State, Zip

Please allow 6-8 weeks for delivery of firsi issue. Foreign orders must be prepaid in U.S. funds. Canada

orders $30.00 per year. Outside the U.S., $36.00/year for surface mail or $54.00/year for iil

BID4

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

READER SERVICE CARD

BUSINESS REPLY CARD
FIRST CLASS PEHMIT NO 22481 SAN FHANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

Name

Company.

Addtess

City. Slate. Zip

Countiy. Telephone number.

Please complete these short questions:

1. I obtained this issue through:

LI Subscription n Passed on by associate

r i Computer State [1 Other

D Retail outlet

Dreembet issue. Noi good il mailed atie. Ap.il 30. 1985.

Circle numbers tor which you desire Information.

2 Job Title

3. The 5 languages that I am most interested in reading

about (lis' in order ot importance]

Comments

Aftn: Reader Service Dept.

READER SERVICE CARD

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 224B1 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

Name

Company.

Address

City, Slate. Zip .

Counlry Telephone number.

December issue. Not good il moiled olrer April 30, 1985.

Circle numbers for which you desire Information.

Please complete these short questions:

1. I obtained this Issue through

I I Subscription .. Passed on by associate

LJ Computer Store :J Other

a Retail outlet

2. Joblitle

3. The 5 languages lhal I am most interested in reading

about (list in order ol importance).

Attn; Reader Service Dept. 1/4

uesprte the recent press notices,
multiuser microcomputers aren't

anything new!"

This Is the first In a series of
discussions with Rod Coleman,
President of Stride Micro
(formerly Sage Computer) on

the 68000 multiuser market

and Its current environment.

Q: Why do you say thai?

RC: "The technology to build a
high performance multiuser sys

tem has been around for five

years. And while some of the

leaders in this industry have been

pretending that micro multiuser

didn't exist, we've been shipping

complete systems for nearly throe

years. The benefits of multiuser

are undeniable; it is more cosi ef

fective, and offers greater flexibil

ity and utility. But until just re

cently, the marketing pressure to

be compatible instead of being

better, has blinded the industry."

0: What do you mean?

IC: "Well, for example, the

Motorola 68000 processor intro

duced 16/32-bit technology to the

personal computer world a long

ime ago. It was fully capable of

"A surprising feature is

compatibility. Everybody
talks about it, but nobody
does anything about it."

were clearly inferior from a tech

nical point of view. This phenom

enon leads me to believe that they

will soon rewrite the old proverb:

'Build a better mousetrap and the

world will beat a path to your

door.' but only if they can find the

way through the marketing fog."

Q: Are things changing now?

RC: "Yes and no. With the busi
ness world starting to take more

and more interest in microcompu

ter solutions, the advantages of a

solid multiuser system couldn't be

kept hidden forever: companies

like ours and a few others were

beginning to make a dent. Instead

of taking a fresh approach, some

of the newest multiuser offerings

will probabl> only give the tech

nology an undeserved black eye!

Multiuser is far more than the

ability to plug in more terminals.

It involves things like machine

compatibility, fast processors,

dequate memory, large storage

apacities. backup features, net

working, and operating system

exibility."

Is this what makes the new

tride 400 Series different?

C: "Exactly. That sounds self-
erving. but" it's true. Today a
umber of companies are intro-
ucing their first multiuser sys-

em. We've been building and
hipping multiuser machines for

ilmosi three years. We know the
Htfalls. we've fallen into some of
hem. But we have learned from

our mistakes."

J; Give me some examples.

?C: A hard disk is almost manda
tory for any large multiuser in

stallation. Yet. backing up a hart
disk can be a nightmare if you

only have floppies to work with
That's why we've added a tape

backup option to all the large

Stride 400 Series machines. It's
irresponsible for a manufacture

to market a multiuser system

meeting high performance am

multiuser design requirements it
1980. Instead of this trend taking
off. most energy was spent pro

moting 8088/8086 products tha

'■The marketing pressure

to be compatible

instead of being better,

has blinded the industry."

without such backup. Anothe

sood lesson was bus design. We
started with one of our own de
signs, but learned that it's impor

tant not only to find a bus that i

powerful, but also one that ha
good support and a strong futur
to serve tomorrow's needs. W

think the VMEbus is the only de

sign that meets both criteria and

thus have made it a standard fea-
ure of every Stride 400 Series

lachine."

I; What are some of the other
unique features of the 400 Series'*

IC: "'A surprising feature is com-

jatibiiity. Everybody talks about

t, but nobody does anything

about it. Our systems are com

pletely compatible with each other
Vom "the 420 model starting at'
S29O0. through the 440,on to the

powerful 460" which tops out near
$60,000. Each system can talk to

the others via the standard built-in

local area network. Go ahead and
compare this with others in the in
dustry. You'll find their little ma

chines don't talk to their big ones,

or that the networking and multi
user are incompatible, or that they
have different processors _or

operating systems, and so on."

0: When you were still known as

Sage Computer, you had a reputa

tion for performance, is that still

the case with the new Stride 400

Series?

RC: ■■Certainly, that's our calling
card: "Performance By Design.'
Our new systems are actually fas

ter; our standard processor is a 10
MHz 68000 runnins with no wait

states. That gives us a 25% in

crease over the Sage models.

And. we have a 12 MHz pro

cessor as an option. Let me add

;hat speed isn't the only way to

judge performance. 1 think it is

also measured in our flexibility.

We support a dozen different

operating systems, not just one.

And our systems service a wide

variety of applications from the

garage software developer to the

corporate consumer running high

volume business applications."

J; Isn't that the same thing all

manufacturers say in their ads'.'

RC: "Sure it is. But to use another

over used-term, "shop around".

We like to think of our systems as

"full service 68000 supermicro-

computers." Take a look at every

one else's literature and then

compare. When you examine

cost, performance, flexibility, and

utility, we don't think there's any

one else in the

race. Maybe

that's why we've

shipped and

installed more

multiuser 68000 j
systems than

anyone else."

Fomu'rU Sage Computer

For more information on Stride or

the location of the nearest Stridi.

Dealer call or write us today.
We'll also send you a free copy o

our 32 page product catalog.

Corporate Offices:

4905 Eneruy Way
Reno.NV"89502
(702)322-6868

Regional Offices:

Boston: (617) 229-6868

Dallas: (214) 392-7070

CIRCLE 72 ON READER SERVICE CARD

HERE TOD^
HEtfE TOMORROW

When buying a computer, you can't limit yourself
to just satisfying today's needs. The best value in
a system comes from its productivity ... both for
today and tomorrow. CompuPro's System 816™
computer has that value. With all the power and
capacity to handle your needs now and down

the road.
System 816's longevity stems from top quality

components ... high storage capacity ... the flex
ibility to handle a large variety of applications ...
and the speed to get the job done fast. Upgrading
is easy, and when it's time to expand from single to

multi-user operation, it's as simple as plugging in
boards and adding terminals. Your system grows as

you grow.

CompuPro also provides a library of the most

popular software programs with your system and

because it's CP/lvP based, you have more than

3,000 other programs to choose from.

Even our warranty is for today and tomorrow. It

spans 365 days —and includes the additional se

curity of Xerox Americare™ on-site service nation

wide for designated systems.*

What's more, CompuPro is one company you

can count on to be around tomorrow. For more than
ten years we've been setting industry standards,

increasing productivity and solving problems.
For a free copy of our business computer

buyer's primer, and the location of the Full Service
CompuPro System Center nearest you, call (415)
786-0909 ext. 206.

CompuPro's System 816. The computer that's

just as essential tomorrow as it is today.

omouPro
AGODBOUTCOMPANY

3506 Breakwater Court, Hayward, CA 94545

•Available from Full Service CompuPro System Centers and participating

retailers only.

System 816 and The Essenlial Computer are trademarks of CompuPro.

CP/M is a registered trademark of Digital Research Inc. Americare is a

trademark of Xerox Corporation.

System 816 front panel design shown is available from Full Service

CompuPro System Centers only. ©1984 CompuPro

CIRCLE 12 ON READER SERVICE CARD

