
I
- -=-*■■- -■-<.

EMIER ISSUE

L PUBLICATIONS

LANGUAGE

TOOLS UNDER UNIX

EXPLORING
ADA & MODULA-2

C vs. FORTH
DEBATE

COBOL: PRIDE
AND PREJUDICE

THE FOUNDERS OF BA!
UNVEIL THEIR NEW

STRUCTURED LANGUAGE

WEVE GOT YOUR PACKAGE!!

We offer you the most flexible, cost efficient means of introducing your

programming staff to the Ada Language. You can choose the level of

Support you need, when you need it! These Janus/Ada packages are

customer-tested and available now.. .

(C-Pak) Introductory Janus/Ada Compilers

(D-Pak) Intermediate Janus/Ada Systems

(S-Pak) Advanced Janus/Ada Systems

(P-Pak) Janus/Ada Language Translators

Janus/Ada "Site" Licenses

Janus/Ada Source Code Licenses

Janus/Ada Cross Compilers

Janus/Ada Maintenance Agreements

Coming Soon: New Computer and Operating Systems Coverage

Selected Janus/Ada packages are available from the following:

National Distributors International Distributors

Westico, Inc.

25 Van Zant St.

Norwalk, CT 06855

(203) 853-6880

Soft-Net

5177 Richard, Suite 635

Houston. TX 77056

(713) 933-1828

AOK Computers

816 Easley St.. Suite 615

Silver Springs. MD 20910

(310) 588-8446

Micronix

11 Blackmore St.

Windsor 4030

QLD. Australia

(07) 57 9152

Progesco

155. rut? du Fauburg

St. Denis

75010 Paris

(1) 205-39-47

Trinity Solutions

5340 Thornwood Dr.. Suite 102

San Jose, CA 95123

(408) 226-0170

Compuvieu- Products, Inc.

1955 Pauline Blvd.. Suite 200

Ann Arbor, Ml 48103

(313) 996-1299

Lifeboat of Japan

S- 13-14. Shiba

Minato-Ku

Tokyo 108 Japan

03-456-4101

Copyright !9S:i HK Softtw

OFTWARE, INC. specialists in state of the art programming

P.O. Box 1512 Madison, Wisconsin 53701

(608) 244-6436 TELEX 4998168

CIRCLE 47 ON READER SERVICE CARD

This is THE PASCAL COMPILER

You've Been Hearing About

VERSION 2.0

"It's almost certainly better

than IBM's Pascal for the PC...

Recommended."

Jerry Pournelle

Byte, May 1984

$49.95
"If you don't have CP/M [for

your Apple], Turbo Pascal is

reason enough to buy it."

Gary Hara

Softalk Apple, May 1984

'If you have the slightest interest in Pascal. . . buy it."

Bruce Webster, Softalk IBM, March, 1984

AndNow It's Even Better

Than YouVe Heard!
• Windowing (IBM PC, XT, jr. or true compatibles)

• Color, Sound and Graphics Support (IBM PC, XT, jr. or true compatibles)

• Optional 8087 Support (available at an additional charge)
• Automatic Overlays

• A Full-Screen Editor that's even better than ever

• Full Heap Management—via dispose procedure

• Full Support of Operating System Facilities

• No license fees. You can sell the programs you write with Turbo Pascal without extra cost.

Yes. We still include Microcalc ... the sample spreadsheet written with Turbo Pascal. You can study the
source code to learn how a spreadsheet is written . . . it's right on the disk * And, if you're running Turbo
Pascal with the 8087 option, you'll never have seen a spreadsheet calculate this fast before!
^Except Commodore 64 CP/M.

Order Your Copy of TURBO PASCAL* VERSION 2.0 Today
For VISA and MasterCard orders call toll free: 1-800-227-2400 x968

In California: 1-800-772-2666 x968

_(lmes^open_2^hrs, 7 days a week) Dealer & Distributor Inquiries Welcome 408-438-8400

Choose One (please add $5.00 for ship

ping and handling for U.S. orders. Shipped

UPS)

Turbo Pascal 2.0 $49.95 + $5.00

Turbo Pascal with 8087 support

$89.95 + $5.00

Update (1.0 to 2.0) Must be accom

panied by the original master $29.95

+ $5.00

Update (1.0 to 8087) Must be

accompanied by the original master

$69.95 + $5.00

Check

VISA

Card #: _

Exp. date:

Money Order

Master Card

| BORlflflD
D) INTERNATIONAL

Borland International

4113 Scotts Valley Drive

Scotls Valley. California 95066

TELEX: 172373

My system is: 8 bit 16 bit

Operating System: CP/M 80

CP/M 86 MS DOS PC DOS

Computer:

Disk Format:
Please be jure model number & formal are correct.

Name:

Address:

City/State/Zip:

Telephone:

C20

CIRCLE 4 ON READER SERVICE CARD

California residents add 6% sales lax. Outside U.S.A. add $15.00 (If

outsideol U.S.A. payment must be by bank draft payable in the U.S.

and in U.S. dollars.) Sorry, no C.O.D. or Purchase Orders.

AZTEC C86

Optimized "C" compiler for PC DOS. MS DOS & CP/ M-86

PC DOS, UNIX I; O, math, screen, graphics libraries

8086 assembler, linker S librarian, overlays

'PRO-library source, debug, ROM, MASM & RMAC, 8087, large model

NEW C COMPILERS

AZTEC C68K tor MACINTOSH

VAX cross compilers

C TOOLS & AIDS

Z editor (like Vi), C TUTOR compiler, PHACT database.

C GRAFX. UNI-TOOLS I, QUICK C. BABY BLUE for PC

to CP/M cross, QUADLINK for PC to APPLE cross

AZTEC C II

Optimized "C compiler for CP/M, TRSDOS & LDOS

assembler, linker & librarian, overlays, utilities

UNIX I/O, math & compact libraries

/PRO-library source, ROM, M80& RMAC

AZTEC C65

"C" compiler for APPLE DOS 3.3, Pro DOS or COMMODORE 64

VED editor, SHELL, UNIX & math libraries

/PRO —library source. ROM, overlays

CROSS COMPILERS

Compile & link on HOST-test on TARGET machine

HOSTS: UNIX, PC DOS, CP/M-86, CP. M-80, VENIX. PCIX, APPLE

TARGETS: PC DOS, CP/M-86, CP/M-80, APPLE, RADIO SHACK,

COMMODORE 64, other hosts and targets available

AZTEC CB6 C COMPILER

PC DOS MSDOS

CP/M-86

BOTH

/PRO EXTENSIONS

Z (VI EDITOR)

C TUTOR COMPILER

PHACT DATABASE

C GRAFX

SUPERDRAW

UNI-TOOLS 1

QUICK C

249

249

399

249

125

99

299

99

299

99

125

PRICES

AZTEC CMC COMPILER

CP'M

/PRO EXTENSIONS

TRS 80 MODEL 3

TRS 80 MODEL 4

TRS 80 PRO (3 & 4)

AZTEC C65 C COMPILER

APPLE DOS 3.3

Pro DOS

BOTH

/PRO EXTENSIONS

C TUTOR COMPILER

E EDITOR

QUICK C

199

150

149

199

299

199

199

299

99

99

99

125

AZTEC C CROSS COMPILERS

PDP-11 HOST

PC DOS HOST

CP/M-86 HOST

CP/M-80 HOST

APPLE HOST

■ ^■K^j'v

^^^^^^^

2000

750

750

750

750

MANX SOFTWARE SYSTEMS

Box 55

Shrewsbury, NJ 07701

TELEX: 4995812

TO ORDER OR FOR INFORMATION:

CALL: 800-221-0440 (outside NJ)

201-780-4004 (NJ)

Australia: Blue Sky Industries — 2A BlakBsley St. — Chatswood NSW 2067 — Australia 61-2419-5579

England: TAMSYS LTD - Pilgrim House - 2-6 William SI. - Windsor. Berkshire SL4 1BA - England - Telephone Windsor 56747

Shipping: per compiler next day USA 520, 2 days USA S6, 2 days worldwide S75. Canada $10, airmail outside USA & Canada S20

UNIX is a trademark ot Bell Labs. CP'M, CP' M-80 and CP/M-36 are trademarks ofDRI. PC DOS is a trademark ol IBM. MS DOS is a trademark of MICROSOFT.

N.J. residents add 6% sales tax.

CIRCLE 30 ON READER SERVICE CARD

COMPUTER

LANGUAGE
CL PUBLICATIONS

ARTICLES
COMPUTER

BASIC Becomes a Structured Language
by John G. Kemeny, Thomas E. Kurtz, and Brig Elliott

The founders of the BASIC computing language—John Kemeny and
Tom Kurtz—discuss the past, present, and future of BASIC as a
structured language and their new True BASIC compiler and
interpreter.

Programming in the UNIX Environment
fay Bruce H. Hunter

Languages under UNIX have received much popularity in recent
months. From C to RATFOR to "languages" like yacc, lex, Shell, and
awk, the UNIX language family is unique because each language

communicateseasily with the other UNIX languages, and they all share
a common function base.

Bubble Sort, Insertion Sort, and Quicksort Compared
fay Richard G. Larson

If you've been thinking that Bubble Sort is the only sorting algorithm
available, consider what this author has to say about two more
powerful approaches to sorting data.

Improve Your Programming with Structured Techniques
fay Dr. Joseph B. Rothstein.

20

27
LANGUAGE ,
PROGRAMMING
TOOIS UNDER UMX

EXPLORING
ADUMODULA-;

COBQt: PRIDE
UJP FROUNCE

From a disciplined and well thought out programming methodology
comes a code design that tends to be more organized, reliable, and
maintainable. This approach can help a programmer more clearly focus

on the real problems and solutions involved in a given project.

COBOL: Pride and Prejudice
fay Robert Wagner.

According to this author, "revolutions do not succeed just because they
are technically feasible. Failure of the old system is also required." He
asserts that, while microcomputers and Pascal will probably be around
for a long time, they will not replace mainframes and COBOL until they
both become "senile."

Exploring Ada and Modula-2

fay Namir Clement Sbammas,

32

36

44

Both Ada and Modula-2 have a number of new features and pro
gramming concepts in common, and their syntactic differences are also

interesting to note. Here we take a critical look at both languages from

five separate angles: data types, identifiers, program flow control,
functions and procedures, and exceptions.

51

THE FOUNDERS OF B
UNVEIL THEIR NEW

STRUCTURED LANGUAGE

Editor's Notes

Programmer's News Wire _

Back to the Drawing Board

Designers Debate

DEPARTMENTS

Public Domain Software Review

Exotic Language of the Month Club

ComputerVisions

Software Reviews

Advertising Index

7

9

11

13

61

65

69

71

80

See
Software

Dick is a programmer. Dick is bored.

Harried. Overworked. Dick struggles

with tedious

trace

chores

and
debugging

routines. Non

existent documen

tation. Hidden bugs. Dick

is four months behind schedule

as a result. And customers are

angry when bugs slip through. They

yell and make Dick upset. They

make Dick's boss upset.

Nobody is very happy.

Dick dreams of a different sort of

life. Where he's a programmer hero.

Entertained by his work. Admired for

his skill. Rewarded for his performance.

Now his dreams can come true.

See
Software
Run.

Jane is a happy programmer. She

uses ANIMATOR: It's a unique VISUAL

PROGRAMMING™ aid for MICRO FOCUS™

COBOL.™ It runs on Jane's friendly micro

computer. It makes child's play of test and

debugging tasks.

With ANIMATOR Jane sees a picture

of the program explaining itself. In live

action. In real time. In COBOL source

code. As ANIMATOR displays the program

listing, the cursor tracks the exact exe

cution path. Including subroutine branches.

The view is precise. Compact. Unambiguous.

Jane can have the program run fast.

Or slow. Or stop it. All at the touch of

a key. This makes it easy to spot problems.

Insert fixes. Set breakpoints. Examine

details. Instantly. Because of ANIMATOR'S

sophisticated debugging commands.

ANIMATOR gives Jane more freedom

to innovate too. Her programs are best

sellers. They're delivered on time. With no

hidden bugs. Jane's boss likes this about

Jane. Because he doesn't like customers to

yell at him.

Run,
Software,
Run!
This software vendor just went

public. Because he doubled productivity.

Eliminated bugs. Cut costs. Compressed

development cycles. Produced terrific

applications. Beat the competition to the

market. And customers don't yell at him

anymore. All thanks to ANIMATOR.

See ANIMATOR now.
Let ANIMATOR help speed your

applications to market. ANIMATOR makes

COBOL programs easy to comprehend.

Fun to develop. A snap to maintain. With

out the drudgery, you'll be happier.

You'll do better work. In record time. This

will make you richer. Faster. And your

customers will stand up and cheer.

Write or call for a demo. Or detailed

information. Right now.

MICRO FOCUS
2465 East Bayshore Road, Suite 400

Palo Alto, CA 94303

(415) 856-4161

© 1984 Micro Focus. Ltd. All Rights Reserved

LEVEL II COHOL. ANIMATOR. VISUAL PROGRAMMING. MICRO FOCUS and the

MICRO KOCUS Loj(o are trademarks o(Micro Kocuh Ltd.

CIRCLE 32 ON READER SERVICE CARD

To: Micro Focus

2465 E. Bayshore Rd., Suite 400

Palo Alto, CA 94303

I'd like more information

CL-5/84

Name. Title.

Company.

Address

City_

Phone_

State_ Zip.

We thought about calling it MacSimplex . . .

after all it makes your IBM®PC behave like a

Macintosh™ and much more . . .
and with over two years in the making, the Simplex

Database Management System has features like

32-megabyte virtual memory and the most powerful

networked/relational database in the microcomputer

industry. Simplex was designed around how you

think and the Macintosh way, so that you can use

your favorite mouse to handle those mundane tasks

like menu selection and data manipulation. And, if

you don't have a mouse, you can use our keyboard

mouse simulator. MouSim™.

Pop-up and pull-down menus, dialog and alert boxes

are not just added features, they are the heart of the

Simplex way. In addition, Simplex gives you both a

software and a hardware floating point capability,

each with 19-digit accuracy. It permits login,

password, privilege, and can be used on a local area

network. Simplex has full communications and a

remote or local printer spooler. Above all, Simplex is

modular and grows with you! Simplex also has a

full-featured, English-like language which is simple

to use.

You can't buy Simplex™, but it is now available as an integral part of

it's my Business™ and will be used by it's my Word™, it's my Graphics1'.

Businessmen! it's my Business will revolutionize the

way that you handle your business. It saves time,

money, and standardizes your system for all who use

it. it's my Business comes with applications like

accounting, interoffice or intraoffice mail, editing,

invoicing, inventory managment, mail list, calendar,

scheduler, forms and more. You can modify each of
these to create applications specifically designed for

you... maybe we should have called it "it's your

Business".

Professionals! it's my Business has over 200 pages of

examples and demonstrations to show you how to

solve your everyday professional problems. And if

these examples aren't enough, we give you a

complimentary one-year subscription to Questalk™,

our hands-on Simplex applications magazine.

System integrators and consultants, beware! If you

are not using it's my Business with Simplex to solve

your problems, don't be surprised when more novice

programmers solve that complex math, industrial

engineering, or business problem faster. We think

that you can cut your concept-to-development time

by an order of magnitude!

it's my Business (includes it's my Editor) - $695

it's my Business Demo Disk - $20.00

it'a mil Editor - $100.(10.

00

it's my Editor - $100.00

Quest Research software is available through your local computer slon: nr through mail

order from Quasi Software Corporation a! (205) 539-80fl6. M'i Williams Avunui;.

Huntsvillc. AL 35801.

Value added resollurs and dealers please contact Quest Research. Iiu:nr;]iir.ili'ri at

(800| 558-8OH8. 303 Williams Avenue, Himlsville. AL. 33801.

■TM

Quest Research Inc.

IBM is a registered trademark of International Business Machines. Macintosh is a trademark of Apply Corporation, it's myBumtn*—, it's my Word, it's my Graphic*,

it's my Editor, it's my Horn*. it's my Voice, Jl's my Eor. it's my Statistic!. Simplex. Mou5im. Questalk, and the Quest logo are trademarks of Quest Research, Incorporated.

CIRCLE 45 ON READER SERVICE CARD

Editor's Notes

A
s we present this

premier issue of

^COMPUTER

LANGUAGE, we look ahead with a posi

tive and confident feeling that our new

magazine will fill an important niche in

the programming community.

We believe that for a long time there has

been a real need for a magazine like

COMPUTER LANGUAGE. In fact, during

the past few months we haven't received

just strong support for the magazine's

concept; we've gotten a phenomenal

amount of encouragement in virtually

every area from editorial submissions to

circulation response to advertiser sign

ups. Our main goal is to provide a well

organized monthly magazine that focuses

on the changing issues and trends in com

puter programming.

We hope you'll agree that our premier

issue contains a balanced mix of interest

ing topics. In the magazine as a whole, we

will always strive for breadth. In each

article and department, we will encourage

the author to convey the depth of a given

subject in a clean, organized, and under

standable way. And, to make certain that

COMPUTER LANGUAGE becomes a ser

vant of its readership, the publisher, Carl

Landau, and I have decided to place a

response time period of three months

between this premier issue and the second

issue. In October, COMPUTER LAN-

GUAGE will go monthly, incorporating

all the editorial feedback received from

the premier issue.

One of the things I've enjoyed has

been putting together the COMPUTER

LANGUAGE bulletin board computer sys

tem. By using your computer (or terminal)

and a modem, you can call into our remote

CP/M-based computer at any hour of the

day or night (phone: 415-957-9370) to:

■ Write us an instant Letter to the Editor

■ Download a program listing that was

referred to in the magazine

■ Submit an article you've written that

you'd like us to consider for publication

■ And a lot more . . .

About 70 percent of the material pub

lished in this premier issue was received

electronically through the bulletin board.

Operating with this kind of system allows

us to have a production turn-around

time of three weeks. COMPUTER

LANGUAGE, as a result, will be much

more current than most monthly maga

zines could ever become.

And it's all possible because, as maga

zine publishers, we are in the rare position

of having readers who are able to tele

communicate their material.

Many people have asked us to devote a

department to their own favorite language,

operating system, hardware, etc. But

since our primary goal is to become an

objective technical forum, we've decided

to set up our monthly departments so that

each one serves as a mechanism for focus

ing in on important issues in program

ming, rather than allow a department to

become a soapbox for a particular faction

in the programming community.

In our Back to the Drawing Board de

partment, readers can write in and present

their technical questions, problems, com

plaints, etc. And in our Designers Debate

department you'll find a lively discussion

on controversial issues in programming.

Our Exotic Language ofthe Month Club

department provides the space for a dif

ferent contributing editor each month to

talk about a small language that utilizes

interesting features worth considering.

The Public Domain Software Review is

a very special department. Here, we'll

look into the amazing world of public do

main software and keep you aware of new

programs worth downloading and others

worth avoiding altogether. Also, in our

Programmer's News Wire department you

can keep up to date on the latest com

pilers, utilities, hardware, and conference

proceedings of interest to technical

people. In ComputerVisions, we'll spon

sor an interview with a notable person in

the technical community who will reveal

his or her insights into the future of com

puting.

The publisher and I were both pre

viously involved in a magazine many of

you may have heard of—Dr. Dobb's

Journal. We both appreciate the role this

and other magazines have played in the

evolution of the technical world of per

sonal computing. But Carl and I are not

trying to recreate any past traditions with

COMPUTER LANGUAGE. We simply

want to provide a useful magazine that has

a fresh, clean style.

We started COMPUTER LANGUAGE

without the financial backing of a large

publishing venture, so we must depend on

advertising and subscription income to

make the magazine grow in the coming

months and years. And, to do that,

COMPUTER LANGUAGE has to be more

than just good. It has to be great.

What you read in the pages ahead is the

result of many people's collective, caring

effort. In the back of all of our minds, I

think we've all felt that the programming

community is ready for COMPUTER

LANGUAGE. We're anxious to hear what

you think. . .

COMPUTER

LANGUAGE

Craig LaGrow

Editor

EDITOR
Craig LoGrow

MANAGING EDITOR
Regina Starr Ridley

TECHNICAL EDITOR
John Halamka

EDITORIAL ASSISTANT
Hugh Byrne

CONTRIBUTING EDITORS
Burton Bhavjsyat, Leo Brodie, Ralph Griswold,

Ron Jeffries, Tim Porker, Ken Takara

CIRCULATION COORDINATOR
Renato Sunko

ART DIRECTOR
Jeanne Schacht

COVER DESIGN
Dow & Clement

PRODUCTION
Katherine Monohon

TECHNICAL CONSULTANT
Addison Simms

MARKETING CONSULTANT
Steve Rank

ACCOUNTING MANAGER
Lauren Kalkstein

PUBLISHER
Carl Landau

CL PUBLICATIONS, INC.

COMPUTER LANGUAGE is pub/ished monthly by CL

Publication!, Inc., 131 Towniend St., Son Francisco, CA

94107.(415)957.9353.

Advertising; For information on ad rales, deadlines, and

placement, contact Carl landau, Publisher, at (415)

957-9353, or write to: CL Pub/icotions, 131 Townsend St.,

San Francisco, CA 94)07,

Editorial: Please oddress ail letters and in quiriesfo: Craig

LaGrow, Editor, COMPUTER LANGUAGE, 131 Tbwnsend

St., Son Francisco, CA 94107.

Subscriptions; Contort COMPUTER LANGUAGE, Sub

scriptions Oept., 2443 Fillmore Si., Suite 346, San Fran

cisco, CA 94115. Single copy price: $2.95- Subscription

prices: 524.00 per year (U.S.). Additional postage out

side the U.S.: $12.00 per year surface, $30.00per year

airmail (U.S. currency only). Please allow six weeks for

new subscription service lo begin.

Postal information: Second-class postage rate is pending

at San Francisco, CA and additional mailing offices.

Reprints: Copyright 1984 by CL Publications, Inc. All

rights reserved. Reproduction of material appearing in

COMPUTER LANGUAGE is forbidden without written

Change o! address: Please allow six weeks for change of

address to tokeeflect. POSTMASTER: Sendchongeafad
dress fForm 3579) to COMPUTER LANGUAGE, J3I

TowniendSf., San Francisco, CA 94107.

COMPUTER LANGUAGE magazine is typeset by
Mercury Typography, Inc., Son Francisco, CA, and

printed by Brown Printing Company, Inc., Waseco, MN.

COMPUTER LANGUAGE is a registered trademark
owned by the magazine's parent company, CL Publica

tions. Ail material published in COMPUTER LANGUAGE

is copyrighted © 1984 by Q Publications, Inc.

We're looking
for a few good

ers.

LANOM3E

Computer Language is

written for people who can

program in two or more

computer languages.

Let's face it, that leaves out most

people. Programming is a rigor

ous, intellectual discipline and

Computer Language magazine

is the first and only publication

dedicated exclusively to this field.

Your source for the latest

technical skills and methods

used by software specialists.

We cover the major develop

ments in the software design field,

from theory to implementation.

Computer Language focuses on

the most important and useful

language design information

available in the fast-moving

microcomputer industry.

Written for the person who

takes computing seriously.

We're talking about you — the

experienced software author,

programmer, or engineer who

routinely programs in two or more

high-level languages. A person

who understands the creative

nature of programming and ap

preciates the beauty of efficient

code in action.

COMPUTER

LANGUAGE will constantly

challenge your abilities.

The foremost industry experts will

discuss: ■ Algorithmic Approaches

to Problem Solving ■ Language

Portability Features ■ Compiler

Designs ■ Utilities ■ Artificial

Intelligence ■ Editors - New

Language Syntax ■ Telecommuni

cations ■ Language Selection

Criteria ■ Marketing Your Own

Software • Critical Software &

Hardware Reviews

Plus, columnists and reader

forums that will put you in touch

with the latest developments in

the field.

2443 Fillmore Streel Suite'346

San Francisco, CA 94115

YES! Start my charter subscription to

Computer Language. My 1 year charter

subscription is just S 19.95, a 315 savings

under the single copy price. Guarantee:

I can cancel my subscription at any

time for a full refund.

D $19.95 □ Bill me.

Payment Enclosed

Name

Address

Stale Zip

PROGRAMMER'S NEWS WIRE

M
y goal with this

column is to

Iserveasyour
"designated information junkie." That

means that each month I'll be collecting

tidbils of news about the computer indus

try as it relates to the technical interests

of software authors and systems pro

grammers.

As you are probably already painfully

aware, an immense amount of info gets

published every month about computers

and (he computer industry. This became

clear to me recently when a large consult

ing job kept me away from my reading for

about three weeks. When I returned to

some semblance of sanity (and my office).

I faced a stack of magazines, trade papers,

newsletters, and press releases that was

over five feet tall. None of us can really

keep up wiih the constantly increasing

flow of raw data, but it's a challenge at

least to try.

I look forward to writing this column

because the readers of COMPUTER LAN

GUAGE are likely to be the kind of knowl

edgeable, technical people who enjoy

keeping up with the important issues and

trends in programming and hardware de

sign. Many of you arc dedicated, hard

core personal computer enthusiasts. This

column will include a mixture of news

items and pointers to articles, upcoming

product announcements, conference pro

ceedings, and other sources of informa

tion related to programming and com

puter languages that may be somewhat off

the beaten path—or. should I say "off the

beaten TRAC?"

If you don't find mention of your favor

ite subjects here, take a minute and drop

me a note or, better yet. use the COM-

PUTER LANGUAGE remote CP/M bulle

tin board computer (phone number: (415)

957-9370) to leave me a message. For ex

ample, has anyone out there ever used

Ralph Griswold's ICON (a worthy succes

sor to SNOBOL) on the IBM PC? Maybe

we'll have some answers in A Future Col

umn. I hope you'll use the COMPUTER

LANGUAGE bulletin board to let me know

of interesting news, technical articles in

obscure journals, etc. I can also be con-

By Ron Jeffries

tactcd via The Source (ID CPA025). or

you can telephone me at (805) 967-7167.

Digital Equipment Corp. (DEC) is

working on something called the Micro-

VAX II, a four-chip version of the popular

VAX 11/780 superminicomputer. Alto

gether, the MicroVAX II chip set contains

1,220,550 transistors. DEC has not offi

cially announced a projected delivery date

for the new VAX. but mid-1985 looks

likely. The previous MicroVAX I has been

in production since March 1984. and is

coming off the production line at a rate of

about 250 per month. The MicroVAX II

will have hardware floating point and

should provide about twice the perfor

mance capability of the MicroVAX I. A

stripped down version of the standard

VMS operating system (known as Micro-

VMS) will be offered for both machines.

Although originally due to be released

with the first production MicroVAXs,

MicroVMS has been delayed until the fall

ofl984.

Speaking of delays. Ovation Tech

nologies Inc. has once again delayed the

introduction of its integrated software

package called Ovation. The company's

revised schedule calls for Ovation to be

shipped by mid-October. Two other inte

grated software packages arc being

launched this summer—Symphony by Lo

tus Development and Framework by

Ashton-Tatc Inc.

As an indicator of how competitive the
personal computer software market has

become, consider the case of Leading

Edge Products Inc. When IBM announced

the DisplayWrite I and DisplayWrite II

packages. Leading Edge cut the price of

its word processing package from S295 to

$200. Two weeks later, IBM announced

another scries of inexpensive software for

the PC and the PCjr, including yet another

inexpensive word processor. The next

day. Leading Edge dropped the price of its

word processing program again—this

time to a retail price of only S100.

Expect to see a revised version of the

Apple Macintosh early in 1985. with ex

panded memory and probably 256K to

512Kof RAM. Already selling at a rapid

clip, the enhanced Mac should prove to be

a serious competitor to the IBM PC.

The so-called "Fat Mac" isn't IBM's

only worry. Hewlett-Packard gives every

indication of being deadly serious about

selling a significant number of IBM-

compatible computers. Although the

touch-screen HP-150 hasn't set the world

on fire, the new notebook-size model

called "The Portable" may do much bet

ter. For just under S3,000. the new HP is a

lightweight (under 10 pounds) portable

with a 16-line by 80-column liquid crystal

display. It has the MS-DOS operating sys

tem in ROM as well as the Lotus 1-2-3

spreadsheet, a simple word processor, and

terminal communications. Similar ma

chines arc expected over the next several

months from IBM. Kaypro. and several

other vendors.

COMAL (COMmon Algorithmic Lan

guage) is a little known programming dia

lect of BASIC that is popular in Europe.

Best described as a hybrid of BASIC and

Pascal, COMAL might also be called

"BASIC without tears" (or at least with

out line numbers). COMAL was created

by Borge Christcnscn of Denmark in 1971

when his school purchased a Data General

Nova 1200. Commodore released a public

domain COMAL for the popular C64, but

a more advanced (and proprietary) ver

sion 0.14 is estimated to have over 50,000

users. Although mainly a Commodore

phenomenon so far. COMAL for the Ap

ple and the IBM PC is also under develop

ment. An active COMAL User's Group

USA Ltd.. headed by Len Lindsay, pub

lishes COMAL Today. Issue no. 2 had 36

pages of information about the language

and a number of sample COMAL pro

grams. A subscription to the newsletter is

S14.95 in the U.S. from COMAL Today,

5501 Groveland Terrace, Madison. Wis.

53716.

Q'Nial (Queen's University Nested In

teractive Array Language) is a new lan

guage designed by M.A. Jenkins and

Trcnchard More. Using a model of nested

array data objects, the Nial language bor

rows ideas from APL, Lisp, and struc

tured programming. The Q'Nial inter

preter is written in C and was originally

developed on the UNIX operating system.

It has been ported to a half-dozen other

systems, including the IBM PC and the

IBM 4341 mainframe. While running a

Q'Nial program you can call UNIX util

ities to create or modify files lhat can then

be processed by Q'Nial. For more infor

mation, contact Nial Systems Ltd.. Box

2128, Kingston, Ont.. Canada K7L 5J8.

(613)549-1432.

When the IBM XT/370 was announced

last fall, few people realized that most of

the technical background on the inexpen

sive implementation of the 370 architec

ture had been published over a year ear

lier. In the July 1982 issue of the IBM

Journal ofResearch & Development (Vol.

26, No. 4. pp. 401-412) an article written

by P.W Agnew and A.S. Kellerman titled

"Microprocessor implementation of

mainframe processors by means of archi

tecture partitioning" appeared. The au

thors outlined seven approaches for im

plementing a complex architecture using

large-scale integrated circuit technology.

Even though the XT/370 cat is out of the

bag. the article still makes for good read

ing since it covers other alternative solu

tions in enough detail to let the reader

speculate about other low-end Systcm/370

implementations IBM may be developing.

If nothing else, the concluding sentence is

intriguing, " . . . the 10-year trend of im

plementing successively higher-level ar

chitectures within a single micro

processor chip should be continued to and

then beyond the architecture levels imple

mented by today's mainframes."

General Electric has developed a con

trast enhancement technique using a

photo-bleachable dye coating that is ap

plied to semiconductor wafers at the be

ginning of the fabrication cycle. By using

the coating. GE researchers have made

experimental chips with tine widths of 0.4

micron, using commercial optical

projection equipment known as a "stepper

aligner." This is about half the line width

that can be produced with this equipment

without the coating.

Digital Research and Softech Micro

systems have decided to adapt their oper

ating systems to the popular PC-DOS

from IBM/Microsoft. By mid-summer.

Softech plans to allow p-System applica

tions to execute within a PC-DOS or MS-

DOS environment. PC-DOS will act as a

"host." with the p-System running as an

application (only this particular applica

tion will just happen to be an operating

system). This will allow software devel

oped originally for the p-System to run

under the much more popular PC-DOS.

Digital Research has taken a different ap

proach with what they call the "Concur

rent PC-DOS" operating system. This re

incarnation of Concurrent CP/M can run

up to four PC-DOS or CP/M programs at

onetime. It requires a minimum of 256K

of memory, although 512K and a hard disk

are recommended for maximum effi

ciency. This multitasking capability is not

yet available with the standard Microsoft

DOS. The new operating system will be

released in the third quarter and will cost

S295.

US Software offers single and double

precision floating point software using the

IEEE K-C-S draft standard. The package

is available in source code for six pro

cessors (8086. 8051. 8085. Z80. 6809.

and 68000). The same folks also make a

small, efficient multitasking kernel which

is also sold with full source code. For

more information, contact them at 5470

N.W. Innisbrook Place. Portland. Ore.

97229,(503)645-5043.

Two good new magazines are out that

you should know about. UNIX/World is a

glossy, nice-looking journal devoted to the

UNIX operating system. They get points

in their first issue for running a long satir

ical piece by Brian Boyle which pokes fun

at UNIX. They have an impressive stable

of writers who are knowledgeable ahout

UNIX. Subscriptions are $18 a year from

Tech Valley Publishing. 289 South San

Antonio Road, Los Altos. Calif. 94022.

Another worthwhile new publication is

IEEE Software. It has the editorial look

and feel of its respected sister magazine

Computer. Definitely aimed at software

professionals, this quality magazine is full

of outstanding articles and is carefully ed

ited. It is published quarterly by the IEEE

Computer Society. 10662 Los Vaqucros

Circle. Los Alamitos. Calif. 90720 and

costs $10 to IEEE members.

Trilogy Ltd. has abandoned its goal of

producing a powerful computer com

patible with IBM mainframes. Trilogy's

strategy was to integrate a large number

of chips on a single 2.5-in. diameter sil

icon wafer. For example, a complete

IBM-compatible mainframe CPU was

supposed to be fabricated on only nine

wafers! However, because of technical

problems with the wafer-scale integra

tion, the delivery date for the completed

Trilogy system was missed several times.

Ultimately, the deiays pushed the

projected availability of the new system so

far into the future that it seemed unlikely

that the Trilogy computer would be com

petitive with new products expected from

IBM. The company now plans to continue

its development of wafer integration, and

may decide to build a less-ambitious com

puter using the wafer components. Gene

Amdahl founded Trilogy in 1980 after

leaving Amdahl Corp.—another IBM

plug-compatible company he started after

leaving IBM. where he was the chief ar

chitect for the IBM System 360.

Jack Tramiel, former head of Com

modore, is starting a new firm called

Tramiel Technology Ltd., or "TTL" for

short. He has attracted several former

Commodore employees as well as his two

sons and his brother to the new company.

Rumor has it that they may be planning a

personal computer based on the National

16032 chip.

The Sinclair QL S500 68008-based

machine may be available in the U.S. by

late 1984. This all-in-one computer has

128KB of RAM, two tiny tape drives

which store 100KB each (worst-case ac

cess is seven seconds), and a single-user,

multitasking operating system. BASIC

programs are stored as ASCII files (i.e.

they arc not tokenized). This means a pro

gram can create another program on tape

and then execute it. However, at the Sum

mer CES, the BASIC had very slow

benchmark timings, taking 19.5 seconds

to run a FOR loop from 1 to 10.000.

Well that's it for now. Drop me a line

when you can! ■■

10 COMPUTER LANGUAGE* PREMIER ISSUE 198d

SSBACK
TO THE
DRAWING BOARD

.roblcm solving

:- by reader feed-

\\\\\V ■ back is what this

column is all about. Back to the Drawing

Board is your link to the world of COM

PUTER LANGUAGE and its readers. This

column is meant for you. It's your way to

communicate to a vast group of computer

programming people and to help others by

solving their difficulties.

We want to help overcome the per

plexing problems caused by the lack of

knowledge. But we're not about to try

providing such information the same way

other magazines do. They set up one per

son as the "expert" who tries to find an

swers about anything and everything

asked. We consider that to be a practically

impossible task.

This is a reader participation column.

Each month we will discuss a series of

good questions that have been posed by

our readers. And for the previous month's

problems, we will provide the solutions

that arc sent in by our readers—i.e., you.

When you sec a problem that you think

you can resolve, please share your knowl

edge. If you have questions that are

begging to be answered, please feel free

to ask.

There is no limit to the definition of

"problem" either. Problems may range

from hassles with a specific piece of soft

ware all the way up to gripes about the

computer industry in general. And if you

feel the need to air an opinion that could

be considered controversial, don't be

afraid to express yourself. We are only

biased in favor of one group—the readers

of COMPUTER LANGUAGE.

A large percentage of our readers are

well educated (many are Ph.D.'s). fluent

in computer languages, quite experienced

(anywhere from 2 to 30 years), and vastly

opinionated —not to mention friendly,

knowledgeable, and willing to help.

Each month in Back to the Drawing

Board we'll consider issues raised by such

readers. This issue's column is your invi

tation to participate in a lively and inform

ative dialogue.

Since this is the premier issue, we don't

have much feedback—yet—but we do

have the results from a survey of repre

sentative members of the professional

technical community. You will be happy

to know that the world is not made up

entirely of anxiety-ridden, neophyte

computer hobbyists sitting intimidated in

front of their screens as the majority of

glossy magazines on the newsstands

would have you believe. An enormous

number of competent and qualified com

puter people exist—they are the target of

this magazine.

We asked some of them their views

on the idea behind COMPUTER

LANGUAGE, and we got some very

interesting replies.

Richard Larson of Oak Park, III.,

wrote. "It's a bit horrifying to sec yet

another computer magazine appearing—

worse yet. a possibly interesting one."

Linda Wilson of Billerica, Mass.,

expressed the opinion of most of the

respondents. '"Your magazine has the po

tential to fill a substantial information gap

among existing computer publications."

Similarly, Juan A. Navarro of McLean,

Va., said. "This magazine is a much

needed service for the professional com

puter person who wishes to avoid the hype

associated with currently available publi

cations (except fora few). I am willing to

be involved."

'hen analyzing

our survey re

sponses, we

were pleased to discover that what the

readers of COMPUTER LANGUAGE are

hoping to see is just what we want to pro

vide. If you know something about the

topics on the following list, which was

compiled from survey suggestions, please

consider sharing your knowledge with our

readers. Each item is credited to one

source (as will be our practice), but the

desire to see each of the topics covered in

the pages of COMPUTER LANGUAGE

was widespread. We hope that the list ex

cites you as much as it does us.

Loren Amelang, of Philo. Calif., feels

"hardware handshaking is a much

neglected subject" and advises, "Don't

get too caught up in the 16-bit hype; the

Z80 still docs more work of more kinds

and often does it faster."

By Burton Bhavisyat

Not everyone agrees with that one.

Do-While Jones of Ridgecrest. Calif.,

says, "Now everybody seems to be inter

ested in the IBM PC. and nobody talks

about CP/M-80 anymore ... I doubt that

I will write any more CP/M articles."

Anton Dovydaitis. Santa Cruz. Calif.,

would like to see discussions on 68000

assembly, programming icons, and win

dows, plus good searching and sorting

techniques.

Ronald Gutman, San Jose, Calif., is

hoping for an article about choosing sym

bolic names to improve programming

productivity.

Marlin Meier, Mayficld Heights. Ohio,

is intersted in a C library with specific

functions dedicated to compiler writing.

Now [here's an idea that could be ex

panded upon any number of ways: stan

dard libraries designed for standard ge

neric applications would certainly make a

programmer's life easier.

Richard Rodman. Falls Church. Va..

expressed his desire for articles on CP/M

BIOS modification and construction.

This would fit in nicely under the general

topic of operating systems: design and

customization.

A number of good topics for discussion

were brought up by George F. Reeves,

Decatur. Ga., who wrote that his interests

included "random access techniques for

files, algorithms for computing, sorting

techniques, development of macro librar

ies and their use. communications proto

cols, customization of CP/M's BIOS,

multiprocessing techniques, software

protection and encryption, and data

compression."

Database management. B-trees, and

file handlers arc areas of concern for

Chris Deppe, Woodland Hills. Calif.

On the subjects of artificial intelligence

and expert systems, which we arc anx

iously waiting to read about. John E.

Staneff Jr.. Ellcnsburg, Wash., states,

"Even the most complicated algorithms

based on post-doctoral mathematics

11

Software

Development

PCDOS/MSDOS

Complete C Compiler
• Full C per K&R

• Inline 8087 or Assembler Floating

Point, Auto Select of 8087

• Full 1 Mb Addressing for Code or

Data

• Transcendental Functions

• ROMableCode

• Register Variables

• Supports Inline Assembler Code

MSDOS 1.1/2.0

Library Support
• All functions from K&R

• All DOS 2.0 Functions

• Auto Select of 1.1 or 2.0

• Program Chaining Using Exec

• Environment Available to Main

c-window™

Symbolic Debugger
• Source Code Display

• Variable Display & Alteration

Using C Expressions

• Automatic Commands

• Multiple Breakpoints by Function

& Line Number

8088/8086 Assembler
• FAST— Up to 4 times Faster than

IBM Assembler

• Standard Intel Mnemonics

• Compatible with MSDOS Linker

• Supports Full Memory Model

8088 Software Development

Package

$ 19900

Includes: C Compiler/Library,

c-window, and Assembler, plus

Source Code for c-systems Print

Utility

c-

P.O. Box 3253

Fullerton.CA 92634

714-637-5362

12 CIRCLE 14 ON READER SERVICE CARD

should be able to be expressed in com

mon English."

"Of grealcsl interest are communica

tions programs and/or software and hard

ware thai will allow dissimilar equipment

to exchange data files," notes Charles

Ballinger. Spokane. Wash.

A question asked (and answered) by

Paul Gans, New York, N.Y., is. "Do we

need a high-level graphics language that

interfaces to suitable graphics drivers?

You bet we do. and DRI's GSX is not

the answer!"

JohnSynde. Finksburg, Md.. is "inter

ested in application requirements and pro

gramming techniques which influence

language, e.g., recursion, structured

code, matrix manipulation, artificial in

telligence, graphics, etc."

Thai was a list of some specific ideas

that readers hope will be treated by COM

PUTER LANGUAGE. Equally evident in

our survey was that programming profes

sionals tend to be quite opinionated. Here

are some viewpoints that have been ex

pressed about the future content of

COMPUTER LANGUAGE:

Lawrence Hughs, Tallahassee, Fla.,

writes. "Try not to get hopelessly lost in

trendy issues like Ada and Forth. Stick to

hard-core stuff."

Morton Kaplon. Pomona. N.Y.. says,

"It might be interesting to survey readers

to elicit what they think would be useful

benchmarks for a variety of programs."

Professor David Ross of the University

of Iowa says he would really be interested

in seeing an article, collection of articles,

or monthly column on programming aes

thetics. "Such an article would include

discussions and examples of programs

whose elegance and all-around Tightness

arc entirely self-evident." notes Ross.

"Most experienced programmers have. I

believe, a sense of this sort of aesthetics."

He also suggests "the magazine should

keep an eye on others which intersect it in

content and either cross-reference or re

peat in condensed form the material con

tained therein." Ross adds. "I hope the

magazine flies, especially now that Byre

has abandoned programmers in favor of

salesclerks."

A
significant num

ber of writers

icxpresscd the

ideas of Richard Rodman, Falls Church.

Va., who says. "People who write soft

ware for micros should not be so short

sighted as to think that the IBM PC and

suchlike machines arc anything more than

slighty faster turtles. Computer manufac

turers are now so 'consumesmcrized' that

they are turning out sizzle without con

tents, e.g., Macintosh—cutesy and use

less. Someday the infantile computer

industry will realize the need for a

machine-wide interchange standard for

media, from 37O*S to Cray-1's to SEL's to

PDP-1 I's . . . but as long as they arc

applauded for incompatibility, it'll

never happen—we'll be drowned in a

sea of unsupported and incompatible

glitter boxes."

If that one warmed your blood a little.

let's consider an essay written by some

one who sounds very familiar. One of

the most fascinating replies to our survey

was submitted by Dan Daetwyler. Spring-

dale. Ariz.

"I'm a graduate physicist that drifted,

early on. into data processing. I have well

over 20 years of experience . . . and have

used about 30 different languages. From

your comments. I'm not sure if you intend

to publish programs as well as articles. If

you do plan to publish source code and

can beat the size problem. I've several I

would release for publication. Frankly.

I'm a bit skeptical ... as soon as a pro

gram becomes large enough to be inter

esting, it becomes too large for publica

tion . . . I'm an assembler'bigot'and find

the debates (never ending) about which

compiler is better than best a bit boring.

Some year we'll learn lhat language is

almost totally an emotional issue. Some

minds work well in one language and not

in another. To admit thai the reason I don't

like a particular compiler is because I

don't think lhat way is to admit that my

mind is limited! Heavens!"

Daciwylcrgoes on to state. "I spell cat

with a "K" (thank God for Word Proof),

enjoy writing programs, and don't partic

ularly enjoy writing documentation but al

ways manage to get it done. I'm half of an

electronics engineer, and I'm not the

world's greatest/fastest programmer. I've

known at least two guys who were better.

But not three. I have, as you will have

clearly noted, a particular turn of phrase

that does not lend itself well to formal

writing. I do usually manage to communi

cate. Usually by sheer verbosity . . .

Yeah. I'm retired ... the world just

doesn't believe it yet."

The final note of the month comes from

Roland Bcander. San Rafael. Calif., who

expressed the sentiments most computer

professionals have toward COMPUTER

LANGUAGE, "I am hoping that your

magazine can become a forum for all of

the issues to get kicked about and argued,

and a place for some sanity to emerge!"

-Readers?? H

DESIGNERS DEBATE

Forth Vs. C

Programming is a curious activity. On the

one hand, it is a discipline of logic, both

formal and practical. On the other hand,

it is wracked by controversy over such

topics as language preference, operating

system environment, microprocessors,

and techniques.

Perhaps it is a peculiarity of human

nature that every possible topic has its

adamant supporters and equally deter

mined detractors. In any event, it is to this

human trait that this column is devoied.

Each month, we will explore some

realm of contention in the software world,

considering such areas as ideal operating

system environments, "universal" lan

guages, or micros vs. mainframes.

The field is broad, and everything is

fair game.

If you have a topic that you want to

bring into the arena, send us a letter or

give us a call. You might have the oppor

tunity to take the stand. And let us know if

you think you can add to a topic that was

presented here, for it is dissension that

keeps this field alive and healthy.

This month, we present a discussion on

the relative strengths and weaknesses of

the two languages—C and Forth.

Both languages are in use in the mini-

and microcomputer industry for systems

development. Each has its own following

of devoted (and sometimes fierce) pro

ponents who proclaim the advantages of

their chosen language with such fervor

that one who is not initiated into the inner

circle might wonder about the sanity of

these programmers.

For this discussion, we are indebted to

Edward Elhauge, Forth proponent, and to

Russ Innes, C advocate. Both are software

engineers, have experience with the lan

guages, and are reasonably sane.

Forth and C are systems development

languages—that is. they are generally

used at a level very close to the machine

for the purpose of building sysiem util

ities. In contrast, many other high-level

languages such as Pascal, COBOL, or

FORTRAN are used to build machine-

independent applications. For this reason,

a programmer may be expected to have a

considerable knowledge of the machine or

of the system architecture in order to use

the language most effectively. This again

is in opposition to the other high-level lan

guages, which try to hide the machine

from the programmer in order to achieve

machine independence.

These languages are characterized by

weak or nonexistent data typing, as op

posed to the strong data typing provided

by a language like Pascal. The data types

available are relatively simple and un

sophisticated and interface fairly easily

with assembly language routines. Error

checking during execution may be

minimized in order to improve execu

tion speed.

Weak data typing allows the program

mer to view a variable in nearly any way

he or she desires. For example, the same

variable might be used as an integer in one

part of the program and as a pointer (ad

dress) elsewhere. At the systems level,

the programmer is often interested in the

actual nature of the data being manipu

lated. Thus, sophisticated data types that

hide the exact implementation ofsome in

formation or data structure are absent.

The exact implementation of such things

as BOOLEAN types (provided by other

high-level languages) are left up to the

programmer in Forth or C.

Generally, the kinds of programs writ

ten in these languages include system util

ities, support routines, or real-time and

control programs. They reduce the need

to program exclusively in assembler by

providing a combination of the high-level

language's expressiveness and the assem

bler's explicitness.

C was developed at Bell Labs by Dennis

Ritchie for use on the DEC PDP-11 mini

computer. Many of the operations avail

able, in fact, directly correspond to PDP-

11 machine instructions. For example, the

operator " + +" is equivalent to the ma

chine instructions, "fetch then increment

the variable", or. "increment the variable

then fetch". You might consider C to be a

medium- to high-level implementation of

PDP-11 assembler. Its syntactic similarity

to Pascal makes it very easy to read as

well as to learn.

By Ken Takara

Forth was developed by Charles Moore

at the National Radio Astronomy Obser

vatory as a language for developing tele

scopic device-control programs. The lan

guage allows you to write programs by

creating "words" that each perform a cer

tain basic function. For example, you

might create a word called TURN-

MOTOR, which turns the telescope's drive

motor. This, along with other words,

would be used to define a high-level word

such as POINT-TELESCOPE, which per

forms each of the functions necessary to

position the telescope to point to a particu

lar celestial coordinate.

What kind of ap-

I plication would

. you use C for?

And what might be considered a difficult

task to implement in C?

A
Innes: People

use C for things

. like system

utilities, where you need to perform prim

itive operations, such as manipulations on

bits, registers, or machine-dependent

memory locations. C's set of operators

are similar to the PDP-11 machine in

struction set. It's like a high-level assem

bly language, so you can use it in place of

an assembler. The UNIX operating sys

tem developed at Bell Labs was written

inC.

Combined with the appropriate oper

ating system, you could use C for real

time applications. Unlike Forth, C is a

compiled language. It runs much faster

and can respond very quickly to a con

stantly changing environment. Most real

time operating systems take care of

multitasking and will coordinate commu

nications for you. and you can use these

directly from C. Forth is less portable

since it provides its own system, so you

can't take advantage of existing systems

that offer more efficient utilities fordoing

these things.

You probably wouldn't want to write

business applications where complex data

13

structures are used, especially when there

are languages like COBOL or RPG that

handle those problems much better. C

lacks sophisticated string handling capa

bilities and BCD (binary coded decimal).

and its file access methods are relatively

primitive. All of these things are fre

quently used for business work.

How about

1 Forth? Where is

it best used, and

what would be considered difficult to do

in this language?

Elhauge: Forth

is good for writ

ing control pro

grams and real-time applications, which

is the sort of thing it was designed for.

With Forth you can easily manipulate

small pieces of the program directly from

the keyboard, without having to write spe

cial drivers for them. For instance, you

could test the word that moves one motor

on a robot. Or. if you wanted to monitor

the effect of an interrupt handler or a spe

cific task in a multitasking environment,

you could easily do so without having to

link any special modules. You can track

problems while the program is running

without halting it.

One of the hot things in business pro

grams today is something called the "inte

grated environment." Forth is such an en

vironment. You could build a set of

business applications in Forth, and they

will be able to communicate with each

other. You simply compile the applica

tions you want.

Of course, most business people find

Reverse Polish notation a bit awkward.

and the lack of string variables and real

numbers make it far from ideal. You could

do it. but it wouldn't be easy.

Can you de

scribe some of

C's strengths?

Innes: C is both

modular and

structured. You

can save object modules in a library and

link them when needed. You can also

make forward references—unlike Forth

or Pascal, which require you to define

everything before using it. Unfortunately,

C doesn't let you nest subroutine defini

tions as Pascal does. They're all global,

and that can be irritating when you want to

restrict functions.

Unlike Forth. C is a compiled lan

guage. Where Forth"s interpreter has to

search down a linked list, C generates

direct machine instructions, which make

things go much faster in general. Since it

is so close to assembler, you can use a

number of operators that take advantage

of machine-level functions to improve

speed. In C, for example, the statement

x =>■+ + means

X:=y;

When the operator + + follows the vari

able, it returns the value of the variable

prior to incrementing. Alternatively,

when it precedes the variable, it is in

cremented before returning the value.

This reflects operations available at the

machine level. Theoperator + = is an

other example of a machine-level instruc

tion in C. It generates a machine instruc

tion of the form INCR address,value.

You can also specify register

variables—that is. you can tell C that a

variable should refer to a register, which

is useful for loop counters. I suppose they

did this to avoid having to write an opti

mizing compiler, which structures the

generated code for you in the most effi

cient manner.

C has local variables, which Forth does

not. The set of variables associated with

the current subroutine call is dynamically

allocated on a stack, so you can handle re

cursive functions easily. Also, unlike

Forth, C works with subroutine parame

ters by name rather than by manipulating

a stack. This makes C code much more

readable since you can quickly see the

underlying algorithm.

What are some

of Forth*s

strengths?

Elhauge: Forth

is an extensible

language. In

most other languages, you would write

subroutines that you call and extend in

that way. But you can't actually make

these new things an integral part of the

language. In Forth, if you define a new

word, you have added a new keyword

to its vocabulary. (Listing 1 is an example

of a few words from a Forth glossary.)

This is how you program in Forth—by

extending the language as you go. That's

why you don't have all the functions that

other languages provide for you. You

build the ones you need.

Since Forth is based on a stack, the

most natural way to handle expressions is

in Reverse Polish (also called postfix) no

tation. With the standard prefix or inllix

notation, the compiler or interpreter has

to check ahead and evaluate the arguments

used by an operator and then verify that

the arguments are correct for that operator.

In Reverse Polish notation, if an argu

ment is an expression, that expression

will already be evaluated by the time the

operator that needs them is reached. In

fact, compilers often convert the infix or

prefix expression to Reverse Polish no

tation while parsing.

You write Forth programs by defining

new words. These may be functions, vari

ables, or constants. Since Forth builds all

its words in a uniform manner, once

you've examined the structures of all

these words, you see that they all function

in the same way. Because of this, you can

actually create new data types such as n-

dimensional arrays or string variables and

add them to the language.

14 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

Could you men

tion program

ming styles in C?

Innes: C is a

nice language to

.program in. For

one thing, expressions arc written in nor

mal algebraic form. C has a limited

macro-like facility—really a text replace

ment function. You can also include

source files from a library. Using this fea

ture, you don't have to rewrite frequently

used routines.

Ccode looks a lot like Pascal, so if you

know that language you'll find that C is

very readable (printed here as Listing 2

and also available on the COMPUTER

LANGUAGE bulletin board computer:

(415) 957-9370). Of course, all the pro

gramming tricks that C gives you might

encourage you to write some very obscure

code, but you can abuse any language.

C is closely related to UNIX since it

was originally developed to create UNIX.

The UNIX operating system provides task

communication using "pipes." A task can

send data or messages to another task via

these pipes. This protects tasks from inad

vertently destroying each other while

writing in another task's space.

A good part of C programming involves

calls to the system to perform various

tasks. Also, the system includes numer

ous libraries of small routines, programs,

and other packages that can be called.

There are many good packages available,

including system utilities for doing disk-

file management and full-scale relational

data bases. So you don't necessarily need

to write everything in C when you need it.

The idea is to call upon the resources of

existing software to help you out rather

than develop it all each time you need it.

How about

Forth program

ming styles?

Elhaugc:In

Forth, the idea

.is to factor a

routine into its functional subroutines.

then factor each of these until you reach a

ROT (a b c — b c a)

Remove the third item on the stack and put it on top.

"rote"

RP! (—)

Clear the return stack by re-setting it to the

address held in the variable, R0 . "r-p-store"

(Description)

A "glossary" is the Forth programmer's language

reference and. consists of a list of available words in

alphabetical order, and gives the word, a stack picture,

explanation, and, in some cases, pronunciation. The stack

picture shows the state of the stack on entry to the word to

the left of the "—" and its state on exit to the left. The

stack is read from left to right, with the lowest relevant

item to the left. Note that Forth words may contain any

characters except the "blank," which is used as the token

delimiter. You could even define numbers as Forth words.

In fact, certain values such as "0" are defined as constants

in the Forth dictionary.

Listing 1.

/* Include files for time routines */

#include <stdio>

#include <ssdef>

*

*/

TIME NONE - No timeout on clock

time_wait() /* Function returns integer, no argruments

passed */

int status; /* To return status of call */

if (TimeStatus == TIME_RUNNING)

sys$waitfr(TIME_EF);

status = TIME_0K;

else

status = TIMEJJONE;

return (status);

Listing 2. continued

15

primitive level. Then you code starting

with the primitives and work your way up.

One aspect of Forth is that it's quite terse.

You like to keep the size of each routine

small. You also need to use a lot of com

ments because of its brevity.

Forth doesn't use disk files. The disk is

organized into "screens," where each

screen is 1,024 bytes long and arranged

into 16 lines of 64 characters each. You

are required to fit definitions into these

blocks so that no definition is more than

one block long. But you often find your

self trying to cram your code to fit the

screen limitations, and this can impair

readability (printed here as Listing 3 and

also available on the COMPUTER

LANGVAGEbu\\c\\n board service).

What kinds of

problems do you

find with C?

Innes: Well, the

terse symbols

, that make coding

fast can encourage some people to write

unreadable code. This is true if you use

some of the tricks provided. For example.

an expression \\kca=b++/n+ + is re

ally cryptic. C's string functions arc lim

ited; it lacks some of the sophisticated

data structures that other languages offer

and its file access methods are primitive.

Also, if you have all the libraries you

would want, it requires a large chunk of

disk space. However, it is well-supported

and easily portable, which are important

in software development.

What sort of

problems do you

see with Forth?

Elhauge: Forth

has a serious

Jack of standard

utilities. The attitude is, "If you need it,

build it." This leads to a certain amount of

duplicated effort. Some utilities are avail

able, but they are distributed as source,

and may require modification to make it

run on your system because of slight dif-

(Description)

This example shows a function written in C that returns

integer values. In C, all arguments are passed by value.

In order to pass by reference, you have to actually pass the

address as a value. The symbols "{" and ")" (braces) are

used to delimit a begin...end block. Comments are delimited

using "/*" and "*/" in a manner similar to PL/I. Note that

"«" is used for assignment while "==" is the comparison

operation. Note also that C is case sensitive. Thus, the

name TimeStatus is different from timestatus or TIMESTATUS.

The #include and Idefine words are used by the C

preprocessor. The former indicates that source code is to

be included from a library, while the latter performs a

global replacement of the first string by the second string.

The line numbers are added by the compiler on the listing

only. The functions beginning sys$... are calls to the VMS

operating system and are not a part of C.

Listing 2.

(Pseudo-code description)

Routine alpha__quick__sort (low_index, high_index)

if low_index = high_index then return endif

if low_index = prev(high_index) then

call sort2(low_index, high_index)

endif;

partition_index := alpha_partition(low_index, high_index);

call alpha_quick_sort(low_index, partition__index);

call alpha_quick_sort(next(partition_index), high_index));

return;

(Forth program)

Screen # 10001

0 : alpha-quick-sort (low-addr high-addr — : Sort strings)

1 over over >= (are addresses equal?)

2 if drop drop exit then (don't sort a singleton)

3

Listing 3.

16 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

ew Release 1.8 - SOLID GOLD

CodeSmith -86
B fabcode C

T

m i u

Also runs on some IBM-PC Compatibles

2001:0000

2001:0001

2001:0004

2001:0007

2001:OOOC

2001:OOOE

2001:0011

2001:0013

2001:0015

2001:0015

2001:0019

2001:001B

53

9BDEC2

BB3100

803E5E-

7305

BB0100

EB02
m

F2AB [i

8OADB3-

240C

45

■DOsIvERSION.NUM
19B4:0050

1984:0060

1984:0070

1984:O0BO

41 53

20 2D

20 4D

20 41

5B3

Bm

43 49

2D 20

41 4B

20 42

HL■vn

IQJNI

TRASIi_n

i

\\n rt

r^H^I illlu IH

FADDP

MOV

CMP

JAE

MOV

JMP

': REPNZ

HL

AX 80861 |SP-eO87| IsS 19831
BX DOOoi Ibp-ODDoI Ins 19841
lui^B'l'l'liJ PI^BJlilUJ IK»^3tiIiH

liaaMTii

BX ;TAG A LINE

ST(2],ST

BX.Dffset VECTOR_TABLE_2

D0S_UERSI0N_NUM,2' BREAKPOINT SET

TRASH.IT

BX.Dffset VECTOR_TABLE_1

Short LONG_LA8ELS_ARE_0K_AS_Y0U_LIKE

STOSW ;STOP 777th TIME

LONG LABELS_ARE_QK_AS_YOU_UKE:

EMOR

49

43

45

4C

Y (J

20

6F

53

41

LIVIP

53

64

20

53

LEA

AND

DB
m

BP.WIERD_CDDE + 2 [Dll

AL.00011100B ;CHANGE RADIX

Absolute Address 03C9E Segment Offset—Q3C4 D05E

55-50 50

B5-53 BD

44-45 42

54-21 20

/IF

69

55

20

74 6B 2D 38 36 - CodeSmith-BB

47 47 49 4E 47 MAKES DEBUGGING

20 20 20 20 20 A BLAST!

It's here-THE Multi-Window Interactive Debugger that's STATE-OF-THE-ART.

• Scroll Up/Down thru full-screen disassemblies & memory dumps

• Load and Write Commands much easier, more powerful than DEBUG's

• "Snapshot" a complete debugging state onto disk-resume later

• True passpoints and execution path counters

SCREENSAVE mode saves and restores user's graphic display when breakpoint hit

* Disassemble selected ranges ofmemory code to disk—compatible with IBM Assembler

Stop on data Read/Write or memory range access

Hot-

The

Line technical support

Professional's Choice—CodeSmWi-86
Multiple copies purchased by:

Lotus Development Corp., MicroPro, VisiCorp, IBM.

Requires MS-DOS & 160K RAM.

OEM and dealer inquiries invited.

VISUflL RG€

642 N. Larchmont Blvd. • Los Angeles, CA 90004

CIRCLE 54 ON READER SERVICE CARD
CWcStnhli.TM International AiratiRvmtma. Inc.

MS.TM Mienixid Corp.

1IIM.TM Inlenuuloni] Business MachinesDap,

4 dup 3 pick - (diff. between high and low)

5 word-length = (two items?)

6 if alpha-sort2 exit then (routine to sort two)

ferences between versions of Forth.

The disk access scheme is a pain. It's

been called "virtual storage," but it's

more like "cache with least-recently-used

replacement." The lack of a standard fil

ing system and communications protocol

makes it difficult to transmit data from

one system to another. The screen limi

tation makes it inconvenient to write read

able code.

For real-time work, for which Forth is

best suited, a priority-encoded multi

tasking system would be desirable.

So, given all this, which language is

better? Which should you use? On the one

hand, C provides you with a fast, com

piled language, a wealth of utilities to

draw upon, and a standard, familiar syn

tax. On the other hand. Forth gives you

total, immediate control of ihe machine

and complete extensibility.

How would I select? I would try using

both languages, learn them both, and try

to use them for some simple tasks. Then,

in the time-honored tradition of computer

science, I would arbitrarily elect to use

the one that appealed to me most at

the time.

The best way to learn any language is

by using it. However, if you wish to read

more about C, there arc numerous books

available, starting with The CProgram

ming Language by Brian Kernighan and

Dennis Ritchie, published by Prentice-

Hall (ISBN 0-13-110163-3). The standard

for Forth programmers is Starting FORTH

by Leo Brodic, published by Prentice-

Hall (ISBN 0-13-842922-7).

I truly look forward to being able to

provide a well-moderated debate column

every month in COMPUTER LANGUAGE.

And I hope you will write in to me with

your feedback on this and future debates.

Leave me a message on the bulletin board

service or send a letter to: Designer's

Debate. COMPUTER LANGUAGE,

131 Townsend St., San Francisco,

Calif. 94107. PI

8 over over alpha-partition (low high partition)

9

10 rot over word-length - (... low part - word-length)

11 recurse (apply sort to lower partition)

12

13 word-length + swap (part + word-length high)

14 recurse (apply sort to upper partition)

15 ;

(Brief glossary of special words used)

alpha-sort2 (addrl addr2 —)

Routine to sort two strings against each other,

recurse (—)

Recursively call the word within which it is found,

word-length (— n)

Constant returns number of bytes in an integer or

address.

(Description)

This code is taken from a Quick Sort routine written in

Forth. It operates on a list of pointers to characters

strings, recursively sorting the list into alphabetical

order. Since most work is done using the stack, arguments

used by words must have been left by previous words. It is

often useful to use stack pictures as comments when complex

or obscure operations are being formed. You generally want

to avoid having a word work on more than 3 items on the

stack at a time. It is a good practice to show the stack

picture alongside the word being defined to provide some

indication of what that word is used for. You can quickly

find each word as they are all separated by spaces. The

token, " (" opens a comment, and causes the Forth

interpreter to skip ahead until it finds a ")" . The closed

parenthesis is not a token but a deliminater and need not be

delimited by the space itself. The colon (":") starts a

definition, and the semicolon (";") terminates it. The word

being defined immediately follows the colon. Line numbers

are provided for progrmmer convenience during editing and

listing. In this example, the limitation imposed by the 16-

line-by-64-character screen format may be seen. Some of the

lines of code and comments are a bit cramped. The operators

"+" and "-" work on the top two items of th stack and
replace them with a single result.

Listing 3.

18 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

Communications Software Can Be a Real
Headache. For FAST RELIEF, use COMMX!

It's Simple to Operate and Provides the

Best Features Available for Both Personal

and Business Communications:

• Easy to Use Menu Selections and Prompts

• Auto-Dial-Logon and Unattended Controls

• Dial Directory Handles up to 700 entries

• Install Utility for Intelligent Modems

• Programmable Terminal Emulation!

• Linkup with Information Services like

WU Telex, TWX, USPS ECOM, CompuServ,

NewsNet (free subscription included)

• Micro to Micro and Micro to Mainframe

multiple File Transfer Protocols:

— Text Upload/Download with Options

— Text and Binary Upload/Download with

proprietary Error-free COMMX protocol

mainframe Versions available for VAX,

CompuServe, DEC 10, IBM 370,

HP3000, PRIME

— MODEM7 Batch and Single file Send/Recv

"• Direct Link High Speed Data Transfers

1 Electronic Mail Management Software

upgrade Available for Organizations

• lnfoWorld Report Card A + + + + Dec 1981

COMMX is priced from $195 (micro CP/M

or MS-DOS) to $900 (mainframe).

OEM and multiple licenses available.

HAWKEYE

™ GRAFIXInc
818-348-7909 / 213-634-0733

23914 Mobile, Canoga Park, CA 91307

CIRCLE 24 ON READER SERVICE CARD

MicroMotion

MasterFORTH
It's here — the next generation

of MicroMotion Forth.

• Meets all provisions, extensions and experimental

proposals oftheFORTH-83 International Standard.

• Uses the host operating system file structure (APPLE

DOS 3.3 & CP/M 2.x),

• Built-in micro-assembler with numeric local labels.

• Afull screen editor is provided which includes 16 x

64 format, can push & pop more than one line.

user definable controls, upper/lower case key

board entry, ACOPY utility moves screenswithin&

between lines, line stack, redefinable control

keys, and search & replace commands.

• Includes all file primitives described in Kernigan

and Plauger's Software Tools.

• The input and output streams are fully redirectable.

• The editor, assemblerand screen copy utilitiesare

provided as relocatable object modules. They

are brought into the dictionary on demand and

may be released with a single command.

• Many key nucleus commands are vectored. Error

handling, number parsing, keyboard translation

and so on can be redefined as needed by user

programs. They are automatically returned to

their previous definitions when the program is

forgotten.

• The string-handling package is the finest and

most complete available.

• A listing of the nucleus is provided as part of the

documentation.

• The language implementation exactly matches

the one described in FORTH TOOLS, by Anderson

& Tracy. This 200 page tutorial and reference

manual is included with MasterFORTH.

• Floating Point & HIRES options available.

• Available for APPLE ll/ll+/lle & CP/M 2.x users.

• MasterFORTH-$100.00. FP& HIRES-S40.00each

• Publications

• FORTH TOOLS - $20.00

• 83 International Standard - $15.00

• FORTH-83 Source Listing 6502, 8080, 8086 -

S20.00 each.

Contact:

MicroMotion
12077 Wilshire Blvd., Ste. 506

Los Angeles, CA 90025

(213)821-4340

CIRCLE 33 ON READER SERVICE CARD 19

BASIC

The founders

discuss the language's

past, present, and future.

Becomes

a Structured
Language

B

By John G. Kemeny, Thomas E. Kurtz, and Brig Elliott

ASIC was born

at4a.m. on

|May 1, 1964 at

Dartmouth Col

lege. In the 20 years since then, it has

probably become the most widely used

programming language in the world. But

during this time. BASIC has undergone

many transformations—and not all of

them have met with the approval of the

original designers.

We invented BASIC for use in schools

since students needed a simple but power-

knowledge of programming languages

evolved and as programming problems

grew more complicated. We added sub

programs lo BASIC in the late 1960s,

graphics in the early 1970s, and good con

trol structures a bit later in the mid-1970s.

But we watched with increasing dismay

as more and more students outside of

Dartmouth grew up on bad imitations of

our 1964 BASIC. So we decided to take

mailers into our own hands.

This article describes a new imple

mentation of BASIC called True BASIC?

Future BASICs will increasingly be

based on the ANSI Standard, and they will

all have the same features: functions, sub

routines, matrix statements, fancy

graphics, and so on. True BASIC is based

on the ANS draft standard for BASIC,1

now in the late stages of its technical

development.

If that were all one could say about

True BASIC, the article would end right

here. True BASIC is interesting for two

other reasons: it is built around a simple

user interface based on a flexible screen

ful computer language. Evidently a great

many other people also wanted such a lan

guage, and BASIC grew in popularity in

the 1970s.

But the language we designed 20 years

ago, though good for its day, is no longer

acceptable.

Commercial versions of BASIC have

remained frozen at about the 1964 level of

Dartmouth BASIC. At Dartmouth, how

ever, our own BASIC grew and evolved as

It's easy to learn and easy to use, in keep

ing with one of the original goals of

BASIC. But it also includes developments

from the past 20 years of computing. For

instance. True BASIC provides multi-line

functions and subprograms (with parame

ters, both internal and external), matrix

manipulation statements, several kinds of

files, fancy graphics, and more. Pro

grams written in True BASIC will run

virtually unchanged on most of the popu

lar new microcomputers, such as the IBM

PC and the Apple Macintosh.

editor, and its implementation is espe

cially designed for educational settings.

In both cases, we have tried to duplicate

onto microcomputers the Dartmouth com

puting environment we have known and

loved. We first describe the language.

A structured language

In 1964, the term "structured program

ming" had not yet been uttered. The ma

jority of programs were written inassem-

21

bly language. Then came COBOL and

FORTRAN. And the GOTO statement

reigned supreme. But for at least 10 years,

BASIC at Dartmouth has included more

sophisticated control structures such as

do-while. if-then-else, and select-case.

What do these control structures mean

to a programmer? Well, suppose you want

to write a program that flips coins, prints

whether each coin is heads or tails, and

keeps track of the results. Then, after flip

ping 50 coins, it reports the total number

of heads and tails.

Written in Old BASIC (which is close

100

110

120

130

140

150

160

170

180

190

200

210

REM FLIP

REM

FOR I =

COINS

1 TO 50

IF RND < .5

PRINT

LET H

GOTO

PRINT

LET T

NEXT I

"Heads

= H +

190

"Tails

= T +

PRINT "Heads =

END

AND

THEN
ii

1

t!

1

"; h

KEEP TRACK OF RESULTS.

170

; "Tails ="; T

Listing 1.

! Flip coins and keep track of results

i

for i - 1 to 50

if rnd < .5 then

print "Tails."

let tails = tails + 1

else

print "Heads."

let heads = heads + 1

end if

next i

print "Heads ="; heads; "Tails ="; tails

end

Listing

■

2.

! Print

for x =

print

next x

end

values of Sin between

0 to 20 step .2

x, Sin(x.)

0 and 20.

Listing 3.

to the 1964 version), the resulting pro

gram is seen in Listing 1. The program

loops 50 times, and each time it checks to

see if a random number was less than one-

half. If so, it then counts it as a tail. If not,

it counts it as ahead.

The heart of this problem is the if-then

test. Let's see how this works out in True

BASIC (Listing 2). True BASIC uses an

if-then-else structure to express the two-

way branch. The result is the same, but

isn't the second program easier to read

than the first?

True BASIC doesn't require line num

bers unless you use GOTO-style state

ments. Line numbers are never really nec

essary since True BASIC supplies all the

constructs needed for structured (GOTO-

less) programming, and several more.

These include: select-case with several

ways to express each case; do-while and

its counterpart loop-until. an exception

trapping structure; and structured ways to

escape from loops, functions, and

subroutines.

Also, True BASIC doesn't insist on

using capital letters. Uppercase-only ter

minals are a vanishing breed. Use capital

or small letters as you please. And, in

addition to the REM statement, you can

use the "!" for cither REM -type com

ments or comments at the end of

other code.

Easy graphics

Back in 1964, few outside of research lab

oratories had the machinery to produce

graphical output. Anyone who had such

machinery could be expected to count pix

els on the screen and do all their own

arithmetic.

Since the inventors of BASIC didn't

have such machines, the original BASIC

did not have graphics. When interactive

graphics did appear in the late 1960s, stu

dents at Dartmouth could draw pictures

without counting pixels. And yet, when

microcomputers became popular in the

mid to late 1970s, their BASICs still re

quired you to count pixels and do little

sums in your head.

But True BASIC makes things easier.

Just as the original BASIC made printing

numbers and strings simple—no compli

cated format lists—so True BASIC makes

drawing pictures simple.

22 COMPUTER LANGUAGE ■ PREMIER I55UE 1984

Let's look at a True BASIC program

that prints the values of the sine function

between zero and 20. It's a simple pro

gram (see Listing 3). The result describes

a sine wave but not in a very convenient

form. It prints a long table of numbers,

part of which is seen in Table 1. A small

modification makes everything much

clearer. Change the PRINTstatement to a

PLOTLINES statement. Add a SET WIN

DOWcommand to describe what portion

of the coordinate plane to view (see

Listing 4).

In True BASIC, you describe how to

plot things in your terms, not the com

puter's. One SET WINDOW statement can

set your coordinates to run from zero to

20 (on the X-axis) and -2 to 2 (on the

v-axis). True BASIC then does the messy

work of figuring out pixels for you. If you

move your program unchanged to another

computer with a different number of pix

els on the screen, it will still draw the

same picture.

More sophisticated graphics let you de

fine pictures, which you can then use like

stencils. A picture is a graphical sub

routine that can be drawn with (or with

out) various two-dimensional transfor

mations applied to it. You can enlarge or

shrink them, move them around, rotate

them, or shear them, alone or in

combination.

You may also fill areas of the screen

with colors, cut and paste sections of the

screen, introduce animation, and so forth.

Lack of space prevents a complete de

scription, but True BASIC includes the

proposed ANSI BASIC graphics, which

in turn are based on the international GKS

level Ob standard.

Recursion

Functions that can call themselves are a

popular and important part of computer

science. The success of the LOGO lan

guage attests to that. Along with many of

our colleagues in the early days, we paid

no attention to this important idea. But we

now realize that recursion provides the

.2

.4

.6

.8

1

1.2

1.4

1.6

1.8

2

.198669

.389418

.564642

.717356

.841471

.932039

.98545

.999574

.973848

.909297

Table 1.

only sensible way for looking at certain

problems in computer graphics, list ma

nipulation, and equation solving.

True BASIC lets you define your own

functions, and naturally they may call

themselves. A simple example is the fac

torial function. The factorial of a number

n, Fact(«) is defined as:

n) = n*(n-l)*(n-2)* ...

That is, Fact(5) = 5*4*3*2*1, or 120.

But since

Fact(n-1) = (n-l)*(n-2)* ...'1

you can combine the two equations as

follows:

Fact(n) = n * Fact(n-l)

provided that you also make a special

check when h = t, to make the chain of

calls eventually stop. (Otherwise, we'd try

to compute Fact(l) = 1 * Fact(O), and so

on, with no end in sight.)

You can easily write Fact in True

BASIC (Listing 5). Such a recursive pro

gram can be written in the 1964 version of

BASIC, but it's very messy. It makes such

a puzzle that readers of COMPUTER

LANGUAGE may wish to try to figure it

out. Unfortunately, this is the simplest

way that recursion can be achieved in

many current versions of BASIC

(Listing 6).

Of course, must sensible programmers

would calculate factorials using a loop

rather than recursion. But there are many

common problems, such as the computer

solution to the Tower of Hanoi, which are

simple with recursion and ridiculously

complicated without it. In Old BASIC the

best one could do to "fake" recursion is

illustrated in the previous example.

The user interface

The second major component of the True

BASIC system is the user interface. It

continues the well-established model used

at Dartmouth for over 20 years, which is

also followed by most current micro BA-

SICs. It has these features:

■ Commands that look like English

words

■ An automatic (default) source pro

gram editor

■ Features based on the notion of a

"current file"

To these, True BASIC adds:

■ A modern, window-based screen

editor

It surprises us that so few writers of

computer software (except for business

software) realize that most of the users

are, and will remain, novices. Familiar

words are much easier to remember than

computer jargon. Isn't HELLO simpler

than LOGIN, and GOODBYE or BYE

simpler than LOGOUT1? How about OLD

versus LOAD, and (our all time favorite)

LIST versus CATENATE1? Furthermore,

a simple command like RUN does every

thing necessary to "run" the program.

For example, if the program is in source

code form, RUN compiles, loads, and

executes. If the program has already

been compiled, RUN does only what

is necessary.

A single command, OLD, not only

specifies the name of the program you

want to modify or run, but also auto

matically invokes the screen editor. Users

need not even be aware that there is a sep

arate program editor. This style is consis

tent with experience at Dartmouth, except

that in the old days the editor used line

numbers. (In fact, True BASIC gives you

both a screen editor and a line-numbered

editor. You can use both at the same time

if the program has line numbers.)

The heart of the user interface is the

23

screen editor. We cannot describe it in de

tail because its features and style of use

depend on the underlying operating sys

tem. For instance, on the IBM PC the

screen editor is built around cursor con

trols and function keys, while on the

Apple Macintosh it is based on mice

and menus.

The user interface is built around

windows. There are a minimum of two

windows—one for the screen editor and

one for input and output. On machines

that provide dynamic windows, like the

Macintosh, more than two windows can

be used. The contents of the windows can

be scrolled.

Since the screen editor is an integral

part of the system, it can be invoked

during the running of a program to, for

instance, display erroneous parts of a

program. Furthermore, the screen editor

can be used separately. Ii can be used for

ordinary word processing by adding a few

simple formatting features.

Expert users may prefer a different

style of user interface with more direct

control over what goes on. They may be

willing to remember a bigger list of com

mands, some of them with mysterious

names. But once again we remind the

reader that the majority of our users will

be novices.

Btrieve.

Network and single*user file management for all

your programs. All your programming languages.

Say goodbye to writing file management

routines. Because now Btrieve™ can han

dle file management tor all your program

development on the IBM PC. All your

programming languages.

Based on the b-tree file indexing

system, Btrieve provides the most

sophisticated file handling powers

available for your PC. And for multiple

PCs. BtrieverM/N lets you share files

among PCs in NetWan^'PCnet™

EtherSeries,1 M or MultiLink™ networks.

And both Btrieve and Btrieve/N offer the

same superior performance characteristics:

• Interfaces all major IBM PC

languages—BASIC, Pascal,

COBOL, C, and IBM Macro

Assembler

• Written in 8088 Assembler for the

IBM PC

• Multikey access to records

• Automatic file recovery on system

crash.

Btrieve and Btrieve/N also have user-

defined transaction management.

Unlimited number of records per file.

Gimplete error control and recovery

within an application. Duplicate,

modifiable, and segmented keys. Variable

cache buffer from 16K bytes to 64K bytes.

Moreover, record retrieval is fast with

Btrieve—no matter how large your data

base. So you can begin writing programs

faster with Btrieve.

Say goodbye to file management

routines. And hello to Btrieve.

P. O. Box 9802 #590

SoftCraftlnc.
Austin, Texas 78766 (512) 346-8380

Suggested retail prices: Btrieve, S245; Btrieve/N,

S595. Requires PC/DOS or MS' "/DOS, version 1
or 2. Dealer inquiries welcome.

CIRCLE 50 ON READER SERVICE CARD

IBM. MS, Btrieve and Bmeve/N. PGu-r, MultiLfak,

NotW.in:. .Jid EiherSenes are nadenurk* ot [ntoratlonaj

Business Machines, Microsoft Qxporadan, SottCcilr Inc.,

Orchid Technologv; Ddvung Systems inc., Novell Dar.i

Systemsi and 3Gjm Corp.. icspecdvdy.

What about the advanced user?

It's no surprise that BASIC is good for

programs that arc 10 to 100 lines long. But

what about programs that are 10 to 100

pages long? Serious software developers

need good tools to help write such long

programs.

We've always believed that BASIC

should be an appropriate language for

serious programming. Just because a pro

gram is long doesn't mean that it should

be hard to write. The language should

help you as much with long programs as

with short ones. And so True BASIC

lets you:

■ Use all the available memory on

your machine without any complicated

overlay or segment instructions

■ Write programs or functions as sepa

rate units, put them in libraries, compile

them separately

■ Transport programs from computer

to computer with no rewriting

■ Debug with True BASIC'S built-in

debugger

■ Create and edit programs, sub

programs, or functions with the built-in

screen editor

■ Take advantage of floating-point

processors (e.g. 8087) automatically

The longest True BASIC program writ

ten as of April 1984 contains about 150

separately compiled subprograms. Its list

ing is over 180 pages long. It runs on the

IBM PC.

Implementation

The system is split into four parts. We

have already discussed the user interface.

The other three are: the compiler, inter

preter, and run-time package.

The compiler translates your program

into an intermediate code. The interpreter

executes this code. The run-time package

takes care of complicated I/O statements,

built-in functions, and screen manage

ment for the three other parts.

The four parts together take up about

64K bytes of memory. Since the entire

system resides in memory, one needs at

least 128K bytes of memory to run an

average-size program. Since True BASIC

lets you use all the memory you've in

stalled, you can buy more memory if you

need more room. (Making more than 64K

bytes of memory accessible on the Intel

8088 processor was difficult, but we think

it's a shame not to use all the memory that

is actually there.)

This style of compiler/interpreter com

bination was first made popular by the

Pascal P4 compiler from ETH in Zurich,

Switzerland.' The P4 system had only a

compiler and an interpreter, but both were

written in Pascal itself.

The result was impressive. Pascal

quickly became a popular language, in

large measure because it proved so easy to

transport the P4 system to new comput

ers. Instead of rewriting the entire lan

guage system for a new machine, the

! Plot values of Sin between 0 and 20
t

set window 0, 20, -2, 2

for x = 0 to 20 step .2

plot lines: x, Sin(x);

next x

end

Listing 4.

implementors needed only to write a new

interpreter. When that worked, the system

was up and running.

The P4 system compiled Pascal into

p-codc. True BASIC compiles into

b-code. The differences between b-codc

and p-code are subtle, though we believe

we've made some improvements. But we

tip our hats to the P4 team, who were the

first to make it all work on a large scale.

Why not a pure interpreter?

Some readers may wonder why we chose

a compiler-based system when our target

market is education. Doesn't current wis

dom mandate an interpreter for novices?

Don't error messages (about syntax er

rors) have to appear fast? Aren't com

pilers for experts?

Some feel that one needs an interpreter

if one wishes to keep the user interface

simple and see the error messages

quickly. Contrast this with the fact that

Dartmouth BASIC has always been com

piled even when machines were slow and

even back in 1964.1 What are the reasons?

First, about error messages. We dis

agree with the practice of those small BA

SIC interpreters that provide line-by-line

syntax error detection while the user is

entering the program. Such local error

detection completely fails to identify

global errors, such as the NEXT failing to

match the FOR. Also, such immediate er

ror detection interferes with the program-

entering stage, especially if the user is a

good typist. What truly is important is that

the error messages are displayed quickly.

And this is what a fast, singSe-pass, load-

and-go compiler can do.

Compiler

The compiler is highly optimized for both

space and speed. Since it is memory resi

dent, it can't take up too much room.

Since it must compile the source program

every time it's run, it must be quite fast.

These sound like difficult goals but,

in fact, people have known how to

write small, fast compilers since the

early 1960s.

As we asserted, Dartmouth BASIC has

always been compiled, even in !964.

Since the principles of compiler construc

tion (and, in particular, of symbol table

management) were only then being dis

covered, the earliest BASIC was sim

plified in certain ways to make compiling

easier. Thus it allowed only one one- or

two-character variable names.3

On the other hand, the resulting ma

chine code was very speedy—much faster

than an interpreter would have been—

even though the code was never opti

mized. For instance, the first compiler

created one line-number table. When a

GOTO statement was executed it jumped

indirectly through this table. Many of

today's commercially available BASICs

haven't learned this trick; they scan the

entire program from the start to find the

target line number.

Today's compiler technology is a little

more advanced. The True BASIC com

piler keeps track ofjumps itself and emits

b-code that contains direct jump instruc

tions. It uses a heavily modified

Samelson-Bauer4 bottom-up parser,

which is very speedy. The compiler is an

"in-memory" compiler, so it reads the

source code from memory and places the

b-code directly in memory. Since no disk

access is required, compiling is fast.

Interpreter

At the heart of the True BASIC system is

the interpreter. It's written in assembly

language and executes the b-code pro

duced by the compiler. If the interpreter is

slow, the entire system will run slowly.

Therefore, a great deal of care has been

expended on True BASIC'S interpreters.

Naturally, the interpreter must be re

written for each new processor supported.

The very first True BASIC interpreter

was written in C for the Z8000 processor.

The prototype True BASIC system runs

on an IBM PC, so its interpreter is written

for the Intel 8088 processor in assembly

language. The same holds true for the

next target machine, the Apple Mac

intosh, which has a Motorola 68000 pro

cessor. Each new processor requires a

new interpreter, which must be rewritten

from scratch.

But having identical processors is not

always enough. Some changes to the in

terpreters may still be required. For in

stance, the IBM PC, IBM PCjr, and DEC

In 1964, under the direction of John

Kemeny and Thomas Kurtz at Dart

mouth College, the BASIC computing

language was bora. As an acronym for

"Beginner's All-purpose Symbolic

Instruction Code." BASIC was first

implemented on the GE 225 computer.

What made BASIC so different from

the mainframe languages available

during that time was that there sud

denly became a way for the person

with little or no experience in comput

ers or mathematics to learn program

ming easily. Kemeny and Kurtz also

created one of the first widely-used

timesharing systems which has been

adopted by several well-known com

mercial systems.

As other colleges and computer

manufacturers adopted BASIC, they

added enhancements to meet their own

particular needs. Out of this came

Extended BASIC, SUPERBASIC,

XBASIC. BASIC PLUS and others.

Although a standard was developed in

1978, a wide variety of BASICs still

exist with many similarities, but with

many individual quirks as well.

The most widely used version of

BASIC in the microcomputer field was

developed by Microsoft and is usually

referred to as MBASIC. Although

these BASICS are availiblc on a

number of microcomputers, the lan

guage is implemented differently on

each system.

As Chairman of Dartmouth's

Mathematics Department for twelve

years, John Kemeny also served as

President of Dartmouth College from

1970 to 1981. In 1979, he took time out

to act as Chairman of the President's

Commission on the Accident at Three

Mile Island. He has authored roughly

100 publications, including many

influential books and articles on math

ematics and computing.

Thomas Kurtz was director of the

Kiewit Computation Center at Dart

mouth from 1966 to 1975. He now

serves as Chairman of Dartmouth's

graduate program in Computer and

Information Science. From 1974

through 1984, Dr. Kurtz served as

Chairman of the American National

Standards committee X3J2, charged

with developing a standard for BASIC.

—by Hugh Byrne

25

ACTIVE TRACE
"A marvelous Basic

programming aid ,..

t's just amazing to watch a

program you wrote run under

Scope, and debugging

becomes if not trivial, then at

east doable."
Thomas Bonoma. Microcomputing

Dec. '83, p 22

"Extremely useful program

. Anyone doing much pro

gramming in Basic should

appreciate Active Trace a lot."
Jerry Pournelle, Byte Magazine

April '83, p 234

Spaghetti code is what many "experts"

call a beginner's Basic program which is

all tangled up and difficult to follow. The
Active Trace package will help you learn

low to avoid the pitfalls of structureless

programs. And if you already have a pro

gram which is too confusing to follow, or

has an error which is hiding, relax.

Active Trace doesn't get confused. Active

Trace will lead you through your program

letting you know variable values (all vari

ables or just those you specify) as they

change. In a form a novice can under

stand, your program's internal activity is

presented on your screen, or printer, or

it can be saved on disk.

For more advanced programmers, the

disk file of your programs activity can be

used with your word processor to auto

matically find the source of an error and

display the circumstances surrounding its

occurrence.

Ready to Order?

Just have a Question?

Contact your dealer or call

Toll Free: 800-35B-9120(US)

800-862-4948(CA)

Active Trace $79.95
Complete package includes Scope. XREF

mapping and documentation

Scope Separately $49.95
Only recommended lor tnose w"o already

own professional mapping (XflEFj programs

Acllvt Irici is available lor most MS-DOS and CPM 2.2

systems ana supports the special features ol Brand specilic

versions ol Microsoft Basic such as Bitlci on the IBM-PC

4WARECO
clive Software

P.O. Box 695 Gualaia, CA 9544C

(707) 884-4019

Active Irace. Active software. AWARECO and Scope are

irademarks ot A Ware Company-CPM is a trademark ol

Digital Researcfi—MS-DOS and Microsoft are trademarks ol

Microsoft Corporation—IBM-PC is a iracemark ot IBM Corp

Rainbow all have the same 8088 pro

cessor. However, they differ in other

ways. Graphic implementations usually

cause the most problems since each com

puter has its own way of drawing lines on

the screen, switching colors, and so forth.

To make things worse, even identical

computers that run different operating

systems may require interpreter changes.

For example, the instructions used to save

a file are different under the PC-DOS and

CP/M operating systems, even when run

ning the same computer. True BASIC

uses the native operating system for the

machine, rather than having its own cus

tomized operating system. (On the IBM

PC, the preferred operating system is PC-

DOS.) A different interpreter would be

needed in order to run under CP/M. On

the Macintosh, it will run in the standard

windowing environment.

Much design effort has been focused on

making the interpreter simple. The less

the interpreter has to do. the less assembly

code must be changed when transporting

the system to a new machine. H

BASIC history

More details about the history of BASIC

can be found in the chapter "BASIC

session" in History ofProgramming

Languages3 and in Back to BASIC* Fur
ther details of BASIC are described in

"Standard BASIC—On its way,"6 and

"True BASIC."7

References

1. "'Proposed Draft American National Stan

dard for BASIC."' Document X3J2/84-10

(revised versions will appear]. X3 Secre

tariat. CBEMA, 311 First Street N.W.. Suite

500. Washington. D.C. 200O1.

2Nori.K. V.etal, "The Pascal (P) Imple

mentation Notes." ETH. Zurich. 1975.

3.Kurtz, T.E., "Basic Session". inWexelblat,

R.L. (ed.). History ofProgramming Lan

guages, (Academic Press. 1981): 515-549.

4.Bauer, F.L..andK. Samelson. "Sequential

formula translation," CACM3, no.2, (Feb.

I960): 76-833.

5.Kemeny, J.G., and Kurtz. T.E.. Back to BA

SIC, (Addison-Wesley, 1984].

6.Kurtz. T.E.. "Standard BASIC-On Its

Way".BJT£vol.7,no.6. (June 1982): 182.

7.Elliott. Brig. "True BASIC". BYTE vol.9,

no.4. (April 1984): 300-

! Compute factorials of numbers 1 to 10.

i

def Fact(n)

if n=l then let Fact=l else let Fact=n*Fact(n-l)

end def

for i=l to 10

print i, Fact(i)

next i

end

Listing 5.

100 REM COMPUTE FACTORIALS OF NUMBERS 1 TO 10.

110 REM

120 FOR J = 1 TO 10

130 LET N = J

140 GOSUB 1000

150 PRINT J, F

160 NEXT J

170 STOP

1000 REM FACTORIAL SUBROUTINE

1010 IF N > 1 THEN 1040

1020 LET F = 1

1030 RETURN

1040 LET D = D + 1

1050 LET S(D) = N

1060 LET N = N - 1

1070 GOSUB 1000

1080 LET F = F * S(D)

1090 LET D = D - 1

1100 RETURN

1110 END

Listing 6.

CIRCLE 2 ON READER SERVICE CARD

26 COMPUTER LANGUAGES PREMIER 1S5UE 1984

Programming

in the UNIX
Environment

■

systems have

with certain programming languages.

When you think of an IBM operating sys

tem like OS/VOS, DOS/VSE, MVS, or

VM, you tend to automatically associate it

with languages like 360 assembly, JCL.

and PL/1. When you think of small micro

operating systems, you think of resi

dent BASIC.

Until 1983, CP/M was the home of 8080

assembly and a great number of compilers

for languages such as MBASIC, CBASIC,

Pascal MT+ and others. With the influ

ence of UNIX spreading across the micro-

to-maxi spectrum of computers, the lan

guages associated with UNIX have been

receiving a lot more attention. Some of

the UNIX languages are already familiar

under other operating systems, but some

of them are brand new to all non-UNIX

programming environments.

The primary language of UNIX is C,

but there are many other UNIX lan

guages. RATFOR (rational FORTRAN)

is somewhat of an anomaly now, but it

used to be a UNIX language favorite.

Lex, the lexical analyzer, and yacc, the

UNIX compiler compiler, are both legiti

mate UNIX languages. The Shell inter-

tj!!8!iffflBtlnmmH|llBiffiii"::";:" '"^'""'jHlliiSliHiiiSnS1'""'" °:';::';: *°° ■■"'■■"""»••!■*

By Bruce H. Hunter

Wiim

preters are languages in their own right

and include the Bourne and C Shells. Awk

is both a language and a filter. Of the Ian-

guages similar to those in other operating

systems, UNIX also includes has. a

BASIC dialect, and f77. FORTRAN

ANSI 77. Three of the so-called "text

processors" (roff, nroff and troff) arc ac-

tually more like languages. Depending on

the version of UNIX and the type of in-

stallation. there may be many other

languages to be found, including PL/1,

APL, Ada, Pascal and COBOL. First let's

look at C.

The C programming language

It is not easy to accurately and compre-

hensively describe C in a single article. It

has been called a high-level assembler,

and that description is a good beginning.

C is a structured language that is entirely

function oriented. The program main is a

function, and all called subroutines and

system calls are functions as well. C func-

tions do not have to receive parameters,

nor do they have to return a value, so even

procedures are functions in C.

In spite of the fact that C is a function-

oriented language, it is ironic that C under

UNIX has few functions of its own. AC

function is actually a UNIX subroutine or

system call. Consequently, UNIX C is

quite different than C compilers that oper-

ate on other operating systems. UNIX C

calls commands, subroutines and system

calls with no hardware dependency. Also,

it gives you direct access to the operat

ing system. There is no third party you

have to go through to get your hands on

the system.

Outside of UNIX, C must make system

calls to the operating system via DOS,

BDOS or OS calls. This, however, is

made transparent to the user because C

compilers operating outside of UNIX deal

with groups of functions that emulate

UNIX operations, similar in a sense to

languages that emulate the 8087 math pro-

cessor. There arc many good C compilers

that run outside of UNIX, including some

fine ones for 8- and 16-bit micros. Now

that UNIX software is beginning to

emerge, we are even beginning to sec

enhanced UNIX C compilers such as Safe

C by Alan Feuer, author of Vie C Puzzle

Book, published by Prcnticc-Hall.

Like most operating systems created

before the last decade, UNIX was origi-

nally written in assembly. UNIX was then

written in a succession of languages, and

today most of UNIX is written in C. Only

10% of the UNIX kernel, the heart of the

system, is written in assembly. C was cre-

ated to replace assembly for systems level

work, and it is superb for that purpose.

Besides making systems-level program-

ming much faster, C also eliminates most

of the hardware dependency associated

with assembly.

Because of C's intrinsic hardware inde-

pendence, it has gained a reputation for

being the language of portability. One of

the reasons UNIX can be transported

lllliil

27

i
I

1 I
j

li

|| I

I :M
: :: i

: :

I

j j

: :: ::: ::::::

without much difficulty is because so

much of it is wrilicn inC. Proof of this

fact is a company called UniSoft that

transports UNIX in as short a time as two

weeks, for $20,000.

C is becoming so widespread that com

panies like Digital Research and Gifford

Computer Systems have made C their

in-house systems language, and this is a

continuing trend. Digital Research is in

the process of transporting UNIX to In

tel's 286 processor, and because many

Digital Research languages have been

written in C. their language family will be

transported as well.

C is the basic language of UNIX, and in

many respects it is also the common de

nominator of UNIX. Several UNIX lan

guages generate C output, including yacc,

pc Pascal and (77 FORTRAN. However.

C is only part of the UNIX story. Com

mands that arc newly created are usually

written in UNIX Shell script and so are

system commands that are seldom used.

However, once a command is accepted

and put in common usage, it is rewritten

in C. C code is faster, but Shell script

takes up less storage room.

Programming in C is an adventure. C

has a thorough list of operators and many

data types to choose from. Its program

ming range is quite large because it is

capable of both high-level and low-level

programming applications. C's roots are

in Algol, so it has a high-level, structured

language approach to programming.

However, it was created to perform low-

level systems work such as the manipula

tion of system peripherals.

I like to call C a "mid-level" language.

Its forte is a high-level programming

approach to low-level programming tasks.

C code is cryptic, so code blocks of a half-

dozen lines in other languages become

one-liners in C. It generates tightly opti

mized code, so C programs are fast and

efficient. Most important. thcC language

is easily enhanced. If it doesn't have the

operators or functions you need, it pro

vides you with plenty of programming

tools to create your own.

Initially C can be a difficult language to

learn—not so much because of the syntax,

the symbols, or even its cryptic, short

hand approach to programming, but be

cause C demands an understanding of sys

tems as well as applications programming

techniques. You can only use the full po

tential of C's programming power by un

derstanding what happens at the systems

level: so if your programming experience

is limited to high-level languages and ap

plications, you'll need to concentrate on

learning what systems-level programming

is all about. On the other hand, if you've

done most of your programming in assem

bly, you will be unfamiliar with many of

the subtleties of high-level, structured

programming.

Learning C is well worth the extra

effort. Once familiarity has been gained.

C becomes a joy to use. C allows you the

freedom to access almost any part of the

system and its peripherals, outside of the

kernel. It can go almost anywhere and do

almost anything.

On the other hand, for this program

ming freedom you pay the price of com

plete responsibility fordoing type check

ing and conversions, and you must be

very careful not to send a pointer into the

heart of the system. You can get into a

great deal of trouble if you send a pointer

to the wrong place, so languages likcC

are a double-edged sword. Yet in the

hands of a knowledgeable programmer. C

is one of the most powerful programming

languages ever written.

C is a unique language. It is exciting be

cause it allows you to do assembly-level

programming more quickly and effi

ciently. It takes the drudgery out of low-

level programming, and it introduces you

to the subtleties of high-level languages.

You are able to do systems-level work

from a high-level perspective, and the

inner workings of the operating system

become much less of a mystery.

The UNIX Shell

Next to C, the UNIX Shell is the most im

portant utility in UNIX because it is the

interface between the uscrand UNIX.

The Shell is in a sense an interpreted lan

guage, ready to be called from the minute

you logon.

You have probably heard about the

UNIX Shell, the Bourne Shell, the Ber

keley Shell, and the C Shell. With so

many names, it might seem a little con

fusing at first. Actually, only two main

Shells are available under UNIX. The

most common Shell is the Bourne Shell,

sh. the creation of Steven Bourne. The

Bourne Shell is the original Version 7

UNIX Shell. Its counterpart is csh, the C

shell, part of the Berkeley-enhanced

UNIX distribution and therefore also

called the Berkeley Shell. Essentially, the

C Shell does what the Bourne Shell docs,

but it uses C syntax.

The primary purpose of the Shell is to

be a command line interpreter, interpret

ing command lines as they are entered

from the keyboard. As such, the Shell is

the only interface between the user and

UNIX. Similar in a few respects to

CP/M's CCP. the UNIX Shell has a sim

pler side, interpreting command lines one

at a time and causing the one-liner instruc

tions entered from the console to be acted

upon by UNIX as a whole. In the follow

ing example, cp is the UNIX command to

copy a file:

cp textfile textfiJe.bak

The Shell will cause textfile to be copied

to textfile.bak.

But the Shell has a more complex side.

far more complex than CCP, CP/M's

SUBMIT, IBM's EXEC, or EXEC2. It is

a full-fledged interpreted language as

well. It isn't limited to executing a series

of simple commands. The Shell reads

source code written in Shell script and in

terprets each line of code the same way

28 COMPUTER LANGUAGE ■ PREMIER ISSUE 198J

iiiiiliiliiii
that BASIC and dBASE II do. one line at a

time. To give you an idea of how sophis

ticated the UNIX Shell is, it has incre

mented and non-incremented loops. It

also has an if-then-else. an clif(else-if).

and even a case structure. The Shell lan

guage is geared to deal with numbers or

strings, and it does a remarkable job

dealing with file names and command

line arguments.

As mentioned earlier, the Bourne Shell

comes standard with UNIX, but it is not

the only Shell in (own. For the past

several years, the University of California

at Berkeley has been a haven for UNIX

studenis. programmers and system

programmers, and the result is a whole set

of enhancements to UNIX, including the

C Shell.

As its name implies, the C Shell isaC-

likc command interpreter. It uses all ofthe

C operators and constructs, and it also has

additional, nifty features like remember

ing the last lines you typed in at the con

sole (called a history). You can create

aliases for command names in the Shell,

so it is possible for each user to tailor indi

vidual commands to his or her own needs.

To a dyed-in-the-wool C programmer.

theC Shell seems like an old friend be

cause it incorporates so much ofthe C lan

guage. The Berkeley Shell (C Shell) is ex

tremely popular, and many of its special

features may. due to popular demand, be

come pan of the UNIX standards some

day. Until thai time, both Shells (Berkeley

and Bourne) can be stored and used on

UNIX systems. Whichever Shell is being

used is the UNIX Shell at the time.

The Shell allows a series of commands

to be saved and recalled when needed,

which saves the drudgery of retyping

them. The best way to explain this con

cept is to present a Shell program and de

scribe what it does.

Consider the following scenario. A sys

tem administrator often has a file contain

ing a standard message of the day. which

we'll call moid. However, he or she often

has to create another moid file for specific

occasions such as notifying users of a

scheduled shutdown. The old motd file

can be renamed, and when it comes time

to go back to the original moid file, all that

is needed is a.swap. The following is a

UNIX Shell program in Bourne Shell

script which performs the swap:

cp motd motd.tmp

cp motdl motd

cp motd.tmp motdl

rm motd.tmp

Is -I motd*

cat motd

Although this scries of commands is not

difficult to create extemporaneously, hav

ing done it once, why ever do it again?

These Shell commands are entered to a

file as a program by using an editor. The

program can be given any appropriate

name, like motd.swap, and is simply in

voked by name, like this:

motd.swap

You can also use this technique to create

commands useful within your own envi

ronment from already existing com

mands. For example, when roaming

around the UNIX file hierarchy, it's not

unusual to get lost from time to time.

From personal experience, I've found it

really handy to be able to find out what

machine I'm on. what terminal, where

I am in the directory, and what is in the

directory, including all file attributes.

The following Bourne Shell script does

just that:

: d a Utility for a full listing with extras

vmid

who am i

date

pwd

Is-I

The line beginning with a colon is a com

ment, vmid is a command used on ma

chines running UNIX on a virtual operat

ing system. A number of UNIX virtual

machines can exist on a single physical

machine. In these cases, it*s necessary to

have a command to tell you which ma

chine you're on. The who am i program

line yields the logon name associated with

your parent Shell, daw prompts the time

and date, pwd tells you where you are in

your file hierarchy. Is —I will generate

a long listing ofthe files in the current

directory.

Shell programs allow you to create ap

plications programs with an interpreted

language that interacts with the operating

system. If you have to create an applica

tions program, doing it in the Shell is the

fastest way. Quick and dirty programs arc

not difficult to create in either Shell and

Shell programs take up very little room in

memory. If the Shell program is success

ful but runs too slowly, as interpreters

tend to do. the Shell program can be

rewritten in C. Transposing a C Shell

program into a C program is not a diffi

cult job—the two languages share syn

tactic similarities.

Yaccand lex

To fully understand UNIX languages, you

need to be familiar with yacc. Yacc is an

acronym for yet another compiler com

piler. Before yacc, language compilers

and interpreters had always been written

in assembly. Eventually, many people be

came interested in defining the properties

of a language in terms of its grammar. By

making a science of defining the methodo

logy of parsing and lexigraphical

analysis, it soon became apparent that a

language compiler compiler could be con

structed. Soon it was the rage forgraduatc

students to write compiler compilers, and

that's when yacc was written.

Yacc interfaces with lex. the lexical

analyzer, by first performing a lexical

analysis ofthe program input and then al

lowing the tokens to be parsed in accor

dance with the rules of standard BNF syn

tax specifications. In simpler terms, lex

defines what the language tokens will be

and then creates a scries of specifications

showing what will be done with the tokens

once recognized. Yacc uses C syntactic

conventions. If a compiler writer can

clearly define the language syntax, the re

sulting compiler or interpreter produced

by lex and yacc will be smaller than one

written in assembly and far better than

one created in a high-level language. The

parsing tables constructed by yacc are

much more efficient than the hundreds of

lines of code it used to take to accomplish

29

:

■■

■ •

...

y1
-

■

::;■■;:;;;■'

the important task of parsing. The syntax

is translated into a series of tables that do

the majority of the work. This is the secret

of yacc's success. If there are conflicts in

the resulting language, it is because of

conflicts in the specifications. Language

compilers written in yacc provide tightly

optimized code.

Awk

UNIX has a number of filters that are sim

ply programs that modify text passed

through them. A typical UNIX filter is

sort, a utility to sort the contents of a file.

Other filters like grep, egrep, umifgrep

find patterns in text and print them out

cither to the screen or another file.

The other UNIX filters arc more com

plicated. Picture a file that is too large to

be encompassed by an editor. How are

you going to deal with it? sed is a screen

editor that doesn't emcompass the entirety

of a file. The file passes through it. allow

ing files too large for a conventional edi

tor to be edited. Awk is even trickier yet.

It reads through a file like sed but with a

very big difference. Awk has an entire

C-like language to go along with it.

Awk is oriented to files, records, and

fields. It will process a file by taking each

line and performing all sorts of miracles

on any or all fields. Awk can swap them.

ignore them, total or average them, or

execute any operation that can be con

ceivably programmed into a file handling

utility. The constructs of the language give

the programmer C-like operators, a case

structure, an if-else, and all the program

ming tools expected of any language. Al

though awk is difficult to learn at first,

once mastered it will do wonders. It is a

filter and a language.

In programmers' terms, awk is a lan

guage tailored for a specific purpose: you

write programs in it to filter files. This

means that you don't have to write file

handling routines. No more open, close,

read, write, and other file drudgery. Awk

is built for all that. When you learn C, you

learn the basic language of UNIX, but

when you learn awk. you start getting into

the subtleties of the philosophy of UNIX.

f77

It is my opinion that 177 FORTRAN was

put into UNIX just so there would be a

familiar and recognizable language for

those used to other operating systems. f77

FORTRAN is bare bones ANSI 77 FOR

TRAN with no enhancements. To date, it

is the only UNIX language in which I have

found flaws. Early versions found on

UTS, a mainframe version of UNIX,

could not handle type double because of a

parsing error. Version 2.2 (System III)

has this corrected. At Bell Labs, F77

probably received more use by the RAT-

FOR preprocessor than from straight

FORTRAN programmers. However, it is

a substantial improvement over an

enhanced FORTRAN IV or ANSI 66.

FORTRAN is hard to beat as a number

cruncher. Its intrinsic functions for math

are superior to anything this side of PL/1

or APL. The 77 version is a vast improve

ment over the 66 version in many ways-

one is that it will tolerate white space in

the source code, which allows it to ap

proximate a structured language. It has a

decent ifthen-else, end-if, and else-if, so

a good programmer can keep GOTO?, and

labels down to a minimum and write close

to top-down, structured code. You can

even create a case structure. Most im

portant of all, scientists and engineers are

still being trained in FORTRAN. As long

as FORTRAN refuses to die. at least

under UNIX it has a good home.

RATFOR is not a compiler. It is a pre

processor to convert RATFOR source

code into FORTRAN 77. RATFOR is a

language created in C's image. It does not

have C's ability to access individual bits.

but it is a viable structured language that

is more than capable of holding its own on

string processing. FORTRAN'S weak

ness. RATFOR was made nearly immor

tal by Brian Kermghan and PL. Plauger's

Software Tools, published by Addison-

Wesley. RATFOR saw some noticeable

usage in the last decade, but in today's

UNIX and non-UNIX world, it takes a

back seat to C. If one has to learn a C-likc

language, why not C itself? The major

philosophical thought behind RATFOR

was that it could be transported any

where FORTRAN could be found, and

that was just about anywhere in the pre-

micro world.

Pascal

Pascal is a borderline UNIX language. It

is not part of the original AT&T imple

mentation, but few UNIX systems are

without at least one version of Pascal, es

pecially if the UNIX environment is one

where programmers can be found. The

crux of the UNIX-Pascal problem is de

ciding which version of Pascal is best to

use. The current industry favorite is a ver

sion of Pascal that originated at Berkeley.

It is an International Standards Organiza

tion (K. Jensen and N. Wirth) set, and as

such is severely limited. The enhance

ments found in commercial Pascals in

micro and mini environments are so com

monplace that they will undoubtedly

become part of the ISO set. Those en

hancements include type string, string

functions, an enlarged function library

and random records.

I have seen unusual versions of Pascal

(with some very strange origins) show up

in UNIX. One version, called Pascal

8000. was created for the Australian

Atomic Energy Commission!

The Berkeley version of Pascal, BSD

Pascal, has the advantage of being offered

with an interpreter as well as a compiler.

The interpreter takes most of the pain out

of debugging, a tremendous timesaver.

It docs so by offering some of the best

error diagnostics I have seen from any

language package.

Other features of Berkeley Pascal are a

UNIX front end that allows redirection

and pipes just as C and f77 do. This fea

ture alone makes it a true UNIX language

because it interfaces with the host UNIX

environment rather than sitting on the

sidelines like a "foreign" language.

Berkeley Pascal also allows separate com

pilation, a feature necessary for any lan

guage used on a serious system. An

interactive source code debugger is also

supplied.

Debugging

The debugging of source code is so im

portant that most UNIX systems have at

least two debuggers, dcon and adb, and

there are often more. The standard UNIX

debuggers, which are for compiled Ian-

30 COMPUTER LANGUAGE ■ PREMIER ISSUE 198a

guages only, have some problems because

they deal with the assembly output ofthe

compiler and give little if any reference to

the source code. C programs output a

source/assembly listing that is of some

help, but the assembly reference is abso

lute, and the addresses you will have to

deal with are relative.

Recently I was introduced to a source

level debugger from a company located in

Menlo Park. Calif., called CDB. CDB

works directly with the source code and

allows all the usual debugging tools like

setting break points, single stepping,

assertions, command line procedure call

ing, and direct access to variable names

(not symbols). The debugger works with

C and Berkeley Pascal, and it is being

transported to other versions and

languages.

Language support

Having a large number of languages on

board does not make an operating system

a programmer's environment. UNIX has

a strong and well-deserved reputation as a

programmer's world par excellence. The

reputation is gained from UNIX's pro

gramming support tools. Most of these

tools are aimed at the system's native as

sembly code and, most important of all.

C. The debuggers adb and dcon deal with

the native assembly as it relates to the C

source code. All true UNIX-compiled

languages create C code. RATFOR gener

ates FORTRAN, which in turn creates a

dialect of C. Pe, the Pascal compiler, also

generates C.

Lint is a program to nitpiek C code, and

it does so with a vengeance. It docs type

checking and will pick up on such nitty-

gritty things as declared, unused variables

and unused returns from functions. If

your program survives lint, it will almost

certainly survive the compiler. Cb will

beautify a C program, imdprettyp does the

same for Pascal. Cmp and <■/$"compare

equai or nearly equal source code fifes

and report the difference. Save creates a

backup that will not allow an older version

to be written to it.

Make is a UNIX utility that literally

makes the object files. It coordinates the

include files, intermediate files, and sepa

rate source files and causes them to com

pile and link properly, regardless of which

portion is modified. Unlike its human

counterpart, make will neither dupli

cate effort nor omit a crucial section of

the code.

One giant siep beyond make is sees. the

source code control program, sees, a part

ofpwb, the programmer's workbench,

controls the source code to prevent older

versions from sneaking in where the new

version should be. It documents the

changes to the code and its impact on the

overall project. If more that one program

mer is involved on a project sees is a must.

The average UNIX system has some

two score languages and language support

tools. They are all interrelated and work

as a true system. The overall result is a

programming environment that is un

matched anywhere. Beyond program and

systems development, UNIX has the abil

ity to document the results and install on

line manuals for the software created as

well as conventional documentation—

from memos to entire books, including

typesetting.

UNIX's uniqueness

The UNIX language family is unique be

cause of the ability of its individual lan

guages to communicate with each other

and its ability to use a common function

base. C programs call Shell scripts and

Shell scripts call C programs with equal

ease. Similarly, both the the C language

and the UNIX Shell call nwk, grep, egrep

orsed. Tosomeextent. UNIX languages

almost seem as if they comprised one

gigantic language, or they could be per

ceived as separate entities that network

each other. f77 is free to use C calls or call

entire C programs and return to the call

ing program. UNIX Pascals are also able

to accomplish the same task. Some

versions of C can even call FORTRAN

intrinsics.

Because of the UNIX languages' ability

to communicate with each other, UNIX is

a unique programming environment, ideal

for programmers. If you understand what

is special about the team of UNIX lan

guages, you are on your way to under

standing UNIX, n

Bruce Hunter is a UNIX systems adminis

tratorfor Interstate Electronics in Ana

heim. CA. He has authored two books—

Fifty Pascal Programs and Understanding

C—both published by Sybe.x.

CP/M-80 C Programmers ...

Save time
... with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Ulira fast compilation, linkage and

eiecution that produce directly

executattte 808CVZ80 CP'M command

files,

A comprehensive debugger thai

traces program execution and

interactively displays Doth local and

eiternal variables by name and

proper tyj».

Dynamic overlays thai allow for run-

lime segmentation of programs too

large to fit into memory

• A iZOfunction horary wntten in boin

C and assembly language with lull

source cofle

Plus . . .

• A thorough, easy-to-read. 181-page

users manual complete with

tutorials, hinls. error messages and

an easy to-use index — it's Ifie

perfect manual for the beginner ana

the seasoned professional.

An alt'act i re selection of sample

programs, including MODEM-

compatible telecommunications.

CPIM system utilities, games ano

more

A nationwide BDS C User's Group

{SiO memuersriip fee — applicalion

included with package) that offers a

newsletter, BDS C updates and

access to public domain C utilities.

Reviewers everywhere have

praised BDS C (or its elegant

operation and optimal use of

CP/M resources. Above all. BDS C

has been hailed (or it's remarkable

speed

BYTE Magazine placed BDS

C ahead of all other 8030<Z80 C

compilers tested for fastest

object-code execution with all

available speed-up options in use.

In addition. BDS C's speed of

compilation was almost twice as

fast as its closet competitor

(benchmark for this test was the

Sieve of Eratosthenes).

"I recommend both the

language and ihe implementation

by BDS very highly."

Tim Pugh. Jr.

in Infbii-orid

" Pertomuinre: ExcrUtnl

Documentation: Excellent

East of Uw: ijcsilmi"

infoWotid

Softw

"... a superior buy ..."

Van Court Hare

in UfelinesThe S

Don't waste another minute on

a slow language processor. Order

your BDS C Compiler today!

Complete Package (two 8" SSDD disks.

101-page manual) J1SO

Free shipping on prepaid orders inside
USA

VISWMC. COO'S, rush orders accepted.

Call for information on olher disk

formats.

BDE C rs Designed fen use mtn CPW-80

operating sysiems, vwsiorr 22. or mgdw. Ins

not currently available (of CP/M-B6 cr MS-

DOS

BD Software, Inc.
P.O. Box 2368

Cambridge, MA 02238
(617) 576-3828

CIRCLE 3 ON READER SERVICE CARD 31

Bubble Sort,
Insertion Sort,

and Quicksort

Compared
Choosing the right sorting algorithm for the right task.

S
orting data is an

important use for

i computers. It is

also a valuable

tool in developing other applications. But

selecting a sorting algorithm that will per

form best fora given job can be difficult

since no algorithm is appropriate in every

situation. Let's look at three popular sort

ing algorithms—Bubble Sort, Insertion

Sort, and Quicksort—and consider their

relative strengths and weaknesses.

Finding data in a sorted table is an obvi

ous case where a sorting algorithm is

needed. Think how much harder it would

be, for example, to find a name in the tele

phone book if the names were not listed

alphabetically. Sorting is often used to

maintain symbol tables for compilers and

assemblers. (Several years ago I wrote a

cross assembler which assembled Z80

code on an IBM/370. By changing the

algorithm that I used to sort the symbol

table, I almost doubled its speed on large

assemblies.)

Anotherexample — suppose you wanted

to find all duplicates in a list of 10,000

numbers. You could do this by comparing

each number with all the numbers follow

ing it in the list, but this would involve ap

proximately 50 million comparisons.

Alternatively, if you could efficiently sort

the numbers into increasing order, you

could find duplicates by doing the 9,999

comparisons needed to compare each

number with the number immediately fol

lowing it.

Bubble Sort is probably the most popu

lar sorting algorithm among computer

hobbyists. This is unfortunate. Although

there is no "best" sorting algorithm.

many experts believe that Bubble Sort is a

leading candidate for being the worst.

Basically, Bubble Sort works by going

through the array being sorted and com

paring adjacent elements. If two adjacent

elements are in the wrong order, they arc

exchanged. By passing through the array

repeatedly in this manner Bubble Sort

eventually gets all pairs of elements in the

correct order—at which point the array is

finally sorted.

An examination of what happens to in

dividual elements shows the reason for the

name Bubble Sort. On the first pass

through [he data, a succession of ex

changes causes the largest clement to ,

"bubble up" to its final position. On the

second pass, the next largest element bub

bles up to its final position, and so forth.

One possible improvement in Bubble

Sort involves keeping track of the location

of the last out-of-order pair that was ex

changed. Any data beyond this point must

be in its final position and need not be ex

amined again. In Listing 1 (printed here

and also available on the COMPUTER

LANGUAGE bulletin board service remote

CP/M computer: (415) 957-9370, sec

disk file SORT1.LTG), the variable Last-

Swap is used to record this location. It

also is used to record whether or not the

data is already in order. LastSwap is ini

tialized to 0 before each execution of the

inner loop. If it is still 0 after the exe

cution of the inner loop, then there were

no exchanges and the data is sorted.

It can be shown that the average num

ber of comparisons done by BubblcSort

on randomly ordered data is approxi

mately n2f2, where n is the number of

elements.

By Richard G. Larson

Bubble Sort is a relatively inefficient

sorting algorithm. When sorting large ar

rays, a lot of sorting algorithms arc many

times more efficient.

For sorting small arrays. Insertion Sort

is significantly faster and somewhat sim

pler. One of the simplest sorting algo

rithms available, it works by repeating the

following for; running from 2 through n:

(Assume .Y|l] through X[/-i] arc in sorted

order.) Take.YL/] and successively com

pare it with X[/-l|, X|j-2] while

moving each element larger than X\J]

over one position. When the first X[i] is

found that is not larger than X[j], insert

X[j\ immediately following it.

A standard modification (see Listing 2,

also on the bulletin board service com

puter as disk file SORT2.LTG) is to put a

dummy data element at X[Q] that is known

to be smaller than X[I] through X[n\. This

eliminates the need for testing in the inner

loop whether the loop index has reached

the beginning of the array: even if it has. it

will always stop when it encounters the

dummy value at X\Q}. Another minor im

provement can be made by keeping the

value ofX{j] in a separate variable rather

than as an array element. We expect that a

compiler will produce code to access a

variable more efficiently than an ar

ray element.

The average number of comparisons

done by Insertion Sort on randomly or

dered data is approximately h2/4. The

number done in the worst case is n2/2. In

the best case—which is when the data is

already sorted—the numberof compari

sons done is approximately n.

32 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

The fact that the average number of

combined with the fact that the inner loop

of the Insertion Sort algorithm is simpler

than Bubble Sort's inner loop, suggests

that Insertion Sort should be at least twice

as fast as Bubble Sort. In fact, the version

of Insertion Sort in Listing 2 takes less

as fast as Bubble Sort. In fact, the version

of Insertion Sort in Listing 2 takes less

than 40% of the time taken by the version

of Bubble Sort in Listing 1.

The problem with both Bubble Sort and

Insertion Sort, however, is that they both

move data elements to their correct posi

tions one place at a time. It can be shown

that the average distance that a data ele

ment in a randomly ordered array contain

ing n elements must travel to its correct

position isn/3. If n is large, and if an ele

ment moves to its correct position one

place at a time, this represents a large

number of operations.

Quicksort was invented by C.A.R.

Hoare in the early 1960s. The basic idea is

very simple but relies on a concept called

recursion: the ability of a procedure or

subroutine to call itself. Hoare remarked

on the importance of recursion in a lecture

he gave the day he received the 1980 ACM

Turing award, "I first learned about re

cursive procedures [around Easter 1961]

and saw how to program the sorting

method which I had earlier found such

difficulty in explaining."

Quicksort sorts segments of an array.

To sort an entire array, it sorts the segment

from 1 through n. It works by taking a

partitioning element from the array and

rearranging the array so that all elements

on the left-hand side preceed the par

titioning element, all the elements on the

right-hand side follow the partitioning

element, and the partitioning element is

placed between the left- and right-hand

sides. It then recursively sorts the left-

and right-hand segments.

Quicksort's advantage over Bubble Sort

and Insertion Sort comes from the fact

that the partitioning method exchanges

non-adjacent elements, causing each ele

ment to migrate to its correct position in

the array with many fewer operations.

The key problem is identifying a good

partitioning element. Ideally, about half of

the elements in the segment being sorted

should preceed it and about half should

follow it. A simple implementation of

Quicksort is given in Listing 3 (printed

here and also available as disk file

SORT3. LTG on the buletin board ser

vice). This implementation is a peda

gogical one and is not intended to be used

in an application program. It consists of a

recursive procedure, BQS, which does the

actual sorting, followed by a procedure,

BasicQuickSort, which sets things up and

calls BQS. The implementation in Listing

3 simply uses the first elements of the seg

ment as a partitioning element. Assuming

the array elements are in random order,

this is not a bad choice. However, if the

array is not in random order (e.g., it al

ready happens to be sorted), this choice

can be disastrous.

Once the partitioning element is identi

fied, the segment is scanned from the left

until the first element not preceeding the

partitioning element is encountered. The

segment is then scanned from the right,

stopping at the last element not following

the partitioning element. When these two

elements are located, they are exchanged.

The two scanning processes continue until

they meet in the middle of the segment.

Partitioning is completed when the

partitioning element is inserted at the

meeting point.

This version of Quicksort can be shown

to take about 2n log2n comparisons on

randomly ordered data. The fact that the

function log2n is much smaller than n for

large values of n (e.g., Iog21000 is about

10) implies that, for large n, Quicksort

will do many fewer comparisons on the

average than Bubble Sort or Insertion

Sort. In the worst case, Quicksort does

about n1!! comparisons, which is as bad
as Bubble Sort.

What is worrisome about this version of

Quicksort, however, is that the algorithm

is at its worst processing already sorted

data. When the array is in order, choosing

the first element of a segment of a size j as

a partition element gives two sub-

segments of a size 0 and size s-\. Quick

sort operates most efficiently when par

titioning results in two sub-segments of

nearly equal size. The version of Quick

sort in Listing 3—which is the most easily

understood version—should not be used

unless you are certain that the array to be

sorted is in random order.

An enhanced version of Quicksort is

given in Listing 4 (available only on

the bulletin board service as file

SORT4.LTG). Again, I present a recur

sive routine, QS, followed by a routine,

Quicksort, which calls QS and then does

some final computations. Table 1 shows

that these improvements give small de

creases in run time over the version

presented in Listing 3. The enhanced ver

sion's most important advantage—which

does not appear in the table—is that it is

less likely to behave badly on non-random

data.

The most important feature of a Quick

sort implementation is the selection of the

partitioning element. Rather than simply

taking the first element of the segment-

on the assumption that it is randomly lo

cated within the partition—take the me

dian element of the first, middle, and last

elements of the segment. If the array is al

ready ordered (or nearly ordered), this is

obviously a good choice. For a randomly

ordered array, it is also a good choice and

gives a partitioning element that is closer

to the middle point than the first element.

(The average number of comparisons

goes down from In log2n to (12/7)n

log2n.) Some people like to partition the

segment using the numerical average of

the first and last elements, but this won't

work very easily if you are sorting non-

numeric data.

Another improvement can be made by

noting the fact that the procedure BQS

ends with a recursive call. This call can be

removed by setting the values of the pa

rameters appropriately and re-executing

the body of the procedure. This is often

described as tail recursion. It is also de

sirable to limit the depth of recursive calls

because deep recursive calls use more

memory and a recursive call is often more

time consuming than re-executing the

procedure block. In the procedure QS,

33

this is achieved by doing the recursive call

on the shorter segment and using tail re

cursion on the longer segment. Doing this

guarantees the depth of recursion will

never exceed log2rt.

The final improvement comes from the

fact that for very small segments. Inser

tion Sort is more efficient than Quicksort

because of Quicksort's complexity. This

means that when the array is almost

sorted, it is better to abandon Quicksort

and finish the job with Insertion Sort. By

doing this you can sort data elements most

efficiently since every element is near its

final position. This is done in the pro

cedure QS; QS does not sort a segment

unless its length is greater than M—a con

stant in the procedure. The value ofM de

procedure BubbleSort (var X : DataArray; n : integer);

var

j.
Limit, {data at position above here is in final position}

LastSwapf holds position of last data pair swapped }

: integer;

begin

Limit := n;

while not (Limit = 0) do

begin

LastSwap := 0;

for j := 1 to Limit-1 do

if X[j] > X[j+1] then

begin

swap(X[j],

LastSwap := j

end;

Limit := LastSwap

end

end;

Listing 1.

procedure InsertionSort (var

var

j. 3_ : integer;

Z {temporarily holds X[j]

;

begin

x[o;
for

end;

Listing 2.

real;

X : DataArray; n : integer);

while X[j-1] ,...are being moved up)

| := SmallerThanAnything;

j := 2 to n do

begin

Z := X[j];

i := j - 1;
while (Z < X[i])

begin

i := i -

end;

X[i+1] := Z

end

do

- xrn-
i

pends on the specific implementation. In

Donald E. Knulh's Vic Art of Computer

Programming, vol3. Sorting and Search

ing (pp. 119-122). you can see how the best

value of Mean be found in a sample

assembly language implementation.

Knuth uses information on instruction

timing and some subtle mathematical

analysis of the probability of taking

different paths in the procedure.

A simpler approach is to find the value

of A/by experimentation. For example,

with my machine and my compiler run

ning this procedure, the correct value of

A/was 12. However, the value of M is not

critical. The execution times for this ver

sion of QS, sorting an array of 5.000

elements, wilhM =6 and A/ =18, were

only about 2 7c greater than with M equal

to 12. A/equals 10 is usually a safe choice.

So, which sorting algorithm is the best

to use? If the array to be sorted is small

(e.g., substantially less than 100 ele

ments), or if the data to be sorted is al

ready nearly ordered, then Insertion Sort

is a reasonable choice. Otherwise, use an

enhanced version of Quicksort like the

one given in Listing 4. Conventional wis

dom says this is the fastest "average

case" sorting algorithm and the choice of

the median clement as the partitioning ele

ment gives good protection against cases

where the data to be sorted is in extremely

random order.

Mathematical proofs of many of the as

sertions made in this article can be found

in Donald Knuth's book Tiie Art of Com

puter Programming, vol3. Sorting and

Searching, published by Add i son-Wesley.

1975. Anyone who is interested in the

more subtle problems connected with

sorting algorithms will find an incredible

wealth of information in that volume.

The algorithms presented in Listing 1,

2, 3, and 4 were compiled using Micro

soft Pascal (version 3.13) and run 10 times

each on various sizes of arrays filled with

random real numbers on an IBM XT with

an 8087 chip under DOS 2.0. The results

are presented in Table 1. Since the resolu

tion of the system clock under DOS is

only 0.05 sec, the timing for the two ver

sions of Quicksort for the smallest values

of n should not be taken very seriously. H

34 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

Richard Larson received a B. S. from the

University ofPennsylvania, an M. S. and

Ph.D. from the University ofChicago—all

in the field ofmathematics. He then went

on to teach at M.I. T. and the University of

Illinois at Chicago. While on sabbatical

leave at Rutgers University in 1974, he be

came interested in applying computers to

abstract mathematics. He is currently a

professor in the Dept. ofMathematics,

Statistics, and Computer Science at the

University ofIllinois at Chicago.

n

125

250

500

1000

2000

Bubble

1.64
6.38

25.^8

102.^0

* 11.57

, nserti on

O.63

2.35
9.2^

36.50

145-99

Simple

Quick

0.16

0.37

0.81

1.80

4.02

Enhanced

Quick

0.16

0.35
O.76

1.69

3.67

Table 1.

procedure BQS (var X : DataArray:

(procedure called by BasicQuickSort to do actual sorting }

var

left, right : integer;

Z : real;

begin

{Partition the array segment X[i]..X[j] using X[i] as partitioning element)

Z := X[i];

left := i;

right := j + 1;

while (left < right) do

begin

repeat

left := left + 1

until Xfleft] >= Z;

repeat

right := right - 1

until X[right] <= Z;

if left < right then

swap(X[left], X[right])

end;

X[i] := X[right];
X[right] := Z;

{At this point we have: for all k < right, X[k] <= X[right];

for all k > right, X[k] >= X[rightj.

Recursively sort the segments X[i]..X[right-1] and X[right+1]..X[j].}

if i < right-1 then

BQS(X, i, right-1);

if right+1 < j then

BQSCX, right+1, j)

end;

procedure BasicQuickSort (var X : DataArray; n : integer);

begin

X[n+1] := LargerThanAnything;

BQS(X, 1, n)

end;

Listing 3.

35

Improve Your

Programming
with Structured

Techniques
■^ o much as been

^J written and said

^^k on the subject of
J^r structured pro

gramming that it's important to consider

exactly what this concept means.

To some people, structured program

ming has become almost a religion, a

virtual salvation of the programmer's

soul. To others, it's a conspiracy intended

to snuff out programmers' creativity and

turn them into code-spewing drones.

Both of these views are, of course,

equally ridiculous. The concepts and tech

niques of structured programming—first

suggested by Edsger Djikstra, then

refined by Niklaus Wirth, Donald Knuth

and others—are an attempt to define an

orderly approach to designing, imple

menting, debugging and testing computer

programs. From a disciplined and well

thought out methodology comes programs

that are well organized, reliable and

maintainable.

Far too many programmers (especially

student programmers) think only about

writing code when they undertake a pro

gramming project. In fact, studies have

shown that writing code forms only a

small part of the program development

process. Actually, much of a program de

signer's time is spent determining exactly

what a program should do and how it

should do it. And after the code is written,

a programmer can easily become trapped

in a seemingly endless cycle of testing and

debugging that can take far longer than

the time spent coding.

With the advent of ever cheaper hard

ware, the costs associated with program

ming have assumed a greater proportion

of EDP department budgets. The bulk of

these programming expenses goes not for

new programs but for maintaining, mod

ifying, and extending existing programs.

Most of these costs, in turn, arise from the

unfortunate responsibility of having to

wade through a tangle of existing code to

unravel a program's fundamental logic.

Structured programming seeks to rem

edy those failures of the "program as you

go" approach. By pursuing an orderly,

methodical orientation that is the same

for each application or task, the program

mer can minimize the tediousness and

drudgery associated with writing code

and focus more on the real problems and

their solutions.

Rather than stifling creativity, struc

tured programming can minimize the bur

dens that result from disorganization and

allow the programmer time to dwell on

the more satisfying aspects of pro

gramming—the design of elegant algo

rithms and expeditious data structures.

Structured programming, then, is an

orderly approach to the program develop

ment cycle and an associated set of steps

and techniques that implement this view

point. Diligently applied, it can minimize

the drudgery usually associated with pro

gramming and emphasize instead those

activities in which creativity, style, and

insight can have the most positive impact.

To illustrate the concepts involved in

structured program design, let's use a

sample application and follow its develop

ment from the initial stages to the com

pleted code. Before beginning, however,

it is important to emphasize a couple of

points. First, the use of structured pro

gramming is not a panacea and does not

By Dr. Joseph B. Rothstein

guarantee good programs. It is possible to

write code poorly regardless of its struc

tured nature. When all is said and done,

there is no substitute for intelligence, tal

ent, and the education of experience.

Second, and probably more important,

is that the techniques of structured pro

gramming are language independent.

Certainly, the design of some program

ming languages is better suited to encour

aging the use of structured techniques

than others. Pascal generally comes to

mind in this regard; after all, one of

Kathleen Jensen's and Niklaus Wirth's

goals was to implement these concepts in

their design of Pascal. But by exercising

some planning and thought, the program

mer can design and implement structured

programs in any language—including

FORTRAN, assembler, or that bane of

programming purists, BASIC.

Structured programming may be con

sidered a four-step process involving

three techniques. The four steps may be

summarized as: goal, specifications,

pseudocode, and program code. The tech

niques involved are top-down design,

structural decomposition, and modularity.

We will deal with each in turn.

Decide on the objective

Regardless of the programming language,

the first step must be to determine the goal

of the program. This simple yet crucial

step is often too easily dismissed, which

can have catastrophic results. Needless

programs are written, tempers become

frayed, and lawyers obtain business when

37

programmers write code without deter

mining the objective involved.

Careful consideration of the objective

of a given program will lead to an easier,

more straightforward solution. For exam

ple, the response to a request for "a pro

gram that will straighten out my account

ing" may not be a program at all but

rather a better accounting procedure.

While the goal of a program may be

stated in general terms, it must clearly in

dicate the nature and scope of the project.

If a person said, for example, that he or

she wanted to write "a sales report pro

gram," this would not be an adequate de

scription. But "a report, run weekly,

which shows sales for each hour of each

day of the preceding workweek and gen

erates cumulative totals by hour and day,

based on hourly sales data that is entered

by the user and validated by the program"

describes the goal clearly and succinctly.

At this stage, it is not important to know

the wording of the report's title or the na

ture of the data validation methods. It is

enough to realize that data entry and vali

dation will form a significant part of the

program and that the purpose of the report

is to show hourly and daily sales figures

for a week long period,

Starting with the big picture, rather

than being concerned with minor details,

is the central principle of top-down de

signing. In essence, this approach stresses

working progressively from the general

level down into the details rather than be

ginning with detailed descriptions of

prompts, file layouts, and other low-level

concerns. Failure to see the forest for the

trees can be a problem in any activity, and

particularly in programming.

Consider the specifications

Once the goal is clearly established, the

programmer may begin to consider the

specifications for the program. Just as the

goal statement is language independent,

so should the specifications need no refer

ence to a particular language.

Specifications may take a variety of

forms, but one of the most useful is the

Input-Process-Output model of a pro

gram. In this view, a program may be con

sidered as a "black box" (process) that

uses available data (input) to generate

some worthwhile result (output).

Make a list of the available data and de

scribe the desired output as fully as possi

ble. Later on, the input data list will form

the core of documentation—such as sam

ple input screens and a data dictionary—

while the output data list can lead to file

layouts and sample report forms.

In our sample sales report, we'll cer

tainly need the hourly sales figures for

each day. We might also need the weekday

name or date on which we begin. There

are many data entry alternatives, and it's

important to clarify not only what input is

necessary but also what is unnecessary. If

we assume, for instance, that each report

will cover Monday through Friday (inclu

sive) and the hours of 9a.m. until 5 p.m.,

we can eliminate a considerable amount of

data entry—always a desirable ideal. On

the other hand, we may know only the

starting date, so we might need to deter

mine what day of the week it is and gener

ate the names of the subsequent days

within the program.

Our approach does not require that the

input specifications be complete in every

detail before undertaking the description

of the process by which input will be

transformed into output. In the early

stages that description must remain flex

ible. We may find that additional input is

required or that some input is unnecessary

and may be eliminated, and then we would

adapt the specifications accordingly. It is

far easier to change a program specifica

tion than to debug finished code. By

stressing an investment of time spent in

the design phase, structured program

ming can pay big dividends later during

debugging.

We can generate a process specification

by starting with our goal statement and

successively refining it by using a tech

nique called stepwise (or structural)

decomposition. This approach suggests

that any large or complex task can be

progressively refined (decomposed) into a

series of simpler tasks. It also helps iden

tify the major design issues involved so

that they may be addressed immediately

or deferred until their details become

clear, while still accommodating them in

the overall design plan.

Keep in mind that our overview of the

program is already decomposed into three

stages:

1) Get input from user

2) Perform necessary processing

3) Print results

We can now focus on each of these in turn.

Stage 1 might be further decomposed into

the following series of activities:

A) Print an introductory message for

the user

B) Prompt the user for one hour's

sales data

C) Validate that the value entered is

acceptable

D) Store the value

E) Repeat for each hour in the reporting

period

Clearly, step C is vaguely defined at

this point. But that should not be of con

cern because we know the tasks to be per

formed, though we don't yet know the de

tails of how each task will be performed.

The important consideration at this level

of design is that we be able to identify the

major tasks, the order in which they are to

be performed, and the control structures

that govern them. Those control struc

tures should also be described in general

terms, as above, rather than trying to

force them to conform to the syntax for

control structures in a particular program

ming language.

This overview of tasks, once completed

for all three portions of our initial design,

serves two complementary purposes. In

addition to serving as our process specifi

cation, it will subsequently become the

"driver" of our program.

We can view a program as composed of

two portions: the driver, which imple

ments the high-level design, and sub

programs invoked by the driver, which

implement the details of that design. In

FORTRAN or BASIC, for example, those

subprograms would be subroutines that

are invoked by the driver with a GOSUB

38 COMPUTER LANGUAGE ■ PREMIER ISSUE NB4

statement. Pascal uses procedures and C

uses functions, but both serve the same

purposes: to physically separate the high-

level design from the implementation de

tails of that design, and to localize each

task to a single subprogram.

Ideally, the driver should contain only

three classes of statements: comments,

control structures, and calls to sub

programs. Sometimes, of course, his

necessary to set up parameters in the

driver for passage to subprograms, but

with careful planning the use of even these

statements can be minimized.

The concept behind single-task sub

programs is part of the third technique of

structured programming. Modularity sug

gests that any program can and should be

implemented as a series of free-standing,

individually-testable subprogram mod

ules, each of which performs a single

task. Free-standing refers back to the

black box concept of programs—that if a

program module is given its required in

put it will generate its output in a predict

able fashion. If this is the case, each

module can be tested (independent of the

rest of the program) by force feeding it

test input data for which the output should

be known and then making sure that the

module generates the expected output.

The modular approach has numerous

advantages. It helps us isolate the locus of

any bugs or anomalies, find the appropri

ate routines when we subsequently need to

make modifications or extensions to the

program, implement our program in

crementally, and test our work as we

progress rather than by trying to test and

debug the entire program at once.

For any non-trivial program, it is only

possible to prove the existence of bugs,

not their absence. It follows, then, that by

reducing a complex program to a series of

trivial modules and testing each module,

we can be more confident that we have

done a thorough debugging job.

Write the pseudocode

We can now begin the third step in our

structured methodology— generating

pseudocode for the driver and each of the

subprograms specified. Pseudocode

means "false code" or "almost code" in

the sense that it should look similar to a

finished program.

In writing pseudocode, however, we

are not bound by the syntactical con

straints of any particular programming

language. Therefore, we can continue to

develop our program in a language-

independent fashion and later transform

our pseudocode into the programming

language of our choice.

The pseudocode for the driver portion

of our program might appear as presented

in Figure 1. This pseudocode should sug

gest the overall structure of the tasks in

our program, the order in which they will

be performed, and the control structures

required. Careful attention to the control

structures can help ensure an orderly,

smooth transition from one subprogram to

the next. It may also serve to minimize or

eliminate the use of unconditional GOTO

statements—considered a grave offense

by structured programming purists.

Print instructions to user.

For each workday

print a prompt using the name of that workday.

For each hour of the day

Repeat until a valid amount is entered:

Print a prompt indicating the hourly period

Print a prompt for the sales amount.

Get a sales amount entry from the user.

Validate amount entered.

If invalid, print an error message.

Store the value in the sales table.

Perform the calculations.

Print the report.

Figure!.

Using the sales amount entered by the user,

Set a flag if:

the amount is less than zero;

the amount exceeds some predetermined maximum; or

the integer value of the decimal portion exceeds 99.

Figure 2.

39

Superassemblers
plus the world's

largest selection of
cross assemblers!

Z-80

Macroassembler $49.50
Power for larger programs! This

2500AD macroassembler includes:

• Zilog 2-80 Macroassembler (with

the same powerful features as all

our assemblers)

• powerful linker that will link up to

128 files

• Intel 8080 to Zilog Z-80 Source

Code Converter (to convert all

your Intel source to Zilog Syntax

in one simple step)

■ COM to Hex Converter (to convert

your object files to Hex for PROM

creation, etc.)

• 52 pages User Manual

8086/88 Assembler

with Translator $99.50

Available for MSDOS, PCDOS, or

CPM/86! This fully relocatable macro

assembler will asemble and link code

for MSDOS (PCDOS) AND CPM/86
on either a CPM/86 or MSDOS

machine. This package also includes:

• An 8080 to 8086 source code

translator (no limit on program

size to translate)

• A Z-80 to 8086 translator

•64 page user manual

•4 linkers included:

-MSDOS produces .EXE file

-CPM/86 produces .CMD file

-Pure object code generation

-Object code and address

information only

Linker features:

• Links up to 128 files

• Submit mode invocation

• Code, Data Stack and extra

segments

• Handles complex overlays

• Written in assembly language for

fast assemblies.

• MICROSOFT. RELformat option

2-8000 Cross Development
Package $199.50

Instant Z-8000 Software! This
package allows development and
conversion of software for the

Z8001,8002,8003 and 8004 based

machines on a Z-80, Z-8000 or 8086

machine. This powerful package
includes:

• a Z-80/8080 to Z-8000 Assembly

Language Source Code Translator

• Z-8000 Macro Cross Assembler
and Linker

The Translators provide Z-8000

source code from Intel 8030 or Zilog

Z-80 source code. The Z-8000

source code used by these

packages are the unique 2500AD

syntax using Zilog mnemonics,

designed to make the transition
from Z-80 code writing to Z-8000

easy.

4112500 AD Assemblers and

Cross Assemblers support the

following features:

Relocatable Code — the

packages include a versatile Linker

that will link up to 128 files together,

or just be used for external

reference resolution. Supports

separate Code and Data space.

The Linker allows Submit Mode or

Command Invocation.

Large File Handling Capacity

—the Assembler will process files

as large as the disk storage device.

All buffers including the symbol table

buffer overflow to disk.

Powerful Macro Section—

handles string comparisons during

parameter substitutions. Recursion

and nesting limited only by the

amount of disk storage available.

Conditional Assembly—allows

up to 248 levels of nesting.

Assembly Time Calculator—
will perform calculations with up to

16 pending operands, using 16

or 32 Bit arithmetic (32 Bit only for

16 Bit products). The algebraic
hierarchy may be changed through

the use of parentheses.

Include files supported—

Listing Control—allows listing

of sections on the program with
convenient assembly error detec

tion overrides, along with assembly

run time commands that may be

used to dynamically change the

listing mode during assembly.

Hex File Converter, included

—for those who have special

requirements, and need to generate

object code in this format.

Cross reference table

generated—

Plain English Error

Messages—

System requirements for all pro

grams: Z-80 CP/M 2.2 System with

54kTPA and at least a 96 column

printer is recommended. Or

8086/88 256k CP/M-86 or MSDOS

(PCDOS).

CrossAssemblerSpecial Features

Z-8—512 User defined registers

names, standard Zilog and Z-80

style syntax support.

8748—standard Intel and Z-80

style syntax supported.

8051 —512 User defined register

or addressable bit names.

6800 Family—absolute or

relocatable modes, all addressing

modes supported, Motorola syntax

compatible.

6502—Standard syntax or Z-80

type syntax supported, all

addressing modes supported.

_ OHOfi or»H 7_«nnn YaQM inrlur
i

8086/88 ASM

8086/88 XASM

16000(all) XASM new

68000 XASM new

Z-8000® ASM

Z-8000 XASM

Z-80 ASM

Z-80 XASM

Z-8XASM

6301(CMOS)new

6500 XASM

6502 XASM

ww /vow

Z-80

CP/M®

$199.50

199.50

199.50

199.50

49.50

99.50

99.50

99.50

99.50

65CO2(CMOS) XASMnew 99.50

6800,2,8 XASM

6801,03 XASM

6805 XASM

6809 XASM

8748 XASM

8051 XASM

8080 XASM

8085 XASM new

1802 XASM new

F8/3870 XASM new

COPS400 XASM new

NEC7500 XASM new

NSC800new

Subtotal

Narnp

1 Company

City RtatR

1 Phnnp

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

$

Zip

Fvt

Make and model of computer
system

□ C.O.D. (2500AD pays COD. nharaen

D VISA or MasterCard # Exp.Date(mo.

mi 11 i wi w w

ZILOG

gs Source Cod

IBM P.C.

SYSTEM 8000 8086/88

UNIX

$750.00

750.00

750.00

750.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

500.00

$

)

/yr.)

MSDOS

$ 99.50

199.50

199.50

199.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

$

e Translators -

IBM P.C.

8086/88

CP/M 86

$ 99.50

199.50

199.50

199.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

OLIVETTI

M-20

PCOS

$199.50

199.50

199.50

299.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

99.50

TO ORDER. Simply circle the product or

products you want in the price columns above,

enter the subtotal at the bottom of that column

and add up your total order. Don't forget

shipping/handling.

Check one:

□ 8" Single Density

□ SWOsborne
□ IBM P.C.

□ Cartridge Tape

□ Apple (Softcard)

Total $
shipping/handling

($6.50 per unit,

$20.00 per unit for
Int'l airmail) $

Total Order $
CPM is a registered trademark of Digit

! 25OWD9OFM4RE N

I Research. Inc.

c

I

I

I

:

\

CIRCLE 1 ON READER SERVICE CARD

Now we can focus on the pseudocode

for each task in turn. As an example, let's

look at the validation routine. It might ap

pear as the pseudocode routine in Figure

2. This pseudocode suggests that the

driver must pass the amount entered to the

validation routine as a parameter, and that

the validation routine must indicate the

presence (and perhaps the nature) of any

errors. We will implement the routine as a

Pascal function, but it could just as easily

be coded in BASIC, FORTRAN, or even

assembly language.

The final step—program code

Given similar pseudocode and parameter

information for each of the routines, we

can then perform the final step in the im

plementation of our program—translating

first the driver and then the routines them

selves into Pascal code. The resulting pro-

BEGIN (* main *)

initialize(salestable,hourlytotal,dailytotal);

intro; (* print instructions for user *)

FOR dayindex := (* user-defined data type *) raon TO fri DO

BEGIN

dayprorapt(dayindex); (* print day name for user *)

FOR hourindex := (* user-defined *) nine TO four

BEGIN

REPEAT

hourprorapt(hourindex); (* print hour prompt for user *)

getinput(hoursales);

IF NOT valid(hoursales) THEN

printerror

UNTIL valid(hoursales);

store(salestable,hoursales)

END (* single hour sales input loop *)

END; (* single day loop *)

calculate(salestable,hourlytotal,dailytotal);

report(salestable,hourlytotal,dailytotal)

END. (* program *)

The Pascal code for our validation function might be:

FUNCTION valid(sales:REAL) : BOOLEAN;

BEGIN

IF (sales > maxsale) OR (sales < 0) THEN

valid := FALSE;

ELSE

valid := TRUE;

END; (* function valid *)

Listing 1.

42 COMPUTER LANGUAGE ■ PREMIER ISSUE 198d

gram is seen in Listing I. (Reserved words

are in upper case, user-defined names are

in lower case, and comments are enclosed

within the "(* ■ ■ ■ *)" symbols.)

By writing such trivial functions, pro

cedures, or subroutines, we can keep our

code as simple as possible despite the

overall complexity of our program, that

might consist of hundreds of such frag

ments. In addition, if we thoroughly docu

ment our subprograms and save them in

libraries, we may need only to look in our

"programmer's toolkit" for debugged

and tested solutions to problems which

might arise in the future, thus saving our

selves from having to re-invent the wheel

with each new program.

In the space of such a short article it is

difficult to do justice to a topic as straight

forward yet far-reaching as structured

programming. Each programmer

develops a unique style, and I have

probably adapted structured program

ming to my own style as much as the other

way around.

I believe that the concepts involved are

not rules but guidelines. After observing

the work of scores of professionals and

hundreds of programming students using

a variety of languages, I am convinced

that using the guidelines as a point of de

parture seems to result in better programs

by any standard ofjudgement. In a pro

grammer's continuing education, there is

no substitute for writing and studying as

many programs as possible. But struc

tured programming can accelerate the

learning process by providing a consis

tent, unifying framework for under

standing the process of programming and

the working of programs. H

Dr. Joseph B. Rothstein is president of

Hanahoa Software Corp., specializing in

microcomputer applicationsfor the busi

ness environment. He has lectured, taught,

andpublished extensively on subjects re

lating to programming languages, applica

tions, and social impacts ofcomputing. He

earned his Ph.D. from the State University

ofNew York at Buffalo, specializing in

computer applications to the musical arts.

Still Fixing Bugs

The Haid \%?

Ready to take the sting out of

debugging? You can with

Pfix86™ and Pfix86 Plus™, the

most advanced dynamic and

symbolic debuggers on the

market today for PC DOS and

MS-DOS™ programmers.

What other debugger offers

you an adjustable multiple-

window display so you can view

program code and data, break

point settings, current machine

register and stack contents all

at the same time? And, an in

line assembler so you can make

program corrections directly in

assembly language. Plus, pow

erful breakpoint features that

allow you to run a program at

full speed until a loop has been

performed 100 times, or have

the program automatically jump

to a temporary patch area.

Or maybe you're tired of

searching through endless piles

of listings for errors? With Pfix86

Plus you won't have to. You can

locate instruction and data by

the symbolic name and using

the symbolic address. Handle

larger, overlayed programs

with ease. And, Pfix86 Plus is

designed to work with our

Plink86™ linkage editor.

But that's not all. With a single

keystroke you can trace an in

struction and the action will be

immediately reflected in code,

data, stack, and register win

dows. Pressing a different key

will elicit a special trace mode

that executes call and loop

instructions at full speed, as

though only a single instruction

were being executed.

And you get an easily acces

sible menu that makes the

power of our debuggers instant

ly available to the new user, but

won't inhibit the practiced user.

So, why struggle with bugs?
Pfix86 by Phoenix. Pfix86 $195.

Pfix86 Plus $395.
Call (1) 800-344-7200, or write.

Phoenix Software Associates Ltd.

1420 Providence Highway Suite 260
Norwood, MA 02062

In Massachusetts (6171769-7020

Pf[x86, Pfix86 Plus and PlmX 86 |are trademarks of Phoem* Software Associates Ltd

MS-DOS is a trademark of Microsoft Corporation

CIRCLE 38 ON READER SERVICE CARD
43

COBOL
Pride and

amajealous God,

visiting the iniquity

ofthefathers upon

the children unto

the third andfourth generation."

—Exodus 20:5

Do you think COBOL is a dinosaur?

Most micro people do. Why? I suspect the

reason has to do with the psychology driv

ing the micro movement, not with the

merits of the language.

For 20 years, only the "big" people-

corporations and government agencies-

could afford a computer. It became a

symbol of power and impersonality. It was

kept in a special shrine where only autho

rized people could enter, and there was

absolutely no eating or smoking in

ils presence.

Suddenly all that changed. Computers

were cheap. Little people could afford

their own private deus ex machina. They

bought computers by the millions not be

cause they really needed them (who really

needs a home computer?) but because of

symbolism. They were buying power and

control over their own destinies. They

thought they were buying an expert sys

tem that could solve problems they per

sonally couldn't.

Like an adolescent tasting freedom for

the first time, they overreacted. If some

thing looked or smelled like the old way,

the parents' way, it must be bad. Micros

weren't just small computers, they were a

revolution. They were going to make

mainframes into dinosaurs. And since the

old timers spoke COBOL, that too went

into the scrap heap.

Revolutions do not succeed just because

44 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

Prejudice
they are technically feasible. Failure of the

old system is also required. For example,

television was technically feasible in the

1920s but didn't replace movies until the

1950s. Why? Because movies still

"worked." Air travel was expensive until

the railroad became senile in the mid 1960s.

Electronic banking hasn't replaced the

checkbook because paper shuffling still

works. Micros and Pascal will be around,

but they will not replace mainframes and

COBOL until these become senile.

An estimated $50 billion worth of pro

duction COBOL is running on main

frames. Maybe it's not worth that much,

but that's what it cost. It's more than all

the other languages put together. About

60-70% of the new application code is be

ing written in COBOL (future job hunters

take note).

Why do companies prefer COBOL?

Tradition? It's the only language they

know? If you ask them, they say that it's

the most "maintainable" language. Other

languages offer speed of development at

the sacrifice of clarity. A program that

cannot be understood and changed by

someone else (possibly someone medi

ocre) is an expense, not an asset. Listing I

shows the same logic written in COBOL,

C and Forth. Which do you find easiest to

read? I submit that anyone can understand

COBOL. Can anyone understand Forth

intuitively? I can't. Do braces and semi

colons make C easier to read? For a com

piler yes—for a human no.

I have another theory. At least it's the

reason I like COBOL. If you're not famil

iar with the bicameral brain concept, it

says that you have dual processors inside

your head. The left brain deals with

things, the right brain with people. The

By Robert Wagner

left brain solves problems from the bot

tom up, the right brain from the top down.

The left brain is a technician, the right

brain a designer ("design engineer" is an

oxymoron). The left brain wants evolu

tion, the right brain revolution. In most

people, one or the other is dominant. In a

minority, they're dual.

My theory is that really good program

mers are "balanced," while the hordes of

average programmers are left-brain domi

nant. (A right-brain person can't make it

in the computer world—he or she usually

becomes a manager.) The left brain is a

bad designer. For examples, look at the

specs for OBJ files, the 8087 interface,

SNA, or most system software. The ten

dency is to take a simple problem and

make it complicated.

The right brain is a bad technician. It

wants simple answers to complex prob

lems. For example, just talk with any

salesperson. The key to success is ambiv

alence. The word commonly means inde-

cisiveness, but to me it means fast (several

times per second), cooperative, and hav

ing a transparent alternation between left

and right.

A computer, it is said, is a machine

that's not as intelligent as a human being

but more intelligent than a programmer.

But "programmer" embraces many per

sonalities. That's why we have so many

languages. There's one for each style.

Left-brained programmers favor lan

guages that are mechanistic, technical and

unnecessarily formal. A balanced pro

grammer wants a language that's technical

enough to do anything (most fourth gener-

ation languages can't) but informal

enough that the right brain can understand

it too. I believe COBOL comes closest to

meeting this requirement. It's also my

personal order of preference.

Today the majority of micro users are

"little" people: small businesses, re

searchers, enthusiasts (hackers). They see

the micro as a complete data processing

system, a little mainframe.

But in the next two to three years,

"big" people will become an important

factor. They will see the micro as a com

ponent of a larger system—specifically a

user interface, a smart terminal. When the

screen is only a move instruction away

and the CPU is idle 99 % of the time, it's

perfect for building screens. Let the main

frame, with its 3-tneg channels, handle

I/O, and let the micro handle the user.

Now the only problem is how to transport

CICS COBOL.

Four COBOL compilers are available

for the IBM PC. Table 1 gives their ap

proximate cost and speed of generated

code compared with the other languages.

Note that they are all expensive. One—

mbp—is notably faster than the other

three. That's because it generates real ma

chine language while the other three pro

duce p-code. BOS is COBOL-like but

very non-standard.

Most Program Editors

Are Shockingly Primitive.

Use Pmate™ once, and you'll

never go back to an ordinary

text editor again. Pmate is more

than a powerful programmer's

text processor. It's an inter

pretive language especially

designed for customizing text

processing and editing.

Just like other powerful edi

tors, Pmate* features full-screen

single-key editing, automatic

disk buffering, ten auxiliary

buffers, horizontal and vertical

scrolling, plus a "garbage

stack" buffer for retrieval of

deleted strings. But, that's just

for openers.

What really separates Pmate

from the rest is macro magic. A

built-in macro language with

over 120 commands and single-

keystroke "Instant Commands"

to handle multiple command

sequences. So powerful, you

can "customize" keyboard

and command structure to

match your exact needs.

Get automatic comments on

code. Delete comments. Check

syntax. Translate code from

one language to another. Set

up menus. Help screens. You

name it.

And, Pmate has its own set

of variables, if-then statements,

iterative loops, numeric calcu

lations, a hex to decimal and

decimal to hex mode, binary

conversion, and a trace mode.

You can even build your own

application program right

inside your text processor.

So, why work with primitive

tools any longer than you have

to? Pmate by Phoenix. $225.

Call 1-800-344-7200. Or Write.

Phoenix Software Associates Ltd.

1420 Providence Highway Suite 260

Norwood, MA 02062

In Massachusetts (617) 769-7020

'Pmate is designed for microcomputers using the Intel 8086 family of
processors, and running MS-DOS!" A custom version is available for

the IBM PC, Tl Professional. Wang Professional. DEC Rainbow,

and Z80 running under CP/M!"

Pmale is a trademark of Phoenix Software Associates Ltd

MS-DOS is a Irademark of Microsoft Corporation. CP/M is a trademark of Digital Research. Inc.

CIRCLE 39 ON READER SERVICE CARD

45

(a)

COBOL program

PROGRAM-DRIVER.

PERFORM ONE-ITERATION 10 TIMES.

DISPLAY PRIME COUNT 'PRIMES'.

STOP RUN.

ONE-ITERATION.

MOVE ZEROS TO PRIME-COUNT, FLAGS.

PERFORM ONE-TRIAL

VARYING N FROM 1 BY 1

UNTIL N GREATER THAN 8191.

ONE-TRIAL.

IF FLAG (N) EQUAL TO ZERO

COMPUTE PRIME = N + N + 1

ADD 1 TO PRIME COUNT

DISPLAY 'FOUND PRIME' PRIME

COMPUTE X = N +■ PRIME

PERFORM MARK-OUT

VARYING X FROM X BY PRIME

UNTIL X GREATER THAN 8191.

MARK-OUT.

MOVE '1' TO FLAG (X).

(b)

C program

main () {

for (iter = 1; iter <=10; iter++) {

count=0;

for(i = 0; i<= size; i++)

flags[i] = true;

for(i = 0; i<= size; i++) {

if(flags[i]) {

prime = i + i + 3

/* printf("\n%d",prime);/*

for (k=i+prime; k<=size; k+=prime)

flags[k] = false

count++;

printf("\n%d" primes.",count);

(c)
Forth program

0 (0 COUNT) SIZE 0

DO FLAGS I + C@

IF I DUP + 3 + DUP I +

BEGIN DUP SIZE <

WHILE 0 OVER FLAGS + C! OVER + REPEAT

DROP DROP 1+

THEN

LOOP

. ."PRIMES" ;

Listing 1.

Developing benchmark figures was

interesting. 1 started with the classical

sieve, which indicated BASCOM and

TURBO 30 times better than COBOL.

That's fine for integer arithmetic and

heavy loop control. But I wanted to do

screen formatting. I wrote a program that

moved a lot of character strings, did some

easy IF tests, included some editing and

de-editing, and did a little "high order"

arithmetic. The goal was a typical appli

cations mix. The results changed

dramatically. BASCOM slows down

on strings. COBOL breaks for decimal

arithmetic, TURBO chokes on editing.

On balance, the finish was close: they

are all 20-30 times slower than a small

mainframe.

Does this mean a 60-sec response time?

No. The mainframe can execute your code

faster than a PC but it has more overhead

in its operating system, communications

controllers, access methods, and virtual

memory. Moreover, benchmarks are run

at night. From 8 a.m. to 5 p.m. you're

lucky to get 10% of the big CPU. Ignoring

file access time, response of mbp COBOL

(running on an IBM PC) is usually better

than—and sometimes about equal to—the

same program on a host. Perhaps more

important than the absolute response time

is a low deviation. Studies have shown

that users are upset more by erratic times

than by long times.

I bought mbp because it's the best on

the market today. It's a full-featured, level

2 ANS 74 COBOL with decent I/O and

screen handling. I found it follows the

"letter of the law" and generally the

spirit, except it doesn't support COMP-3

or fractional exponents (I ** .5). There

are a few minor irritations at the source

level, but the biggest irritation is its size

and compile speed.

Mbp COBOL takes 5-10 min to compile

an average-size program and 1.5 meg on

hard disk. You could compile with the

floppies, but you wouldn't want to. As a

heavy developer, it slows me down too

much. Why is it so slow? Partly because

of a slow loader (this is a multiple-pass

compiler) and partly because, although it

outputs machine language, the compiler

itself is in nasty old p-code. Object code is

big, sometimes twice as big as on the

mainframe. It's written in CDL2 (an early

C) in the Federal Republic of Germany.

46 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

Teaching someone the rules of a lan

guage and expecting that person to write a

good program is like teaching someone to

type and expecting great literature. It ap

plies to compiler writers as well as appli

cations programmers. Pascal compilers

are written in Pascal, C compilers are

written in C, but COBOL compilers are

never written in COBOL. As a result,

COBOL compilers are technically correct

but lack a "feel" for the language.

So what's the answer? Rewrite every

thing in Modula 2 or True BASIC? Live

with mbp? Wait for a better COBOL? If

you think COBOL is over the hill then re

write. If you like COBOL, buy mbp and

wait for something better. Either way, rec

ognize that the choice is a function of your

psyche, not the quality of the language.

There is no theoretical or practical rea

son why COBOL should be slower or big

ger than any other language. If anything,

it should be faster. For example, in List

ing 1 see how I initialized the array of

FLAGS with a single move. That's faster

than stepping through with a subscript.

Some implementations (e.g., Burroughs'

medium systems and CII/Bull Level 64)

have produced very efficient code. A

really good compiler would include one-

pass compile and the X3.23 "80" stan

dard. It should sell for under $100.1 am

working on such a compiler.

How to write a bad program
Programming is an unnatural act. As in

golf, power and accuracy must come from

style and not from brute force. Good style

must be learned and constantly practiced.

Bad programmers, like all amateurs,

don't want to make the intellectual com

mitment. They think they can do it by

intuition. As a result, they all make the

same mistakes and have a common style

that is easy to spot.

Here are the giveaway traits of a

hacker:

■ Bottom-up, rather than top-down.

Squeezing

ALargeProgram Into

A Small Memory Space?

It's time you got Plink86!M the

overlay linkage editor that's

bringing modular programming

to Intel 8086-based micros.

With Plink86T you can write a

program as large and complex

as you want and not worry about

whether it will fit within available

memory constraints. You can

divide your program into any

number of tree-structured over

lay areas. 4095 by 32 deep.

Work on modules individually.

Then link them into executable

files. All without making changes

to your source program

modules.

Use the same module in dif

ferent programs. Experiment

with changes to the overlay

structure of an existing program.

Use one overlay to access code

and data in other overlays.

Plink86 is a two-pass linkage

editor that links modules cre

ated by the Microsoft assembler

or any of Microsoft's 8086 com

pilers. Plink86 also works with

other popular languages, like

Lattice C, C86, or mbp/COBOL.

And supports symbolic debug

ging with Phoenix' Pfix86 Plus™

Plink86 includes its own ob

ject module library manager -

Plib86™ - that lets you build

libraries from scratch. Add or

delete modules from existing

libraries... Merge libraries...

Or produce cross-reference

listings.

Why squeeze any more than

you have to? Plink86 by Phoenix.

$395. Call (1) 800-344-7200.

Or, write.

Phoenix Software Associates Ltd.

1420 Providence Highway Suite 260

Norwood, MA 02062
In Massachusetts (617) 769-7020

*PlinkS6 will run under PC DOS, MS-DOS'" orCP/MT"-86.

Plmk.86. Pftx86PlusandPlib86 are trademarks of Phoenix Software Associates Lid.

MS-DOS is a trademark of Microsoft Corporation. CP/M is a trademark of Digital Research, Inc.

CIRCLE 40 ON READER SERVICE CARD 47

design. In a bad program, reading a

record is at the top. In a good program,

it is at the bottom

■ Initialization is done last, not first

■ Poor command of the English lan

guage. Errors in spelling and grammar

are common. A hacker's description of

what a program does tends to be too

literal, too long, and often has too many

references to hardware. A good pro

grammer describes the function, not

the mechanics

■ Lack of concern for cosmetics in the

source code. Failure to line up pictures or

indent IF statements is common with mul

tiple statements often on a line. Author,

TABLE 1: Comparative timings and costs of COBOL and other compilers.

Relative Speed

1

20

30

30

160

160

180

200

Language

Mainframe (.5 mips)

BASCOM

TURBO Pascal

mbp

BASIC interp

OS/MicroFocus

Ryan McFarland

IBM/Microsoft

Cost

$4000

300

50

850

free

1800

600

600

-speak" C when usmg

BASTOCreWOBES

dialects o

SSTOHROAD

installation information, and date are

usually missing

■ Fearof the machine. Hackersusu-

ally avoid language features that seem

"too complicated" for the compiler—

i.e, never use indexing, qualification or

nested IF statements. They seldom use

complex conditionals, and they handle

complicated problems awkwardly

■ FD's and data entries include all

optional phrases and are in the same

sequence given in the book

■ Pooruseof level numbcrs(e.g.,

77's). A bad programmer hesitates to put

a picture on an 01, and tends to use level

numbers 02, 03. etc., ratherthan05,10.

He or she often uses REDEFINES fre

quently, for example:

05 FIELD1A PICX(3).

05FIELD1 REDEFINES

FJELD1AP1C 9(3).

rather than:

05FIELD1A.

10 FIELD! PIC 9(3).

■ Redundant data entries instead of

OCCURS

■ GOTO (the mark of the beast)

■ Abbreviations. It's even worse when

hackers use abbreviations inconsistently.

Department, for example, could be

DEPT, DPT, DP or DEP, all in the same

program. In a good program almost all

names are written out

■ Inability to distinguish between alge

braic variables and character strings. To

the literal mind they are all just bytes of

memory. Strings are wrongly described as

numeric (e.g., zip code). Numeric literals

are moved to alphanumeric fields. Nu

meric fields are unsigned. Literals are

right-filled with spaces

■ Lack of concern for output cos

metics. Bad programmers do not center

their headlines, and they write their titles

for other programmers, not for users.

They never put a program identification in

the report heading, and usually do a

sloppy job of date, time, and page. Hack

ers do printing reports with DISPLAYS

and give inappropriate, unedited displays

to the operator

■ Paragraph order is temporal. OPEN

FILES is first; CLOSE FILES is last.

STOP RUN is the last program line

■ Unnecessary and/or meaningless

"tags" rather than paragraph names;

paragraphs that are fallen into. It's worse

if they are both fallen into and performed

■ Flags (switches), especially a first-

time flag

Some programs run like a well-oiled

machine; others run like an empty I'oot-

locker falling down a flight of stairs. List

ing 2 (available on the COMPUTER

LANGUAGE bulletin board service:

(415) 957-9370) is a bad COBOL pro

gram. Listing 2 (also available on the bul

letin board) is the same program written

correctly. Note how the logic telescopes

and how each program has a beginning,

middle, and end.

It's sad to say, but most real world pro

grams are like Listing 3. Perhaps you got

turned off to COBOL by reading or writ

ing such a program. If Modula 2 had been

abused for two decades, it would have

done just as poorly.

It is tempting to fault COBOL, eco

nomics, education, employee selection

or corporate dynamics, but the one really

to blame is the person who wrote the

bad code.ffl

Robert Wagner is a programming manager

at Furr 's Inc., a regional supermarket

chain headquartered in Lubbock, Texas.

For the past 22 rears he has written about

4 million lines ofapplication code, mostly

in structured COBOL He is author of

DYL240, an all-lime bestseller.

Use ALL the Power of Your

MS-DOS, IBM PC-DOS, or CP/M-80 System

with UNIX-Style Carousel Tools

ch "CP/M" "MS-DOS" <doc >newdoc

diff newdoc doc I more

ed newdoc

kwic newdoc I sortmrg I uniq I unrot >index

make -f makdoc ndx

Carousel Tools and Carousel ToolKitsare trademarks of Carousel

MicroTools, Inc. CT/M is a trademark oi Digital Research; IBM is a

Irademark ot International Business Machines; MS is a Irademark of

MicroSott; UNIX is a trademark of Bell Laboratories.

CAROUSEL TOOLS are a proven set of over 50 programs

designed to be used with pipes, redirected I/O and

scripts. In the style of UNIX each Tool does one thing

well, and the Tools can be used together to do more

complex tasks.

YOU ACCOMPLISH MORE using Carousel Tools: better

programming and documentation support, simpler

data and file housekeeping, more general file

handling.

TOOLS FOR PC/MS-DOS 2.x AND CP/M-80 are available

now. The DOS ToolKit is $149. The CP/M ToolKit is $249

and includes a shell to provide pipes, redirected I/O,

and scripts. Source code is available for $100 more.

ORDERYOURTOOLKITTODAY. "SgF 'fflfti

CALL OR WRITE:

(^CAROUSEL MICROTOOLS, INC.
609 Kearney Street, El Cerrito, CA 94530 (415) 528-1300

CIRCLE 7 ON READER SERVICE CARD 49

Getting Started

rEmtnpLcs C& functions

lion

cxpre

strln

1 /O,

tens.

slaml

V(J

ir

0

Re

0

ar

rm

s I

I

ion

nd

I.Ih

o

o

0

f

r

C

n for MS-IX1S 1

r CI-C86 it <

ver 70

unrtion

custom

ary or

COIB|j1 1

Be. Da

nrl

pll

cla

ii (1

mle *i

IT.

ml fu

cMm

Iltaro

siru

r.ctio

tions

nation lo features of

ensent i.i

ers with

1 n

11

ource

tile

code

cr no

ry ■

ctur

lnra

ape

s is

ith ium-i-c and
IV],

or I

Irucl

ciric

modifica

indexoil cci

Z 1(1(1

11

iihr the

urcs, bit

corlputer

icablc to

t 1OIIK. M

wl

B

■

rr-

C

or,

Be'
ye-

ORt

ual

conpilcrs such as C/Bd. llIlH-C, Aztec, DifC antl CI-CK6. Ava

able in ton versions:

for CP/M (X3I1, 210U - SSDD S" Disc) S:tf).!>S

lor »S-tX)S (IBM-PC, Z1IIU - DSUD 5" Ulac) . . . S:t«.y5

Send check or nnnpw onlor. 6.JW t;ix ror C.ilif. residents

£(GE.V\V'AR£ T£CHNOI.OC(ES
i:l"!li> LA VISTA DlilVF

SARATOGA, CA 9S(J7(I
(4CJH) Hl)7-1 1B4

C and Pascal Compilers

Programming Editors

ll for low pri

THE

MOST

EXTENSIVE

THE GREENLEAF FUNCTIONS

Library for C Programmers

Total Access to IBM PC and XT
Compaiiblf with DOS 2.0, 1.1, Cl C86,

LallicL", and Microsoft C - Versions 1 and 2

U75°<
Add $7.00

il>r shipping

Specify Compiler

MC/VISA Accepted

Prices subject in change

without notice.

Dealer Inquiries Wdcomi

(214) 446-8641

PARTIAL

CONTENTS

DOS 2.0 - over 25 functions ♦ Complete

Video Access tor Text and Graphics

•Over 60 String Functions • Rainbow Series

Color Text • Time and Date • Over 40 Printer

Functions • Function and Special Keys

» RS232 Async • All BIOS Functions • Software

Diagnostics • Disk functions • Utility

functions • and more . . .

THE GREENLEAF FUNCTIONS . . .

Nearly 200 functions, 220 page manual,

3 Libraries, Extensive Examples of each

.function, Full Source

Code

LIBRARY

ANYWHERE
FOR THE IBM AND PC XT

CREENLEAF SOFTWARE, INC. • 2101 HICKORY DRIVE ♦ CARROLLTON. TEXAS 75006

GREENLEAF

SOFTWARE0

CIRCLE 19 ON READER SERVICE CARD CIRCLE 23 ON READER SERVICE CARD

Discover Forth

Join the FORTH Interest Group

The FORTH Interest Group (FIG) is a non-profit member-sup

ported organization, devoted to the Forth computer language.

Join our 4700+ members and discover Forth. We provide our

members with the information and services they need, including:

Over fifty local FIG chapters (general and special

interest) meet throughout the world on a regular

basis.

Forth Dimensions magazine is published six times a

year and addresses the latest Forth news. A one

year subscription to FD is free with FIG membership.

The FIG-Tree is the FIC-sponsored, on-line

computer data base that offers members a wealth

of Forth information. Dial (415) 538-3580 using a

modem and type two carriage returns.

Forth publications: a wide variety of high quality and

respected Forth-related publications (listings,

conference proceedings, tutorials, etc.) are available.

The FIG HOT LINE (415) 962-8653, is fully staffed to

help you.

The Job Registry helps match Forth programmers

with potential employers.

All thisand more for only $15.00/yr. ($2 7.00 foreign)

Just call the FIG HOT LINE or write and

become a FIG member.(VISA or MC accepted.)

Don't miss our upcoming

bth Annual Forth Convention

November 16-17, 1984 at the

Hyatt Pa/o Alto in Palo Alto. CA.

Call or write (or details.

(415) 962-8653

PO Box 1105

San Carlos

CA 94070

/

\

COmPUTER RESOURCES „, WAIMCA

* * * EASY TO USE * * *

Macro Programs for

TM

We have been using and working with Spellbinder

since late 1981. We use computers extensively in the

(fay-to-day operation oi our business and have devel

oped a number of programs which we find useful.

We recently formed a software development and mar

keting company - Computer Resources of Waimea, to

promote and market these programs, most being en

hancements and macro programs running under Spell

binder. Spellbinder's macro programming language

M-Speak is extremely versatile and in our opinion is

one of the best kept "secrets" in the world of micro

computers. We have a number of macro programs for

the end user, a number of utilities for the programmer,

and for those who want a more or less organized in

struction set for M-Soeak our head ornorammpr has

compiled his personal notes into a booklet which the

M-Speak user should find very useful. It can be pur

chased for $10.00. Send for our complete listing.

P.O. Box 1206 Kamuela, Hawaii 96743

(808)885-7905

1

J

50
CIRCLE 21 ON READER SERVICE CARD CIRCLE 12 ON READER SERVICE CARD

Exploring
Ada and

Modula-2
s

ince its birth in

the early 1970s.

Pascal has in

spired many new

insights and approaches toward structured

program design. But as programming

methods and requirements evolved. Pas

cal's limitations began to appear.

The birth of Ada and Modula-2 repre

sents the evolution of Pascal into a lan

guage for real-world applications. These

two languages have a good number of new

features and programming concepts in

common. For example, they both stress

software modularity—an aspect vital to

big software projects. Both languages

may interact directly with a system's

hardware as well as offer multitasking

capabilities.

However, some interesting differences

affect how one must approach a program's

design in Ada vs. Modula-2. In this arti

cle, we will explore both languages from

five different angles: data types, identi

fiers, program flow control, functions and

procedures, and exceptions. I am assum

ing that the reader is familiar with struc

tured programming in general and with

Pascal in particular.

Data types

Modula-2 has introduced two new basic

data types and a third imported from a

standard module: CARDINAL. BITSET,

and WORD. The CARDINAL type repre

sents zero and all positive integers within

the hardware's limit. In an 8088-based

system, for example, the upper limit is

65,535. This allows twice the upper value

limits of the INTEGER type because

INTEGER includes negative values.

BITSET is a set of integers between zero

and a computer-defined upper limit. Un

like Ada, Modula-2 does not have the

string type as part of its basic types:

strings are regarded as arrays of charac

ters. The WORD type represents the in

ternal word storage of the system. It also

allows type conversions.

Ada. on the other hand, has introduced

the "new type," reflecting a disciplined

data type checking function. The new

types have the same basic data representa

tion as the parent types but cannot be en

gaged with them (or any other separately

declared new types) in an expression. The

purpose is to forbid identifiers of a similar

type from becoming intermixed when

such an action would not reflect any

meaningful relationship, in this situation

logical expression errors are detected.

Consider the example in Listing I. If the

identifier My_SSN were of type IN

TEGER, this expression would be com

piled with no errors even though it is

meaningless.

Ada allows the declaration of uncon

strained array types. This means that we

can define general purpose matrices.

However, no identifier can be assigned to

them—instead, the array bounds must be

declared. Consider the unconstrained ma

trix type, MATRIX, and the declared

identifier, MAT5, inListing2. Ada al

lows the use of INTEGER ranges for pos

sible negative indices.

The designers of Ada have tackled the

problem of numerical precision with

floating point. Rather than being at the

By Namir Clement Shammas

mercy of the hardware or a certain imple

mentation, Ada offers the ability to con

trol the precision desired. This is good

news for accounting package program

mers, engineers, and scientists.

Identifiers

Both languages offer array attributes that

reveal information about those certain ar

rays needed in writing general purpose

library modules. Not surprisingly. Ada

offers far more attributes, allowing mod

ules to be less error prone. These prede

fined attributes are clearly spelled out in

Appendix 1 of Programming in Ada.'

Unlike Modula-2, Ada also allows

identifiers to be initialized as they are de

clared. An example would be:

My Phone Number: STRING : =
"(804F282-2294";

My Address: STRING : =

"1533F Honey Grove";

This feature is handy when setting default

values to identifiers, and it can extend to

all datatypes.

Ada allows some array operations,

which has the net effect of shortening

code length. Consider the identifier

My Address, declared previously. Sup

pose that I moved into a different apart

ment on the same street with the new num

ber "1521A Honey Grove". Only the

51

WALTZ LISP
T.M.

The one and only adult Lisp system for CP/M users.

Waltz Lisp is a very powerful and complete implementation of the Lisp programming

language. It includes features previously available only in large Lisp systems. In fact,

Waltz is substantially compatible with Franz (the Lisp running under Unix), and is similar

to MacLisp. Do not be deceived by the low introductory price.

Waltz Lisp is a perfect language for Artificial Intelligence programming. It is also

suitable for general applications. In fact, due to the ease of handling of textual data and

random Hie access functions, it is often easier to write a utility program in Waltz Lisp than

in any other programming language. Several general purpose utilities (including grep and

dlff) written entirely in Walt/ Lisp are included with the interpreter.

Much (aster than other microcomputer Lisps. • Long integers (up to 611 digits). Selectable radii. ■ True

dynamic character strings Full string operations including last matching/estraclion. • Random file

access. • Binary fifes ■ Standard CPfM devices. • Access to disk directories. ■ Functions of type lambda

(expr). nlambda (lexpr). lexpr. macro • Splicing and non-sphemg character macros • User control over

all aspects ol the interpreter • Built-in prettypnniing and formatting facilities. • Complete set ol errOf

handling and deouggmg lunctions including user programmable processing ol undefined function

references. • Optional automatic loading ol initialization lile • Powerful CP' M command line parsing. •

Fast sortingJmerging using user defined comparison predicates. • Full suite ol mapping functions,

iteralors, etc. • Over 250 functions in total. • Extensive manual with hundreds ol illustrative examples

Waltz Lisp requires C/PM 2.0, Z80 and 48K RAM (more recommended). SS/SD8" and
mosl common 5" disk formats.

Introductory Price....$94.50
Manual only $20.00

(refundable with order)

additional charges

$10.00 conversion fee for 5" Diskettes

$3.00C.O.D. charge

T.M.

-INTERNATIONAL-

P. O. Box 7X1

Charlottesville, VA 22906

Call toll free 1-80O-LIP-4O00 Ask for Dept. «5

In Oregon and outside U.S.A. call 1-503-684-3000

Unix?; Bell Laboratories. CP/MC-. Digital Research Corp.

CIRCLE 43 ON READER SERVICE CARD

TOTAL CONTROL
FORTH: FOR Z-80®, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS. GAMES* COMMUNICATIONS. ROBOTICS
DATA ACQUISITION . PROCESS CONTROL

• FORTH programs are instantly

portable across the four most popular

microprocessors.

• FORTH is interactive and conver

sational, but 20 times faster than

BASIC.

• FORTH programs are highly struc

tured, modular, easy to maintain.

• FORTH affords direct control over

all interrupts, memory locations, and

i/o ports.

• FORTH allows full access to DOS

files and functions.

• FORTH application programs can

be compiled into turnkey COM files

and distributed with no license fee.

• FORTH Cross Compilers are

available for ROM'ed or disk based ap

plications on most microprocessors.

Trademarks IBM. International Business Macnmes

Corp. CP/M. Digital Research Inc. POFortn + and

POGEN. Laboratory Microsystems Inc

FORTH Application Development Systems

include interpreter /compiler with virtual memory

management and multi-tasking, assembler, lull

screen editor, decompiler, utilities and 200 page

manual Standard random.access fries used lor

screen slorage. extensions provided for access to

all operating syslem functions

Z-80 FORTH for CP/M« 2.2 or MP/M II, S100.00.

8080 FORTH for CP/M 2.2 or MP/M II. SlOO 00.

8086 FORTH for CP/M-86 or MS-DOS. SlOO.00.

PC/FORTH for PC-DOS. CP/M-86. or CCPM.

S100 00. 68000 FORTH lor CP/M-68K. $250.00

FORTH + Systems are 32 bil implementations

thai allow creation of programs as large as I

megabyte. The entire memory address space of

the 68000 or 8086/88 Is supported directly.

PC FORTH + S25OO0

8086 FORTH +for CP/M-86 or MS-DOS $250 00

68000 FORTH + lor CP/M-68K $400 00

Extension Packages available include: soft

ware (loafing point, cross compilers. INTEL

8087 support. AMD 9511 support, advanced col

or graphics, custom character sets, symbolic

debugger, telecommunications, cross reference

utility. B-tree tile manager. Write for brochure

Laboratory Microsystems Incorporated

Post Office Box 10430, Marinade! Rey, CA 90295

Phone credit card orders to (213) 306-7412

third, fourth, and fifth characters have

changed, and Ada will allow me to carry

out the one change in the following way:

My_Address(3..5):= "21 A";

— overwrite 3rd to 5th char.

Put(My Address);

— Will display

—"121A Honey Grove"

Doing the above with Modula-2 is not as

smooth if no string manipulation module

is used.

Both Modula-2 and Ada handle tem

porary identifiers differently. Modula-2

has followed the Pascal concept of cre

ating temporarily nameless identifiers that

arc accessed by pointers whose creation

and removal is not tied to any code struc

ture. The programmer may remove these

identifiers anywhere in the program he or

she sees fit. or not remove them at all.

Ada takes an entirely different ap

proach. It allows the creation of named

identifiers and ties their existence to the

so-called block structure. The latter has

the general structure as presented in

Listing 3.

Consequently, the following rules and

features are observed:

■ The temporary identifiers are de

clared in Ihe usual manner and with op

tional initial values

■ The temporary identifiers will be au

tomatically removed at the end of the

block in which they were declared

■ Duplicate names arc allowed. How

ever, in such cases the most recently de

clared identifier is the one that is "vis

ible." It temporarily takes precedence

over other identifiers with the same name.

Once it is removed at the end of its block,

the next most recent identifier becomes

visible again, and soon (Listing4).

Program flow control

Modula-2 has retained Pascal's FOR-DO,

WHILE-DO. and REPEAT-VNTIL loops.

Ada, on the other hand, has no counter

part for the REPEAT-UNTIL structure.

Both languages have introduced the open

loop using an EXITcommand to avoid be

ing trapped in a loop. Ada regards the FOR

and WHILE loops as specialized loops. It

allows all loops to have labels that can be

used by the EX3Tstatements. This be

comes very useful in the case of nested

loops when determining which loops to

exit. This feature allows smoother exits

and easier code than Pascal or Modula-2.

Modula-2 does not implement any form

of GOTOs (are you happy C. A. R.

Hoare?). Ada, in fact, docs allow the ever

abusable GOTO with a label to indicate

the program flow resumption. This seems

52 CIRCLE 27 ON READER SERVICE CARD

Six Times Paster!
Super Fast Z80 Assembly Language Development Package

Z80ASM
Complete Zilog

Mnemonic set

Full Macro facility

Plain English error

messages

One or two pass

operation

Over 6000 lines/minute

Supports nested

INCLUDE files

Allows external bytes,

words, and expressions

(EXT1 * EXT2)

Labels significant to 16

characters even on

externals (SLR Format

Only)

Integral cross-reference

Upper/lower case

optionally significant

Conditional assembly

Assemble code for

execution at another

address (PHASE &

DEPHASE)

Generates COM, HEX,

or REL files

COM files may start at
other than 100H

REL files may be in
Microsoft format or

SLR format

Separate PROG. DATA

& COMMON address
spaces

Accepts symbol defini

tions from the console

Flexible listing facility

includes TIME and

DATE in listing (CP/M

Plus Only)

For more information or to order, call:

1-800-833-3061

In PA, (412) 282-0864

Or write: SLR SYSTEMS

1622 North Mam Street, Butler, Pennsylvania 16001

J

Links any combination

of SLR format and

Microsoft format REL

files

One or two pass

operation allows output

files up to 64K

Generates HEX or COM

files

■ User may specify PROG,

DATA, and COMMON

loading addresses

SLRNK

CIRCLE 49 ON READER SERVICE CARD

• COM may start at

other than 100H

• HEX files do not fill

empty address space,

• Generate inter-module

cross-reference and

load map

• Save symbol table to

disk in REL format for

use in overlay

generation

• Declare entry points

from console

• The FASTEST Micro

soft Compatible Linker

available

• Complete Package Includes: Z80ASM, SLRNK, SLRIB

- Librarian and Manual for just $199.99. Manual only, $30.

• Most formats available for Z60 CP/M, CDOS. & TURBODOS

• Terms: add $3 shipping US, others $7. PA add 6% sales tax

L R—Systems-s
\/ir»c r*A or* mf

c

Programming

Guidelines

C LANGUAGE PROGRAMMING
From Plum Hall...the experts in C training

Thomas Ptum

Learning to

Program in

FREE
C LANGUAGE POCKET GUIDE!

A handy C language programming

pocket guide is yours free when you order

either (or both] of the manuals above.

A full 14 pages of valuable C language
information!

Learning to Program in C 372 pp.. iw x w. price $25.00

A practical, step-by-step guide for everyone acquainted with com

puters who wants to master this powerful "implementer's language",

Inside, you will learn how to write portable programs for the full

spectrum of processors, micro, mini and mainframe

C Programming Guidelines wo pp., vh* x io», price S25.00

A compilation of standards for consistant style and usage of C

language. Arranged in manual page format for easy reference, it

presents time-tested rules for program readability and portability,

■ ^m\ m^ ^m m^ bb mm* mm H— — —k mm i^m ^m mmt ^mi ^h ^b ^— m^ hh mb ^m amt m^ m^ m

PT TTM HAT I The experts in C and UNIX"' training.
hLj ; ^ J£7,™££ Phone orders: 609-927-3770
1 Spruce Av, Cardiff NJ 08232

Please send me: information on C and UNIX Training Seminars

_ copies of Learning to Program in C & $25.00/copy
copies of C Programming Guidelines @ $25.00'copy

NJ residents add 67= sales tai

NAME

COMPANY

ADDRESS

CI1YiSTATE.fZIP

Check American Express

CARD"

Master Coid

EXP DATE

Visa

Signature

3

CIRCLE 41 ON READER SERVICE CARD 53

DeSmet

The fastest

8088 C Compiler

available

FULL DEVELOPMENT PACKAGE
■ C Compiler

■ Assembler

• Linker and Librarian

• Full-Screen Editor

• Newsletter for bugs/updates

SYMBOLIC DEBUGGER
• Monitor and change variables by

name using C expressions

■ Multi-Screen support (or debugging

PC graphics and interactive systems

■ Optionally display C source during

execution

• Breakpoint by Function and Line #

COMPLETE IMPLEMENTATION
• Both 1.0 and 2.0 DOS support

■ Everything in K&R (incl. STDIO)

■ Intel assembler mnemonics

• Both 8087 and Software Floating Point

OUTSTANDING PERFORMANCE
Sieve Benchmark

COMPILE 4 Sec. RAM —

22 Sec FDISK

LINK 6 Sec. RAM —

34 Sec. FDISK

RUN 12 Sec.

SIZE 8192 bytes

Desmgt C

Development Package

To Order Specify:

Machine

OS Q MS-DOS D CP/M-86

Disk D 8" □ 5V4 SS □ 5"A DS

C
WARE

CORPORATION

P.O. BOX 710097

San Jose, CA 95171 -0097

(408) 736-6905

California residents add sales !ax Shipping US no

charge. Canada add $5, elsewhere add S15 Checks

must be on a US Bank and in US Dollars

NGS FORTH

A FAST FORTH

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER

AND MSDOS COMPATIBLES.

♦79 STANDARD

*FIG LOOKALIKE MODE

*PC-DOS COMPATIBLE

♦ON-LINE CONFIGURABLE

♦ENVIRONMENT SAVE

&. LOAD

♦MULTI-SEGMENTED

♦EXTENDED ADDRESSING

♦AUTO LOAD SCREEN BOOT

♦LINE AND SCREEN EDITORS

♦DECOMPILER &

DEBUGGING AIDS

♦8088 ASSEMBLER

♦BASIC GRAPHICS & SOUND

♦NGS ENHANCEMENTS

♦DETAILED MANUAL

♦INEXPENSIVE UPGRADES

♦NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICE: $70
PLEASE INCLUDE $2 POSTAGE &.

HANDLING WITH EACH ORDER.

CALIFORNIA RESIDENTS :

INCLUDE 6.5% SALES TAX.

UP*

NEXT GENERATION SYSTEMS

P.O.BOX 2987

SANTA CLARA, CA. 95055

(408) 241-5909

to be useful in handling errors that occur

inside well-nested loops, allowing easier

code to be written.

Functions and procedures

Modula-2 sees functions merely as pro

cedures that return a value. Thus the key

word FUNCTION has been dropped.

There arc some important differences in

using procedures and functions that can

affect code writing.

Overloading is an Ada feature. The lan

guage designers forsaw certain conflicts

arising from having software teams co-

develop separate modules. Among the

problems was the repetitive use of the

same procedure or function name by dif

ferent programmers to perform different

jobs. One possible solution, which

Modula-2 also offers, is to use the im

ported procedure name preceeded by the

module name:

Floatlo.Put(X); -- Procedure Put from

- module Floatlo

Textlo.Put("HELLO");
-■ Procedure Put from

- moduleTextlo

To make things easier, Ada even allows

you to drop the source module name and

still create no conflict. The only condition

is that the argument call lists must not be

identical. Ada sees the parameter list as a

complementary part (with the routine

name) of the routine's identity. Thus one

can use the procedure Put repetitively to

declare procedures that display data of

different types as in:

Procedure Put(X : Real);

- output floating point

Procedure Put(l : Integer);

- output integer

Procedure Put(S : String);

-output String

But Ada goes even further. It allows the

overloading of operators. This enables a

programmer to write routines to add, sub

tract, and multiply matrices.

Modula-2 has introduced its own lim

ited implementation of unconstrained ar

rays by using the ARRAY OF keyword.

The function in Listing 5 sums up an en

tire one dimensional array of any size. In

this example we are using the HIGH func

tion to detect the upper limit of the array

while the lower one is set to zero by

Modula-2. This feature is very useful in

writing procedures and functions for

strings when quoted text is regarded as an

54 CIRCLE 16 ON READER SERVICE CARD CIRCLE 36 ON READER SERVICE CARD

array of characters. "Modula-2: No

strings attached!"" has a string module

that uses this feature extensively. Con

sider the following procedural call:

PROCEDURE WriteString(S:

ARRAY OF CHAR);

(* Displays a string variable or a

quote *)

which can be called to display a message,

WriteString('press any key');

The limitation of this unconstrained array

feature is that it is restricted to one dimen

sional arrays. Thus, writing general pur

pose routines for matrix operation is not

as straightforward. R. Weiner suggests

the use of ALLOCATE and DEALLO

CATE to create matrices as temporary

identifiers.'

Another method is to "unwrap" the

matrix into one long array and to use two

identifiers to record the number of rows

and columns. One can even include a

function that will simulate two or more

dimensions. Another Modula-2 feature is

the ability to pass procedure names in

argument calls. The latter must be de

clared as procedure types.

Consider the following example. Sup

pose I would like to write a function that

performs numerical integration on users'

functions. I start by declaring UserFunc as

a procedure type for users' function.

TYPE UserFunc = PROCEDURE

(REAL): REAL;

and then declare the variable MyFunc

MyFunc : UserFunc;

Somewhere in my program I will assign a

function, say sqrt, to MyFunc

MyFunc :— sqrt (* sqrt is imported

from module MathlibO *)

and would be able to obtain the area under

the curve by calling my Area function to

integrate from zero to one at 0.1

increments:

Result := Area(0.0,1.0,0.1,MyFunc);

The definition of the Area function would

begin with

PROCEDURE

Area(Low,High,lncr: REAL;

Myfunc: UserFunc): REAL;

Ada allows programmers to develop

generic procedures and functions. Code

templates can help the programmer focus

on a general mechanism that deals with

abstract data types. Operations such as

stack manipulation, lists management,

sorting, and searching can be performed

on a variety of data types. You can sort in

tegers, reals, and strings, but the algo

rithm used is essentially the same. You

can manipulate a stack of numbers and a

stack of names, yet the basic operations

are the same (push, pop, rotate, ex

change, etc.). This is where Ada's generic

concept comes in handy. The generic code

would contain algorithms applicable to a

wide variety of data types and thus involve

private data types.

To use generic functions, the newly

customized function or procedure would

have to specify the data type involved.

Consider the following example where a

generic procedure ROTATE will swap two

data items (Listing 6). When a program

mer wants to use the program in Listing 6

to swap integers using a procedure names

ROTATEJNTGRS the following line must

be present,

procedure ROTATE INTGRSisnew

ROTATE(INTEGER);

which will create an operating procedure

from the generic template dealing with in

teger types only.

Modula-2 can emulate generics by us-

For your IBM/PC

mbp COBOL:
4times fester,
andnowwith
SORT&CHAIN.

$750.mbp COBOL can be

summed up in one

word: fast.

Because it generates

native machine language object code, the

mbp COBOL Compiler executes IBM/PC'

programs at least 4 times faster (see chart)

GIBSON MIX Benchmark Results
Calculated S-Profile

(RepmentattivOQBQL statement mix)

Execution (itni' ratio

mbp

COBOL

1.00

Level II"

COBOL

RM—

< OitOI

Microsoft*"

COBOL

allow source & object

code, map & cross-

reference checking: GSA

Certification to ansi '74

Level II; mbp has it all.

It's no surprise companies like Bechtel.

Chase, Citicorp, Connecticut Mutual, and

Sikorsky choose mbp COBOL; make it

your choice, loo. mbp is available at

Yanpak Software Centers, or direct.

Pot complete information, write mbp

Software & Systems Technology,

Inc., "00 Edgewater Drive, Suite

360. Oakland, CA 94621, or phone

—today

■h hud dbk i

>TMi""AIh

imrol -IBM I1*

I MihirljmllM. rntt[p
Fast also describes our new SORT which

can sort four-thousand 128-byte records in

less than .30 seconds. A callable subroutine

or stand-alone. 9 SORT control fields can

be specified. Anil our new CHAIN is both

fast and secure, conveniently transferring

control from one program to another, pass

ing 255 parameters. Plus, new extensions to

ACCEPT & DISPLAY verbs give better, faster

interactive programming.

The complete COBOL. An Interactive

Symbolic Debug Package included standard;

Multi-Keyed ISAM Structure; listing options

CIRCLE 31 ON READER SERVICE CARD
55

Listing 1.

Type Social_Security_Number is new INTEGER;

My_SSN : Social_Security_Number;

Part_Number__Inventory : INTEGER;

— The expression below is meaningless and WRONG!

— no logical connection between the two identifiers

Part_Number_Inventory := Part_Number_Inventory - My_SSN;

Type MATRIX is array (POSITIVE RANGE <>, POSITIVE range <>)

of INTEGER;

MAT5 : MATRIX(1..5,1..5); — 5 by 5 square matrix

Listing 2.

declare —

begin

end;

block begins here

new temporary identifiers are declared here

code statements

block ends here. All identifiers declared

at the beginning of the block are removed

Listing 3.

WINDOWS

FOR CM
FOR THE IBM PC

+ COMPATIBLES

Lattice C. DeSmot C

C86, Microsoft C

All versions

c
Advanced Screen Management

Made Easy

ADVANCED FEATURES

• Complete window system

• Unlimited windows and text files

• Nest and overlap windows

• Overlay, restore, and save

windows

• Horizontal and vertical scrolling

• Word wrap, auto scroll

• Print windows

• Highlighting

• Fast screen changes

• No snow, no flicker

WINDOWS++

Much more than a window display

system. Windows for C is a video

display toolki! thai simplifies all

screen management tasks

SIMPLIFY

Menus

Data screens • Editors

ALL DISPLAYS

IMPROVE

• Help files

C SOURCE MODULES

FOR

pop-up menus, multiple window

displays, label printer, cursor

control, text mode bar graphs

complete building block

subroutines

DESIGNED FOR

PORTABILITY

'Minimal dependence on

IBM BIOS and 8086 ASM

FULL SOURCE AVAILABLE

NO ROYALTIES

Windows for C S150

Demo disk and

manual S 30

(applies toward purchase)

A PROFESSIONAL SOFTWARE TOOL FROM

CREATIVE SOLUTIONS

21 Elm Ave., Box T5, Richford, VT 05476

802-848-7738
Master Card & Visa Accepted

Shipping $2.50

VT residents add 4 % tax

56 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984
CIRCLE 13 ON READER SERVICE CARD

THE FORTH SOURCE
TM

■*

*

MVP-FORTH

Stable - Transportable - Public Domain - Tools

You need two primary features in a software development package a

stable operating system and the ability to move programs easily and

quickly to a variety of computers. MVP-FORTH gives you both these

features and many extras This public domain product includes an editor.

FORTH assembler, tools, utlities and the vocabulary (or the best selling

book "Starting FORTH". Tne Programmer's Kit provides a complete

FORTH for a number of computers Other MVP-FORTH products will

simplify the development of your applications.

MVP Books - A Series

D Volume 1, All about FORTH by Haydon. MVP-FORTH

glossary with cross references to frg-FORTH. Starting FORTH

and FORTH-79 Standard. 2™ Ed. $25

Z Volume 2, MVP-FORTH Assembly Source Code. Includes

CP/M* . IBM-PC? , and APPLE' listing for kernel $20

Z Volume 3, Floating Point Glossary by Springer $10

□ Volume 4, Expert System with source code by Park $25

Z Volume 5, File Management System with interrupt security by

Moreton $25

MVP-FORTH Software - A Transportable FORTH

Z MVP-FORTH Programmer's Kit including disk, documen

tation. Volumes 1 & 2 of MVP-FORTH Series (All About

FORTH. 2n3 Ed. & Assembly Source Code), and Starting

FORTH. Specify Z CP/M. Z CP/M 86, Z CP/M-K Z APPLE.

□ IBM PC, 3 MS-DOS, Z Osborne, U Kaypro, □ H89/Z89,
D Z100. □ TI-PC, D MicroDecisions, □ Northstar,

□ Compupro. □ Cromenco. D DEC Rainbow. □ NEC 8201,

D TRS-80/100 $150

G MVP-FORTH Cross Compiler for CP/M Programmer's Kit.

Generates headerless code for ROM or target CPU $300

□ MVP-FORTH Mela Compiler for CP/M Programmer's kit. Use

for applicatons on CP/M based computer Includes public

domain source $150

Z MVP-FORTH Fest Floating Point Includes 9511 math chip on

board with disks, documentation and enhanced virtual MVP-

FORTH for Apple II, II + , and lie. $450

Z MVP-FORTH Programming Aids for CP/M. IBM or APPLE

Programmer's Kit. Extremely useful tool for decompiling,

callfinding, and translating. $200

Z MVP-FORTH PADS (Professional Application Development

System) for IBM PC. XT or PCjr or Apple II. II + or He. An

integrated system for customizing your FORTH programs and

applications The editor includes a bi-directional string search

and is a word processor specially designed for fast

development. PADS has almost triple the compile speed of

most FORTH's and provides fast debugging techniques

Minimum si;e target systems are easy with or without heads.

Virtual overlays can be compiled in object code PADS is a

true professional development system Specify

Computer. $500

^J» □ MVP-FORTH Floating Point & Matrix Math for IBM or

Apple $85

^ D MVP-FORTH Graphics Extension for IBM or Apple $65

t-*l Z MVP-FORTH MS-DOS file interface for IBM PC PADS $80

tti □ MVP-FORTH Expert System for development of knowledge-

based programs for Apple. IBM. or CP/M. $100

FORTH CROSS COMPILERS Allow extending, modifying and compiling

for speed and memory savings: can also produce ROMable code.

Specify CP/M. 8086.68000, IBM, Z80. or Apple II, II + $300

FORTH COMPUTER

□ Jupiter Ace $150

Ord»rln(j Intormilton: Check Money Order (payable to MOUNTAIN VIEW PRESS.

INC.). VISA. MasterCard. American Express COD's 15 extra Minimum order SI 5

No billing or unpaid PO's California residents add sales lax Snipping cosis in US

included in price Foreign orders, pay in US funds on US Dank, include lor handling

and snipping by An S5 tor each item under $25. Si 0 for each item Between S25 and

$99 and S20 for each item over SI 00 All prices and products suDiect lo change or

withdrawal without notice. Single system anaioi single user license agreement

reauired on some products

$100

FORTH DISKS

FORTH with editor, assembler, and manual.

jp Q APPLE by MM, 83 $100 rj zeo by LM 83

APPLE by Kuntze | 8086/88 by LM, 83 ^

ATARI' valFORTH S60 (j 68000 by LM. 83 **• $250

,g* □ CP/M* by MM. 83 $10C ■__ V)c F0RTH by HES. VIC20

; HP-85 by Lange $90 cartridge $50

; HP-75 by Cassady S150 □ c'64 by HES Commodore 64

^"IBM-PC1 byLM. 83 S100 cartridge

NOVA by CCI 8" DS/DDS175 : ' Timex by HW

Enhanced FORTH with; F-Floating Point, G-Graphics, T-Tutorial,

S-Stand Alone. M-Math Chip Support. MT-Multi-Tasking. X-Other

Extras. 79-FORTH-79. 83-FORTH-83.

tO D APPLE by MM, P C64 by ParSec. MVP, F, 79

^ F. G. &83 $180

□ ATARI by PNS. F,G. & X. $90

^ D CP/M by MM. F & 83 $1 40

Apple, GraFORTH by I $75

*Mt>
□ FDOS for Atari FORTH's $d0

. Extensions for LM Specify

IBM, ZSO. or 8086

" . Software Floaling

Point

7. 8087 Support

(IBM-PC or 8086)

□ 9511 Support

{Z80 or 8086)

7 Color Graphics

(IBM-PC)

_ Data Base

Management

5100

S100

$100

S100

$200

□ Multi-Tasking FORTH by SL,

CP/M, X 8.79 $395

: TRS-80/1 or III by MMS

F, X. & 79 $130

:"' Timex by FD, tape G.X.

& 79 $45

□ Victor 9000 by DE.G.X $150

fig-FORTH Programming Aids for decompiling, callfinding,

and translating CP/M. IBM-PC. Z80. or Aople $200

FORTH MANUALS, GUIDES & DOCUMENTS

ALL ABOUT FORTH by 1980 FORML Proc. $25

Haydon. See above. □ 19B1 FORML Proc 2 Vol $40

i FORTH Encyclopedia by 1982 FORML Proc. $25

Derick & Baker $25 1 g81 Rochester F0RTH

^ The Complete FORTH by pr0Ci

Winfield $16 1982 Rochester FORTH

Understanding FORTH by Proc.

Reymann S3 1983 Rochester FORTH

.. FORTH Fundamentals, "T^L,- . rnaT1!2=
Vol. I by McCabe $16 A B'b"°9raPhy °» F0R™

£**;Z FORTH Fundamentals,

1 Vol. II by McCabe $13
jg&O FORTH Tools, Vol.1 by

Anderson 8. Tracy $20

Beginning FORTH by

Chirlian

U FORTH Encyclopedia

Pocket Guide $7

$17

References, 1st. Ed. $15

The Journal of FORTH

Application & Research

Vol. 1,No. 1 $20

Vol.1, No. 2 $20

A FORTH Primer $25

Threaded Interpretive

Languages $23

METAFORTH by

And So FORTH by Huang. A Cassady $30

college level text. $25 . Sys(ems Guide ,0 fig.

FORTH Programming by FORTH $25

ScanlD Invitation to FORTH $20
□ FORTH on the ATARI by E_ p^, User Han $20

_ ™J _™«.. FORTH-83 Standard $15
Starting FORTH by Brodie __ „ „„„__, $15

Best mstruciional manual

available, (soft cover) $18

Starting FORTH (hard

cover) $23

□ 68000 fig-Forth with

assembler $20

_ Jupiter ACE Manual by

Vickers $15

FORTH-79 Standard

FORTH-79 Standard

Conversion

O Tiny Pascal fig-FORTH $10

NOVA fig-FORTH by CCI

Source Listing S25

□ NOVA oy CCI Users

Manual $25

Installation Manual for fig-FORTH, $15

Source Listings of fig-FORTH, tor specific CPUs and computers The

Installation Manual is required for implementation Eacn $15

□ 1802 □ 6502 [- 6800 I] AlphaMicro

D 8080 Q 8086/88 D 9900 □ APPLE II

D PACE D 6809 D NOVA D PDP-11/LSI-11 ^

D 68000 C Eclipse C VAX 7} Z80 D IBM &

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415)961-4103

CIRCLE 35 ON READER SERVICE CARD 57

declare

I : INTEGER := 1;

begin

Put(I);

declare

I : Integer := 10;

begin

PutCD;
end;

PutCD;

— first block declared

— new identifiers declared

— display 1

— second block declared

— duplicate I is declared

— it becomes visible inside

— the second block

— displays 10

— end of second block

— displays 1 again

— end of outer block
■

Listing 4.

PROCEDURE SumVector(X : ARRAY OF REAL): REAL;

VAR i : CARDINAL;

Sum : REAL;

BEGIN

Sum := 0.0;

FOR i := 0 TO HIGHCX) DO

Sum := Sum + X[i]

END;

RETURN Sura;

END SumVector;

Listing 5.

helps compare, evaluate, find products. Straight answers for serious programmers.

Programmer's Referral List

Compare Products

Help lind a Publisher

Evaluation Literature tree

Dealer's Inquire
Newsletter

Hush Order

0ver300 products
BULLETIN BOARD-7 PM107 AM6)7-461-0174

LIST OUR

PRICE PRICE

Si99 call

150 125
199 call

250 225

395 call

500 call

Our Free Report: PRODUCTIVITY - MSDOS
Assume use ol compiler and typical editor What commercial or public domain prod

ucts, what techniques improve productivity' "Productivity with MSDOS' is a growing
document with some answers Call to request i: Kelp improve il. Earn S50 credit to-

ward any purchase when we add any description, code, or tdea received from you

APPLE AZTEC C-Full. ASM
8080 BDSC-Fast. popular

AZTECC F8080

Z80

8086

8086

p

AZTECC- Full

ECOSOFT - Fasi. Full

C86-optimizer. Meg

Lattice-New! 142 0

Microsoft (Lattice) MSDOS 500 call

Digital Research -Megabyte 8086 350 269
DesmetbyCWare-Fast 8086 109 99

hfiMr*j ENVIRONMENT
Active Trace ■ debug 3050 86 S 80 72

MBASIC-80-Microsoft 8080 375 255

BASC0M-86 - Microsoft 8085 395 279

CB-86-DR! CPM86 600 439
Prof BASIC Compiler PCOOS 345 325

BASIC OeVt System PCDOS 79 72

EDITORS Programming
C Screen with source 808086 NA 60

EOlX-clean PCDOS 195 149

FINAL WORD - for manuais 808086 300 215
MINCE-like EMACS CPM. PCOOS 175 149
PMATE ■ powerful CPM !95 175

8086 225 195

VEDfT ■ fuUkarJ CPM.PCOOS 150 119
8086 200 159

MSF0RTRAN-86-Meg

SSFORTRAN-86

FORTRAN-80-66 decent

INTEL FORTRAN-86

DR FORTRAN COMING
RMFORTRAN COMING

MSDOS S350 S255

CPM-86 425 345
CPM-80 500 350
IBM PC NA 1400

C to dBASE interlace

CToolsi -Siring,Screen

C Tools 2-OS Interlace
FLOAT87-Lattice,PL1
GRAPHICS GSX-80

HALO-fast, full

Greanleaf for C-full. 200-

ISAM Access Manager-86

BTRIEVE-many languages
PHACT-withC

FABS

PASCAL TOOLS-Blaise

SCREEN: Display Mgr 86

8080 85 SI 25 S115

PCDOS NA 115

PCDOS NA

PCDOS NA

CPM80 NA

PCDOS 200
PCDOS NA

8086 400

PCDOS 245

PCDOS NA
CPM80 150

PCDOS NA

8086 500

PROFILER ■ Examine MSDOS program execution
speeds. Determine where to improve programs in any

Microsoft language. Lattice, or C86 Make histograms

that show time spent in portions ot your program, and

doing MSDOS 10. etc S175.

LIST OUR

ENVIRONMENT PRICE PRICE

CPM86IBM $400 S289
CPM80 350 249

PANEL-86-manylanguages PCDOS 295 245
WINDOWS forC

Virtual Screen-Amber

PCDOS NA

PCDOS 295

115

call

C INTERPRETERS lor MSDOS - Ask about

one lor beginners lor S85 or lull

development for S500

C HELPER includes source in C (or MSDOS
or CPM80 lor a DIFF, GREP. Flow
charter. C Beautilier and others Manage

your source code easier $125

PROL0G86 Interpreter lor MSDOS includes
tutorials, reference and good examples

Learn in first few hours For Proto

typing. Natural Language or Al S125

Call for a catalog, literature, and answers

800-421-8006
THE PROGRAMMER'S SHOP™

58 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

128-L Rockland Street, Hanover. MA02339

Visa 617-826-7531. Mass 800-442-8070 MasterCard

CIRCLE 44 ON READER SERVICE CARD

PASOU.MT - 86

wmouiSPP
MS PASCAL 86

SBB PASCAL-greai, fast
PASCAL 64- nearly luD
SS8 Jr ■ best to learn

MSDOS 350

PCDOS 350

COM64 99

PCOOS NA

8086 200 159

80861600 1275

PCDOS 149 139

PCDOS 495 475

AssemDIerSTools-DRI

COBOL-Levelll

CODESMITH-86-debug

GCLISP

IQ LISP-full 1000K RAM
Janus ADA - solid value
MBPCobol-86-last

Microshetl improve CPM

Microsoft MASM-86
PL 1-86
PLINK-86-overlays
POWER-recoverfiles

READ CPM86 from PCOOS PCDOS NA
READPCOOSonanlRMPC CPM86 NA

Trace 86 PCDOS 125

PCDOS 175

PCDOS 500

8086 750

8080 150

MSDOS 100
8086 750

8086 350

call
449

695

125
85

560

315
139

55

55
115

Noie All prices subject to change without notice

Mention this ad Some prices are specials

AskabouiCODandPOs.
All formats available.

generic

type OBJECT is private;

procedure ROTATE(FIRST,

procedure ROTATE(FIRST,

USED : OBJECT;

begin

end;

USED := FIRST

FIRST := SECOND

SECOND := USED;

SECOND:

SECOND:

in out OBJECT);

in out OBJECT) is

Listing 6.

QUALITY SOFTWARE AT

REASONABLE PRICES
CP/M Software by

Poor Person Software

Poor Person's Spooler $49.95
All the (unction of a hardware print buffer at a fraction of the

cost. Keyboard control. Spools and prints simultaneously.

Poor Person's Spread Sheet $29.95
Flexible screen formats and BASIC-like language. Prepro

grammed applications include Real Estate Evaluation.

Poor Person's Spelling Checker $29.95
Simple and fast! 33,000 word dictionary. Checks any CP/M text

file.

aMAZEing Game $29.95
Arcade action for CP/M! Evade goblins and collect treasure.

Crossword Game $39.95
Teach spelling and build vocabulary. Fun and challenging.

Mailing Label Printer $29.95
Select and print labels in many formats.

Window System $29.95
Application control of independent virtual screens.

All products require 56k CP/M 2.2 and are available on 8" IBM and 5"
Northstaf formats, other 5" formats add $5 handling charge. California

residents include sales tax.

Poor Person Software

3721 Starr King Circle

Palo Alto. CA 94306

tel 415-493-3735

CP'M is a registered trademark of Digital Research

WRITE

The Writer's Really Incredible Text Editor lives up to its
name! It's designed for creative and report writing and
carefully protects your text. Includes many features
missing from WordStar, such as assorted directory listings,
fast scrolling, and trial printing to the screen. All editing
commands are single-letter and easily changed. Detailed
manual included. WRITE is S239.00.

A PRIMER ON PASCAL

FOR CP/M SYSTEMS

If you want to learn Pascal/M or MT-t- on your own, this is
the way. The Primer contains sample programs,

suggestions, and notes on disk and in the manual.
Now only S64.50!

WORKMAN & ASSOCIATES

112 Marion Avenue

Pasadena, CA 91106
(818) 796-4401

Disk formats include: 8", Apple, Osborne. Xerox. KayPro.
Morrow, and Otrona. Please request our new catalog.

CIRCLE 42 ON READER SERVICE CARD
CIRCLE 56 ON READER SERVICE CARD

59

60

WHY
JOHNNY
CAN'T
READ

HIS
OWN
CODE
Johnny's

A Good

Programmer,

Even Brilliant,

^"'-Johnny works in 8080/Z80assembly
language, with a conventional assembler.
That can make yesterday's brilliance

today's garble, a maze of mnemonics and

a jumble of meaningless labels. Johnny's
program is less than self-explanatory—

even for Johnny.

Johnny could read his own code if he used

SMAL/80—the superassembler—and so
can you. SMAL/80 boosts your program's
clarity and your productivity by giving you:

■ Familiar algebraic notation in place of
cryptic mnemonics—"A = A-3" for example,
instead of "SUI 3" (if you know BASIC or
Pascal, you already know SMAL/80)

■ Control structures like BEGIN...END,
LOOP... REPEAT WHILE, and IF.. .THEN...
ELSE... to replace tangled branches and
arbitrary label names {eliminating up to 90%
of labels with no overhead imposed)

■ Complete control over your processor—
because SMAL/80 is a true assembler, it
doesn't reduce execution speed or burden
your program with its own runtime routines.

SMAL/80, the assembler that handles like a
high-level language, lets you do it right the
first time, and lets you read and understand
your work afterward—the next day or a
year later. Users say SMAL/80 has doubled
and even tripled their output of quality code.
But don't take our word for it—TRY IT!

Use SMAL/80 for 30 days. If you're not
completely satisfied with it—for any rea
son—return the package for a full refund.

SPECIAL BONUS: Order before Sept. 30,
1984, and get Structured Microprocessor
Programming—a $25 book FREE!

SMAL/80 for CP/M-80 systems {all CP/M

disk formats available—please specify);
produces 8080/8085 and Z80 code. Now

supports Microsoft .REL.ONLY $149.95

SMAL/80 for CP/M-80 systems.
8080/8085output only. SAVE $20: $129.95

NEW! SMAL/80X65—for Apple II and lie
(requires Z80 card and CP/M); produces
Z80 and 6502 object code. $169.95

Mastercard SMAL/80 We pay

COD's CHROMOD ASSOCIATES '"'^a^
(201) 653-7615 outers

1030 Park Ave- Hoboken, N.J. 07030

CIRCLE 8 ON READER SERVICE CARD

ing the WORD data type and specifically

the ARRAY OF WORD in generic func

tion calls. This array can accept any iden

tifier. R. Wiener"1 gives a good example

of this technique by presenting a generic

heap and exchange sort program in

Modula-2.

Exceptions

Ada was designed, following the U.S. De

partment of Defense's requirements, to be

implemented in real-world systems. Thus

software developers must be ready to han

dle errors that can cause the system to

crash.

Consider the case where an Ada soft

ware system is implemented in a military

airplane. Imagine that an electronic ther

mometer starts sending erroneous nega

tive readings (in absolute degrees Rank-

ine!). This may cause the system to crash

and prevent the pilot from being able

to eject.

The idea behind exceptions is to handle

error events. Ada has four predefined ex

ceptions:

■ CONSTRAINEDERROR-Handles

out of range error

■ NUMERICERROR-Deals with

mathematical operation errors

■ PROGRAMERROR-For run-time

errors

■ STORAGEERROR-Dcalswith

out-of-memory error.

Ada also allows the programmer to de

clare other exceptions. To activate an ex

ception one uses the RAISE keyword fol

lowed by the exception name. This would

cause the program flow to resume at the

exception handling code portion. This

portion has the list of error types and the

action taken for each. In Modula-2, on the

other hand, error handling is done without

special jumps. This can be frustrating es

pecially when an error is inside a deeply

nested loop.

The context in which Modula-2 and

Ada arc viewed determines their relative

strengths and weaknesses. But the pro

gramming techniques of these two highly

structured languages offer tools to pro

grammers in any context. H

References

I.Barnes, J. Programming in Ada, Sec. Ed.,

Addison-Wesley.

2.Shammas,N. 1984. "Modula-2: No Strings

Attached!" Journal ofPascal, Ada, and

Modula-2. 3:2.

3.Wiener, R. 1983. •'Dynamic Multi

dimensional Arrays in Modula-2." Journal

ofPascal, Ada, and Modula-2. 2:6.

4. Wiener, R. 1984. "Generic Sorting in

Modula-2." Journal ofPascal, Ada, and

Modula-2. 3:1.

Namir Shammas is president ofhis own

company. Pyramid Software. He is a mem

ber ofthe AdaTec chapter ofthe Associa

tion of Computing Machinery. He is also

involved in the IEEE Computer Society

and ihe American Statistician Society He

holds a BSC and MSC in Chemical

Engineering and enjoys technical writing

and programming.

ADVERTISE

in the
October
issue of

COMPUTER

LANGUAGE
Reservation Deadline:

August 6th

Contact:

Carl Landau

Computer Language

131 Townsend Street

San Francisco, CA 94107

(415) 957-9353

PUBLIC DOMAIN SOFTWARE REVIEW

1 ^o many readers of

COMPUTER

LANGUAGEit's.

no surprise that public domain software

continues to be a valuable source for all

kinds of interesting and virtually free soft

ware programs.

For every commercial software

package—be it a word processor, lan

guage assembler, or utility—there is a

similar product sitting unused on disk

somewhere practically free for the asking.

In many cases, the public domain material

is as good as or better than the commer

cial product.

But, naturally, this is not always true.

Powerful languages, data bases, and word

processors arc usually commercial be

cause of their money-making potential. To

find an equivalent in the no-cost world of

public domain material may be asking too

much. But as far as utilities arc con

cerned, public domain products usually

set the standard.

What exactly is public domain

software?

Usually an author who decides not to

commercially market a program feels—

for one or many reasons—that the pro

gram should be distributed to any inter

ested parties at a minimal cost. The

motivation is usually a desire to make a

useful product readily accessible to other

programmers who have similar interests.

But sometimes it is a lack of motivation to

actually market the material, perhaps due

to other interests or a lack of what many-

call "business drive".

Whatever the reason, the usual condi

tion attached to the released software is

that it cannot be sold for profit by anyone

else. (Often routines can be incorporated

into commercial programs, but this is at

the author's discretion.)

Public domain material does have its

problems. In many cases, the programs

arc uninspiring, repetitious, or unwork

able. But even so, many programs deserve

a place in every programmer's library,

whether he or she be a professional pro

grammer or a hobbyist.

This column will help illustrate some of

the more useful public domain programs.

Many interesting programs are actually

updated versions of an existing program.

in which case the most recent will usually

be mentioned and the fat trimmed off.

Each column will take a random walk

through the mountain of available mat

erial and pull out samples for exami

nation. Sometimes we will examine a

specific volume of one of the software

libraries, and sometimes we'll look at

programs from several different sources.

In most cases, the CP/M operating sys

tem will be used if not specified other

wise, although MS-DOS (PC-DOS).

UNIX, and more specialized operating

systems will not be ignored. All of the

software to be reviewed should be readily

accessible to all readers through one of

the sources I'll cover. Comparisons with

available commercial (or other public

domain) programs will be used where ap

plicable, but remember that all the com

ments are those of the author and repre

sent the biased view of one slightly

eccentric programmer.

:;jV M ffherc is public

\§\§ domain soft-
: W W ware stored?

There are a few sources available to

most programmers. The first is through

one of the two big collectors of public do

main material: CP/MUG (CP/M User's

Group. 1651 Third Ave., New York. N.Y.

10028) and SIG/M (Special Interest Group

for Microcomputers, P.O. Box 2085,

Clifton. N.J. 07015). Each have over 100

volumes (disks) of material available,

generally in several formats. Catalogs are

usually inexpensive (approximately

S10.00) and list the program contents for a

number of volumes. The prospective pub

lic domain user is encouraged to write to

the two organizations and inquire. Starl

ing with the next column, new releases of

both of these sources will be listed with

their contents.

The second major source of public do

main material is through RCPM (Remote

CP/M) systems, which arc accessed by

By Tim Parker

modems. RCPM systems are widely

available—a recent list had over 100

entries, all available for the cost of the

telephone bill. To use RCPM systems, the

owner simply calls the system through a

modem, using a terminal program, and

follows instructions on the screen. The

programs required to download (copy)

other programs from the RCPM are also

on the systems, although configuration

for specific hardware may be required in

some cases. Most RCPM setups have the

most commonly used files on-line and will

load specific volumes of CP/MUG and

SIG/M material on request.

The third source, which is overlooked

by many programmers, is the local com

puter user groups or special interest sub

divisions. Most major cities have a group

devoted to computers in general and dedi

cated groups for the more popular ma

chines and languages. The advantage to

dedicated user groups is that machine-

dependent software is available already

configured, and the more popular public

domain programs will be available in the

required formats.

Despite repetition, dull games, and cute

applications, the really good public do

main material all seems to suffer from a

common problem: lack of documentation.

Authors of programs don't bother to write

adequate manuals for newcomers, so

there is a great deal of confusion about

what a program will do and how. The au

thors usually know their programs so well

that, because most of their functions and

routines seem common sense, they as

sume others will immediately see the

clear, clean wisdom in their code design.

This intimate knowledge of the program

61

makes writing a suitable manual difficult.

Additionally, writing good documen

tation can take longer than writing the

program. And the writing can vary to

such a great deal in style that some au

thors would be better not to document

their material at all. We hope we can shed

some light on ihc documentation problem

in this monthly critique.

And with that said, "Lead on,

MacDuff. . . "

I
f I were marooned

on a desert island

with only one pub

lic domain program available, it would

have to be FINDBAD. This program

helps solve the most dreaded enemy of

computer users: the infamous "BDOS

ERROR ON X: BAD SECTOR" mes

sage. Media problems are unpredictable

and always happen at the absolutely worst

possible time (in conjunction with a cor

ollary to Murphy's Law). Usually the disk

with the problem is relegated to the gar

bage pile, but with FINDBAD it can be

salvaged.

FINDBAD performs a simple diagnos

tic test on the media in question whether it

is a floppy disk (5 Vt- or 8-in. and proba

bly the new 3-in. by now) or hard disk

drive. FINDBAD reads through all the

tracks on the disk and attempts to find any

bad sectors that could cause problems.

The program is entirely nondestructive; it

does not write to the disk (only reads it)

GOOD NE>VS!

CORPORATION

Ml IV. Virginia St.

Milwaukee, Wl 63204
(414)278-2937

for the
6809

WAS NEVER
BETTER!

INTROL-C/6809,Version1.5
Introls highly acclaimed 6809 C

compilers and cross-compilers are now

more powerful than ever!

We've incorporated a totally new 6809

Relocating Assembler, Linker and Loader.

Initializer support has been added, leaving

only bitfield-type structure members and

doubles lacking from a 100% full K&R

implementation. The Runtime Library has

been expanded and the Library Manager is

even more versatile and convenient to use-

Best of a!l, compiled code is just as

compact and fast-executing as ever - and

even a bit more so! A compatible macro

assembler, as well as source for the full

Runtime Library, are available as extra-cost

options.

Resident compilers are available under

Uniflex, Flex and OS9.

Cross-compilers are available for PDP-

11/UNIX and IBM PC/PC DOS hosts.

Trademarks:

Introl-C. Introl Corporation

Flex and Uniflex. Technical Systems Consultants

OS9. Microware Systems

PDP-11. Digital Equipment Corp.

UNIX. Bell Laboratories

IBM PC. International Business Machines

For further information, please call or write.

CIRCLE 25 ON READER SERVICE CARD

62 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

and therefore will not harm any data

stored on the media unless a bad sector is

discovered. If there is a bad sector found

in the system or directory tracks, FIND

BAD will issue a warning message (it

varies depending on the version in use). If

the problem is with the system track,

FINDBAD aborts to the operating sys

tem, but it will continue reading the disk if

the problem is on the directory tracks.

Any bad sectors discovered are isolated

from the other files by being stored in a

new file that FINDBAD creates called

"[UNUSED],BAD". The FCB (File Con

trol Block) has pointers to all bad sectors

on the disk, rendering them immune to

further use by the operating system and

effectively making the media usable

again. FINDBAD will display a count of

all bad sectors located and give their num

ber. The program can be run repeatedly

and if new bad sectors are located,

they will be tagged in to an existing

[UNUSED].BAD file if there is one.

FINDBAD is started by typing the

name and the drive to be tested, such as

"FINDBAD B:". If no drive is specified,

the default drive is assumed. When run,

FINDBAD will display a sign-on message

indicating the version and then issue a se

ries of status reports. These include the

tracks being examined, such as "Testing

System Track" and "Testing Directory",

and will show the progress of the program

by printing an asterisk on the console for

each sector tested. When it locates a bad

sector, FINDBAD retries a few times,

then prints a message such as "Bad

Block: 0AH".

However, as FINDBAD creates a new

file in which to collect the bad sectors, the

file must be maintained to keep the disk

clean. In other words, issuing an ERA *. *

command will erase all the files on the

disk, including [UNUSED].BAD, which

of course leads to bad sector messages

again. This is the usual cause of frus

tration for FINDBAD users.

FINDBAD.COM is available in many

versions and on many user disks. The

latest versions are all machine indepen

dent and will read any kind of disk with no

initialization (i.e., you don't have to tell it

the format or size of the disk). Hard disk

users will find this program indispens

able, as a bad sector can totally wreck a

hard disk's use. A readily available source

of FINDBAD is on SIG/M Volume 86,

which will handle both 5 W- and 8-in.

disks. (Versions before FINDBAD 3.8

are for 8-in. disks only, so check the ver

sion.) A version for CP/M-86 is available

on SIG/M Volume 96. FINDBAD is also

available on just about every RCPM in the

continent, and some offer the assembly

language version for modification,

if required.

Updates of FINDBAD are available-

some with extra facilities—but some are

also destructive. FINDBAD is small and

easily used. Stick with it. There are many

commercial programs that do exactly

what FINDBAD does but cost much

more. None seem to offer anything that

justifies the extra money.

Because COMPUTER LANGUAGE is

devoted to the more advanced computer

user, a more specialized program or set of

programs will be examined each month to

round out the column. In this initial offer

ing, an assembler, a disassembler, and a

cross assembler will be briefly high

lighted. (This topic will be returned to in

future columns.)

CP/M "s ASM program is used by most

of the CP/M world as a standard assem

bler, but a few enhanced versions avail

able through public domain sources will

quickly relegate ASM to the unused disk

files. Ward Christensen (whose name will

appear in this column on a frequent

basis—he is the "dean" of the public do

main world) has offered a program called

LINKASM, which not only is faster than

ASM but offers a few features that Digital

Research left out.

LINKASM will allow any number of

ASM files to be assembled into one HEX

file, acting as a sort of linker (hence the

name). A symbol table for use with pro

grams such as SID (Symbolic Instruction

Debugger) can be generated during as

sembly as an option. (However, the sym

bol table is not completely alphabetically

sorted. Only the first letter is used as a

sort key so an external sort can be used if

an exact listing is required.)

Linking is accomplished by adding the

LINK statement to the end of the source

code to be linked. The LINK command is

placed in the opcode field, and the file to

be linked is placed in the operand field.

The last file in the linking series must end

with an END statement to signify com

pletion of linkage. This raises a slight

problem: no file to be linked can contain

the END statement except as a final com

mand. But this should not raise any seri

ous problems for programmers.

LINKASM is run precisely like ASM

in that the command LINKASM

XXXXXXXX.ABC (S;) is issued. The

"XXXXXXXX" is the filename, A is tht

source drive, B is the destination drive of

the HEX listing, and C is the destination

drive for the PRN listing. The optional S:

command indicates the drive on which to

place the symbol table.

LINKASM is available as a COM file

on CP/MUG Volume 36, and the source

code can also be obtained, if required,

Z80 assemblers are also available, but

most have bugs in them which can lead to

fatal errors. For the adventurous, try

ASMX on CP/MUG Volume 16. (Note,

however, that ASMX has been known to

destroy disks if a HEX and PRN destina

tion other than the default drive is speci

fied.) ASMX uses the full set of Zilog

mnemonics, but with the ever-impending

threat of destroyed disks, it tends to be

only for those with disk space to waste. (A

full Z80 assembler will be described in an

upcoming column.)

For a disassembler. Christensen again

delivers. RESOURCE is an 8080 disas

sembler that is irreplaceable for machine

language programmers. (A Z80 version

called ZESOURCE or REZ is also avail

able for handling both Zilog and TDL

mnemonics.) Christensen has written a

very good manual to go with the disas

sembler, although a couple of readings

may be required on first use.

The C Interpreter:

Instant-C"
Programming in C has never been Faster.

Learning C will never be Easier,

Instant-C is an optimizing interpreter for the C language that can

make programming in C three or more times faster than when

using old-fashioned compilers and loaders. The interpreter envi

ronment makes C as easy to use and learn as Basic. Yet

Instant-C is 20 to 50 times faster than interpreted Basic. This

new interactive development environment gives you:

Instant Editing. The full-screen editor is built into Instant-C for
immediate use. You don't wait for a separate editor program to

start up.

Instant Error Correction. You can check syntax in the editor.

Each error message is displayed on the screen with the cursor

set to the trouble spot, ready for your correction. Errors are

reported clearly, by the editor, and only once.

Instant Execution. Instant-C uses no assembler or loader. You

can execute your program as soon as you finish editing.

Instant Testing. You can immediately execute any C statement

or function, set variables, or evaluate expressions. Your results

are displayed automatically.

Instant Debugging. Watch execution by single statement step

ping. Debugging features are built-in; you don't need to recom

pile or reload with special options.

Instant Loading. Direct generate .EXE or .CMD files at your re

quest to create stand-alone versions of your programs.

Instant Compatibility. Follows K & R standards. Comprehen
sive standard library provided, with source code.

Instant Satisfaction. Get more done, faster, with better results.

Instant-C is available now, and works under PC-DOS*, MS-

DOS*, and CP/M-86*.

Find out how Instant-C is changing the way that programming is

done. Instant-C is $500. Call or write for more information.

(617)653-6194

p.o. Box 480

Systems, Inc. Natick, Mass. 01760
Trademarks MS-DOS IMicrosoft Coip).PC-DOS(IBM).CP'M-86(Digital Research. Inc).lnsianlC(Rational Systems. Inc)

CIRCLE 46 ON READER SERVICE CARD

63

The power of RESOURCE should not

be underestimated. Source code can be

obtained that exactly matches the original.

As Christensen points out in his intro

duction to the manual, commercial soft

ware vendors pleaded that he not release

his product as it would tend to allow un

restrained ripping off of their products.

Luckily, he didn't listen to them.

The use of RESOURCE and

ZESOURCE (REZ) is too complicated to

explain here, but let it be stated that a

finer disassembler has not been seen any

where for use by an experienced assembly

language programmer. RESOURCE is

available on CP/MUG Volume 42 with

documentation, and ZESOURCE (REZ)

is on CP/MUG Volume 64 and SIG/M

Volume 10. SIG/M Volume 91 contains

another Z80 disassembler called DASM,

which handles both Zilog and TDL

mnemonics.

Cross assemblers are available for a

few conversions that may be of use to a

CP/M programmer. To convert 8080

mnemonics to Z80 (Zilog) mnemonics,

use a program called XLATE available in

SIG/M Volume 91. The program has been

run several times and produces neat, clean

code, although maximum use of the Z80

features is naturally not obtained. How

ever, XLATE does a very good job of

cross assembly.

An 8080 to 68000 cross assembler is

available on SIG/M Volume 92 under the

name of A68K, but this has not been

tested by the author.

Finally, a useful program for assembly

language programming is COMBINE,

available on CP/MUG Volume 36. COM

BINE will concatenate a sequence of

source files into one large file and. to save

space, remove all comments in the pro

cess. On the other end of the spectrum,

NOTATE on CP/MUG Volume 78 will

allow insertion of comments into source

files. It rather cleverly scans each 1 ine of

code and positions the cursor at the start

of the comment field if none exists.

Two cross referencers that may be of

interest arc XREFPRN on CP/MUG

Volume 78 and XREFASM on CP/MUG

Volume 6. XREFPRN will send a list of

cross-references by address to the CP/M

LST: device. XREFASM creates a file

with line numbering and a cross-reference

index of symbols.

Ncxi monEh. among other material

we'll look at directory programs that re

place the DIR command with a combined

directory sort, as well as the STATcovn-

mand. Disk file managers also will be

examined.

I look forward with great enthusiasm to

writing In The Public Domain in a way

lhat. I hope, will be both interesting and

useful to you. If you have any comments,

criticisms, or public domain programs

that you think deserve mention in this col

umn please send your feedback in to: In

The Public Domain. COMPUTER LAN

GUAGE. 131 Townsend St.. San Fran

cisco, Calif. 94107. Or. better yet, leave

me a message on the new COMPUTER

LANGUAGE bulletin board computer:

(415) 957-9370. There you will also be

able to pick up a copy of most of the

programs that will be mentioned in this

column. H

Up To 34% Off!

JOHN D. OWENS ASSOCFATES JOHN D. OWENS ASSOCIATES JOHN D. OWENS

o

z

p

S-100 EQUIPMENT: |
COMPUPRO * LOMAS * IMS * ICM * ADVANCED DIGITAL I

* SEMIDISK h. MACROTECH » SYSTEMS GROUP * g
ACKERMAN » LEHIGH VALLEY » FUTECH » SCION

M DIGITAL GRAPHICS

GRAPHICS PERIPHERALS: HOUSTON INSTRUMENTS m

ALPHA MERICS » GTECO * HITACHI

IBM PC AND XT AT 10% OFF LIST PRICK!

IBM PC LOOK ALIKE! ffYSB 1000 W/80186

MODEMS (300 TO 19-2K BALD)

TERMINALS * PRINTERS * DISKETTES

Sio DISCOUNT COUPON with purchase of second edition of our elegant

8 and Vi X II, fifty five page catalogue replete with detailed product

specifications. SECOND $10 DISCOUNT COUPON for correct solution to

technically oriented, difficult bui entertaining crossword puzzle, third DIS

COUNT COUPON for dust covers. Order catalogue by telephone or mail—

$3*95, we pay postage. Die accept Master. VISA and American Express. Our

catalog is not a cheap 'ihron-auay'. It contains interesting reading material,

is beautifully type-set and printed and hound with high quality materials. We

have received lavish praise for this catalog. The purchasing agent at a pres

tigious medic:!] college rated it 9-5 out of 10.

WE EXPORT: Oversells usm cull (>[>,) -hS b29H or TftA H) ifti >Sh

JOHN D. OWENS ASSOCIATES, INC.
12 SCHUBERT STREET

STATEN ISL\ND, NEW YORK 10305

o (212) 448 6283 (212) 448 6298 (212) 448 2913

64 COMPUTER LANGUAGE ■ PREMIER IS5UE WB-d

Syntax

Constructs </

custom

software

Get the power of your Z80

and the elegance of direct access

to CP/M functions from your

high level programs with

SYNLIB
utility library

SYNLIB consists of MICROSOFT compatible object code

that may be called from any high level language that uses

MICROSOFT parameter passing conventions.

SYNLIBg/Ves you extremely powerful array and buffer manip

ulation using the Z80 LDIR instruction; program access to the

CP/M CCP console command line; high speed disk block I/O:

a high quality random number generator; HEX to ASCII

conversion optimized by special Z80 instructions; program

chaining and more.

And, because our programmer abhors a vacuum, each 8"

floppy comes packed with MODEM? and other valuable

public domain software. We've included documentation and

available source, so that you too may join the free software

movement.

SYNLIB $50.00
8" SSSD CP/M format

SOURCE: $100.00

Licensing for commercial use available.

SYNTAX CONSTRUCTS, INC.

14522 Hiram Clarke

Houston, Texas 77045

(713)434-2098

CP/M is a registered trademark o/ Digital Research. Inc. Microsoft is a registered trademark ot

Microsoft Coro Z80 is a registered trademark ol Zilog

CIRCLE 52 ON READER SERVICE CARD

EXOTIC LANGUAGE
OF THE MONTH CLUB

Discovering SNOBOL4

By Ralph E. Griswold and Madge T. Griswold

S
ome of the more

exotic program

ming languages,

like APL and LISP, have sizable fallow

ings of ardent devotees. A lesscr-known

language in the same category is

SNOBOL4, a general purpose program

ming language with powerful string

manipulation and pattern-matching

facilities.

The original version of SNOBOL was

developed al Bell Telephone Laboratories

in 1962 by a small group of researchers

who were working on symbolic mathe

matics and theorem proving. SNOBOL

quickly became popular because of the al

most total lack of string-processing facili

ties in other programming languages that

were available at the time. A repertoire of

built-in functions was added to produce

SNOBOL2. followed by programmer-

defined functions (procedures) in

SNOBOL3. SNOBOL4 provided exten

sive enhancements to the pattern-

matching facilities of the earlier SNOBOL

languages and also added a number of

more sophisticated features.1 :
SNOBOL4 is often taught in courses on

comparative programming languages and

nonnumeriea! computation, ll is used in

academic and industrial environments for

a wide variety of applications that call for

complex string processing, such as lin

guistic analysis, cryptography, artificial

intelligence, molecular genetics, and

document formatting. Because SNOBOL4

programs tend io be easy to write,

SNOBOL4 also is commonly used for

"one-shot" applications, such as analyz

ing programs and reformatting data files.

SNOBOL4 has been implemented on

most large- and medium-scale computers.

More recently, there have been several

implementations for the IBM PC and its

compatibles.

This month's Exotic Language of the

Month Club column shows some exam

ples of SNOBOL4\s uses and features,

gives a few short program examples, and

provides pointers to where one can find

out more about SNOB0L4, including

sources for SNOBOL4 translators.

SNOBOL4 emphasizes ease of pro

gramming and run-time flexibility.

Details that the programmer must specify

in most other programming languages are

handled in SNOBOL4 by the imple

mentation. Here are the main linguistic

features of SNOBOL4:

■ A variety of data types are supported,

including strings, integers, real (floating

point) numbers, patterns.

arrays, and tables

■ Variables are untyped; there are no

type declarations

■ Type conversion (coercion) is

performed automatically according to

context

■ Storage management is automatic;

there are no storage declarations. Space is

allocated as needed, and garbage collec

tion is performed automatically without

programmer intervention

■ Data objects, such as strings and

arrays, can be arbitrarily large and are

limited primarily by memory capacity

■ Input and output are implicit

■ Programmer-defined functions can be

called recursively

■ Binding times are late; most language

operations can be defined or changed dur

ing program execution

Because of its early origins, SNOBOL4

lacks the syntactic sophistication and con

trol structures commonly found in more

recently developed programming lan

guages. A SNOBOL4 program consists of

a sequence of statements that are executed

in order. This sequential order can be al

tered with conditional transfers, which

are governed by the success or failure of

computations (as opposed to using Bool

ean values). Some operations always suc

ceed. An example is SIZE(s). which com

putes the size of the string s. Other

operations, such as LT(i.j) . which tests

whether/ is numerically less thanj. may

succeed or fail depending on whether or

not the test succeeds. A conditional goto,

which appears at the end of a statement,

transfers control depending on the success

or failure of the statement. Thus.

LT(i,j) :S(yes)F(no)

transfers control to a statement labeled yes

if/ is less thany but to a statement labeled

no otherwise.

Since SNOBOL4 provides no other

control structures, the programmer must

construct loops. An example is:

'hile

i-0

LT(i,10)

i = i + l

new[i] = o

:F(done)

:(while)

As indicated, labels appear at the begin

ning of statements and a goto without an S

or F specifies an unconditional transfer.

This program segment simulates a/or

loop, testing and incrementing / until the

limit of 10 is reached, during which val

ues are copied from one array to another.

SNOBOL4 programmers learn to simulate

conventional control structures, although

it requires discipline to write well-

structured SNOBOL4 programs.

Input and output are particularly simple

in SNOBOL4. When a value is assigned to

the identifier OUTPUT, a copy of that

value is written out. Similarly, when the

value of INPUT \s used in a compulation,

a new line is read in and becomes the

(string) value of INPUT, which is used in

the computation. If anend-of-file is

encountered when reading, the reference

to INPUT fails. Thus, the line

copy OUTPUT- INPUT :S(copy)

copies the input file to the output file.

This example illustrates how easy it is to

program in SNOBOL4—in fact

SNOBOL4 is famous for its one-liners.

There are provisions for associating

different files with different identifiers

for both input and output. Some imple

mentations support I/O format con

versions and random-access I/O.

Pattern matching is the heart and soul

of SNOBOL4. There is a pattern-

matchins statment, which has the form

in which s is a subject string that is

matched according to the pattern p. The

SNOBOL4 programmer can use many dif

ferent kinds of patterns to analyze the

structure of a string and to break it down

into smaller components.

The simplest patterns are positional and

refer to locations in strings. Examples are

LEN(n), which matches any n characters

65

of a string, and TAB(n), which matches up

to the nrh character ofa string. Other pat

terns are lexical and depend on the occur

rence of specific characters in a string.

Examples are ANY(s), BREAK(s) , and

SPAN(s), which match any single charac

ter in the string s, up to any character in s,

or a sequence of characters in s. respect

ively. For example, ANYfaeiou "}

matches any single vowel.

Patterns can be combined to match in

succession by writing them one after an

other, as in

LEN(IO) BREAK(".,?;:")

This pattern first matches 1U characters

and then luoksfor one of the given punc

tuation marks in the remainderof the

subject. Alternatives also can be speci

fied, as in

BREAK("."] LEN(l)

in which the vertical bar separates the two

alternatives. This pattern tries to locale a

period. If that fails, it matches just the

first character of the subject.

A variable can be attached to a compo

nent of a pattern so that if the pattern

matches, the matched substring is as

signed to the variable. This is done with

the "dot" operator, as in

BREAK(letter) (SPAN(letter). wrd)

which is a pattern that matches up to a

letter, using BREAK, and then matches

consecutive letters, using SPAN. The sub

string matched by SPAN is assigned to

wrd, effectively picking the first "word"

out of the subject.

Patterns are data objects and can be as

signed to variables, as in

wpat = BREAK(letter)

(SPAN(letter).wrd)

(A plus symbol at the beginning of a line

in SNOBOL4 indicates continuation of the

preeeeding line.) Thus, a pattern can be

constructed once and used in many places

in a program. Larger patterns can be con

structed from smaller ones so that very

complex specifications of string struc

tures can be built up incrementally.

A pattern-matching statement may suc

ceed or fail depending on whether or not

the pattern matches. For example, the

program

read line - INPUT :F(done)

line ANY("aeiou") :F(read)

OUTPUT = line :(reacl)

writes out only those input lines that con

tain a vowel.

The subject siring can be modified in a

replacement statement, which has the form

si

in which the substring ofsi that is

matched by /' is replaced by s2. For exam

ple, using the pattern wpat given above,

the program

read

findw

text = INPUT

text wpat =

OUTPUT = wrd

:F(done)

:F(read)

;(findw)

writes out all the words in the input file.

In the second statement, if wpat matches,

the string up to the word and the word it

self are deleted and replaced by the zero-

length null string. The word that is found

is assigned to wrd as shown in the pre

vious pattern and written out. When no

more words arc found, the next line of in

put is read and processed.

The pattern-matching repertoire of

SNOBOL4 is too extensive to describe in

detail here. It includes not only simple

patterns, such as those given above, but

complex ones as well. It is straight

forward to write patterns that correspond
to context-free grammars (like those

specified by production systems such as

BNF). For example, the statements

THE

dedicated to-

eutd I/O devices.

OS'Mt 6tu}4. *eed not 6c

t&e £*tft>ioveme*tt

*7<£e dawut you ■ifi-end

TNT Operating System

Hour System Calls Will

Nock Your Socks Off!

Write or Call

(or more information.

CAPA

P.O. Box 5762

Rockford, IL 61125-0762

(815) 962-4400

CIRCLE 6 ON READER SERVICE CARD

66 COMPUTER LANGUAGE ■ PREMIER ISSUE I98d

DESIGNER SCREENS
"A 100 to ! Productivity

Increase Over Coding "

Provides full-screen editing of ter

minal screen design images. And, a

linker that generates self-relocating,

8080 machine language, run-time

support.

Makes it easy to implement on-screen forms, menus, help

screens, boifer-plate notices, and even simple animation.

Run-time support for input includes: data type control, dec

imal alignment, a type ahead buffer, end-user edit commands,

and everybody's favorite, "Fred's Magic Window."

Fred's Magic Window can display field-by-field input instruc

tions as needed, automatically.

Can be used with any computer language that allows pro

grammed calls to CP/M 2.2. Great with assembly language or

BDSC.

Runs on 80 x 24 or larger ASCII terminals. Supports five dis

play attributes and line drawing. Designs are transportable

between installed terminals.

Manual only: S 10.00 (Check it out!)

Software: 185.00 (Supplied on: 8" SSSD CP/M

or call.)

Complete: S195.00

(Calif, residents add sales tax)

Austin E. Bryant Consulting
P.O. Box 1382, Lafayette, CA 94549

|415) 945-7911

CP/M is a irade mark o' Digital Research

BDS C is a iraOe mark of BD Software

CIRCLE 5 ON READER SERVICE CARD

J

var = ANY("xyz")

add = ANY("+-")

mul = ANY("V")
elem = var | ("(" *expr")")

term = 'elem | ('elem mul "term)

expr = 'term | ("term add "expr)

produce a pattern expr lhat matches sim

ple arithmetic expressions such asx,

(x+y),x/(z—y), and soon. The stars in

front of the references to patterns delay

their evaluation until pattern matching

takes place, producing the effect of mu

tual recursion among ihe patterns.

It is also possible to write patterns that

arc context-sensitive: in fact, it is possible

to perform any computation at all during

pattern matching. The pattern-matching

process itself, which is built into

SNOBOL4. is completely general and

provides an exhaustive search and back

track algorithm. There are also patterns

that allow the programmer to limit the

scope of backtracking in order to avoid

inefficient or unnecessary matching.

While pattern matching is the feature of

SNOBOL4 that is most well-known and

widely used, SNOBOL4 has a number of

other useful features such as tables. A

table is like an array, except that a table

can be subscripted with any kind of value

(such as a string), not just by integer posi

tion. A common use of tables is illustrated

by the following program segment:

read

Findw

+

sort

incr

w =TABLE()

text= INPUT

text wpat -

w[wrd] = w[wrd] -

w = SORT(w)

i = 0

OUTPUT = w[i,l]'

tF(sort)
:F(read)

h 1

:(findw)

V'w[i,2]

:s(incr)

The function TABLEf) creates an empty

table, which is assigned ton-. The input

file is read as in the earlier example and is

matched with wpat. The words are used to

subscript w. and their count is incre

mented. (The initial value for a new ele

ment in a table is the null string, which is

automatically converted to 0 in arithmetic

operations.) When the input file is ex

hausted, w is sorted, which produces an

n -by-2 array, where n is the number of

words in the table. (Some implementa

tions of SNOBOL4 do not include SORT,

but this function can be written by the

user.) At the end of the program there is a

loop through the array that writes out each

word and its count with a separating co

lon. Concatenation is automatic when

strings are written in succession, as in the

assignment to OUTPUT. When the value

of/exceeds the size of the array, the array

reference w[i,lj fails (in a fashion similar

to failure on the end of an input file).

Note that this program works properly

regardless of the number of different

words in the input file; the table grows in

size automatically as new words are

added. Automatic type conversion is per

formed when the (integer) value of w[i,2]

is concatenated for output. The use of fail

ure of an out-of-range array subscript is

idiomatic in SNOBOL4 and saves a sepa

rate test.

SNOBOL4 has a number of esoteric

features as well. Operators and built-in

functions can be redefined during pro

gram execution. The entry points and lo

cal identifiers of defined functions can be

changed dynamically. It is even possible

to create new identifiers during program

execution. In fact, strings can be con

verted into new statements during pro

gram execution so that SNOBOL4 pro

grams can modify themselves.

While such esoteric features are rarely

needed, they offer maximum flexibility

and often can be used to advantage. In

truly sophisticated applications, they can

TMS32O Software

from COMPUTALRER

All you need is... IBM-CP /1*1 or Apple II

to develop software for Texas Instruments'

TMS320 Digital Signal Processor

TASSM - a TMS320 Assembler

TASSM is currently available for the IBM PC using MS-DOS, CP/M

systems using either 8080 or Z-80, and for Apple II using CP/M or

Apple DOS. Under CP/M, a 32K system is required.

TASSM Binary License CP/M-80 or APPLE DOS $190.00
MS-DOS for IBM PC $325.00

5320 — an Interactive TMS320

Software Simulator

S320 is currently available for the IBM PC using MS-DOS, CP/M

systems using a Z-80, and lor Apple II or II + using CP/M or DOS 3.2

or 3.3 Under CP/M, a 48K system is required. Under Apple DOS, a

language card is required.

S320 Binary License CP/M-80or APPLE DOS

MS-DOS for IBM PC

$190.00

$325.00

Software update support is available at $50 annually.

CP/M Is a trademark of Digital Research, Inc.

Apple Is a trademark of Apple Computers, Inc.

MS-DOS Is a trademark of Microsoft, Inc.

For further information, contact: D. Lloyd Rice

COMPUTALKER

1730 21sl St., Santa Monica. CA 90404

(213) 828-6546

CIRCLE 11 ON READER SERVICE CARD

SMALL FDRIBMPC

Small-C CompilerVersion

2.1 for PC-DOS/MS-DOS

Source Code included

forCompiler& Library

New 8086 optimizations

Rich I/O & Standard Library

CBUG SOURCE LEVEL DEBUGGER FOR SMALL C

Break, Trace, and Change

variables all on the

source level

Source code included

Datalight
11557 8th Ave.*^N.E.
Seattle, Washington 98125
1206)367-1803

ASM or masm is required with compiler
include disk size 1160k/320kJ, and DOS version with order

visa & MasterCard accepted Include card no & expiation date

Washington state residents include 7 9% sales tax

IBM-PC & PC-DOS are trademarks of international Business Macnmes
US-DOS is a trademark of Microsoft Corporation

CIRCLE 17 ON READER SERVICE CARD

67

make it simple to do things that are not

feasible in other programming languages.

It is not surprising that programming in

SNOBOL4 can be fun—even exciting.

A
s mentioned ear

lier, SNOBOL4

thas been imple

mented on a wide range of computers. A

complete list is given in Implementations

ofSNOBOL4.7' There are currently (hree
implementations for the IBM PC and

compatibles.

Minnesota SNOBOL4 is a full imple

mentation of the standard language. It re

quires a minimum of 128K bytes of

memory (more is recommended) and sup

ports the large memory model. Integers

are 32 bit. Floating-point arithmetic is

available if a math co-processor is in

stalled.

SNOBOL4+ is a full implementation

of the standard language, with some ex

tensions. It requires a minimum of 128K

bytes of memory (more is recommended)

and supports the large memory model. In

tegers are 16 bit. Real numbers have

64-bit precision; floating-point emulation

is provided if a math co-processor is not

installed. Linkage to functions written in

assembly language is provided to extend

the SNOBOL4 repertoire.

MACRO SPITBOL is a high-perfor

mance implementation of a dialect of

SNOBOL4 that supports most standard

features and offers a number of exten

sions. It requires I92K bytes of memory

and uses the small memory model. In

tegers arc 16 bit. Floating-point arith

metic is not provided. Pf
H

References

l.Griswold, Ralph E., James F. Poage.and

Ivan P. Polonsky. 1971. The SNOBOL4 Pro

gramming Language, second edition.

Prentice-Hall Inc.. EnglewowiCliffs, N.J.
2. Griswold, Ralph E. and Madge T. Griswold.

1973. A SN0B01A Primer. Prentice-Hall

Inc., EnglewoodCliffs, N.J.

3. Griswold, Ralph E. Implementations of

SN0B0L4, 1984. Technical report S4D57.

Department of Computer Science. Thu

Univ. ofArizona, Tucson. Ariz.

Ralph Griswold was one ofihe originators

ofthe SNOBOL languages. He is currently

a professor ofcomputer science at the

University ofArizona with research inter

ests in programming language design,

implementation, and nonnumeric

programming.

Madge Griswold has been associated with

SNOBOL4 since 1968. She is afree-lance

writer and consultant on computing appli

cations and computer-basedpublication.

Interested in writing,

reviewing software,

or refereeing

manuscripts for

COMPUTER

LANGUAGE

For information contact:

Craig LaGrow/Editor

131 Townsend St.

San Francisco, CA 94107

(415) 957-9353

B.B.S.#: (415) 957-9370

exchanger

CP/JVH HSI3
Emulator

>ui CPMBO i>nem

W vour Imtl S*nm I o- II MDSr Thf ICX patfcaBr p'd.iOfi

iliomi UKUtlgn of ISIS n piognnu under CWM uiiny [he

ISE emulaTor Tfie ICX Packayr 11 [umposed of Itlt lolloping

tvoproflnnu

ICX A Dclum linJiiKIiontl Me tomrrston ul.1.t> »hich

»o(ks «*i!h tot,iCP'^ iyiitn: and an 6 Floppy drive id provide

ccfnp eir manipulator oi an ISIS II dukctic Takti Oi'edonts

deletes '<lev and t\tn initializes a Olank disk wiTh the ISIS lile

slrucluiF Cumjjlele C source includril Jfl9

ISE An ISISII tmutaroi whldl allowi ISIS piogrami to tun
on any CP'M 80 iyKcm Suppon lur all ists II lyitem and

monilor cslli 11*0 >ou[CP'M micio look hkr an MDS1

Sun. rti [iiiri«n|-iifno:v CoitlpltitMAC iOurtr mluJfLl 189

Complin ICX PKkagellCXblSEI 1173

SuBpOm m UogH Dvuln I" UK

escern UJares
BoxC

Noi-wooa CO 8M23

(303)327-4898

CIRCLE 55 ON READER SERVICE CARD

DO-IT-YOURSELF CROSS-ASSEMBLERS

LANGUAGE TRANSLATORS

STRUCTURED ASSEMBLY LANGUAGE

$129.95

*■ The XLT Macro Processor is used as a pre-processor

to your favorite assembler. A file of definitions is read

by XLT and compared to the input lext. A match causes

II io be replaced with the definition's contents.

*• XLT allows up Io ten arguments in a definition, args.

with spaces or tabs, increment/decrement strings, a

stack, conditional lex! replacement.

►■ Includes definitions to translate Z80 to 8080

mnemonics and vice-versa, an 87^6 cross assemOler.

definitions to implement a C-structured assy, language.

allowing arid a.(hi) to be written a + = 'hi.

XI T auii $/29.9.< plus 5.00 I'AII. For CP/M 2.2 H" itagle

ihmily disk '/.SO u\Min.

Send check or money order to:

LA

6708 Melrose
Los Angeles

Calif. 90038
213(9320817

CA res. add sates tax CP/M Is a trademark or Digital Research

CIRCLE 28 ON READER SERVICE CARD

Elegance

Power

Speed

c
C Users' Group

Supporting All C Users

Box 287

Yates Center, KS 66783

CIRCLE 15 ON READER SERVICE CARD

68 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

yr5>[0) M. IB) V

Now. ■ library ol Numerical Halhod*

Subroullnat (of ul> with your FORTRAN

piogrami.

FUNC1IONS

INTEGRATION

MATRICES

NON LINEAR S1STEM5

Versions available lor several FORTRAN

compilers running under CPfM-80 and MS-DOS

(PC-DOS).

Cost, S250.

Manual available. S25

microSUB=MATH

CIRCLE 20 ON READER SERVICE CARD

EAST

Z80 / 8088 (8086 / 80186 / 8087)

machine-code development sys

tem. With latest Reduced Instruc

tion-Set philosophy.

SBE/TRS 80 (All DOS) *100 - $3 s/h
SBE,'PC(PC-DOS/MS-DOS*160 ■ S3s/h

Allen Geldor Software

(415) 681-9371

Box 11721 San Francisco, CA 94101

CIRCLE 22 ON READER SERVICE CARD

ICOMPUTERVISIONS

An Interview with Charles Moore
founder of Forth

f the dozen most

I popular com

puter languages

of our time, Forth is certainly one of the

most unusual. It's not surprising that its

creator, Charles H. Moore, is a self-

proclaimed maverick who admits,

"While everyone is marching along one

path, I'm bound and determined to find a

different one."

Back in the late sixties Moore had no

idea he was starting a movement. He was

merely a programmer who. in the process

of working on applications, developed a

set of tools to make his work easier. At no

time, he claims, did he actually sit down

to write a programming language. In

stead, he kept extending and changing his

personalized programming environment

until 1971 when, at the National Radio

Astronomy Observatory, he developed

what he calls the first use of modern

Forth.

Many of the concepts Moore initially

promoted—amid general disinterest or

disagreement—arc now widely accepted.

For instance, the use of very small rou

tines that can be put together as needed

(rather than monolithic immutable pro

grams) seems to be the cornerstone of the

C philosophy, as it is of Forth's. In fact.

Forth is designed to minimize the expense

of subroutine calls to such an extent that

they aren't even treated as subroutines but

simply as "words." Forth programming

consists of defining words in terms of

other words.

Moore is delighted that people in the

mainstream of the computer industry are

acknowledging what he feels is the right

direction. But he admits to being a little

irked that the establishment hasn't paid

any attention to Forth.

"We've had more of value to say than I

think they've given us credit for," claims

Moore. "We aren't doing anything

they've advised against, but we have done

things in an unfamiliar format."

Although proud of Forth's success,

Moore admits that he has failed to popu

larize it. Others have succeeded more

By Leo Brodie

than he— including FORTH Inc. and the

Forth Interest Group (FIG). For years,

FIG has been giving away listings of

Forth systems for no more than the copy

ing cost. It's safe to guess that there arc

more FIG-based systems in use today than

any other variety.

Like many in the past who have made

landmark discoveries in the arts and sci

ences, Moore has received little appre

ciation for his contributions, and he has

been undercompensated for them as well.

Although specific implementations may

be proprietary. Forth itself is in the public

domain, and Moore receives no royalties.

Far from being bitter. Moore recognizes

that the immediate availability of Forth

systems has been good for its popularity.

incc Forth was

first developed,

Moore estimates

that he has written 10 times as many pro

grams as he could have without it. But in

the ensuing decade, while working as a

contract programmer both for FORTH

Inc. and now for his own company.

Charles H. Moore & Associates, he

became increasingly frustrated with the

limitations of available hardware.

In 1980 he addressed FIG's national

convention with the comment, "Hard

ware today is in the same shape as soft

ware was 20 years ago. There is no point

in trying to optimi7.c software any further

until we have taken the first crack at opti

mizing the hardware."

Not one to quietly accept anyone's

"givens." Moore now stands on the

threshold of his second major achieve

ment: the Forth chip. Since Forth is a vir

tual machine, existing versions of Forth

arc actually emulations built over the

architecture of the particular processor.

But Forth's simplicity makes it a perfect

candidate to be cast in silicon as its own

architecture.

After several years of waiting, Moore

has finally received sufficient funding to

produce the chip. By the end of this sum

mer, a prototype chip that will make Forth

programs significantly faster should be

available.

"It's a hummer." says Moore. "It has a

stunning instruction set, with nearly all

the Forth instructions executing in one

cycle. It has lots of I/O (120 pins) and all

the programmable versatility we've been

hoping for."

The chip will be produced by a com

pany called Novix Inc., located in Los

Gatos. Calif.

In retrospect, Moore regrets not getting

involved in hardware sooner. He admits,

"I was somewhat expecting that someone

else would build the Forth computer.

What it needed was commitment. It's

taken an enormous emotional effort to

build this machine—more so than the

technical effort required."

As soon as he finishes working on the

chip, Moore expects to hang out his shin

gle as a contract hardware/software de

signer for "sufficiently interesting

projects." Particularly, he'd like to design

tools that make hardware design more

productive. "I can do software in an after

noon. Hardware takes me a week to de

sign. I'd like to be able to design hardware

as easily as I can design software. The

chip will help," says Moore.

'he common thread

to all of Moore's

work, including

his most advanced applications, is sim

plicity. "All too often the problem is in

the details. Too many details prevent

you from seeing a different approach,"

he says.

69

FOR TRS-80 MODELS 1,3 & 4

IBM PC, XT, AND COMPAQ

The MMSFORTH

System.

Compare.

• The speed, compactness and

extensibility of the

MMSFORTH total software

environment, optimized for

the popular IBM PC and

TRS-80 Models 1,3 and 4.

• An integrated system of

sophisticated application

programs: word processing,

database management,

communications, general

ledger and more, all with

powerful capabilities, sur

prising speed and ease of use.

• With source code, for custom

modifications by you or MMS.

• The famous MMS support,

including detailed manuals

and examples, telephone tips,

additional programs and

inexpensive program updates,

User Groups worldwide, the

MMSFORTH Newsletter.

Forth-related books, work

shops and professional

consulting.

FORTH

70

A World of

Difference!

• Personal licensing for TRS-80:

$129.95 for MMSFORTH, or

"3+4TH" User System with

FORTHWRITE, DATA-

HANDLER and FORTHCOM

for $399.95.

• Personal licensing for IBM

PC: $249.95 for MMSFORTH,

or enhanced "3+4TH" User

System with FORTHWRITE,

DATAHANDLER-PLUS and

FORTHCOM for $549.95.

• Corporate Site License Exten

sions from $1,000.

If you recognize the difference

and want to profit from it, ask us

or your dealer about the world

Of MMSFORTH.

MILLER MICROCOMPUTER SERVICES

61 Lake Shore Road, Natictc, MA 01760

(617)653-6136

CIRCLE 34 ON READER SERVICE CARD

Forth is rigorously simple; many would

think even Spartan. This is the way Moore

prefers it. The more you can take out of a

system, he feels, the better off you arc in

usability, reliability, case of learning, and

performance. The key. of course, is the

extensibility that Forth provides.

Moore thinks of himself as more of a

computer engineer than a computer sci

entist. "I've pondered the problems of

artificial intelligence, heuristic program

ming, etc. But I'm not one to do a the

oretical study on something with a low

probability of success. I prefer to solve

the immediate problem."

"If we invent machines that act intel

ligently, they won't come out of (he arti

ficial intelligence community—they'll

come from someone hacking around in

the garage. Nobody knows how to do it;

it's as likely to be stumbled upon by acci

dent as by serious research effort."

"I don't even think artificial intelli

gence is a worthwhile goal," he con

tinues. "Machines should do machine-

like things, not act like human beings.

An automobile with a sense of self-

preservation—one which merely won't

damage itself as far as it's able to

prevent—that would be an intelligent

machine and a worthy goal. It doesn't

need to hold a conversation with you."

Moore is married to a warm and witty

woman named Min, who possesses a spe

cial talent for weaving. Together with

their teenage son, Eric, they have lived in

a beach-front house in southern Califor

nia's south bay for over 10 years. But this

summer the Moores, seeking more quiet

and solitude, plan to move to the

redwood-topped mountains overlooking

Silicon Valley.

One of Moore's yet-to-be-rcalizcd

dreams is to establish a Forth university. It

would be a remote place where people

could practice developing applications in

comfort and solitude— solving real prob

lems in short-term projects.

Whether Forth ever becomes as popular

as the C programming language remains

to he seen. Bui many thousands of pro

grammers around the world already feel

that Moore's unique way of looking at

software problems has influenced them

for the better. H

Leo Brodie is aformer employee of

Moore'sfirst company, FORTH Inc. He is

the author ^/Starting FORTH. His Think

ing FORTH, due our this September from

Prentice-Hal!, includes numerous inter

views with Charles Moore.

Lower Price!

We make C easy...

... and work!
Whether you're a seasoned pro or just

^fltinj; st.irted with C, our Eco-C C

compHler h.is everything you need.

• A full C compiler, including long,

flo.it and double.

• A libr.iry nf more than 100 functions

tor f.ister program development.

• The (ompiler gener.ites assembler output (Zilop mnemonics) for processing

with Microsoft's MACRO 80 assembler and linker, both of which are included

in the prue.

• Fxtremely efficient code (e.g., Knuth's "seive" executes in 15.8 seconds).

• Fur .i limited time, we include .i iopy of the C Programming Guide. The Guide

and the Ru'-C iompiler provide .in excellent environment for learning C

Perh.ips the best news is that we've lowered the price of Eco-C to 5250.00 and it

include? a user's m.inu.il, the Guide .ind MACRO SO. Eco-C requires a Z80 CPL

and CP.'M (an 8088 version in the 2nd qu.irter). To order, call or write:

6413 N College Ave

Indianapolis, IN 46220

71 255-6476

[EuiMiftl MACRO 80fMunwftl CPlM lDisitjlRt-.i-.m

CIRCLE 18 ON READER SERVICE CARD

SOFTWARE REVIEWS

Modula-2/86

Hardware Requirements:

IBM PC and compatibles with

256K minimum

Price: $495.00
Available from: Logitech Inc.,
805 Veterans Blvd., Redwood
City, Calif. 94063. (415)
365-9852

Support: 30-day media war
ranty, product updates at a
nominal charge, technical as
sistance by phone or mail for
registered users.

Logitech's version of Modula-2 is based

on the work of Niklaus Wirth, the creator

of Pascal and Modula-2. It reflects

Wirth's concept of a true business and

scientific language, contrasting with Pas

cal, which was only intended to be a

teaching language. Modula-2 is a modern

language and has the elements necessary

for designing complete systems.

Modula-2 uses the strengths of Pascal

and eliminates many ofits weaknesses.

The standard language has enough strong

features that the creation of incompatible

dialects should be unnecessary. Machine-

specific, low-level subroutines may be

implemented in a manner thai maintains

the modularity of the system- Modula-2

allows the use of true modular program

ming techniques with strong type check

ing. Flexibility is provided by data trans

fer routines that handle different variable

types, interrupt handling situations, and

hardware/operating system access.

Modula-2/86 is Logitech's full, stan

dard implementation of Modula-2 on

8088- and 8086-based microprocessors.

Some of the features provided are:

■ Extensive library of standard

modules

■ 8087 support

■ Support of a full 1-megabyte address

space of the 8088/8086

■ Access to underlying hardware and

operating system functions

■ Support for the creation of overlays on

very large systems

■ A symbolic debugger

■ Generation of ROM-able code.

The Modula-2/86 system requires an

IBM PC or compatible with 192K or more

of RAM; 2 double-sided disk drives

(300K+ each); and PC-DOS (1.1 or 2.0),

MS-DOS, or the CP/M-86 operating sys

tem. It is also supported on other config

urations of the 8086/8088 running

MS-DOS, CP/M-86, Concurrent CP/M-

86 or MP/M-86, with enough disk space

to hold the compiler and other programs

(600K minimum). A printer is not re

quired but is strongly recommended.

Those developing software will find that a

hard disk is very useful in terms of both

convenience and speed of operation.

Compiled Modula-2/86 programs can

be executed on any 8088 or 8086 CPU

assuming that the system has sufficient

memory to hold both the program to be

executed and its data. No references to a

particular operating system are produced

by the compiler. The 8087 numeric data

Program module

(somename.MOD)

I

I

Symbol file(s) I

(somename.SYM) > I

for libraries used I

Compiler

Link (somename.LNK and Ref file (somename.REF) files

I

Link file(s) I

(somename.LNK) > I

for libraries used I

Linker

Load file (somename.LOD)

I

m2 I > user output

I

Memory dump file (MEMORY.PMD)

created when run-time errors occur

I

Ref file(s)
(soraename.REF)

of programs and

libraries used

> I debugger

I

I > screen display

I

Figure 1.

71

processor is supported but not required.

No software emulation is currently pro

vided for the 8087: in order to develop

code for the 8087 you must have

one installed.

This review was done using the

PC-DOS version of Modula-2/86, release

1.0 on a 2-disk-drive IBM PC with 256K

RAM. Setup for use is similar to most PC-

DOS software: you must make backups of

the three distribution diskettes and pre

pare working copies with the operating

system and certain Modu!a-2/86 files.

Sample programs arc supplied in source

code form on the distribution diskettes to

get started compiling quickly. A brief

flow chart on how the package is set up is

shown in Figure 1.

The fii st step is to compose your source

code with a text editor of your choice, as

Logitech's package docs not provide one.

(Sec Listings 1 and 2 for examples of

Modula-2 code on the COMPUTER LAN

GUAGE bulletin board service under the

file names MODULA1 .LTG and

MODULA2.LTG. The Modula-2 pro

gram in Listing 2 was converted to BASIC

in order for you to compare it to the origi

nal. See Listing 3 for this BASIC version

under file name MODULA3.LTG on the

bulletin board service.)

The m2 in the following example is the

run-time support program for Modula-2.

It is an assembly language program that

provides the services for your Modula-2

program to run. M2.EXE is the only

siand-alone file in the Modula-2/86 sys

tem. Thus it is part of the execution of all

other Modula-2 programs as an

intcrpreter-likc system. When you have

completed your source code, you next in

voke the Modula-2/86 compiler by the

following keystrokes:

m2 b:comp<CR>

The compiler then asks for the source file

and will supply the default extension of

.MOD if no extension is given.

You will then give the source file name,

as in this example,

source file> exampl <CR>.MOD

pl
Terminal in file: BrTerminal.SYM

p2
P3

P4

termination

The setting of the options was:

emulator (E): off

stacktest (S): on

rangetest (R): on

indextest (T): on

Codesize: 90 bytes
Datasize: 1 byte

(No code for the 8087

processor was generated)

end compilation

The pl . . . p4 indicates the progression

through the four passes of [he compiler.

The compiled files have been written to

the disk in drive A and you have been re

turned to the DOS prompt. The successful

compilation will have created the files

EXAMP1.LNK (the object module) and

EXAMP1.REF (debugger information).

After successful compilation, (he pro

gram must be linked with the necessary

library files needed to perform its given

tasks (Figure 2). The Link/Debug disk

must be inserted in drive B in the place of

the compiler disk. Then the following

command is entered:

m2b:link<CR>

W SUPER FORTH 64 1
TOTAL CONTROL OVER YOUR COMMODORE-64 "

USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JUST A LANGUAGE . .

iplere, fully-integrated p

GraphHome Use, Fail Gon

Seal Time Process Conlrol, Com. ibotics. Scientific. Amf.col Intelligence

A Powerful Superset of MVPFORTH/ FORTH 79 • Exl. for the beginner or pfofesiionol

SPRITE-EDITOR• 20 10 600 * falter than Basic

4 1 /4 j The programming lime

• Eoiy full control of oil iomd, hi ret.

grophici. color, iprile. plotting line &

circle

■ Ccnirolloble SPLIT-SCREEN Deploy

• Include! interactive interpreter & compile

. Fonh ary

Full cursor Screen Editor

dillribulion without litcnimj

FORTH equivalent Kernel Routm»

Conditionof Mofro Avsemolcr

Meet! all Forth 79 itondordi*

Source screens provided

Conpotible with the book "Starting Forth"

by Leo Brodie

A«e» lo oil I/O pom RS232 IEEE,

including memory 5 interrupts

ROMABIE tode generato-

MUSIC EDITOB

SUPER FORTH 64' b

Data Acquisition,

A Cecil all C-64 peripherals including 4040

drive

Single diik drive bar. kup utility

Disk i Cossetie based. Duk included

Full disk usage - 680 Sectors

supports oil Cofimado'p iiiff ivpes ond

Forth Virtual disk

Access to 20K RAM underneath ROM

areal

Vectored kernel ~erfji

TRACE facility

DECOMPILER facility

Full String Hondling

ASCI error messages

FLOATING POINT MATH SIN'COS S SORT

Conversoho nol user defined Commondi

• INTERRUPT roulmei provide emy control

Or hardware tirneri. rjfarmg ond devicei

• USER Support

SUPER FORTH 64' ,MPM,,d,

ASSEMBLER

Power ot Languages Constructs

A SUPERIOR PRODUCT

in Cvfiry woy! At □ low
Call:

(415) 651-3160

PARSEC RESEARCH
Drawer 1776. Fremont, CA 94538

CIRCLE 37 ON READER SERVICE CARD

72 COMPUTER LANGUAGE■ PREMIER ISSUE 1984

For only S95. O'C is a ready-to-use C compiler for CP M. You get

complete source code for ihe compiler and over 75 library functions.

Q'C is upward compatible with UNIX Version 7 C. but doesn't sup

port long integers, float, parameterized #deftnes. and bit fields.

• Full source code for compiler and library

• No license fees for object code.

• Z80 version lakes advantage of Z80 instructions.

• Excellent support for assembly language and ROMs.

• QIC is standard. Good portability to UNIX.

Version 3.2 of O,C has many new features: structure initialization,

faster runtime routines, faster compilation, and improved ROM sup

port. Yes, Q'C has casts, typedef. sizeof. and function typing. The

OC User's Manual is available for S20 (applies toward purchase).

VISA and MasterCard welcome.

theCODE
WORKS

5266 Holhster

Suite 224

Santa Barbara. CA 93111

(805) 683-1585

Q C CP U Z80 and UNIX are trademarks o! Quality Computer Systems Digila
Research Zilog Inc ,ind Befi Laboratories respectively

CIRCLE 9 ON READER SERVICE CARD

Modula-2/86 Linker VI.0 - (c) 1983 Logitech

Output file name: B:exampl.LOD

■H- Program map (7 modules included in this layer):

Modules are listed in order of module code execution.

+ MOD= System

+ MOD= Keyboard

+ MOD= Display

+ MOD= Termbase

+ M0D= ASCII

+ MOD= Terminal

+ MOD= Exampl

KEY=

CODE=

PROC-

KEY=

CODE=

PROC-

KEY=

CODE:

PROC-

KEY=

CODE;

PROC-

KEY=

CODE:

PROC.

KEY=

PROC

KEY=

CODE

PROC

A78702280DFC

. 008A DATA=

-TABLE= 0002

A787026FE9FC

= 006D DATA=

•TABLE= 0002

A6ED00811F68

= 0065 DATA=

-TABLE= 0002

A787024FACBC

= 002A DATA=

-TABLE= 0002

A6ED007F8F20

= 0028 DATA=

-TABLE= 0002

A02101346662

= 0006 DATA=

-TABLE= 0002

A8AD0438E362

= 0000 DATA=

-TABLE= 0022

FILE=

00E3

FILE=

OODA

FILE=

OODA

FILE=

00D3

FILE=

00D3

FILE=

00D2

FILE=

00D1

A:System.LNK

A:Keyboard.LNK

A:Display.LNK

A:Terrabase.LNK

A:ASCII.LNK

A:Terminal.LNK

B:exampl.LNK

++ Base (0 modules assumed to be in base layers):

Length of code (in paragraphs): 00D1

Length of data (in paragraphs): 0022

Figure 2.

LOWER

PROGRAMMING MAINTENANCE

AND DEVELOPMENT COSTS

The linker then asks for the file name of

the compiled program. The linker will

supply the default extension of-LNK if no

extension is given. The linker's output is,

master file > exampl <CR>.LNK

which is linked with:

Terminal in file: B:Terminal.LNK

Termbase in file; BiTermbase.LNK

System in file: B:System.LNK

Keyboard in file: B:Keyboard.LNK

ASCII in file: B:ASCII.LNK

Display in file: B:Display.LNK

name of output file: A:exampl .LOD

name of map file: A:exampl .MAP

end linkage

The linked program is now written to

the disk in drive A and can be executed by

the Modula-2 system. The command is:

m2 exampl <CR>

and the following output will appear on

the screen:

The program worked! (Hit a key)

The many other functions of Modula-

2/86 can be used to handle process control

{SET:SCIL}
The Source Code Interactive Librarian

for microcomputers.

■ SCIL keeps a historical record of all changes made to the

library.

1 SCIL maintains any source code regardless of language,

including user documentation and text material.

■ SCIL allows software engineers ro work with source

code as they do now, using any ASCII text editor.

• SCIL saves disk space by storing only the changes made

to the program.

■ SCIL provides a labeling capability for ease of main

taining multiple versions and multiple releases.

1 SCIL offers unlimited description in the program li

brary directory.

■ High visibility displays with varied intensity for ease of

viewing insertions and deletions.

' SCIL is available on CP/M, MP/MII, MS-DOS,

PC-DOS and TurboDOS.

AN OUTSTANDING VALUE

"We bought and evaluated over $1500.00 worth of

X' compilers...C/80 is the one we use."

Dr. Bruce E. Wampler. Aspen Software

author of "Grammatik ■'

E] Full featured C Compiler for CP/M' with.
I/O redirection, command expansion,

execution trace and profile, initializers.

Macro-80 compatibility. ROMable code.

Adds 32 bit data.C/80 FLOATS & LONGS

4995

types lo C/80 3.0 compiler. Includes

I/Oand transcendental function library'

Call or write for 16 page bookletFREE CATALOG

detailing our programming languages LlSP/80.

RATFOR. Assemblers, and 25 other CP/M products

cHjp SoftwSrecS>oIw6rkg

{SET}
Get {SET} for Success
(SET:5CIL'«1 15.1 produce ot Svstem tinpmccnnp Took Inc

645 Arroyo Drive. San Diego, CA 92103 15233 Venlura Blvd . #1118

Sherman Oaks. CA 91403

(2131 9B6-4385

Dealer inquiries inwiied

For more information call (619) 692-9464.

CIRCLE 53 ON READER SERVICE CARD CIRCLE 51 ON READER SERVICE CARD

73

as well as other programming tasks that

require concurrency. Modula-2/86 also

includes features to set the compiler op

tions, reconfigure the operating system

interface, and implement a large number

of DOS-standard interrupts. The standard

overlay scheme frees the programmer

from concerns about (he location of an

overlay. The relocatable loader handles

the necessary functions for the program

mer and the overlay may be as large as the

physical address space (e.g., a maximum

of I megabyte). The run-time support pro

vides for language support and additional

configuration-dependent functions. These

functions include features such as boot

strapping the resident software, setting

the memory configuration, dumping

memory to disk, etc.

The compiler issues error messages

during the compilation process and dis

plays the source code with an indicator at

the error location. When a run-time error

occurs, the run-time system creates a

post-mortem memory dump of the pro

gram status (MEMORY.PMD). The sym

bolic debugger is used to examine this file

and to view the errors.

The debugger provides four ways to

view the program's error conditions: the

data window on variables and parameters,

text window on the text of the current

module and procedure, process window

on the procedure call chain with the ad

dress of the call to the next procedure in

the chain, and the memory window on

the contents of memory around the cur

rent address.

The installation of the Modula-2/86

system is greatly expedited by the inclu

sion of several batch files on the distribu

tion disks. There is a batch file for instal

lation on a floppy-disk system and one for

installation on a hard disk system, com

plete with the commands to create the sub

directories that are useful to separate the

various files into logical groups. Also

provided is a built-in default name and

default search strategy that will auto

matically check the appropriate paths for

a file. Modula-2/86, however, is not copy

protected.

The Modula-2/86 system by Logitech is

an extremely useful program development

environment for the Modula-2 or Pascal

programmer. A sufficient number of fea

tures are provided to enable the serious

developer to handle almost any task that

arises. The speed of the compiled pro

grams is excellent and the unavoidable

delays of a compiler process can easily be

minimized by the use of a hard disk and

electronic RAM disk techniques. The

missing support of the software emulation

for the 8087 is intended to be released

soon by Logitech.

The possibilities offered by the

Modula-2 environment arc as varied as

your imagination. Logitech has done an

excellent job. M

By Chris Jacobs

Professional BASIC

Hardware Requirements: PC-
DOS v2.0 or later, minimum
256K memory (384K recom
mended), 808/ math co
processor chip.

Price: $345.00
Available from: Morgan
Computing Co., 10400 N.
Central Expressway, Suite
210, 001105,16X05/5231.

(214)739-5895.
Support: $20.00 for each new

est version (includes new disk

and updated pages).

There once was a young man who was

born blind.

Living in the Middle East 20 centuries

ago, he had to accept his reality and do the

best he could, which was not much. One

day. a famous man from Galilee happened

to be passing by him and decided to do

something about his blindness. Our friend

was able to see!

There is a strong analogy between the

blindman in this biblical story and pro

grammers debugging BASIC programs.

Even (hough BASIC is interactive, we

arc blind to what is going on in the back

ground. One remedy is to add print state

ments to show more intermediate results.

Another alternative is to use software that

patches to a BASIC interpreter and pro

vides some tracing capability.

We just had to accept the fact that these

techniques were the best that could be

used until Neil Bennet of Morgan Com

puting gave us Professional BASIC.

Rather than redefining a BASIC inter

preter from ground zero. Professional

BASIC takes IBM PC BASIC syntax and

improves it. The manual assumes the

reader is familiar with PC-BASIC and

concentrates on what makes the product

new and different from PC-BASIC.

Probably the most immediately no

ticeable difference is the debugging and

tracing screens (windows) that allow [he

programmer to follow, step by step, the

events taking place.

The first set of new features relate to

the interpreter's use of available system

resources. All the available memory can

be accessed and used. This overcomes the

frustrating 64K segment limitations. Now

a programmer can manipulate and process

large matrices—as in civil engineering

truss designs—and handle more realistic

problems.

The use of the 8087 chip by the inter

preter further enhances the speed of math

ematical calculations. A second boost for

74 COMPUTER LANGUAGE! PREMIER ISSUE 1984

ihe speed comes from the fact that the BA

SIC code is semicompiled into pseudo

code or tokens. This makes Professional

BASIC fast.

Another new feature is the dynamic

syntax checking which causes every line

typed or read from a file to be examined

for syntax errors, which arc pointed out

immediately. Dynamic syntax checking

cuts down run-time errors due to syntax,

especially in those portions of code (e.g.,

subroutines) that arc rarely executed. It is

worthwhile to point out that this feature is

not intended for the novice. It is also im

plemented on Hewlett-Packard machines

running a BASIC interpreter. While on

the subject of program lines, it should also

be mentioned that Professional BASIC

allows alphanumeric labels to be used in

addition to line numbers in branching and

subroutines.

Professional BASIC introduces some

new commands. Some enhance the text/

variable searching capability. The FIND

command will search and display those

program lines containing a sought vari

able or label. Program lines containing a

user-specified set of characters can be dis

played using the SEARCH command.

There is another version for these two

commands: FINDL and SEARCHL. They

will scan for the sought items and high

light them wherever they occur in

the listing.

Professional BASIC has two commands

that will furnish the user with a sorted list

of variables and labels. However, no ac

companying line number is given as is the

case with other cross-referencing pro

grams. Another command is the SRUN

that triggers the tracing mode and win

dows while running the program.

For those interested in tracing the eval

uation of mathematical expressions. Pro

fessional BASIC has the FINTRACE com

mand. It will display the evaluation step

by step so the user can see where things

are going wrong. Professional BASIC

stresses logically pairing FOR/NEXTus

well as WHILE/WEND statements and

lures the user into using more organized

loops. As a reward, the EXITFOR and

EX1TWHILE commands arc presented to

exit these loops without using references

to line numbers or labels,

Professional BASIC has also modified

some PC-BASIC commands. As pre

viously mentioned, the NEXTstatement

must be followed by only one loop coun

ter. No multiple loops can be attached to a

NEXT statement or vice versa. Concern

ing loading and saving files, Professional

BASIC uses a default name for the last file

loaded or saved when none is supplied

with the LOAD or SAVE commands. This

will prevent the user from saving an up

dated program in a misspelled filename

or, worse yet. in a similar existing file

name (overwriting the latter's contents).

The current version of Professional

BASIC has not implemented PC-BASIC

related to the following:

■ Graphics and sound

■ Communication via the RS-232 ports

■ Program chaining

■ Callable machine language sub

routines.

Professional BASIC has enhanced the

integer type and the variable names. The

integer type variables can have values

ranging between plus or minus 2 billion

and occupying four bytes of memory

each. All arrays must be dimensioned

(no-default array size is assumed) with the

ability of having a lower range index other

than zero or unity. Thus it is possible to

declare an array "Year" as:

100DIMYear(1981 to 2000)

100 ' TEST PROGRAM : AREA UNDER CURVE USING SIMPSON'S RULE

110 DEFDBL A,S,X

120 DIM X(3000)

130 TIME$="0"

140 FOR I = 0 TO 3000

150 X(I) = LOG(SQR(I + .1))

160 NEXT I

170 SUM.ODD = 0

180 SUM.EVEN = -X(3000)

190 FOR I = 1 TO 3000 STEP 2

200 SUM.ODD = SUM.ODD + X(I)

210 SUM.EVEN = SUM.EVEN + X(I)

220 NEXT I

230 AREA = (1/3) * (X(0) + 4*SUM.0DD + 2*SUM.EVEN)

240 LPRINT "TIME = ";TIME$: LPRINT

250 LPRINT "AREA = ";AREA

260 READ FIRST%,LAST%

270 DATA 1,10 ' Data statraent
280 OPEN "0",l,"DATA.DAT"

290 GOSUB STORE.IT ' gosub using a label

300 CLOSE#1

305 END

310 STORE.IT; ' subroutine to save data.

320 FOR 1= FIRST% TO LAST%

330 PRINT#1,X(I)

340 NEXT I

350 RETURN

Listing 1.

75

This defines a 20-member array with the

lower bound being less of an abstract

value. The size of the array is no longer

limited to 32.767. Instead it can be as

large as two billion.

Professional BASIC allows long vari

able names for program readability. It has

solved the problem involved with lengthy

names—namely, spelling errors—and the

frustration involved in retyping long

names. The programmer simply types the

minimum number of characters sufficient

to uniquely identify the variable's name,

followed by "@." The interpreter will

either continue the rest of the name or sig

nal that more characters are needed to

identify the sought name.

The manual states that Professional

BASIC File I/O is able to access up to 4

billion records. The number of bytes per

record can be as high as 65,535, and the

number of bytes per file can be as high as

4 billion. This makes Professional BASIC

an excellent choice for writing custom

ized data bases on hard disks. However,

there are some implementation re

strictions with the current version.

The tracing windows in Professional

BASIC are, in my opinion, what crown

the product. I will use a small program

(Listing 1) to show the number of windows

available; the program performs numer

ical integration using Simpson's rule. I

also added some commands to show

the READ/DATA. GOSUB. and

I/O windows.

As the listing shows, there are two

FOR/NEXT\oops that repeat similar cal

culations 3.000 times. PC-BASIC took 77

sec to execute lines 140 through 230. Pro

fessional BASIC took 21 sec (266 percent

faster).

I also ran a test by compiling the pro

gram with an 8087 BASIC compiler. It

took 4 sec (425 percent faster than Profes

sional BASIC) to obtain the result.

While tracing a program, the user has

many choices of windows. List-trace win

dows display the program lines so that

each statement is displayed on a separate

screen line, properly indented. During a

trace run, the executed statement is dis

played in reverse video. The user has the

LATTICE.
C Compilers

"My personal preferences are Lattice C in the top category for its

quick compile and execution times, small increments! code, best

documentation and consistent reliability;..."

BYTE AUG. 1983

R. Phraner

"... programs are compiled faster by the Lattice C compiler, and it

produces programs that run (aster than any other C compiler avail

able for PC-DOS "

PC MAGAZINE JULY 1983

H. Hinscfi

"...Microsoft chose Lattice C both because of the quality of code

generated and because Lattice C was designed to work with

Microsoft's LINK program."

PC /MAGAZINE OCT. 1983

D, Clapp

"Lattice is both the most comprehensive and the best documented of

the compilers. In general it performed best in the benchmark tests."

PERSONAL COMPUTER AGE NOV 1983

F. Wilson

"This C compiler produces good tight-running programs and pro

vides a sound practical alternative to Pascal."

SOFTALK AUG 1983

P. Norton

"... the Lattice compiler is a sophisticated, high-performance pack

age that appears to be well-suited for development of major applica

tion programs."

BYTE AUG 1983

Houston, Brodrick, Kent

To order, or for further information

on the LATTICE family of compilers, call or write:

LATTICE, INC.

P.O. Box 3072

Glen Ellyn, IL 60138

1312)858-7950 TWX 910-291-2190

ADVERTISE
in the

October
issue
of

COMPUTER
LANGUAGE

Reservation Deadline:

August 6th

Contact:

Carl Landou

Computer Language

131 Townsend Streel

San Francisco, CA 94107

(415) 957-9353

CIRCLE 29 ON READER SERVICE CARD

76 COMPUTER LANGUAGE*PREMIER ISSUE 1984

choice of using the space bar for single

stepping or, alternatively, pressing the re

turn key for fast tracing. It is possible to

toggle between both of these modes,

allowing the programmer to concentrate

on a specific area of interest.

With the list trace window, [he user has

the option of seeing a count of the number

of times a line has been executed. This in

formation also can be displayed in histo

gram form.

In addition, variable windows display

the sorted list of variables, their types,

and current contents. The cursor/page

control keys can be used to scroll up

or down through a large number of

variables.

The array window feature is similar

to the variable window and is used to dis

play arrays in the same fashion as single

variable. Cursor/page control will also

assist in performing slow, medium, and

fast scrolls,

FOR/NEXT windows allow you to see

the current status of your loops. This win

dow will also display the active and pend

ing loops.

DATA windows are also a very inter

esting feature. Displaying the BASIC line

code with the DATA statement, items are

depicted in reverse video once read. This

enables a difficult tracing problem to be

overcome.

File I/O windows supply the user with

information regarding the buffers in

volved, the file name, and the I/O mode.

They also display the BASIC I/O related

statements as well as the data transferred.

Figure 1 shows the file I/O window while

the sample program was running.

Time trace windows show the program

lines, and each is followed by the variable

updated and its current value.

Subroutine windows show the active

and pending subroutines. This is very ef

fective in tracing nested subroutine calls.

Print windows will display information

inputcd and outputcd by BASIC com

mands (e.g., INPUT, PRINT) to the con

sole. Print/List will show a split screen,

allowing the user to trace program line ex

ecution with console I/O.

Memory display windows show the

contents in hexadecimal codes. The right

portion of the screen displays the ASCII

150300

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

305

310

1 30500519 000 x s C l>v step

' TEST PROGRAM : AREA UNDER CUR\

DEFDBL A,S,X

DIM XC3000)

TIME$=n0"

FOR I = 0 TO 3000

X(I) = L0G(SQR(I + .1)) 160

NEXT I

SUM.ODD = 0

SUM.EVEN = -XC3000)

FOR I = 1 TO 3000 STEP 2

SUM.ODD = SUM.ODD + X(I)

SUM.EVEN = SUM.EVEN + X(I)

NEXT I

AREA = (1/3) * (X(0)-i-4*SUM.0DD \

LPRINT "TIME = ";TIME$

LPRINT

LPRINT "AREA = ";AREA

READ FIRST%

,LAST%

DATA 1,10 ' Data statment

OPEN "0",l,"DATA.DAT"

GOSUB STORE.IT ' gosub using a label

CLOSE#1

END

STORE.IT; ' subroutine to save

f 1 8 0 1

area#

first%

i!

last%

sum.even#

sum.odd#

6 / 6

1 V 2

0

0

1522

0

0

0

Figure 1.

code equivalent, allowing the user to spot

alphanumeric messages.

Pseudocode windows will display the

BASIC command line executed and the

equivalent pseudocode. While single

stepping through the p-code, the user

can watch the alternating pseudocode

registers.

The windows mentioned are out of a se

lection of 26 available, and each and every

one displays a status line at the very top.

Tracing with the windows can be done

for single stepping, using the space bar, or

in the fast-trace mode. During that time

the user can choose the window of

interest.

The screen can also show two windows

at a time. This is extremely useful in hav

ing one side as the list-trace window and

the other as data, loop, or I/O window.

Changing windows is also possible with

the split screen.

I would like to sec the following

changes and additions made on the

product:

■ Solve the flicker and snow screen

problem during fast tracing

■ Allow electronic drives to co-exist

with Professional BASIC. Their presence

will cause the interpreter to refuse any

program line from being typed or read

■ Implement some, more, orall of the

PC-BASIC commands that were left out

■ Create multi-line functions

■ Develop modular libraries

■ Re-direct dumping the screen to a

text file

■ Create search-and-replace capability

Professional BASIC is a well thought

out and executed product. It addresses an

audience of IBM PC BASIC programmers

who need a very powerful tracing and de

bugging version of the language. It is

loaded with features that allow you to per

form tracing and debugging, leaving

nothing to mystery. H

By Nomir Clement Shorn ma s

77

Turbo Pascal v2.0

Hardware Requirements:
Any Z80- or 8086-based ma

chine running either MS-DOS,
PC-DOS, CP7M-86, or
CP/M-80

Price: $49.95
Available from: Borland Inter

national, 4113 Scotts Valley
Drive, Scotts Valley, Calif.
95066, [800) 227-2400 ext.
968, in California: (800)
772-2666 ext. 968

Support: $89.95 for 8087 sup
port, $29.95 to upgrade vl .0
to v2.0, $16.95 to upgrade
from vl .0 to Turbo 8/

When I first saw the ads forTurbo Pascal.

I was quick to dismiss the product (in

account of the name. Seems like every

thing is "Turbo" these days—from blue-

jeans to yogurt—whether it employs

exhaust-driven intake compression or not.

But after months of using MT-Plus Pascal

and doing 20-minute compiles and links

between finding errors, I was ready to try

something else. Like many other people. I

tried JRT Pascal—after all. it was only

30 bucks!

I suppose many people are holding back

on Turbo because the JRT experience has

soured them on low-cost software. If so,

hold back no longer.

Turbo Pascal is the Pascal to acquire. It

has surprisingly few limitations, standard

syntax with powerful extensions, and it's

fast. Although the object code is only 10%

to 20% percent faster than MT-Plus, it

compiles instantly. You won't have time

during compiles to read the manual —

which, in a way. is too bad because the

manual is quite readable.

Who can or cannot use Turbo Pascal?

Every Pascal programmer using CP/M or

MS-DOS should find it useful. It does

have limitations, which I will describe.

It also has many advantages. All in all.

I feel the advantages outweigh the dis

advantages.

Turbo Pascal is inexpensive—S50.00.

You get an 8-orSU-in. diskette and a

soft-cover bound manual about 5 by 8 in.

in size.

Installing the system, however, is very

difficult. The TINST program is very

powerful because it allows you not only to

configure screen escape codes but also to

change editor commands (which default

to WordStar-like commands). Unfor

tunately, it can be exaspcratingly hard to

operate. If you have one of the standard

terminals, though, you won't have much

trouble. Otherwise, watch out because the

RESET button is the only way to start

over if you make a mistake. If you have an

IBM PC. take heart! It comes pre-installed.

Turbo Pascal's syntax is very standard.

Programs that compile with MT-Plus or

UCSD will usually compile unchanged

with Turbo Pascal. Even so, UNITh not

supported, and tabs must be expanded to

spaces in the source file.

Borland's new package acts as both an

integrated editor and a compiler. When

the compiler finds an error, it gives you an

error number and prompts you to press

ESC. When you do. you are put into the

full screen editor at the point of the error.

(The operation of the TAB key in the edi

tor is a little weird).

For the most part, the editor emulates

WordStar and is extremely fast and easy

to use. You can (£")dit a source file,

(C)ompile it into memory, and (R)un it,

all inamatterof seconds. However. I'd

recommend (.9)aving the source file be

fore you run it. If you don't remember the

file name, ask for a (D)ireetory. The let

ters in parentheses are the commands you

give Turbo Pascal. It couldn't be much

easier or faster than that.

With this Pascal compiler, you can

compile into memory or produce a .COM

file. There is no linking step. For this rea

son, there are no separate compilation or

assembler subroutines. However, there is

a standard Include facility for compiling

long programs.

Turbo Pascal produces stand-alone

.COM files. No run-time program is

needed. The .COM files produced can be

taken to another machine and run if the

destination machine has as much or more

TPA than the source machine or a switch

in the (O)ptions command is set to a value

to fit within the destination machine's TPA.

This compiler produces native code.

This means programs tend to run very

fast. It also means that if you code an

endless loop you get an endless loop . . .

OOopSt reach for the reset switch!

Overlays can be created very easily in

the revised version 2.0 of Turbo Pascal. If

you have ever used overlays with Pascal

MT-Plus, you probably avoid them like

the plague. With this compiler, all you do

to make a procedure into an overlay is put

the word "overlay" on the front. That's

all there is to it.

There are also some really good lan

guage extensions. Functions may return

strings. Nested comments are allowed,

and you can convert back into an enumer

ated type from an integer (inverse ORD).

There is a random number generator, both

for REAL values and for INTEGERS.

Also, screen handling routines for cursor

positioning and other screen functions

are built-in. There arc methods of acces

sing I/O ports and actual memory, and

BDOS and BIOS functions arc built into

the language.

The package docs have some some

irritating features. UndcrCP/M. Turbo

Pascal always returns to USER 0 on exit.

If you don't have high/low intensity, or

something like that, marked blocks are

invisible in the editor. Strings passed to

functions have to he declared as types

with specific lengths unless {$V-} is used.

All lengths of strings must match or you'll

get a type mismatch. The editor repaints

the screen much too often, and sometimes

lines disappear that are still in the pro

gram. There is no EXIT—you have to use

a ISABEL and a GOTO to get out of a loop.

78 COMPUTER LANGUAGES PREMIER ISSUE 1984

Table 1: Comparative benchmark timings based on the real matrix multiplication

program presented in BYTE's October 1982 issue.

Compile time (to memory):

(to disk):

Link time:

Run time:

Total:

Object file size:

Turbo

1.0 (CP/M)

2.5 sec

4.1 sec

n/a

29.5 sec

36.1 sec

10K

Turbo

2.0 (CP/M)

1.9 sec

5.2 sec

n/a

19.1 sec

26.2 sec

10K

MT-Plus

5.5 (IBM)

n/a

54.3 sec

33.6 sec

21.5 sec

109.4 sec

16K

(CPIM benchmarks run on a 4 MHz ZBOA system with 8-megobyfe hard disk with no wait states. IBM

benchmarks run on standard IBM PC XT with 256K RAM and a 10-megabyte hard disk).

Turbo Pascal is not copy protected. You

may copy it onto your hard disk without

any difficulty or onto floppies. If disk

space is critical. most of the files provided

arc optional, and you can do without

them.

Borland's documentation on this pack

age is excellent. For some reason, every

other Pascal compiler manual has an apol

ogy that goes something like, "This man

ual does not purport to be a reference on

the Pascal programming language ..."

Turbo Pascal's manual is different. You

can find things in it. You can even look

things up in an index. Most amazing of

all, the information in the book is actually

understandable, complete, and useful. The

book is softcover, bound, and 254 pages

long. Version 2.0 comes with a 34-page

booklet describing the added features.

For those of you who like to see bench

marks, I typed in Jerry Pournelle's real

matrix multiplication benchmark oul of

the October 1982 BYTE and compiled the

same source file in MT-Plus—using the

FPREALSand $Zoption—andTurbo

(Table 1).

Of course, if you need to use Access

Manager or high-speed assembly lan

guage device drivers, you may still have

to use MT-Plus. However, most of the

things that you needed assembly language

for—such as I/O port or BDOS/B1OS

calls—you will find implemented in Turbo

Pascal. And. if you're still running an

antique 8080 or 8085 processor, you can't

use Turbo Pascal. It is only available for

Z80- or 8086-family machines.

Perhaps the most amazing thing about

the revised compiler is that IBM PC

graphics and sound are now supported.

You may select one of three different

graphics modes. You may use black-and-

white or color monitor. There are proce

dures to plot points and draw straight

lines. (But arcs and circles would have

been nice too). The sound function will

generate a pure tone of specified fre

quency, or be quiet. These features will

work on IBM PC hardware or perfectly

compatible hardware only. I used an

XT with an IBM-compatible mono

chrome graphics board, and the graphics

did not work.

Windowing is now supported on the

IBM PC with the revised version only,

which now means that independent scroll

ing and cursor positioning on the screen

arc available. You may have only one ac

tive window; and once you've defined it.

you've got to position the cursor to get

into it. It necessarily follows that, to use

multiple windows, you must keep track of

the cursor position within each window

yourself. In my opinion, this detracts

from the automatic scrolling. The win

dows may not overlap.

Even still, the feature is very easy to

use, and all the screen-handling functions

may be used within a window. Cursor

positions within the window are relative

to the upper-left corner of the window.

The display is very fast and clean, and

graphics windows are also supported.

Here, however, graphics coordinates

remain as before; the windows simply

look in on what would otherwise be

a full screen.

8087 support is available in the updated

version. For those of you who have the

8087 math coprocessor chip, this will

really speed up calculations involving re

als. However, the software docs not check

to see if you have an 8087. If you don't

. . . reset button time again!

Turbo Pascal is recommended for any

one doing development work in Pascal. Its

instant compilations and highly standard

syntax make it a very useful tool even if

the final version is processed with some

other compiler. Turbo Pascal is also rec

ommended for those of you who are look

ing for a way to learn Pascal—it is easy to

use and well docunicnied. Even if you de

cide you don't like Pascal, Turbo Pascal

has a really fine screen editor that you can

use for any language. Most of all. Turbo

Pascal is recommended for anyone who

wants to get the job done and doesn't care

how little time it takes. H

By Richard Rodman

79

ADVERTISER INDEX

2500AD Software

Awareco

BD Software

Borland International

Austin E. Bryant Consulting

CAPA

Carousel Microtools

Chromod Associates

The Code Works

CompuPro

Computalker

PAGE CIRCLE

NO. NO.

40,41 1

26

31

1

66

66

49

60

72

Cover IV 10

67 11

Computer Resources of Waimea 50 12

Creative Solutions 56

C Systems 12

68

54

67

70

50

68

Forth Interest Group 50

C User's Group

C Ware

Datalight

Ecosoft

Eigenware Technologies.

Foehn Consulting

Allen Gelder Software

Greenleaf Software

Howkeye Grafix

Introl Corp

JMI Software Consultants. . . .

Laboratory Microsystems Inc.

68

50

19

62

48

52

13

14

15

16

.17

18

19

20

21

22

.23

.24

.25

26

27

LA Software 68

Lattice, Inc 76

Manx Software Systems 2

MBP Software & Systems Technology 55

Micro Focus 4, 5

MicroMotion 19

Miller Microcomputer Service 70

Mountain View Press 57

Next Generation Systems 54

John D. Owens Associates 64

Parsec Research Inc 72

Phoenix Software 43

Phoenix Software 45

Phoenix Software 47

Plum Hall 53

Poor Person Software 59

ProCode 52

The Programmer's Shop 58

Quest Research Inc 6

Rational Systems, Inc 63

RR Software, Inc Cover II ..

Sage Computer Technology Cover III 48

28

29

30

.31

32

33

34

35

36
a

37

38

39

40

.41

.42

.43

.44

.45

46

.47

SLR Systems

Softcraft, Inc

Software Toolworks..

Syntax Constructs Inc.

53

24

73

64

Systems Engineering Tools 73

Visual Age 17

Western Ware 68

Workman & Associates 59

THE INDEX ON THIS PAGE IS PROVIDED AS A SERVICE

TO OUR READERS. THE PUBLISHER DOES NOT ASSUME

ANY LIABILITY FOR ERRORS OR OMISSIONS.

49

50

.51

.52

53

54

.55

.56

Use the new . . .

COMPUTER LANGUAGE
BULLETIN BOARD SYSTEM 30011200 BAUD

(415)957-9370
to telecommunicate with COMPUTER LANGUAGE.

By simply dialing this phone number with your computer and modem, you can now:

■ SEND AN INSTANT "LETTER TO THE EDITOR".

■ DOWNLOAD ANY PROGRAM LISTING OR

MAGAZINE ARTICLE PUBLISHED IN THE MAGA

ZINE.

■ SEND IN AMANUSCRIPTTHATYOU'D LIKE THE

EDITOR TO CONSIDER FOR PUBLICATION IN

COMPUTER LANGUAGE.

■ UPLOAD ANY PROGRAM THAT YOU THINK

THE READERS OF COMPUTER LANGUAGE

SHOULD HAVE.

■ REQUEST A SUBSCRIPTION TO THE MAGA

ZINE OR ADVERTISING INFO.

■ PARTICIPATE IN AN INTERACTIVE ELECTRONIC

MESSAGE SYSTEM WITH THE READERS OF

COMPUTER LANGUAGE BY ASKING AND AN

SWERING QUESTIONS POSED BY INDIVIDUAL

READERS.

■ COMMUNICATE WITH ANY OF THE

PUTER LANGUAGE COLUMNISTS.

■ AND MORE

COM-

NOTE: Once your modem has received a "con

nect", type several carraige returns to set the baud

rate (either 300 or 1200). Most people have computers

that do not require a "null" be set when this initial

questions is asked.

Yet, if you prefer the U.S. Postal Service, send your

correspondence to:

EDITOR

COMPUTER LANGUAGE
131TOWNSENDST.

SAN FRANCISCO, CA 94107

80 COMPUTER LANGUAGE ■ PREMIER ISSUE 1984

SUBSCRIBE
TODAY!

Attn; Circulation Dept. COMPUTER

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today!
Charter Subscription to computer language tor only $19.95 - over 43% savings
off the single copy price.

D Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

D I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

□ Payment enclosed □ Bill me

Nome

Company

Address _^_____

City. State. Zip

Offer expires 10/84. Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid

in U.S. funds. Outside the U.S., add $12.00/year for surface mail or $30.00/year for airmail.

Guarantee: I can cancel my subscription at any time for a full refund.

SUBSCRIBE

TODAY!

Attn: Circulation Dept. COMPUTER

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today!

Charter Subscription to COMPUTER LANGUAGE for only $19.95 - over 43% savings

off the single copy price.

D Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

D Payment enclosed □ Bill me

Name

Company.

Address

City. State. Zip

Offer expires 10/84. Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid

in U.S. funds. Outside the U.S.. add $12.00/year for surface mail or S30.00/year for airmail.

Guarantee: I can cancel my subscription al any time lor a full refund.

COMPUTER

TODAY!

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today)

Charter Subscription to COMPUTER LANGUAGE for only $19.95 - over 43% savings

off the single copy price.

a Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

D I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

□ Payment enclosed □ Bill me

Nome .

Company . . .

Address

City, State, Zip

Offer expires 10/84. Please allow 6-8 weeks for delivery ot first issue. Foreign orders must be prepaid

in U.S. funds. Outside the U.S., add S12.00/year for surface mail or S30.00/year for airmail.

Guarantee: I can cancel my subscription ai any time lor a full refund.

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22*81 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNFTED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

READER SERVICE CARD

Free information from the advertisers of

COMPUTER LANGUAGE.

1. Pleasefiliinyournameandaddressonthe

card (one person to a card).

2. Answer questions 1-3.

3. Circle the numbers that correspond to

the advertisements you are interested in,

Company.

Address _

City. Slate. Zip.

Counlry Telephone number.

Premier Issue. Not good H maisea after Novembef 30.

Circle numbers tor which you desire Information.

Please complete these short questions:

1 I obtained ttiis issue through:

□ Subscrlpiion D Passed on by associate

TJ Computer Store D Other

□ Retail outlet

2. Job Title

3. The 5 longuages thai I am mosi interested in reading

about (list in order of importance]

12

13

14

IS

16

17

IS

19

»

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

42

43

&A

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

ta

63

64

05

66

07

0B

69

70

72

73

74

75

70

77

78

79

SO

82

83

64

85

86

87

86

89

90

92

93

94

95

94

97

V)

101

Comments.

Attn: Reader Service Dept.

READER SERVICE CARD

Free information Irom the advertisers of

COMPUTER LANGUAGE.

1. Pleasefillinyournameandaddressonthe

card (one person to a card).

2. Answer questions 1-3.

3. Circle the numbers that correspond to

the advertisements you are interested in.

Name

Company.

Address

City. Slate. Zip.

Country Telephone number.

Please complete these short questions:

1. I obtained frits issue through:

D Subscription Q Passed on by associate

□ Computer Store □ Other

□ Retail outlet

Premier Issue. No! good if mailed after November 30.1984.

Circle number* lor which you desire Intormatton.

2. Job Title.

3 The 5 languages that I am most interested in reading

about (lisl In order ol importance).

Comments.

Attn: Reader Service Dept.

Editorial Response Card

Reader suggestions
We want to hear your comments and suggestions about the premier issue of

COMPUTER LANGUAGE. Your reader feedback wi II enable us to provide you wifh

the information you want. Thank you for your help!

Comments: ——

LJ Yes. I have an idea lor a manuscript:

□ Yes. I'm interested in reviewing technical manuscripts.

□ Yes, I'm interested in reviewing software.

Name:

Company:—

Address:

City. State. Zip:

Phone Number:

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22*81 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF HAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNrTED STATES

i

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22*81 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

COMPUIER

LANGUAGE
Start your subscription to COMPUTER LANGUAGE at the Charter Subscription price of only

$19.95. You'll receive the latest software design information every month at the lowest

subscription rate we wili ever offer.

□ Yes, start my Charter Subscription to COMPUTER LANGUAGE for 1 year (12 issues).

The cost is only $19.95 — over 43% savings under the single copy price.

D I want to increase my savings even more — send me 2 years (24 issues) of COMPUTER

LANGUAGE for only $34.95.

D Payment enclosed a Bill me

Name —

Company

Address

City, State. Zip

Offer expires 10/84. Please allow 6-8 weeks (or delivery of first issue. Foreign orders must be prepaid

in U.S. funds. Outside the U.S.. add $12.00/year for surface mail or $30.00/year for airmail.

Guarantee: I can cancel my subscription at any time for a full refund.

NO POSTAGE

NECESSARY

IFfctAJLED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22461 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

The recent Datapro Microcomputer

User Survey reported a 3.8 overall user

satisfaction rating out of a possible

4.0 for Sage Computers.

Sure, we like to read about ourselves scoring high marks

in market studies. Our users do also. We appreciate the

positive comments written about us by writers and editors

around the world. But, as much as we enjoy the reports,

it doesn't really surprise us.

We've designed performance into every computer system

we manufacture. Not just speed, but flexibility, functionality

and reliability. Sage has been building high performance

68000 multi-user systems longer than anyone, and we

know that designing performance into our product requires

time, attention to detail and a non-compromising attitude

of doing things right.

Sage systems are available with nine different operating

systems, 23 languages and over 300 application programs

in 50 different categories. All systems come with a 90-day

warranty, extendable to 3 years. And we have hundreds of

dealers worldwide.

If you would like to know more about Sage and our Sage II

and IV microcomputer systems, call or write today for your

free copy of the 28-page Sage Product Catalog. It offers all

you need to know about Sage, and how we design

performance into every product we sell.

Reno: 702-322-6868

Dallas: 2U-392-7070

Boston: 617-229-6868

Reno: 4905 Energy Way. Reno, Nevada 89502 <TWX 910-395-6073 SAGERNO)

Dallas: 14755 Preston Rd.. Suite 600, Dallas, TX 75240

Boston: 15 New England Exec. Park, Suite 120. Burlington, MA 01803 CIRCLE 48 ON READER SERVICE CARD

HERE TODAY
HERE TOMORROW

When buying a computer, you can't limit yourself
to just satisfying today's needs. The best value in

a system comes from its productivity... both for

today and tomorrow. CompuPro's System 816™

computer has that value. With all the power and

capacity to handle your needs now and down
the road.

System 816's longevity stems from top quality
components ... high storage capacity ... the flex

ibility to handle a large variety of applications ...
and the speed to get the job done fast. Upgrading
is easy, and when it's time to expand from single to
multi-user operation, it's as simple as plugging in
boards and adding terminals. Your system grows as
you grow.

CompuPro also provides a library of the most
popular software programs with your system and
because it's CP/M*' based, you have more than

3,000 other programs to choose from.

Even our warranty is for today and tomorrow. It
spans 365 days —and includes the additional se

curity of Xerox Americare™ on-site service nation
wide for designated systems.*

What's more, CompuPro is one company you
can count on to be around tomorrow. For more than

ten years we've been setting industry standards,

increasing productivity and solving problems.
For a free copy of our business computer

buyer's primer, and the location of the Full Service
CompuPro System Center nearest you, call (415)
786-0909 ext. 206.

CompuPro's System 816. The computer that's
just as essential tomorrow as it is today.

ompuPro
A GODBOUTCOMPANY

3506 Breakwater Court, Hayward, CA 94545

'Available from Full Service CompuPro System Centers and particiDatino
retailers only. y

System 816 and The Essential Computer are trademarks of CompuPro
CP/M is a registered trademark of Digital Research Inc. Americare is a
trademark of Xerox Corporation.

System 816 front panel design shown is available from Full Service
CompuPro System Centers only. ©19M CompuPro

CIRCLE 10 ON READER SERVICE CARD

fompuPro. 11Q1 iiiiiiiihuh

