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Preface

Until fairly recently most scientific data-gathering systems and indus-
trial control procedures were based on electromechanical device s
such as chart recorders and analogue gauges . The capability to
process and analyse data was rather limited (and in some cases erro r
prone) unless one had access to a minicomputer or mainframe .
Today, that situation has changed considerably . I am sure that mos t
potential readers of this book will be aware of the profound effec t
the PC has had on the way in which engineers and scientists are abl e
to approach data-gathering tasks .

Despite the now widespread use of various types of PC fo r
automated data capture, there has been only a small number of
publications on PC-based DA&C. Most if not all of these texts have
concentrated on the hardware aspects of interfacing and measure-
ment. A book emphasizing the design of DA&C software is long
overdue .

One of the reasons for this has become increasingly apparen t
to me during the course of writing the present text . The subject
spans numerous conventional disciplines and no single book can
really do full justice to every aspect of this interdisciplinary subject .
DA&C programming tends to require skills in (or at least a basi c
knowledge of) a range of subjects and, for this reason, the boo k
draws together elements of programming, PC architecture, oper-
ating systems, interfacing, communications, sampling theory an d
process control .

My task has been complicated because of the wide range o f
backgrounds from which DA&C programmers tend to originate .
Amongst the readership there will, no doubt, be fairly experience d
programmers as well as engineers and scientists whose main are a
of expertise lies in fields other than computer programming . Some
readers will already have a sound knowledge of data acquisition, whil e
for others the principles of interfacing, measurement and contro l
will be relatively new. With such a broad spectrum of potential
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readers, it is inevitable that some users of the book will find tha t
certain chapters provide unnecessary detail or that some topics ar e
presented too concisely.

I have not assumed that the reader possesses any particular rang e
of skills, although a broadly numerate or technical background and
a basic knowledge of computer programming will undoubtedly be
of benefit.

I have attempted to ensure that all information provided is correc t
and unambiguous. However, it is possible that a few minor errors wil l
have found their way into the text . Unfortunately, it is in the nature of
DA&C software that minor errors can have catastrophic results and ,
for this reason, I strongly advise you to cross-check all critical informa -
tion that you use in your software against independent sources, and
to thoroughly test all programs before `going live' . I would greatl y
appreciate hearing of any errors in the text, whether technical o r
typographic. I can be contacted at: kjames_sd@liotmail .com.

A note on software example s

The code examples are presented with the primary intention o f
conveying the ideas presented in the text . In some cases this involve s
a trade-off between clarity and execution speed . In most instance s
I have favoured the former. You may wish to recode some of th e
examples to improve their efficiency and speed .

Note that the software listings are intended only as examples of
how one might go about solving isolated coding problems. They
are not intended as complete working programs or solutions to
specific problems. For reasons of clarity, the examples are designe d
to operate in a real-mode (DOS) environment. In many cases the
code may be adapted for use in protected mode or under 32-bi t
multitasking operating systems such as Microsoft Windows NT .

Although I have tested every example and they work correctl y
under my test conditions, factors such as execution speed and timing,
hardware variability, and incompatibilities with other software (e .g.
operating systems) may affect them . If you use them in your own
programs you should thoroughly test them to ensure that they wor k
correctly and reliably within the context of your application .

The examples are presented in a mixture of C and assembl y
language . While assembly language is essential for some low leve l
programming tasks, the programmer has more scope when choosin g
a high level language (HLL) . I have chosen C (specifically Borlan d
C version 3) for the examples in this book mainly because it is th e
most widely used language in DA&C and interfacing applications .



Preface x i

I recognize that C code does not have a favourable reputation
for clarity. For this reason, and to enable readers to translate easil y
to other languages, I have avoided C's shorthand notation an d
have used only constructs which have analogues in other HLLs .
You should bear in mind that there tends to be subtle variation s
between different dialects of C . One such variation occurs in the
various I/O instructions as described in Chapter 6 . Another that i s
particularly relevant here concerns integer data types. Throughou t
the text, I have used the int data type as a 16-bit quantity, but i n
some 32-bit compilers (e .g. Microsoft Visual C + + version 4 .0) it i s
treated as a 32-bit integer . Be sure that you know how your syste m
interprets int declarations . Those readers who have any doubts ove r
the meaning of C data declarations and statements should consul t
one of the numerous introductory C texts as well as their C compiler' s
programming manual .



1 The PC as a platform for dat a
acquisition

The field of data acquisition and control (DA&C) encompasses a
very wide range of activities . At its simplest level, it involves reading
electrical signals into a computer from some form of sensor . These
signals may represent the state of a physical process, such as the
position and orientation of machine tools, the temperature of a
furnace or the size and shape of a manufactured component . The
acquired data may have to be stored, printed or displayed . Often
the data have to be analysed or processed in some way in orde r
to generate further signals for controlling external equipment o r
for interfacing to other computers . This may involve manipulating
only static readings, but it is also frequently necessary to deal with
time varying signals as well .

Some systems may require data to be gathered slowly, over tim e
spans of many days or weeks . Other will necessitate short bursts of
very high speed data acquisition -- perhaps at rates of up to several
thousand readings per second. The dynamic nature of many DA& C
applications is a fundamental consideration which we will repeatedl y
return to in this book.

The IBM PC is, unfortunately, not an ideal platform for DA&C .
There are a number of problems associated with using it in situation s
which demand guaranteed response times . However, it is used widely
for laboratory automation, industrial monitoring and control, as well
as in a variety of other time-critical applications . So why is it so popular ?

The most obvious reason is, of course, that the proliferation o f
office desktop systems, running word processing, accounting, DTP ,
graphics, CAD and many other types of software, has led IBM an d
numerous independent PC-clone manufacturers to develop ever
more powerful and inexpensive computer systems. The technology
is now well developed and stable in most respects . For the same
reason, an enormous software base now exists for this platform . This
includes all manner of scientific, statistical analysis, mathematical and
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engineering packages that may be used to analyse acquired data . A
wide range of software development tools, libraries, data-acquisitio n
hardware and technical documentation is also available . Perhaps
the most important reason for using the PC for data acquisitio n
and control is that there is now a large and expanding pool o f
programmers, engineers and scientists who are familiar with the PC .
Indeed it is quite likely that many of these personnel will have learn t
how to program on an IBM PC or PC clone .

This book sets out to present some of the basic concepts of DA& C
programming from a practical perspective and to illustrate ho w
elements of the PC architecture can be employed in DA&C systems .
Although it contains quite detailed descriptions of certain elements
of the PC's hardware and interface adaptors, the text concentrate s
on the software techniques that are required to make effective us e
of the PC for DA&C. The first two chapters begin by discussing th e
structure of DA&C systems and attempt to assess how well the PC
and its operating systems meet the stringent requirements of data
acquisition and real-time operation .

1 .1 Types of PC

Since the first models of the IBM Personal Computer (PC) wer e
introduced in the early 1980s there have been many variants issue d
by IBM and by numerous `clone' manufacturers . Each new varian t
has tended to introduce improved components or subsystems whic h
enhance speed or provide some other system capability . We will not
describe the various models of PC in detail here as most readers wil l
already be familiar with the basic differences between the XT, AT ,
PS/2 and EISA machines . It is sufficient to note that the basic archi -
tecture of most types of PC is very similar . The differences in perfor-
mance between systems arise from the different types of processor ,
memory subsystem and expansion bus used . These are perhaps the
most important considerations although other components, such as
the disk and video subsystems, can substantially affect throughput .

The IBM PC was originally developed as a stand-alone machin e
for office desktop use. While many DA&C applications can, and
do, run successfully on such systems, desktop models do not alway s
provide the required degree of robustness for use in harsh environ-
ments. This has led a number of manufacturers to produce mor e
rugged versions of the PC. Many systems are built into rack-mounted
chassis . They may incorporate conventional motherboard design s
or they may utilize a backplane system into which a processor card ,
video adaptors and disk drive controllers are inserted . Ruggedized
industrial PCs offer benefits such as sealed keyboards, positively
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pressurized cooling systems, and anti-vibration shock mountings .
Both hard disks and floppy disk drives tend to be easily damage d
by dust, vibration and magnetic fields . These problems are circum-
vented in some systems by substituting a solid state (i .e. EPROM o r
SRAM based) disk emulation card which is generally less susceptibl e
to damage.

Some industrial PCs may possess interfaces for disks, serial ports ,
parallel ports, and other peripheral devices on the same circui t
board. Single-board computers are often integrated into dedicate d
equipment which is used, for example, in industrial or medical
monitoring applications . These embedded systems are normally
designed so as to minimize size, power consumption and coolin g
requirements . In these systems, hard disks are frequently replaced b y
ROM-based devices which provide storage for all software, includin g
the operating system . Embedded PC controllers are also used i n
mobile equipment. However, there are a number of other option s
when it comes to mobile computing . There are now many notebook
PCs and ruggedized portable computers on the market . These can
easily interface to external data logging or control equipment i n
order to facilitate configuration or downloading of acquired data .

Ruggedized PCs, embedded PC systems, portable machines an d
desktop PCs all share the same basic architecture and are generally
capable of running the same software . The structural differences
between them are largely irrelevant to the software engineer. Indeed
software can usually be developed on a desktop system and the n
transferred to a ruggedized or portable PC without modification ,
although minor changes may sometimes be needed when porting t o
embedded systems in order to accommodate ROM-based operatin g
systems or to interface to specialized external buses .

1 .2 The processor

Most readers of this book will already be aware of the different types of
processor and coprocessor used in the PC range . This section summa-
rizes the most important characteristics of each of the main classe s
of processor . The text by Hummel (1992) provides more detaile d
descriptions of the various processors and coprocessors available .

The 80x86 family of processors

Pentium processors are perhaps the most recognized component s
of today's PCs . They originate from a long line of Intel processor s
dating back to the 1970s (see Table 1 .1) . The capabilities of the
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Table 1 .1

	

Comparison of 80x86/Pentium processor s

Processor
Address

range

Data
width
(bits)

Clock
(internal)

(MHz)

Approx.
relative
speed (3 ) New features and notes

8088 1 MB 8 4.77 1 Real mode only .
8086 1 MB 16 4.77, 8 1 .5 Real mode only . Required

80286 16 MB 16 6-16 5
8087 floating-point unit .

Limited protection features i n

80386SX 16 MB 32 (1 ) 16-25 10

protected mode . Required
80287 floating-point unit .

Enhanced protected V8 6

80386DX 4 GB 32 16-40 15

mode . Required 8038 7
floating-point unit .

32-bit data and addres s

80486SX 4 GB 32 25-40 40

buses . Required 8038 7
floating-point unit .

Parallel instruction execution .

80486DX 4 GB 32 25-100 60

8 Kbyte on-chip cache .
Internal clock doubling ,
tripling and quadruplin g
circuits . Required 8048 7
floating-point unit .

On-chip numeric processor .
Pentium 4 GB 32(2 ) 60-166 200 Dual execution pipeline .

Pentium Pro 64 GB 32( 2 ) 200, 266 500

Enhanced branch
prediction . Enhanced V8 6
paging . Multiprocessor
support .

Triple pipelining . 256 Kbyt e

Pentium II 64 GB 32 (2 ) 200-450 800

L2 cache . 36-bit addres s
bus .

Enhanced L1 and L2 caches .

Pentium III 64 GB 32 (2 ) 500+ 1000+

Power saving features .
M MX extensions .

Very efficient floating-poin t
unit . Katmai Ne w
Instructions and new KN I
mode .

(1) 16-bit external bus .
(2) 64-bit external bus .
(3) lnteger processing . Figures are a rough guide only . Actual speed depends on clock rate ,
instruction mix and performance of PC subsystems .
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earlier processors will be of little relevance to most readers who,
nowadays, are not likely to encounter anything more primitive tha n
an 80486. For this reason we will not discuss them in any furthe r
detail . We should remember, though, that some specialized system s
(particularly embedded PC applications) still make use of the earlie r
8086, 80286 and 80386 processors . Indeed, special versions have
been developed for this market . The 80186, for example, is simila r
to the 8086, but also possesses on-chip DMA (Direct Memory Access )
and interrupt controllers and other support circuitry . The 80186
and similar special-purpose processors are not used in a normal PC .

From the viewpoint of application-software development, it i s
convenient to divide the various PC processors into three classes :
real-mode processors (8088, 8086 and compatibles such as the NEC
V20 and V30) ; the intermediate 80286 processor (which we will no t
discuss) ; and full 32-bit processors (80386, 80486, Pentiums an d
Celeron processors) .

In essence the early real-mode processors (used on the first model s
of PC) ran only one program at a time, provided limited memor y
addressing (up to 1 MB), and operated relatively slowly (bein g
clocked at 4 .77 to 10 MHz, typically) .

At the other extreme, the 80486DX and Pentium class processor s
can address large amounts of memory (4 GB), and possess feature s
for task switching, high speed processing and memory/hardware
protection . These capabilities are used by sophisticated 32-bit oper-
ating systems such as Windows NT to implement efficient multi -
tasking and to control access to system resources .

Intel released a cheaper alternative to the Pentium in 1998 : the
Celeron processor . This is similar to the Pentium II, but without th e
latter's built-in level 2 cache . Despite the fact that, by most standards ,
the Celeron is significantly slower, it is becoming popular in some
industrial applications, particularly in embedded systems .

Pentium II processors operate at up to 450 MHz internally . This
and enhancements such as 64-bit external data bus, separate caches
for instructions and data, a much improved instruction handlin g
capability and very efficient numeric processing are responsible fo r
the superior performance of Pentium-based PCs . The Pentium II I
offers further improvements in performance . Initial versions are
clocked at up to 500 MHz and faster versions will no doubt be avail -
able by the time this book is published . Floating-point performance
has been enhanced in the Pentium III with the addition of a special
instruction set (Katmai New Instructions, or KNI) and new regis-
ters. This provides up to about 2 x 10 9 floating-point operations pe r
second (2 Gflops) : sufficient for the processor to take on tasks that
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might otherwise have required a specialized Digital Signal Processo r
(DSP) : real-time audio processing, for example .

Because each new processor in the sequence incorporates a
superset of the instructions and features of earlier processors, they
are termed `backward compatible' . Software written for an 8028 6
processor, for example, will generally be able to run on 80386 an d
all later processors. Even the latest Pentium processors can operate
in real mode, emulating the early 8086 . Note, however, that th e
converse is not true: an 8086 will not run most of the software written
for the Pentium. In spite of this backward compatibility, the timin g
of many instructions varies between processors . The speed of most
instructions tends to be greater in the newer processors althoug h
some instructions may execute more slowly . This point should be
borne in mind when writing very time-critical code, particularly i f
the software is intended to run on a range of different processors .

Processor modes

The 8086 processor is capable of directly addressing up to 1 MB
of memory. It is designed to support the execution of only one
program (or process) at any time . This process has complete control
over the PC and has direct access to all addressable memory an d
I/O locations, even those belonging to the system BIOS or to th e
operating system itself. Because there are no protection mechanisms
to prevent interference between processes it is difficult to implemen t
safe multitasking (see Chapter 2) on the 8086 . The 8086's mode of
operation is known as real address mode (often abbreviated to just
`real mode') . All later processors support real mode as well as othe r
modes that allow access to more than 1 MB of memory .

The protected mode available on 80286 and later processors help s
to circumvent the 1 MB limitation . As well as providing access t o
more memory, it incorporates a number of mechanisms which hel p
to prevent processes from conflicting with each other or with th e
operating system. All subsequent processors (i .e. 80386 and later)
also possess a virtual 8086 (V86) mode . In this mode, the processor
operates as multiple virtual 8086 machines, dividing its time betwee n
each. Programs are allocated their own virtual machine and in thi s
way it appears to the program that it is running on its own 808 6
processor . Each virtual machine may have its own DOS environmen t
and is isolated from the rest of the system . The program running o n
each virtual machine believes that it has full control of the system, a s
on a real 8086. Interprocess memory conflicts and I/O conflicts are
avoided by means of sophisticated protection mechanisms provide d
by the processor (as described later in this chapter) . In order to
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perform multitasking using the processor's protected or V86 mode s
the whole machine has to be managed by suitable operating system
software. We will discuss this topic in Chapter 2 .

Although the modes available on the more advanced processor s
are very efficient, their protection mechanisms can involve a substan -
tial software overhead, especially if complex multitasking operatin g
systems are used to mediate between processes . DA&C programs are
normally relatively small and uncomplicated, and a simple real-mod e
environment (e.g. a DOS-based system) is often the most suitable .
A protected-mode system can, however, provide the potential for a
greater degree of reliability . The inherent protection mechanisms
can help to prevent resource conflicts and may highlight certai n
types of coding error during development .

Registers

Throughout this book I will make frequent references to an impor-
tant feature of the processor : its registers. The basic concepts are
introduced below. However, this is only a very brief overview t o
aid your understanding of the examples presented in subsequen t
chapters. You should consult a specialist text on processor archi-
tecture or assembly language programming -- e .g. Hummel (1992) ,
Swan (1989) or Holzner and Norton (1991) – for a more detaile d
discussion of this subject .

Each processor in the 80x86 family possesses several 16-bit regis -
ters which are used to hold data and memory addresses . In many
operations, you have a choice of which register to use . However ,
most registers are designed specifically for certain operations . Some
registers, such as CS, DS and SS, address particular memory segments
(blocks of up to 64 KB addressable in real mode) . Others (e .g. IP ,
SP, BX) can be used to address individual bytes or words as offset s
from the beginning of an associated segment . Yet other registers are
used to hold numeric data . Some of the 16-bit registers (i .e . AX, BX,
CX and DX) allow their high and low order bytes to be addresse d
separately . For example, the high order byte of AX is referenced
within an assembly language program as AH, and the low order byte
as AL. The AX register is used exclusively in certain operations such
as reading from or writing to an I/O port. The Flags register contain s
various bits which indicate the results of arithmetic operations o r
which control how particular features of the processor operate .

The 80386 and subsequent processors are equipped with 32-bi t
registers. Each of the 16-bit registers mentioned above is actually
implemented as the low order 16 bits of the corresponding 32-bi t
register . Just as it is possible to separately reference the high and low
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order bytes of certain 16-bit registers, one can reference either th e
full 32-bit register (by preceding the normal register designation wit h
an e.g. EAX) or only the low order 16 bits (e .g. AX) . For the sake
of simplicity and compatibility with the 80286 and earlier processors ,
only the 16-bit register set is used in the examples presented i n
the remainder of this book . Those readers who are unfamiliar with
assembly language should consult a book such as Swan (1989) fo r
an introduction to this subject .

The most important point to remember about the registers i s
that their contents completely define the state of the processor a t
any given time . The registers may hold a variety of informatio n
relating to the current process. This includes the address of th e
next instruction to be executed, intermediate results, the interrup t
state and many other essential parameters . If the register contents
are incorrectly modified or become corrupted it is very likely tha t
this will result in the failure of the software . You should bear thi s
in mind when dealing with any form of context switch such as a n
interrupt or task switch, and take appropriate steps to preserve th e
state of the registers . Refer to Chapter 2 for more on task switche s
and concurrent processing, or to Chapter 5 for a detailed discussio n
of interrupts.

Numeric processing

Predecessors of the 80486DX have a limited mathematical processin g
capability . While they are able to perform a variety of integer arith-
metic, data transfer, and logical operations, they were not designe d
to undertake floating-point calculations . Many compilers and devel-
opment tools incorporate floating-point software libraries . These
contain long and complex routines to facilitate floating-point compu-
tation. Unfortunately, floating-point software can be slow . When
many calculations have to be performed, the burden placed on the
processor may unacceptably degrade the system's throughput . Thi s
problem can be particularly acute in high speed DA&C applications .

The alternative technique is to use special hardware for numeri c
processing. A numeric processing unit is dedicated to performin g
floating-point calculations and operates more or less in paralle l
with the main processor . It supports a number of floating-poin t
data types and provides facilities for performing trigonometric an d
transcendental functions. The 80486DX and Pentium class proces-
sors have built-in numeric processing units, but earlier processors
required a matching numeric coprocessor IC . This hardware solution
makes very substantial increases in throughput possible, althoug h
the degree of benefit gained does, of course, depend upon the
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nature of the software . Numeric processors are not essential in al l
DA&C applications. Many programs execute only integer instruc-
tions during the period of data acquisition . However, a numeri c
processor can be invaluable in applications which have to execut e
mathematical control algorithms (e .g. PID control) or which must
undertake any form of real-time signal processing .

The presence or otherwise of a numeric processor is normall y
transparent to programmers working with C, Pascal or other hig h
level languages. The programmer will normally only have to select a
compiler `switch' in order to generate code for a numeric processo r
or to emulate one in software . He or she need not be concerned with
how floating-point calculations are actually performed . This is not
true, however, for assembly language programmers . These readers
are advised to consult. more specialized texts on the subject such as
Hummel (1992) or Holzner and Norton (1991) .

1 .3 Memory

As we have already seen, modern PCs can address up to 4 GB o f
memory, although most contain very much less . Figure 1 .1 illustrate s
the PC's memory space and shows some important regions withi n
the address map. The addressable range is processor (and mode )
dependent .

When operating in real mode, the 80x86 and Pentium processor s
employ a segmented memory addressing scheme . Each memory
address is specified in the software by the contents of a segmen t
register and an offset register . In real mode both of these registers ar e
16 bits wide and thus a memory segment is defined as a memory bloc k
up to 65 536 bytes in length . A segment begins on any paragrap h
(16-byte) boundary . The contents of the segment and offset register s
are combined to form a physical address by multiplying the contents
of the segment register by 16 and then adding the result to th e
value held in the offset register . This generates a 20-bit address
which can be used to access any location in the 1 MB memory
area. The segmented memory scheme can complicate programmin g
somewhat, although it does have a number of practical advantages . I t
provides a means of dividing memory up into convenient segments ,
the beginning of each segment being addressed by the contents o f
the segment register. Successive bytes within a segment can then b e
easily referenced by incrementing or decrementing a single 16-bi t
offset register .

The addressing method used in the 80286's protected mod e
is similar . However, the value held in the segment register no
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32-bit protected-mod e
operating system s
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application program s

(e .g . Windows 98/N T
Unix and OS/2 )
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DOS code and data

BIOS Data Area
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Figure 1 .1 The PC's memory map

longer corresponds to a physical segment base address . Instead ,
it is used as a selector. This is a pointer to an entry in a tabl e
maintained by the operating system . Each entry in this table i s
known as a descriptor and specifies the physical address of th e
segment of memory which is to be accessed . The selector an d
descriptor also contain other data relating to the memory segment .
This includes the information necessary for operating systems t o
implement interprocess protection and memory management . For
example, the descriptor specifies whether the segment referenced
is a code or data segment and thus provides a mechanism for th e
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operating system to trap actions such as inadvertent writes to a cod e
segment. It also specifies the size of the segment so that accesses t o
memory beyond the segment limit can be detected. The 80286 can
access up to 16 MB of memory .

A similar system is used on the 80386 and later processors whe n
they are running in protected mode . However, these processors can
use a 32-bit flat addressing scheme in which the selector is kept fixe d
by the operating system and the programmer addresses memory b y
means of only a 32-bit offset . This provides access to up to 4 GB of
memory . The 80386 and later processors also provide an additiona l
memory management facility, known as paging. When paging is
disabled, the address determined from the descriptor represents
the physical memory address (as in the 80286 processor) . When
paging is enabled, the linear (or virtual) address read from th e
descriptor table has to undergo another translation step in orde r
to arrive at the physical address . The page translation mechanis m
makes possible the V86 mode and is also essential for a number o f
other advanced operations on the 80386 and later processors . Unlik e
the segmentation scheme, page translation is generally transparen t
to the applications programmer . It is normally managed invisibly
by the operating system. However, the paging mechanism doe s
have certain implications for real-time DA&C systems. It allows an
operating system, such as Windows NT, Windows 95/98 (or Windows
3 .1 operating in enhanced mode), to temporarily swap blocks o f
memory out to a hard disk . Although this can be a great advantage i n
non-time-critical systems it may be unacceptable in real-time DA&C
applications as it has the potential to introduce variations in the tim e
taken for the DA&C program to respond to external events .

The protected-mode segmentation scheme, the page translatio n
mechanism and V86 modes are quite involved topics and full descrip -
tions of them are beyond the scope of this book . You should consul t
a text on the subject of operating system architecture or on th e
processor itself (e .g. Hummel, 1992) for further information .

Accessing memory above 1 MB from real mode

Many DA&C applications are relatively straightforward and may not
need the complex multitasking and protection capabilities offere d
by the processor 's protected and V86 modes . Often, however, they
do require large quantities of memory in which to store acquire d
data, and this is not directly available in real mode . If you prefe r
the simplicity, speed and degree of control offered by a real-mod e
DOS-based system (perhaps one of the specialized real-time versions
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of DOS), there are several ways in which to gain access to memory
above the 1 MB limit .

First, you could make use of two BIOS services provided on
the IBM AT and compatible machines. These services allow dat a
to be moved between real-mode-addressable memory (i .e. memory
below the 1 MB boundary) and extended memory. This technique
is rather slow and requires a degree of buffering in real-mode-
addressable memory. It also relies upon the cooperation of all other
processes running on the machine in order that they do not overwrit e
another's data .

The second method of accessing extended memory is to employ
an extended memory driver conforming to the Extended Memory
Specification (XMS) . Such a driver, HIMEM.SYS, is used by Microsoft
Windows 3.1 for managing extended memory . It provides a compre-
hensive set of services which can be used to access memory abov e
the 1 MB boundary as well as the so-called Upper Memory Block s
(UMBs) in the 640 KB to 1 MB area .

The third method is simply to make use of a RAM disk (also know n
as a Virtual disk) device driver . This sets aside an area of memory
(usually extended memory) to emulate a disk drive . The RAM disk
operates in the same fashion as a normal hard or floppy disk .
Although it is many times faster than a typical hard disk drive, dat a
still has to be transferred via the DOS file and device driver syste m
and so this method is generally slower than direct memory storage .

The final approach is to employ an expanded memory system . This
technique is largely obsolete on the PC, but it is instructive to conside r
it briefly because some specialized data-acquisition hardware make s
use of a similar system for transferring data to and from the PC 's
memory . Expanded memory has been used in embedded systems
for some time, and a number of 8086-compatible processors tha t
have been developed especially for embedded applications include
on-chip expanded memory support .

Expanded memory is essentially bank switched memory which can
be selectively paged in and out of a memory window (known as a
page frame) residing below the 1 MB real-mode-address limit .. Data
may be read from, or written to, expanded memory through thi s
window as though one were accessing the PC's memory . The DA&C
program can select new pages at any time by calling a group o f
system services that are provided by an expanded memory devic e
driver. The services generally conform to a standard known as th e
Expanded Memory Specification (EMS) . Versions 3.2 and 4.0 of thi s
standard are the most widely used . One of the more effective EMS
implementations utilizes the paging facilities provided by the 80386
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and later processors, allowing some or all of the PC's extende d
memory (i .e. that above 1 MB) to be treated as expanded memory .

Although the bank switching and paging mechanisms used on the
PC are fast and ideally suited to DA&C, they have to be managed b y
some form of device driver . As with all drivers and programs writte n
by third parties, you should be sure that they do not compromise th e
deterministic qualities necessary in real-time systems (see Chapter 2) .

EMS, XMS and the extended memory BIOS services are covere d
in many books on the IBM PC such as Duncan (1989), Duncan et al.
(1990) or Dettmann and Johnson (1992) .

1 .4 Input/output ports

In addition to its memory, the PC has another entirely separate
address space. This is dedicated to transferring data to or from
peripheral devices and is known as Input/Output space (or simpl y
I/O space) . Just as the PC's memory space is divided into separate
byte locations, the I/O space consists of many byte-sized I/O ports .
Each port is addressable in much the same way as memory, although
an additional control line is used within the PC to distinguish
between memory and I/O port accesses . I/O space consists of a
contiguous series of I/O addresses . Unlike memory space, the I/ O
address space is not segmented and cannot be paged. In fact, the
processor references I/O ports by means of a 16-bit address and thi s
means that no more than 65 536 I/O ports can be supported by th e
PC. In practice, this is further limited by the I/O address decodin g
scheme used on the PC and its adaptor cards .

The I/O ports provide a means of sending data to, and receivin g
data from, devices such as the video adaptor, the disk subsystem ,
or analogue-to-digital converters (ADCs) on plug-in data-acquisition
cards. Software can use the assembly language IN or OUT instructions ,
or their high level language counterparts, to communicate wit h
hardware devices via the I/O ports . These are discussed in more
detail in Chapter 6, but for the moment we will consider a simpl e
example . Suppose that a plug-in 8-bit ADC card possesses contro l
and data registers that are each mapped to one of the PC 's I/O
ports. The software starts the analogue-to-digital conversion proces s
by writing a bit pattern to the I/O port that maps to the AD C
card's control register . When the ADC has finished the conversion
it might set a bit (known as the End of Conversion, or EOC, bit )
in another register to indicate that digitized data is now available .
In this way, the software is able to detect the EOC bit by readin g
the corresponding I/O port. Knowing that the conversion had been
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completed, the software would then read the digitized data from a
data register mapped to a third I/O port .

I/O port allocation

Hardware devices map their registers to specific I/O ports simpl y
by decoding the PC's address bus and control lines. In this way, a
specific combination of address and control lines is needed to cause
data to be transferred from the register to the PC's data bus or vic e
versa . Some I/O ports can only be read or written, while others ar e
capable of bidirectional data transfer . Whether ports are read-onl y
(R/O), write-only (W/O) or read-write (R/W) is determined by how
the hardware decodes the address and control lines . The processor
itself makes no distinction between ports in this regard . You can stil l
perform an IN instruction for a write-only port although the results
of such an action will generally be indeterminate .

The PC and adaptor-card hardware do not fully decode the address
lines. In fact, in the IBM PC, XT, AT and compatible machines ,
including the PS/2 line, only the lower 10 lines are used . This
means that it is possible to address only 1024 separate I/O ports .
Even certain addresses within this range are not fully decoded . Thus
some devices which should require only two or three registers ma y
actually occupy a much larger block of I/O addresses : the same
registers being mirrored at a series of other addresses within the
block. A much more satisfactory approach is taken on EISA systems .
These decode the address lines more fully, providing additional I/ O
ranges that are dedicated specifically to the system motherboard o r
to adaptors residing in each of the EISA expansion bus slots . On each
class of PC, certain I/O addresses are reserved for particular devices .
Table A.3 in Appendix A provides an overview of I/O port usage an d
may be used as an aid to selecting ports for use by data-acquisitio n
adaptor cards .

I/O protection mechanism s

The PC's I/O ports are always accessible in real mode . In protected
and V86 modes, however, the processor can be programmed t o
restrict access to I/O addresses. This facility is used in multitaskin g
operating systems such as OS/2 and Windows NT to control which
processes (i .e. running programs) will be allowed to read and writ e
the I/O ports. In this way it is possible for the operating system t o
mediate between two or more processes that need to access the same
I/O device . The operating system runs at a high privilege level, whic h
means that it is allowed to execute certain privileged instructions .
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These include instructions that access the I/O ports and those whic h
change the state of the processor 's Interrupt Flag (see Chapter 5) .

In protected and V86 modes, when a program operating at a
low privilege level attempts to execute one of the privileged I/ O
instructions, the processor generates a General Protection exception .
This causes control to be immediately passed to the operating system ,
which can then oversee the I/O port access . The details of this process
are quite involved and cannot be covered here . You should consult
a text such as Hummel (1992) for more on this topic .

One of the consequences of the I/O protection mechanism i s
that an application program running in protected or V86 mode
(e .g. under OS/2 or Windows) will generally be prevented fro m
directly accessing the I/0 ports . I/0 port accesses require at least
some operating system intervention and this reduces the maximum
possible throughput of the system. It also contributes to a degree o f
uncertainty in the speed at which the system will respond. This can
be a particularly important consideration when designing a real-tim e
DA&C program .

1 .5 Buses and adaptor card slots

Passing data to and from a DA&C card via an I/O port actu-
ally involves transferring the data over one or more system buses .
Figure 1 .2 illustrates a variety of buses that can be interfaced to the
PC. A typical PC may not contain all of the buses shown, althoug h
the PCI and ISA buses are present in most systems . Other types
of bus (many of them proprietary systems) can be interfaced by
means of special adaptors or bridges to the PC. The IEEE-488 bus
and the VXI bus, for example, are used in specialized instrumen-
tation applications . Of primary concern here though are the PC' s
native buses – i .e . the ones that are an integral part of the PC's ow n
architecture .

The type of bus used within the PC not only has a bearing o n
the type of interface card that can be connected, it may also hav e
a profound effect on the throughput of the system as a whole .
Although normal bus operation cannot be modified under softwar e
control and is largely transparent to the programmer, it is of grea t
importance in interfacing and so a brief overview is provided below .

The 1SA bus

Until the mid-to-late 1990s, the Industry Standard Architecture (ISA )
bus dominated the PC market and was the interface used for most
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Figure 1 .2 Example bus connections and interfaces on a PC used for dat a
acquisition . Note that not all devices and buses shown will be present on ever y
system, and some systems will incorporate additional device s

plug-in DA&C cards. It is derived from the earlier, and slower, 8-bi t
bus used in the IBM PC and XT (known as the PC bus or XT bus) .
Note that the 16-bit ISA bus (also known as the AT bus because i t
was introduced in the IBM AT computer) is in some literature also
misleadingly referred to as the PC bus .

The ISA bus incorporates a number of enhancements over th e
XT bus, such as a 16-bit data path, a 16 MB addressing capability,
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an increased number of interrupt request lines (see Chapter 5) and
additional DMA channels (see Chapter 6) . The extra data, addres s
and control lines necessary to interface to ISA type adaptor card s
were added in a second connector placed in line with the origina l
XT type connector . Although a few of the connector pins on the XT
connector were redesignated, the ISA bus connector provides ful l
backward compatibility with the older XT cards . Most ISA machine s
are equipped with several 16-bit ISA slots and one or two 8-bit X T
type slots . With a few exceptions (noted below), 8-bit cards can als o
be inserted in the XT portion of 16-bit ISA slots .

The ISA bus clock speed is not tied to the processor clock a s
it was in the XT bus . Widely differing bus and processor clock
speeds are used on ISA machines and synchronization between th e
two is maintained by means of special support circuits . The IBM
AT's bus was clocked at 8 MHz . Many newer systems allow the bu s
clock speed (and indeed the processor and DMA clock speeds) to
be reprogrammed using a BIOS configuration utility . The chosen
speed is recorded in the system's CMOS RAM . A high frequency
(e.g. 10 or 11 MHz) may be selected provided that all adaptor card s
will operate reliably at this speed . Most modern ISA adaptor card s
are capable of running at 10 or 11 MHz, but some older DA&C cards
are not .

Bear in mind that even the standard 8 MHz ISA clock speed
may be incompatible with some older ADC or counter/timer card s
that were intended specifically for IBM PC or XT systems . These
cards are designed to provide their on-board components with cloc k
signals derived from the PC's 4 .77 MHz bus clock and are, therefore ,
unsuitable for use with the higher clock frequencies present on th e
ISA bus . Indeed they are also incompatible with the 8 or 10 MH z
XT buses employed in some XT clones . Generally speaking, this i s
no longer a problem with modern DA&C cards as these tend to be
driven from their own dedicated oscillator, rather than from th e
system bus clock . You should, however, be wary of this potentia l
difficulty when using some pre-1990 DA&C cards .

Today, new desktop PCs now rarely possess more than one or
two ISA card connectors, the remaining expansion capability bein g
provided by the PCI bus, which we will discuss shortly . However ,
the ISA bus is far from obsolete in the industrial data-acquisition
market. Many rack-mounted industrial PCs still employ this standar d
and there are numerous ISA bus DA&C cards still on the market .
Before discussing the PCI bus, it is appropriate to briefly mentio n
two other buses: the MCA bus and the EISA bus. Although these are
both technically superior to the ISA bits in many respects, they hav e
not enjoyed such widespread use .



20 PC interfacing and data acquisitio n

The MCA bus

The MCA (Micro-Channel Architecture) bus was developed by IB M
for its range of PS/2 computers. MCA was more rigidly specified
than the ISA bus in terms of it physical, electrical and timin g
characteristics, and incorporated a software-based card configura-
tion facility. The latter feature, called Programmable Option Selec t
(POS), circumvented the need to use DIP switches or jumper s
for selecting options such as base address or interrupt levels . As
all configuration is performed via manufacturer-supplied software ,
the details of POS operation are rarely of interest to the DA& C
programmer. Readers are referred to the text by Eggebrecllt (1990 )
for more information on POS .

The EISA bus

The main disadvantage of the MCA bus was its incompatibility with
the earlier XT and ISA buses . A consortium of PC manufacturer s
attempted to circumvent this problem by developing an enhance d
version of the ISA bus, known as the Extended Industry Standard
Architecture, or EISA, bus. This provided a number of benefit s
similar to those of MCA while maintaining full backward compati-
bility with ISA cards. EISA buses, which are used in some 80386 an d
later systems, incorporate a 32-bit data bits and have an enhance d
slot-specific I/O addressing capability . Like MCA, EISA cards are
configured by means of software utilities and data files supplied b y
the manufacturer.

The PCI local bus

Local buses began to emerge as potential competitors to conven-
tional expansion buses such as ISA in the mid-1990s . Whereas
conventional buses have to employ special circuitry to manage bus
traffic and to synchronize high speed processors with slower bu s
operations, local buses are more tightly coupled to the processor .

Currently, the dominant local bus standard is Intel's PCI
(Peripheral Component Interconnect) bus. Although the latest PCI
standard (version 2 .2) allows for 64-bit transfers at 66 MHz, standar d
PC-based PCI implementations currently provide a 32-bit data path .
Because PCI operates at the processor's clock frequency (i .e. the
frequency of the clock signal supplied to the processor, rather tha n
the processor's internal clock frequency), it is capable of very hig h
rates of throughput. The PCI bus also supports bus mastering i n
which PCI devices can take control of the bus in order to transfer
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data. This is much like the DMA technique used on the ISA bus (see
Chapter 6) . The principal difference is that each device supplies
its own bus-mastering hardware rather than relying on the PC's
DMA controller. Additional performance enhancements can ofte n
be realized by this means because bus transfers can be carried ou t
in parallel with certain processor operations . PCI devices can, for
example, exchange data along the bus at the same time that th e
processor is accessing system memory .

Transfer rates

Table 1 .2 summarizes the main characteristics of the buses discusse d
so far . A 32-bit PCI bus clocked at 33 MHz can, in theory, provide a
data transfer rate of 132 MB/s . This represents a huge increase ove r
conventional buses . An 8 MHz ISA bus was, for example, capable of
transferring data at up to 16 MB/s . The MCA and EISA buses far e

Table 1 .2 PC expansion buse s

Bus

Address
width
(bits)

Data
width
(bits)

Standard
clock rate

(MHz)

Max .
throughou t
at standard

clock
(MB/s) Notes

PC (XT )

ISA (AT )

MCA

EIS A

PCI

2 0

2 4

2 4

3 2

32

8

1 6

3 2

3 2

32 or 64

8

8

Variabl e
(typi -
call y
10-20 )

8

33 or 66

8

1 6

20-160

33

132( 1)

Six IRQ lines . Three DMA
channels .

Twelve IRQ lines . Seven
DMA channels .

Maximum transfer rates
achieved in data
streaming mode . DMA
implemented via bu s
mastering with up to 1 6
arbitrating devices .

Quoted throughpu t
achieved in data
streaming mode .

Intelligent bus masterin g
with support for DMA .
Quoted transfer rate i s
achievable in burs t
mode only .( 1 )

(1) For a 32-bit implementation running at 32 MHz . Maximum throughput increases propor-
tionately for faster or wider versions of PCI .
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somewhat better . MCA supports 32-bit data transfers at rates up t o
20 MB/s. Higher rates (typically 40 to 80 MB/s) are achievable with a
special data streaming mode . EISA systems provide bus transfer rate s
of up to 32 MB/s . Bear in mind that these maximum transfer rate s
cannot always be realized in practice . Throughput is often limite d
by factors other than bus bandwidth .

The AT's DMA controller can provide a throughput of up t o
approximately 1 MB/s (or 2 MB/s, depending upon whether a n
8-bit or 16-bit DMA channel is used) . A greater throughput can
sometimes be achieved using programmed I/O : typically up to
3 MB/s on a fast machine . In practice, however, delays inheren t
in other components (e .g. the ADC conversion time, multiplexe r
settling times, signal conditioning bandwidth – see Chapter 3) ten d
to be the principal throughput-limiting factors . For this reason, the
maximum bus transfer rate cannot usually be realized and in man y
applications bus speed has only a minimal effect on the overal l
system throughput . DMA, programmed I/O and throughput rate s
are discussed in more detail in Chapter 6 .

PCMCIA interface

Like local buses, PCMCIA cards (sometimes known as just P C
cards) are a fairly recent innovation in PC interfacing . The PCMCIA
(Personal Computer Memory Card International Association) stan-
dard defines a hardware and software interface for attaching minia-
ture adaptor cards to the PC. It was originally intended as a standard
bus for interfacing removable memory cards to portable computers ,
although it has now been adopted for other peripheral device s
such as serial ports, modems, network interfaces and hard disks .
DA&C component manufacturers now also produce data acqui-
sition cards in PCMCIA format. At the time of writing, these
devices are largely limited to simple mainstream DA&C functions ( 8
channel multiplexed ADCs, dual DAC cards, counter/timers, simpl e
digital I/O facilities etc .) and provide reasonably high, although no t
exceptional, throughput. Few PCMCIA cards offer more advance d
features such as very high speed ADCs, FIFO buffers or an on -
board processing capability. A number of industrial communication s
PCMCIA cards (RS-232/422/485 or IEEE-488) are also available .

As mentioned above, PCMCIA cards are small : about 2 inche s
(50 mm) across . They are produced in various thicknesses : Type I
cards are 3.3 mm thick ; Type II cards are 5 .0 mm thick ; and
Type III are 10 .5 mm thick. The extra thickness of Type III cards i s
required principally to accommodate miniature hard disks and radi o
frequency communications products. DA&C cards are normally of
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Type II . Most notebook PCs are able to accommodate at least two o f
these Type II cards, permitting moderately complex DA&C systems
to be designed around a portable computer .

PCMCIA cards offer several benefits. They are software config-
urable, so installation (I/O address selection, interrupt selectio n
etc.) can generally be automated . Apart from the fact that they
follow a fairly rigid specification in terms of power usage, signal
timing, and physical size, they also offer specific advantages for user s
of DA&C systems. Their 16-bit data bus provides reasonably high
rates of throughput at moderate cost . Because of their size, PCMCIA
cards are extremely portable and, when used in conjunction wit h
notebook PCs, open up the possibility of data acquisition in awkward
environments (e .g. in moving vehicles) . They can be unplugged
from the PC or from other DA&C system components, facilitatin g
relocation from one DA&C site to another . PCMCIA cards also hav e
a hot insertion capability. This permits cards to be removed from the
computer and swapped for other cards without having to switch off
the PC .

Due to the small size of the cards, subminiature connectors are
employed . This means that PCMCIA DA&C cards normally have to b e
used in conjunction with extension cables and screw terminal panel s
which will accept the field connections from transducers or signal -
conditioning units . In certain applications, these devices may als o
include sensor excitation references or isothermal connections fo r
thermocouple cold-junction compensation (see Chapter 3) . As the
PCMCIA circuit board is fully enclosed it is difficult to gain access t o
trimpots or to test points for calibration or fault diagnosis . However,
PCMCIA DA&C cards are normally factory calibrated where neces-
sary and any subsequent recalibration can usually be performed b y
adjusting scaling factors and offsets in software (see Chapter 9) . Mos t
PCMCIA card manufacturers supply software drivers and, in many
cases, configuration, calibration and diagnostics programs as well .

Industrial and instrumentation buses

As mentioned previously, the standard desktop PC format is no t
robust enough for use in harsh industrial environments . Indus-
trial DA&C systems often employ ruggedized versions of the PC i n
specially designed rack-mounted enclosures . However, the physica l
properties of the enclosure are not the only consideration . The stan-
dard PC architecture may not have the interfacing support needed t o
directly manage some complex industrial sensing or control systems .
It does, nevertheless, have many other advantages (noted in the
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introduction to this chapter) which makes it highly desirable in thi s
type of application .

A number of manufacturers have attempted to bridge the ga p
between the desktop PC and more robust industrial systems b y
producing versions of the XT, ISA or PCI buses in a passive backplan e
format that is suitable for use in industrial 19 inch rack-mounte d
enclosures . These backplanes usually have a large number of expan -
sion slots allowing various types of processor cards, I/O interfac e
boards, and other adaptor cards to be attached .

Special adaptors known as bridges are available, which permi t
devices on the PC bus to interface to a range of more specialize d
industrial buses. These buses tend to be modular and rigidly speci-
fied, allowing them to be easily interfaced to industry-standard I/ O
devices . There are three main types of bus : STE/STD, Multibus
and VME. The STE bus is an 8-bit bus capable of addressing 1 M B
of memory and 4 KB of I/O space . STE was developed from th e
earlier 8-bit STD bus standard . Multibus also permits access to a
1 MB memory space, but allows 16-bit data transfers . Its successor ,
Multibus II, provides an enhanced addressing capability and is suit-
able for use with 32-bit processors . The VME bus has been widely
used in embedded systems for some years . It is capable of 8-, 16- ,
32- or 64-bit data transfers . 32-bit VME systems can achieve data
transfer rates of up to 40 MB/s ; 64-bit implementations can achieve
twice this . Depending upon its configuration, VME can address up to
4 GB of memory, but it has no I/O space . Instead all I/O operation s
are memory mapped . An important variant of the VME bus is VXI .
This incorporates the 32-bit VME data bus as well as a number o f
extensions for synchronizing and managing instruments on the bus .

Finally there are specialized implementations of PCI . Several
versions of this standard bus have been developed for use in indus-
trial embedded systems. One of the most promising of these i s
CompactPCl. From a functional point of view, this is very similar to a
standard PCI system, although it incorporates a number of mechan-
ical and electrical design enhancements (including a differen t
connector, a new circuit board format and support for hot swappin g
of circuit boards) which make it more suited to industrial use .

It is necessary to employ a suitable interface (or bridge) in orde r
to connect an external bus, such as Multibus or VXI, to the PC's IS A
bus. The bridge performs many functions. For example, registers
or buffers belonging to devices present on the external bus mus t
be mapped into the PC's I/O space or into its memory space .
Various techniques can be used . Multibus employs DMA technique s
(see Chapter 6) to transfer data between the PC and the externa l
bus. Memory mapping may be accomplished using a type of page
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mapping similar to that used by the EMS . This permits regions o f
the external bus 's memory space to be selectively mapped into a
64 KB page frame within the PC's addressable range . Alternatively ,
the external memory is sometimes mapped to the top of the PC' s
4 GB memory space . The latter option is only possible with 8038 6
or later processors and with operating system software that permit s
32-bit addressing. Interrupt requests on the external bus must als o
be mapped onto the PC's own interrupt levels (see Chapter 5 fo r
an explanation of interrupts) . Again, a number of different scheme s
are used. The external bus may provide more interrupt signals tha n
are available on the PC and, in these instances, several external
bus interrupts may be mapped to the same PC interrupt level .
Alternatively, the external bus may support shared interrupt lines
and the different interrupt allocations must be resolved by the bridg e
interface (possibly in conjunction with suitable software) .

In general, the interface is implemented in such a way that the P C
software can regard the external bus simply as an extension of it s
own PCI or ISA bus . Manufacturers of VME and STE bus devices ma y
supply driver programs for use in conjunction with DOS or Windows
applications running on the PC . The presence of the external bus
is thus largely transparent to the DA&C programmer, although the
devices connected to it (e .g. other PC boards, instruments and I/ O
devices) can have a profound effect on what the software is abl e
to do. In addition, the bus implementation and bridge circuits ca n
sometimes introduce interrupt (and other) latencies which may have
to be addressed in real-time systems .

Other buses

Many other buses and communications standards, which ar e
commonly used in PC-based DA&C systems, have not yet been
mentioned: for example, IEEE-488, the Centronics parallel port ,
and a variety of serial buses such as RS-232, RS-422, RS-485 and USB .
We will describe most of these in subsequent chapters . In addition ,
there are several systems and protocols, such as HARP (Highwa y
Addressable Remote Transfer) and BitBus, used in industrial sensin g
and control applications, as well as a number of proprietary DA& C
buses (e .g. DT-Connect and Metrabus) , which are outside the scop e
of this book .
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The architecture of the PC is reasonably well suited to data acqui-
sition . Most of the problems that occur in designing DA&C system s
result from limitations imposed by software . In fact, the most seriou s
obstacles to writing effective data acquisition software are usuall y
generated by the PC's operating systems . In this chapter we wil l
discuss the main requirements of data-acquisition software and wil l
describe some of the problems posed by using operating systems
intended for desktop applications in the more demanding environ-
ment of a real-time DA&C system .

2.1 An overview of DA&C software

In addition to code that acquires data or issues control signals, i t
is usual for DA&C software to incorporate a number of suppor t
modules which allow the system to be configured and maintained .
Other routines may be required for sorting, analysing and displayin g
the acquired data . A typical DA&C program may contain th e
following modules and facilities :

• program configuration routine s
• diagnostics module s
• system maintenance and calibration module s
• run-time module s
• device drivers
• data analysis modules .

With the exception of device drivers, these modules are execute d
more or less independently of each other (although it is, of course ,
possible for multitasking systems to execute two or more concur-
rently) . A brief overview of the main software components of a
typical DA&C system is given below . Particular systems may, of
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course, differ somewhat in the detail of their implementation but
most applications will require at least some of these modules .

Program configuration routines

These software routines may be used for initial configuration o f
elements of the system that the end user would normally neve r
(or very infrequently) have to change . This might include facilitie s
for selecting and setting tip hardware and driver options; for spec-
ifying how data is to be routed through software `devices' (suc h
as comparators, triggers, data-scaling operators, software latches ,
logical operators, or graphical displays etc) ; for defining start, sto p
and error conditions, or for selecting delays, run times and dat a
buffer sizes .

Diagnostic modules

Once a DA&C program has been tested and debugged, any diag-
nostic routines which the designer may have included for testin g
are often removed or disabled . However, their value should no t
be underestimated in `finished' (i .e . operational) systems. Routines
such as these can be invaluable tools during installation and fo r
subsequent system maintenance . Often, the dynamic and transien t
nature of input/output (I/O) signals and the complex interrelatio n
between them can make it very difficult to reproduce a fault during
static testing with a voltmeter, continuity tester or a logic probe . Well-
designed diagnostic routines can be a great benefit to maintenance
engineers should a fault occur somewhere in the DA&C system .

With a little care and thought it is usually quite straightforward to
implement a range of simple but useful diagnostic routines . These
can be made to monitor aspects of the DA&C system either durin g
normal operation or when the system is placed in a special test
mode . On the simplest level, the diagnostic routines might check fo r
incorrect hardware or software configuration . They might also b e
designed to perform continuous tests during normal operation of th e
system. This might include checking for interruptions in communi-
cation between system components, ensuring correct timing of I/ O
control signals, and monitoring or validating data from individua l
sensors .

Diagnostic software routines have their limitations, however, an d
other means of fault finding must be used where appropriate .
Various items of test equipment such as voltmeters, logic probes, an d
logic pulsers may also be needed . More sophisticated equipment i s
sometimes required, especially when dealing with rapid pulse trains .
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Digital storage, or sampling, oscilloscopes allow high frequenc y
waveforms to be captured and displayed . These are especially suite d
to monitoring digital signals on high speed parallel buses or seria l
communications links . Where it is necessary to see the relationshi p
between two or more time varying signals, logic analysers may b e
used . These devices possess multiple (typically 32) probes, each o f
which detects the logic state of some element of the digital I/ O
circuit under test. Logic analysers are controlled by a dedicate d
microcomputer and can be programmed to provide a snapsho t
of the logic states present at the probes on a display screen. Th e
conditions for triggering the snapshot – i .e. a selected pattern o f
logic states – can be programmed by the user . The device may also
be used for timing analysis, in which case it operates in a similar wa y
to a multiple-beam oscilloscope .

In addition to these items of equipment, purpose-built test
harnesses may be used in conjunction with diagnostic software .
Test harnesses may consist of relatively simple devices such as a
bank of switches or LEDs which are used to check the continuit y
of digital I/O lines . At the other extreme a dedicated computer
system, running specially designed test software, may be require d
for diagnosing problems on complex DA&C systems . See the Soft -
ware production and testing section later in this chapter for more on
this topic .

System maintenance and calibration module s

Tasks such as calibrating sensors, adjusting comparators, and tunin g
control loops might need to be carried out periodically by the user.
Because any errors made during calibration or control loop tunin g
have the potential to severely disrupt the operation of the DA& C
system, it is essential for the associated software routines to be a s
robust and simple to use as possible .

One of the most important of these system maintenance tasks i s
calibration of analogue input (i .e. sensor) channels . Many sensor s
and signal-conditioning systems need to be recalibrated periodi-
cally in order to maintain the system within its specified operatin g
tolerance. The simplest approach (from the program designer' s
perspective) is to require the user to manually calculate scalin g
factors and other calibration parameters and then to type these
directly into a data file etc . It goes without saying that this approach
is both time consuming and error prone . A more satisfactory alterna -
tive is to provide an interactive calibration facility which minimize s
the scope for operator errors by sampling the sensor 's input at
predefined reference points, and then automatically calculating the



Software considerations 2 9

required calibration factors . We will resume our discussion of thi s
subject in Chapter 9 which covers scaling and interactive calibratio n
techniques in some detail .

Run-time modules

These, together with the device drivers, form the core of any DA& C
system . They are responsible for performing all of the tasks require d
of the system when it is `live' – e .g. reading sensor and status inputs ,
executing control algorithms, outputting control signals, updatin g
real-time displays or logging data to disk .

The nature of the run-time portion varies immensely . In some
monitoring applications, the run-time routine may be very simpl e
indeed. It might, for example, consist of an iterative polling loop tha t
repeatedly reads data from one or more sensors and then perhap s
stores the data in a disk file or displays it on the PC's screen . In
many applications other tasks may also have to be carried out . These
might include scaling and filtering the acquired data, or executin g
dynamic control algorithms .

More complex real-time control systems often have very stringen t
timing constraints . Many interrelated factors may need to be consid-
ered in order to ensure that the system meets its real-time respons e
targets. It is sometimes necessary to write quite elaborate interrupt
driven buffered I/O routines or to use specially designed real-three
operating systems (RTOSs) in order to allow accurate assessment s
of response times to be made . The software might be required t o
monitor several different processes in parallel . In such cases, thi s
parallelism can often be accommodated by executing a numbe r
of separate program tasks concurrently. We will discuss concurren t
programming later in this chapter .

Drivers

A diverse range of data-acquisition units and interface cards are no w
on the market. The basic functions performed by most devices are
very similar, although they each tend to perform these functions in a
different manner. The DA&C system designer may choose from th e
large number of analogue input cards that are now available . Many
of these will, for example, allow analogue signals to be digitized
and read into the PC, but they differ in the way in which thei r
software interface (e.g. their control register and bit mapping) i s
implemented .

To facilitate replacement of the data-acquisition hardware it i s
prudent to introduce a degree of device independence into the
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software by using a system of device drivers . All I/O is routed through
software services provided by the driver . The driver's service routine s
handle the details of communicating with each item of hardware .
The main program is unaware of the mechanisms involved in the
communication : it only knows that it can perform I/O in a consisten t
manner by calling a well-defined set of driver services . In this way
the data-acquisition hardware may be changed by the end user and ,
provided that a corresponding driver is also substituted, the DA& C
program should continue to function in the same way . This provide s
some latitude in selecting precisely which interface cards are to b e
used with the software . For this reason, replaceable device drivers ar e
commonplace in virtually all commercial DA&C programs . Protected
operating systems such as Windows NT perform all I/O via a comple x
system of privileged device drivers .

Data analysis modules

These modules are concerned mainly with post-acquisition anal-
ysis of data. This might include, for example, spectral analysi s
or filtering of time varying signals, statistical analysis (includin g
Statistical Process Control (SPC)), and report generation . Many
commercial software packages are available for carrying out thes e
activities . Some general-purpose business programs such as spread -
sheets and graphics/presentation packages may be suitable fo r
simple calculations and for producing graphical output, but ther e
are a number of programs which cater specifically for the needs o f
scientists, engineers and quality control personnel . Because of this ,
and the fact that the details of the techniques involved are so varied,
it is impracticable to cover this subject in the present book . A variety
of data reduction techniques are described by Press et al. (1992) an d
Miller (1993) .

2.2 Data acquisition and control in real tim e

Data-acquisition systems that are designed for inspection or dimen-
sional gauging applications may be required to gather data at onl y
very low speeds . In these cases, the time taken to read and respond t o
a series of measurements may be unimportant . Because such system s
usually have quite undemanding timing requirements, they tend to
be relatively straightforward to implement . The choice of computing
platform, operating system and programming language is usually no t
critical . A surprisingly large number of industrial DA&C application s
fall into this category. However, many don't .
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High speed DA&C normally has associated with it a variety o f
quite severe timing constraints . Indeed the PC and its operating
systems cannot always satisfy the requirements of such applications
without recourse to purpose-built hardware and/or special codin g
techniques. High speed processors or intelligent interface device s
may be required in order to guarantee that the system will be capable
of performing certain DA&C operations within specified time limits .

A real-time DA&C system is one in which the time take n
to read data, process that data and then issue an appropriat e
response is negligible compared with the timescale over which
significant changes can occur in the variables being monitore d
and/or controlled. There are other more precise definitions, bu t
this conveys the essence of real-time data acquisition and control .

A typical example of a real-time application is a furnace contro l
system. The temperature is repeatedly sampled and these reading s
are then used to control when power is applied to the heating
element. Suppose that it is necessary to maintain the temperatur e
within a certain range either side of some desired setting . The system
detects when the temperature falls to a predefined lower limit an d
then switches the heating element on . The temperature then rises to
a corresponding upper limit, at which point the monitoring syste m
switches the heating element off again, allowing the temperature to
fall . In this way, the temperature repeatedly cycles around the desire d
mean value . The monitoring system can only be said to operate in
real time, if it can switch the heating element in response to change s
in temperature quickly enough to maintain the temperature of th e
furnace within the desired operating band .

This is not a particularly demanding application – temperatur e
changes in this situation are relatively slow, but it does illustrate
the need for real-time monitoring and control systems to operate
within predefined timing constraints . There are many other exam-
ples of real-time control systems in the process and manufacturing
industries (such as control of reactant flow rate, controlling compo-
nent assembly machines, and monitoring continuous sheet meta l
production, for example) which all have their own particular timing
requirements . The response times required of real-time system s
might vary from a few microseconds up to several minutes or longer .
Whatever the absolute values of these deadlines, all real-time system s
must operate to within precisely defined and specified time limits .

Requirements of real-time DA&C systems

As mentioned previously, normal PC operating systems (DOS ,
Microsoft Windows and OS/2) do not form an ideal basis for
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real-time applications . A number of factors conspire to make th e
temporal response of the PC somewhat unpredictable . Fortunately
there are ways in which the situation can be improved . These tech-
niques will be introduced later in this section, but first we wil l
consider some of the basic characteristics that a real-time compute r
system must possess . In addition to the usual properties required o f
any software, a real-time system must generally satisfy the following
requirements .

Requirement 1 : high speed
The most obvious requirement of a real-time system is that it shoul d
be able to provide adequate throughput rates and response times .
Fortunately, many industrial applications need to acquire data a t
only relatively low speeds (less than one or two hundred reading s
per second) and need response times upwards of several tens of
milliseconds. This type of application can be easily accommodate d
on the PC. Difficulties may arise when more rapid data acquisitio n
or shorter responses are required .

Obviously a fast and efficient processor is the key to meeting thi s
requirement. As we have already seen, modern PCs are equippe d
with very powerful processors which are more than adequate fo r
many DA&C tasks . However, the memory and I/O systems, as well a s
other PC subsystems, must also be capable of operating at high speed .
The disk and video subsystems are notorious bottlenecks, and thes e
can severely limit data throughput when large quantities of data ar e
to be displayed or stored in real time . Fortunately, most modern PC
designs lessen this problem to some extent by making use of high
speed buses such as the Small Computer Systems Interface (SCSI )
and the PCI local bus . Modern Pentium-based PCs are very powerfu l
machines and are capable of acquiring and processing data at eve r
increasing rates. Older XT and 80286- or 80386-based computer s
offer a lower level of performance, but are still often adequate in less
demanding applications .

Requirement 2 : determinism
A deterministic system is one in which it is possible to precisely predic t
every detail of the way in which the system responds to specific event s
or conditions . There is an inherent predictability to the sequenc e
of events occurring within most computer programs, although th e
timing of those events may be more difficult to ascertain . A more
practical definition of a deterministic system is one in which the time s
taken to respond to interrupts, perform task switches and execute
operating system services etc . are well known and guaranteed . In



Software considerations 3 3

short, a deterministic system has the ability to respond to externa l
events within a guaranteed time interval .

Determinism is an important requirement of all real-time systems.
It is necessary for the programmer to possess a detailed knowledg e
of the temporal characteristics of the operating system and device
drivers as well as of the DA&C program itself . This knowledge is a n
important prerequisite for the programmer to assess the worst-cas e
response of the system and thus to ensure that it meets specifie d
deadlines .

Requirement 3 : high resolution timekeeping and pacin g
facilities
In addition to being able to operate within given time constraints, i t
is important for most real-time systems to be able to precisely measure
elapsed time. This ability is essential for the software to accuratel y
schedule I/O operations and other tasks . Where data is acquire d
at irregular or unpredictable rates, it is particularly important to b e
able to time stamp readings and other events . An accurate timin g
facility is also an invaluable aid to fault finding in dynamic systems .
The PC is equipped with a real-time clock and a set of timers whic h
are useful for this purpose . The timers function by means of the
PCs interrupt system and provide a powerful means of pacing a
data-acquisition sequence or for generating precisely timed contro l
signals . The PC's timing facilities are discussed briefly in Chapter 3 .

Requirement 4: flexible interfacing capabilit y
It should be obvious that any data-acquisition and control syste m
should be able to interface easily to sensors, actuators and othe r
equipment . This requirement covers not only the PC's physica l
interfacing capacity (i .e . the presence of appropriate plugs, socket s
and expansion slots), but also encompasses an efficient means o f
transferring data in and out of the computer .

The PC possesses a very flexible interfacing system. As mentioned
previously, this is implemented by means of the standard ISA, EISA ,
MCA or PCI expansion buses or PCMCIA slots . The PC also facilitates
processor-independent high speed I/O using techniques known as
Direct Memory Access (DMA) and bus mastering . These facilitie s
give the PC the capability to interface to a range of external buses an d
peripherals (e .g. data-logging units, sensors, relays and timers) vi a
suitable adaptor cards . Indeed, adaptor cards for RS-232 ports an d
Centronics parallel ports, which can be used to interface to certai n
types of DA&C hardware, are an integral component of almost al l
PCs. Interfacing, data transfer and DMA are discussed in more detai l
in Chapters 3, 6, 7 and 8 .
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Requirement 5 : ability to model real-world processes
It should also be apparent to the reader that the logical structur e
of a real-time DA&C system should adequately mirror the processe s
that are being monitored . As we shall see on the following page s
this requirement sometimes necessitates using a specially designe d
real-time operating system. In less demanding applications, however ,
such a step is unnecessary provided that due care is taken to avoi d
some of the pitfalls associated with standard `desktop' operatin g
systems .

Requirement 6 : robustness and reliability
Again, this is a rather obvious requirement but its importance
cannot be overstated. A number of steps can be taken to maximize
the reliability of both hardware and software . We will return to thi s
issue later in this chapter .

Simple DA&C systems

Some PC-based DA&C systems are fairly undemanding in regar d
to the detailed timing of I/O events . Many applications involve
quite low speed data logging, where samples and other events occur
at intervals of several seconds or longer . In other cases a high
average data-acquisition rate might be needed, but the times at whic h
individual readings are obtained may not be subject to very tigh t
restrictions . Often, only a single process (or a group of closel y
coupled processes) will have to be monitored and in these cases it is
usually sufficient to base the run-time portion of a DA&C progra m
on a simple polling loop as illustrated in Figure 2.1 .

This figure shows the sequence and repetitive nature of events tha t
might occur in a simple single-task application . When some prede-
fined start condition occurs (such as a keystroke or external signal )
the program enters a monitoring loop, during which data is acquired ,
processed and stored. The loop may also include actions such a s
generating signals to control external apparatus. The program exits
from the loop when some desired condition is satisfied – i .e. after
a certain time has elapsed, after a predefined number of reading s
have been obtained or when the user presses a key . In some cases ,
additional processing may be performed once the data-acquisitio n
sequence has terminated .

There are, of course, many variations on this basic theme, but th e
essence of this type of program structure is that all processing i s
performed within a single execution thread. This means that each
instruction in the program is executed in a predefined sequence,
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one after the other . There is no possibility that external events wil l
cause parts of the program to be executed out of sequence. Any tasks
which the computer does carry out in parallel with the executio n
of the program, such as responding to keystrokes, `ticks' of the in -
built timer or to other system interrupts, are essentially part of th e
operating system and are not directly related to the functioning of
the DA&C program .

It should be noted that events such as a timer or keyboar d
interrupt will temporarily suspend execution of the DA&C progra m
while the processor services the event (increments the time counte r
or reads the keyboard scan code) . This means that the timing of
events within the interrupted program will not be totally predictable .
However, such a system is still considered to operate in real time i f
the uncertainty in the timing of the data-acquisition cycle is smal l
compared with the timescales over which the monitored variable s
change .

Systems with more stringent timing requirement s

All real-time systems have precisely defined timing requirements . In
many cases, these requirements are such that the system must b e
designed to respond rapidly to events which occur asynchronously
with the operation of the program . In these cases, a simple polling
loop may not guarantee a sufficiently short response time . The usual
way to achieve a consistent and timely response is to use interrupts .

Interrupts
Interrupts are the means by which the system timer, the keyboard
and other PC peripherals request the processor's attention . When
service is required, the peripheral generates an interrupt reques t
signal on one of the expansion bus lines . The processor responds, as
soon as possible, by temporarily suspending execution of the curren t
program and then jumping to a predefined software routine . The
routine performs whatever action is necessary to fulfil the reques t
and then returns control to the original program, which resume s
execution from the point at which it was interrupted .

Because an interrupt handling routine is executed in preferenc e
to the main portion of the program, it is considered to have a highe r
priority than the non-interrupt code . The PC has the capacity t o
deal with up to 15 external interrupts (8 on the IBM PC, XT and
compatibles) and each of these is allocated a unique priority . This
prioritization scheme allows high priority interrupts to be allotted t o
the most time-critical tasks. With appropriate software techniques,
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the programmer may adapt and modify the interrupt priority rule s
for use in real-time applications .

The PC is equipped with a very flexible interrupt system, althoug h
the gradual evolution of the PC design has left something to be
desired in terms of the allocation of interrupts between the processor
and the various PC subsystems . When using interrupts, you shoul d
bear in mind two important considerations (although there ar e
many others) : re-entrancy and interrupt latency. These topics are
introduced below. The PC's interrupt system, and the problems o f
re-entrancy and interrupt latency, are described in more detail i n
Chapter 5 .

Re-entrant code and shared resource s
This is relevant to all types of software, not just to real-time DA&C
programs . Because external interrupts occur asynchronously with th e
execution of the program, the state of the computer is undefine d
at the time of the interrupt. The interrupt handling routine must ,
therefore, ensure that it does not inadvertently alter the state of
the machine or any software running on it . This means that it mus t
(a) preserve all processor registers (and other context information) ,
and (b) refrain from interfering with any hardware devices or data t o
which it should not have access . The last requirement means that car e
should be taken when calling any subroutines or operating syste m
services from within the interrupt handler. If one of these routines
happened to be executing at the time that the interrupt occurred ,
and the routine is then re-entered from within the interrupt handler ,
the second invocation may corrupt any internal data structures tha t
the routine was originally using. This can obviously cause sever e
problems – most likely a system crash – when control returns to th e
interrupted process . Of course, software routines can be written to
allow multiple calls to be made in this way . Such routines are termed
re-entrant.

Unfortunately most MS-DOS and PC-DOS services are not re -
entrant, and so calls to the operating system should generally b e
avoided from within interrupt handlers . Specially designed real -
time operating systems (RTOSs) are available for the PC and thes e
normally incorporate at least partially re-entrant code . The run-
time libraries supplied with compilers and other programming too l
kits may not be re-entrant . You should always attempt to identify
any non-re-entrant library functions that you use and take appro-
priate precautions to avoid the problems outlined above . A similar
consideration applies when accessing any system resource (includin g
hardware registers or operating system or BIOS data) which may be
used by the main program and/or by one or more interrupt handlers .
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Interrupt latencies

This consideration is more problematic in real-time systems. The
processor may not always respond immediately to an interrup t
request. The maximum time delay between assertion of an inter-
rupt request signal and subsequent entry to the interrupt handle r
routine is known as the interrupt latency . The length of the delay
depends upon the type of instructions being executed when th e
interrupt occurs, the priority of the interrupt relative to the cod e
currently being executed, and whether or not interrupts are currentl y
disabled. Because interrupts are asynchronous processes, the effec t
of these factors will vary. Consequently, the delay in responding t o
an interrupt request will also vary . In order to ensure that the system
is able to meet specified real-time deadlines, it is important for th e
system designer to quantify the maximum possible delay or interrup t
latency .

By careful design it is possible to ensure that the code within a
DA&C program does not introduce excessive delays in respondin g
to interrupts . However, most programs occasionally need to cal l
operating system or BIOS services . The programmer must ensure
that the system will still respond within a specified time, even i f
an interrupt occurs while the processor is executing an operatin g
system service . Unfortunately, standard desktop operating system s
such as DOS and Microsoft Windows are not designed specificall y
for real-time use . These operating systems generally exhibit quite
long interrupt latencies (particularly Windows) . Typical figures are
in the order of 10–20 ms, although you should not place too much
reliance on this value as it will vary quite considerably between
applications . Unfortunately, interrupt latency data for Windows an d
MS-DOS is hard to come by . Such operating systems are known a s
non-deterministic .

The magnitude of the problem can be reduced if real-tim e
operating systems (RTOSs) are used . These operating systems are
designed so as to minimize interrupt latencies. They are usually
essential if latencies of less than about 1 ms are required . The
interrupt latencies applicable to various parts of the RTOS are als o
generally documented in the operating system manual, allowing the
programmer to ensure that the whole system is capable of meetin g
the required response deadlines .

Concurrent processing

Systems monitored or controlled by real-time DA&C software often
consist of a number of separate processes operating in parallel . I f
these processes are asynchronous and largely independent of each
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other it may be very difficult to represent them adequately in a
simple, single-threaded program . It is usually more convenient to
model parallel processes within the computer as entirely separat e
programs or execution threads . This arrangement is illustrated i n
Figure 2 .2 which shows three separate processes being execute d
in parallel (i .e. three separate instances of the single-task loop o f
Figure 2 .1) .

Ideally, each process would be executed independently by a
separate computer . We can go some way towards this ideal situa-
tion by delegating specific real-time tasks to distributed intelligen t
data-logging or control modules . Many factory automation systems
adopt this approach . Dedicated data-acquisition cards, with on-boar d
memory buffers and an intrinsic processing ability, can also be used t o
provide a degree of autonomous parallel processing. Other paralle l
processing solutions are also available, but these generally involv e
the use of separate multiprocessing computer systems and, as such ,
are beyond the scope of this book .

The most common way of modelling parallel processes on the P C
is to employ concurrent programming (or multitasking) techniques .
Most modern PCs are equipped with 80386, 80486 or Pentiu m
processors and these incorporate features which greatly facilitate
multitasking . On single-processor systems such as the PC, concur -
rent execution is achieved by dividing the processor's time betwee n
all executing programs. The processor executes sections of eac h
program (or task) in turn, switching between tasks frequently enoug h
to give the impression that all tasks are being executed simultane-
ously. This technique is used in multitasking operating systems suc h
as OS/2, Windows and UNIX .

Scheduling
Clearly, there must be a set of rules governing how and when tas k
switching is to occur. These rules must also define the proportions o f
time assigned to, and the priorities of, each program . The process of
allocating execution time to the various tasks is known as schedulin g
and is generally the responsibility of the operating system . The
basic principles of scheduling are quite straightforward although th e
details of its implementation are somewhat more complex .

There are several ways in which a task scheduler can operate . In
a system with pre-emptive scheduling, the operating system migh t
switch between tasks (almost) independently of the state of each task .
In non-pre-emptive scheduling, the operating system will perform a
task switch only when it detects that the current task has reached a
suitable point.. If, for example, the current task makes a call to a n
operating system service routine, this allows the operating system to
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check whether the task is idle (e .g. waiting for input) . If it is idle ,
the operating system may then decide to perform more useful work
by allowing another process to execute . This makes for efficien t
use of available processor time, but, as it relies on an individua l
task to initiate the switch, it does allow poorly behaved tasks to ho g
the processor. This is obviously undesirable in real-time application s
because it may prevent other processes from executing in a timely
manner. Pre-emptive scheduling, on the other hand, provides for a
fairer division of time between all pending processes, by making the
operating system responsible for regularly initiating each task switch .

Task switching, threads and processe s
Whenever the operating system switches between tasks it has to save
the current context of the system (including processor registers,
pointers to data structures and the stack), determine which tas k
to execute next, and then reload the previously stored contex t
information for the new task . This processing takes time, whic h
in a real-time operating system should be as short as possible .
Most multitasking `desktop' operating systems use the advance d
multitasking features available on 80386 and later processors t o
implement a high degree of task protection and robust task switching .
However, this type of task switching can be too time consuming for
use in high performance real-time systems .

Other operating systems, such as those designed for real-tim e
use, minimize the switching overhead by allowing each process (i .e .
executing program) to be divided into separate execution threads.
Threads are independent execution paths through a process. They
can generally share the same code and data areas (although they
each tend to have their own stack segment), and are normally
less isolated from each other than are individual processes in a
multitasking system . There is also less context information to be
saved and restored whenever the operating system switches betwee n
different threads, rather than between different processes . This
reduces the amount of time taken to perform the context switch .
Although not intended for hard real-time applications, Microsof t
Windows NT supports multi-threaded processes .

The term `task' is used somewhat loosely in the remainder of thi s
chapter to refer to both processes and threads .

Real-time design considerations : a brief overview

As mentioned previously many PC-based data-acquisition systems wil l
not be required to operate within the very tight timing constraints
imposed in real-time control applications . However, it is useful for
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programmers involved in producing any type of time-dependen t
application to have a basic understanding of the fundamental s
of real-time design . Even if you do not plan to implement thes e
principles in your own systems, the following introduction to the
subject may help you to avoid any related potential problems .

Structure of real-time multitasking programs
A typical real-time system might consist of several tasks running i n
parallel . The division of processing between tasks will usually b e
assigned on the basis of the real world processes which the syste m
must model . Each task will often be assigned to a separate, and more
or less independent, physical process .

A typical example is the control of a manufacturing proces s
for producing rolled metal or polymer sheet . One task might be
dedicated to monitoring and controlling product thickness . Another
may be assigned to regulating the temperature to which the material
is heated prior to being passed through the rollers . Yet another tas k
could be used for periodically transferring thickness, temperatur e
and status information to the display . A similar arrangement is shown
in Figure 2 .3 .

The interface between the various tasks and the data-acquisition
hardware is often implemented by means of one or more interrup t
handlers. These are normally contained within some form of dedi-
cated device driver and are designed to allow the system to respond
quickly to external events . Data acquired via an interrupt handle r
might be stored in a memory buffer until the associated task is abl e
to read and process it . The individual tasks are responsible for opera-
tions such as data logging, display maintenance or data reduction . A
task might also be assigned to perform real-time calculations or test s
on the acquired data . The results can then be used as the basis fo r
generating control signals which are output to external equipment .
In general, time-critical operations are performed by high priorit y
tasks, allowing them to take precedence over less critical operation s
such as managing the user interface .

There is generally a need for some form of intertask communi-
cation. This facility is often based on the use of message queue s
and memory buffers . Where shared memory or other resources ar e
used, special protection mechanisms must be employed to mediat e
between tasks . Interprocess communication and protection mecha-
nisms are provided by real-time operating systems (RTOSs) . We wil l
consider some of these facilities in more detail in the followin g
sections . Additional information on real-time and multitaskin g
systems can be found in the texts by Evesham (1990), Adamso n
(1990), Ben Ari (1982) and Bell et al. (1992) .
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Accessing shared resources and interprocess communicatio n
Although the processes in a multitasking system tend to operat e
more or less independently of each other, there usually has to b e
some degree of communication between them in order to transfer
data or to synchronize certain features of their operation .

Interprocess communication involves accessing a shared resource
such as a buffer or message queue that is maintained somewhere i n
the PC's memory. The operating system is generally responsible for
coordinating access to these structures, and to other system resource s
such as disk drives etc .

Whenever a task or an interrupt handler needs to access any shared
resource – including hardware, operating system services and dat a
structures – great care must be taken to avoid conflicting with an y
other tasks that maybe in the process of accessing the same resource .
Consider a section of code that accesses a shared resource . If the
code could possibly malfunction as a result of being pre-empted (o r
interrupted) by a task that accesses the same resource, the code i s
known as a critical section. It is necessary to protect critical sections
from this type of interference by temporarily blocking task switche s
and/or interrupts until the critical section has been completed . This
requirement is known as mutual exclusion .

Mutual exclusion can be enforced by means of semaphores . These
are essentially flags or tokens that are allocated by the operatin g
system to any process wishing to access a particular resource . A
task may not proceed into a critical section until it has obtaine d
the appropriate semaphore . In some systems, implementations o f
semaphores, for the purpose of enforcing mutual exclusion, ar e
referred to as Mutexes .

Deadlocks and lockout s
A deadlock occurs when all processes within a system becom e
suspended as a result of each process waiting for another to perform
some action. A lockout is similar, but does not affect all tasks . It arises
when conditions brought about by two or more processes conspire t o
prevent another process from running . Great care must be taken t o
avoid the possibility of deadlocks or lockouts in any real-time system .

Priorities
Many multitasking systems allow priorities to be assigned to th e
individual tasks . Whenever the scheduler performs a task switch i t
uses the priorities assigned to each task to decide which one to
execute next . This has the obvious benefit in real-time systems of
allowing the most important or time-critical tasks to take precedence .
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In some systems, priorities can be changed dynamically . Priority
systems can be quite complex to implement and a number o f
special programming techniques may have to be used, both within
the application program and within the operating system itself, to
ensure that the priorities are always applied correctly .

A common problem is priority inversion . If a low priority task
holds a semaphore and is then pre-empted by a higher priority tas k
that requires the same semaphore, the operating system will hav e
to let the low priority task continue to run until it has released th e
semaphore . If, meanwhile, the low priority task is pre-empted by a
task with an intermediate priority, this will run in preference to th e
highest priority task . Some of the solutions to priority inversion (such
as priority inheritance which dynamically alters the priority of tasks )
raise additional problems . Certain RTOSs go to great lengths t o
provide generally applicable solutions to these problems . However ,
many of these difficulties can be avoided if the programmer has a
detailed understanding of all of the software components runnin g
on the system so that potential deadlocks or other incompatibilitie s
can be identified .

2.3 Implementing real-time systems on the PC

Thanks to its expansion bus and flexible interrupt system, th e
PC has a very open architecture . This allows both hardware and
software subsystems to be modified and replaced with ease . Although
this openness is a great benefit to designers of DA&C systems ,
it can introduce problems in maintaining the system 's real-time
performance. If non-real-time code is introduced into the system ,
in the form of software drivers which trap interrupts or calls to
operating system services, it may no longer be possible to guarante e
that the system will meet its specified real-time targets . It should be
clear that there is a need to exercise a considerable degree of control
over the software subsystems that are installed into the PC .

In general, the architecture of the PC itself is reasonably well suite d
to real-time use . Its operating system is often the limiting factor i n
determining whether the PC can meet the demands of specifi c
real-time applications . Standard MS-DOS or PC-DOS, Microsoft
Windows and the PC's BIOS present a number of difficulties whic h
may preclude their use in some real-time systems. However, there
are several specially designed real-time operating systems (RTOSs) ,
including real-time versions of DOS and the BIOS, which can hel p
to alleviate these problems . Real-time operating systems can be quite
complex, and different implementations vary to such a degree that
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it is impracticable to attempt a detailed coverage here. The reader
is referred to manufacturer's literature and product manuals fo r
details of individual RTOSs .

As we have already noted, standard desktop operating system s
(e.g. MS-DOS and Microsoft Windows) were not designed specifi-
cally for real-time use . Interrupt latencies and re-entrancy can b e
problematic . These operating systems frequently embark on lengthy
tasks, which can block interrupt processing for unacceptable (an d
possibly indeterminate) lengths of time . Some of the instructions
present on 80386 and subsequent processors, which were designe d
to facilitate multitasking (and which are used on systems such a s
Windows, OS/2 and UNIX), are not interruptible and can occupy
several hundred processor cycles . Using these operating system s
and instructions can increase interrupt latencies to typically severa l
hundred microseconds or more .

Table 2 .1 lists a few example applications which require differen t
degrees of timing precision and different sampling rates. Notice
that where timing constraints are more relaxed, non-deterministi c
operating systems such as Windows may be used in conjunction wit h
slow software-controlled DA&C hardware . Tighter timing constraints
(near the bottom of the table) necessitate the use of buffered DA& C
cards, hardware triggering, autonomous data loggers or specialized
RTOSs. Note that the timing figures and sampling rates listed in th e
table are intended only as a rough guide and in reality may var y
considerably between applications .

The BIOS

The PC's BIOS can be a source of problems in real-time applications .
Several of the BIOS services can suspend interrupts for unpredictabl e
lengths of time . Some of the BIOS may also be non-re-entrant . At
least one manufacturer produces a real-time version of the BIOS fo r
use with its real-time DOS, and another supplies an independen t
real-time BIOS that can be used with MS-DOS or compatible system s
(including real-time DOSes) . These BIOSes provide many standard
low level I/O facilities while maintaining a short and guarantee d
interrupt latency.

DOS

MS-DOS is a relatively simple operating system designed for execu-
tion in real mode . It is largely non-re-entrant, and it does not
possess multitasking capabilities or the deterministic qualities (e .g . a
short and well-defined interrupt latency) required for real-time use .
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Nevertheless, it is inexpensive and is often suitable as the basis fo r
simple DA&C systems provided that the real-time requirements are
not too stringent . For many low and medium speed data-acquisitio n
applications, in which timing accuracies of the order of 10 ms or s o
are needed, DOS is ideal, being both relatively simple and compact .
Real-time control applications are often more demanding, however .

If timing is critical, it may be prudent to turn to one of the speciall y
designed real-time versions of DOS . These tend to be ROMable an d
suitable for use in embedded PC systems. It should be noted, thought ,
that not all ROMable DOSes are fully deterministic – i .e. interrupt
latencies and other timing details may not be guaranteed .

There are now several real-time versions of. DOS on the marke t
such as General Software Inc .'s Embedded DOS and Dat.alight. Inc.'s
ROM-DOS (available in the UK from Great Western Instruments
Ltd and Dexdyne Ltd, respectively) . Real-time DOS systems ar e
fully deterministic, having well-defined interrupt latencies, and ar e
generally characterized by their ability to execute multiple processe s
using pre-emptive task scheduling . Other facilities, such as task
prioritization and the option to utilize nori-pre-emptive scheduling
are also often included .

The multitasking capabilities of real-time DOSes contrasts wit h
those of desktop operating systems . Because the requirements of
most real-time applications are relatively simple, the large quantitie s
of memory and the task protection features offered by heavy-
weight operating systems like Windows and OS/2 can often b e
dispensed with .

Real-time DOSes are designed to minimize task switching over-
heads. Each task switch may be accomplished in a few microsec-
onds and interrupt latencies are often reduced to less than about
20 µs, depending, of course, on the type of PC used. Detailed
timing information should be provided in the operating syste m
documentation .

These operating systems are also generally re-entrant to som e
extent. This allows DOS services to be shared between different task s
and to be safely called from within interrupt handlers . Other feature s
found in real-tune DOSes may include mutual exclusion primitive s
(semaphores) for accessing shared resources and for protecting crit-
ical sections ; software timers ; interprocess communication feature s
such as support for message queues ; and debugging facilities . These
operating systems also support a range of other configurable features
which allow the operating system to be adapted for use in a variety
of different real-time or embedded systems .

Real-time DOSes retain a high degree of compatibility with MS-
DOS's interrupts, file system and installable device drivers . Networks
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may also be supported . Note that version numbers of real-time DOSe s
may bear no relation to the version of MS-DOS which they emulate .
Some systems provide basic MS-DOS version 3 .3 compatibility while
others also provide some of the features found in more recen t
releases of MS-DOS.

In some cases, at least partial source code may also be available ,
allowing the operating system itself to be adapted for more special-
ized applications . The main drawback with real-time versions of DO S
is that they can be considerably more expensive, particularly for us e
in one-off systems . Royalties may also be payable on each copy of th e
operating system distributed .

DOS extenders and DPMI

With the proliferation of sophisticated multitasking operatin g
systems, DOS extenders are now used much less frequently than
they were in the early 1990s. However, if you have to develop a
DOS-based DA&C system, an extender will allow you to access u p
to typically 16 MB of memory. This is achieved by running you r
program in protected mode and, when necessary, switching back to
real mode in order to access DOS and BIOS services . DOS extenders
conforming to the DOS Protected Mode Interface (DPMI) standar d
are available from several vendors .

In spite of having a slightly greater potential for determinism
than processes running under Windows, for example, a DPMI-based
program may run more slowly that its real-mode counterpart . A
number of the problems outlined for Windows in the followin g
section also apply to DOS extenders . Mode switches are require d
whenever DOS or BIOS services are called, or when the system has to
respond to interrupts . Some DOS extenders may also virtualize the
interrupt system, by providing services specifically for disabling an d
enabling interrupts . To this end, they also prevent the program from
directly disabling or enabling interrupts by trapping the STI and CLI

instructions in much the same way as the processor might trap IN

and OUT instructions in protected mode . This point should be born e
in mind as it can affect the system's interrupt performance . DOS
extenders are discussed in detail in the text by Duncan et al. (1990) .

Microsoft Windows

Microsoft Windows 98 and Windows NT version 4 are the lates t
releases in a long line of graphical windowing environments fo r
the PC. Since it was first introduced in 1985, Windows has evolve d
from a simple shell sitting on top of DOS into a very powerful and
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complex operating system . The oldest version of Windows that i s
still used in significant numbers is Windows 3 .1 . This version, whic h
was released in 1992, introduced many of the features present i n
Windows today such as TrueType fonts and Object Linking and
Embedding (OLE) . Windows for Workgroups, was subsequentl y
released in 1992 . This included support for peer-to-peer networking ,
fax systems and printer sharing, but in most other respects was
similar to Windows 3.1 .

Subsequently, Windows development split, forming two produc t
lines, Windows 9x and Windows NT . At the time of writing th e
latest releases are Windows 98 (which supersedes Windows 95) and
Windows NT version 4 (version 5 is due for imminent release) .
Although Windows 98 and NT are distinctly different products the y
share many similarities . Both are 32-bit protected mode operating
systems, supporting a 4 GB flat memory model, sophisticated security
features and support for installable file systems and long (250 char-
acter) file names. Both also use the same applications programmin g
interface : the Win32 API .

Several features of Windows NT and Windows 98 are important i n
the context of real-time data acquisition and control . The ability to
pre-emptively multitask many threads and to interface to a range o f
peripherals in a device-independent manner are especially relevant .
However, there are a number of quite serious problems associate d
with using any of the current versions of Windows in real time . Rather
than having complete control of the whole PC (as is the case with
real-mode DOS programs, for example), programs running unde r
Windows execute under the control and supervision of the operatin g
system. They have restricted access to memory, I/O ports and th e
interrupt subsystem. Furthermore, they must execute concurrently
with other processes and this can severely complicate the design o f
DA&C programs. In order to build a deterministic Windows system, i t
is necessary to employ quite sophisticated programming techniques .
The following sections outline some of the problems associated wit h
using Windows in real time .

While Windows NT and 98 are both essentially desktop operatin g
systems, Windows NT is the more robust of the two and is widel y
regarded as a well engineered, secure and reliable operating system .
It contains pure 32-bit code, and possesses integrated networkin g
capabilities and enhanced security features . Windows NT has als o
been designed to be portable across platforms, including multi -
processor and RISC systems . For these reasons Windows NT is
often used in preference to Windows 98 for industrial interfacin g
applications .
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A brief introduction to data acquisition under Windows is provide d
in the following subsections . Those readers interested in program-
ming under Windows are advised to consult one of the numerou s
books on this topic such as Solomon (1998), Templeman (1998) ,
Petzold (1996) or Orley (1996) .

Windows overview

One of the main features of Windows NT and Windows 98 is
their ability to run 32-bit software . This offers significant (potential )
improvements in execution speed as well as many other advantages .

In contrast to Windows 95/98, Windows NT contains only 32-bi t
code. This is beneficial since 16-bit portions of code within Windows
95/98 can have an adverse effect on performance. Problems ca n
arise when 32-bit code has to communicate with 16-bit code, and vic e
versa . The process which permits such a communication is know n
as a thank . This is a complex action which, as it involves switchin g
between 16-bit and 32-bit addressing schemes, can slow program
execution considerably. In fact, it has been reported that Windows
95 can multitask 16-bit applications as much as 55 per cent slowe r
than they would run under Windows 3.1 .

32-bit code offers many advantages to the programmer. Foremost
among these is the ability to use a flat memory addressing scheme .
This gives access to up to 4 GB of memory without the need to
continually reload segment registers. Access to memory is closel y
supervised and controlled at the page level by the operating system .
Page level protection is implemented using the processor's pag e
translation and privilege ring mechanisms . These actually virtualize
the memory map so that the memory addresses used by applica-
tion programs do not necessarily correspond to physical memory
addresses . All memory accesses are performed indirectly by refer-
ence to a set of page tables and page directories that are maintaine d
by the operating system . Under this scheme it is impossible for a n
application to access (and thereby corrupt) memory belonging t o
another 32-bit application . Memory management under Windows
is a complex business, but fortunately much of the mechanism i s
hidden from the programmer .

Virtualization is not confined to memory. Windows 98 and N T
use features of the 80486 and subsequent processors to virtualize the
PC's I/O and interrupt subsystems . All of this virtualization allows th e
operating system to completely isolate application programs from
the hardware . A complete virtual machine is created in which to run
each application . Although virtualization is efficient and makes fo r
a robust environment for multitasking, it does introduce additional
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overheads, and these can be difficult to overcome in real-time data
acquisition .

As we have seen in Chapter 1, the 80486 and Pentium proces-
sors provide several mechanisms that facilitate multitasking an d
task protection . Among these are the assignment of privilege level s
to different processes. The privilege level scheme allows operating
system processes to take precedence over the less privileged applica-
tion program. There are four privilege levels known as Rings 0, 1, 2
and 3. Windows uses only two of these : Ring 0 (also termed Kerne l
Mode under Windows NT) for highly privileged operating syste m
routines and drivers ; and Ring 3 (also termed User Mode) for appli-
cations programs and some operating system code . This is illustrate d
in Figure 2 .4. Compare the Windows NT and 98 architecture wit h
that of a real-mode DOS system . In the latter case, the applicatio n
effectively runs at the same privilege level as the operating system ,
and it can access any part of the PC's hardware, BIOS or operating
system without restriction .

Multitasking and schedulin g
Windows 3.1 utilizes a non-pre-emptive scheduling mechanism . The
method employed is essentially cooperative multitasking in whic h
the currently active task has the option to either initiate or block
further task switches . Because of this, it is possible for an importan t
DA&C task to be blocked while some less time-critical task, such as
rearranging the user interface, is carried out . Under this scheme it is ,
therefore, difficult to ensure that data is acquired, and that contro l
signals are issued, at predictable times .

Windows NT and Windows 98, however, employ a greatly improve d
multitasking scheduler. 32-bit applications are multitasked pre -
emptively, which yields greater consistency in the time slicing o f
different processes . The pre-emptive scheduler implements an idl e
detection facility, which diverts processor time away from task s
that are merely waiting for input. Another benefit is the ability
to run multiple threads within one application . It is important t o
bear in mind that pre-emptive multitasking applies only to 32-bi t
programs . The older style 16-bit programs are still multitaske d
in a non-pre-emptive fashion and cannot incorporate multipl e
threads .

Windows NT and Windows 98 also employ more robust method s
of interprocess communication . Windows 3 .1 supported a system o f
messages that were passed between processes in order to inform
them of particular events . As these messages were stored in a single
queue, it left the system vulnerable to programs that did not partic-
ipate efficiently in the message passing protocol . Windows NT and
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Figure 2 .4 (continued)

Windows 98 enforce a greater degree of isolation between processes
by effectively allocating them each a separate queue .

Virtual memory and demand pagin g

We have already introduced the concept of virtual memory whic h
Windows uses to isolate applications from each other and from th e
operating system . Under this scheme, Windows allocates memor y
to each application in 4 KB blocks known as pages . Windows
NT's Virtual Memory Manager and Windows 98's Virtual Machin e
Manager use the processor's page translation mechanism to manipu -
late the address of each page . In this way, it can, for example, appear
to an application program that a set of pages occupies contiguou s
4 KB blocks, when in fact they are widely separated in physica l
memory.

An application's address space is normally very much greater tha n
the amount of physical memory in the system . A 32-bit address
provides access to up to 4 GB of memory, but a moderately
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well-specified PC might contain only 128 MB . If the memory
requirements of the system exceed the total amount of physica l
memory installed, Windows will automatically swap memory page s
out to disk . Those pages that have been in memory the longest wil l
be saved to a temporary page file, freeing physical memory whe n
required . If a program attempts to access a page that resides on th e
disk, the processor generates a page fault exception . Windows traps
this and reloads the required page .

This process is known as demand paging. It is performed without the
knowledge of the Ring 3 program and in a well-designed desktop
application has no significant effect on performance, other tha n
perhaps a slight reduction in speed . It does, however, have importan t
consequences in real-time systems . It is generally very difficult (or
impossible) to predict when a page fault will occur – particularl y
when the page fault might be generated by another process runnin g
on the system. Furthermore, swapping of pages to and from the dis k
can take an indeterminate length of time, increasing latencies to
typically 10–20 ms (although this figure is not guaranteed) . This i s
clearly unacceptable if a fast and deterministic real-time response i s
required .

Device driver s

In order to facilitate device-independent interfacing, Windows NT
and Windows 95/98 employ a system of device drivers . The system
used by Windows NT is complex and supports several types of devic e
driver . Of most interest are the kernel mode drivers, which can directl y
access the PC's hardware and interrupt subsystem . Windows 95 and
98 use a less robust system of device drivers, which are known a s
VxDs (or virtual Extended Drivers) . Both types of driver operate
in Ring 0. Within the driver it is possible to handle interrupts and
perform high speed I/O predictably and independently of the hos t
(Ring 3) program .

Even though VxDs and kernel mode drivers provide useful facilitie s
for the DA&C programmer, they do not solve all of the problem s
of real-time programming under Windows . Real-time control i s
particularly difficult . In this type of system, acquired data must be
processed by the host program in order that a control signal can b e
generated. As the host program runs in Ring 3, it is not possible fo r
it to generate the required control signal within a guaranteed time .
The mechanisms used for routing data between the driver and th e
host program can also introduce non-deterministic behaviour int o
the system .
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Interrupt handling and latency

Interrupt latency is one of the most problematic areas under
Windows. Latency times can be many times greater than in a compar -
able DOS-based application . They can also be much more difficul t
to predict . There are several reasons for this, although they are al l
associated to some degree with the virtualization and prioritization of
the interrupt system, and with the multitasking nature of Windows .

To illustrate some of the problems we will consider interrup t
handling under Windows NT . Interrupts are prioritized within a
scheme of Interrupt Request Levels (IRQLs) . This mirrors the 8259A
PIC's IRQ levels, but the IRQL scheme serves additional function s
within the operating system . When an interrupt occurs :

• Windows NT's Trap Handler saves the current machine contex t
and then passes control to its Interrupt Dispatcher routine .

• The Interrupt Dispatcher raises the processor's IRQL to that of th e
interrupting device, which prevents it from responding to lower
level interrupts. Processor interrupts are then re-enabled so tha t
higher priority interrupts can be recognized .

• The Interrupt Dispatcher passes control to the appropriate Inter-
rupt Service Routine (ISR), which will reside in a device driver o r
within Windows NT's kernel .

• The ISR will generally do only a minimum of processing, such as
capturing the status of the interrupting device . By exiting quickly ,
the ISR avoids delaying lower priority interrupts for longer tha n
necessary. Before terminating, the ISR may issue a request for a
Deferred Procedure Call (DPC) .

• Windows will subsequently invoke the driver's DPC routine (usin g
the software interrupt mechanism) . The DPC routine will the n
carry out the bulk of the interrupt processing, such as bufferin g
and transferring data .

From the DA&C programmer's perspective, the difficulty with this i s
that the delay before invocation of the DPC routine is indeterminate .
Furthermore, although interrupts are prioritized within the kernel ,
the queuing of DPC requests means that any priority informatio n
is lost. Interrupt generated DPCs are invoked in the order in whic h
the DPC requests were received . Thus handling a mouse interrupt,
for example, can take precedence over an interrupt from a DA& C
card or communications port. This arrangement makes for a mor e
responsive user interface, but can have important consequences fo r
a time-critical DA&C application .

Handling interrupts under Windows is a fairly complex and time -
consuming process which, together with the potential for length y
page-fault exceptions, greatly increases interrupt latency and has an
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undesirable effect on determinism . It can be very difficult to predict
the length of time before an interrupt request. is serviced under
Windows, because of the complex rerouting and handling processe s
involved .

Re-entrancy
Much of the code in the Windows 3 .1 system is non-re-entrant an d
should not, therefore, be called directly from within an interrup t
handler . Other techniques have to be used in cases where acquired
data is to be processed by non-re-entrant operating system services .
An interrupt handler contained within a VxD might, for example ,
read pending data from an I/O port, store it in a buffer and the n
issue a call-back request to Windows . At some later time, when i t
is safe to enter Windows' services, Windows will call the VxD back .
When the VxD regains control, it knows that Windows must be i n
a stable state and so the VxD is free to invoke file I/O and othe r
services in order to process the data which its interrupt handler
had previously stored . Note that similar techniques may be use d
in simple DOS applications, although the call-back mechanism i s
not supported by MS-DOS and must be built into the applicatio n
program itself.

The re-entrancy situation is somewhat better in the 32-bit environ-
ments of Windows NT and Windows 98, largely because re-entran t
code is a prerequisite for pre-emptive multitasking . Note, however ,
that Windows 95/98 also contains a significant quantity of 16-bi t
code. Much of this originates from Windows 3 .1 and is not re-entrant .

Windows and real-time operating system s
Most recent versions of Windows can be run in conjunction wit h
specially designed real-time operating systems (RTOSs) . The inten-
tion is to take advantage of the user interface capabilities of Window s
while retaining the deterministic performance of a dedicated real -
time operating system. This type of arrangement is useful for allowing
Windows to handle application setup and display processes whil e
the time-critical monitoring and control routines are run unde r
the supervision of the real-time operating system . The interaction
between Windows and an RTOS can be complex and only a ver y
brief overview will be provided here .

RTOSs work in conjunction with Windows by taking advantage o f
the privilege levels provided by all post-80286 processors . Windows'
kernel operates in Ring 0 (the highest privilege level) . This gives it
control of other processes and allows it to access all I/O and memor y
addresses .
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The real-time operating system must also work at the highes t
privilege level . It does this by either relegating Windows to a lowe r
level, while providing an environment for and responses to Windows
to make it `think' that it is operating in Ring 0, or by coexistin g
with Windows at the same privilege level . In the latter case the
RTOS interfaces to Windows (in part) via its driver interface – i .e .
by linking to Windows NT via its kernel mode driver interface or by
existing in the form of a VxD under Windows 95/98 . Indeed, unde r
Windows 3 .1, time-critical portions of data-acquisition software wer e
sometimes coded as a VxD, guaranteeing it precedence over othe r
processes .

Those parts of an application running under the RTOS operate i n
Ring O. Consequently, some RTOSs do not provide the same degre e
of intertask memory protection as normally afforded by Windows.
This can compromise reliability, allowing the whole system to b e
crashed by a coding error in just one task .

Developers have adopted very different approaches to producin g
RTOSs. Several different techniques can be used, even under th e
same version of Windows, but whatever method or type of RTO S
is chosen, the result is essentially that threads running under th e
RTOS benefit from much lower interrupt latencies and a far greate r
degree of determinism .

Other 'desktop' operating systems

In addition to the various versions of Microsoft Windows, two othe r
multitasking operating systems are worthy of mention : UNIX and
OS/2 . Although these include certain features which facilitate thei r
use in real-time systems, they were designed with more heavyweigh t
multitasking in mind . They possess many features that are necessary
to safely execute multiple independent desktop applications .

UNIX has perhaps the longest history of any operating system . I t
was originally developed in the early 1970s by AT&T and a numbe r
of different implementations have since been produced by othe r
companies and institutions . It was used primarily on mainframes
and minicomputers, but for some time, versions of UNIX, notably
XENIX and Linux, have also been available for microcomputer s
such as the PC .

In the PC environment, DOS compatibility was (and still is )
considered to be of some importance . In general, UNIX can coexis t
with DOS on the PC allowing both UNIX and DOS applications to b e
run on the same machine. A common file system is also employed so
that files can be shared between the two operating systems . DOS can
also be run as a single process under UNIX in much the same way as
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it is tinder Windows NT or Windows 98 . UNIX itself is fundamentally
a character-based system although a number of extensions and third-
party shell programs provide powerful user interfaces and graphic s
support.

Of most interest, of course, is the applicability of UNIX to real-
time processing . As already mentioned UNIX provides a heavyweigh t
multitasking environment, the benefits of which have been discusse d
earlier . The UNIX kernel possesses a full complement of the feature s
one would expect in such an environment : task scheduling, flexibl e
priorities as well as interprocess communication facilities such a s
signals, queues and semaphores . In addition, UNIX provides exten-
sive support for multiple users . Its network and communicatio n
features make it ideally suited to linking many processing sites .
Typical industrial applications include distributed data acquisitio n
and large-scale process control . UNIX also incorporates a number
of quite sophisticated security features, which are particularly usefu l
(if not essential) in applications such as factory-wide automation an d
control .

Some of the concepts behind UNIX have also appeared in subse-
quent operating systems . IBM's OS/2, for example, possesses many
features which are similar to those offered by UNIX . The lates t
implementation for the PC, OS/2 Warp, was launched in 1994 . This
is a powerful 32-bit multiprocessing operating system which is wel l
suited to complex multitasking on the PC . It requires only a modestly
specified PC, provides support for Microsoft Windows application s
and will multitask DOS applications with great efficiency .

Like UNIX, OS/2 provides comprehensive support for pre-
emptive multitasking including dynamic priorities, message passin g
and semaphores for mutual exclusion of critical sections . OS/2
virtualizes the input/output system, but it also allows the
programmer of time-critical applications and drivers to obtain th e
I/O privileges necessary for real-time use .

While both OS/2 and UNIX are extremely powerful operatin g
systems, it should be remembered that many real-tune application s
do not require the degree of intertask protection and memor y
management provided by these environments . These desktop oper-
ating systems might, in some cases, be too complex and slow fo r
real-time use. Nevertheless, they tend to be quite inexpensive when
compared to more specialized RTOSs and are worth considering i f
robust multitasking is the primary concern .

Other real-time operating system s
We have already discussed versions of DOS and the BIOS designed
for real-time use and have also mentioned RTOSs that are capable of
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running in conjunction with Microsoft Windows . There are several
other real-time operating systems on the market, such as Intel' s
iRMX, Microware OS/9000, Integrated Systems pSOSystem an d
QNX from QNX Software Systems Ltd . Unfortunately, space doe s
not allow a detailed or exhaustive list to be presented . Note that
most of these operating systems require an 80386 or later processo r
for optimum performance . Some are also capable of running MS -
DOS and Windows (or special implementations of these operatin g
systems), although, for the reasons described previously, this may
result in a less deterministic system .

Summary

There are several options available to designers of real-time systems .
Simple and relatively undemanding applications can often be accom -
modated by using MS-DOS, although this does not provide multi -
tasking capabilities or the degree of determinism required by mor e
stringent real-time applications . Microsoft Windows provides an eve n
less deterministic solution, and interrupt latencies imposed by thi s
environment can often be excessive . Various real-time operatin g
systems (RTOSs) are also available, some of which are ROMable an d
suited for use in embedded applications . These include real-time
versions of DOS and the BIOS, which can provide low interrup t
latencies and efficient multitasking .

For many programmers, however, the choice of operating syste m
for low and medium speed DA&C applications – particularly thos e
which do not incorporate time-critical control algorithms – will b e
between MS-DOS and Windows . While Windows provides a fa r
superior user interface, this benefit may be offset by poor inter-
rupt latencies . DOS applications are generally somewhat simpler t o
produce and maintain, and it is often easier to retain a higher degre e
of control over their performance than with Windows programs . You
should not underestimate the importance of this . To produce a
reliable and maintainable system, it is preferable to employ th e
simplest hardware and operating system environment consisten t
with achieving the desired real-time performance . Only you, as th e
system designer or programmer, can decide which operating syste m
is most appropriate for your own application .

In the remainder of this book, we will refrain from discussin g
characteristics of particular operating systems where practicable .
Note, however, that the software listings provided in the followin g
chapters were written for a real-mode DOS environment. If you
intend to use them under other processor modes or operatin g
systems, you should ensure that you adapt them accordingly.
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2.4 Robustness, reliability and safety

Unreliable DA&C systems are, unfortunately, all too common .
Failure of a DA&C system may result in lost time and associate d
expense or, in the case of safety-critical systems, even in injury o r
death! The quality of hardware components used will of course
influence the reliability of the system . Of most practical concern
in this book, however, is the reliability of DA&C software. This is
often the most unreliable element of a DA&C system especiall y
during the time period immediately following installation or afte r
subsequent software upgrades . Several development techniques and
methodologies have been developed in order to maximize softwar e
reliability. These generally impose a structured approach to design ,
programming and testing, and include techniques for assessing th e
complexity of software algorithms . These topics are the preserve o f
software engineering texts and will not be covered here . It is imprac-
ticable to cover every factor that you will need to consider whe n
designing DA&C software, and the following discussion is confine d
to a few of the more important general principles of software devel-
opment, testing and reliability as they relate to DA&C. Interested
readers should consult Maguire (1993), Bell et al. (1992) or other
numerous software engineering texts currently on the market fo r
further guidance .

Software production and testing

The reliability of a DA&C system is, to a great extent, determined by
the quality of its software component . Badly written or inadequately
tested software can result in considerable expense to both th e
supplier and the end user, particularly where the system plays a
critical role in a high volume production process .

As we have already noted, an important requirement for producin g
correct, error-free and, therefore, reliable programs is simplicity . The
ability to achieve this is obviously determined to a large extent by th e
nature of the application . However, a methodical approach to soft-
ware design can help to break down the problem into simpler, mor e
manageable, portions . The value of time spent on the design proces s
should not be underestimated . It can be very difficult to compensat e
for design flaws discovered during the subsequent coding or testin g
stages of development .

Perhaps the most important step when designing a DA&C program
(or indeed any type of program) is to identify those elements of th e
software that are critical for correct functioning of the system . These
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often occupy a relatively small proportion of a DA&C program .
They might, for example, include monitoring and control algo-
rithms or routines for warning the operator of error conditions .
Isolating critical routines in this way permits a greater degree of
effort to be directed toward the most important elements of th e
program and thus allows optimal use to be made of the availabl e
development time .

Libraries
A common means of reducing the development effort needed fo r
non-critical software, thus enabling resources to be concentrate d
on the most critical routines, is to make use of pre-written softwar e
libraries . The user interface, for example, often occupies a hig h
proportion of the total software development time, and this ma y
be reduced by using appropriate tools . A number of C and Pascal
user-interface libraries are currently on the market . These allow a
standardized user interface to be incorporated into the software. As
the library routines are generally well tested and normally includ e
thorough range checking, validation, and error trapping facilities ,
this also helps to reduce the incidence of coding errors .

Dedicated DA&C libraries, such as those included with Nationa l
Instruments' LabWindows/CVI, provide support . for real-time graph -
ical displays and virtual instruments such as digital voltmeters an d
oscilloscopes . Drivers for RS-232, IEEE-488, and a range of I)A&C
cards might also be supplied, particularly in libraries provided by
manufacturers of DA&C hardware . Tools for post-acquisition analysi s
of data may be included as well . Typically, these incorporate a rang e
of facilities, from simple arithmetic array operations to support fo r
complex signal processing (e .g. fast Fourier transforms, filtering an d
signal generation) . Many libraries are oriented towards developmen t
of Windows programs, although some provide a degree of portability
between environments .

One of the most important points to bear in mind when selectin g
a library is the availability of source code . Some libraries are supplie d
only in compiled object file format. This obviously limits the degre e
to which the system can be adapted to a client's needs .

Testing
Thorough testing is essential to ensure that each routine behaves a s
expected when subjected to every possible combination of inputs .
In all but the simplest DA&C systems, this is usually facilitated by
testing each program module independently of the others . In thi s
way, the inputs supplied to each routine can be precisely controlled
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in order to ensure that all possible code paths are executed . This
procedure usually involves supplying extreme or over-range inputs ,
which the routine should never receive in a correctly functioning
system . Critical routines in particular should be designed to tra p
erroneous inputs without propagating the error on to other cod e
modules .

Modular testing can be difficult to achieve in time-dependen t
DA&C systems . This is particularly so in routines that measur e
elapsed time or which check for tinieouts in dynamic systems . The
behaviour of such a routine might vary depending upon the times a t
which certain inputs are applied . In order to ensure that the dynami c
behaviour of the system can be adequately modelled during testing ,
it may be necessary to build a complete test harness. This consists
of a hardware interface together with software support routines ,
which provide a controlled environment for the module under test .
Test harnesses may range from a simple bank of lamps or switche s
designed to monitor the states of digital I/O lines, to a comple x
suite of test. programs or even to a dedicated test computer . They
may also incorporate items of test equipment such as logic analyser s
and digital storage oscilloscopes .

When performing time-dependence tests, allowances should b e
made for any variations in timing that might occur in a fully workin g
system. These variations might arise from changes in the system' s
loading conditions or from occasional replacement of some system
component by a faster variant . It is generally good practice to
avoid making one routine dependent on the timing of some othe r
routine or hardware subsystem . There is, of course, a limit to ho w
far this requirement can be implemented in practical DA&C appli-
cations. Sufficient latitude should be built into the system (e .g .
by buffering data) to accommodate both transient and persistent
variations in timing.

When all modules have been independently tested, they shoul d
be gradually combined and further checks performed to ensur e
that there are no unforeseen interactions between them . Again ,
thorough timing tests may have to be carried out, possibly with th e
aid of a suitable test harness . Testing and optimization can also b e
facilitated by using profiling techniques which accurately measur e
the proportion of time spent executing each section of code .

Assertions
Coding errors can cause software to fail in one of two ways . The failur e
may be immediately obvious resulting in, for example, a corrupte d
display, a malfunctioning control system or the termination of a
DA&C program . Alternatively, the consequences of a failure may be
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more subtle, causing, for example, only a slight degradation in th e
performance of a control system . These two classes of software failur e
are sometimes, rather confusingly, termed hard and soft failures .

Hard failures are greatly preferable, simply because they ar e
immediately obvious to the user. Although soft failures are more
subtle, their consequences can ultimately be no less serious . Indeed
they may be much worse . As the user will probably be unaware o f
any problem, soft failures can go undetected for long periods . Hard
failures are generally the cheapest to rectify as most are detecte d
during the development and testing phase, prior to delivery of th e
software .

What is needed is a way to convert insidious soft failures an d
latent software errors into hard failures . Assertions are invaluabl e
for this purpose . These are simply software statements (actuall y
macros in C and C++) which terminate execution of the progra m
if their argument is FALSE or zero. Generally the argument of
an assertion is a logical expression that defines a set of acceptabl e
conditions at some point within the program . These conditions often
denote permissible ranges of selected variables . The argument of
the assertion must evaluate to TRUE (or 1) if all conditions are met ,
in which case the program proceeds as normal . When an assertion
fails, however, the program is halted and the location of the faile d
assertion is displayed on screen .

Assertions can be used at virtually any point within the code.
Remember though that they are suitable only to detect codin g
errors and situations that should never occur within your program .
They should not be used to trap legitimate error conditions such as a
serial communications error or printer out-of-paper error . Assertion s
tend to be used most frequently to range check function arguments
and function return values . An example of an assertion statement i n
C is shown in the following code fragment.

double VMax ;

	

/* Maximum input * /
double VMin ;

	

/* Minimum input * /

void Ca1cPID(double V, double T, double *Y )
{

ASSERT ((V < VMax) && (V > VMin) && (T >= 0)) ; /* Range check V and T * /

/* Function body : calculates result, Y, based on arguments V and T * /

Most C and C++ compilers include an ASSERT macro. Code gener-
ation within the ASSERT macro is controlled by the Debug compile r
option (or equivalent compiler define) allowing executable assertion
code to be generated only during development . Prior to delivery of
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the software, assertions can be compiled out so that no performanc e
overheads are incurred in the final build .

System monitoring and error checks

The reliability of a working DA&C system can often be improve d
by incorporating facilities for automatic self-testing . Such facilitie s
might be used to periodically test the status of hardware component s
or to check the integrity of software modules . The PC's BIOS
executes a number of self test routines when the computer is starte d
up. These Power On Self Test (POST) routines include checks t o
ensure that none of the memory locations are faulty and to verify
that the keyboard and disk subsystems are working correctly . It
may be advisable to incorporate similar test routines within you r
DA&C applications in order to check that data-acquisition cards or
data-logging units are operating normally . These test routines migh t
run automatically when the system is first started and, perhaps,
periodically thereafter.

Tests that can usually be performed on start-up include those tha t
check for the presence of adaptor cards or that confirm the integrity
of communications links . It may also be necessary to ensure that
all subsystems on which the DA&C program is reliant (e .g. PLCs
or intelligent data loggers) are operational and on line . In long-
term data-logging applications, where the system might have to ru n
unattended, it is prudent to verify that all other essential peripherals
(e.g. printer) are connected and correctly configured before data
logging commences .

In applications that require a high degree of operator interventio n
it might be desirable to give the user some control over when an d
how the tests are performed . Such an approach provides greate r
flexibility but does require a higher level of operator skill . Certain
checks, such as monitoring and correcting for zero drift in signal -
conditioning circuits (see Chapter 9) may, in many cases, have to
be carried out manually. Others tend to be more amenable to
automation . Even if certain checks cannot be automated, it may still
be possible to incorporate routines which will prompt the operato r
when activities such as rezeroing or recalibration are overdue .

Range checking inputs and output s
One of the most important safety features that can be built into
any program is a comprehensive system of range checking . A DA&C
program must be able to handle unexpectedly large or small dat a
arriving at its inputs . This necessitates writing extensive checking
and validation routines to handle user-supplied data as well as
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data acquired from sensors . By maintaining all inputs within a n
acceptable range, it is possible to guard against problems such a s
numeric overflows which, if undetected, can cause the system to fai l
unpredictably .

Out-of-range data may arise as a result of factors such as electrica l
noise, a faulty or inadequately calibrated sensor, or the failure o f
some external subsystem . It might be possible to ignore or suppress
transient faults such as those due to electrical noise, although i f
they occur frequently, they could be indicative of a more persisten t
problem or of an inherent design fault . Techniques, such as filterin g
and hysteresis, which can make the system more immune to th e
effects of noise and transient fluctuations, are described in Chapter 4 .

It is usually preferable to integrate range-checking code into th e
routines that are responsible for inputting data into the system .
This reduces the likelihood that any erroneous data will be passe d
on to other elements of the software . Range checking may also be
necessary at a number of other critical points within the program .
The acceptable range of values that each item of data is allowe d
to take might be fixed throughout the execution of the program ,
or it might vary dynamically depending upon other inputs or upo n
the values of previous readings. When thoroughly implemented ,
range-checking and validation routines will normally make up a
considerable proportion of the whole program . Bear in mind though
that the requirement for range checking, if enforced too rigorously ,
can impose an unacceptable performance penalty and should always
be applied with discretion .

Status check s
When the PC has to communicate with one or more external units
(e.g. remote data loggers, PLCs or other computers), it can be useful
for each unit to provide some form of status indication. This allows
the PC to determine whether each external device is functionin g
correctly . Typically status indicators consist of simple digital signal s
controlled via relays or switches . These should usually be configured
to operate in the so-called fail-safe mode (see Chapter 3) .

Other status-verification techniques can be used in some cases .
The PC might repeatedly poll each external unit to determin e
whether it is on line . Properly functioning units would acknowledg e
the poll by generating a suitable signal. The polling procedure
might be incorporated into routines which initialize the unit o r
which regularly interrogate it. This type of approach can be use d
on multi-drop bus-based systems: for example, an RS-485 network o f
signal-conditioning modules . A similar, alternative method requires
one element of the DA&C system to issue a periodic heartbeat signal .
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This is continuously monitored by other system components, whic h
might then be required to respond within predefined time limits .
Any interruptions in the periodic signal would indicate the failure o f
some component or a faulty communications link . Periodic signal s
can also be used to refresh dedicated monitoring circuitry, such as
watchdog timers. These systems notify the PC if the periodic refres h
signal from an external unit fails to arrive on time .

Responding to faults
When a fault is detected, its severity and nature (e .g. whether the
fault is transient., intermittent or persistent) should be assessed . A
decision must also be made as to whether the system can continue to
function reliably, albeit with a reduced functionality . This decision
may be made in advance by the system designer and hard-coded int o
the DA&C software . Alternatively, it might be left to the operator t o
decide what actions should be taken in the context of specific faults .

In either case it is important for the system to display appropriat e
error or warning messages . Messages should be clear and precise .
Although numeric error codes can help to identify a particular error ,
they should always be accompanied by an informative description o f
the error . It is often useful to include a suggestion of any remedial
action that might have be taken by the operator . On-screen erro r
messages will be of little or no value in systems intended for long
periods of unattended operation. In these cases, it can be usefu l
for the PC to record operational faults on some form of permanen t
storage device such as a hard disk or printer . The nature of the
fault, the date and time that it occurred, and any relevant condi-
tions prevailing at the time should also be logged in order to ai d
subsequent fault tracing and diagnosis .

A fault or error may be detected at any one of many possible points
within the hierarchical function structure of a program. Faults are
often detected in interface and driver routines, which typicall y
reside at the lower levels in the structure . Error codes or flags then
usually have to be passed back up the structure to be handled (e .g .
recorded) by higher level routines. Although this tends to allow the
programmer to create a well-structured and tidy code, it requires a
degree of care . Once an error or fault has occurred it is possibl e
that it might then also trigger a stream of errors in related routines ,
which must be handled in a well-defined and consistent manner .

It is essential to adopt a systematic and adaptable method of erro r
handling . One solution is to assign each possible error condition a
unique 8-bit or 16-bit integer code . The code should be unique t o
the routine which detected the error and should also indicate th e
type of error that it represents . As soon as an error is detected, an
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error-recording routine should be called . This might store the error
code in a queue or buffer and set a flag to indicate that one or mor e
errors have occurred . Control should then be returned through the
function hierarchy to a high level error handling routine, whic h
can then process any pending errors . In this type of error-handlin g
model, there will be a delay between recognition of the fault and a
subsequent response . The system designer must assess this delay an d
decide whether it is acceptable within the time constraints impose d
by the software specification .

The course of action taken in response to a fault will be highl y
dependent upon the nature of the application. Many faults wil l
be minor ones that can be rectified by requesting the operator t o
make some adjustment to the system . Other faults can be more
serious, leaving the system in an unstable or inoperable state . The
software should, in these cases, shut the system down in a safe an d
orderly manner. Certain faults can be catastrophic, causing complet e
failure of the DA&C program and/or the PC on which it is running .
Although the programmer should take whatever precautions ar e
necessary to ensure that the system will provide a controlled response ,
there is little that can be done to prevent hardware problems suc h
as a disk failure, loss of power or electrostatic discharge .

PCs and the software running on then are very complex systems
and there are numerous ways in which they can fail . The potential fo r
failure of both hardware and software should be considered . Many
failure modes can be catastrophic and will result in complete failure
of monitoring and control systems . Because of this, PC-based system s
and software should not be relied upon to oversee safety-critical
processes without using appropriate backup mechanisms to ensur e
total safety. Indeed, the information presented in this book is no t
intended for use in safety-critical applications . If you use it in such ,
you do so at your own risk . You are advised to cross-check each ite m
of information which you use in your software with independen t
sources. You should also thoroughly test all program code that yo u
use, regardless of its source, to ensure that it works correctly an d
reliably under the specific conditions of your application.
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Hardware characteristics such as non-linearity, response times and
susceptibility to noise can have important consequences in a data-
acquisition system . They often limit performance and may necessitat e
countermeasures to be implemented in software . A detailed knowl-
edge of the transfer characteristics and temporal performance of
each element of the DA&C system is a prerequisite for writing reliabl e
interface software . The purpose of this chapter is to draw your atten-
tion to those attributes of sensors, actuators, signal conditioning an d
digitization circuitry that have a direct bearing on software design .
While precise details are generally to be found in manufacturer' s
literature, the material presented in the following sections high -
lights some of the fundamental considerations involved . Readers are
referred to Eggebrecht (1990) or Tompkins and Webster (1988) fo r
additional information .

3.1 Introduction

DA&C involves measuring the parameters of some physical process ,
manipulating the measurements within a computer, and then issuin g
signals to control that process . Physical variables such as temperature ,
force or position are measured with some form of sensor . This
converts the quantity of interest into an electrical signal which ca n
then be processed and passed to the PC . Control signals issued by
the PC are usually used to drive external equipment via an actuato r
such as a solenoid or electric motor .

Many sensors are actually types of transducer . The two terms have
different meanings, although they are used somewhat interchange -
ably in some texts . Transducers are devices that convert one form o f
energy into another . They encompass both actuators and a subset of
the various types of sensor .



72 PC interfacing and data acquisition

Signal types

The signals transferred in and out of the PC may each be one o f
two basic types : analogue or digital . All signals will generally vary i n
time . In changing from one value to another, analogue signals var y
smoothly (i .e. continuously), always assuming an infinite sequence
of intermediate values during the transition . Digital signals, on the
other hand, are discontinuous, changing only in discrete steps a s
shown in Figure 3.1 .

Digital data are generally stored and manipulated within the P C
as binary integers . As most readers will know, each binary digit
(bit) may assume only one of two states : low or high . Each bit can ,
therefore, represent only a 0 or a 1 . Larger numbers, which ar e
needed to represent analogue quantities, are generally coded a s

Analogu e
signal

Time
(a )

Digita l
signal

Time

(b)

Figure 3 .1 Diagram contrasting (a) analogue and (b) digital signals
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combinations of typically 8, 12 or 16 bits . Binary numbers can only
change in discrete steps equal in size to the value represented b y
the least significant bit (LSB) . Because of this, binary (i .e . digital )
representations of analogue signals cannot reflect signal variation s
smaller than the value of the LSB . The principal advantage of digital
signals is that they tend to be less susceptible than their analogue
counterparts to distortion and noise . Given the right communicatio n
medium, digital signals are more suited to long-distance transmission
and to use in noisy environments .

Pulsed signals are an important class of digital signals . From a
physical point of view, they are basically the same as single-bit digital
signals . The only difference is in the way in which they are applied an d
interpreted . It is the static bit patterns (the presence, or otherwise
of certain bits) that are the important element in the case of digita l
signals . Pulsed signals, on the other hand, carry information only i n
their timing . The frequency, duration, duty cycle or absolute numbe r
of pulses are generally the only significant characteristics of pulse d
signals . Their amplitude does not carry any information .

Analogue signals carry information in their magnitude (level) o r
shape (variation over time) . The shape of analogue signals can b e
interpreted either in the time or frequency domain . Most `real-world '
processes that we might wish to measure or control are intrinsically
analogue in nature .

It is important to remember, however, that the PC can read an d
write only digital signals . Some sensing devices, such as switche s
or shaft encoders, generate digital signals which can be directly
interfaced to one of the PC's I/O ports . Certain types of actuator ,
such as stepper motors or solenoids, can also be controlled via digita l
signals output directly from the PC . Nevertheless, most sensors an d
actuators are purely analogue devices and the DA&C system must ,
consequently, incorporate components to convert between analogue
and digital representations of data . These conversions are carrie d
out by means of devices known as analogue-to-digital converter s
(ADCs) or digital-to-analogue converters (DACs) .

Elements of a DA&C system

A typical PC-based DA&C system might be designed to accep t
analogue inputs from sensors as well as digital inputs from switche s
or counters . It might also be capable of generating analogue an d
digital outputs for controlling actuators, lamps or relays . Figure 3 . 2
illustrates the principal elements of such a system . Note that, for
clarity, this figure does not include control signals . You should bear
in mind that, in reality, a variety of digital control lines will be
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required by devices such as multiplexers, programmable-gain ampli-
fiers and ADCs. Depending upon the type of system in use, the
device generating the control signals may be either the PC itself o r
dedicated electronic control circuitry .

The figure shows four separate component chains representing
analogue input, analogue output, digital input and digital output .
An ADC and DAC shown in the analogue I/O chains facilitate
conversion between analogue and digital data formats .

Digital inputs can be generated by switches, relays or digita l
electronic components such as tuner/counter ICs . These signals
usually have to undergo some form of digital signal conditioning ,
which might include voltage level conversion, isolation or buffering ,
before being input via one of the PC's I/O ports . Equally, low leve l
digital outputs generated by the PC normally have to be amplifie d
and conditioned in order for them to drive actuators or relays .

A similar consideration applies to analogue outputs . Most actuator s
have relatively high current requirements which cannot be satisfie d
directly by the DAC . Amplification and buffering (implemented by
the signal conditioning block) is, therefore, usually necessary in
order to drive motors and other types of actuator .

The analogue input chain is the most complex . It usually incorpo-
rates not only signal-conditioning circuits, but also components suc h
as a multiplexer, programmable-gain amplifier (PGA) and sample-
and-hold (S/H) circuit. These devices are discussed later in this
chapter . The example shown is a four-channel system . Signals from
four sensors are conditioned and one of the signals is selected b y
the multiplexer under software control . The selected signal is then
amplified, and digitized before being passed to the PC .

The distinction between elements in the chain is not alway s
obvious. In many real systems the various component blocks are
grouped within different physical devices or enclosures . To minimize
noise, it is common for the signal-conditioning and preamplification
electronics to be separated from the ADC and from any other digita l
components. Although each analogue input channel has only one
signal-conditioning block in Figure 3 .2, this block may, in reality ,
be physically distributed along the analogue input chain. It migh t
be located within the sensor or at the input to the ADC . In some
systems, additional components are included within the chain, o r
some elements, such as the S/H circuit, might be omitted .

The digital links in and out of the PC can take a variety o f
forms. They may be direct (although suitably buffered) connection s
to the PC's expansion bus, or they may involve serial or paralle l
transmission of data over many metres . In the former case, the ADC ,
DAC and associated interface circuitry are often located on I/O
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cards which can be inserted in one of the PC's expansion bus slots
or into a PCMCIA slot . In the case of devices which interface via th e
PC's serial or parallel ports, the link is implemented by appropriate
transmitters, bus drivers and interface hardware (which are no t
shown in Figure 3.2) . Data transfer techniques and the various type s
of I/O interface devices available are discussed in Chapters 6 to 8 .

3 .2 Digital I/O

Digital (including pulsed) signals are used for interfacing to a
variety of computer peripherals as well as for sensing and controllin g
DA&C devices . Some sensing devices such as magnetic reed switches ,
inductive proximity switches, mechanical limit switches, relays o r
digital sensors, are capable of generating digital signals which can b e
read into the PC . The PC may also issue digital signals for controlling
solenoids, audio-visual indicators or stepper motors . Digital I/ O
signals are also used for interfacing to digital electronic devices suc h
as timer/counter ICs or for communicating with other computer s
and Programmable Logic Controllers (PLCs) .

Digital signals may be encoded representations of numeric data o r
they may simply carry control or timing information . The latter are
often used to synchronize the operation of the PC with externa l
equipment using periodic clock pulses or handshaking signals .
Handshaking signals are used to inform one device that anothe r
is ready to receive or transmit data . They generally consist of level-
active, rather than pulsed, digital signals and, as we shall see i n
Chapters 7 and 8, they are essential features of most parallel an d
serial communication systems. Pulsed signals are not only suitabl e
for timing and synchronization: they are also often used for even t
counting or frequency measurement . Pulsed inputs, for pacing o r
measuring elapsed time, can be generated either by programmabl e
counter/timer ICs on plug-in DA&C cards or by programming th e
PC's own built-in timers. Pulsed inputs are often used to generat e
interrupts within the PC in response to specific external events.

TTL-level digital signals

Transistor–transistor logic (TTL) is a type of digital signal charac-
terized by nominal `high' and `low' voltages of +5 V and 0 V . TTL
devices are capable of operating at high speeds . They can switch thei r
outputs in response to changing inputs within typically 20 ns and ca n
deal with pulsed signals at frequencies up to several tens of MHz . TTL
devices can also be directly interfaced to the PC . The main problem
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with using TTL signals for communicating with external equipmen t
is that TTL ICs have a limited current capacity and are suitable fo r
directly driving only low current (i .e . a few milliamps) devices such
as other TTL ICs, LEDs and transistors . Another limitation is tha t
TTL is capable of transmission over only relatively short distances .
While it is ideal for communicating with devices on plug-in DA& C
cards, it cannot be used for long-distance transmission without using
appropriate bus transceivers .

The PC's expansion bus, and interface devices such as the Intel
8255 Programmable Peripheral Interface (PPI), provide TTL-level
I/O ports through which it is possible to communicate with periph-
eral equipment . Many devices that generate or receive digital leve l
or pulsed signals are TTL compatible and so no signal conditionin g
circuits, other than perhaps simple bus drivers or tristate buffers, are
required . Buffering, optical isolation, electromechanical isolatio n
and other forms of digital signal conditioning may be needed i n
order to interface to remote or high current devices such as electri c
motors or solenoids .

Digital signal conditioning and isolation

Digital signals often span a range of voltages other than the 0 to 5 V
encompassed by TTL . Many pulsed signals are TTL compatible, bu t
this is not always true of digital level signals . Logic levels higher or
lower than the standard TTL voltages can easily be accommodate d
by using suitable voltage attenuating or amplification components .
Depending upon the application, the way in which digital I/O signal s
are conditioned will vary. Many applications demand a degree o f
isolation and/or current driving capability . The signal-conditioning
circuits needed to achieve this may reside either on digital I/ O
interface cards which are plugged into the PC's expansion bus o r
they may be incorporated within some form of external interfac e
module. Interface cards and DA&C modules are available wit h
various degrees of isolation and buffering . Many low cost unit s
provide only TTL-level I/0 lines. A greater degree of isolation an d
noise immunity is provided by devices which incorporate optica l
isolation and/or mechanical relays .

TTL devices can operate at high speeds with minimal propagation
delay. Any time delays that may be introduced by TTL devices ar e
generally negligible when compared with the execution time of
software I/O instructions . TTL devices and circuits can thus be
considered to respond almost instantaneously to software IN and
OUT instructions . However, this is not generally true when additiona l
isolating or conditioning devices are used . Considerable delays can
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result from using relays in particular, and these must be considere d
by the designer of the DA&C software .

Opto-isolated I/O
It is usually desirable to electrically isolate the PC from externa l
switches or sensors in order to provide a degree of overvoltag e
and noise protection . Opto-isolators can provide isolation fro m
typically 500 V to a few kV at frequencies up to several hundre d
kHz . These devices generally consist of an infrared LED optically
coupled to a phototransistor within a standard DIL package a s
shown in Figure 3 .3. The input and output parts of the circui t
are electrically isolated . The digital signal is transferred from th e
input (LED) circuit to the output (phototransistor) by means of
an infrared light beam. As the input voltage increases (i .e . when
a logical high level is applied), the photodiode emits light whic h
causes the phototransistor to conduct . Thus the output is directl y
influenced by the input state while remaining electrically isolated
from it .

Some opto-isolating devices clean and shape the output puls e
by means of built-in Schmitt triggers. Others include Darlingto n
transistors for driving medium current loads such as lamps or relays .
Mains and other AC loads may be driven by solid state relays which ar e
basically opto-isolators with a high AC current switching capability .

Opto-isolators tend to be quite fast in operation, although some-
what slower than TTL devices . Typical switching times range from
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about 3µs to 100 µs, allowing throughputs of about 10–300 Kbit/s .
Because of their inherent isolation and slower response times, opto-
isolators tend to provide a high degree of noise immunity and are
ideally suited to use in noisy industrial environments . To further
enhance rejection of spurious noise spikes, opto-isolators are some -
times used in conjunction with additional filtering and pulse-shapin g
circuits . Typical filters can increase response times to, perhaps ,
several milliseconds. It should be noted that opto-couplers are also
available for isolating analogue systems . The temporal response o f
any such devices used in analogue I/O channels should be consid-
ered as it may have an important bearing on the sampling rate an d
accuracy of the measuring system .

Mechanical relays and switche s

Relays are electromechanical devices which permit electrical contacts
to be opened or closed by small driving currents . The contacts ar e
generally rated for much larger currents than that required to initiat e
switching . Relays are ideal for isolating high current devices, such as
electric motors, from the PC and from sensitive electronic control
circuits . They are commonly used on both input and output lines .
A number of manufacturers provide plug-in PC interface cards wit h
typically 8 or 16 PCB-mounted relays . Other digital output cards are
designed to connect to external arrays or racks of relays .

Most relays on DA&C interface cards are allocated in arrays of 8
or 16, each one corresponding to a single bit in one of the PC' s
I/O ports . In many (but not all) cases a high bit will energize th e
relay. Relays provide either normally open (NO) or normally close d
(NC) contacts or both . NO contacts remain open until the relay
coil is energized, at which point they close . NC contacts operate i n
the opposite sense . Ensure that you are aware of the relationshi p
between the I/O bit states and the state of the relay contacts yo u
are using . It is prudent to operate relays in fail-safe mode, such
that their contacts return to an inactive (and safe) state when de-
energized . Exactly what state is considered inactive will depend upo n
the application .

Because of the mass of the contacts and other mechanical compo-
nents, relay switching operations are relatively slow . Small relays with
low current ratings tend to operate faster than larger devices . Reed
relays rated at around 1 A, 24 V (DC) usually switch within about
0.25 to 1 ms. The operating and release times of miniature relay s
rated at 1 to 3 A usually fall in the range from about 2 to 5 ms .
Larger relays for driving high power DC or AC mains loads migh t
take up to 10 or 20 ms to switch . These figures are intended only as
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rough guidelines. You should consult your hardware manufacturer' s
literature for precise switching specifications .

Switch and relay debouncing

when mechanical relay or switch contacts close, they tend to vibrat e
or bounce for a short period . This results in a sequence of rapi d
closures and openings before the contacts settle into a stable state .
The time taken for the contacts to settle (known as the bounce time )
may range from a few hundred microseconds for srnall reed relay s
up to several milliseconds for high power relays . Because bouncing
relay contacts make and break several times, it can appear to th e
software monitoring the relay that several separate switching events
occur each time the relay is energized or de-energized . This can
be problematic, particularly if the system is designed to generat e
interrupts as a result of each contact closure .

There are two ways in which this problem can be overcome : hard-
ware debouncing and software debouncing . The hardware method
involves averaging the state of the switch circuit over an interval of a
few milliseconds so that any short-lived transitions are smoothed ou t
and only a gradual change is recorded . A typical method is to us e
a resistor/capacitor (RC) network in conjunction with an invertin g
Schmitt buffer . Tooley (1995) discusses hardware debouncing i n
more detail and illustrates several simple debouncing circuits .

The software debouncing technique is suitable only for digita l
inputs driven from relays and switches . It cannot of course be applied
to relay signals generated by the PC. The technique works by repeatedly
reading the state of the relay contact . The input should be sensed
at least twice and a time delay sufficient to allow the contacts t o
settle should be inserted between the two read operations . If the
state of the contacts is the same during both reads, that state i s
recorded. If it has changed, further delays and read operations
should be performed until two successive read operations return
the same result . An appropriate limit must, of course, be impose d
on the number of repeats that are allowed during the debounce
routine in order to avoid the possibility of unbounded softwar e
loops. Listing 3.1 illustrates the debouncing technique . It assumes
that the state of the relay contacts is indicated by bit 0 of I/ O
port 300h . The routine exits with a non-zero value in CX and th e
debounced relay state in bit 0 of AL . If the relay sloes not reach a
steady state after four read operations (i .e . three delay periods), CX
contains zero to indicate the error condition . The routine can easil y
be adapted to deal with a different bit or I/O port address .

The delay time between successive read operations (implemente d
by the DBDelay subroutine which is not shown) should be chosen to be
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Listing 3 .1 Contact debouncing algorith m

mov dx,300h ;Port number 300h for sensing relay
mov cx,4 ;Initialize timeout counte r

DBRead : in al,dx ;Read relay I/O por t
and al,01h ;Isolate relay status bit

	

(bit 0 )

cmp cx,4 ;Is this the first read ?
je DBLoop ;

	

- Yes, do anothe r
cmp al,bl - No, was relay the same as last time ?

je DBExit - Yes, relay in steady state so exi t

DBLoop : mov bl,al ;Store current relay state
call DBDelay ;Do delay to allow relay contacts to settl e
loop DBRead ;Read again, unless timed out

DBExit :

just long enough to encompass the maximum contact bounce perio d
expected . For most mechanical switches, this will be typically severa l
milliseconds (or even tens of milliseconds for some larger devices) .
As a rough rule-of-thumb, the smaller the switch (i .e . the lower th e
mass of the moving contact) the shorter will be the contact bounc e
period. In choosing the delay time, remember to take account o f
the time constant of any other circuitry that forms part of the digita l
input channel .

Listing 3 .1 is not totally foolproof: it will fail if the contact bounce
period exactly coincides with the time period between samples .
To improve the efficiency of this technique, you may wish to adap t
Listing 3 .1 in order to check that the final relay state actually remain s
stable for a number of consecutive samples over an appropriate tim e
interval .

3 .3 Sensors for analogue signals

Sensors are the primary input element involved in reading phys-
ical quantities (such as temperature, force or position) into a
DA&C system. They are generally used to measure analogue signal s
although the term `sensor' does in fact encompass some digita l
devices such as proximity switches . In this section we will deal onl y
with sensing analogue signals .

Analogue signals can be measured with sensors that generat e
either analogue or digital representations of the quantity to be
measured (the measurand) . The latter are often the simplest to inter-
face to the PC as their output can be read directly into one the PC' s
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I/O ports via a suitable digital input card . Examples of sensors with
digital outputs include shaft encoders and some types of flow sensor .

Most types of sensor operate in a purely analogue manner ,
converting the measurand to an equivalent analogue signal . The
sensor output generally takes the form of a change in some electrica l
parameter such as voltage, current, capacitance or resistance . The
primary purpose of the analogue signal-conditioning blocks show n
in Figure 3 .2 is to precondition the sensors' electrical outputs and t o
convert them into voltage form for processing by the ADC .

You should be aware of a number of important sensor charac-
teristics in order to successfully design and write interface software .
Of most relevance are accuracy, dynamic range, stability, linearity ,
susceptibility to noise, and response times. The latter includes ris e
time and settling time and is closely related to the sensor's frequenc y
response .

Sensor characteristics cannot be considered in isolation . Sensors
are often closely coupled to their signal-conditioning circuits an d
we must, therefore, also take into account the performance of this
component when designing a DA&C system . Signal-conditioning an d
digitization circuitry can play an important (if not the most impor-
tant) role in determining the characteristics of the measuring syste m
as a whole . Although signal-conditioning circuits can introduce unde-
sirable properties of their own, such as noise or drift, they are usuall y
designed to compensate for inadequacies in the sensor's response .
If properly matched, signal-conditioning circuits are often able t o
cancel out sensor offsets, non-linearities or temperature dependen-
cies. We will discuss signal conditioning later in this chapter .

Accuracy

Accuracy represents the precision with which a sensor can respon d
to the measurand. It refers to the overall precision of the device
resulting from the combined effect of offsets and proportiona l
measurement errors . When assessing accuracy, one must take
account of manufacturers' figures for repeatability, hysteresis ,
stability and, if appropriate, resolution . Although a sensor's accuracy
figure may include the effect of resolution, the two terms mus t
not be confused . Resolution represents the smallest change in the
measurand that the sensor can detect. Accuracy includes this, bu t
also encompasses other sources of error .

Dynamic range

A sensor's dynamic range is the ratio of its full-scale value to th e
minimum detectable signal variation . Some sensors have very wide
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dynamic ranges and, if the full range is to be accommodated, i t
may be necessary to employ high resolution ADCs or Programmable -
Gain Amplifiers (PGAs) . Using a PGA might increase the system' s
data-storage requirements, because of the addition of an extra vari-
able (i .e. gain) . These topics are discussed further in the sectio n
Amplification and extending dynamic range later in this chapter .

Stability and repeatabilit y

The output from some sensors tends to drift over time . Instabilities
may be caused by changes in operating temperature or by other envi -
ronmental factors. If the sensor is likely to exhibit any appreciabl e
instability, you should assess how this can be compensated for in the
software . You might wish, for example, to include routines whic h
force the operator to recalibrate or simply rezero the sensor at peri-
odic intervals (see Chapter 9) . Stability might also be compromise d
by small drifts in the supplied excitation signals . If this is a possibility ,
the software should be designed to monitor the excitation voltag e
using a spare analogue input channel and to correct the measure d
sensor readings accordingly .

Linearity

Most sensors provide a linear output — i .e. their output is directl y
proportional to the value of the measurand . In such cases the sensor
response curve consists of a straight line. Some devices such as ther-
mocouples do not exhibit this desirable characteristic . If the sensor
output is not linearized within the signal-conditioning circuitry, i t
will be necessary for the software to correct for any non-linearitie s
present. Chapter 9 demonstrates several software linearization tech-
niques .

Response times

The time taken by the sensor to respond to an applied stimulus i s
obviously an important limiting factor in determining the overal l
throughput of the system . The sensor's response time (sometime s
expressed in terms of its frequency response) should be carefull y
considered, particularly in systems which monitor for dangerous ,
over-range or otherwise erroneous conditions. Many sensors provide
a virtually instantaneous response and in these cases it is usuall y
the signal-conditioning or digitization components (or, indeed, th e
software itself) which determines the maximum possible throughput.
This is not generally the case with temperature sensors, however .
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Semiconductor sensors, thermistors and thermocouples tend t o
exhibit long response times (upwards of 1 s) . In these cases, there
is little to be gained (other than the ability to average out noise) b y
sampling at intervals shorter than the sensor's time constant .

You should be careful when interpreting response times publishe d
in manufacturers' literature . They often relate to the time require d
for the sensor's output to change by a fixed fraction in response to
an applied step change in temperature . If a time constant is specified
it generally defines the time required for the output to change
by 1 — e-1 (i .e . about 63.21 per cent) of the difference betwee n
its initial and final steady state outputs . The response time will
be longer if quoted for a greater fractional change . The response
time of thermal sensors will also be highly dependent upon thei r
environment. Thermal tune constants are usually quoted for still air ,
but much faster responses will apply if the sensor is immersed in a
free-flowing or stirred liquid such as oil or water.

Susceptibility to noise

Noise is particularly problematic with sensors which generate onl y
low level signals (e .g. thermocouples and strain gauges) . Low-pass
filters can be used to remove noise which often occurs predominantly
at higher frequencies than the signals to be measured. Steps should
always be taken to exclude noise at its source by adopting goo d
shielding and grounding practices . As signal-conditioning circuits
and cables can introduce noise themselves, it is essential that the y
are well designed . Even when using hardware and electronic filters ,
there may still be some residual noise on top of the measured signal .
A number of filtering techniques can be employed in the software
and some of these are discussed in Chapter 4 .

Some common sensors

This section describes features of several common sensors whic h
are relevant to DA&C software design . Unfortunately, space does
not permit an exhaustive list. Many sensors that do not requir e
special considerations or software techniques are excluded from thi s
section. Some less widely used devices, such as optical and chemica l
sensors are also excluded, even though they are often associated wit h
problems such as long response times and high noise levels . Detail s
of the operation of these devices may be found in specialist book s
such as Tompkins and Webster (1988), Parr (1986) or Warring an d
Gibilisio (1985) .
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The information provided below is typical for each type of senso r
described. However, different manufacturers' implementations vary
considerably. The reader is advised to consult manufacturers' dat a
sheets for precise details of the sensor and signal-conditionin g
circuits which they intend to use .

Digital sensors and encoders

Some types of sensor convert the analogue measurand into a n
equivalent digital representation which can be transferred directly t o
the PC. Digital sensors tend to require minimal signal conditioning .

As mentioned above the simplest form of digital sensor i s
the switch. Examples include inductive proximity switches and
mechanical limit switches. These produce a single-bit input which
changes state when some physical parameter (e .g. spatial separatio n
or displacement) rises above, or falls below, a predefined limit .
However, to measure the magnitude of an analogue quantity we need
a sensor with a response which varies in many (typically severa l
hundred of more) steps over its measuring range . Such sensors are
more correctly known as encoders as they are designed to encod e
the measurand into a digital form .

Sensors such as the rotor tachometer employ magnetic pickup s
which produce a stream of digital pulses in response to the rotatio n
of a ferrous disk . Angular velocity or incremental changes in angula r
position can be measured with these devices. The pulse rate i s
proportional to the angular velocity of the disk . Similar sensors are
available for measuring linear motion .

Shaft encoders are used for rotary position or velocity measure-
ment in a wide range of industrial applications . They consist of a
binary encoded disk which is mounted on a rotating shaft or spindle
and located between some form of optical transmitter and matche d
receiver (e .g. infrared LEDs and phototransistors) . The bit pattern
detected by the receiver will depend upon the angular position of th e
encoded disk . The resolution of the system might be typically ±1° .

A disk encoded in true (natural) binary has the potential t o
produce large errors. If, for example, the disk is very slightly
misaligned, the most significant bit might change first during a
transition between two adjacent encoded positions . Such a situatio n
can give rise to a momentary 180° error in the output . This problem
is circumvented by using the Gray code . This a binary coding scheme
in which only one bit changes between adjacent coded positions . The
outputs from these encoders are normally converted to digital puls e
trains which carry rotary position, speed and direction information .
Because of this it is rarely necessary for the DA&C programmer to
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use binary Gray codes directly . We will, however, discuss other binary
codes later in this chapter .

The signals generated by digital sensors are often not TTL compat-
ible, and in these cases additional circuitry is required to interfac e
to the PC. Some or all of this circuitry may be supplied with (or
as part of) the sensor, although certain TTL buffering or opto-
isolation circuits may have to be provided on separate plug-in digita l
interface cards .

Digital position encoders are inherently linear, stable and immun e
to electrical noise. However, care has to be taken when absolut e
position measurements are required, particularly when using device s
which produce identical pulses in response to incremental changes in
position. The measurement must always be accurately referenced to
a known zero position . Systematic measurement errors can result i f
pulses are somehow missed or not counted by the software . Regular
zeroing of such systems is advisable if they are to be used for repeate d
position measurements .

Potentiometric sensors
These very simple devices are usually used for measurement o f
linear or angular position . They consist of a resistive wire and slidin g
contact. The resistance to the current flowing through the wire an d
contact is a measure of the position of the contact . The linearity of
the device is determined by the resistance of the output load, bu t
with appropriate signal conditioning and buffering, non-linearitie s
can generally be minimized and may, in fact, be negligible . Most
potentiometric sensors are based on closely wound wire coils . Th e
contact slides along the length of the coil and as it moves acros s
adjacent windings it produces a stepped change in output . These
steps may limit the resolution of the device to typically 25 to 50 gm .

Semiconductor temperature sensors
This class of temperature sensor includes devices based on discret e
diodes and transistors as well as temperature-sensitive integrate d
circuits. Most of these devices are designed to exhibit a high degre e
of stability and linearity . Their working range is, however, relativel y
limited. Most operate from about -50 to +150°C, although som e
devices are suitable for use at temperatures down to about -230° C
or lower. IC temperature sensors are typically linear to within a
few degrees centigrade . A number of ICs and discrete transisto r
temperature sensors are somewhat more linear than this : perhaps
±0.5 to ±2°C or better . Time repeatability of some devices may be a s
low as ±0 .01°C .
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All thermal sensors tend to have quite long response times . Their
time constants are dependent upon the rate at which temperatur e
changes are conducted from the surrounding medium . The intrinsi c
time constants of semiconductor sensors are usually of the order o f
1—10 s. These figures assume efficient transmission of thermal energy
to the sensor . If this is not the case, much longer time constants wil l
apply (e .g. a few seconds to about one minute in still air) .

Most semiconductor temperature sensors provide a high leve l
current or voltage output which is relatively immune to noise an d
can be interfaced to the PC with minimal signal conditioning .
Because of the long response times, software filtering can be easil y
applied should noise become problematic .

Thermocouples

Thermocouples are very simple temperature measuring devices .
They consist of junctions of two dissimilar metal wires . An electromo-
tive force (emf) is generated at each of the thermocouple's junction s
by the Seebeck effect . The magnitude of the emf is directly relate d
to the temperature of the junction. Various types of thermocouple
are available for measuring temperatures from about -200°C to i n
excess of 1800°C. There are a number of considerations which mus t
be borne in mind when writing interface software for thermocoupl e
systems .

Depending upon the type of material from which the thermo-
couple is constructed, its output ranges from about 10 to 70 µV/°C .
Thermocouple response characteristics are defined by various Britis h
and international standards . The sensitivity of thermocouples tends
to change with temperature and this gives rise to a non-linea r
response. The non-linearity may not be problematic if measure-
ments are to be confined to a narrow enough temperature range ,
but in most cases there is a need for some form of linearization . This
may be handled by the signal conditioning circuits, but it is ofte n
more convenient to linearize the thermocouple's output by mean s
of suitable software algorithms . Chapter 9 illustrates a number of
linearization techniques which can be applied to thermocouples .

Even when adequately linearized, thermocouple-based tempera-
ture measuring systems are not awfully accurate, although it has to b e
said that they are often more than adequate for many temperature-
sensing applications. Thermocouple accuracy is generally limited by
variations in manufacturing processes or materials to about 1 to 4°C .

Like other forms of temperature sensor, thermocouples have lon g
response times . This depends upon the mass and shape of the ther-
mocouple and its sheath . According to the Labfacility temperature
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sensing handbook (1987), time constants for thermocouples in stil l
air range from 0 .05 to around 40 s .

Thermocouples are rather insensitive devices . They output only
low level signals – typically less than 50 mV – and are, therefore ,
prone to electrical noise . Unless the devices are properly shielded ,
mains pickup and other forms of noise can easily swamp small signals .
However, because thermocouples respond slowly, their outputs ar e
very amenable to filtering. Heavy software filtering can usually b e
applied without losing any important temperature information .

Cold junction compensatio n

In order to form a complete circuit the conductors which make u p
the thermocouple must have at least two junctions . One (the sensing
junction) is placed at an unknown temperature (i .e . the temperature
to be measured) and the remaining junction (known as the col d
junction or reference junction) is either held at a fixed reference
temperature or allowed to vary (over a narrow range) with ambien t
temperature. The reference junction generates its own temperature-
dependent emf which must be taken into account when interpretin g
the total measured thermocouple voltage .

Thermocouple outputs are usually tabulated in a form tha t
assumes that the reference junction is held at a constant temperatur e
of 0°C. If the temperature of the cold junction varies from this fixe d
reference value, the additional thermal emf will offset the sensor' s
response . It is not possible to calibrate out this offset unless th e
temperature of the cold junction is known and is constant . Instead ,
the cold junction's temperature is normally monitored in order that
a dynamic correction may be applied to the measured thermocoupl e
voltage .

The cold junction temperature can he sensed using an indepen-
dent device such as a semiconductor (transistor or IC) temperature
sensor. In some signal-conditioning circuits, the output from the
semiconductor sensor is used to generate a voltage equal in magni-
tude, but of opposite sign, to the thermal emf produced by the col d
junction . This voltage is then electrically added to the thermocoupl e
signal so as to cancel any offset introduced by the temperature of
the cold junction.

It is also possible to perform a similar offset-cancelling operatio n
within the data-acquisition software . If the output from the semi-
conductor temperature sensor is read via an AI)C, the program
can gauge the cold unction temperature . As the thermocouple' s
response curve is known, the software is able to calculate the therma l
emf produced by the cold junction – i .e . the offset value. This is then
applied to the total measured voltage in order to determine that part
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of the thermocouple output . due only to the sensing junction. This is
accomplished as follows .

The response of the cold junction and the sensing junction bot h
generally follow the same non-linear form . As the temperature of
the cold junction is usually limited to a relatively narrow range, it i s
often practicable to approximate the response of the cold junctio n
by a straight line :

Tcj =ao+al Vcj (3 .1 )

where Tcj is the temperature of the cold junction in 'C, Vcj i s
the corresponding thermal emf and ao and a l are constants which
depend upon the thermocouple type and the temperature rang e
over which the straight-line approximation is made . Table 3 .1 lists
the parameters of straight-line approximations to the response curve s
of a range of different thermocouples over the temperature rang e
from 0 to 40°C .

The measured thermocouple voltage V M is equal to the difference
between the thermal emf produced by the sensing junction (Vsj)
and the cold junction (Vcj ) :

VM =VsJ — Vcj (3.2)

As we are interested only in the difference in junction voltages, VsJ
and V ci can be considered to represent either the absolute therma l
emfs produced by each junction or the emfs relative to whateve r
junction voltage might be generated at some convenient temperature
origin . In the following discussion we will choose the origin of th e
temperature scale to be O' C (so that O' C is considered to produce a
zero junction voltage) . In fact, the straight-line parameters listed i n
Table 3 .1 represent an approximation to a 0°C-based response curv e
(ao is close to zero) .

Rearranging Equation 3 .1 and substituting for VCJ in Equation 3 . 2
we see that

Tcj — ao
V SJ = V m +

		

(3 .3)
a l

The values of ao and a l for the appropriate type of thermocoupl e
can be substituted from Table 3.1 into this equation in order to
compensate for the temperature of the cold junction . All voltage
values should be in millivolts and Tcj should be expressed in °C .
The temperature of the sensing junction can then be calculate d
by applying a suitable linearizing polynomial to the VsJ value, as
described in Chapter 9 . Note that the polynomial must also be
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Table 3 .1 Parameters of straight-line fits to
thermocouple response curves over th e
range 0 to 40°C, for use in software
coldjunction compensation

Type ao (° C) a l (° C mV` 1 ) Accuracy(' C)

K 0 .130 24 .82 ±0.2 5
J 0 .116 19 .43 ±0.2 5
R 0 .524 172 .0 ±1 .00
S 0 .487 170 .2 ±1 .00
T 0 .231 24 .83 ±0.50
E 0 .174 16 .53 ±0.3 0
N 0 .129 37 .59 ±0.40

constructed for a coordinate system with an origin at V = 0 mV ,
T=0°C.

It is interesting to note that the type B thermocouple is no t
amenable to this method of cold junction compensation as it exhibit s
an unusual behaviour at low temperatures . As the temperature
rises from zero to about 21°C, the thermoelectric voltage falls t o
approximately -3 µV. It then begins to rise, through 0 V at abou t
41°C, and reaches +3 µV at 52°C . It is, therefore, not possibl e
to accurately fit a straight line to the thermocouple's respons e
curve over this range . Fortunately, if the cold junction temperature
remains within 0 to 52°C it contributes only a small proportion o f
the total measured voltage (less than about ±3 µV) . If the sensing
junction is used over its normal working range of 600 to 1700°C ,
the measurement error introduced by completely ignoring the col d
junction emf will he less than ±0 .6°C.

The accuracy figures quoted in Table 3 .1 are generally better than
typical thermocouple tolerances and so the a 0 and a l parameters
should be usable in most situations . More precise compensation
factors can be obtained by fitting the straight line over a narrower
temperature range or by using a look-tip table with the appropriat e
interpolation routines (see Chapter 9) . You should calculate you r
own compensation factors if a different cold junction temperatur e
range is to be used.

Resistive temperature sensors (thermistors and RTDs )
Thermistors are semiconductor or metal oxide devices whose re-
sistance changes with temperature . Most exhibit negative temper-
ature coefficients (i .e. their resistance decreases with increasin g
temperature) although some have positive temperature coefficients .
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Thermistor temperature coefficients range from about 1 to 5 per
cent/°C. They tend to be usable in the range -70 to +150°C, bu t
some devices can measure temperatures up to 300°C . Tliennist.or-
based measuring systems can generally resolve temperature change s
as small as ±0.01°C, although typical devices can provide absolut e
accuracies no better than ±0.1 to 0 .5°C. The better accuracy figure
is often only achievable in devices designed for use over a limited
range (e.g. 0 to 100°C) .

As shown in Figure 3 .4, thermistors tend to exhibit a highly non -
linear response . This can be corrected by means of suitable signal -
conditioning circuits or by combining thermistors with positiv e
and negative temperature coefficients . Although this technique ca n
provide a high degree of linearity, it may be preferable to carry ou t
linearization within the DA&C software . A third order logarithmic
polynomial is usually appropriate (see Chapter 9) . The response
time of thermistors depends upon their size and construction . They
tend to be comparable with semiconductor temperature sensors
in this respect, but because of the range of possible constructions ,
therinist.or time constants maybe as low as several tens of millisecond s
or as high as 100—200 s .

Resistance Temperature Detectors (RTDs) also exhibit a
temperature-dependent resistance . These devices can be constructe d
from a variety of metals, but platinum is the most widely used . They
are suitable for use over ranges of about -270 to 660°C, althoug h
some devices have been employed for temperatures up to abou t
1000°C . RTDs are accurate to within typically 0 .2 to 4°C, depending
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Figure 3 .4 Typical resistance vs . temperature characteristics for (a) negative
temperature coefficient thermistors and (b) platinum RTDs
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on temperature and construction . They also exhibit a good long-
term stability, so frequent recalibration may not be necessary . Their
temperature coefficients are generally of the order of 0 .4 Q/°C .
However, their sensitivity falls with increasing temperature, leadin g
to a slightly non-linear response. This non-linearity is often smal l
enough, over limited temperature ranges (e .g. 0 to 100°C), to allow
a linear approximation to be used . Wider temperature ranges requir e
some form of linearization to be applied : a third order polynomial
correction usually provides the optimum accuracy . Response time s
are comparable with those of thermistors .

Resistance sensors and bridges
A number of other types of resistance sensor are available . Most
notable amongst these are strain gauges. These take a variety of
forms, including semiconductors, metal wires and metal foils . They
are strained when subjected to a small displacement and, as the gaug e
becomes deformed, its resistance changes slightly . It is this resistanc e
which is indirectly measured in order to infer values of strain ,
force or pressure . The Light Dependent Resistor (LDR) is another
example of a resistance sensor . The resistance of this device change s
in relation to the intensity of light impinging upon its surface .

Both thermistors and RTDs can be used in simple resistiv e
networks, but, because devices such as RTDs and strain gauge s
have low sensitivities it can be difficult to directly measure change s
in resistance. Bridge circuits such as that shown in Figure 3 .5 are ,
therefore, often used to obtain optimum precision . The circuit i s
designed (or adjusted) so that the voltage output from the bridge i s
zero at some convenient value of the measurand (e .g. zero strain in
the case of a strain gauge bridge) . Any changes in resistance induced
by changes in the measurand cause the bridge to become unbal-
anced and to produce a small output voltage . This can be amplified
and measured independently of the much larger bridge-excitatio n
voltage . Although bridge circuits are used primarily with insensitiv e
devices, they can also be used with more responsive resistance sensors
such as thermistors .

Bridges often contain two or four sensing elements (replacing th e
fixed resistors shown in Figure 3 .5) . These are arranged in such a way
as to enhance the overall sensitivity of the bridge and, in the case o f
non-thermal sensors, to compensate for temperature dependencie s
of the individual sensing elements . This approach is used in th e
design of strain-gauge-based sensors such as load cells or pressur e
transducers .

Bridges with one sensing element exhibit a non-linear response .
Two-active-arm bridges, which have sensors placed in opposite arms,
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Figure 3 .5 Bridge circuit for measuring resistance changes in strain gauges an d
RTDs

are also non-linear . However, provided that only small fractiona l
changes occur in the resistance of the sensing element(s), the non-
linearities of one and two arm bridges are often small enough tha t
they can be ignored. Strain-gauge bridges with four active sensor s
generate a linear response provided that the sensors are arranged s o
that. the resistance change occurring in one diagonally opposing pai r
of gauges is equal and opposite to that occurring in the other (Pople ,
1979) . When using resistance sensors in a bridge configuration, it i s
advisable to check for and, if necessary, correct any non-linearitie s
that may be present . Linearization and calibration of strain-gauge
bridges is discussed in Chapter 9 .

Conduction of the excitation current can cause self-heating
within each sensing element . This can be problematic with therma l
sensors — thermistors in particular . Temperature rises within strain
gauges can also cause errors in the bridge output. Because of this ,
excitation currents and voltages have to be kept within reasonabl e
limits. This often results in low signal levels . For example, in most
implementations, strain-gauge bridges generate outputs of the orde r
of a few millivolts . Because of this, strain-gauge and RTD-based
measuring systems are susceptible to noise, and a degree of softwar e
or hardware filtering is frequently required .

Lead resistance must also be considered when using resistance
sensors . This is particularly so in the case of low resistance devices
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such as strain gauges and RTDs, which have resistances of typicall y
120 to 350 S2 and 100 to 200 0, respectively. In these situations
even the small resistance of the lead wires can introduce significan t
measurement errors . The effect of lead resistance can be minimize d
by means of compensating cables and suitable signal conditioning .
This is usually the most efficient approach . Alternatively, the same
type of compensation can be performed in software by using a
spare ADC channel to directly measure the excitation voltage at th e
location of the sensor or bridge .

Linear variable differential transformers (LVDTs )
Linear Variable Differential Transformers (LVDTs) are used for
measuring linear displacement. They consist of one primary and two
secondary coils . The primary coil is excited with a high frequency
(typically several hundred to several thousand Hz) voltage . The
magnetic-flux linkage between the concentric primary and secondar y
coils depends upon the position of a ferrite core within the coi l
geometry. Induced signals in the secondary coils are combined in a
differential manner such that movement of the core along the axis
of the coils results in a variation in the amplitude and phase of th e
combined secondary-coil output. The output changes phase at the
central (null) position and the amplitude of the output increases
with displacement from the null point . The high frequency outpu t
is then demodulated and filtered in order to produce a DC voltag e
in proportion to the displacement of the ferrite core from its nul l
position. The filter used is of the low-pass type which blocks the hig h
frequency ripple but passes lower frequency variations due to cor e
movement.

Obviously the excitation frequency must be high in order to allo w
the filter's cut-off frequency to be designed such that it does no t
adversely affect the response time of the sensing system . The exci-
tation frequency should be considerably greater than the maximu m
frequency of core movement. This is usually the case with LVDTs .
However, the filtration required with low frequency excitation (les s
than a few hundred Hz) may significantly affect the system's respons e
time and must be taken into account by the software designer .

The LVDT offers a high sensitivity (typically 100–200 mV/V at it s
full-scale position) and high level voltage output which is relatively
immune to noise . Software filtering can, however, enhance nois e
rejection in some situations .

The LVDT's intrinsic null position is very stable and forms a n
ideal reference point against which to position and calibrate th e
sensor. The resolution of an LVDT is theoretically infinite. In
practice, however, it is limited by noise and the ability of the
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signal-conditioning circuit to sense changes in the LVDT's output .
Resolutions of less than 1 gm are possible . The device's repeatability
is also theoretically infinite, but is limited in practice by therma l
expansion and mechanical stability of the sensor's body and mount-
ings. Typical repeatability figures lie between ±0.1 and ±10 gm ,
depending upon the working range of the device . Temperatur e
coefficients are also an important consideration . These are usually
of the order of 0 .01 per cent/°C. It is wise to periodically recalibrat e
the sensor, particularly if it is subject to appreciable temperatur e
variations .

LVDTs offer quite linear responses over their working range .
Designs employing simple parallel coil geometries are capable o f
maintaining linearity over only a short distance from their null posi -
tion. Non-linearities of up to 10 per cent or more become apparen t
if the device is used outside this range . In order to extend their oper -
ating range, LVDTs are usually designed with more complex and
expensive graduated or stepped windings . These provide linearities
of typically 0.25 per cent . An improved linearity can sometimes b e
achieved by applying software linearization techniques as describe d
in Chapter 9 .

3.4 Handling analogue signal s
Signal levels and current-loading requirements of sensors and actua-
tors usually preclude their direct connection to ADCs and DACs . For
this reason, data-acquisition and control systems generally require
analogue signals to be processed before being input to the PC,
or after transmission from it . This usually involves conditionin g
(i .e. amplifying, filtering and buffering) the signal . In the case of
analogue inputs it may also entail selecting and capturing the signal
using devices such as multiplexers and sample-and-hold circuits .

Signal conditioning

Signal conditioning is normally required on both inputs and outputs .
In this section we will concentrate on analogue inputs, but analogou s
considerations will apply to analogue outputs : for example, th e
circuits used to drive actuators .

Conditioning analogue input s
Signal conditioning serves a number of purposes . It is needed t o
clean and shape signals, to supply excitation voltages, to amplify an d
buffer low level signals, to linearize sensor outputs, to compensate
for temperature-induced drifts and to protect the PC from electrical
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Figure 3 .6 Elements of a typical analogue input signal-conditioning circui t

noise and surges . The signal-conditioning blocks shown in Figure 3 . 2
may consist of a number of separate circuits and components . These
elements are illustrated in Figure 3 .6 .

Certain passive signal-conditioning elements such as potentia l
dividers, bridge circuits and current-to-voltage conversion resis-
tors are often closely coupled to the sensor itself and, indeed ,
may be an integral part of it . The sensor is sometimes isolate d
from the remaining signal-conditioning circuits and from the P C
by means of linear opto-couplers or capacitively coupled devices .
Surge-suppression components such as Zener diodes and meta l
oxide varistors may also be used in conjunction with RC networks t o
protect against transient voltage spikes .

Because typical ADCs have sensitivities of a few millivolts per bit, i t
is essential to amplify the low level signals from thermocouples, strai n
gauges and RTDs (which may be only a few tens of millivolts at ful l
scale) . Depending upon the type of sensor in use, activities such as A C
demodulation or thermocouple cold junction compensation migh t
also be performed prior to amplification . Finally, a filtering stag e
might be employed to remove random noise or AC excitation ripple .
Low-pass filters also serve an anti-aliasing function as described in
Chapter 4 .

So what relevance does all this have to the DA&C programmer ?
In well-designed systems, very little — the characteristics of the signa l
conditioning should have no significant limiting affect on the desig n
or performance of the software, and most of the characteristics o f
the sensor and signal conditioning should be transparent to the
programmer . Unfortunately this is not always the case .

The amplifier and other circuits can give rise to temperature -
dependent offsets or gain drifts (typically of the order of 0.002—0.01 0
per cent of full scale per ' C) which may necessitate periodic recali-
bration or linearization . When designing DA&C software you should
consider the following:

• the frequency of calibratio n
• the need to enforce calibration or to prompt the operator whe n

calibration is due
• how calibration data will be input, stored and archive d
• the necessity to rezero sensors after each data-acquisition cycle .
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You should also consider the frequency response (or bandwidth )
of the signal-conditioning circuitry. This can affect the sampling
rate and limit throughput in some applications (see Chapter 4) .
Typical bandwidths are of the order of a few hundred Hz, but this
does, of course, vary considerably between different types of signal-
conditioning circuit and depends upon the degree of filtration used .
High gain signal-conditioning circuits, which amplify noisy low level
signals, often require heavy filtering. This may limit the bandwidth to
typically 100 to 200 Hz . Systems employing low frequency LVDTs ca n
have even lower bandwidths . Bandwidth may not be an important
consideration when monitoring slowly varying signals (e .g. tempera-
ture), but it can prove to be problematic in high speed application s
involving, for example, dynamic force or strain measurement .

If high gain amplifiers are used and/or if hardware filtration is
inadequate, it may be necessary to incorporate filtering algorithm s
within the software. If this is the case, you should carefully asses s
which signal frequencies you wish to remove and which frequencie s
you will need to retain, and then reconcile this with the proposed
sampling rate and the software's ability to reconstruct an accu-
rate representation of the underlying noise-free signal . Sampling
considerations and software filtering techniques are discussed i n
Chapter 4 .

It may also, in some situations, be necessary for the software t o
monitor voltages at various points within the signal-conditionin g
circuit . We have already mentioned monitoring of bridge excitatio n
levels to compensate for voltage drops due to lead-wire resistance .
The same technique (sometimes known as ratiometric correction )
can also be used to counteract small drifts in excitation supply . If
lead-wire resistance can be ignored, the excitation voltage may b e
monitored either at its source or at the location of the sensor .

There is another (although rarer) instance when it might b e
necessary to monitor signal-conditioning voltage levels . This is when
pseudo-differential connections are employed on the input to a n
amplifier . Analogue signal connections may be made in two ways :
single ended or differential . Single-ended signals share a common
ground or return line. Both the signal source voltage and th e
input to the amplifier(s) exist relative to the common ground . For
this method to work successfully, the ground potential differenc e
between the source and amplifier must be negligible otherwise th e
signal to be measured appears superimposed on a non-zero (an d
possibly noisy) ground voltage . If a significant potential difference
exists between the ground connections, currents can flow along th e
ground wire causing errors in the measured signals .
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Differential systems circumvent this problem by employing two
wires for each signal . In this case, the signal is represented by th e
potential difference between the wires. Any ground-loop-induced
voltage appears equally (as a common-mode signal) on each wire
and can be easily rejected by a differential amplifier .

An alternative to using a full differential system is to employ
pseudo-differential connections . This scheme is suitable for appli-
cations in which the common-mode voltage is moderately small .
It makes use of single-ended channels with a common groun d
connection. This allows cheaper operational amplifiers to be used .
The potential of the common ground return point is measured
using a spare ADC input in order to allow the software to correct
for any differences between the local and remote ground voltages .
Successful implementation of this technique obviously requires th e
programmer to have a reasonably detailed knowledge of the signa l
conditioning circuitry. Unless the common-mode voltage is relatively
static, this technique also necessitates concurrent sampling of th e
signal and ground voltages . In this case simultaneous sample-and-
hold circuits (discussed later in this chapter) or multiple ADCs ma y
have to be used .

Conditioning analogue outputs
Some form of signal conditioning is required on most analogu e
outputs, particularly those that are intended to control motors
and other types of actuator . Space limitations preclude a detailed
discussion of this topic, but in general, the conditioning circuit s
include current-driving devices and power amplifiers etc . The nature
of the signal conditioning used is closely related to the type o f
actuator . As in the case of analogue inputs, it is prudent for th e
programmer to gain a thorough understanding of the actuator an d
associated signal-conditioning circuits in order that the software ca n
be designed to take account of any non-linearities or instabilitie s
which might be present .

Multiplexers

Multiplexers allow several analogue input channels to be service d
by a single ADC. They are basically software-controlled analogue
switches which can route one of typically 8 or 16 analogue signal s
through to the input of the system's ADC . A four-channel multi-
plexed system is illustrated in Figure 3 .2. A multiplexer used i n
conjunction with a single ADC (and possibly amplifier) can tak e
the place of several ADCs (and amplifiers) operating in parallel .
This is normally considerably cheaper, and uses less power, than an
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array of separate ADCs and for this reason analogue multiplexer s
are commonly used in multi-channel data-acquisition systems .

However, some systems do employ parallel ADCs in order t o
maximize throughput . The ADCs must, of course, be well matche d
in terms of their offset, gain and integral non-linearity errors . In
such systems, the digitized readings from each channel (i .e. ADC) are
digitally multiplexed into a data register or into one of the PC's I/O
ports . From the point of view of software design, there is little to be
said about digital multiplexers . In this section, we will deal only wit h
the properties of their analogue counterparts .

In an analogue multiplexed system, multiple channels share th e
same ADC and the associated sensors must be read sequentially ,
rather than in parallel . This leads to a reduction in the number of
channels that can be read per second . The decrease in throughpu t
obviously depends upon how efficiently the software controls th e
digitization and data-input sequence .

A related problem is skewing of the acquired data . Unless special
S/H circuitry is used, simultaneous sampling is not possible . This i s
an obvious disadvantage in applications which must determine th e
temporal relationship or relative phase of two or more inputs .

Multiplexers can be operated in a variety of ways . The desired
analogue channel is usually selected by presenting a 3- or 4-bi t
address (i .e . channel number) to its control pins . In the case of a
plug-in ADC card, the address-control lines are manipulated fro m
within the software by writing an equivalent bit pattern to one of th e
card's registers (which usually appear in the PC's I/O space) . Some
systems can be configured to automatically scan a range of channels .
This is often accomplished by programming the start and end
channel numbers into a `scan register' . In contrast, some intelligen t
DA&C units require a high-level channel-selection command to
be issued . This often takes the form of an ASCII character strin g
transmitted via a serial or parallel port .

'Whenever the multiplexer is switched between channels, the input
to the ADC or S/II will take a finite time to settle . The settling tim e
tends to be longer if the multiplexer's output is amplified before
being passed to the S/H or ADC. An instrumentation amplifier ma y
take typically 1–10 µs to settle to a 12-bit (0 .025 per cent) accuracy .
The exact settling time will vary, but will generally be longest with
high gain PGAs, or where the amplifier is required to settle to a
greater degree of accuracy .

The settling time can be problematic . If the software scans th e
analogue channels (i .e. switches the multiplexer) too rapidly, th e
input to the S/H or ADC will not settle sufficiently and a degre e
of apparent cross-coupling may then be observed between adjacent
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channels. This can lead to measurement errors of several per cent ,
depending upon the scanning rate and the characteristics of th e
multiplexer and amplifier used. These problems can be avoide d
by careful selection of components in relation to the propose d
sampling rate . Bear in mind that the effects of cross-coupling may b e
dependent upon the sequence as well as the frequency with whic h
the input channels are scanned . Cross-coupling may not even b e
apparent during some operations . A calibration facility, in whic h
only one channel is monitored, will not exhibit any cross-coupling ,
while a multi-channel scanning sequence may be badly affected . I t
is advisable to check for this problem at an early stage of software
development as, if present, it can impose severe restrictions on th e
performance of the system .

Sample-and-hold circuits

Many systems employ a sample-and-hold (S/H) circuit on the inpu t
to the ADC to freeze the signal while the ADC digitizes it . This
prevents errors due t.o changes in the signal during the digitizatio n
process (see Chapter 4) . In some implementations, the multiplexe r
can be switched to the next channel in a sequence as soon as th e
signal has been grabbed by the S/H. This allows the digitizatio n
process to proceed in parallel with the settling time of the multi-
plexer and amplifier, thereby enhancing throughput. S/H circuits
can also be used to capture transient signals. Software-controlle d
systems are not capable of responding to very high speed transien t
signals (i .e . those lasting less than a few microseconds) and so i n
these cases, the S/H and digitization process may be initiated by
means of special hardware (e .g. a pacing clock) . The software i s
then notified (by means of an interrupt, for example) when th e
digitization process is complete .

S/H circuits require only a single digital control signal to switc h
them between their `sample' and `hold' modes . The signal may be
manipulated by software via a control register mapped to one of th e
PC's I/O ports, or it may be driven by dedicated on-board hardware .
S/H circuits present at the input to ADCs are often considered
to be an integral part of the digitization circuitry . Indeed, th e
command to start the analogue-to-digital conversion process ma y
also automatically activate the S/H for the required length of time .

Simultaneous S/ H
In multiplexed systems like that represented in Figure 3 .2 ,
analogue input channels have to be read sequentially. This
introduces a time lag between the samples obtained from
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successive channels. Assuming typical times for ADC conversion
and multiplexer/amplifier settling, this time lag can vary fro m
several tens to several hundreds of microseconds . The consequen t
skewing of the sample matrix can be problematic if you wis h
to measure the phase relationship between dynamically varyin g
signals . Simultaneous S/H circuits are often used to overcome thi s
problem. Figure 3 .7 illustrates a four-channel analogue input system
employing simultaneous S/H .

The system is still multiplexed, so very little improvement is
gained in the overall throughput. (total number of channels rea d
per second), but the S/H circuits allow data to be captured from al l
inputs within a very narrow time interval (see the following section) .
Simultaneous S/H circuits may be an integral part of the signa l
conditioning unit or they may be incorporated in the digitizatio n
circuitry (e .g. on a plug-in ADC card) . In either case they tend to b e
manipulated by a single digital signal generated by the PC .

Characteristics of S/H circuit s
When not in use, the S/H circuit can be maintained in eithe r
the sample or hold modes . To operate the device, it must firs t
be switched into sample mode for a short period and then int o
hold mode in order to freeze the signal before analogue-to-digital
conversion begins . When switched to sample mode, the output o f
the S/H takes a short, but sometimes significant, time to react t o
its input . This time delay arises because the device has to charg e
up an internal capacitor to the level of the input signal . The rate
of charging follows an exponential form and so a greater degree o f
accuracy is achieved if the capacitor is allowed to charge for a longe r
time . This charging time is known as the acquisition time . It varies
considerably between different types of S/H circuit and, of course ,
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depends upon the size of the voltage swing at the S/H's input. The
worst case acquisition time is usually quoted and this is generall y
of the order of 0 .5-20 µs . Acquisition time is illustrated, togethe r
with other S/H characteristics, in Figure 3 .8. Accuracies of 0 .01 per
cent are often attainable with acquisition times greater than abou t
10 µs . Lower accuracies (e .g . 0.1 per cent) are typical of S/H device s
working with shorter acquisition times .

While in sample mode, the S/H's output follows its input (provided
that the hold capacitor has been accurately charged and that th e
signal does not change too quickly) . When required, the device i s
switched into hold mode . A short delay then ensues before digi-
tization can commence . The delay is actually composed of two
constituent delay times known as the aperture time and the settlin g
time. The former, which is due to the internal switching time of th e
device, is very short: typically less than 50 ns . Variations in the aper-
ture time, known as aperture jitter (or aperture uncertainty time) ,
are the limiting factor in determining the temporal precision of eac h
sample . These variations are generally of the order of 1 ns, so aper -
ture jitter can be ignored in all but the highest speed applications
(see Chapter 4 for more on the relationship between aperture jitte r
and maximum sampling rate) . The settling time is the time required
for the output to stabilize after the switch and determines the rate at
which samples can be obtained . It is usually of the order of 1 µs, but
some systems exhibit much longer or shorter settling times .
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When the output settles to a stable state, it can be digitized by
the ADC. Digitization must be completed within a reasonably short
time interval because the charge on the hold capacitor begins t o
decay, causing the S/H's output to `droop' . Droop rates vary between
different, devices, but are typically of the order of 1 mV/ms. Device s
are available with both higher and lower droop rates . S/H circuits
with low droop rates are usually required in simultaneous sample-
and-hold systems . Large hold capacitors are needed to minimize
droop and these can adversely affect the device's acquisition time .

3 .5 Digitisation and signal conversio n

The PC is capable of reading and writing only digital signals . To
permit interfacing of the PC to external analogue systems, ADCs
and DACs must be used to convert signals from analogue to digita l
form and vice versa. This section describes the basic principles of th e
conversion processes . It also illustrates some of the characteristics o f
ADCs and DACs which you should be aware of when writing interfac e
software .

Binary coding

In order to understand the digitization process, it is important t o
consider the ways in which analogue signals can be represente d
digitally . Computers store numbers in binary form . There are several
binary coding schemes . Most positive integers, for example, ar e
represented in true binary (sometimes called natural or straigh t
binary) . Just as the digits in a decimal number represent units, tens ,
hundreds etc., true binary digits represent 1s, 2s, 4s, 8s and so on .
Floating-point numbers, on the other hand, are represented withi n
the computer in a variety of different binary forms . Certain fields
within the floating-point bit pattern are set aside for exponents or t o
represent. the sign of the number . Although floating-point represen -
tations are needed to scale, linearize and otherwise manipulate dat a
within the PC, all digitized analogue data are generally transferre d
in and out of the computer in the form of binary integers .

Analogue signals may be either unipolar or bipolar . Unipolar
signals range from zero up to some positive upper limit, whil e
bipolar signals can span zero, varying between non-zero negativ e
and positive limits .

Encoding unipolar signal s
Unipolar signals are perhaps the most common and are the simplest
to represent in binary form . They are generally coded as true binary
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numbers with which most readers should already be familiar . As
mentioned above the least significant bit (LSB) has a weight (value )
of 1 in this scheme, and the weight of each successive bit doubles a s
we move towards the most . significant bit (MSB) . If we allocate an
index number, i, to each bit, starting with 0 for the LSB, the weigh t
of any one bit is given by 2 i. Bit 6 would, for example, represen t
the value 2 6 (=64 decimal) . To calculate the value represented by a
complete binary number, the weights of all non-zero bits must be
added. For example, the following 8-bit true binary number woul d
be evaluated as shown .

1 1 00 1 00 1 binary= 27 +26 +23 +2°

= 128 + 64 + 8 + 1 = 201 decimal

The maximum value which can be represented by a true binar y
number has all bits set to 1 . Thus, a true binary number with n bits
can represent values from 0 to V, where :

V=

	

i =2n —1

	

(3 .4)

i= o

An 8-bit true binary number can, therefore, represent integers in th e
range 0 to 255 decimal (= 2 8 — 1) . A greater range can be represented
by binary numbers having more bits . Similar calculations for other
numbers of bits yield the results shown in Table 3 .2. The accuracies
with which each true binary number can represent an analogue
quantity are also shown .

The entries in this table correspond to the numbers of bit s
employed by typical ADCs and DACs . It should be apparent tha t
converters with a higher resolution (number of bits) provide th e
potential for a greater degree of conversion accuracy .

When true binary numbers are used to represent an analogue
quantity, the range of that quantity should be matched to the rang e

Table 3 .2 Ranges of true binary numbers

Number of bits Range (true binary) Accuracy (%)

6 0 to 63 1 .56
8 0 to 255 0 .39

10 0 to 1 023 0 .098
12 0 to 4 095 0 .024
14 0 to 16 383 0.006 1
16 Oto65535 0.0015
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(i .e . V) of the ADC or DAC. This is generally accomplished by
choosing a signal-conditioning gain which allows the full-scale range
of a sensor to be matched exactly to the measurement range of th e
ADC. A similar consideration applies to the range of DAC output s
required to drive actuators . Assuming a perfect match (and that
there are no digitizing errors), the limiting accuracy of any ADC o r
DAC system depends upon the number of bits available . An n-bit
system can represent some physical quantity which varies over a
range 0 to R, to a fractional accuracy ±0R where :

R
SR = ~l2

This is equal to the value represented by one LSB . True binar y
numbers are important in this respect as they are the basis fo r
measuring the resolution of an ADC or DAC .

Encoding bipolar signal s
Many analogue signals can take on a range of positive and negative
values . It is, therefore, essential to be able to represent readings
on both sides of zero as digitized binary numbers . Several differen t
binary coding schemes can be used for this purpose . One of the mos t
convenient and widely used is offset binary . As its name suggests, this
scheme employs a true binary coding, which is simply offset fro m
zero . This is best illustrated by an example . Consider a system i n
which a unipolar 0—10 V signal is represented in 12-bit true binary b y
the range of values from 0 to 4095 . We can also represent a bipola r
signal in the range -5 V to +5 V by using the same scaling factor (i .e .
volts per bit) and simply shifting the zero-volt point halfway along th e
binary scale to 2048 . An offset binary value of zero would, in this case ,
be equivalent to -5 V, and a value of 4095 would represent +5 V .
Offset binary codes can, of course, be used with any number of bits .

Two's complement binary can also represent both positive and
negative numbers . It employs a sign bit at the MSB location . This bi t
is 0 for positive numbers and 1 for negative numbers . Because one bi t
is dedicated to storing sign information, it cannot be used for codin g
the absolute magnitude of the binary number and so the range o f
magnitudes which can be represented by two's complement number s
is half that which can be accommodated by the same number o f
bits in true binary. To negate a positive binary integer, it is only
necessary to complement (convert Os to is and is to Os) each bi t
and then add 1 to the result . Carrying out this operation -- which i s
equivalent to multiplying by minus one — twice in succession yields
the original number . As most readers will be aware, this scheme is

(3.5)
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used by the IBM PC's 80x86 processor for storing and manipulatin g
signed integers because it greatly simplifies the operations require d
to perform subtractive arithmetic . A number of ADCs, particularl y
those designed for audio and digital signal processing applications ,
also use this coding scheme .

There are a variety of less widely used methods of coding bipola r
signals . For example, a simple true binary number, indicating magni-
tude, may be combined with an additional bit to record the sig n
of the number . Another encoding scheme is one's complemen t
(or complementary straight) binary in which negative number s
are formed by simply inverting each bit of the equivalent positiv e
true-binary number . Combinations of these coding schemes ar e
sometimes used . For example, complementary offset binary consists
of an offset binary scale in which each code is complemented . The
result is that the zero binary code (all Os) corresponds to the positiv e
full-scale position, while the maximum binary code (all Is) represents
the negative full-scale position . Yet another scheme, complementary
two's complement, is formed by simply inverting each bit of a two' s
complement value . These methods of binary coding are less impor-
tant in PC applications although some ADCs may generate signe d
true binary or one's complement binary codes . Some DAC device s
use the complementary offset binary scheme .

The various bipolar codes are compared in Table 3 .3. This shows
how a 3-bit binary number can represent values from -4 to +4 using
the different coding schemes . The patterns shown in this table ca n
be easily extended to numbers encoded using a greater number o f
bits . Note that only offset binary, complementary offset binary an d
two's complement binary have a unique zero code . Note also tha t
these schemes are asymmetric about their zero point . Compare i n
particular the two forms of offset binary .

Table 3 .3 Comparison of bipolar binary codes

Value
Offse t
binary

Two's
complement

One's
complement

Complementary
offset binary

+3 111 011 011 000
+2 110 010 010 00 1
+1 101 001 001 01 0

0 100 000 000 or 111 01 1
-1 011 111 110 100
-2 010 110 101 10 1
-3 001 101 100 11 0
-4 000 100 - 111



Sensors and interfacing 107

Conversion from offset binary to two's complement binary is simpl y
a matter of complementing the MSB . Complementing it again reverts
back to offset binary encoding . It is a very straightforward task t o
convert between the various bipolar codes and examples will not b e
given here .

Other binary codes and related notation s

There are two other binary codes which can be used in special
circumstances : the Gray code and BCD . Both of these are, in fact ,
unipolar codes and cannot represent negative numbers withou t
the addition of an extra sign bit . We have already introduced the
Gray code in relation to digital encoders earlier in this chapter, but
because the DA&C programmer rarely needs to use this code directl y
it will not be discussed further .

Binary coded decimal (BCD)

BCD is simply a means of encoding individual decimal digits in binary
form . Each decimal digit is coded by a group of 4 bits . Although
each group would be capable of recording 16 true binary values ,
only the lower 10 values (i .e . corresponding to 0 to 9, decimal) are
used. The remaining values are unused and are invalid in BCD . A
number with N decimal digits would occupy 4N bits, arranged suc h
that the least significant group of 4 bits would represent the leas t
significant decimal digit . For example :

1234 decimal = 0001 0010 0011 0100 BC D

ADCs which generate BCD output are used mostly for interfacing to
decimal display devices such as panel meters . Most ADCs employed
in PC applications (e .g. those on plug-in DA&C cards) use one of the
coding schemes described previously, such as offset binary . However,
a few components of the PC do make use of BCD . For example, the
16-bit 8254 tinier counter used on AT compatible machines an d
on some plug-in data-acquisition cards can operate in a 4-decade
BCD mode.

Hexadecimal notation

This is not a binary code . It is, in fact, a base-16 (rather than base-2 )
numeric representation . Hexadecimal notation is rather like BCD in
that 4 bits are required for each hexadecimal digit . However, all 16
binary codes are valid and so each hexadecimal digit can represen t
the numbers from 0 to 15 (decimal) . Hexadecimal numbers are
written using an alphanumeric notation in which the lowest 10 digits
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are represented by 0 to 9 and the remaining digits are written using
the letters A to F. `A' corresponds to 10 decimal, `B' to 11 and s o
on. Hexadecimal numbers are followed by an `h' to avoid confusing
them with decimal numbers . The following example shows the binar y
and decimal equivalents of a 2-digit hexadecimal number :

3Ah = 0011 1010 binary = (3 x 16) + (10 x 1) = 58 decima l

Most numbers manipulated by computer software are coded usin g
multiples of 4 bits : usually either 8, 16 or 32 bits . Hexadecimal is,
therefore, a convenient shorthand method for expressing binar y
numbers and is used extensively in this and other publications .

Digital-to-analogue converters

Digital-to-analogue converters (DACs) have a variety of uses withi n
PC-based DA&C systems . They may be used for waveform synthesis ,
to control the speed of DC motors, or to drive analogue chart
recorders and meters . Many closed-loop control systems requir e
analogue feedback from the PC and this is invariably provided b y
a DAC.

Most DACs generate full-scale outputs of a few volts (typicall y
0–10 V, ±5 V, or ±10 V) . They have a limited current driving capa-
bility (usually less than about 1–10 mA) and are often buffere d
using operational amplifiers . In cases where a low impedance or high
power unit is to be driven, suitable power amplifiers may be required .
Current-loop DACs with full-scale outputs of 4–20 mA are also avail-
able and these are particularly suited to long-distance transmissio n
in noisy environments . Both bipolar and unipolar configurations ar e
possible on many proprietary DAC cards by adjusting jumpers o r
DIP switches .

The resolution of a DAC is an important consideration . This i s
the number of input bits which the DAC can accept. As Equation 3 . 5
shows, it determines the accuracy with which the device can recon-
struct analogue signals (also see Chapter 4) . 8-bit and 12-bit DAC s
are, perhaps, the most common in DA&C applications althoug h
devices with a variety of other resolutions are available . Figure 3 .9
shows the ideal transfer characteristic of a DAC . For reasons of
clarity, this illustration is based on a hypothetical 3-bit DAC, having
eight possible codes from 000b to 111 b . Note that although there
are eight codes, the DAC can only generate an output accurate t o
one-seventh of its maximum output voltage, which is one LSB shor t
of its nominal full scale value, Vrax .

DACs are generally controlled via registers mapped to one or more
of the PC's I/O ports . When the desired bit pattern is written to the
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Figure 3 .9 Ideal DAC transfer characteristic (unipolar true binary encoding )

register, the DAC updates its analogue output accordingly . If a DAC
has more than 8 bits, it requires its digital input to be supplied eithe r
as one 16-bit word or as two 8-bit bytes . The latter often involves a
two-stage write operation : the least significant byte is usually writte n
first and this is followed by the most significant byte . Any unused
bits (e .g. the tipper 4 bits in the case of a 12-bit DAC) are ignored .
The two-stage method of supplying new data can sometimes cause
problems if the DAC's output is updated immediately upon receip t
of each byte. Spurious transients can be generated because the leas t
significant byte of the new data is initially combined with the mos t
significant byte of the existing data. The analogue output settles t o
its desired value only when both new bytes have been supplied . To
circumvent this problem, many DACs incorporate a double bufferin g
system in which the first byte is held in a buffer until the second byte
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is received, at which point the complete control word is transferre d
to the DAC's signal-generating circuitry.

Most devices employ a network of resistors and electronic switche s
connected to the input of an operational amplifier . The network i s
arranged such that each switch and its associated resistors make a
binary-weighted contribution to the output of the amplifier . Each bi t
of the digital input operates one of the switches and thereby control s
the input to, and output from, the amplifier . The operational ampli-
fier and resistor network function basically as a multiplier circuit . I t
multiplies the digital input (expressed as a fraction of the full-scal e
digital input) by a fixed reference voltage . The reference voltag e
may be supplied by components external to the DAC . Most plug-in
DA&C cards for the PC include suitable precision voltage references .
Some also provide the facility for users to connect their own refer-
ence voltage and thereby to adjust the full-scale range of the DAC .
Further details of DAC operation may be found in the texts b y
Tompkins and Webster (1988) and Vears (1990) .

The output of a DAC can usually be updated quite rapidly . Each
bit transition gives rise to transient fluctuations which require a shor t
time to settle . The total settling time depends upon the number of
bits that change during the update and is greatest when all input bit s
change (i .e. for a full-scale swing) . The settling time may be define d
as the time required after a full-scale input step for the DAC's outpu t
to settle to within a negligibly small band about its final level . The
term `negligibly small' has to be defined . Some DAC manufacturers
define it as `within ±2 LSB', while others define it as a percentage o f
full scale, such as ±0 .001 per cent. Quoted settling tunes range from
about 0.1 to 150 µs, and sometimes up to about 1 ms, depending
upon the characteristics of the device and on how the settling tim e
is defined . Most DACs, however, have settling times of the order o f
5–30 µs . In practice the overall settling time of an analogue outpu t
channel may be affected by external power amplifiers and othe r
components connected to the DAC's outputs . You are advised to
consult manufacturers ' literature for precise timing specifications .

Characteristics of DACs

Because of small mismatches in components (e .g. the resisto r
network), it is not generally possible to fabricate DACs with the
ideal transfer characteristic illustrated in Figure 3 .9. Most DACs
deviate slightly from the ideal, exhibiting several types of imperfec-
tion as shown in Figure 3 .10 . You should be aware of these potentia l
sources of error in DAC outputs, some of which can be corrected b y
the use of appropriate software techniques .
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The transfer characteristic may be translated along the analogue -
output axis giving rise to a small offset voltage . Incorrect gains wil l
modify the slope of the transfer characteristic such that the desire d
full-scale output is either obtained with a binary code lower tha n
the ideal full-scale code (all 1s), or never reached at all . Gain errors
equivalent to a few LSB are typical .

Linearity is a measure of how closely the output conforms to a
straight line drawn between the end points of the conversion range .
Linearity errors, which are due to small mismatches in the resisto r
network, cause the output obtained with some binary codes to deviat e
from the ideal straight-line characteristic . Most modern monolithi c
DACs are linear to within ±1 LSB or less. Differential non-linearity
is the maximum change in analogue output occurring between an y
two adjacent input codes . It is defined in terms of the variation fro m
the ideal step size of 1 LSB . Differential non-linearities are usually o f
the order of ±1 LSB or less . If non-linearity is such that the outpu t
from the DAC fails to increase over any single step in its input ,
the DAC is said to be non-monotonic . Monotonicity of a DAC i s
usually expressed as the number of bits over which monotonicity i s
maintained. If a DAC has a non-linearity better than ± LSB, then i t
must be monotonic (it cannot be non-monotonic, by definition) .

Although one can often compensate for gain and offset errors
by manual trimming, it is not possible to correct non-linear o r
non-monotonic DACs – these characteristics are intrinsic propertie s
of the device . Fortunately, most modern DAC designs yield quit e
small non-linearities which can usually be ignored. If, however,
you are using a particularly non-linear device, you may wish t o
consider employing one of the linearization techniques described in
Chapter 9 .

Analogue-to-digital converters

An analogue-to-digital converter (ADC) is required to conver t
analogue sensor signals into a binary form suitable for readin g
into the PC. A wide variety of ADCs are available for this platform ,
either on plug-in DA&C cards or within remote signal-conditionin g
units or data loggers. This section introduces the basic concept s
involved in analogue-to-digital conversion and describes some of
the properties of ADCs which are relevant to the design of DA& C
software .

Resolution and quantization erro r
It should be apparent to the reader that, because of the discrete
nature of digital signals, some analogue information is lost in the



Sensors and interfacing 11 3

conversion process. A small but finite range of analogue inpu t
values are capable of generating any one digital output code . Thi s
range is known as the code width or, more properly, as a quantu m
as it represents the smallest change in analogue input which can
be represented by the system . Its size corresponds to 1 LSB . The
uncertainty introduced as a result of rounding to the nearest binary
code is known as quantization error and has a magnitude equal to

LSB . Obviously, the quantization error is less important relative
to the full-scale input range in ADCs that are capable of generatin g
a wider range of output codes (i .e. those with a greater numbe r
of bits) .

Some devices have a relatively low resolution of 8 bits or less ,
while others, designed for more precise measurements, may have 1 2
or 16 bits . ADCs usually have full-scale input ranges of a few volts :
typically 0–10 V (unipolar) or +5 V (bipolar) . The quantization
error is thus of the order of a few millivolts . Precise figures can easil y
be calculated by applying Equation 3 .5, knowing the device's input
range and resolution, as shown in the following example .

Consider a 12-bit ADC system designed for monitoring th e
displacement. of some object using an LVDT over a range 0 to
50 mm. If the full analogue range is encompassed exactly by th e
available digital codes, then we can calculate the magnitude of th e
LSB from Equation 3.5 :

R 50
SR=

	

= 0.012 mm
2

	

2 1 2

In this example, the quantization error imposes an accuracy o f

2 SR = +0.006 mm. This presupposes that we use the whole range
of available ADC codes . The effective quantization error is clearly
worse if only part of the ADC's digitizing range is used . The quantiza-
tion error indicates the degree of precision that can be attained in a n
ideal device. It is not, however, representative of the overall accurac y
of most real ADCs . We will discuss other sources of inaccuracy late r
in this chapter .

Quantization noise
For a data-acquisition system equipped with an n-bit ADC an d
designed to measure signals over a range R, we have seen that th e
quantization error is +Q, where Q = 2SR. The difference between
an analogue value and its digitized representation appears as a
varying noise signal superimposed upon the true analogue signal .
The amplitude of the noise signal varies by an amount determine d
by the magnitude of the quantization error and, if the signal to
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be digitized consists of a pure sine wave of amplitude ±-P?, th e
root-mean-square (rms) value of the noise component is given by :

-2 3R
Nrms =

-33

which, when we substitute for SR, gives :

1 R
Nrms

	 2	

2 -33

The rms value of the signal itself is :

i
2

R

srms =
V2

so the ratio of the rms signal to rms noise values — the signal-to-nois e
ratio, SNR — is given by

(3.6)

(3.7)

(3.8)

►Srm sSNR
N rms

(3 .9 )

It is normal to express SNR in decibels (dB), where SNR CIB =
20 log (SNR) . This gives the approximate relationship :

SNRJB ti 1 .76 + 6.02n dB

	

(3 .10)

This equation relates the number of bits to the dynamic range of th e
ADC — i .e. the signal-to-noise ratio (SNR) inherent in digitization .
Conversely, in a real measuring system, where other sources of nois e
are present, Equation 3 .10 can be used to determine the numbe r
of ADC bits that will encode signal changes above the ambien t
noise level . The contribution made by the low order bits of an ADC
may be considerably less than the rips level of noise introduced
by other system components . For example, differential and integra l
non-linearities inherent in the ADC, electronic pickup, sensor nois e
and unwanted fluctuations in the measurand itself may also degrade
the SNR of the system as a whole . In many systems the SNR is limited
to around 75 to 85 dB by these factors . Where large noise amplitude s
are present, it is fruitless to employ a very high resolution ADC . I t
may, in such cases, be possible to use an ADC with a lower resolutio n
(and hence lower SNR€B ) without losing any useful information .
Chapter 4 presents some simple techniques for removing unwanted
noise from digitized signals .
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Conversion time
Most types of ADC use a multiple-stage conversion process . Each
stage might involve incrementing a counter or comparing th e
analogue signal to some digitally generated approximation . Conse-
quently, analogue-to-digital conversion does not occur instanta-
neously. Depending upon the method of conversion used, time s
ranging from a few microseconds up to several seconds may b e
required . Conversion times are generally quoted in manufacturer' s
data sheets as the time required to convert a full-scale input . Some
devices (such as binary counter type ADCs) are capable of converting
lower level signals in a shorter time . In general, low resolution
devices tend to be faster than high resolution ADCs . The fastest 16 -
bit ADCs currently have conversion times of about 1 !as . As a rough
rule-of-thumb, the conversion time of the fastest devices currentl y
available tends to increase by roughly an order of magnitude fo r
every additional 2 bits resolution . The conversion times applicable
to the various types of ADC are described in the following section .

Types of ADC
There are several basic classes of ADC . The different conversion
techniques employed make each type particularly suited to certai n
types of application . Some ADCs are implemented by using a combi-
nation of discrete components (counters, DACs etc .) in conjunction
with controlling software . This approach is particularly suited to
producing very high resolution converters . However, it tends to be
used less often in recent years as high resolution and reasonabl y
priced monolithic ADCs are now becoming increasingly available .
The various types of ADC are described below in approximate orde r
of speed : the slowest first.

Voltage-to-frequency conversion ADCs

This type of ADC employs a voltage-to-frequency converter (VFC )
to transform the input signal into a sequence of digital pulses . The
frequency of the pulse train is proportional to the input voltage . A
binary counter counts the pulses over a fixed time interval and th e
total accumulated count provides the ADC's digital output . The tim e
period over which the pulses are counted varies with the require d
resolution and full-scale frequency of the VFC. Typical conversion
times range from about 50 ms up to several seconds .

Because the input voltage is effectively averaged over the conver-
sion period, VFC-based ADCs exhibit good noise immunity. However,
their slow response restricts them to low speed sampling applica-
tions. This type of ADC is inherently monotonic, but linearities
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and gain errors can be variable . Devices based on lower frequency
(10 kHz) VFCs tend to be more accurate than those employing hig h
speed VFCs .

VFCs are sometimes used to digitize analogue signals at remote
sensing locations . The advantage of this approach is that senso r
signals can be more easily transmitted in digital form over lon g
distances or through noisy environments. The digital pulse train is
received by the PC or data-logging unit and then processed using
a suitable counter . The resolution and speed of such a system ca n
easily be modified under software control by reprogramming th e
counter and timer hardware accordingly .

Dual-slope (integrating) ADCs

Dual-slope ADCs each employ a binary counter in conjunction wit h
an integrating circuit that sums the input signal over a fixed tim e
period as shown in Figure 3 .11 . The rate of increase of the integra l
during this time is proportional to the average input signal . When
the integration has been completed, a negative analogue referenc e
voltage is applied to the integrating circuit and the timer is started .
The combined integral of the two inputs then falls linearly . The tim e
taken for the integral to fall to zero is directly proportional to th e
average input voltage . The binary output from the timer is then used
to provide the ADC's digital output .

Because the input signal is integrated over time, this type of AD C
averages out signal variations due to noise and other sources . Typical

Integrate d
signa l

Figure 3 .11 Signal integration in a dual-slope ADC
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integration times are usually of the order of a few milliseconds o r
longer, limiting the sample rate to typically 5–50 Hz . Dual slope
ADCs are particularly suited to use in noisy environments and ar e
often capable of rejecting mains-induced noise . For this reason, the y
are popular in low speed sampling applications such as temperature
measurement. Dual-slope ADCs are relatively inexpensive, offer goo d
accuracy and linearity, and can provide resolutions of typically 12 t o
16 bits .

The related single-slope (or Wilkinson) technique involve s
measuring the time required to discharge a capacitor which initiall y
holds a charge proportional to the input signal . In this case ,
the capacitor may be a component of circuitry used for signal
conditioning or pulse shaping . This technique is sometimes used
in conjunction with nuclear radiation detectors for pulse-heigh t
analysis in systems designed for X-ray or gamma-ray spectrometry .

Binary counter ADCs

This type of ADC also employs a binary counter, but in this case i t
is connected to the input of a DAC . The counter is supplied with
a clock input of fixed frequency . As the counter is incremente d
it causes the analogue output from the DAC to increase as show n
in Figure 3 .12(a) . This output is compared with the signal to be
digitized and, as soon as the DAC's output reaches the level of th e
input signal, the counter is stopped . The contents of the counte r
then provide the ADC's digital output . The accuracy of this typ e
of converter depends upon the precision of the DAC and th e
constancy of the clock input. The binary counting technique provide s
moderately good resolution and accuracy, although conversion time s
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Figure 3.12 DAC output generated by (a) binary counter ADCs and (b) trackin g
ADCs
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can be quite long, particularly for inputs close to the upper end o f
the device's measuring range . This limits throughput to less than a
few hundred samples per second.

The main disadvantage with this type of converter is that th e
conversion time varies with the magnitude of the input signal . A
variant of the simple binary counter method, known as the tracking
converter, provides a solution to this problem and also allows highe r
sampling rates to be used . The tracking converter continuously
follows the analogue input, ramping its DAC output up or down to
maintain a match between its digital output and the analogue input
as shown in Figure 3 .12(b) . The software may, at any time after t i ,
stop the tracking (which temporarily freezes the digital output) an d
then read the ADC . After an initial conversion has been performed ,
subsequent conversions only require enough time to count up o r
down to match any (small) change in the input signal . This method
operates at a somewhat faster (and less variable) speed than th e
simple binary counter ADC .

Successive approximation ADCs

The successive approximation technique makes use of a DAC to
convert a series of digital approximations of the input signal into
analogue voltages . These are then compared with the input signal .
The approximations are applied in a binary-weighted sequence as
shown in Figure 3.13 which, for the sake of clarity, shows only a 4-bi t
successive approximation sequence . Eight to 16 bits are more typica l
of actual ADC implementations .

A reference voltage corresponding to the ADC's MSB is generate d
first . If this is less than the input signal, a 1 hit is stored in the MS B
position of an internal Successive Approximation Register (SAR) ,
otherwise a 0 is stored . Each subsequent approximation involve s
generating a voltage equivalent to all of the bits in the SAR which
have so far been set to 1, plus the value of the next bit in th e
sequence . Again, if the total voltage is less than the input signal ,
a 1 value is stored in the appropriate bit position of the SAR. The
process repeats, for bits of lesser significance until the LSB has bee n
compared . The SAR will then contain a binary approximation of th e
analogue input signal .

Because this process involves only a small number of iteration s
(equal to the number of bits), successive approximation ADCs ca n
operate relatively quickly . Typical conversion times are of the orde r
of 5–30 ,is . Successive approximation ADCs offer between 8- and
16-bit resolutions and exhibit a moderately high degree of linearity .
This type of ADC is widely used in PC interfacing application s
for data acquisition at rates up to 100 kHz . Many manufacturers
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Figure 3.13 DAC output generated during successive approximatio n

provide inexpensive general-purpose DA&C cards based on succes-
sive approximation ADCs.

Unlike some other types of ADC, the process of successive approx-
imation does not involve an inherent averaging of the input signal .
The main characteristic of these devices is their high operating speed
rather than noise immunity . To fully utilize this high speed samplin g
capability, the ADC' s input must remain constant during the conver-
sion. Many ADC cards employ on-board S/H circuits to freeze th e
input until the conversion has been completed . Some monolithi c
successive approximation ADCs include built-in S/H circuits for thi s
purpose . In these cases the total conversion time specified in manu -
facturer's data sheets may include the acquisition time of the S/H
circuit .

Parallel (flash) ADCs

This is the fastest type of ADC and is normally used in only very high
speed applications, such as in video systems . It employs a network
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of resistors which generate a binary weighted array of reference
voltages . One reference voltage is required for each bit in the ADC' s
digital output. A comparator is also assigned to each bit. Each
reference voltage is applied to the appropriate comparator, alon g
with a sample of the analogue input signal . If the signal is highe r
than the comparator's reference voltage, a logical 1 bit is generated ,
otherwise the comparator outputs a logic O .

In this way the signal level is simultaneously compared with each
of the reference voltages. This parallel digitization technique allows
conversions to be performed at extremely high speed . Conversio n
times maybe as low as a few ns, but more typically fall within the range
50–1000 ns. Parallel converters require multiple comparators an d
this means that high resolution devices are difficult and expensiv e
to fabricate . Resolutions are consequently limited to 8 to 10 bits o r
less. Greater resolutions can sometimes be achieved by cascadin g
two flash converters . Some pseudo-parallel converters, known as
subranging converters, employ a half flash technique in which th e
signal is digitized in two stages (typically within about 1 µs) . The firs t
stage digitizes the most significant bits in parallel . The second stage
digitizes the least significant bits .

Using ADCs
As well as their analogue input and digital output lines, most mono-
lithic ADCs have two additional digital connections . One of these, th e
Start Conversion (also sometimes known as the SC or START) pin ,
initiates the analogue-to-digital conversion process . Upon receiving
the SC signal, the ADC responds by deactivating its End of Conver-
sion (EOC) pin and then, when the conversion process has been
completed, it asserts EOC once more . The processor should sens e
the EOC signal and then read the digitized data from the ADC' s
output register.

On plug-in I)A&C cards, the SC and EOC pins are generally
mapped to separate bits within one of the PC's I/O ports and ca n
thus be controlled and sensed using assembly language IN and OUT

instructions . The ADC's output register is also normally mapped into
the PC's I/O space . In contrast, stand-alone data-logging units an d
other intelligent instruments may initiate and control analogue-to-
digital conversion according to preprogrammed sequences . In these
cases ADC control is reduced to simply issuing the appropriate hig h
level commands from the PC .

As an alternative to software initiation, some systems allow th e
SC pin to be controlled by on-board components such as counters ,
timers or logic level control lines . Some ADC cards include a provi-
sion for the EOC signal to drive one of the PC 's interrupt request
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lines. Such systems allow the PC 's software to start the conversio n
process and then to continue with other tasks rather than waiting for
the ADC to digitize its input . When the conversion is complete the
ADC asserts EOC, invoking a software interrupt routine which the n
reads the digitized data .

Most ADC cards will incorporate I/O-mapped registers whic h
control not just the ADC's SC line, but will also operate an on-boar d
multiplexer and S/H circuit (if present) as shown in Figure 3 .14 .
The details of the register mapping and control-line usage var y
between different systems, but most employ facilities similar to thos e
described above. Often the S/H circuit on the input to the AD C
is operated automatically when the SC line is asserted . It should
be noted, however, that simultaneous S/H circuits are generally
operated independently of the ADC via separate control lines . You
should consult your system's technical documentation for precis e
operational details .

ADC characteristics and errors
Figure 3.15 illustrates the characteristics of an ideal ADC . For the
sake of clarity, the output from a hypothetical 3-bit ADC is shown .
The voltage supplied to the ADC's input is expressed as a fraction o f
the full-scale input, FS .

Note that each digital code can represent a range of analogue
values known as the code width . The analogue value represented
by each binary code falls at the mid-point of the range of values
encompassed by that code . These mid-range points lie on a straight
line passing through the origin of the graph as indicated in th e
figure . Consequently the origin lies at the mid-range point of the
lowest quantum . In this illustration, a change in input equivalen t
to only LSB will cause the ADC's output to change from 000b t o
001b. Because of the positions of the zero and full-scale points, onl y
2 11 -- 1 (rather than 2 1t ) changes in output code occur for a full-scal e
input swing .
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Like DACs, analogue-to-digital converters exhibit several forms o f
non-ideal behaviour . This often manifests itself as a gain error, offse t
error or non-linearity . Offset and gain errors present in ADCs are
analogous to the corresponding errors already described for DACs .
These are illustrated in Figure 3 .16 which, for the sake of clarity,
shows only the centre points of each code . ADC gain errors can h e
caused by instabilities in the ADC's analogue reference voltage or b y
gain errors in their constituent DACs . Gain and offset errors in mos t
monolithic ADCs are very small and can often he ignored .

ADCs may have missing codes – i .e. they may he incapable o f
generating some codes between the end points of their measurin g
range . This occurs if the DAC used within t.he ADC is non-monotonic .
Non-linearity (sometimes referred to as integral non-linearity) is a
measure of the maximum deviation of the actual transfer charac-
teristic from the ideal response curve . Non-linearities are usuall y
quoted as a fraction of the LSB. If an ADC has a non-linearity of les s
than 2 LSB then there is no possibility that it will have missing codes .

Differential non-linearity is the maximum difference between th e
input values required to produce any two consecutive changes in th e
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Figure 3 .16 Errors in ADC transfer characteristics

digital output — i .e. the maximum deviation of the code width fro m
its ideal value of 1 LSB. Non-linearities often occur when several bits
all change together (e .g. as in the transition from 255 to 256) and
because of this they tend to follow a repeated pattern throughout
the converter 's range .

The overall accuracy of an ADC will be determined by the su m
total of the deviations from the ideal characteristic introduced b y
gain errors, offset errors, non-linearities and missing codes . These
errors are generally temperature dependent . Gain and offset errors
can sometimes be trimmed or removed, but non-linearities an d
missing codes cannot be easily compensated for . Accuracy figure s
are often quoted in ADC data sheets. They are usually expressed a s
a percentage of full-scale input range or in terms of the analogu e
equivalent of the LSB step size . Typical accuracy figures for 12 -
bit monolithic ADCs are generally of the order of ± 2 to +1 LSB .
However, these figures maybe significantly worse (perhaps 4 to 8 LS B
in some cases) at the extremes of the ADC's working temperatur e
range. You are advised to study carefully manufacturers ' literature
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in order to determine the operational characteristics of the ADC i n
your own system .

3.6 Analogue measurements

In this section we will discuss three topics of particular importance i n
the design of analogue measuring systems : accuracy, amplificatio n
and throughput.

Accuracy

The accuracy of the whole measuring system will be determined ,
not just by the precision of the ADC, but also by the accuracy an d
linearity of the sensor and signal-conditioning circuits used. Random
or periodic noise will also affect the measurement accuracy, intro-
ducing either statistically random or systematic uncertainties . The
inaccuracies inherent in each component of the system (e .g. sensor
instabilities, amplifier gain errors, S/H accuracy, ADC quantizatio n
error and linearity) should be carefully assessed and summed wit h
the expected (or measured) noise levels in order to arrive at the tota l
potential error . A simple arithmetic sum will provide an estimate o f
the maximum possible error . However, in some measurements, th e
errors might be combined such that they oppose each other an d
tend to cancel out . A figure more representative of the averag e
error which is likely to occur – i .e . the statistical root-sum-square
(rss) error – can be obtained by adding the individual errors i n
quadrature, as follows :

E =

k=j

Egc
k=0

(3 .11 )

Here, s is the rss error (equivalent to the standard deviation of man y
readings of a fixed input), j is the number of sources of error an d
Sk is the kth source of error expressed either in terms of the units
of the measurand or as a fraction of the full-scale measuremen t
range . To simplify the calculation 3k contributions of less than abou t
one-quarter of the maximum bk can usually be ignored withou t
significantly affecting the result . Typical errors introduced by S/H ,
multiplexer and amplifiers (assuming that they are allowed to settl e
adequately) are often of the order of ±0 .01 per cent of full scale ,
or less. This may be a significant source of error, particularly i n
high resolution systems (i .e . those using ADCs of greater than 10 bits
resolution) .
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Amplification and extending dynamic rang e

The conversion accuracy of an ADC is ultimately limited by th e
device's resolution . Unless the range of signal levels generated
by the signal-conditioning circuitry is accurately matched to th e
ADC's full-scale range (typically up to 5 or 10 V), a proportion o f
the available conversion codes will be unused . In order to take
full advantage of the available resolution it is necessary to scal e
the signal by means of suitable amplifying components . This can
easily be accommodated using fixed gain operational amplifiers o r
instrumentation amplifiers . Many proprietary PC data-acquisition
cards incorporate amplifiers of this kind . The gain can generally b e
selected by means of jumpers or DIP switches when the device i s
installed in the PC . This approach is ideal if the system is intended to
measure some signal over a fixed range to a predetermined degre e
of accuracy .

However, many sensors have wide dynamic ranges . LVDT displace-
ment sensors, for example, have a theoretically infinite resolution .
With suitable signal conditioning they can be used to measur e
displacements either over their full-scale range or just over a ver y
small proportion of their range . To measure displacements to th e
same fractional accuracy over full or partial ranges, it is neces-
sary to dynamically vary the gain of the signal-conditioning circuit .
This is generally accomplished by means of Programmable-Gain
Amplifiers (PGAs) .

The gain of a PGA can be selected, from a set of fixed values, unde r
software control . In the case of plug-in ADC cards, gain selection
is usually effected by writing a suitable bit pattern via an I/O por t
to one of the card's control registers . It is possible to maximize the
dynamic range of the system by selecting an appropriate PGA gain
setting .

The software must, of course, compensate for changes in gain b y
scaling the digitized readings appropriately. Binary gain ranges (e .g .
1x, 2x, 4x, 8 x etc.) are the simplest to accommodate in the softwar e
since, to reflect the gain range used, the digitized values obtaine d
with the lowest gains can be simply shifted left (i .e . multiplied )
within the processor 's registers by an appropriate number of bits .
If systems with other gain ranges are used it becomes necessary t o
employ floating-point arithmetic to adjust the scaling factors .

Amplifiers may produce a non-zero voltage (known as an offse t
voltage) when a zero-volt input is applied . This can be cancelled by
using appropriate trimming components . However, these compo-
nents can be the source of additional errors and instabilities (suc h
as temperature-dependent drifts) and, because of this, a higher
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degree of stability can sometimes be obtained by cancelling th e
offset purely in software . Offsets can also arise from a variety of
other sources within the sensor and signal-conditioning circuits . I t
can be very convenient to compensate for all of these sources in on e
operation by configuring the software to measure the total offse t
and to subtract it from each subsequent reading. If you adopt thi s
approach, you should bear in mind that the input to a PGA from
previous amplification stages or signal-conditioning components stil l
possesses a non-zero offset . Changing the gain of the PGA can also
affect the magnitude of offset presented to the ADC . It. is, therefore ,
prudent for the software to rezero such systems whenever the PGA' s
gain is changed .

One of the most useful capabilities offered by PGAs is autoranging .
This permits the optimum gain range to be selected even if th e
present signal level is unknown . An initial measurement of the signal
is obtained using the lowest (e .g. 1 x) gain range . The gain required
to give the optimum resolution is then calculated by dividing th e
ADC's resolution (e .g. 4096 in the case of a 12-bit converter) by th e
initial reading . The gain range less than or equal to the optimum
gain is then selected for the final reading. This technique obviously
reduces throughput as it involves twice as many analogue-to-digita l
conversions and repeated gain changes .

Throughput

The throughput of an analogue measuring system is the rate a t
which the software can sample analogue input channels and process
the acquired data . It is more conveniently expressed as the numbe r
of channels read per second . The distinction between this and th e
rate at which multiplexed groups of sensor channels can be scanne d
should be obvious to the reader . A system scanning a group of eigh t
sensor channels 50 times per second will have a throughput figur e
of 400 channels per second .

A number of factors affect throughput . One of the most important
of these is the ADC's conversion time, although it is by no mean s
the only consideration . The acquisition time of the S/II circuit, the
settling times of the multiplexer, S/H, PGA and other components ,
the bandwidth of filters, and the time constant of the sensor may al l
have to be taken into account. Each component must be fast enough
to support the required throughput .

When scanning multiple channels, throughput can sometimes b e
maximized by changing the multiplexer channel as soon as the S/ H
circuit is switched into hold mode . This allows analogue-to-digita l
conversion to proceed while the multiplexer's output settles to the
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level of the next input channel . This technique, known as overla p
multiplexing, requires well-designed DA&C hardware to avoid feed -
through between the two channels . Compare this with the usual
(slower) technique of serial multiplexing, where each channel i s
selected, sampled and digitized in sequence .

Throughput is, of course, also limited by the software used . Unless
special software and hardware techniques, such as Direct Memory
Access (DMA), are employed, each read operation will involve th e
processor executing a sequence of IN and OUT instructions . These
are needed in order to operate the multiplexer (and possibly S/H) ,
to initiate the conversion, check for the EOC signal, read one o r
two bytes of data and then to store that data in memory . The
time required will vary between different types of PC, but on a
moderately powered system, these operations will generally intro-
duce delays of several tens of microseconds per channel . Provided
that no other software processing is required, a fast (e .g . successive
approximation) ADC is used, and that the bandwidth of the signal-
conditioning circuitry does not limit throughput, a well-designed
80486-based data-acquisition system might be capable of reading
several thousand channels per second . Systems optimized for hig h
speed sampling of single channels can achieve throughput rates i n
excess of 10 000–20 000 samples per second .

Most systems, however, require a degree of additional real-tim e
processing. The overheads involved in scaling or linearizing th e
acquired data or in executing control algorithms will generall y
reduce the maximum attainable throughput by an order of magni-
tude or more . Certain operations, such as updating graphical displays
or writing data to disk can take a long (and possibly indeterminate )
time. The time needed to update a screen display, for example ,
ranges from a few milliseconds up to several hundred millisecond s
(or even several seconds), depending upon the complexity of the
output . Speed can sometimes be improved by coding the time-critica l
routines in assembly language rather than in C, Pascal or other high
level languages .

In assessing the speed limitations which are likely to be impose d
by software, it is wise to perform thorough timing tests on eac h
routine that you intend to use during the data-acquisition period .
In many cases, raw data can be temporarily buffered in memor y
for subsequent processing during a less time-critical portion o f
the program. By carrying out . a detailed assessment of the timing
penalties associated with each software operation you should be abl e
to achieve an optimum distribution of functionality between the
real-time and post-acquisition portions of the program .
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3.7 Timers and pacing

Most real-time applications require sensor readings to be take n
at precise times in the data-acquisition cycle . In some cases, th e
time at which an event occurs, or the time between successive
events, can be of greater importance than the attributes of th e
event itself. The ability to pace a data-acquisition sequence is clearl y
important for accurately maintaining sampling rates and for correc t
operation of digital filters, PID algorithms and time-dependent .
(e.g. chart recorder) displays . A precise timebase is also necessary
for measurement of frequency, for differentiating and integratin g
sensor inputs, and for driving stepper motors and other externa l
equipment .

Timing tasks can be carried out by using counters on an adapto r
card inserted into one of the PC's expansion slots . Indeed many
analogue I/O cards have dedicated timing and counting circuitry ,
which can be used to trigger samples, to interrupt the PC, to contro l
the acquisition of a preprogrammed number of readings or t o
generate waveforms .

Another approach to measuring elapsed time is to use the timin g
facilities provided by the PC. This is a relatively easy task when
programming in a real-mode environment (e.g. DOS) . It becomes
more complex, however, under multitasking operating systems suc h
as Windows NT or OS/2, where one has limited access to, and less
control over, the PC's timing hardware. The PC is equipped with a
programmable system clock based on the Intel 8254 timer counter,
as well as a Motorola MC146818A Real Time Clock (RTC) IC . These ,
together with a number of BIOS services provide real-mode program s
with a wealth of timing and calendrical features .

Whatever timing technique is adopted, it is important to conside r
the granularity of the timing hardware — i .e. the smallest incremen t
in time that it can measure . This should be apparent from th e
specification of the timing device used . The PC's system time r
normally has a granularity of about 55 ms and so (unless it i s
reprogrammed accordingly) it is not suitable for measuring ver y
short time intervals . The RTC provides a periodic timing signal wit h
a finer granularity: approximately 976 µs . There are various softwar e
techniques that can yield granularities down to less than 1 µs using
the PC's hardware, although such precise timing is limited in practic e
by variations in execution time of the code used to read the tinier .
The texts by van Gilluwe (1994) and Sanchez and Canton (1994 )
provide useful information for those readers wishing to exploit th e
timing capabilities of the PC .
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When devising and using any timing system that interacts wit h
data-acquisition software (as opposed to a hardware-only system) ,
it must be borne in mind that the accuracy of time measurements
will be determined, to a great extent, by how the timing code
is implemented . As in many other situations, assembly languag e
provides greater potential for precision than a high level language .
A compiled language such as C or Pascal is often adequate fo r
situations where timing accuracies of the order of 1 ms are required .

Most programming languages and development environment s
include a variety of time-related library functions . For example ,
National Instruments' LabWindows/CVI (an environment an d
library designed for creating data-acquisition programs) whe n
running on Windows NT supplies the application program with a
timing signal every 1 ins or 10 ins (depending upon configuration) .
A range of elapsed-time, time-delay, and time-of-day functions is als o
provided .

Watchdog timers

In many data-acquisition applications the PC must communicate
with some external entity such as an intelligent data-logging module
or a programmable logic controller . In these cases it can be usefu l
for both components of the system to be `aware' of whether th e
other is functioning correctly . There are a number of ways in which
the state of one subsystem can be determined by another . A program
running on a PC can close a normally open contact to indicat e
that it has booted successfully and is currently monitoring som e
process or other. If the PC and relay subsequently lose power, th e
contact will open and alert external equipment or the operator t o
the situation. However, suppose that power to the PC remained
uninterrupted, but the software failed due to a coding error o r
memory corruption . The contact would remain closed even though
the PC was no longer functional . The system could not then make an y
attempt to automatically recover from the situation . Problems lik e
this are potentially expensive, especially in long-term data-loggin g
applications where the computer may be left unattended and any
system crash could result in the loss of many days' worth of data .

A watchdog timer can help to overcome these problems . This is a
simple analogue or digital device which is used to monitor the stat e
of one of the component parts of a data-acquisition or computer
system . The subsystem being monitored is required to refresh th e
watchdog timer periodically . This is usually done by regularly pulsin g
or changing the state of a digital input to the watchdog timer . In
some implementations the watchdog generates a periodic timing
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signal and the subsystem being monitored must then refresh th e
watchdog within a predetermined interval after receipt of this signal .
If the watchdog is not refreshed within a specified time period i t
will generate a time-out signal . This signal can be used to rese t
the subsystem or it can be used for communicating the timeou t
condition to other subsystems .

The IBM PS/2 range of computers is equipped with a watchdo g
timer which monitors the computer's system tuner interrupt (IRQO) .
If the software fails to service the interrupt, the watchdog generate s
an NMI (see Chapter 5) .

It is worth mentioning at this point that you should avoid placing
watchdog refresh routines within a hardware-generated periodi c
interrupt handler (e .g. the system timer interrupt) . In the event
of a software failure, it is possible that the interrupt will continue to
be generated at the normal rate !

It is sometimes necessary to interface a watchdog timer to a PC -
based data-acquisition system in order to detect program crashe s
or loss of power to the PC. The timeout signal might be fed to
a programmable logic controller, for example, to notify it (or th e
operator) of the error condition. It is also possible to reboot th e
PC by connecting the timeout signal to the reset switch (presen t
on most PC-compatible machines) via a suitable relay and/or logic
circuits . Occasionally, software crashes can (depending upon th e
operating system) leave the PC's support circuits in such a state o f
disarray that even a hardware reset cannot reboot the computer. The
only solution in this case is to temporarily turn off the computer' s
power. Although rebooting via the reset switch might be possible ,
the process can take up to two or three minutes on some PCs . I t
is not always easy for the software to completely recover from thi s
type of failure, especially if the program crash or loss of power
occurred at some critical time such as during a disk-write operation .
It is preferable for the software to attempt to return to a defaul t
operating mode and not to rely on any settings or other informatio n
recorded on disk . The extent to which this is feasible will depend
upon the nature and complexity of the application .



4 Sampling, noise and filtering

Virtually all data-acquisition and control systems are required t o
sample analogue waveforms . The timing of these samples is often
critical and has a direct bearing on the system's ability to accuratel y
reconstruct and process analogue signals. This chapter introduces
elements of sampling theory and discusses how measurement ac -
curacy is related to signal frequency and to the temporal precisio n
of the sampling hardware . The associated topic of digital filtering i s
also discussed .

4.1 Sampling and aliasin g

Analogue signals from sensors or transducers are continuous func-
tions, possessing definite values at every instant of time . We have
already seen that the PC can read only digitized representations o f
a signal and that the digitization process takes a finite time . Implici t
in our discussion has been the fact that the measuring system is abl e
to obtain only discrete samples of the continuous signal . It remain s
unaware of the variation of the signal between samples .

The importance of sampling rate

We can consider each sample to be a digital representation of the
signal at some fixed point in time. In fact, the readings are not truly
instantaneous but, if suitable sample-and-hold circuits are used, eac h
reading is normally representative of a very well-defined instant i n
time (typically accurate to a few nanoseconds) .

In general, the sampling process must be undertaken in such a wa y
as to minimize the loss of time-varying information. It is importan t
to take samples at a sufficiently high rate in order to be able t o
accurately reconstruct and process the signal . It should be obvious
that. a system which employs too low a sampling rate will be incapable
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Figure 4.1 Degradation of a reconstructed signal as the sampling rate is reduced

of responding to rapid changes in the measurand. Such a situation
is illustrated in Figure 4 .1 . At low sampling rates, the signal is poorl y
reconstructed. High frequency components such as those predomin-
ating between sample times t4 and t 6 are most badly represented by
the sampled points . This can have serious consequences, particularl y
in systems that have to control some process. The inability to respond
to transient disturbances in the measurand may compromise th e
system's ability to maintain the process within required tolerances .

Clearly, the relationship between the sampling rate and th e
maximum frequency component of the signal is of prune import-
ance . There are normally a number of practical limitations on th e
maximum sampling frequency that can be achieved : for example ,
the ADC conversion speed, the execution time of interface softwar e
and the time required for processing the acquired data . The tota l
storage space available may also impose a limit on the number o f
samples that can be obtained within a specified period .

Nyquist's sampling theorem

We need to understand clearly how the accuracy of the sampled data
depends upon the sampling frequency, and what effects will resul t
from sampling at too low a rate . To quantify this we will examine th e
Fourier transforms (i .e . the frequency spectra) of the signal and th e
sampled waveform .

Typical waveforms from sensors or transducers consist of a rang e
of different frequency components as illustrated in Figure 4 .2(a)
and (b) . If a waveform such as this is sampled at a frequency v, wher e
v = 1/t and t represents the time interval between samples, we obtai n
the sampled waveform shown in Figure 4 .2(c) . In the time domain ,

Signal
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the sampled waveform consists of a series of impulses (one for eac h
sample) modulated by the actual signal . In the frequency domai n
(Figure 4 .2(d) ) the effect of sampling is to cause the spectrum of th e
signal to be reproduced at a series of frequencies centred at integer
multiples of the sampling frequency.

The original frequency spectrum can be easily reconstructed in
the example shown in Figure 4 .2. It should, however, be clear tha t
as the maximum signal frequency, fmax, increases, the individua l
spectra will widen and begin to overlap . Under these conditions,
it becomes impossible to separate the contributions from the indi-
vidual portions of the spectra, and the original signal cannot the n
be accurately reproduced . Overlapping occurs when fmax reache s
half the sampling frequency . Thus, for accurate reproduction of a
continuous signal containing frequencies up to f max , the sampling
rate, v, must be greater than or equal to 2 f rnax• This condition i s
known as Nyquist's sampling theorem and applies to sampling at a
constant frequency. Obviously, sampling using unequal time inter-
vals complicates the detail of the discussion, but the same genera l
principles apply.

Aliasing

Figure 4.2(d) shows that if any component of the signal exceeds 1-v,
the effect of sampling will be to reproduce those signal component s
at a lower frequency. This phenomenon, known as aliasing, may
be visualized by considering an extreme case where a signal o f
frequency f s ;g is sampled at a rate equal to fsig (i .e . v = fsig) .
Clearly, each sample will be obtained at the same point within eac h
signal cycle and, consequently, the sampled waveform will have a
frequency of zero as illustrated in Figure 4 .3(a) . Consider next th e
case where f sig is only very slightly greater than v . Each successive
sample will advance by a small amount along the signal cycle a s
shown in Figure 4 .3(b) . The resulting train of samples will appea r
to vary with a new (lower) frequency : one which (lid not exist in th e
original waveform! These so-called alias, or beat, frequencies ca n
cause severe problems in systems which perform any type of signal
reconstruction or processing – i .e . virtually all DA&C applications.

As a digression, it is interesting to note that some system s
(although not usually PC-based DA&C systems) exploit the aliasin g
phenomenon in order to extract information from high frequenc y
signals . This technique is used in dynamic testing of ADCs and i n
various types of instrumentation .

In normal sampling applications, however, aliasing is not desirable .
It can be avoided by ensuring, first, that the signal is band limited
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Figure 4.3 Generation of alias frequencies(i .e . has a well-defined maximum frequency, f max) and, second, tha t
the sampling rate, v, is at least twice finax . It is usual to employ an
analogue anti-aliasing low-pass filter in order to truncate the signal
spectrum to the desired value of fmax prior to sampling . This results
in the loss of some information from the signal, but by judicious
selection of the filter characteristics it is usually possible to ensure
that this does not have a significant effect on the performance o f
the system as a whole . Anti-aliasing filters are often an integral part
of signal-conditioning units . Strain-gauge-bridge signal conditioners ,
for example, may incorporate filters with a bandwidth of typicall y
100 to 200 Hz .

It should be borne in mind that no filter possesses an ideal respons e
(i .e. 100 per cent attenuation above the cut-off frequency, fo, and
0 per cent attenuation at lower frequencies), although good anti-
aliasing filters often possess a steep cut-off rate . Because real filters
exhibit a gradual drop in response, it is usually necessary to ensur e
that v is somewhat greater than 2fo . The sampling rate used will
depend upon the form of the signal and upon the degree of precisio n
required . The following figures are provided as a rough guide . Simple
one- or two-pole passive anti-aliasing filters may necessitate samplin g
rates of 5 f o to 10 f o . The steeper cut-off rate attainable with active
anti-aliasing filters normally allows sampling at around 3 f o .
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Sampling accuracy

Nyquist's sampling theorem imposes an upper limit on the signa l
frequencies that can be sampled . However, a number of practica l
constraints must also be borne in mind . In many applications, the
speed of the software (cycling time, interrupt latencies, transfe r
rate etc.) restricts the sampling rate and hence f max . Some systems
perform high speed data capture completely in hardware, thereb y
circumventing some of the software speed limitations . In these cases ,
periodic sampling is usually triggered by an external clock signal an d
the acquired data is channelled directly to a hardware buffer .

The performance of the hardware itself also has a bearing on
the maximum frequency that can be sampled with a given degree
of accuracy. There is an inherent timing error associated with th e
sampling and digitization process . This inaccuracy may be a resul t
of the ADC's conversion time or, if a sample-and-hold (S/1-I) circui t
is employed, it may be caused by the circuit's finite aperture tim e
or aperture jitter (see Chapter 3) . The amount by which the signa l
might vary in this time limits the accuracy of the sample and is know n
as the aperture error .

Consider a time-varying measurand, R . For a given ting ing uncer-
tainty, 8t, the accuracy with which the measurand can be sample d
will depend upon the maximum rate of change of the signal . To
achieve a given measurement accuracy we must place an upper limi t
on the signal frequency which the system will be able to sample .

We can express a single frequency (f) component as

R = Ro sin(2nf t)

	

(4 .1 )

The aperture error, A, is defined a s

dR
A = 8t

dt

and our sampling requirement is that the aperture error must always
be less than some maximum permissible change, 8R,Bax, in R, i .e .

dR 3R.
dt — 8t

We must decide on a suitable value for 6Rmax• It is usually convenien t
to employ the criterion : 8Rrnax = 1 LSB (i .e . that A must not excee d
1 LSB) . It might be more appropriate in some applications to us e
different values, however. Applying this criterion, and assuming tha t
the full ADC conversion range exactly encompasses the entire signa l

(4.2 )

(4.3)
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range (i .e . 2R0), Equation 4.3 becomes

(4.4)
dR

	

2R0

dt — 2n 5t

Here, n represents the ADC resolution (number of bits) . Differ-
entiating Equation 4 .1, we see that the maximum rate of change
R is given by 27fR0 . Substituting this into Equation 4.4, we obtain
the maximum frequency, fA, that can be sampled with the desire d
degree of accuracy .

f A

	

,~

	

(4 .5 )

728 1-

Let us consider a moderately fast, 12-bit ADC with a conversion time
of 10 µs . Such a device should be able to accommodate samplin g
rates approaching 100 kHz . Applying the Nyquist criterion give s
a maximum signal frequency of half this (i .e. 50 kHz) . However ,
this criterion only guarantees that, given sufficiently accurate measuring
equipment, it will be possible to detect this maximum signal frequency .
It takes no account of the sampling precision of real ADCs . To
assess the effect of finite sampling times we must use Equation 4 .5 .
Substituting the 10 gs conversion time for 8t shows that we woul d
be able to sample signal components up to only 7 .7 Hz with th e
desired 1 LSB accuracy! This illustrates the importance of the greate r
temporal precision achievable with S/H circuits . If we were to employ
an S/H circuit, 8t could be reduced to the S/H's aperture jitter time .
Substituting a typical value of 2 ns for 8t shows that, with the benefi t
of an S/H circuit, the maximum frequency that could be sampled t o
a 1 LSB accuracy increases to around 39 kHz .

It is often more useful to calculate the actual aperture erro r
resulting from a particular combination of aperture time and signa l
frequency. Equation 4 .2 defines the aperture error . This has its
maximum value when R is subject to its maximum rate of change .
We have already seen that this occurs when R is zero and that th e
maximum rate of change of R is 27f R0 . The maximum possibl e
aperture error, AmaY, is therefore :

A max = 27 f 8tR0

	

(4 .6)

Figure 4.4 depicts values of the ratio A n, ax /2R 0 as a function of
aperture time and signal frequency .

Reconstruction of sampled signals

The accuracy with which a signal can be sampled is by no means
the only consideration . The ability of the DA&C system to precisely
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Figure 4 .4 Fractional aperture error as a function of aperture time and signa l
frequency

reconstruct the signal (either physically via a DAC or mathematicall y
inside the PC) is often of equal importance . The accuracy with whic h
the sampled signal can be reconstructed depends upon the recon-
struction method adopted – i .e . upon the physical or mathematical
technique used to interpolate between sampled points .

A linear interpolation (known as first order reconstruction )
approximates the signal by a series of straight lines joining eac h
successive sampled data point (see Figure 4 .5) . This gives a wave-
form with the correct fundamental frequency together with man y
additional higher frequency components .

Alternatively, we may interpolate by holding the signal at a fixed
value between consecutive points. This is known as zero orde r
reconstruction and is, in effect, the method employed when sample s
are passed directly to a DAC . In this case, the resulting reconstructe d
signal will contain a number of harmonics at v ± f , 2v ± f , 3v ± f
etc. An electronic low-pass filter would be required at the DAC' s
output in order to remove the harmonics and thereby smoothl y
interpolate between samples . Note that these harmonics are artefacts
of the reconstruction process, not of the sampling process per se.

The accuracy of the reconstruction will, of course, depend upo n
the ratio of the signal and sampling frequencies (v/f) . There i s
clearly an error associated with each reconstructed point . Ignoring
any errors introduced by the sampling mechanism, the reconstruc-
tion error will simply be the difference between the reconstructe d
value and the actual signal value at any chosen instant . In those parts

Fractional erro r
(Amax/2 R0)

%
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Figure 4 .5 Reconstruction of sampled signals : (a) zero order and (b) first orde r
interpolatio n

of Figure 4 .5 where high frequency signal components predominat e
(i .e. where the signal is changing most rapidly), there is a potentia l
for a large difference between the original and reconstructed wave -
forms. The reconstructed waveform will model the original sample d
waveform more accurately if there are many samples per signal cycle .

The values of the average and maximum errors associated with th e
reconstruction are generally of interest to DA&C system designers. I t
is a trivial matter to derive an analytical equation for the maximu m
error associated with a zero order reconstruction, but the calculation s
necessary to determine the average errors can be somewhat more

/
/

/,
1

Signal
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Table 4.1 Coefficients of Equation 4 . 7

Order

	

Desired calculation

	

p

	

q

Zero Maximum error 3 .1 - 1
Zero Average error 2 .0 - 1
First Maximum error 4 .7 -2
First Average error 2 .0 -2

involved . For this reason we will simply quote an empirical relation .
The following formula can be used to estimate the magnitudes of the
maximum and the average fractional errors (Er) involved in bot h
zero and first order reconstruction .

v
Er p (—) x l00 %

f

The coefficients of the equation, p and q, depend upon the order of
reconstruction and whether the average or maximum reconstruction
error is being calculated . These coefficients are listed in Table 4 .1 .
Do bear in mind that Equation 4 .7 is not a precise analytical formula .
It should only be used as a rough guide for values of v/ f greater
than about 10.

Note that the sampling rate required to achieve a desired degre e
of accuracy with zero order reconstruction may be several orders o f
magnitude greater than that necessary with first order interpolation .
For this reason, first order techniques are to be preferred in general .
Appropriate filtering should also be applied to DAC outputs t o
minimize zero order reconstruction errors .

In summary, the accuracy of the sampled waveform and the pres-
ence of any sampling artefacts will depend upon how the sampled
data is processed . Also, the extent to which any such artefacts ar e
acceptable will vary between different applications . All of these points
will have a direct bearing on the sampling rate used and must b e
considered when designing a DA&C system .

Selecting the optimum sampling rate

In designing a DA&C system, we must assess the effect of AD C
resolution, conversion time and S/H aperture jitter, as well as th e
selected sampling rate on the system's ability to achieve some desire d
level of precision . For the purposes of the present discussion, we
will ignore any inaccuracies in the sensor and signal-conditionin g
circuits, but we must bear in mind that, in reality, they may affec t

(4 .7 )
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the accuracy of the system as a whole. We will concentrate here
upon sampling rate and its relationship to frequency content and
filtering of the signal . In this context, the following list outline s
the steps required to ensure that a DA&C system meets specifie d
sampling-precision criteria .

1. First, assess the static precision of the ADC (i .e. its linearity ,
resolution etc.) using Equations 3.5 and 3 .10 to ensure that it
is capable of providing the required degree of precision whe n
digitizing an unchanging signal .

2. Assess the effect of sampling rate on the accuracy of signal
reconstruction using Equation 4 .7. By this means, determine the
minimum practicable sampling rate, v, needed to reproduce
the highest frequency component in the signal with the require d
degree of accuracy. Also bear in mind Nyquist's sampling theorem
and the need to avoid aliasing. From v, you should be able t o
define tipper limits for the ADC conversion time and software
cycle times (interrupt. rates or loop-repeat rates etc .) . Ensure
that the combination of software routines and DA&C/compute r
hardware are actually capable of achieving this sampling rate .
Also ensure that appropriate anti-aliasing filters are employed t o
remove potentially troublesome high frequencies .

3. Given the sample rate, the degree of sampling accuracy require d
and the ADC resolution, n, use Equations 4.3 to 4.5 to define an
upper limit on 6t and thereby ensure that the digitization and
S/H components are capable of providing the necessary degre e
of sampling precision .

4.2 Noise and filterin g

Noise can be problematic in analogue measuring systems. It may b e
defined as any unwanted signal component that tends to obscure th e
information of interest . There are a variety of possible noise sources ,
such as electronic noise or electromagnetic interference from main s
or high frequency digital circuits . These sources tend to be mos t
troublesome with low level signals such as those generated by strain
gauges and thermocouples . Additionally, noise may also arise from
real variations in some physical variable – e.g. unwanted vibrations
in a displacement. measuring system or temperature fluctuation s
due to convection and turbulence in a furnace . As we have seen i n
Chapter 3, the approximations involved in the digitization proces s
are also a source of noise . The presence of noise can be very prob-
lematic in some applications . It can make displays appear unsteady,
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obscure underlying signal trends, erroneously trigger comparator s
and seriously disrupt control systems.

It is always good practice to attempt to exclude noise at its sourc e
rather than having to remove it at a later stage . Steps can often
be taken, particularly with cables and shielding, to minimize noise
amplitudes. This topic is discussed briefly in Chapter 3 and furthe r
guidance may be found in the text by Tompkins and Webster (1988 )
or in various manufacturers' application notes and data books, suc h
as Burr Brown's PCI Handbook (1988) . However, even in the best
designed systems, a certain degree of noise pickup is often inevitable .
If residual noise amplitudes are likely to have a significant effect o n
the accuracy of the system, the signal-to-noise ratio must be improved
before the underlying signal can be adequately processed . This can
be accomplished by using simple passive or active analogue filter
circuits . Filtering can also be performed digitally by using suitabl e
software routines .

Software techniques have a number of advantages over hardwar e
filters. Foremost amongst these is flexibility . It is very simple to
adjust the characteristics of a digital filter by modifying one o r
two parameters of the filtering algorithm. Another benefit is that
digital filters are more stable and do not exhibit any dependence o n
environmental factors such as temperature . They are also particularly
suited to use at very low frequencies, where hardware filters may b e
impracticable due to their size, weight or cost . In addition, they ar e
the only way of removing noise introduced by the ADC circuitry
during digitization .

Filtering of acquired data can be performed after the data-
acquisition cycle has been completed. In some ways this approach i s
the simplest, as the complete data set is available and the filtering
algorithm can be easily adjusted to optimize noise suppression . There
are many techniques for post acquisition filtering and smoothing o f
data. Most are based on Fourier methods and are somewhat math-
ematical . They are classed as data-analysis techniques and, as such ,
fall beyond the scope of this book . Press et al. (1992) describe a
number of post acquisition filtering and smoothing techniques i n
some detail .

Post-acquisition filtering is of little use if we need to base real -
time decisions or control signals on a filtered, noise-free signal .
In this case we must employ real-time filtering algorithms, whic h
are the topic of this section . The design of real-time digital filters
can also be quite involved and requires some moderately comple x
mathematics . However, this section refrains from discussing th e
mathematical basis of digital filters and, instead, concentrates on th e
practical implementation of some simple filtering algorithms . While



Sampling, noise and filtering 143

the techniques presented will not be suitable for every eventuality ,
they will probably cover a majority of DA&C applications . Digital
filters can generally be tuned or optimized at the development stag e
or even by the end user and, for this purpose, a number of empirical
guidelines are presented to aid in filter design .

Designing simple digital filters

It is impossible for DA&C software to determine the relative magni-
tudes of the signal and noise encapsulated in a single isolated reading .
Within one instantaneous sample of the total signal-plus-noise voltage ,
the contribution due to noise is indistinguishable from that due to
the signal . Fortunately, when we have a series of samples, noise an d
signal can often be distinguished on the basis of their frequencies .
They usually have different frequency characteristics, each existin g
predominantly within well-defined frequency bands . By comparing
and combining a series of readings it is possible to ascertain wha t
frequencies are present and then to suppress those frequencies at
which there is only noise (i .e . no signal component) . The process o f
removing unwanted frequencies is known as filtering .

Signal and noise characteristic s
Many signals vary only slowly . We have already seen in Chapter 3
that some types of sensor and signal-conditioning circuits . have
appreciable time constants . Noise, on the other hand, may occur at
predominantly one frequency (e .g. the mains 50/60 Hz frequency)
or, more often, in a broad band as shown in Figure 4 .6. The signal
frequencies obtained with most types of sensor will generally b e

log (amplitude)

Signa l
/f

Mains 50/60 H z
pickup

Noise

log (frequency)

Figure 4 .6 Typical noise and signal spectra
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quite low. On the other hand, noise due to radiated electromag-
netic pickup or from electronic sources often has a broad spectru m
extending to very high frequencies . This high frequency noise ca n
be attenuated by using an appropriate low-pass filter (i .e. one
which suppresses high frequencies while letting low frequencie s
pass through unaffected) . Noise might also exist at low frequen-
cies, overlapping the signal spectrum. Because it occupies the sam e
frequencies as the signal itself, this portion of the noise spectru m
cannot be filtered out without also attenuating the signal .

When designing a digital filter, it is advisable to first determin e
the principal sources of noise in the system and to carefully assess
the noise and signal spectra present . Such an exercise provides a n
essential starting point for determining which frequency bands yo u
wish to suppress and which bands you will need to retain .

Filter characteristics

Low-pass filters attenuate all frequencies above a certain cut-off
frequency, f o, while leaving lower frequencies (virtually) unaffected .
Ideally, such filters would have a frequency characteristic similar to
curve (a) shown in Figure 4 .7. In practice, this is impossible t o
achieve, and filter characteristics such as that indicated by curve (b )
are more usually obtained with either electronic or digital (software )
filters . Other filter characteristics are sometimes useful . High-pass
filters (curve (c)), for example, suppress frequencies lower than
some cut-off frequency while permitting higher frequencies to pass .
Band-pass filters (curve (d)) allow only those frequencies within a
well-defined band to pass, as shown in Figure 4 .7. Although it i s
possible to construct digital high-pass and band-pass filters, thes e

(a) Ideal low-pass filter characteristi c
(b) Real low-pass filte r
(c) High-pass filte r
(d) Band-pass filterAttenuation (dB )

0

fo

Figure 4 .7 Typical filter characteristics

log (frequency)
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are rarely needed for real-time filtration and we will, therefore ,
concentrate on low-pass filters .

The filter characteristic generally has a rounded shoulder, so the
cut-off point is not sharp . The attributes of the filter may be define d
by reference to several different points . Sometimes, the frequency a t
which the signal is attenuated to -3 dB is quoted . In other instances ,
the curve is characterized by extrapolating the linear, sloping portion
of the curve back to the 0 dB level in order to define the cut-off
frequency, f o .

In most situations, the noise suppression properties of a filter ar e
only weakly dependent upon f o . Small differences in fo from some
ideal value generally have only a small effect on noise attenuation .
This is fortunate as it can sometimes allow a rough approxima-
tion to the desired filter characteristic to be used . However, it i s
always important to carefully assess the dynamic behaviour of digital
filter designs to ensure that they operate as expected and withi n
specified tolerances . In particular, when applying a digital filter to
an acquired data stream, you should be aware of the effect of th e
filter's bandwidth on the dynamic performance of the system . It is
not only frequencies greater than f o that are affected by low-pass
filters. The filter characteristic may also significantly attenuate signal s
whose frequencies are up to an order of magnitude less than the
cut-off frequency. A signal frequency of f o/8, for example, may b e
attenuated by typically 0 .25 per cent .

Software consideration s
When assessing the performance of a digital filter design, th e
programmer should bear in mind that whatever formulae and algo-
rithms the filter is based on, the actual coded implementation wil l
be subject to a number of potential errors . The ADC quantization
and linearity errors will, of course, ultimately limit the accurac y
of the system . However, there is another possible source of erro r
which should be considered : the accuracy of the floating-poin t
arithmetic used .

Some filter algorithms are recursive, using the results of previou s
calculations in each successive iteration . This provides the poten-
tial for floating-point rounding errors to accumulate over time . If
rounding errors are significant, the filter may become unstable . This
can cause oscillations or an uncontrolled rise in output . It may also
prevent the filter's output from decaying to zero when the input
signal is removed (i .e. set to zero) . Filter routines should normally
be implemented using high precision arithmetic . Using C 's doubl e
or long double types, rather than the float data type, will usually b e
sufficient to avoid significant rounding errors .
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Although floating-point software libraries can be employed t o
perform the necessary calculations, a numeric coprocessor wil l
greatly enhance throughput. The speed of the filter routines may
be improved by coding them so as to minimize the number o f
multiplication and division operations required for each iteration .
Where you have to divide a variable by a constant value, multiplyin g
by the inverse of the constant instead will generally provide a sligh t
improvement in execution speed .

Testing digital filters
It is essential that you thoroughly check the performance of al l
filter routines before you use them in your application . This can be
accomplished by creating a test routine or program which generate s
a series of cosinusoidal signals over a range of different frequencies .
At each frequency, f , the signal is given by :

s = cos(2irft) (4.8)

where t represents elapsed time . In practice, the signal, s, can
be determined at each sample time without recourse to real-tim e
calculations by expressing t as the ratio of the ordinal index, k, of
each sample to the sampling frequency, v, givin g

s = cos (27rkL )

	

(4 .9 )
v

So, we can generate the signal for a range of different relativ e
frequencies (f/v) . Starting from a maximum value of (the Nyquis t
limit), the ratio f/v should be gradually reduced until the desire d
frequency range has been covered .

For each frequency used, s should be evaluated repeatedly in a
loop (with k being incremented on each pass through the loop )
and each value of s should be passed to the digital filter routine .
The filtered cosinusoidal signal can then be reconstructed and its
amplitude and phase determined and plotted against f /v . Note that
the filter's output will generally be based on a history of samples .
Because of this the filter will require a certain number of sample d
data points before reaching a steady state . You should, therefore ,
allow sufficient iterations of the loop before assessing the amplitude
and phase of the filtered signal .

Simple averaging techniques

The most obvious way of reducing the effects of random noise is t o
calculate the average of several readings taken in quick succession .
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If the noise is truly random and equally distributed about the actua l
signal level it should tend to average out to zero . This approach i s
very simple to implement and can be used in applications with fixe d
signals (e .g. dimensional gauging of cast steel components) or wit h
very slowly varying signals (e .g. temperature measurements within
a furnace) . If the signal changes significantly during the samplin g
period, the averaging process will, of course, also tend blur the signal .
The period between samples must be short enough to prevent thi s
but also long enough to allow true averaging of low frequency nois e
components .

The main drawback with the simple averaging process – particu-
larly in continuous monitoring or control systems – is that the filter' s
output is updated at only 1/Nth of the sampling rate (where N is
the number of samples over which the average is calculated) . If the
filtered signal is then used to generate an analogue control signal ,
the delay between successive outputs will increase the magnitude o f
the reconstruction error .

The simple averaging method is useful in a number of situa-
tions . However, if it is necessary to measure changing signals in th e
presence of noise, a more precise analysis of the filter's frequency
characteristics are required and it is usually preferable to employ on e
of the simple low-pass filtering techniques described in the following
section .

Low-pass filtering techniques

Ideally a software filter routine should be invoked once for each ne w
sample of data . It should return a filtered value each time it is called ,
so that the filtered output is updated at the sampling frequency .

There are two distinct classes of filter : recursive and non-recursive .
In a non-recursive filter, the output will depend on the current inpu t
as well as on previous inputs . The output from recursive filters, on
the other hand, is based on previous output values and the curren t
input value. The ways in which the various input and output value s
are combined varies between different filter implementations, but
in general each value is multiplied by some constant weight and th e
results are then summed to obtain the filtered output .

If we denote the sequence of filter outputs by yk and the inputs
(samples) by xk , where k represents the ordinal index of the iteration ,
a non-recursive filter is described by the equation :

i=k

Yk = E aixk_ i
i=o

(4.10)
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Here, the constants a i represent the weight allotted to each elemen t
in the summation . In general the series of ai values is defined so
that the most recent data is allocated the greatest weight . The ai
constants often follow an exponential form which allows the filter to
model an electronic low-pass filter based on a simple RC network .

The non-recursive filter described by Equation 4 .10 is termed an
Infinite Impulse Response (IIR) filter because the summation take s
place over an unbounded history of filter inputs (i .e . Xk + Xk_1 + • • • +
x2 + xl + x0) . In practice, most non-recursive filter implementation s
truncate the summation after a finite number of terms, n, an d
are termed Finite Impulse Response (FIR) filters. Iii this case, the
non-recursive filter equation becomes :

i=n- 1

Yk = E aixk_ i
i=0

(4 .11 )

Recursive filters are obtained by adding a recursive (or auto -
regressive) term to the equation as follows :

i=k

	

i=

: aixk_ iYk = EbiYk_j + E

	

(4 .12)

The constants bi in the new terns represent weights that are applie d
to the sequence of previous filter outputs. Equation 4 .12 is, in fact ,
a general form of the filter equation known as an Auto Regressive
Moving Average (ARMA) filter . As we shall see later, this equation ca n
be simplified to form the basis of an effective low-pass recursive filter .

In addition, the following sections cover two implementations of
the non-recursive type of filter (the unweighted moving average an d
the exponentially weighted FIFO) . Other filters can be constructed
from Equations 4 .11 or 4.12, but for most applications one of th e
three simple filters described below will usually suffice .

Each weight in Equations 4 .11 and 4.12 may take either positive
or negative values, but the sum of all of the weights must be equal t o
1 . In a non-recursive filter, the output signal is effectively multiplie d
by the sum of the weights and if this is not unity the output wil l
be scaled up or down by a fixed factor. The result of using weights
which sum to a value greater than 1 in a recursive filter is mor e
problematic . The filter becomes unstable and the output, effectivel y
multiplied by an ever increasing gain, rises continuously .

Equations 4 .10 to 4 .12 indicate that the time at which each sample ,
x k , is obtained is not needed in order to calculate the filter output.
It is, therefore, unnecessary to pass time data to the filter routines
themselves . However, the rate at which the signal is sampled does,



Sampling, noise and filtering 149

of course, have a direct bearing on the performance of the filter .
For any given set of filter parameters (i .e . ai, bi and n), the filte r ' s
frequency response curve is determined solely by the sampling rate ,
v . For example, a filter routine which has a cut-off frequency, f0, of
10 Hz at v = 100 Hz will possess an fo of 5 Hz if v is reduced to 50 Hz .
For this reason we will refer to the filter's frequency characteristics
in terms of the frequency ratio, f /v (or fo/v when referring to th e
cut-off frequency) .

Unweighted moving average filte r

The unweighted moving average filter (also sometimes known simpl y
as a moving average filter) is a simple enhancement of the block
average technique . It is actually a type of non-recursive filter base d
on Equation 4 .11 . The weights a i are each set equal to 1/n so tha t
they sum to unity . The filter is described by the following equation :

l i=n- 1

Yk =—

	

xk- in
i=0

(4.13)

A FIFO buffer (see Chapter 6) is used to hold the series of x values .
The output of the filter is simply the average of all entries held i n
the FIFO buffer . Because the weights are all equal, this type of filte r
is also known as an unweighted FIFO filter .

Filters with large FIFO buffers (i .e. large values of n) provid e
good high-frequency attenuation . They are useful for suppressing
noise and unwanted transient signal variations that possess wide -
tailed distributions, such as might be present when monitoring th e
thickness of a rolled sheet product such as rubber or metal sheet .

Listing 4.1 illustrates how the moving average filter can be imple-
mented. The size of the FIFO buffer is determined by the valu e
defined for N . The InitFilter ( ) function should be called before
filtering commences in order to initialize the various FIFO buffe r
variables . Each subsequent reading (x) should be passed to th e
Filter o ) function which will then return the present value of th e
moving average .

The filter is, of course, least effective during its start-up phas e
when part of the FIFO buffer is still empty . In this phase, the filter' s
output is calculated by averaging over only those samples which hav e
so far been acquired, as illustrated in the listing . N calls to the Filter 0

function are required before the FIFO buffer fills with data .
The unweighted moving average filter possesses the frequency

characteristic shown in Figure 4 .8. It. is clear from the figure that
larger FIFO buffers provide better attenuation of high frequencies .



150 PC interfacing and data acquisition

Listing 4 .1 An unweighted moving average filte r

#define N 100

	

/* Size of FIFO Buffer * /

double FIFO [N] ;
int

	

FIFOPtr ;
double FIFOEntries ;
double FIFOTotal ;

void InitFilter( )
{

FIFOPtr

	

= -1 ;
FIFOEntries = 0 ;
FIFOTotal

	

= 0 ;
}

double Filter(double X )
{

if (FIFOPtr < (N-1) )
FIFOPtr++ ;

else FIFOPtr = 0 ;

if (FIFOEntries < N )
{

	

FIFOTotal

	

= FIFOTotal + X ;
FIFO[FIFOPtr] = X ;

FIFOEntries

	

= FIFOEntries + 1 ;
}

else {

	

FIFOTotal

	

= FIFOTotal - FIFO[FIFOPtr] + X ;
FIFO[FIFOPtr] = X ;
}

return FIFOTotal / FIFOEntries ;

However, because of resonances occurring at even values of v/f
and where the FIFO buffer contains an integer number of signa l
cycles (i .e . when n f /v is an integer), oscillations are present i n
the characteristic curve at frequencies higher than f o . As a rough
rule-of-thumb, the cut-off frequency is given by v/ f o 2.5n to 3.0n .

As with all types of filter, a phase lag is introduced between th e
input and output signals . This tends to increase at higher frequencies .
Because of the discrete nature of the sampling process and th e
resonances described above, the phase vs . frequency relationship
also becomes irregular above the cut-off frequency .

This type of filter is very simple, but is ideal in applications wher e
high speed filtration is required . If there is a linear relationship
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Figure 4 .8 Attenuation vs . frequency relationship for the unweighted moving
average filter

between the measurand and the corresponding digitized reading ,
the unscaled ADC readings can be processed directly using a moving
average filter based on simple integer (rather than floating-point )
arithmetic .

Exponentially weighted FIFO filte r
The unweighted moving average filter gives equal weight to all entrie s
in the FIFO buffer . Consequently, a particularly large reading will no t
only affect the filter output when it is supplied as a new input, it wil l
also cause a large change in output when the reading passes throug h
the FIFO buffer and is removed from the summation . To minimize
the latter effect, we may apply a decreasing weight to the reading s
as they pass through the buffer so that less attention is paid to olde r
entries . One such scheme employs an exponentially decreasing serie s
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of weights . In this case the weights ai in Equation 4 .11 are given by :

a i = e-(`t/r) (4.14)

Here, t represents the time interval between successive sample s
(equal to 1/v) and r is the time constant of the exponentia l
filter-response function . In an ideal filter, with a sufficiently large
FIFO buffer, the series of exponential weights will not be truncate d
until the weights become insignificantly small . In this case the time
constant, r, will be related to the desired cut-off frequency by :

1
. (4 .15)

Obviously, in a real filter, the finite size of the FIFO buffer will modif y
the frequency response, but this effect will be small provided that
nt>> T .

For the purpose of calculating the weights, it is convenient to mak e
use of a constant, r, which represents the number of characteristi c
exponential time periods (of length r) that are encompassed by th e
FIFO buffer:

r = nt

	

(4 .16)

The weights are then calculated from :

ai = e—(ir/n) (4 .17)

Substituting Equation 4 .16 into Equation 4 .15 (and remembering
that t = 1/v) we see that the expected cut-off frequency of the filte r
is given by :

fo

	

1 r
(4 .18)

v

	

2n n

This applies only for large values of r (i .e. greater than about 3
in practice) which allow the exponential series of weights to fal l
from unity - for the most recent sample - to a reasonably low leve l
(typically <0 .05) for the oldest sample . Smaller values of r give more
weight to older data and result in the finite size of the FIFO buffe r
becoming the dominant factor affecting the filter's response .

Listing 4 .1 may be easily adapted to include a series of exponen-
tial weights as illustrated in Listing 4 .2. The InitFilter c) function ,
which must be called before filtering commences, first calculates a
WeightStep value equivalent to the ratio of any two adjacent weights :
a i /ai_1 . It also determines the sum of all of the weights . This is
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Listing 4.2 An exponentially weighted FIFO filte r

#define N 100

	

/* Size of the FIFO buffer * /

#define R 3

	

/* No . of characteristic time periods within buffer * /

double WeightStep ;

double SumWeights ;

double LowWeight ;

double FIFO [N] ;

int

	

FIFOPtr ;

double FIFOEntries ;

double FIFOTotal ;

void InitFilter( )

double T ;

double Weight ;

int

	

I ;

T = R ;

WeightStep = exp(-1 * T / N) ;

SumWeights = 0 ;

Weight

	

= 1 ;

for (I = 0 ; I < N; I++ )

{

Weight = Weight * WeightStep ;

SumWeights = SumWeights + Weight ;

}

LowWeight = Weight ;

FIFOPtr

	

= -1 ;

FIFOEntries = 0 ;

FIFOTotal

	

= 0 ;

}

double Filter(double S )

{

if (FIFOPtr < (N-1) )

FIFOPtr++ ;

else FIFOPtr = 0 ;

if (FIFOEntries < N )

{

	

FIFOTotal

	

= (FIFOTotal + S) * WeightStep ;

FIFO[FIFOPtr] = S ;

FIFOEntries

	

= FIFOEntries + 1 ;

}

else {

	

FIFOTotal

	

= (FIFOTotal - (FIFO [FIFOPtr] * LowWeight) + S) * WeightStep ;

FIFO [FIFOPtr] = S ;

}

return FIFOTotal / SumWeights ;

1



154 PC interfacing and data acquisitio n

required for normalizing the filter output . LowWeight is the weight
applied to the oldest entry in the FIFO buffer and is needed in orde r
to calculate the affect of removing the oldest term from the weighte d
total .

The Filter () function should be called for each successive sample .
This function records the N most recent samples (i .e . x values) in a
FIFO buffer. It also maintains a weighted running total of the FIF O
contents in FIFOTotal . The weights applied to each entry in the buffe r
are effectively reduced by the appropriate amount (by multiplyin g
by weightstep) as each new sample is added to the buffer .

Good high frequency attenuation is obtained with r > 1, partic-
ularly with the larger FIFO buffers . Phase shifts similar to those
described for the moving average filter also occur with the expo-
nentially weighted FIFO filter. Again the effects of resonances an d
discrete sampling introduce irregularities in the attenuation an d
phase vs . frequency relationships . As would be expected, this effect
is more prominent with values of r less than about 1 to 3. The cut-off
frequencies obtained with various combinations of r and n are shown
in Figure 4.9 .

When r is greater than about 3, the fo/v data agrees closely
with the expected relationship (Equation 4 .18) . Slight deviation s
from the ideal response curve are due to the discrete nature of th e
sampling. Values of r less than about 3 result in a somewhat highe r
cut-off frequency for a given value of r/n . Conversely, increasing n
will reduce f o .
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Figure 4 .9 Cut-off frequencies vs . r/n for exponentially weighted FIFO filters
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The data in Figure 4 .9 is replotted in Figure 4 .10 which may be
used as a basis for choosing values of r and n in practical applications .
To determine the values of n and r that are necessary to obtain a
given f o :

1 . Determine v (remembering that it should be high enough t o
avoid aliasing) and then calculate the desired fo/v .

0 .001	
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

n

Figure 4 .10 Cut-off frequencies vs . n for exponentially weighted FIFO filter s
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2. Refer to Figure 4.10 to choose a suitable combination of r and n .
The optimum value of r is generally about 3, but values betwee n
about 1 and 10 can give adequate results (depending upon n) .

3. Consider whether the FIFO buffer size (n) indicated is practicable
in terms of memory requirements and filter start-up time . If
necessary use a smaller FIFO buffer (i .e. smaller n) and lower
value of r to achieve the desired f o .

A number of points should be borne in mind when selecting r an d
n . With small r values, a greater weight is allocated to older data an d
this lowers the cut-off frequency .

When r < 1 the filter behaves very much like an unweighted
moving average filter because all elements of the FIFO buffer hav e
very similar weights . The cutoff frequency is then dependent . only
on n (i .e . it is only weakly dependent on r) and is determined by th e
approximate relationship f o/v (2.5n) -1 to (3n)-1 . Only when r i s
greater than about 2 to 3 is there any strong dependence of fo on r .

When r is greater than about n/3, the performance of the filte r
depends only on the ratio r/n because the exponential weights fal l
to an insignificantly small level well within the bounds of the FIFO
buffer . There is usually no advantage to be gained from operatin g
the filter in this condition as only a small portion of the FIFO buffe r
will make any significant contribution to the filter's output . If you
need to achieve a high fo it is far better to increase v or, if this i s
not possible, to reduce n, rather than increasing r beyond n/3 . Best
results are often obtained with an r value of about 3 . This tends
to generate a smoothly falling frequency response curve with a wel l
defined f o and good high frequency attenuation .

Recursive low-pass filte r
A very effective low-pass filter can be implemented using the genera l
recursive filter Equation (4 .12) . The equation may be simplified by
using only the most recent sample Xk (by setting a; = 0 for i > 0 )
and the previous filter output Yk _ 1 (by setting b; = 0 for i 1) . The
filter equation then reduces t o

yk = axk + byk-1

	

(4.19 )

where a + b = 1

	

(4.20)

In Equation 4 .19 the 0 and 1 subscripts have been dropped from th e
weights a and b respectively. As discussed previously, the conditio n
4.20 is required for stability . It should be clear that the filter outpu t
will respond more readily to changes in x when a is relatively large .
Thus the cut-off frequency, 10, will increase with a . Knowing the
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Listing 4.3 A recursive low-pass filte r

#define A 0 .1

	

/* Modify this value as necessary * /
double Y ;
double B ;

void InitFilter( )
{
Y = 0 ;
B = 1 .0 - A ;
}

double Filter(double X )
{
Y = X * A + Y * B ;
return Y ;
}

1 . 0
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(a) Attenuation characteristi c

Figure 4.11 Attenuation and phase characteristics of the recursive low-pass filter
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sampling frequency, v, the constant a can be calculated from th e
required value of f o as follows :

2nfo

U

	

(4 .21 )

v

When v > Jo, the denominator tends to unity and Equation 4.21
becomes

27rf oa ti

	

	 	 (4.22)
v

Ideally, the cut-off frequency should be somewhat less than v/20 i n
order to achieve reasonable attenuation at high frequencies . In this
case, the approximation given in Equation 4.22 introduces only a

a =
27fo + - 2 ne ( .fol v )

10-3
f/ v

(b) Phase characteristic

1

Figure 4 .11 (continued)
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small error in the cut-off frequency and this generally has a negligibl e
effect on the performance of the filter .

Listing 4 .3 shows how this simple recursive filter can be imple-
mented in practice . The filter coefficient, a, is defined in the listin g
as the constant A . In this case it is set to 0 .1, but other values may be
used as required. The InitFilter 0 ) function must be called before
the sampling sequence starts . It initializes a record of the previou s
filter output, y, and calculates the other filter coefficient, b, which
is represented by the variable B in the listing. This function may
be modified if required to calculate coefficients a and b (i .e . the
program variables A and B) from values of f o and v supplied in th e
argument list. The Filter o function itself simply calculates a ne w
filter output (using Equation 4 .19) each time that it is called .

Figure 4.11 illustrates the attenuation and phase lag vs . frequency
characteristics obtained with a number of different values of a .
The relationship between fo and a follows the form expressed
in Equation 4.22 very closely . For a given value of fo/v, there i s
little difference between the characteristics of the recursive low-pas s
filter and the optimum (r = 3) exponentially weighted non-recursive
(FIFO) filter . In general, however, the recursive filter exhibits a
smoother fall-off of response and there are no resonances at high
frequencies . The phase vs . frequency curve is also more regular than
that obtained with the exponentially weighted FIFO filter . Note that
at the cut-off frequency the phase lag is 45° .



5 The interrupt syste m

The PC's interrupt system provides a means of temporaril y
suspending (or interrupting) the normal execution of a progra m
in order to allow the processor to respond to specific events . These
events may occur either as a result of executing certain instructio n
sequences or when a peripheral device wishes to request service (e .g .
when the keyboard signals that a key has been pressed) . The interrupt
system is particularly useful in DA&C applications . Interrupts permit
the system to react quickly to a variety of control and status inputs .
They also allow a degree of synchronism to be maintained betwee n
external events and the software routines that are needed to respon d
to them .

When an interrupt event occurs, the processor usually responds ,
at the earliest opportunity, by saving its flags register and the address
of the next instruction it would otherwise have executed, and the n
jumping to an interrupt handler routine located at a predefined
address in memory . In the case of a multitasking operating system ,
additional, task-related context information is also stored befor e
the interrupt handler is invoked . The interrupt handler performs
whatever action is necessary (e .g. reading a key code from the
keyboard or digitized data from an ADC) and then returns control o f
the system to the original process at the point that it was interrupted .
In this way, the code contained within an interrupt handler can b e
executed on demand, providing timely software service for a variety
of events or error conditions .

This chapter describes the PC's interrupt system in some detai l
and illustrates software techniques for creating interrupt handler s
for use in data acquisition . It also discusses some important interrupt -
related considerations which you should bear in mind when writing
data-acquisition software for the PC .

If you are an application developer, rather than an system-leve l
programmer, it is likely that you will need to write interrupt handling
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code only if programming in real mode, for example under MS-DO S
or a real-time version of DOS. In 32-bit protected-mode operatin g
systems, such as Windows NT, interrupt handling can be performe d
only by highly privileged code – i .e. by operating system code or
kernel-mode device drivers . Often, DA&C card manufacturers wil l
provide suitable Windows NT drivers, obviating the need to writ e
your own interrupt code . For this reason, and in order to convey
the principles of the topic without unnecessary complication, most
of the material in this chapter is presented in the context of a
real-mode application . Some examples will require adaptation i n
order to operate under Windows NT and other protected operatin g
systems. Unfortunately a full discussion of protected-mode interrupt s
and kernel-mode (Ring 0) drivers is beyond the scope of this book .
However, a large proportion of this chapter also applies to protected -
mode environments, and important differences, such as interrup t
response times (latency), are discussed . For further information o n
Windows device drivers and interrupt handling, refer to the text by
Solomon (1998) . Buchanan (1999) also provides useful examples o f
interrupt processing.

The PC supports four different types of control-transfer mech-
anisms that are all loosely referred to as interrupts : the Non-
Maskable Interrupt (NMI), external interrupts, software interrupt s
and processor exceptions . The nature of the various interrupt mech-
anisms and the ways in which the interrupts are initiated diffe r
considerably. Software interrupts and external hardware interrupts
are usually of most relevance to DA&C applications programs, bu t
you should also be aware of the NMI and processor exception mech-
anisms, particularly if you are involved in producing time-critica l
applications or systems software . These topics are discussed in mor e
detail later in this chapter, but first, we will consider the mechanis m
by which control is transferred to the interrupt handler .

5.1 Interrupt vectors

Whenever any type of interrupt occurs, the processor must transfe r
control of the system to a suitable interrupt handler . In order for the
processor to determine where to jump, it must retrieve the addres s
of the interrupt handler from a table located at a known position i n
memory . Each address in this table is known as an interrupt vecto r
and consists of 4 bytes which hold the offset (IP) and segment (CS )
portions of the address in the standard Intel low–high format . In
real mode, the interrupt vector table (IVT) is located at the bottom
of addressable memory (i .e . at location 0000 :0000h) . It is 1024 bytes
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long and may contain up to 256 separate interrupt vectors . The PC
system can, therefore, accommodate up to 256 different types o f
interrupt . Some of these are assigned for use by the NMI, externa l
hardware interrupts and exceptions, but the majority are used for
software interrupts .

Not all interrupt vectors point to (i .e. contain the address of)
executable code . Depending upon the configuration of the syste m
and the software installed, certain interrupt vectors may be config-
ured to point to tables of data etc . Table 5.1 lists the standard
interrupt vector usage on the PC .

The BIOS possesses an Unexpected Interrupt Handler routine .
All unused hardware interrupts, user interrupts (int lCh and 4A h
and most processor exceptions with Interrupt Type Codes less tha n
8 are directed to this handler by the BIOS POST routines . If one
of these interrupts occur before the operating system or an appli-
cation has installed a suitable handler, the Unexpected Interrup t
Handler is invoked. This immediately sets the Carry Flag and returns
control to the interrupted process, preserving all other registers . The
Unexpected Interrupt Handler also maintains a record of the las t
unexpected external hardware interrupt at offset Oh in the BIOS data
area. A single bit in this location is set to denote the IRQ level of th e
interrupt. For example, an unexpected IRQ5 (interrupt type code
13) would cause the BIOS to store the value 00100000b . Similarly,
for an unexpected IRQ7 (type code 15), the value 1000000b woul d
be stored . On the IBM AT and subsequent systems, the IRQ2 bi t
is set when an unexpected interrupt is detected on IRQ8-IRQ15 .
External hardware interrupts and IRQ levels are discussed in th e
following section .

Table 5 .1 is by no means a comprehensive list of interrupt usage
on the PC. Although most BIOS and DOS interrupts are use d
consistently throughout the range of PC `compatible' computer s
on the market, some of the interrupt vectors may be allocate d
differently in specific PC systems . The applications and system s
software as well as add-in hardware (e .g. network adaptors) present
on individual machines will also determine which interrupts ar e
in use. In particular, some of the interrupts in the ranges 50h t o
5Fh, 6$11 to 6Fh, 78h to 7Fh, 88h to B8h and F8h to FFh may be se t
aside for specific purposes (e .g. relocating hardware interrupts whe n
operating systems software such as Windows, OS/2 or DESQview ar e
installed) . Networked systems may also make use of several of th e
interrupts listed in Table 5 .1 .

There are already many thousands of software products on the
market, all of which need to take advantage of the PC's interrup t
system. New products continually come onto the market and these
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Table 5 .1 Standard interrupt vector assignments on the IBM PC an d
compatible machine s

Type

	

Description

OOh

	

Divide-by-zero exception .
01 h

	

Single-step trap (generated after each instruction if TF = 1) .
02h

	

NMI .
03h

	

Breakpoint (generated by breakpoint opcode CCh) .
04h

	

Overflow (generated by INTO instruction if OF has been previously set) .
05h

	

Print screen .
06h

	

Reserved .
07h

	

Reserved .
08h

	

IRQO: System timer tick .
09h

	

IRQ1 : Keyboard data available .
OAh

	

IRQ2 : LPT2 on PC . Reserved on XT. Cascade to slave PIC on A T
& PS/2 .

OBh

	

IRQ3 : COM2 or COM4 .
OCh

	

IRQ4: COM1 or COM3 .
ODh

	

IRQ5 : Fixed disk on PC, XT. LPT2 on AT. Reserved on PS/2 .
OEh

	

IRQ6: Diskette controller .
OFh

	

IRQ7 : LPT1 .
10h

	

BIOS video services .
11h

	

BIOS equipment-check service .
12h

	

BIOS memory size service .
13h

	

BIOS diskette I/O service .
14h

	

BIOS communications service .
15h

	

BIOS miscellaneous services .
16h

	

BIOS keyboard services .
17h

	

BIOS printer services .
18h

	

BIOS ROM BASIC entry point .
19h

	

BIOS bootstrap loader .
1 Ah

	

BIOS time-of-day services .
1 Bh

	

Ctrl-Break handler .
1 Ch

	

Timer tick user interrupt (invoked from int 08h) .
1 Dh

	

Pointer to BIOS's video parameter table . Not an interrupt vector .
1 Eh

	

Pointer to BIOS's diskette parameter table . Not an interrupt vector .
1 Fh

	

Pointer to BIOS's 8 x 8 graphics font . Not an interrupt vector .
20h

	

DOS program termination . Now obsolete, but retained for compatibility .
21h

	

DOS services .
22h

	

DOS program termination routine . Not an interrupt vector .
23h

	

DOS Ctrl-C/Break handler . Invoked when DOS detects Ctrl-C o r
Ctrl-Break .

24h

	

DOS critical error handler .
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Table 5 .1 (continued)

Type

	

Description

25h

	

DOS absolute disk read service .
26h

	

DOS absolute disk write service .
27h

	

DOS terminate and stay resident service .
28h

	

DOS idle interrupt .
29h

	

DOS fast console character output .
2Ah—2Dh Reserved .
2Eh

	

DOS command interpreter interface .
2Fh

	

DOS multiplex interrupt .
30h

	

Reserved .
31h

	

DPMI programming interface .
32h

	

Reserved . Infrequently used .
33h

	

Mouse driver services .
34h—3Eh Floating-point emulation in Microsoft and Borland programmin g

languages .
3Fh

	

Overlay and DLL management in Microsoft and Borland languages .
40h

	

BIOS diskette I/O (interrupt 13h revectored by hard disk BIOS) .
41 h

	

Pointer to BIOS's hard disk #0 parameter table . Not an interrupt vector .
42h

	

BIOS default video services (revectored from int 10h by EGANG A
BIOS) .

43h

	

Pointer to BIOS's graphics character table . Not an interrupt vector .
44h

	

Pointer to PCjr BIOS's graphics character table . Not an interrupt vector .
45h

	

Reserved . Infrequently used .
46h

	

Pointer to BIOS's hard disk #1 parameter table . Not an interrupt vector .
47h

	

Reserved . Infrequently used .
48h

	

Keyboard on PCjr . Reserved on all other systems .
49h

	

Keyboard on PCjr . Reserved on all other systems .
4Ah

	

BIOS real-time clock user alarm interrupt .
4Bh

	

SCSI device interface . Virtual DMA services .
4Ch

	

Reserved . Infrequently used .
4Dh

	

Reserved . Infrequently used .
4Eh

	

Reserved . Infrequently used .
4Fh

	

SCSI device interface .
50h—5Fh Reserved . Some vectors used by DESQview, OS/2, Windows 95 an d

networks .
60h—66h User interrupts .
67h

	

LIM EMS and VCPI .
68h—6Fh Reserved . Some vectors used by network products .
70h

	

IRQ8: Real-time clock periodic/alarm interrupt . AT and PS/2 .
71h

	

IRQ9: Reserved . Invoked via IRQ2 bus line . AT and PS/2 .
continued overleaf
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Table 5 .1 (continued)

Type

	

Description

72h

	

IRQ10: Reserved .
73h

	

IRQ11 : Reserved .
74h

	

IRQ12: Pointing device interrupt (e .g . PS/2 mouse) . PS/2 and AT
compatibles .

75h

	

IRQ13: Numeric coprocessor . AT and PS/2 .
76h

	

IRQ14: Hard disk controller . AT and PS/2 .
77h

	

IRQ15: Reserved .
78h-7Fh Reserved . Some vectors used for network products .
80h-85h Reserved for BASIC .
86h-EEh IBM ROM BASIC interpreter . Some vectors also used by networ k

products .
EFh-FOh IBM ROM BASIC interpreter . Compiled BASIC .
Flh-FDh User interrupt on AT and PS/2 . Reserved on PC and XT .
FEh

	

Reserved .
FFh

	

Reserved .

also require new interrupts to be assigned . As there are only 256 avail-
able interrupt vectors, a degree of overlap is sometimes inevitable .
Fortunately, many software packages and hardware products (e .g .
data-acquisition cards) help to avoid interrupt conflicts by allowin g
the user some latitude in selecting which interrupts are to be used .

For these reasons, published interrupt tables tend to differ slightly ,
often listing many of the interrupts simply as `Reserved' and, i n
general, it is wise to avoid using any of these in your own software .

One must also bear in mind that there can in some circumstance s
be ambiguity over the usage of a specific interrupt vector . Several
of the first 32 vectors are used on the PC for processor exception s
as well as for external hardware interrupts or BIOS services . This
overlap arises from the design of the original PC and has becom e
more problematic as new processor features and exceptions hav e
been introduced . Contentions tend not to arise when the processo r
is running in real mode, but protected mode software must ensur e
that it can identify the source of an interrupt. unambiguously. The ful l
implications of interrupt conflicts and techniques to resolve the m
are beyond the scope of this book . However, such considerations ar e
usually handled by protected-mode operating systems . Windows 95
and DESQview, for example, avoid such problems by remappin g
hardware interrupts to different vectors . Further details of interrupt
conflicts and the interrupt relocation technique may be found i n
the text by van Gilluwe (1994) .
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Brown and Kyle (1991) provide a thorough and detailed accoun t
of interrupt usage on the PC. This publication includes a grea t
deal of information on the interrupts used by specific software an d
hardware products, and it is recommended that this text should b e
consulted whenever you need to select interrupts to be used in a
data-acquisition system. This should help to achieve compatibilit y
with other products by avoiding any interrupts which they might use .
However, if you are concerned only with picking a suitable externa l
hardware interrupt (IRQ) for interfacing to a data-acquisition card,
for example, the choice is usually much simpler and the table s
provided in Appendix A should assist in these circumstances .

5.2 Hardware interrupts

The NMI and external interrupts are, in fact, both types of hardwar e
interrupt . The processor is equipped with two pins known as NM I
and INTR. Signals present on either of these pins can interrup t
the processor. The INTR line carries external hardware interrupt
requests, while the NMI line carries non-maskable interrupt requests .
In the PC, a number of different subsystems and peripheral compo -
nents are able to assert the NMI or INTR lines whenever they requir e
attention from the processor .

External hardware interrupt s

External interrupt requests may occur at any time during executio n
of a program. Because they are asynchronous with the operation o f
the processor, the programmer should make no assumptions abou t
when an interrupt might be generated . As an interrupt handler may
take control of the system for perhaps a few hundred microseconds
at a time (or more in some cases), the possibility of an interrup t
occurring can clearly affect the ability of non-interrupt code to
operate in accordance with the tight timing constraints that ar e
often required of DA&C systems . It is sometimes preferable to plac e
time-critical code inside interrupt handlers, as this can help to ensur e
that the system responds to external stimuli within predefined tim e
limits . However, as we shall see, it is not always easy to achieve a
guaranteed response time, even with interrupts .

There are other problems inherent in using an asynchronou s
interrupt system. The interrupt handler may have to read or modify
global data structures or to access hardware resources . It is clearly
important to prevent interrupt routines and non-interrupt code
from accessing shared resources (such as global data and hardware)
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at the same time. Suppose that the non-interrupt portion of you r
program begins to execute a sequence of instructions which reads
16 bytes from a global array . If an interrupt occurs before the
reading sequence is completed and the interrupt handler change s
the contents of the array, the non-interrupt code will, when it regain s
control, read the modified data from the remainder of the array .
There will consequently be a mismatch between the first and las t
bytes read from the array . Similar and sometimes more catastrophic
consequences may result if the shared resource in question is a
critical item of hardware .

It is possible to circumvent these problems to some extent b y
temporarily disabling the external interrupt system . The processor
can be programmed to mask external hardware interrupts by means
of the CLI (Clear Interrupt Flag) assembly language instruction . This
resets the processor's Interrupt Flag (IF) causing the processor to
ignore any external hardware interrupt requests that it receives o n
the INTR line . By this means it is possible to prevent interrupts fro m
occurring and thereby to protect critical portions of the code . At the
end of the critical section, interrupts maybe enabled again by issuing
the STI instruction which sets IF back to I . If you disable external
interrupts in this way, do not keep them disabled for too long as
this will affect the speed at which other interrupt driven processe s
can respond. Try to confine the critical code to just a few machin e
instructions if possible . This helps to ensure that all interrupts ar e
serviced in a timely manner .

Note that none of the other interrupts (i .e . NMI, processor excep-
tions or software interrupts) can be masked in this way although, a s
we shall see later in this chapter, the design of the PC does provide a
mechanism for controlling whether NMI signals reach the processor .

Introduction to the 8259A PIC

The external hardware interrupt system was managed on the original
IBM PC and XT machines by an Intel 8259A Programmable Interrup t
Controller (PIC) as shown in Figure 5 .1 . The INTR line can b e
asserted by the PIC whenever it receives an interrupt request signa l
from one of eight peripheral devices . A similar system was adopte d
for the IBM AT, but in this machine a second 8259A PIC was adde d
to provide seven further interrupt request (IRQ lines. Most moder n
ISA and EISA PCs provide the same dual-PIC functionality usin g
compatible custom circuitry. As this arrangement is functionally
equivalent, we will refer only to the 8259A PICs in the remainder of
this chapter .

All but two IRQ lines are made available to expansion cards o n
the ISA/EISA bus . The PCI bus present in most modern PCs carries
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Figure 5 .1 The IBM XT's external hardware interrupt system

four separate interrupt request lines, and these are automaticall y
mapped by the PCI—ISA bridge hardware to one of the PIC's IR Q
lines (i .e. IRQ3—IRQ7, IRQ9—IRQ12, IRQ14 or IRQ15) .

As its name suggests, the PIC is a programmable device which
may be made to operate in a variety of different modes . It is
preprogrammed to a default operating mode by the BIOS's start-up
code. Most applications make use of this default configuration, bu t
a few more specialized systems reprogram the PIC . Unless state d
otherwise, the remainder of this section will discuss how the PIG
functions in its default operating mode .

When two or more interrupt conditions occur at the same time ,
the system must decide which interrupt request it will respond to
first . The processor prioritizes the various types of interrupt and, i n
normal operation, gives all INTR requests (i .e. external hardware
interrupts) the lowest priority. The principal function of the PI C
is to prioritize these external hardware interrupt requests (IRQ)
signals and to issue a corresponding sequence of INTR signals t o
the processor . The default operating mode assigns highest priorit y
to IRQO and the lowest priority to IRQ7 . A similar sequence applie s
to the secondary PIC present on the AT and compatible machine s
although the highest and lowest priority interrupt lines are in thi s
case referred to as IRQ8 and IRQ1 5 respectively . This priority schem e
means that an interrupt handler may itself be interrupted by a highe r
priority interrupt request (provided that the processor's Interrup t
Flag is set), but lower priority requests must wait until the present
interrupt level has been cleared .

The PIG incorporates several 8-bit registers which are used fo r
manipulating the interrupt. request signals as shown in Figure 5 .2 .
The interrupt request signals are latched in the Interrupt Request
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Figure 5 .2 Schematic diagram of the main elements of the 8259A PI C

Register (IRR) . The IRR may be programmed to record either edge -
triggered or level-triggered interrupt signals . The trigger method
used is dependent upon the type of machine and should not normall y
be changed by the programmer . The latched IRR signals are the n
passed to the Interrupt Mask Register (IMR) which contains a
user-programmable bit pattern that selectively enables or disable s
interrupt requests on certain IRQ lines . A low bit placed in thi s
register will enable the associated interrupt. Next, the interrupt
signals are then passed collectively to the priority resolver whic h
prioritizes all pending (and enabled) requests . The result of this
operation is that the INT line (which is connected to the processor' s
INTR line) is asserted and this initiates the interrupt sequence . In
addition, 1 bit of the In Service Register (ISR) is set to indicate whic h
of the pending interrupts is currently being serviced .

The IRR, IMR and ISR may be read by software in order t o
determine the current state of the interrupt system . As already
mentioned, the software can also write to the IMR to selectivel y
enable or disable certain IRQ lines . Each bit in the IMR correspond s
to one IRQ line and has no effect on any higher or lower priority
lines. The PIC also incorporates a number of other registers whic h
allow the operating mode of the device to be programmed .

Many plug-in adaptor cards provide jumpers or DIP switches for
the purpose of selecting which IRQ line (if any) the card is to use . It
is, of course, important to ensure that no two devices are assigned to
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the same IRQ line unless you are able to make use of the interrup t
sharing facilities that exist on MCA and EISA machines . Table A.2
(in Appendix A) lists the standard IRQ assignments used on the PC .
Remember that the actual assignments may vary between individua l
computers, so it is wise to keep a record of which IRQ lines ar e
utilized by each adaptor card in the system .

The interrupt sequence
When an adaptor card asserts one of the IRQ lines, it sets in motion
the following series of events which ends in the execution of a n
associated interrupt handler routine .

1. When the peripheral device requires the processor's attention ,
it drives its allotted IRQ line high (on the PCI bus the interrup t
request signal is steered by bridge hardware to the appropriat e
IRQ line) .

2. The IRQ signal is latched into the PIC 's IRR (this is either edge
or level triggered, depending upon the class of PC in use) and i f
the corresponding bit of the IMR is clear, the interrupt request i s
passed (with any other pending requests) to the priority resolver .

3. If no higher priority interrupts are pending, the PIC initiates
the interrupt by asserting the processor's INTR line . If a highe r
priority interrupt is pending or currently in service, the PIC wil l
wait until all higher priority interrupts have been serviced befor e
proceeding with the new interrupt request .

4. When the processor receives the INTR signal from the PIC i t
asserts the PIC's Interrupt Acknowledge (INTA) line twice in
succession. The processor waits until it has completed the curren t
instruction before acknowledging the interrupt . If external inter-
rupts have been disabled (IF = 0), the processor will not acknowl-
edge the interrupt and the INTA line is not asserted . The PIC
responds to the first INTA cycle by setting the appropriate bit of
the ISR and clearing the corresponding IRR bit . The second INTA
cycle causes the PIC to transfer an 8-bit Interrupt Type Code (th e
zero-based ordinal index of the interrupt vector to be used) t o
the processor via the data bus . The value of this code depends
upon the IRQ line which generated the interrupt and also upo n
how the PIC has been initialized (see Remapping interrupts later in
this chapter) .

5. The processor retrieves the Interrupt Type Code from the data
bus and multiplies it by four to calculate the offset into the IV T
of the interrupt vector that it will use .

6. The processor saves its Flags register on the stack and the n
clears its Interrupt and Trap flags . At this point, the segment
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and offset addresses of the next instruction that the processo r
would otherwise have executed are also pushed onto the stac k
(these are used to resume execution of the interrupted cod e
when the interrupt handler terminates) . The processor retrieves
the address of the interrupt handler from the interrupt vecto r
and, by placing this address into its CS :IP registers, effectively
transfers control to the beginning of the interrupt handler .

7. The interrupt handler performs whatever actions are necessar y
in order to respond to the peripheral device's interrupt request .
These actions will vary, but should always result in the devic e
removing its request by pulling the appropriate IRQ line lo w
again . Before returning control to the interrupted process, the
handler should then issue an End Of Interrupt (EOI) comman d
(usually a value of 20h) to the PIC . The EOI command causes th e
ISR to be reset, allowing further interrupt requests of an equal o r
lower priority to proceed . The interrupt handler should ensure
that it saves the contents of all of the processor's registers an d
that it restores them before returning . The return itself should be
implemented with the IRET (Interrupt Return) instruction rathe r
than the normal subroutine return, RET . The IRET instruction auto -
matically restores the Flags register (and therefore the Interrup t
Flag) which had originally been saved by the processor on th e
stack. It also loads the return address from the stack into th e
CS:IP registers to effect the return .

Figure 5.3 illustrates this sequence diagrammatically . The circled
numbers refer to the stages in the foregoing list . Bear in mind tha t
this figure is not a precise timing diagram – indeed the timing o f
certain elements can vary considerably – nor does it include all of th e
control signals that are passed between the PIC and the processor .

The interrupt sequence in protected mode (e .g. under Microsoft
Windows) is similar in many respects, although there are a number o f
important differences . See Hummel (1992) for more on protected -
mode interrupts .

Interrupt triggerin g
There are two ways in which signals present on the various IR Q
lines may become latched into the PIC's IRR and thereby generate
an interrupt request: edge-triggered or level-triggered detection .
The former method uses the rising edge of the IRQ line to latc h
the corresponding IRR bit, while the latter method relies on level -
sensing circuitry. The trigger method employed varies betwee n
different types of computer system. It should not be changed by
the user . ISA and XT bus machines program the PIG to respond to
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Figure 5 .3 The interrupt sequenc e

edge-triggered interrupts while MCA machines (i .e . most PS/2s) us e
level-triggered interrupts. EISA machines default to edge triggerin g
for compatibility with AT systems, but may also be programmed fo r
level-triggered interrupts .

In an edge-triggered system, an interrupt is generated only whe n
the IRQ line first undergoes a low-to-high transition . The line ma y
remain high without further interrupts being triggered . However ,
if the IRQ stays high in a level-triggered system, a second interrup t
will be generated as soon as the software issues an EOI command to
acknowledge the first interrupt . It is, therefore, essential to deactivat e
the IRQ line before issuing an EOI to a level-triggered PIC .

One consequence of level-triggered interrupts is that they facilitate
sharing of IRQ lines between different devices . MCA machine s
incorporate hardware that allows more than one peripheral devic e
to drive the same IRQ line . The IRQ remains asserted as long a s
one or more peripherals are requesting service . To accommodate
this mode of operation, each peripheral must provide a software-
readable flag to indicate when it requires service . The interrupt
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handler routines associated with each device on the shared IR Q
line are installed in a chain-like structure . The first handler to gai n
control when an interrupt occurs should check whether its ow n
associated device requires attention . If it does not, the handler mus t
immediately call the previous interrupt handler in the chain (i .e .
the one associated with the next device attached to the shared IRQ) .
This process repeats until all devices that require attention hav e
been serviced .

Although this method provides additional scope for system expan-
sion, it does increase the overall time taken to respond to interrupts .
In some DA&C applications this additional delay might unacceptabl y
compromise the real-time performance of the system . In general, it is
wise to avoid using shared interrupts for any subsystem that require s
a fast interrupt response . Interrupt response times and latencies are
discussed in the section Interrupt response times at the end of this
chapter .

Cascaded PICs on ISA and MCA machine s

In order to expand their interrupt processing capability from 8 t o
15 IRQ lines, ISA and PCI-based PCs (i .e . AT compatibles) and
MCA machines (i .e . IBM PS/2s) are equipped with two 8259A PICs ,
connected together in a cascaded configuration . This requires th e
BIOS's Power-On Self Test (POST) routines to initialize the PIC s
in a slightly different manner so that they will operate as a maste r
and slave. The primary (master) PIG is used in much the sam e
way as on PC and XT machines and is mapped to the same I/ O
addresses (ports 20h and 21h) . The secondary (slave) PIC appear s
at ports A0h and Alh . The eight interrupt request lines provided
by the additional PIC are referred to as IRQ8–IRQ15 . The slave' s
INT output line is fed to the IRQ2 input of the master PIC. In thi s
way any interrupt requests occurring on IRQ8–IRQ15 result in an
interrupt being signalled on the master PIC's level 2 input . This has
obvious consequences for the interrupt priority scheme describe d
previously. Figure 5 .4 illustrates how the two PICs are connected .

When the slave receives an interrupt request, it prioritizes it i n
the same way as previously described and asserts its INT line . This
is detected by the master PIC on its IRQ2 line . The master then
prioritizes this interrupt request and asserts the processor's INTR
pin. When the processor responds with two INTA pulses, the maste r
PIC effectively passes control to the slave by means of the CAS O
to CAS2 lines . These enable the slave and cause it (rather tha n
the master PIC) to place an Interrupt Type Code (usually in th e
range 70h to 77h) on the data bus during the second INTA cycle .
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Figure 5 .4 Cascaded master and slave PICs on the IBM AT and PS/2

If an interrupt originates from the slave PIC the interrupt handler
routine must issue EOI commands to both PICs before exiting: the
slave should be acknowledged first and the master second . Note
that further interrupt requests made via the slave PIC will not b e
recognized by the master until after the master has received an EO I
command .

Because the master PIG's level 2 input is connected to the IN T
output from the slave PIC, the IRQ2 line is no longer available
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to accept interrupt requests. The modern AT-compatible PCs are
designed to maintain compatibility with the IBM PC and XT (whic h
were able to make use of IRQ2) by connecting the IRQ2 line o n
the expansion bus to the slave's IRQ9 input . IRQ9 is mapped to
the interrupt 71h vector . The BIOS incorporates an interrupt 71 h
handler which simply makes a software call to the interrupt 0A h
(IRQ2) handler. In this way, if an adaptor card issues an interrup t
request on the IRQ2 expansion bus line, the correct interrup t
handler is still invoked (although the interrupt request is route d
through IRQ9 and the slave PIC instead of going directly to th e
master) . This allows software and hardware designed for earlie r
systems to work without modification on AT-compatible PCs .

It is interesting to note that it is possible to expand the PC' s
interrupt system by interfacing additional PICs. Because some o f
the interface lines required for cascading the additional PICs ar e
not available on the expansion bus, full cascading is not possible .
Software interrupt handlers must, in this case, poll the various PICs i n
order to determine which device requested service. This techniqu e
is described in detail by Eggebrecht (1990) .

Remapping interrupts
During the second INTA cycle, the PIC passes an 8-bit Interrup t
Type Code to the processor. This code is actually the ordinal inde x
of the interrupt vector which is to be used to transfer control to the
interrupt handler . Bits 0 to 2 of the Interrupt Type Code contain a
binary-coded representation of the number (in the range 0 to 7) o f
the IRQ line which generated the interrupt. The 5 highest order bits
determine which of the available 256 interrupt vectors are mappe d
to the IRQ lines . These bits are programmed into the PIC durin g
initialization (i .e . usually by the BIOS's POST routines) . This allows
the system initialization code to map the block of eight interrup t
lines associated with each PIC to a specific region of the IVT. For
the master PIC present on all PC-compatible machines, the hig h
order 5 bits of the Interrupt Type Code are such that IRQO–IRQ 7
are mapped to interrupts 08h–OFh . The value programmed into
the secondary PIC (on ISA, PCI, EISA and MCA machines only )
routes IRQ9–IRQ15 to interrupts 70h–77h . The interrupts may be
remapped simply by reinitializing the PIC (s) with a suitable value
for the 5 high order bits of the Interrupt Type Code . Remapping
hardware interrupts in this way might introduce incompatibilitie s
with software which expects the IRQs to invoke the usual interrupts .
If you do remap the interrupts be sure to account for any suc h
incompatibilities and remember to redirect the new interrupts to
the appropriate interrupt handlers .
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Programming the PIC and reading its register s
The 8259A PIC is a very flexible device and may be programme d
to operate in a variety of modes. Some of these modes are no t
compatible with the PC's architecture, or even with the 80x86 family
of processors, so you will need to exercise great care if you wish t o
reprogram this device .

As explained previously, the system BIOS's POST routine s
configure the PIC to a standard operating mode, and there i s
usually no need for the programmer to subsequently reprogram th e
device . Indeed to do so may affect . the ability of the PIC to functio n
correctly in conjunction with BIOS and other system components .
Nevertheless, there are rare instances when it is necessary to change
the PIC's operating mode and so the relevant commands ar e
discussed briefly below . We will, however, discuss only those modes
and commands that are useful on the PC . You should refer to Intel' s
8259A Programmable Interrupt Controller Data Sheet for additiona l
programming details .

Mode selection and other commands may be issued to the PIC
either as an initialization sequence of 2 to 4 bytes – known as Initial -
ization Command Words (ICWs) – or subsequently as individua l
Operational Command Words (OCWs) . The PIC has two 8-bit ports ,
each of which accepts certain command words : these are detailed
below. We will refer to these ports as port 0 and port 1 . On the
master PIC, ports 0 and 1 are mapped to I/O addresses 20h an d
21h respectively. The slave PIC present on ISA, PCI, EISA and MCA
systems uses ports A0h and Al h .

Initialization command sequenc e

An application program may reinitialize the PIC if it wishes t o
modify certain modes of operation . Initialization involves the soft-
ware writing from two to four Initialization Command Words to
ports 0 and 1 . The first ICW, known as ICW1, is written to port 0 .
Bit 4 of ICW1 is always set and this allows the PIC to distinguish i t
from Operational Command Words which all have bit 4 reset (i .e . 0) .
The values of bits 0 and 1 of ICW1 determine whether the third an d
fourth ICWs are needed. Note that the format of ICW3, if needed ,
depends upon whether the PIC has been configured as a master o r
as a slave .

It is not usually necessary to reinitialize the PIC because the BIO S
POST routines will normally have set the device to the correc t
operating mode . Consequently initialization will not be discusse d
in detail here and the bit assignments listed in Tables 5 .2 to 5.6
will be presented without further comment . If you need additional
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Table 5 .2 ICW1, for output to port 0

Bit Name Description

0 IC4 1 = Use ICW4. If this bit is 0, ICW4 would not be required and th e
functions controlled by ICW4 would be treated as though al l
ICW4 bits were O .

1 SNGL 1 = No cascade (used on PC and XT) . ICW3 is omitted .
0 = Cascade mode (used on AT and PS/2) . ICW3 is required .

2 ADI Always 0 . Unused on PC and compatibles .
3 LTIM 1 = Level-triggered IRQs (MCA machines) .

0 = Edge-triggered IRQs (PC, XT, AT systems) .
4 Always 1 . Identifies the command as being ICW1 .

5—7 A5—A7 Always O . Unused on PC and compatibles .

Table 5 .3 ICW2, for output to port 1

Bit Name Descriptio n

0—2 A8—A10 Always 0 . Unused on PC and compatibles .
3—7 T3—T7 High order 5 bits of the Interrupt Type Code that i s

transferred to the processor during the second INTA cycle .
Master PIC uses 00001b and slave PIC uses 01110b .

Table 5.4 ICW3, for output to port 1 of the master PIC

Bit

	

Name

	

Description

0—7

	

S0—S7

	

Each bit represents an interrupt level used to cascade to a
slave PIC . Each bit set to 1 indicates that a slave PIC i s
attached to the corresponding IRQ level . On the AT, IRQ2
is used for cascading the slave PIC so ICW3 is 00000100b .

Table 5 .5 ICW3, for output to port 1 of the slave PIC

Bit Name Description

0—2 IDO—ID2 ID code of slave device (same as master's IRQ level to
which the slave is attached) : 010b on AT .

3—7 Always O . Unused on PC and compatibles .
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Table 5 .6 ICW4, for output to port 1

Bit Name Description

0 tPM Always 1 . Indicates 80x86 compatibility mode .
1 AEOI Always 0 . Indicates no automatic EOI .
2 M/S Always O .
3 BUF Always 1 on PC and XT . Indicates buffered mode .

Always 0 on AT . Indicates non-buffered mode .
4 SFNM Always 0 . Indicates not special fully nested mode .

5—7 Always 0 . Unused on PC and compatibles .

Table 5 .7 Summary of useful 8259A PIC operational commands

Port

Command code Master PIC Slave PIC Description

OAh 20h A0h Map IRR to port 20h/A0h for reading .
OBh 20h A0h Map ISR to port 20h/A0h for reading .
20h 20h A0h Non-specific end of interrupt (EOI) .
COh—C7h 20h A0h Set priority .
Mask 21h A1 h Set interrupt mask (load IMR) .

information, you should consult the Intel 8259A Programmabl e
Interrupt Controller Data Sheet .

Operational commands

After the PIC has been initialized by the BIOS POST routines, variou s
operational commands may be issued to the PIC in order to perfor m
actions such as reading the ISR or acknowledging an interrupt.
We have already introduced some of the operational commands :
accessing the IMR and issuing a non-specific end-of-interrupt (EOI) ,
for example . A number of other useful commands are available t o
the programmer. These allow the software to read the PICs' statu s
registers (i .e. the IRR and ISR) and to select various operating modes .
A selection of Operational Commands are listed in Table 5 .7. Unlike
the Initialization Commands, the Operational Command Words do
not need to be issued in sequence . Note that any interruptible
command sequence (e .g. reading the IRR) should be carried ou t
with processor interrupts disabled.

Map IRR to Port 0 command (write OAh to port 0 (20h/,40h) )

This command maps the IRR to port 0 so that subsequent reads fro m
I/O port 20h (or A0h for the slave PIC) will return the contents o f
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the IRR. Each of the eight IRQ inputs is represented by 1 bit o f
the IRR: bit 0 indicates whether an IRQO request is pending ; bit 1
indicates whether an IRQ1 request is pending and so on . All pending
interrupt requests are denoted by a 1 bit. It is sometimes useful to
read the IRR in order for an interrupt handler to check whethe r
any lower priority interrupts are pending . Other software routine s
can also use this facility to determine whether an interrupt reques t
has occurred while external hardware interrupts may have bee n
masked.

Map ISR to Port 0 command (write OBh to port 0 (20h/AOh) )

This command maps the ISR to port 0 to that subsequent reacts fro m
I/O port 20h (or A0h for the slave PIG) will return the contents of
the ISR. The ISR contains 1 bit for each possible IRQ level in much
the same way as the IRR . However, a high ISR bit indicates tha t
the corresponding interrupt level is currently being serviced (i .e . the
interrupt has been invoked, but the handler has not yet issued a n
EOI) . All interrupts which are currently in service will be represente d
by high ISR bits . Only one bit of the ISR will usually be set (lurin g
execution of an interrupt handler, but if one or more higher priorit y
requests have interrupted a lower priority handler before the latte r
has issued an EOI (an(l thus cleared its associated ISR bit), mor e
than one ISR bit will be set. Reading the ISR also provides a mean s
for a shared interrupt handler (e .g. one written to handle inpu t
from two or more serial ports) to determine which device issued the
interrupt .

Non-specific End-of-Interrupt command (write 20h to port 0 (20h/AOh) )

The non-specific EOI command should be issued by each inter-
rupt handler before returning control to the interrupted process .
This command clears the ISR bit corresponding to the highes t
priority interrupt currently in service . This will normally be th e
interrupt which issued the EOI command . By clearing the ISR bit,
the command allows further interrupts of equal or lower priority t o
occur. On dual-PIG systems (e .g. ISA, PCI or MCA), any interrupt
handlers which are invoked via the slave PIG (i .e . via IRQ8–IRQ15 )
must issue EOI commands to both PIGs . The slave PIG should b e
acknowledged first and then the master .

Set Priority command (write COh-C7h to port 0 (20h/AOh) )

This set of commands allows different priorities to be assigne d
to each IRQ input. Normally, the PIC is programmed to allocate
IRQO requests the highest priority and IRQ7 the lowest . Table 5.8
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Table 5 .8 Interrupt priorities defined by the set priority comman d

IRQ priority orde r

Priority COh C 1 h C2h C3h C4h C5h C6h C7h

1 (highest) 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6
8 (lowest) 0 1 2 3 4 5 6 7

illustrates the priorities assigned to each IRQ input by the Se t
Priority commands . Note that, in the case of the slave 8259A PIC, th e
interrupt request levels listed as 0–7 actually refer to IRQ8–IRQ15 .

Suppose that it is necessary to incorporate a section of time-critica l
code within a DA&C program. It may be desirable in some situa-
tions to install the code within a high priority interrupt handler .
This prevents other external hardware interrupts from taking prece -
dence and thereby delaying execution of the code . The hardware
which is to generate the interrupt requests might, for example ,
be connected to IRQ7 . In the case, the Gbh command would be
issued. This would allocate the highest priority to the new IRQ7
process : higher than even the system clock interrupt on IRQO . You
should exercise great care when reassigning interrupt priorities an d
should be aware of all possible consequences of doing so . You should
also confine any high priority processes to as short a time span as
possible in order to avoid adversely affecting other interrupt base d
subsystems .

Define Interrupt Mask command (write mask byte to port 1 (21 h/A 1 h) )

It is possible to modify the Interrupt Mask Register (IMR) by writin g
to this port . The IMR may also be read by reading from port 1 .
Each bit masks or unmasks the corresponding interrupt level . Bit 0
is associated with IRQO, bit 1 with IRQ1 etc . Each low bit in the IMR
enables the corresponding IRQ level and a high bit disables the IRQ .

The Non-Maskable Interrupt

The processor's Non-Maskable Interrupt (NMI) facility provides a
means for the various PC subsystems to notify the processor whe n
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some critical event, such as a hardware failure, has been detected . On
ISA and XT-bus machines, there are three possible sources of NMIs :
RAM parity failure, I/O channel error or a numeric coprocessor
error . On MCA systems, channel 3 of the system timer (i .e. the
watchdog tinier) can also initiate an NMI . There are a number o f
additional sources of NMIs on EISA machines .

One important difference between NMIs and external hardware
(INTR) interrupts is that the processor does not attempt to retrieve
an Interrupt Type Code from the data bus . Instead, it always use s
interrupt type 2 to service the NMI . This is a fixed feature of the
processor and cannot be changed by the programmer .

NMI handler routines are normally implemented by the syste m
BIOS. In situations such as a memory parity error, the BIOS's NMI
handler will usually display a message to indicate the nature of the
fault . In such cases there is generally no way to recover reliably fro m
the problem and so the BIOS closes down the system .

NMIs have the highest priority of all hardware interrupts an d
this guarantees a more or less immediate response to a pendin g
error condition . The only conditions that can delay execution of a n
NMI are:

• The NMI has been disabled by software (e .g. by code that reads
the CMOS RAM or Real Time Clock) .

• The processor is responding to a higher priority interrupt (suds
as an exception) .

• The processor has begun execution of an instruction that change s
the SS (stack segment) register . In this case the NMI will not be
recognized until after the following instruction has been executed .

Enabling and disabling the NM I

As its name suggests, and unlike external interrupts on the INTR line ,
the NMI cannot be masked (disabled) within the processor itself.
However, the AT and compatible machines incorporate circuitry fo r
gating off the NMI signal before it reaches the processor . The BIOS
POST routines ensure that the NMI is enabled (luring start-up, so
that any subsequent memory or I/O errors will generate an NMI .
An application program may disable the NMI by setting bit 7 of I/O
port 70h to 1 . The NMI may be re-enabled by clearing the same bit.
Port 70h is also used to access the AT's Real Time Clock and CMO S
RAM. The NMI should normally be disabled in this way whenever
you attempt to read from, or write to, the CMOS RAM . It is generally
inadvisable to disable the NMI for an appreciable length of time .



The interrupt system 18 5

Signalling a system failure

In most DA&C applications it is unnecessary to install your own NMI
handling routines . If a RAM parity or other critical error occurs ,
there is little that the programmer can do to recover . However, there
are situations where you might wish to inform an external devic e
of the fault by, for example, closing a relay or otherwise asserting a
digital I/O line . This might be facilitated by intercepting the NMI ,
but this technique will not normally be foolproof . There are likely
to be many other possible (and more probable) failure modes in a
typical data-acquisition system: obvious examples are loss of power
or a software crash due a coding error . If it is necessary to infor m
external equipment of a general system failure, it will usually be mor e
reliable to make use of a watchdog timer as described in Chapter 3 .
If you need to write your own NMI handlers you may wish to consul t
the text by van Gilluwe (1994) which provides further information
on this topic .

It should be noted at this point that you should not rely on the PC ,
its software or peripheral devices to control or monitor a potentially
hazardous system . Reliable as most modern PCs are, they are ver y
complex machines and, as a general rule, the more complex a syste m
is, the more scope there is for it to fail! Any PC-based DA&C system
should always be supplemented by whatever fail-safe mechanism s
might be necessary to ensure total safety . This point may (indeed ,
should) be obvious to the reader, but it is of such importance that i t
cannot be overemphasized .

5 .3 Software interrupts and processor exception s

Software interrupts and processor exceptions are both generated by
events which occur within the confines of the processor itself. They
arise as a result of the processor executing a specific instruction
or sequence of instructions . Software interrupts may be initiated by
special interrupt instructions placed in the program . They are gener-
ally used to provide a means of communicating with other software
processes such as DOS or the PC's BIOS . Processor exceptions, o n
the other hand, generally arise from some form of error condition ,
such as an attempt to divide a number by zero .

Software interrupts

Software interrupts are used on the PC as a way of implementing
address-independent interprocess software calls . Many PC programs
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use the software interrupt mechanism for accessing the BIOS an d
operating-system services .

The interrupt sequenc e
Because software interrupts are generated by interrupt instruction s
placed within a program sequence they always operate synchronousl y
with the processor. Consequently the precautions outlined previously
in regard to accessing global data structures and other shared
resources do not apply. In other respects, however, the operatio n
of the two types of interrupt are very similar . On encountering
a software interrupt instruction, the processor pushes the Flag s
register, clears the Interrupt Flag (IF) and the Trap Flag (TF )
and then pushes the CS and IP registers onto the stack . During
this process the processor also retrieves the address (CS :IP) of the
interrupt handler from the IVT and then transfers control to the
handler. After all necessary processing has been completed, th e
interrupt handler should return control to the calling process b y
issuing an IRET instruction. Because the interrupt was generated
within the processor, there is, of course, no need to acknowledge
the PIC with an EOI command .

The Interrupt Type Code (i .e. the index into the IVT) is usually
obtained from the interrupt (INT) instruction itself. A few instruc-
tions (such as the INTO and BOUND instructions or the Breakpoin t
opcode) will only generate an interrupt under specific conditions .
The Interrupt Type Code used in these cases is not received from th e
instruction sequence, but is instead generated by the processor . We
will not discuss these instructions here . See Hummel (1992) or you r
assembly language programming manuals for further information
on these interrupts .

When a software interrupt occurs, the processor always clears th e
Interrupt Flag immediately after pushing the original Flags registe r
onto the stack. This means that all maskable (i .e . external hardware )
interrupts will be disabled until the interrupt handler either issue s
an STI instruction or returns with an IRET (which restores the original
contents of the Flags register) . Unless there is a good reason to do
otherwise, it is sensible for a software interrupt handler to unmas k
the external hardware interrupts (i .e . issue an STI instruction) a s
soon as it gains control . Software interrupts have a higher priorit y
than either of the hardware (INTR or NMI) interrupts . Note that
software interrupts are not maskable and so are not affected by th e
state of the Interrupt Flag .

The interrupt sequence in protected mode is similar in man y
respects, although there are some important differences . See
Hummel (1992) for more on protected-mode interrupts .



The interrupt system 18 7

Issuing a software interrupt in assembly language
A software interrupt may be invoked from an assembly languag e
program by means of the 2-byte INT instruction. The first byte is
always the CDh opcode and the second byte may be any number fro m
0 to 255: this is actually the Interrupt Type Code which the processo r
uses to retrieve the associated interrupt vector . The INT instruction i s
capable of invoking any available interrupt, even one reserved for a
processor exception or hardware interrupt . The following real-mod e
code fragment illustrates how interrupt 21h (the DOS Functio n
interrupt) may be called from an assembly language program . This
particular example calls the Get DOS Version function, as denote d
by the value of 3011 placed into the Ali register, and then checks to
see whether it is version 3 .0 or later.

mov ah,30h ;Get DOS Version function numbe r
int 21h ;Call DOS using software interrupt

cmp al,3 ;Is it version 3 .0 or later ?
jge DOSVersionOK ;

	

- Yes, procee d
jmp DOSVersionError - No,

	

jump to error routine .

The details of calls to other functions (i .e. the register usage) wil l
differ, but the same interrupt call mechanism applies .

Note that the actual value of the Interrupt Type Code (in thi s
case 21h) is coded into the instruction sequence . It is not possible
to code an interrupt call using a variable Interrupt Type Code . If
you wish to do this you will need to build a table of int instructions
and then use the Interrupt Type Code as an index for jumping
into the table . A more efficient, but in some ways a less satisfactory ,
alternative is to use self-modifying code — i .e. software that writes
the Interrupt Type Code directly into the instruction sequence i n
memory prior to executing the int instruction . It is often inadvisabl e
to use this technique, however . One has to account for the operatio n
of caches and prefetch queues within the processor and circumven t
problems with writing to the code segment in protected mode. Self-
modifying code can also be difficult to debug and cannot be ru n
from ROM — e.g. in embedded applications .

For further information on the prefetch queue and protecte d
mode programming refer to Hummel (1992) . A discussion o f
interrupts under Microsoft Windows can be found in the text b y
Solomon (1998) .

Issuing a software interrupt from a high level language
Many compiled high level languages such as C and Pascal includ e
functions or procedures for issuing software interrupts . A jump
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table, or self-modifying code similar to that described above allow s
the function to receive the Interrupt Type Code as a variable param-
eter. Although not defined by the ANSI C standard, compilers
such as Borland C provide the int86 () and int 8 6x () functions fo r
invoking software interrupts (refer to your programming languag e
technical manual for further information on these functions) . Other
languages provide similar functions : Borland Pascal, for example ,
has a procedure known as Intr () . In all cases these functions or
procedures allow the calling process to pass data to the interrup t
handler via the processor's registers and to receive any results hac k
in the same way. The registers are encoded in a data structure such
as a union in C or a variant record in Pascal .

The following code fragment illustrates how the C language' s
int86 0 function may be used to call a BIOS service . In this example ,
we invoke the service which moves the cursor to position X,Y on th e
display screen .

void SetCursorPos(unsigned char X, unsigned char Y )
/* Changes the text screen cursor position on page 0 .* /
{
union REGS In, Out ;

In .h .ah = 0x02 ;
In .h .bh = 0x00 ;
In .h .dl = X -

	

1 ;
In .h .dh = Y -

	

1 ;
int86 (0x10, &In, &Out) ;

}

The h qualifier in the In .h .dl = x - 1 line, for example, provide s
access to byte-sized registers . To access a word register, such as
DX, it would be necessary to use In . x . dx = . . . etc. Hexadecimal
constants are denoted by the ox prefix in C, so in this example the
int86 (0)00 . . .) instruction actually calls interrupt 10h : the BIOS video
services. Note that the addresses of the In and out register structure s
are passed to the int86 0 ) function as denoted by the & prefixes .

A number of other interrupt functions and procedures are avail -
able for making calls direct to DOS using interrupt 21h . Borland
C provides the intdos () and intdosx 0 functions for this purpose .
Similar functions are available in other high level languages .

Processor exceptions

Processor exceptions are generated internally by the processor a s
a result of executing a specific sequence of instructions . They ar e
generally used to signal some form of error condition . As they
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are not generated independently of the processor, exceptions are
always synchronous . Like software interrupts, processor exception s
cannot be masked . They have the highest priority of all types o f
interrupt: higher even than the NMI . Most types of exception are
only generated in protected mode or V86 mode . A full discussion of
processor modes and exceptions is beyond the scope of this book .
Interested readers are referred to the text by Hummel (1992) whic h
provides a very detailed account of this topic .

5.4 Interrupt priorities

The priorities which the processor and PIC assign to the variou s
types of interrupt have already been mentioned . A high priority
interrupt request will, if it occurs simultaneously with one of a lower
priority, be recognized first. Lower priority interrupts are generally
inhibited until the interrupt handler acknowledges the source o f
the interrupt, issues an EOI command to the PIC and, if necessary ,
sets the processor's Interrupt Flag . Table 5.9 illustrates the defaul t
prioritization applied by the 8259A PIC (s) to the various externa l
hardware interrupts .

Note that although this prioritization is implemented by the PC' s
hardware, it is possible for software to modify the effective prioritie s

Table 5 .9 Normal external hardware interrupt priorities of the 8259A PIC

Priority PC and XT AT, PS/2 and EISA

1 (highest) IRQO : System timer IRQO : System time r
2 I R Q 1 : Keyboard I R Q 1 : Keyboar d
3 IRQ2: LPT2/Reserved* IRQ8: Real-time cloc k
4 IRQ3: COM2* IRQ9 (labelled IRQ2 on bus) : Reserved *
5 IRQ4: COM1* IRQ10: Spare *
6 IRQ5: Hard disk controller* IRQ11 : Spare *
7 IRQ6: Diskette controller* IRQ12: Spare (AT) ; Pointing device (PS/2) *
8 IRQ7: LPT1 * IRQ13: Coprocessor *
9 IRQ14: Hard disk controller *
10 IRQ15: Spare *
11 IRQ3: COM2 *
12 IRQ4: COM1 *
13 IRQ5: LPT2 (AT) : Reserved (PS/2) *
14 IRQ6: Diskette controller *
15 (lowest) IRQ7: LPT1 *

*Available on expansion bus .
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of the interrupts by reprogramming the PIC (s) as described in
Programming the PIC and reading its registers earlier in this chapter .

The processor itself must prioritize all interrupts that i t
receives – i .e. hardware interrupts occurring on the INTR line
together with the NMI, processor exceptions, traps and softwar e
interrupts. The processor's prioritization scheme varies with the
type of processor and with the state of its flags, and in some cases
also depends upon which combination of interrupt requests ar e
pending. In general though, certain processor faults (e .g. divide-by-
zero errors) and traps (e .g. debug trap) have the highest priority, and
external hardware interrupts have the lowest (although the 80486
and later processors assign even lower priorities to some faults an d
exceptions) . Unmaskable interrupts, including the NMI, softwar e
interrupts and processor exceptions have intermediate priorities .
The details of the various processors' prioritization schemes ar e
beyond the scope of this book . Interested readers are referred to
Hummel (1992) for further information.

The point of this discussion is that the NMI, some types of tra p
and software interrupts can take precedence over external hardwar e
interrupts. This has obvious implications for developers of real -
time systems where the presence of higher priority interrupts migh t
adversely affect interrupt latencies .

5 .5 Writing interrupt handler s

Interrupt handlers have a multitude of applications within DA&C
software . They can, for example, be used to enable the processor t o
read an ADC or the serial port whenever new data becomes available .
They are also commonly used for timekeeping and pacing . Periodic
interrupts from the system timer or from an external device allow th e
software to perform actions at regular intervals . These actions migh t
include tasks such as checking the status of a limit switch or relay (vi a
an I/O port) or controlling an actuator . Various PC subsystems ca n
be manipulated by hooking interrupts . For example, it is possible to
detect or filter out specific key combinations (such as Ctrl-Alt-Del )
by intercepting the keyboard interrupt .

Finally, and perhaps most importantly, the interrupt system allows
the programmer to trap specific error conditions (e .g. a divide
by zero) and events such as a Ctrl-C or Ctrl-Break interrupt . The
application software can install routines to handle the error an d
to provide a suitable recovery mechanism . This consideration i s
generally of most importance to assembly language programmer s
since most high level languages (HLLs) incorporate mechanisms
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for automatically trapping these interrupts . Nevertheless, all users
of HLLs should be familiar with the error trapping facilities o f
their compiler. This topic is covered adequately in many books o n
DOS programming (e .g. Duncan (1988) and Dettmann and Johnso n
(1992)) and so will not be discussed here .

The following subsections describe how interrupt handlers can b e
installed in a real-mode data-acquisition program . They also illustrat e
how the functionality of existing interrupt handlers maybe preserve d
by adding new handlers in a chain-like structure . Similar principles
will apply to interrupts in protected mode, but you should be awar e
that the structure of the interrupt handler may be governed by
the operating system in use . Indeed the operating system may eve n
hide the mechanics of the interrupt process from the application .
Windows NT, for example, allows only privileged operating-system
code or device drivers to directly handle interrupts, although there
are callback facilities that allow less privileged user-mode code to b e
invoked indirectly as a result of an interrupt .

Additional information on using the PC's interrupt system i n
real-mode is provided in the texts by Swan (1989) and Holzne r
and Norton (1991) . Solomon (1998) describes interrupt processing
under Windows NT in some detail .

Installing an interrupt handler

In order to install an interrupt handler, the corresponding interrup t
vector must be modified so that it points to the new routine . Before
doing this, however, the original value of the interrupt vector shoul d
be recorded so that it can be restored before the program terminates .
A record of the original interrupt vector is also essential in cases
where control must be passed to the old interrupt handler . There ar e
two ways in which the individual interrupt vectors may be modified :
via operating system functions or by directly accessing the IVT i n
low memory. For reasons of simplicity and portability, the former
method is normally to be preferred. In fact, a number of high
level languages provide library functions which are based on these
services. Borland's implementations of C provide the getvect 0 and
setvect 0 functions for reading and modifying interrupt vectors .

However, there are circumstances, in a real-mode program, wher e
it is preferable to read from, or write to, the IVT directly . This is
often perfectly acceptable provided that there is no possibility of a n
interrupt occurring while the IVT is being accessed . It is usually safes t
to disable all hardware interrupts during IVT accesses . The IVT is
1024 bytes long and, in real mode, is located at the very bottom of
the PC's memory (i .e. at 0000 :0000h) . Each vector occupies 4 bytes
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and so the offset of the vector with type code n is at 4n . Vector 0 i s
at offset 0000h, vector 1 is at offset 0004h, vector 2 is at offset 0008 h
and so on .

Masking and unmasking the interrupt

If you are installing a handler for an external hardware interrupt i t
may be necessary to unmask the associated IRQ by modifying the
contents of the PIC's IMR . This action will, of course, be require d
only if the interrupt was previously unused . If the new handler i s
intended to replace, or link into, an existing interrupt handler, th e
IRQ level will already be unmasked and it will not be necessary to
modify the IMR.

Each bit of the IMR corresponds to one IRQ line : bit 0 is associated
with the level 0 interrupt, bit 1 with the level 1 interrupt and s o
on. Each zero IMR bit causes the corresponding IRQ level to b e
unmasked (enabled) . Note that you can read the IMR from I/ O
port 21h (or Al h in the case of the secondary PIC) in order to
determine which interrupts are presently enabled . Only the bi t
corresponding to the desired interrupt should be modified . Because
many of the remaining IRQ levels are used by other subsystems ,
masking or unmasking these interrupts may have undesired effects .
It is wise to take the precaution of disabling interrupts (with a
CLI instruction) while accessing the PIC's IMR . The example i n
Listing 5 .2 illustrates how to modify the IMR .

The structure of the interrupt handler

The basic structure of software and hardware-interrupt handle r
routines is quite simple . In both cases, the handler must first save
the contents of all of the processor's registers so that they can be
restored before exiting. If the registers are not preserved in this way,
it is likely that the interrupt handler will corrupt data belonging to
the interrupted process . The usual technique is to save the registers
on to the stack as shown in Listing 5 .1 . Obviously, only those registers
which are actually modified by the interrupt handler need to be save d
and restored.

After saving the registers, the handler may service the interrup t
and carry out whatever processing is necessary. In the case of a
hardware interrupt handler, the code should usually acknowledg e
the device which caused the interrupt so that it deactivates its
interrupt request line .
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Listing 5 .1 Basic interrupt handler shell

PROC

	

IntHandler FAR

; General purpose interrupt handler shell .

push ax

push bx
push cx
push dx

push d i
push s i
push bp
push e s
push ds

; Save registers on stack

; Perform interrupt processing her e

pop

	

d s
pop

	

e s
pop

	

bp

pop

	

s i

pop

	

d i
pop

	

d x
pop

	

c x
pop

	

bx
pop

	

ax

; Restore regs . from stack

iret

	

; Return from interrup t

ENDP

	

IntHandle r

Returning from the interrupt and restoring the interrupt fla g

When the interrupt is invoked, the processor pushes the Flags registe r
and the CS and IP registers on to the stack before transferrin g
control to the interrupt handler . The handler can easily read the
return address by accessing the appropriate location in the stack
segment. This technique is useful for handling some processo r
exceptions and for creating profiling routines . Note that if you ar e
writing interrupt handlers in a language such as C or Pascal usin g
high level interrupt-type functions or procedures, the compiler wil l
automatically save and restore the registers for you . The order in
which they are pushed onto the stack may, however, differ from tha t
shown in Listing 5 .1 .

When a software or hardware interrupt handler first gains control ,
the processor's Interrupt Flag (IF) will be clear so no further externa l
hardware interrupts will be recognized until after the handler termi-
nates with the IRET instruction . Depending upon the nature of the
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application, you may wish to unmask the interrupts by issuing an STI
instruction at an earlier point within the handler .

When external hardware interrupts are unmasked by means o f
the STI instruction or by restoration of the Flags register during
an IRET, any pending INTR requests will remain unrecognized unti l
after the instruction which follows the STI or IRET! This facility allows
the programmer to prevent multiple interrupt handlers from being
called in a nested fashion . It therefore helps to eliminate excessive
stack usage, by keeping further interrupts disabled until after th e
final IRET instruction has been executed .

When writing a software interrupt handler, you may need to retur n
status information or other data in the Flags register . In this case
you should not use an IRET because this instruction would over-
write the new Flags status with the original contents of the Flag s
register! The handler should, instead, unmask interrupts and exi t
with an RETF 2 instruction which will leave the new contents of th e
Flags register intact. Some system interrupts, such as DOS interrup t
21h, use this technique to return information in the Flags register .
Remember, however, that this technique only applies to softwar e
interrupt handlers . You should, of course, always use IRET to return
from any interrupt handler that is entered asynchronously (i .e . a
hardware interrupt handler) .

Hardware interrupt handlers

Unmasking the processor's Interrupt Flag will allow only interrupts o f
a higher priority than the one currently executing to be recognized .
To allow lower priority interrupts to execute it is necessary to issu e
a non-specific EOI command to each of the PICs involved in th e
interrupt request :

; Send EOI commands to PICs
mov

	

al,20h

	

; Non-specific EOI command
out

	

OAOh,al

	

; Send EOI to slave PI C
out

	

20h,al

	

; Send EOI to master PIC

If the interrupt request is not routed through the slave PIC (i .e . on
XT-bus systems or on ISA systems if the interrupt is on IRQO-IRQ7) ,
the out OAOh, al line is not required and should be omitted .

The EOI command clears the ISR bit that corresponds to the
current interrupt, which allows lower priority interrupt request s
to be serviced . Even if you are content with keeping low priority
interrupts disabled, the EOI command should always be issued a t
some point within the interrupt handler . It is possible to determin e
whether other interrupt requests are pending or currently in service
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by reading the PIC's IRR and ISR as described in the sectio n
Programming the PIG and reading its registers earlier in this chapter .

Listing 5 .2 illustrates how a handler routine may be implemente d
in C for an external hardware interrupt . This example installs a
handler for interrupt ODh (IRQ5), but can easily be adapted fo r
other interrupts .

The interrupt keyword available in Borland and Microsoft imple-
mentations of C informs the compiler that the associated function
is an interrupt handler . This causes the compiler to generate specia l
entry and exit code for the function which preserves the content s
of the processor's registers and terminates the routine using an IRET

instruction. The entry and exit code is similar, although not identical ,
to that shown in Listing 5 .1 . When an interrupt function is called ,
the DS register is initialized to point to the program 's data segment
(in medium memory models), and this allows the interrupt handle r

Listing 5 .2 Installing an interrupt handler for interrupt ODh (lRQ5)

#include <dos .h>

unsigned char OrigIMR ;

	

/* Original PIC int mask register * /
void interrupt (*OriglntDVector)(void) ;

	

/* Storage for orig int ODh vector * /

/* Function Prototypes * /
void InstallIntDHandler(void) ;
void RestorelntDHandler(void) ;

void interrupt IntDHandler( )
{

/* Do any required processing here * /

outportb(0x20,Ox20) ;
}

void InstallIntDHandler( )

OrigIntDVector = getvect(OxOD) ;
disable() ;
setvect(OxOD,IntDHandler) ;
OrigIMR = inportb(0x21) ;
outportb(Ox2l,(OrigIMR ( OxDF)) ;
enable() ;
}

void RestoreIntDHandler( )
{
disable() ;
outportb(Ox2l,OrigIMR) ;
setvect(OxOD,OriglntDVector) ;

enable() ;

/* Issue non-specific EOI * /

/* Get original interrupt vector * /
/* Disable interrupts * /

/* Point int ODh vector to IntDHandler * /
/* Get original IMR * /

/* Load new IMR value to enable int ODh * /
/* Enable interrupts * /

/* Disable interrupts * /
/* Restore original IMR * /

/* Resore original int ODh vector * /
/* Enable interrupts */

}
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to access global variables . Other compiled languages, such as Pascal ,
support similar interrupt type functions or procedures . Depending
upon your compiler it may be necessary to disable stack-overflow
checking when using interrupt functions .

The InstallIntDHandler 0 function installs the new interrupt
handler by changing the interrupt ODli vector. It then modifie s
the PIC's IMR in order to enable the corresponding IRQ level .
The RestorelntDHandler 0 function effectively removes the handle r
by restoring the IMR and interrupt vector to their original states .
The interrupt handler itself, IntDHandler0, is very simple . After any
necessary processing has been completed, it just issues a non-specifi c
EOI command and terminates .

Chained interrupts
So far we have seen how an independent interrupt handler can b e
installed on its own dedicated interrupt vector. In this scenario, th e
new handler completely replaces any previous interrupt handler .
However, there are some cases where, although a new interrup t
handler is required, the functionality of an existing handler mus t
also be retained . It is then necessary to call the original interrup t
routine whenever the new handler is invoked . In fact, it is possible
to install a series of handlers on the same interrupt vector. The
newest handler gets control first, performs whatever processing ma y
be necessary and then calls the previous handler. This handler the n
calls the next one in the chain and so on until all handlers have been
executed .

The chaining technique is widely used on the PC and is extremely
useful in a variety of circumstances . You will need to chain interrup t
handlers if you wish to add extra functionality to the system's timer o r
keyboard interrupts, for example. These are both external hardwar e
interrupts, but software interrupts can also be chained in order t o
provide a means of communicating between applications program s
and memory-resident driver software . The C language provide s
two methods of interrupt chaining: the _chain_intr 0 function and
direct calls .

The _chain_intr() C functio n

This function is supported by Microsoft C and later versions of
Borland's Turbo C . It takes, as a parameter, a far pointer to th e
previous interrupt handler (i .e. the one which is to be chained
to) . The _chain_intr 0> function may be called only from within an
interrupt-type function . When _chain_intr 0 ) is invoked, it restores
all of the processor's registers from the values previously saved on
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the stack (removing them from the stack in the process) and passe s
control directly to the old interrupt handler . The old handler the n
executes as though it had been invoked directly . When the ol d
handler has completed its processing, it returns with an IRET directly
to the interrupted code — i .e. it does not return control to the new
handler . The following code fragment illustrates this technique .

void interrupt (*OldlntHandler)() ;

	

/* Storage for original int vector * /

void interrupt NewlntHandler( )
{
/* Do interrupt processing here * /
_chain_intr (OldlntHandler) ;
/* Code here will never be executed! */

/* This function does not return * /

}

Some languages such as Pascal (and some early C compilers) do no t
include a _chain_intr () or similar function . In these cases it will be
necessary to resort to assembly language programming or at least
to use inline opcodes. For the benefit of Pascal programmers, th e
following inline macro performs a similar service to C's _chain_intr ( )
function . It assumes that, on entry to the new interrupt handler ,
the registers are pushed in the order AX, BX, CX, DX, SI, DI, DS ,
ES, BP and that a stack frame is then set up by copying SP to B P
(as is the case with Borland/Turbo Pascal compilers) . Readers using
C compilers that do not support _chain_intr () may wish to adopt
a similar technique . If you try this, remember to account for th e
different order in which your compiler might save the registers o n
entry to the interrupt handler .

Procedure Chainlntr(OldlntHandler : pointer) ;
Inline($5B/

	

{ POP

	

BX

	

; Get OldlntHandler pointer

	

}

$58/

	

{ POP

	

AX

	

;

	

from top of stack

	

}

$87/$5E/$OE/

	

{ XCHG BX,[BP+OE] ; Insert OldlntHandler in stack }

$87/$46/$10/

	

{ XCHG AX,[BP+10]

	

;

	

at "return address" posn .

	

}

$89/$EC/

	

{ MOV

	

SP,BP

	

; Simulate Pascal exit code by

	

)

$5D/

	

{ POP

	

BP

	

;

	

restoring all registers

	

}
$07/

	

{ POP

	

ES

	

from the stack . When this

	

}
$1F/

	

{ POP

	

DS

	

has been completed, the

	

}

$5F/

	

{ POP DI

	

next two words on the top

	

}

$5E/

	

{ POP

	

SI

	

of the stack are the new

	

}

$5A/

	

{ POP

	

DX

	

"return addr" : OldlntHandler }

$59/

	

{ POP

	

CX

	

}
$CB) ;

	

{ RETF

	

"Return" to OldlntHandler

	

}

Chaining with a direct call

If you need to carry out interrupt processing after the old interrup t
handler has been executed, your new interrupt handler will have to



198 PC interfacing and data acquisition

call the old handler directly . The interrupt call to the old handle r
can be simulated by pushing the Flags register and then issuing a fa r
call . Note that this does not simulate an interrupt exactly (i .e . it does
not clear the processor's Interrupt or Trap flags), so appropriat e
allowances must be made . This technique can be implemented in C
as follows .

void interrupt (*OldIntHandler)() ; /* Storage for original int vector

	

* /

void interrupt NewIntHandler( )
{
/* Do interrupt processing here * /
(*OldIntHandler)() ;

	

/* SAME AS : pushf

	

* /
/*

	

call DWORD PTR OldIntHandler * /
/* Do further processing here * /

{

Note that the direct call technique does not restore the register s
or stack to their original state before passing control to the ol d
interrupt handler . This is an important consideration when dealin g
with chained software interrupts, as most software interrupt handler s
expect to receive certain values in the registers . In this case you mus t
ensure that the new handler restores the original register content s
before calling the old interrupt handler . When the old handle r
exits via its IRET instruction, control is returned directly to the ne w
interrupt handler, allowing the latter to perform further processin g
before finally returning to the interrupted code .

Chaining hardware interrupt handlers

Because data cannot be passed via registers to an interrupt handle r
that is entered asynchronously, it is generally unnecessary to pass th e
original register contents clown along a chain of hardware interrupt
handlers. In this case the direct call chaining technique may be used .
Listing 5 .3 illustrates how an additional handler can be chained ont o
interrupt 8 (the system timer interrupt) using this technique . It is very
similar to Listing 5 .2, but there are three important differences . First ,
the new interrupt handler invokes the previous interrupt handler
when it has completed its own processing . Second, because the ol d
interrupt handler will issue the required EOI command, the ne w
handler does not need to do this (you will need to issue an EOI i f
your routine does not pass control to the previous interrupt handler,
however) . Finally, the installation and deinstallation routines do no t
modify the PIC's IMR because the required interrupt level would
already have been enabled by the BIOS .



The interrupt system 199

Listing 5 .3 Chaining an interrupt handler on to interrupt 08 h

#include <dos .h >

void interrupt (*OrigInt8Vector)O ;

	

/* Storage for original int 8 vector * /

/* Function Prototypes * /
void InstallInt8Handler(void) ;
void Restorelnt8Handler(void) ;

void interrupt Int8Handler( )
{
/* Do interrupt processing here * /
(*Origlnt8Vector)() ;

}

void InstallInt8Handler( )
{
OrigInt8Vector = getvect(0x08) ;
setvect(0x08,Int8Handler) ;
}

void RestoreInt8Handler( )
{
setvect(0x08,Origlnt8Vector) ;
}

5 .6 Re-entrancy and accessing shared resources

We have already noted some of the problems inherent in sharing
resources between interrupt routines and non-interrupt code . If an
interrupt occurs while a program is accessing a shared hardwar e
device, and the interrupt handler then attempts to manipulate th e
same hardware, it is likely that this will affect the status of the devic e
and so disturb the operation of the interrupted code . A similar
consideration applies when two or more asynchronous processe s
need to call shared operating system services .

Any software routine that can be interrupted and then safely
called again from within an interrupt handler is known as a re -
entrant routine . Most DOS services are non-re-entrant and for thi s
reason they should not normally be called from within an interrup t
handler . Some BIOS services are also non-re-entrant . Fortunately
there are techniques which allow access to certain DOS services
from within an interrupt handler . These work by checking DOS to
discover whether one of its services was being executed at the tim e
that the interrupt occurred . Only if DOS had not been interrupte d
is it safe to access a DOS service from within the interrupt handler .

/* Call original int 8 handler * /

/* Get original interupt vector * /
/* Point vector to Int8Handler * /

/* Restore original interrupt vector */
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Further information may be found in the texts by Dettmann an d
Johnson (1992) and Schulman et al. (1990) .

It should be noted at this point that the re-entrancy issue is less
problematic in multitasking operating systems and real-time version s
of DOS that are used in embedded PC applications . These support
a number of re-entrant services which can be called from withi n
interrupt handlers .

It is not just operating system calls that can present re-entrancy
problems. You should be careful to avoid calling any non-re-entran t
code from within an interrupt handler. This includes some drive r
services and routines contained within your own program . Suppose
that an interrupt handler issues a call to a non-re-entrant subroutine .
If your program (or another interrupt handler or task) happene d
to be executing that subroutine at the time of the interrupt, it i s
likely that the subroutine's internal data structures will have bee n
corrupted by the time that control returns to the interrupted process .

To snake a routine re-entrant it is necessary to ensure that all dat a
structures used within the routine are dynamically allocated from a
pool of free memory whenever the routine is entered . This prevent s
corruption of any data that might have been in use when the routin e
was interrupted. The most common way to accomplish this is to
allocate space for new local variables on the stack each time tha t
the routine is called . Global variables must, of course, be avoided a s
there can only ever be a single copy of each global variable . Care
must also be exercised when accessing any other global resources ,
such as an item of hardware which is shared with other softwar e
subsystems . If it is necessary for an interrupt handler to access an y
shared device or data structure, steps must be taken to ensure tha t
the handler can never be invoked (e .g. by disabling interrupts) whil e
other sections of code (i .e. critical sections) are also accessing th e
same resource .

Re-entrancy is an issue not just for interrupt handling, but als o
in the design of multitasking systems . Windows NT, for example ,
employs a pre-emptive task scheduler that can switch between tasks
or threads more or less independently of the state of the curren t
thread. Resource conflicts are avoided by the use of re-entrant code ,
mutexes, semaphores and other sophisticated mechanisms built into
the operating system .

5.7 Interrupt response times

The presence of asynchronous interrupts disturbs the continuou s
flow of a program . Hardware interrupt handlers can often cause
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execution of the underlying process to be suspended for severa l
hundred microseconds at a time . As most DA&C applications include
portions of time-critical code, this disturbance can be problematic .
If you use time-critical code in the non-interrupt portion of your
software, you will have to either disable interrupts during execution
of the code (which is practicable over only short time intervals) or be
prepared for the code to be interrupted at unpredictable intervals .

A more satisfactory alternative is to place the important cod e
within an interrupt handler . This has two advantages . First, the
routine will only be executed when it is needed: the software wil l
not have to perform continual checks to determine when the code
should be activated . Second, if priorities are carefully assigned, th e
interrupt handler will also be less likely to be interrupted itself.

A certain amount of overhead is always involved in respondin g
to an interrupt and transferring control to and from the associate d
interrupt handler . This can often result in a lower throughput tha n
if a non-interrupt polling loop is used. As well as limiting the rat e
at which I/O and other operations can be performed, the interrupt
overhead also delays the response of the system to individual interrup t
requests .

At this point it should be noted that interrupt sharing, which
is possible on MCA systems, can introduce a small but potentially
significant additional overhead because the interrupt handler has t o
determine which of the attached devices requires service . Sharing an
interrupt line between two (or more) subsystems should be avoided
in situations where the fastest possible interrupt response is required .

The time taken to respond to an interrupt request (i .e . to perform
some useful action) is determined by two components : the interrupt
latency time and the speed at which the interrupt handler itsel f
performs its allotted task . The latter is dependent upon the natur e
of the application and is often relatively easy to optimize by adoptin g
efficient coding practices. The interrupt latency time, on the othe r
hand, is much more difficult to quantify or control . It represents
the worst-case time taken for the system to respond to an interrup t
request. It is defined as the maximum interval between the point i n
time where the interrupt request is asserted and the instant that th e
processor commences execution of the associated interrupt handler .
The interrupt latency time is composed of three elements :

1. The interrupt recognition time (TR) .
2. The time required to complete the current instruction (TI ) .

3. The interrupt processing time (Tp) .

TR is the time taken by the processor to recognize that the interrupt
request is pending. If interrupts have been masked by means of
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a CLZ instruction, or temporarily disabled at the PIC, TR can be
quite considerable . Unfortunately, it is not always easy to determin e
how long the system keeps interrupts disabled . Device drivers an d
operating system services, which the program might have cause t o
invoke, may disable interrupts for an indeterminate length of time .
The time (luring which an interrupt may be blocked by a highe r
priority routine can contribute significantly to its latency time . Al l
possible combinations of interrupts occurring at the same time (o r
nearly the same time) must be taken into account when assessing the
worst-case value of TR . Certain instructions can also temporarily mas k
interrupts. We have already mentioned the STI and IRET instructions
which do not allow interrupts to be enabled until after the nex t
instruction has been executed .

In addition, the processor disables interrupts between LOCK and
segment override prefixes and the instructions to which they relate .
Instructions which modify the contents of the segment registers o n
the 8086 and 8088 processors also cause interrupts to be disable d
until after the following instruction has been completed . I-Iowever ,
this only applies to instructions which modify the SS register on 8028 6
and later processors . The occurrence of higher priority interrupt s
can also increase TR l)y preventing lower priority handlers from
executing for perhaps several hundred microseconds, or more .

The second component of the interrupt latency time, Ti , depends
on the nature of the instruction that is being executed at the tim e
the processor detects the interrupt . Most instructions take a fe w
microseconds to execute on an 8088 processor (often much les s
than 1 ps on more modern systems) . However, some operations such
as multiply or divide may take approximately five or ten times longer
to execute .

The interrupt processing time (Tp) is usually of less significanc e
than TR, although it is an important factor in determining th e
minimum possible interrupt latency . It represents the time take n
by the processor, after it has recognized the interrupt request, t o
acknowledge the interrupt (i .e . to issue the necessary INTA cycles) ,
save the Flags, CS and IP registers, retrieve the interrupt vector an d
transfer control to the interrupt handler. For external hardware
interrupts on a 4 .77 MHz 8088-based machine, this procedure take s
approximately 12 .7 µs . A slightly shorter processing time is require d
for an NMI: typically 10 to 11 µs on an 8088 processor . Later
processors running at higher clock speeds are, of course, able to
perform the same operations in considerably less time .

In order to calculate the interrupt latency time, the worst-case
values for T R , T! and Tp must be added together. In most applica-
tions TR is by far the most important contributor to the interrupt
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latency time. Nevertheless, it can be a difficult task to determine the
maximum value of just this one quantity, particularly on systems
running DOS or Microsoft Windows, which were not designe d
specifically to meet the stringent timing requirements of real-tim e
applications .

Chaining of interrupt handlers can further complicate th e
problem, making interrupt latencies more difficult to predict . This
is especially so if you have no control of what other software the en d
user may install on the same interrupt .

The programmer must always ensure that the interrupt respons e
of the system is adequate regardless of what portion of the softwar e
is being executed . Consideration should be given to the effect o n
interrupt latency of all sections of code in the system . This include s
critical code sections (i .e. code executed with interrupts disabled) ,
calls to operating-system (and BIOS) services and execution of othe r
interrupt handlers .

In DOS and Windows-based systems, one largely unknown quantity
(and one over which the programmer has little control) is the
interrupt latency introduced as a result of operating-system code .
Often, there is little information available on interrupt masking
within the various system services . In addition, task and mode switche s
under Windows can make interrupt latencies much more difficult t o
predict .

Details such as this tend to be precisely quantified in specialis t
real-time operating systems . These include ROMable versions of
DOS and the BIOS which are widely used in embedded PC systems .
They are designed for use in multitasking real-time environments ,
offering well-defined interrupt latencies, and are essential if the P C
is to be used for high speed real-time applications . They are also
often (at least partially) re-entrant and this allows operating-system
services to be called from within interrupt handlers .

Interrupt latencies are, generally speaking, greatest for system s
running under Microsoft Windows and those executing in protected
mode under a DPMI server . In these systems, calls to operating-syste m
services may involve switching the processor from protected mode t o
real (or V86) mode and then back again . Mode switches as well as tas k
switches are frequently necessary in order to service hardware inter-
rupts . Whether a mode switch occurs depends upon the mode of th e
processor at the time of the interrupt and whether a suitable inter-
rupt handler exists for that mode . In normal operation, Windows 3 . 1
might perform, perhaps, 20 or more mode switches every second .
Mode switches can be quite time consuming (a few microsecond s
up to a few hundred microseconds on an 80286 processor) and
unless great care is taken they can severely degrade the system's
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real-time performance . When Windows is running several processe s
concurrently, interrupt requests have to he routed to the appropriat e
thread or task in order for them to be handled properly. The time
required for this routing and consequent context switches is variabl e
and depends upon many factors . This can make it very difficult t o
predict interrupt response times under Windows. Whatever oper-
ating system is used, careful design and a detailed knowledge of th e
peculiarities of the operating system are of paramount importanc e
in assessing the interrupt performance and real-time characteristics
of the system .

In many applications the real response to an event does not occu r
until after the interrupt handler has terminated . The handler may ,
for example, only transfer data to a buffer or set flags : the data o r
flags are then acted upon by another portion of the software (e .g .
a loop within the interrupted process or, in the case of a real-tim e
multitasking system, by a related task) . The response of the software
as a whole (e .g. the loop cycle time or the time required to invok e
the task) will then determine the actual performance of the system .

Often the only feasible course of action is to determine the overal l
response of the system by thorough and exhaustive testing . Bear
in mind that the actual latency time measured empirically for any
one interrupt may not be representative of the worst-case interrup t
latency. This figure is often difficult to measure because hardware
interrupt processes are, by their nature, asynchronous. This means
that interrupt requests can occur while the system is in almost any
state and it may, therefore, be impracticable to reproduce all possibl e
combinations of interrupts and system conditions during testing .



6 Data transfe r

We will now turn our attention to a topic of central importance i n
data acquisition and control : transferring data between the PC and
a peripheral DA&C device . The data transfer techniques that can be
adopted in a DA&C program will depend, to a great extent, upon the
nature of the DA&C hardware to be used. This chapter introduces th e
types of device that are available for interfacing to DA&C systems an d
discusses a number of issues and software techniques related to dat a
transfer . The following two chapters continue this theme, coverin g
parallel and serial buses and associated devices in more detail .

6.1 Data-acquisition interface device s

By a DA&C interface device, I mean a device that facilitates connec-
tion of sensors and actuators to the PC . These take many differen t
forms. It is convenient to classify them according to their processin g
capability and the way in which they transfer data to and from th e
PC. These considerations govern how the software communicates
with the DA&C device and determine, to a great extent, the interna l
structure and capabilities of the software .

In the following discussion I will use the terms `intelligent' and
`dumb' to refer, respectively, to programmable devices that are abl e
to autonomously process and manipulate acquired data, and t o
devices that possess no such processing capability . These informa l
terms are used only for convenience . This usage is somewhat impre-
cise and does not, of course, indicate the presence, or otherwise, o f
any form of artificial intelligence .

Connection to the PC

The simplest DA&C interface devices consist of circuit boards that ar e
plugged directly into the PC's system-bus (e .g. ISA or PCI) expansion
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sockets . These devices each provide one or more hardware register s
that are mapped into the PC's memory or I/O space . Because such
devices connect directly to the system bus, data can be transferre d
between the device and software in one operation . For example, a
simple assembly language OUT instruction might be all that is require d
to change the state of a group of eight digital output lines or relays .

Communication with intelligent devices involves an intermediat e
step. They buffer and translate command codes sent via the registers
and then act on the command, transmitting the appropriate digita l
bit patterns to the ADC, relays or to other interface components .

Although plug-in interface cards are the cheapest and, perhaps ,
the most widely used interfacing solution, they are not practicabl e
if, for example, sensors are to be located at a remote site . Where
signal losses preclude the use of long sensor leads, the PC and
digitizing device may have to be positioned some distance apart .. In
these situations an external serial link or parallel bus (e .g . RS-232 ,
RS-485 or IEEE-488) will usually be required to carry command s
and digitized signals between the PC and a remote DA&C unit .
Interfacing techniques for serial and parallel buses are discussed i n
Chapters 7 and 8 .

Intelligent DA&C devices

Devices that possess a degree of on-board intelligence may assume a
number of data collection, storage and processing tasks which woul d
otherwise have to be undertaken by the PC. These devices are usually
designed to facilitate deterministic operation and provide guaran-
teed response times and data-acquisition rates . Such capabilities ca n
obviate the need for complex deterministic and/or multitasking P C
operating systems and can often help to simplify the DA&C software .
A dedicated on-board processor may, for example, be programme d
to execute a deterministic control algorithm while leaving the P C
free to perform other tasks (e .g. to manage the user interface or to
provide disk storage) .

It is often somewhat simpler to communicate with intelligen t
DA&C devices than to directly manipulate the control lines and
registers of dumb I/O cards . The PC programmer does not have to b e
aware of how the various DA&C subsystems (e .g. ADC, multiplexer ,
sample and hold) function ; all that needs to he understood are th e
end results of issuing particular high level commands to the device' s
microcontroller. These commands may be used to configure the
device or to initiate simple tasks such as reading an analogue inpu t
channel . They may also perform more complex operations such
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as programmed scanning of multiple input channels, bufferin g
acquired data or even scaling and linearizing each reading .

High level command sets offered by most devices are bot h
simple and flexible, but they do introduce an additional layer
of complexity between the PC and the low level data-acquisitio n
hardware . Depending upon the nature of the device, the P C
software may have to accommodate a more complex communi-
cation protocol – particularly in the case of serial bus devices (se e
Chapter 8) . The extra processing required to formulate, issue an d
interpret commands may in some applications limit the spee d
and efficiency of the system as a whole .

An important characteristic of some intelligent DA&C units is th e
ability to transmit data to the host PC in the form of ASCII encode d
character strings . This permits both scaled and unscaled data to
be transferred. Many devices take advantage of such a capabilit y
by providing facilities for on-board scaling or linearization of data .
The capacity to scale acquired data allows the device to support a
number of more advanced features, such as the ability to operate a s
an autonomous controller, to respond to trigger events or to record
only data that falls outside predefined limits . The penalty paid for
these facilities is, in many cases, significantly reduced throughput .

Plug-in coprocessor and DSP card s
One of the simplest solutions for DA&C applications that requir e
intelligent I/O is to employ a plug-in coprocessor card . These are
simply single-board computers that are designed specifically for
data acquisition, analysis and control . The DA&C coprocessor can
be programmed to perform all of the time-critical operations . As
the host PC is normally used only in a supervisory role and/or t o
supply mass storage, user I/O and peripheral interfacing facilities ,
its performance is normally not critical . This type of system i s
particularly suited to computationally intensive tasks where acquire d
data must be mathematically processed in real time . Typical examples
include audio signal and vibration analysis and a variety of real-tim e
process-control applications . Although most coprocessor cards d o
not incorporate analogue signal conditioning (to minimize wide-
band noise pickup from the digital circuitry) , many possess a numbe r
of ADC channels, DACs, digital I/O ports and timers .

80x86 coprocessor cards

A small number of coprocessor cards are based upon the 80x8 6
family of microprocessors and have an architecture similar to tha t
of the PC. They are suited to a wide range of real-time DA&C appli-
cations and usually permit high speed operation, with maximum
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sampling rates ranging from about 50 to 300 000 samples/s . With
suitable buffering, some cards can stream data directly to the host
PC's hard disk at rates up to about 100 KB/s. These devices ar e
often equipped with a moderate amount of system RAM . Some also
include dedicated FIFO memory buffers to facilitate high speed dat a
capture. A few models will operate in PC and XT class machines, bu t
most require an AT compatible (ISA) bus slot .

The I/O facilities offered usually include high speed analogu e
inputs, analogue outputs and digital I/O lines . Some manufacturers
supply modular boards which can be tailored to specific applications
by adding additional ADCs, DACs or digital I/O ports . Direct memory
access (as described later in this chapter) is often supported, togethe r
with flexible interrupt and timing systems .

Some cards have their own ROM-based real-time operating system s
(RTOSs) . These provide dedicated DA&C functions and facilitat e
communication with the host PC . Special drivers and develop-
ment utilities are usually supplied with these systems, allowin g
data-acquisition, data-processing and control algorithms to be down -
loaded to the target processor. Depending upon the type of processo r
and operating system used, these programs may be in executabl e
form or may be written in a specialized script language that i s
interpreted by the RTOS .

Digital signal processors

80x86-based cards are suitable for a variety of DA&C tasks, but
for high speed signal-processing applications a specialized Digita l
Signal Processor (DSP) is generally a more satisfactory alternative .
A DSP is essentially a microprocessor that is optimized for runnin g
numerically intensive signal-processing algorithms . Key features of
such systems are high accuracy and, in most cases, very high rates o f
throughput. A number of manufacturers supply ISA cards equippe d
with one or more DSP chips . At least one presently provides a DS P
card for the PCI bus . A number of DSP-equipped PCMCIA cards ar e
also now becoming available for notebook computers .

As well as allowing the PC's processor to execute concurrently with
the DSP, a plug-in DSP card can itself form the basis of an inherently
parallel architecture . Some implementations permit multiple DSP s
to be connected together in a variety of powerful parallel-processing
topologies . Each DSP can be programmed to execute differen t
signal-processing functions or to perform the same processing o n
different sets of data . This inherent parallelism means that DSP card s
are ideal platforms for real-time applications or when large arrays o f
data have to be processed .
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DSPs can be programmed to execute a variety of high speed data -
processing and control algorithms. Some of the most common are
signal comparison, fast Fourier transforms, convolution, frequenc y
measurement, scaling, linearization, statistical functions, waveform
synthesis, PID control and digital filtering. Many of these can also
be performed by the PC itself (albeit somewhat less efficiently )
and these are discussed at various points throughout this book .
Typical DSP applications include vibration analysis, machine condi -
tion monitoring, spectral analysis, audio frequency applications ,
engine analysis, digital image processing and high speed real-time
control . DSPs are also often used in embedded systems . In these
cases, the PC is used only as a convenient platform for developmen t
of DSP code and takes no part in the actual data acquisition .

The I/O facilities provided by DSP coprocessor cards tend t o
vary between different models, but most are equipped with betwee n
one and 16 high speed analogue input channels and a number o f
analogue outputs, digital I/O ports and timers . FIFO memory buffers
are often used to decouple the digitization and DSP circuitry . They
usually possess flexible interrupt and DMA (Direct Memory Access )
systems, which support high speed transfer of data to the host PC .
Data transfer is facilitated on some cards via a block of dual-porte d
RAM mapped into the PC's memory space .

DSP cards are normally controlled via on-board firmware . Thi s
includes DSP libraries that contain commonly used algorithms .
Many manufacturers also provide complete software developmen t
environments (including an assembler, compiler and debuggin g
software) . Source files are edited and compiled on the PC and th e
executable software is then downloaded to the DSP card. Library
functions may also be included to allow access to the host PC' s
console and I/O facilities .

Remote DA&C units

Most remote DA&C units are capable of some degree of independen t
processing. These devices generally incorporate dedicated microcon -
trollers and possess their own ROM-based operating systems. Many
allow moderately high speed operation, although the degree of
determinism that they offer does tend to vary between differen t
models . Because of their autonomous processing and data-storag e
capabilities they are often used for stand-alone data logging an d
control . Facilities for analogue and digital output may be supple-
mented by software comparators or control algorithms . These can
help to relieve the less deterministic PC of the burden of real-tim e
control : a considerable benefit to the DA&C programmer. There
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are three main classes of remote DA&C unit (as well as many hybri d
devices) :

1. Single-channel I/O units are usually connected to the PC via a
multi-drop network such as RS-485 . These devices are commonly
used where many sensors have to be widely distributed over a larg e
structure such as a bridge or dam . In these cases there are usually
numerous devices attached to a single network. Each unit or I/ O
channel is usually addressed by means of a unique identificatio n
code. This type of device frequently has only a limited capacity
for on-board buffering or data processing .

2. Multi-channel data loggers are normally connected to the PC o n
a one-to-one basis via a serial or parallel interface . Most device s
possesses at least eight or 16 analogue input channels . This may
be expandable up to several hundred channels on some systems .
A numeric code is assigned to each I/O channel and the softwar e
must use this code in order to configure that channel or t o
read data from it . Many of these devices have quite sophisticated
processing abilities . Some are able to buffer large quantities o f
data, to store data on disk drives or to interface to modems ,
printers or plotters . For this reason they are often used for stand -
alone data logging and may only need to be connected to the P C
for programming or to download acquired data .

3. Stand-alone laboratory instruments and test equipment can also ,
in many cases, be interfaced to the PC for data acquisition . Most of
these instruments have a degree of intelligence and are capabl e
of periods of independent operation . Many are designed for
specialized test and measurement work and the facilities whic h
they provide are often tailored to specific applications such a s
spectrometry, pH sensing, chromatography or audio frequenc y
analysis . The RS-232 or IEEE-488 buses (see Chapters 7 and 8 )
are normally used for interfacing to this type of device .

Most remote DA&C devices possess the signal-conditioning circuitr y
necessary to interface to sensors and/or actuators . They often have
a modular construction, which allows the end user to select th e
appropriate type of analogue signal-conditioning unit and/or digit .al-
I/O interface . In this way the system is able to accommodate variou s
types of sensor (e .g. thermocouples, strain gauges, or LVDTs) a s
well as relays and opto-isolated digital I/O devices . The PC software
may have to support all possible configurations and may nee d
to interrogate the DA&C unit to determine which modules ar e
installed .
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Dumb interface devices

Many simple analogue or digital I/O cards that connect directly t o
the ISA bus, PCI bus or PCMCIA slot have little or no on-board
processing capability. Instead, virtually all aspects of the inter -
face device's operation are controlled by the PC via I/O-mappe d
or memory-mapped registers . The PC initiates data transfer an d
manages the flow of data across the interface. These duties can b e
quite processor intensive, particularly where many I/O channels an d
high sampling rates are involved .

Although directly manipulating the registers and control lines o f
plug-in cards can be somewhat more involved than communicatin g
with an intelligent DA&C unit, such an arrangement often provides a
greater degree of control over the data-acquisition process . Because
the PC is usually responsible for managing each component of th e
device, there is generally much more scope for varying the timin g
and order of channel selection, sample-and-hold triggering, gai n
selection and ADC reading operations . For this reason the data-
acquisition process can, in some circumstances, be carried out mor e
efficiently than would be possible using an intelligent DA&C unit .

The fact that the PC's software is responsible for all aspects o f
the data collection and control operations can also be a seriou s
disadvantage . If you are working to a tight timing specification, i t
may be necessary to adopt a specialized real-time operating syste m
and to dispense with any non-deterministic, but otherwise desirable ,
features of the software . You should also bear in mind that when
directly manipulating registers and control lines there is a greate r
potential for software errors to find their way into your DA& C
program. These can be quite subtle and time dependent. They may
not become apparent during static testing, only showing themselves
at high rates of throughput, on certain high speed models of PC o r
when a specific sequence of events occurs . Time-dependent software
errors can be very difficult to reproduce and trace during testing .

6.2 Data transfer techniques and protocols

There is usually no inherent synchronization between DA&C hard -
ware and the software running on the PC. Components such a s
ADCs and multiplexers are said to operate asynchronously with th e
PC. In such a system, it is not possible to predict the state of th e
DA&C hardware at any particular time and the PC must, therefore ,
have some way of determining whether a peripheral device is bus y
or whether it is safe to access it. In order to ensure that data is not
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presented to the PC at too fast a rate (and, conversely, to prevent th e
PC from demanding data at too fast a rate) it is essential to establis h
a set of rules, or protocol, for data transfer .

Handshaking

In the case of a simple plug-in ADC card, it is usually necessar y
to initiate analogue-to-digital conversion and then wait until th e
conversion is complete in order that valid data can be read from
the ADC. We have seen in Chapter 3 that this requirement ca n
be implemented by a handshaking protocol that uses the ADC' s
Start Conversion (SC) and End of Conversion (EOC) control lines .
Intelligent DA&C devices, which often communicate with the PC
via a serial link (e .g. RS-232, RS-485 etc.), must also operate i n
accordance with a strict communication protocol .

Protocols are usually effected by means of handshaking or contro l
signals that indicate the state of readiness (or otherwise) of som e
element of a device . These signals are usually transmitted via digita l
I/O lines (e.g. an ADC's SC and EOC lines) . Other types of I/ O
interface employ slightly more complex handshaking techniques, bu t
the basic principle is the same : to facilitate an orderly, synchronized
transfer of data .

Many serial communications systems provide for an alternativ e
protocol known as software handshaking or character flow control .
Installations that do not use the serial port's handshaking lines
can transmit special control characters to regulate the flow of data
along the serial bus . This technique is described in more detail i n
Chapter 8 .

Data I/O strategies

The protocols involved in communicating with any DA&C device
will, of course, depend upon the nature of the communications
interface employed (e .g. serial or parallel bus or direct connectio n
to the PC's expansion bus) and upon the degree of synchronizatio n
inherent between the PC and the device . Because communication s
mechanisms and protocols vary considerably, it is not appropriat e
to discuss details of specific devices here (although certain standar d
protocols and handshaking techniques for use with parallel and
serial bus-based systems are discussed in Chapters 7 and 8) . Of more
general interest are the strategies that you can adopt within your
data-acquisition programs for requesting and receiving data from
DA&C devices. What follows applies, in general, to both intelligent
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and dumb DA&C devices, although the details of the mechanism s
involved will, of course, be somewhat different in each case .

Input

The simplest technique for inputting data from a device is t o
configure it so that it operates in a free-running mode, providing
data at its fastest possible rate . The software can then periodically
poll the device to detect whether it has new data . An example of
this is the free-running ADC technique in which the ADC 's End of
Conversion (EOC) output is connected (if necessary, via suitabl e
logic) to it.s own Start Conversion (SC) input . This results in contin-
uous analogue-to-digital conversion. The PC software monitors th e
EOC signal to detect when the ADC has completed each conversio n
and then reads the new digitized value from the AD C 's output buffer .

Alternatively the DA&C device (i .e . ADC or intelligent data logger )
may be configured to take readings at regular intervals under th e
control of a hardware timer. This technique is useful where readings
are to be taken at precise intervals. From the software's poin t
of view, it is similar, in principle, to the free-running technique .
Both approaches free the software from having to decide when t o
initiate analogue-to-digital conversions . They do, however, require
the DA&C program to be ready to respond at any time that new data
is made available .

Other techniques give the software more control over the timin g
of the data-input process . The PC software may be designed t o
request data either by issuing a suitable high level command or by
outputting an SC signal to an ADC . The timing of a data-reques t
command may be controlled in several ways . The software migh t
request a new reading as soon as previous data has been processed ;
when it detects user input (e .g. a key press or mouse click) ; on
receipt of digital handshaking signals from other components of th e
DA&C system ; or by reference to an elapsed time timer . In the latte r
three cases it is possible (and often preferable) to issue data request
commands from within a hardware interrupt handler .

Data may not always be immediately available after the PC ha s
requested a new reading. The software will generally have to wai t
(or continue with some other task) while the DA&C interface devic e
interprets the command, selects the appropriate input channel, o r
digitizes and processes (e .g. scales or linearizes) the data. The DA&C
program must incorporate some mechanism for determining whe n
valid data is available . The software may poll a designated I/O port i n
order to determine the state of a `data available' flag . Alternatively, a
handshaking signal could be fed to an IRQ line in order to generat e
an interrupt whenever the DA&C device wishes to transmit new data .
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The interrupt handler may then read the acquired data or it may
just set a flag to cause the main data-acquisition routine to read the
data when interrupt processing has been completed .

Summary

The following strategies are available for determining when to
request data or for initiating ADC conversions :

1. Polling. Software or hardware flags may be periodically checke d
from within a software loop in order to determine when the
system is ready to supply and/or process more data . The state of
these flags may be controlled via user input, digital control input s
or software timers .

2. Hardware interrupts . Interrupt handlers for system timers, user -
input devices, serial/parallel ports or other peripheral devices are
often convenient locations for code which initiates or manages
I/O operations. The software is free to perform other tasks whe n
not processing interrupts .

3. Direct hardware control . Hardware devices such as simpl e
counter/timer circuits can be configured to periodically initiat e
actions such as analogue-to-digital conversion or to control th e
timing of handshaking signals .

The software may subsequently detect and read new data, either
by polling the DA&C device or by installing interrupt handlers
that respond whenever new data becomes available . DA&C devices
that continuously transmit a stream of data without any form o f
handshaking (e .g. some RS-232 systems) will generally require th e
software to employ an interrupt-driven input mechanism in order t o
ensure that no data is lost.

Output

Outputting analogue data often involves only a single write operatio n
to an I/O port . For this reason it is usually more straightforwar d
than inputting analogue data which normally requires a two-stage
`request and read' operation . However, the system must regulate th e
flow of output data, which is normally accomplished by means o f
handshaking signals (in addition to any high level communication s
protocols that may be required) . These may be used to strobe data
out to a peripheral device, thus allowing outputs to be update d
only when it is safe to do so . Handshaking may be implemente d
using digital I/O control lines or via high level commands or statu s
polling facilities (depending upon the nature of the DA&C device) .
Both polling and interrupt-based techniques can be used for sensin g
handshaking signals and for managing data output .
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Comparison of interrupt and polled I/O

We have seen that there are two techniques at the programmer' s
disposal that can be used for sensing the state of handshaking signals :
polling or interrupts . Each method has its own particular advantage s
and disadvantages . Which is most appropriate will depend upon the
nature and structure of your application . This section provides som e
general guidance .

Polling is the most straightforward technique . It simply involve s
reading the state of a digital I/0 line via either an I/0-mappe d
or memory-mapped register . This is done by means of an IN or
mov instruction or high level language counterpart . Polling can be
performed in a data-acquisition software loop together with an y
other operations that may be necessary . Alternatively, a dedicate d
polling loop can be used . In this case, the handshaking line or flag i s
repeatedly checked until it changes state, at which point the loop i s
terminated and control is passed to an appropriate routine. Efficien t
polling loops written in assembly language – such as that illustrated
in the following code fragment – can provide a very rapid respons e
to changes in the state of handshaking lines or other digital inputs .

mov dx,300h

	

;I/0 Port address to read
mov bl,80h

	

;Mask to select bit 7 of input byt e
LoopStart :

	

in

	

al,dx

	

;Read por t
test al,bl

	

;Select status bit (i .e . bit 7 )
jz

	

LoopStart

	

;Loop if status bit = 0

;Status bit = 1 so perform
;any necessary processing here

Interrupts can also provide a rapid response, but because of the over -
head involved in recognizing an interrupt, invoking the interrup t
handler, acknowledging the 8259 PIC and then transferring contro l
back to the interrupted process (see Chapter 5) the maximu m
throughput achievable is often lower than if a well-written pollin g
loop were to be used .

As well as limiting the rate at which I/O operations can be
performed, the interrupt overhead also delays the response of the
system to individual interrupt requests . The overheads inherent in
managing interrupts can mean that timing precision is often muc h
worse (by a factor of at least 5 to 10) than if using a polling loop .
For reasons outlined in Chapter 5, interrupt response times ar e
variable and often relatively long. Depending upon the operating
system used, they may also be indeterminate . This is an important
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consideration when writing software that must respond quickly to
time-critical events .

In spite of their less efficient response times, interrupts provide a
number of very important advantages over polling. First, they allow
the software to continue with other tasks instead of simply waitin g
for input. The more efficient use of available processor cycles can
often compensate for the inefficiencies inherent in respondin g
to individual interrupts, improving the overall throughput. An
interrupt-based event-driven I/O system also permits a more modula r
software structure to be employed, and this can go some way t o
improving the reliability of the DA&C program .

Memory- and I/O-mapped transfers

Whether data acquisition is performed via a serial link, externa l
parallel bus or via a DA&C card connected directly to the PC' s
expansion bus, all I/O operations are ultimately performed vi a
registers mapped to either the PC's memory or I/O space .

In the memory-mapping scheme, control registers and I/O latche s
are assigned to one or more (usually contiguous) memory locations .
These are often within the PC's 1 MB real-mode addressable region :
particularly in the upper memory region between 640 KB and 1 MB .
Hardware designed for use with 32-bit processors and operatin g
systems may use other physical memory addresses up to 4 GB. Data is
transferred to and from memory-mapped registers by simply reading
or writing the appropriate memory address . Memory-mapped I/O i s
not widely used on PC adaptor cards .

The majority of data-acquisition interface products possess a grou p
of (typically 4, 8 or 16) control and data registers, and these ar e
mapped to a configurable address range within the PC's I/O space .
The registers may be accessed using assembly language IN or OUT

instructions or their high level language counterparts . Although a
detailed discussion of programming languages is outside the scop e
of this book, I/O instructions and functions are of such centra l
importance to the subject of data acquisition that we shall briefl y
consider this topic below. Only three implementations are covered ,
but most PC programming languages provide similar facilities . There
may, however, be slight differences between dialects of the sam e
language . You should consult your programming language manua l
for more precise information .

Accessing I/O-mapped registers in assembly languag e
Assembly language provides a wealth of instructions for performin g
8-, 16- and 32-bit I/O operations. All members of the 80x86
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family of processors support the basic IN and OUT instructions . Newer
members (i .e. 80386 and later) also support a number of string
I/O instructions (i .e . INSB, INSW, INSD, OUTSB, OUTSW and OUTSD) which
are very useful for transferring large quantities of data between a
memory buffer and a peripheral device . The various I/O instructions
are listed in Table 6 .1 .

IN and OUT instructions

The IN and OUT instructions have already been introduced i n
Chapter 1 . These instructions always transfer data to or from the
accumulator; no other registers can be used. 1-, 2- or (on 80386 and
later systems) 4-byte transfers are allowed, depending upon whethe r
the AL, AX or EAX register is specified . If the I/O port number is
less than 100h, it can be coded as an immediate byte constant . If i t
is greater than or equal to 100h, the port number must be specified
in the DX register . The various forms of the IN and OUT instructions
are summarized in Table 6 .2 .

Table 6 .1 Assembly language I/O instructions

Instruction Processor Description

IN *8086+ Reads 8-, 16- or 32-bit values from the I/O
ports to the accumulator .

OUT *8086+ Writes 8-, 16- or 32-bit values to the I/O port s
from the accumulator .

INSB *80186+ Byte-by-byte string input to ES :[DI/EDI] .
OUTSB *80186+ Byte-by-byte string output from DS :[SI/ESI] .
INSW *80186+ Word-by-word string input to ES :[DI/EDI] .
OUTSW *80186+ Word-by-word string output from DS:[SI/ESI] .
INSD 80386+ Dword-by-dword string input to ES :[DI/EDI] .
OUTSD 80386+ Dword-by-dword string output fro m

DS:[SI/ESI] .

*80386+ required for 32-bit transfers/addressing .

Table 6 .2 The assembly language IN and OUT instructions

Direction Port Byte I/O Word I/O Double word I/O

In <100h IN AL, port IN AX, port IN EAX, port
In Any IN AL, DX IN AX, DX IN EAX, DX

Out <100h OUT port, AL OUT port, AX OUT port, EAX

Out Any OUT DX, AL OUT DX, AX OUT DX, EAX
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String I/O instructions

The string I/O instructions work in much the same way as the
equivalent string move (Movs, MOVSB, MOVSW and MovsD) instructions .
The former allow 8-bit, 16-bit or (on 80386 and later processors )
32-bit data to be transferred directly between memory and an I/ O
location specified in the DX register . This is a very efficient way o f
transferring large amounts of data between a peripheral device and
a memory buffer . It is a useful alternative to Direct Memory Acces s
(DMA) for block data transfers, although DMA can provide bette r
throughput under some circumstances .

The INSB, INSW and INSD instructions all read data from the I/O por t
address specified in DX directly into the memory location addresse d
by ES: [DI] (or ES : [EDI] in 32-bit address mode) . The DI (or EDI)
register is automatically incremented or decremented, dependin g
upon the state of the direction flag, by an amount equal to th e
number of bytes (i .e . 1, 2 or 4) transferred .

The OUTSB, OUTSW and OUTSD instructions complement the string
input instructions. Data is written from the 1-, 2- or 4-byte memor y
location specified by DS : [SI] (or DS: [ESI] in 32-bit address mode) .
The SI (or ESI) register is automatically incremented or decre-
mented, depending upon the state of the direction flag, by an
amount equal to the number of bytes (i .e . 1, 2 or 4) transferred .

The string I/O instructions can be used in conjunction with th e
REP prefix to transfer a string of bytes, words or double words . The
number of elements in the string is specified in the CX register (o r
optionally the ECX register on 80386 and later processors) as follows :

mov es,SEG InputBuf

	

;ES :DI --> Start of InputBuf
mov di 3 OFFSET InputBuf ;
mov dx,PortNum

	

;DX contains I/O port numbe r
mov cx,40h

	

;CX = Number of times to repea t
cld

	

;Clear Direction Flag so DI increment s
rep insw

	

;Read strin g

The generic form, INS or OUTS, can be used instead of specifying th e
data size explicitly in the instruction mnemonic . If this form is used ,
you will have to specify the size of data to be transferred by including
a BYTE PTR, WORD PTR Or DWORD PTR operator in the source or destination
memory reference . For example, a 16-bit string output instructio n
(in 16-bit address mode) could be specified either as :

outs

	

WORD PTR ds : [ s i ] , dx

or simply as :

outsw
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Both instructions have the same effect . Similar constructs may be
used in the case of the other string I/O instructions . If you use the
generic INS or OUTS form, you should bear in mind one importan t
peculiarity . As with the string manipulation (Movs etc .) instructions ,
the effective address of the destination/source operand specifie d
in the instruction is actually ignored . This operand is only used t o
specify the size of the data transfer; the actual address contained i n
the instruction operand does not matter . Inputs are always directed
to the memory address specified by the current ES : [DI/EDI] regis-
ters, while output values are always sourced from the memory
address specified by DS : [SI/ESI] . You could, for example, specify
the following instruction in place of either of the preceding forms :

outs

	

WORD PTR [ bx ] , dx

where the BX register contains some undefined value . The operand
address governed by the contents of the BX register actually has no
effect. All three of the above forms would have the same end result .

According to Hummel (1992), some versions of the 80286, 8038 6
and 80486 processors do not execute the string input instructions
correctly under certain circumstances, particularly in protecte d
mode . In addition to these problems, the I/O protection mech-
anisms used in protected and virtual-8086 modes add a numbe r
of additional complications which tend to negate the advantage s
offered by the string I/O instructions . It is often simplest to avoid
using the string I/O instructions unless your software will run
only in real mode . If you do wish to use these instructions in a
protected-anode environment such as Windows, OS/2 or under a
DOS extender, you should consult a text such as that reference d
above for additional information .

Back-to-back I/O

Perhaps the most important potential sources of error are relate d
to the timing of I/O operations . Many I/O registers require a shor t
amount of recovery time after an I/O operation is performed . If, for
example, two I/O operations are performed on the sane I/O port i n
quick succession, data transferred during the second I/0 port acces s
may become corrupted . This can be particularly problematic if th e
string I/O instructions are used with the REP prefix, as successive
repetitions of the I/O instruction occur immediately after the las t
operation has been performed. Some ISA systems employ hardware
solutions such as inserting wait states in all I/O operations . EISA
systems are designed to avoid these difficulties .
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The software solution is, however, very simple and easy to imple-
ment . To make your software as immune as possible to I/O timin g
problems it is prudent to include a short delay immediately afte r
each IN or OUT instruction. A safe delay period is typically of the order
of 1 is (although this figure can be variable) . On slow 80486 and
earlier computer systems, a few short jumps will normally suffice . For
example :

out

	

dx,ax
jmp

	

SHORT $ + 2
jmp

	

SHORT $ + 2
jmp

	

SHORT $ + 2
in

	

ax,dx

Because the timing of JMP instructions varies between differen t
systems, this method will result in a variable delay time . On faster
machines, many JMP instructions may be needed to provide th e
required delay. A more robust alternative is to create a calibrated
software delay loop .

Delays are not included in the examples in this book unless back -
to-back I/O is performed . These examples will work satisfactorily on
many systems, but you may need to add an I/O delay when accessing
slow peripherals or when using a fast PC .

Timing of multiple-byte transfers

Under certain circumstances multiple-byte data transfers using I/ O
instructions require more than one bus cycle . The timing of dat a
transfers is governed by the processor and type of expansion bu s
in use. You should be aware that more than one bus cycle may b e
required to transfer 2- or 4-byte data to unaligned port addresses . An
unaligned address is either a group of two ports that is not aligned
on a word boundary (i .e. an even address) or a group of four ports
that is not aligned on an address divisible by four . The fact that more
than one bus cycle is required for unaligned I/O means that dat a
may be transferred in two or three discrete steps . The precise order
with which the component ports are accessed is undefined and ma y
vary between different systems . For this reason, it is inadvisable to
use such transfers within your program if you need to retain contro l
over the order in which the individual ports are accessed . In such
cases you should code the individual port accesses explicitly, or a t
least use a data size small enough to ensure that only aligned I/ O
operations are performed .
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Accessing I/O-mapped registers using a high level languag e

The C and C++ programming languages provide several functions
and macros for reading and writing both byte- and word-size d
I/O ports . There are slight differences between the Microsoft an d
Borland implementations as shown in Table 6 .3. Note, however, tha t
Borland C also supports the Microsoft. I/O functions . In both cases ,
I/O is performed by calling the function whose declaration is show n
in the table . Examples illustrating how Borland C can be used fo r
accessing I/O-mapped peripheral devices are given in Chapters 7
and 8. BASIC programs also use a similar method, providing an INP

function and OUTP statement. Some dialects of BASIC will support
only 8-bit I/O operations .

Borland Pascal (including versions of Turbo Pascal) adopts a
different, and arguably more intuitive, approach . I/O functions and
macros are not used . Instead the I/O port addresses are declare d
as one-dimensional arrays called port and Portw . The ports are read
or written in the same way as any normal array element would be
accessed, as shown in Table 6 .3. The elements of the Port array are
of type byte and those of the Portw array are of type word .

The delays inherent in calling high level I/O functions are usuall y
sufficient to avoid the recovery problems that occur when performing
back-to-back I/O . However, some hardware may take an unusuall y
long time to process data and in these cases you may have to includ e

Table 6.3 I/O port access from high level languages

Language

	

Direction Bytes

	

Declaration/usage

Microsoft C

	

In

	

1

	

int inp(unsigned port )

OUt

	

1

	

int outp(unsigned port, int data )

In

	

2

	

unsigned inpw(unsigned port )

OUt

	

2

	

unsigned outpw(unsigned port, unsigned data )

Borland C

	

I n

	

1

	

unsigned char inportb(int port )

OUt

	

1

	

void outportb(int port, unsigned char data )

I n

	

2

	

int inport(int port )

OUt

	

2

	

void outport (int port, int data )

Borland

	

In

	

1

	

Data8 := Port [PortNum] ;

Pascal

	

OUt

	

1

	

Port[PortNum] := Data8 ;

In

	

2

	

Data16 := PortW [PortNum] ;

OUt

	

2

	

PortW[PortNum] := Datal6 ;
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appropriate delay loops or other synchronization mechanisms withi n
your code .

Direct memory access (DMA)

The processor's IN and OUT instructions are often capable of providin g
more than adequate rates of throughput . However, some high spee d
systems demand faster I/O techniques . Input instructions requir e
data to be transferred in two stages : from the peripheral device
to the accumulator (AL, AX or EAX registers) and then from the
accumulator to memory . The alternative technique of Direct Memor y
Access (or DMA) allows data to he channelled directly from an I/ O
device to memory, or vice versa, without any processor intervention .
For this reason, DMA is one of the fastest means of passing blocks o f
data between a peripheral device and memory . Data transfer rate s
of up to 800 to 900 KB/s are possible on the ISA bus using thi s
technique .

DMA is ideal where large blocks (many kilobytes) of word- or byte -
sized data are to be transferred . It is commonly used to implemen t
disk I/O on the PC, but is equally suited to high volume data-
acquisition applications .

During a DMA operation, the processor relinquishes control o f
the system bus to a dedicated DMA controller . Before the dat a
transfer can take place, the DMA controller is programmed with th e
address of a source or target memory buffer, the number of byte s
to be transferred and a number of other parameters . DMA then
proceeds under hardware control . The DMA controller manipulate s
the system bus control lines in order to effect the transfer without
involving the processor .

Direct memory access can take place over the ISA bus only i n
conjunction with a peripheral device that possesses the specia l
circuitry needed t.o interface to the DMA controller . As we shall se e
later, all DA&C cards for the PCI bus possess their own bus-contro l
circuitry which lets them initiate bus transfers without the need fo r
a general-purpose DMA controller . A few ISA DA&C adaptor cards
provide driver software and/or ROM-based firmware which take s
care of programming the DMA controller . In other cases, however ,
this software may have to be built into the DA&C application itself.
The following sections discuss how to program the DMA controlle r
on the PC's ISA bus and give a brief overview of PCI bus mastering .

The DMA controlle r
All XT bus PCs possess a single Intel 8237A-5 DMA controller .
ISA, EISA and MCA machines have either two such controllers
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or functionally equivalent custom circuitry . The EISA and MCA
controllers provide a high degree of backward compatibility togethe r
with a number of useful enhancements, but because these machine -
specific features are used in relatively few systems they will no t
be covered in this section. Readers interested in the enhanced
features of the MCA's DMA controller should consult, for example ,
Eggebrecht (1990), Sanchez and Canton (1994) or van Gilluw e
(1994) . The latter also describes EISA specific DMA features . The
techniques described in this section can be used for data acquisitio n
on all members of the PC family that possess an ISA, EISA o r
MCA bus.

DMA channels
DMA controllers provide a number of separate channels fo r
data transfer . The controllers used on the original IBM PC and
XT possessed four DMA channels. The additional or enhanced
controllers present on ISA, EISA and MCA machines provide a
total of eight DMA channels, although some of these channel s
are dedicated to specific functions and are unavailable for dat a
acquisition .

Table A.1 in Appendix A illustrates the standard DMA channe l
assignments used in the various classes of PC . In all cases, channel s
0 to 3 permit only 8-bit transfers . Channels 5 to 7 (where available )
allow data to be transferred 16 bits at a time . These channels do not
support 8-bit transfers . Each channel can be programmed to transfe r
a maximum of 64 K data units . This means that channels 0 to 3 are
able to transfer blocks up to 64 KB in length . Because channels 5 to
7 carry words, rather than bytes, data blocks of up to 128 KB can be
transferred without having to reprogram the DMA controller .

The dual 8237A arrangement provides a total of seven, rather
than eight, usable DMA channels . The first channel of controller 2
(i .e. channel 4) is used for cascading to controller number 1 and i s
unavailable to application programs .

Channel 0 was used for refreshing the system DRAM on the
original IBM PC and so cannot be used for data acquisition . Modern
PCs possess dedicated memory refresh circuits, freeing channel 0 fo r
other use . However, the control lines necessary to initiate DMA o n
channel 0 are not present on the system bus so this channel is als o
unsuitable for data acquisition . Any of the remaining channels (i .e .
1 to 3 or 5 to 7) can be used for interfacing to DA&C cards provided ,
of course, that the card supports that channel and that the DMA
channel is not already in use .

It is difficult for an application program to determine whethe r
a DMA channel is currently allocated to another device simply by
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reading the DMA controller's registers . Although it is possible to
discover if a channel is currently in use (i .e. actively transferring
data) by monitoring the Status, Address and Count registers (se e
the section DMA controller registers later in this chapter), there is n o
guarantee that an apparently unused channel will remain so . The
responsibility for selecting DMA channels must ultimately rest wit h
the end user .

Types of data transfe r
Three types of DMA data transfer operations are possible . The
transfer type is programmed by means of bits 2 and 3 of the DMA
controller's Mode register . The three transfer types are :

1. Verify
2. Memory to I/O port (also known as DMA read )
3. I/O port to memory (also known as DMA write )

The purpose of the DMA read and DMA write operations should b e
self-explanatory. The Verify feature performs pseudo-data transfers .
It generates DMA cycles with programmed memory addresses, bu t
does not actually read or write data . This mode is not generally use d
in the PC .

In addition to these transfer modes, it is possible to program th e
8237A for memory-to-memory transfers . This type of DMA transfer
is also of limited usefulness for a number of reasons . First, it requires
channels 0 and 1 to cooperate in the transfer . On the original
IBM PC, channel 0 was dedicated to refreshing the system DRAM ,
making it difficult to use this channel without losing the content s
of memory. DRAM refresh is performed by custom circuitry o n
later PCs. Second, 80386 and subsequent processors can generally
perform memory-to-memory transfers more quickly than the DM A
controller, by means of their string move (Movs etc .) instructions .
Consequently, memory-to-memory DMA is rarely used .

These disadvantages do not apply to DMA react and DMA writ e
operations. Direct memory access is one of the fastest methods o f
transferring large blocks of data between memory and an I/O port ,
or vice versa. The remainder of this section will deal only with DM A
read and write operations, which are of most relevance to PC-base d
data acquisition and control .

Overview of the DMA transfer mechanis m
Before a DMA transfer can take place, the DMA controller must
be programmed with the address of the target (or source) memor y
buffer, the number of bytes to be transferred, the direction of data .
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flow and several other parameters which we will discuss later i n
this section. The software must then enable DMA on the selected
channel . After the controller has been properly configured, th e
adaptor card initiates the transfer process (possibly in response to a
hardware event or as a result of a command issued by the software) .
The transfer proceeds as follows .

1. Whenever an adaptor card wishes to perform DMA it asserts th e
appropriate DMA Request line . The DMA controller possesses one
DMA Request line for each channel . The XT bus makes three
of these request lines, DREQ1, DREQ2 and DREQ3, availabl e
to adaptor cards . The ISA bus provides an additional thre e
DMA Request lines : DREQ5, DREQ6 and DREQ7 . The remaining
request lines, DREQO and DREQ4, are used internally and ar e
not available on the expansion bus .

2. When the DMA controller senses the DREQn signal it first check s
to ensure that DMA is enabled for that channel (i .e . the channe l
denoted by n) . DMA channels can be individually enabled and
disabled by software. The controller also prioritizes DMA requests
with any that may be pending on other channels .

3. If DMA is enabled, the DMA controller asserts its Hold Reques t
(HRQ) line . The processor responds to this signal when the
bus becomes idle by freeing the system bus and issuing a Hold
Acknowledge (HLDA) signal to the 8237A DMA controller . This ,
in turn, asserts the Address Enable (AEN) line and places th e
address of the source or target memory location onto the address
bus. This is shortly followed by activation of the appropriate DMA
Acknowledge (DACKn) line (each DMA channel has its ow n
DACK line) .

4. The adaptor card detects the DACKn signal which informs it that
the data transfer is now in progress .

5. The DMA controller, having taken over the system bus, assert s
the appropriate I/O or memory read/write lines. In the case of
a DMA Write operation, the IOR and MEMW lines are asserted .
For a DMA Read, the MEMR and IOW lines are asserted . This
causes data to be transferred directly between the I/O device
and memory . The DMA controller adjusts the target (or source )
memory address after each transfer has been completed so that
subsequent transfers access the next byte or word in the memory
buffer .

6. Depending upon the transfer mode selected, the adaptor card
may release the DREQn line after each byte or word has bee n
transferred or at other times necessary to regulate the flow o f
data. In response, the DMA controller releases the HRQ lin e
enabling the processor to take control of the bus . The whole
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process repeats until the specified number of bytes or words have
been transferred .

7. When the programmed number of bytes or words have bee n
transferred, the DMA controller asserts the Terminal Count (TC )
line of the system bus . This informs the adaptor card that th e
transfer operation is complete . The DMA controller may then
either automatically disable DMA on the current channel or, i f
autoinitialization has been selected (see the following section) ,
prepare itself for another DMA sequence .

You may be wondering how the adaptor card's I/O port is selected ,
if the address bus holds only a memory address . It is, in fact, th e
receipt of the DACKn signal, rather than decoding of an I/O address ,
that enables the contents of the I/O port onto the data bus . Other
I/O ports, which may otherwise decode the memory address, ar e
prevented from doing so by the AEN signal issued by the DMA
controller . The AEN line is asserted only when a DMA bus cycle is i n
progress. This signal is used on the system bus to disable normal I/ O
port address decodes . The DMA process is summarized in Figure 6 .1 .
The circled letters denote the order in which the various operation s
take place .

A more detailed account of the transfer procedure is provided
by Eggebrecht (1990) . Most of the handshaking that occurs during
DMA is transparent to the programmer . It is only necessary to under -
stand that the adaptor card initiates, and in some cases regulates ,
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Figure 6 .1 Schematic illustration of the DMA process
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data transfer by means of a selected DREQn line . The DREQn line i s
used in a variety of ways, depending upon the programmed transfer
mode (see DMA transfer modes later in this chapter) to control th e
flow of data and interweaving of DMA and processor bus cycles .

Autoinitializatio n

The 8237A DMA controller possesses a number of 16-bit register s
for each channel . Two of these hold the current memory address for
the transfer and the current word count (i .e . the number of bytes or
words transferred) . These values are incremented or decremented ,
as appropriate, on each transfer cycle . When the 8237A is first
programmed, the initial memory address and word count are loade d
into these registers. The initial values are also recorded in tw o
other registers, the Base Address and Base Word Count registers .
The values held in these registers do not change during the DMA
process .

The 8237A can be programmed (via the Mode register) to auto-
matically reinitialize the Current Address and Current Word Coun t
registers at the end of a programmed DMA sequence . During thi s
autoinitialization, the contents of the Base Address and Base Word
Count registers are copied to the associated Current Address an d
Current Word Count registers, thereby preparing the 8237A fo r
another DMA sequence . The DMA channel remains enabled so that
the DMA sequence can be repeated as soon as the next DREQ signa l
is detected . If the autoinitialization facility is not enabled, the DMA
channel disables itself (by setting the appropriate Mask bit) after th e
programmed quantity of data has been transferred .

DMA priorities

Although the 8237A can be programmed to operate according t o
one of two priority schemes – fixed or rotating – the PC should
generally only operate the 8237A in the fixed priority mode . In
this mode, channel 0 (memory refresh) always has the highest
priority, channel 1 the next highest and so on . The dual-controller
arrangement employed on ISA, EISA and MCA systems extends th e
priority scheme to the second controller . Thus the priority orde r
is channel 0, 1, 2, 3, 5, 6 and 7 (remember that channel 4 is use d
for cascading the two controllers and is not available for interfacin g
to peripheral devices) . If one or more devices request DMA servic e
while a transfer is in progress on another channel, they must wait
until the current transfer is complete . The device with the highes t
priority will then be serviced first .
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DMA transfer modes
Apart from a special Cascade mode which is used for connectin g
dual DMA controllers, the 8237A provides three data transfer modes .
These can be selected via the controller's Mode register (see DMA
controller registers later in this chapter) . Note that the adaptor card
hardware must be specifically designed to operate in each mode . You
should use only those modes that are supported by your hardware .

Single Transfer mode

In this mode only one byte or word is transferred at a time an d
when each transfer is complete, the 8237A releases the system bus to
the processor . If the adaptor card holds DREQn active throughou t
the transfer, the processor will be allowed only one bus cycle befor e
the 8237A reasserts the I-IRQ line and takes control once more . In
this way ordinary processor bus cycles can be interwoven with DM A
cycles .

Demand Transfer mode

This mode allows the adaptor card to regulate the DMA transfer b y
temporarily deactivating DREQn . While DREQn is active the transfe r
proceeds in much the same way as the Single Transfer mode excep t
that no processor bus cycles are interwoven with the DMA cycles .
The controller will continue with the transfers (provided DREQ n
remains active) until the programmed number of bytes or words ha s
been transferred .

Block Transfer mode

In Block Transfer mode, the device issues one DREQn pulse to
initiate the transfer of a whole data block (i .e. the number or bytes
or words specified in the Base Word Count register) . Processor bu s
cycles are not interwoven with the DMA cycles . The DREQn signal
need not be asserted throughout the transfer ; it may go inactive as
soon as the DACKn signal becomes active .

DMA controller registers
Each DMA controller is programmed via a number of interna l
registers . These are listed in Table 6 .4. The first controller (which
supplies DMA channels 0 to 3) is located at I/O port base addres s
0000h. The second 8237A in dual-controller systems has a bas e
address of 000Ch. Note that writes to addresses OCh, ODh, OEh ,
D8h, DAM and DCli do not directly access any registers . The actual
value of the data written to these addresses is unimportant, however .
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Table 6.4 8237A DMA controller register map

Port Direction Controller Descriptio n

00h R/W 1 Channel 0 : Current/Base Address .
01 h R/W 1 Channel 0 : Current/Base Word Count .
02h R/W 1 Channel 1 : Current/Base Address .
03h R/W 1 Channel 1 : Current/Base Word Count .
04h R/W 1 Channel 2 : Current/Base Address .
05h R/W 1 Channel 2 : Current/Base Word Count .
06h R/W 1 Channel 3 : Current/Base Address .
07h R/W 1 Channel 3 : Current/Base Word Count .
08h R 1 Status register .
08h W 1 Command register .
09h W 1 Request register .
OAh W 1 Mask register .
OBh W 1 Mode register .
OCh W 1 Not a register . Writing to this address clears th e

byte pointer flip-flop .
ODh R 1 Temporary register .
ODh W 1 Not a register . Writing to this address resets th e

controller .
OEh W 1 Not a register . Writing to this address clears th e

Mask register .
OFh W 1 Write-all-mask register .
COh R/W 2 Channel 4 : Current/Base Address .
C2h R/W 2 Channel 4 : Current/Base Word Count .
C4h R/W 2 Channel 5 : Current/Base Address .
C6h R/W 2 Channel 5 : Current/Base Word Count .
C8h R/W 2 Channel 6 : Current/Base Address .
CAh R/W 2 Channel 6 : Current/Base Word Count .
CCh R/W 2 Channel 7 : Current/Base Address .
CEh R/W 2 Channel 7 : Current/Base Word Count .
DOh R 2 Status register .
DOh W 2 Command register .
D2h W 2 Request register .
D4h W 2 Mask register .
D6h W 2 Mode register .
D8h W 2 Not a register . Writing to this address clears th e

byte pointer flip-flop .
DAh R 2 Temporary register .
DAh W 2 Not a register . Writing to this address resets th e

controller.
DCh W 2 Not a register . Writing to this address clears th e

Mask register .
DEh W 2 Write-all-mask register .
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Simply performing an our instruction to these addresses (with an y
data) initiates the actions listed in the table .

In addition to the registers present within the 8237A itself, al l
members of the PC family possess a set of page registers that are use d
in DMA memory addressing. These are not contained in the 8237A
itself. Instead 74LS612 Memory Mapper ICs, or equivalent devices,
supply the necessary registers . Page registers are required becaus e
the 8237A's internal address registers are 16 bits wide and so ca n
address only 65 536 different memory locations . In order to access
any region of the PC's memory, the page registers are programme d
with the most significant bits of the physical memory address fo r
each transfer, as indicated in Table 6 .5. On XT-bus systems, only
the lower 4 bits of the page register are required for accessing any
part of available memory (i .e . up to 1 MB) . The low order nibble o f
the page register contains address bits A16 to A19 . Bits Ao to A15 are
programmed into the 8237A itself .

ISA, EISA and MCA systems use either 7 or 8 bits of each pag e
register in order to access physical addresses within the first 16 MB .
In the case of channels 0 to 3, the 8237A is programmed wit h
address bits Ao to A15 and the page register contains bits A16 to A23 as
shown in Figure 6.2. In order to access 16-bit words at even memor y
addresses, address bit Ao is ignored on channels 5, 6 and 7 . For these
channels, the 8237A is programmed with address bits A l to A16 while
the page register holds bits A 17 to A23 .

Because of the need to use page registers, the location and siz e
of memory buffers is restricted . Transfers on channels 0 to 3 mus t
not cross an absolute 64 KB address boundary and consequently may
not exceed 64 KB in total . Similarly, 16-bit transfers on channel s
5 to 7 must not cross a 128 KB boundary and so cannot . exceed
128 KB . Transfers that cross these address boundaries require th e

Table 6 .5 Page register map

PC and XT AT, MCA and EISA

I/O port DMA channel Address lines DMA channel Address line s

81h 2 A16-A19 2 A16-A23
82h 3 A16-A19 3 A16-A23
83h 1 A16-A19 1 A16-A23
87h 0 A16-A23
89h 6 A17-A2 3
8Ah 7 A17-A2 3
8Bh 5 A17-A23



Data transfer 23 1

Page register

	

8237A address register s
Channels A 23 A 22 A 21 A20 A 19 A 18 A 17 A16 A 15 A 14 A 13 Al2 All A io A9 A 8 A7 A6 A 5 A 4 A3 A2 A l Ao

0 to 3

Channels A A A A A A A A A8 A7 A6 A 5 A 4 A3 A2 A 1A A A A A A A X5 to 7 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

X = Not used
(a)AT, MCA and EISA system s

Page register

	

8237A address registers

Channels x x x x A 19 A18 A17 A 16 A 15 A 14 A ,3 Al2 All A 10 A9 A8 A 7 A6 A5 A4 A 3 A2 Al Ao
0 to 3

(b) PC and XT systems

Figure 6 .2 Address mapping using page registers

controller's address register and associated page register to be reini -
tialized by software. Some embedded systems avoid these problem s
by employing DMA controllers with a larger addressing capability .
These are, unfortunately, unavailable on standard ISA PCs .

A note on channel numbers

The following sections describe the registers present in a singl e
8237A DMA controller . Because ISA, EISA and MCA systems possess
two such controllers (or compatible custom circuits), the same infor -
mation also applies to the DMA channels of the second controller .
Channel numbers 0, 1, 2 or 3 referred to in the following discussio n
represent either channels 0 to 3 in the case of the first controller, o r
channels 4 to 7 in the case of the second controller .

Current Address and Base Address registers

Each channel has a Current Address and Base Address register . These
16-bit registers are initialized together in one operation by software .
The address is written in two 8-bit bytes . The low byte is written first
and this must always be followed by the high byte . The contents of
the Current Address register are either incremented or decremente d
when each byte or word is transferred (increment/decrement i s
software selectable) . Reading from these register addresses return s
the value of the Current Address register . The Base Address register ,
which is used to implement the autoinitialization function, alway s
retains the last value written .

The 2-byte read and write operations are controlled by an interna l
Byte Pointer flip-flop . This is toggled each time a byte is read
or written. When the flip-flop is clear, the controller receives o r

X = Not use d
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supplies the low order byte of the address . When it is set, th e
controller processes the high order byte . It is wise to clear the flip-
flop before commencing any read or write operations . This may be
accomplished by writing any value to I/O port OCh (or D8li in th e
case of the second controller) .

Current Word Count and Base Word Count registers

Each channel also has a Current Word Count and Base Word Coun t
register . The word count is written in two 8-bit bytes . The low order
byte is written first and this must always be followed by the high byte .
The contents of the Current Word Count register are decremente d
after each byte or word is transferred. When the count reache s
zero the next transfer causes the count to roll over to FFFFh whic h
signifies the end of the transfer . The Current Word Count registe r
always holds the number of transfers to be performed, minus L If ,
for example, 0800h bytes are to be transferred, you should initialize
the Current Word Count register with the value 07FFh .

Reading from these I/O addresses returns the value of the Curren t
Word Count register . The Base Word Count register, which is use d
to implement the autoinitialization function, always retains the las t
value written .

The two-byte read and write operations are controlled by a n
internal Byte Pointer flip-flop. This is toggled each time a byte is
read or written . When the flip-flop is clear, the controller receive s
or supplies the low order byte of the word count. When it is set,
the controller processes the high order byte . It is wise to clear th e
flip-flop before commencing any read or write operations . This may
be accomplished by writing any value to I/O port OCh (or D8h i n
the case of the second controller in AT systems) .

Status register

The Status register is a read-only port that provides the application
program with information about the current state of the DMA
controller . Bits 0 to 3 are set when the corresponding channel ha s
reached its terminal count (i .e . when the programmed number of
bytes or words has been transferred) . These bits are automaticall y
cleared after the Status register has been read . Bits 4 to 7 are se t
high whenever a DREQ is active on DMA channels 0 to 3 . This is
summarized in Table 6 .6 .

Command registe r

To maintain hardware compatibility, most of the bits in this write-onl y
register should be zero on the PC . Only bit 2 is normally manipulated
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Table 6.6 The Status register (read only)

Bit Controller 1 Controller 2

0

	

1 = Channel 0 terminal count Used for channel 4 cascade
1

	

1 = Channel 1 terminal count 1 = Channel 5 terminal coun t
2

	

1 = Channel 2 terminal count 1 = Channel 6 terminal coun t
3

	

1 = Channel 3 terminal count 1 = Channel 7 terminal coun t
4

	

1 = DREQO pending Used for channel 4 cascad e
5

	

1 = DREQ1 pending 1 = DREQ5 pending
6

	

1 = DREQ2 pending 1 = DREQ6 pending
7

	

1 = DREQ3 pending 1 = DREQ7 pending

by PC software. This bit enables or disables the controller and is use d
to prevent the controller from responding to DREQ signals whil e
it is being programmed. Setting bit 2 disables the controller, an d
clearing the bit enables the controller . Note that, in order to avoid
disrupting the memory refresh subsystem, you should not disabl e
the DMA controller in XT-bus machines . For information on the
remaining bits in this register you should consult the Intel 8237A- 5
data sheet .

Request register

The Request register allows DMA requests to be initiated by softwar e
rather than by a hardware DREQ signal . The binary-coded channe l
number is loaded into bits 0 and 1 (channels 4 to 7 on the secon d
DMA controller should be coded as 00b to l lb respectively) . Bit 2
controls the setting of the controller's internal DREQ signal . This
bit should be set in order to perform a software DMA request . So, to
initiate a DMA request on channel 1, for example, you should write
the value 00000101b to the request register . Table 6 .7 summarize s
the operation of the Request register .

Table 6 .7 The Request register (write only)

Bit

	

Descriptio n

1,0

	

Channel number to which the request applies (channels 4—7 o f
controller 2 are represented by bit patterns 00b to 11 b) .

2

	

0 = Clear request .
1 = Initiate DMA request .

7—3

	

Not used .
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Table 6.8 The Mask register (write only)

Bit

	

Descriptio n

1,0

	

Channel number to which the mask bit applies (channels 4-7 o f
controller 2 are represented by bit patterns 00b to 11 b) .

2

	

0 = Enable DMA channel .
1 = Disable DMA channel .

7-3

	

Not used .

Mask registe r

This is a write-only register . It is used for selectively enabling o r
disabling DMA channels according to the scheme shown in Table 6 .8 .
A hardware or software reset will set all mask bits, disabling all DM A
channels. Only those channels actually used should be enabled . You
should not disable channel 0 on systems that use it for refreshin g
memory.

Mode register

The Mode register determines how the 8237A operates. It control s
the type of transfer, autoinitialization, address increment/decremen t
selection and the transfer mode to be used . The bit assignments i n
this write-only register are listed in Table 6.9 .

Temporary register

This read-only register holds data between read and write cycles
during memory-to-memory transfers . It is of little interest for data
acquisition .

Write-All-Mask register

This allows DMA channels to be enabled or disabled in one oper-
ation. The normal Mask register permits control only of individual
channels. The bit assignments for the Write-All-Mask register are
shown in Table 6 .10. This is a write-only register . Alternatively, if
it is necessary to enable all four DMA channels, your software ca n
simply write any value to address OEh (for controller 1) or DCh (for
controller 2) . Only those channels actually used should be enabled .
You should not disable channel 0 on systems that use it for refreshin g
memory .

DMA in protected and V86 mode s
During DMA transfers the address contained in the 8237A's Curren t
Address and Page registers refers to physical memory. This causes
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Table 6 .9 The Mode register (write only)

Bit Description

1,0 Channel number to which the mode settings apply (channels 4—7 o f
controller 2 are represented by bit patterns 00b to 11 b) .

3,2 Transfer type (ignored in cascade mode) :
00b = Verif y
01 b = DMA write (I/O to memory )
10b = DMA read (memory to I/0 )
11 b = Illegal .

4 0 = Disable autoinitialization .
1 = Enable autoinitialization .

5 0 = Increment address during DMA .
1 = Decrement address during DMA .

7,6 Transfer mode :
00b = Demand mod e
01b = Single mode
10b = Block mod e
11 b = Cascade mode .

Table 6 .10 The Write-All-Mask register (write only)

Bit Controller 1 Controller 2

0 Channel 0 mask . 0 = Enabled Channel 4 mask . Should be 1 on P C
1 Channel 1 mask . 0 = Enabled Channel 5 mask . 0 = Enable d
2 Channel 2 mask . 0 = Enabled Channel 6 mask . 0 = Enable d
3 Channel 3 mask . 0 = Enabled Channel 7 mask . 0 = Enable d
7—4 Not used Not used

problems with software running in the protected and virtual 808 6
modes offered by 80386 and later processors . Because of the selector
addressing and page translation mechanisms used in these modes ,
the application software that is responsible for programming th e
DMA controller has no knowledge of the physical memory address
of its DMA buffer .

Some memory managers address this problem by using th e
processor's I/O protection mechanisms (see Chapter 1) to tra p
accesses to the DMA controller. The memory manager can the n
translate the address of the application program's virtual buffe r
into a physical address . A temporary mirror buffer may be allocate d
by the memory manager if the physical address falls outside th e
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16 MB addressable range of the DMA controller . This interme-
diate buffering stage may significantly affect the throughput o f
DA&C application . However, provided that DMA buffers are allo-
cated within the 16 MB range, this technique should not affect th e
real-time performance of the system .

Microsoft Windows virtualizes DMA by providing a set of Virtua l
DMA software services . These services are essential in the '38 6
Enhanced Mode of Windows 3 .1 and in later versions of Windows
or when independent bus master DMA controllers are used . Bus
masters are additional DMA controllers that may be provided as an
integral part of an I/O device . Because the I/O addresses of the bu s
master's registers are not fixed (as they are with the PC's standard
DMA controllers) it is more difficult for the operating system or
memory manager to trap I/O accesses to their registers . For this
reason, the DA&C application should not attempt to access the DM A
controller directly. Instead, all DMA requests must be routed vi a
the operating system's Virtual DMA services . These include function
calls for allocating DMA buffers, for copying data to and from
the DMA buffers, and for locking memory addresses in order t o
prevent remapping or conflicts with other DMA operations . As with
the virtual I/O system used under Microsoft Windows, the overhea d
incurred with virtual DMA can seriously affect overall data-acquisitio n
rates, especially in high speed applications . Further information on
virtual DMA may be found in the texts by Brown and Kyle (1991 )
and van Gilluwe (1994) .

DMA programmin g

Programming a system for DMA involves configuring two compo-
nents : the peripheral DA&C device which supplies or receives data ,
and the DMA controller itself. The DA&C device is usually config-
ured via one or more control registers . Because of the wide variety
of data-acquisition cards available, we will not discuss the DMA facil -
ities offered by individual devices . You should consult your DA&C
interface card manual for programming details .

Instead, this section illustrates how the PC's DMA controller ca n
be programmed to manage the I/O transfer . After programmin g
the 8237A controller, data transfer is usually initiated in one of
three ways:

1. Software commands issued direct to the DA&C device, causing i t
to activate DREQ.

2. Software commands issued to the 8237A's Request register .
3. Hardware signals such as event triggers or periodic clock pulses .
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Programming the DMA controller is quite straightforward provide d
that you take a few fairly simple precautions . Most of these are jus t
common sense, but are listed here as they can be easily overlooked .

• Your software should ensure that DMA requests are disable d
on the channel that is being programmed. This will preven t
the controller from attempting to service a DMA request until
the buffer addresses and word counts etc . have been properly
configured . Only enable the DMA channel after programming is
complete .

• It is also a sensible precaution to disable interrupts in order to
prevent other processes from accessing the 8237A until it has bee n
fully programmed .

• Only enable those channels that you actually use, and do not alte r
the mask bits of any other channels .

• Before terminating your program or disposing of a memory buffer ,
always ensure that the DMA channel is left disabled .

• Before writing address and word count values, clear the Byt e
Pointer flip-flop by outputting any value to I/O port OCh (fo r
channels 0 to 3) or D8h (for channels 5 to 7) .

• When loading the Address and Page registers (particularly fo r
channels 5 to 7), be sure to preserve the bit pattern indicated i n
Figure 6.2 .

• Load the Count registers with a value one less than the number o f
bytes (or words in the case of channels 5 to 7) to be transferred .

• Avoid using Block Transfer mode, particularly on XT class
machines, where this mode might interfere with the memor y
refresh subsystem .

• Use the smallest memory buffers consistent with your application .

Listing 6.1 illustrates how a DMA channel can be configured . For the
sake of clarity, the various DMA parameters and register addresse s
are passed to the SetupDMA procedure in the form of global variables .
In a real program, all of these variables would have to be initialize d
before calling SetupDMA. Separate code and data segments are no t
shown in the listing . However, the code assumes that DS has been
initialized to point to the data segment . The SetupDMA routine itsel f
should be self explanatory .

Data acquisition using DMA
DMA is an essential technique for high speed data acquisition . It
is suitable for collecting ADC data as it is digitized ; for reading the
contents of on-board memory buffers or for transferring data to and
from a communications interface card such as an IEEE-488 adaptor .
It is also an ideal mechanism for signal generation . Data can be
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Listing 6.1 Configuring 8237A channel 7 for a DMA write operatio n

;Register addresses
of page registe r
of address registe r

of count registe r
of Mask registe r

of Mode registe r
of Clear Flip Flop por t

PageRegAddr dw ;Addres s
AddrRegAddr dw ;Addres s

CountRegAddr dw ;Addres s
MaskAddr dw ;Addres s

ModeAddr dw ;Addres s
FlipFlopAddr dw ;Addres s

;Variables for SetupDMA

Controller

	

db

	

;Controller number (1 or 2 )

Channel

	

db

	

;8237A channel number (0 to 3 )
BufOfs

	

dw

	

;Pointer to buffer (buffer must not cross an
BufSeg

	

dw

	

; absolute 64K / 128K boundary) .
Count

	

dw

	

;Number of bytes/words to be transferred
Direction

	

db

	

;0 = Output (DMA read) ; 1 = Input (DMA Write )
Mode

	

db

	

;0 = Demand; 1 = Single ; 2 = Block

SetupDMA

	

PROC FAR
;Sets up a DMA channel according to the parameters listed above .
;Address increment (rather than decrement) is always selected an d
;autoinitialization is always turned off .
;Entry: Controller, Channel, BufOfs, BufSeg, Count, Direction

and Mode variables, as well as the various registe r

addresses, must all be defined .
DS must point to the segment containing these variables .
Other registers may contain any values .

;Exit : AX, BX, CX, DX and Flags registers are corrupted .

mov ax,BufSeg ;AX = Segment of buffe r
xor bx,bx ;BX = 0
mov cx,4 ;Loop counte r
cic ;Clear Carry Flag
rcl ax,l ;Rotate BX,AX left via Carry Flag
rcl bx, l
loop Multiplyl6 ;Repeat 4 times to multiply BX,AX by 1 6
add ax,BufOfs ;Add buffer offse t
adc bx,0 ;Add Carry Flag in case of carry from ADD
mov cx,ax ;BX,CX now holds the physical adddres s

;Check controlle r
mov al,Controller ;Get DMA controller numbe r
cmp al,2 ;Is it controller 2 ?

je Ctr12 ;

	

Yes, adjust count and addres s
push Count ;

	

No, no need to adjus t
jmp LoadReg s

Ctrl2 :

	

;Controller 2, so adjust count and address for word transfer
rcr bl,l ;CF = A16 ; MSB of BL is undefined
rcr cx,l ;A16 --> MSB of CX ; CF = A O
rcl bl,l ;Restore page reg bit pattern ; LSB = AO
mov ax,Count ;Get number of byte s
shr ax,l ;AX is now number of word s
push ax ;Save on stack

;Convert BufSeg :BufOfs into 24-bit physical address in BL,CX .

Multiplyl6 :
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Listing 6.1 (continued)

LoadRegs :

	

cli

	

;Disable interrupt s

;Mask (disable) DMA channe l
mov

	

dx,MaskAddr

	

;Address Mask registe r

mov

	

al,Channel

	

;Channel numbe r

or

	

al,04h

	

;Set mask bi t
out

	

dx,al

	

;Load Mask registe r

;Load page registe r

mov

	

dx,PageRegAddr

	

;Address Page registe r
mov

	

al,bl

	

;Get high order address bit s

out

	

dx,al

	

;Load Page registe r

;Clear Byte Pointer flip flo p

mov

	

dx,FlipFlopAddr

	

;Address Flip Flop Control

out

	

dx,al

	

;Clear flip flop

;Write 8237A address registe r

mov

	

dx,AddrRegAddr

	

;Address 8237A's Address registe r

mov

	

al,cl

	

;Load low byt e
out

	

dx,a l

mov

	

al,ch

	

;Load high byt e

out

	

dx,a l

;Write Count registe r
mov

	

dx,CountRegAddr

	

;Address Count registe r

pop

	

ax

	

;Get byte/word count from stack

dec

	

ax

	

;Count is one less than no . of transfer s

out

	

dx,al

	

;Output low byte
mov

	

al,ah

	

followed by

out

	

dx,al

	

high byte .

;Write Mode register

mov

	

dx,ModeAddr

	

;Address Mode registe r

mov

	

al,Channel

	

;Channel numbe r

mov

	

ah,Direction

	

;Include Direction bit s
mov

	

cx, 2

shl

	

ah,c l
or

	

al,ah
mov

	

ah,Mode

	

;Include Mode bit s

mov

	

cx, 6
shl

	

ah,c l

or

	

al,ah

out

	

dx,al

	

;Load Mode registe r

;Unmask (enable) DMA channe l

mov

	

dx,MaskAddr

	

;Address Mask registe r

mov

	

al,Channel

	

;Define channel . Mask bit is left clear

out

	

dx,al

	

;Load Mask registe r

sti

	

;Enable interrupt s

retf

	

;Return to caller

SetupDMA

	

ENDP
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easily clocked out from the PC's memory to a device controlled by
a hardware pacer clock. Both DMA read and write operations ca n
be performed in the background with minimal disturbance to th e
foreground DA&C program .

DMA transfer rate

The maximum theoretical DMA transfer rate, which would be achiev-
able only in Block Transfer mode, can be calculated by multiplyin g
the number of bus clocks required to transfer each byte by the length
of each clock period .

On the XT-bus systems, each DMA read/write transfer takes a t
least six bus clocks . A higher number of clock intervals are require d
if bus wait states are used. Bus frequencies of 4 .77, 8 and 10 MH z
are commonly used on XT compatible systems, although in 8 an d
10 MHz systems the DMA controller may operate at one half of th e
bus clock frequency . A 4 .77 MHz XT system will take approximatel y
1260 ns to transfer 1 byte .

ISA systems require at least five bus clocks to transfer each byt e
or word. A 10 MHz ISA PC may therefore take 500 ns to perfor m
a single transfer, so the maximum theoretical transfer rate is abou t
2 MB/s. These figures will, of course, vary with bus clock speed .

The maximum transfer rate is rarely achieved, however . Delays
due, for example, to the finite ADC conversion time and multi-
plexer settling time may restrict throughput . The DMA controlle r
is also usually programmed to operate in Single Transfer (or occa-
sionally Demand Transfer) mode . This allows normal processo r
bus cycles to be interwoven with DMA cycles and consequently
limits the maximum achievable transfer rate . Fast ADC cards tha t
provide DMA facilities will typically provide sustained throughputs o f
the order of 50 000–250 000 samples/s (i .e. about. 1.00–500 KB/s) .
However, some high speed cards are claimed to allow burst DM A
rates approaching 2 MB/s over a 10 MHz ISA bus .

Dual-channel DMA

The limited DMA buffer size of 64 KB (or 128 KB for channels 5 t o
7) can be a serious drawback. In order to stream a larger quantity of
data to the PC's memory, it is necessary to suspend data acquisitio n
whenever the terminal count is reached so that the DMA controlle r
can be reprogrammed with the address of a new buffer . The DA&C
system may be unable to sample data during this time and there i s
a danger that important readings will be lost . Average throughput
rates can be significantly reduced if more than 64 KB (or 128 KB fo r
channels 5 to 7) are to be transferred. This is a particularly severe
problem in high speed applications .
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One solution is to employ dual-channel DMA . This requires specia l
hardware support, but is relatively straightforward to implement . Two
DMA buffers are allocated and a separate DMA channel is set u p
for each buffer . The digitized readings are transferred via one DMA
channel and when this reaches its terminal count the DA&C adapto r
card switches to the second channel . The terminal count signal also
causes the card to issue a hardware interrupt. The software can
respond to the interrupt either by reading and processing the firs t
buffer or by reconfiguring the first DMA channel so that it addresse s
a third buffer . The procedure is repeated when the second channe l
reaches its terminal count, allowing data to be transferred alternatel y
via the two DMA channels .

Dual-channel DMA is most useful when data is transferred in shor t
isolated bursts . This allows the processor sufficient time between
bursts to respond to the terminal count interrupt and to perform an y
other processing that may be necessary. DA&C cards which suppor t
dual-channel DMA also often incorporate FIFO memory buffers .
These are usually large enough to hold 1–2 KB of data (sometimes
considerably more) . When sufficient data has been recorded in th e
buffer, it is transferred in small blocks (typically 256 or 512 bytes )
using the dual-channel DMA technique .

DMA latency

It is not only the data transfer rate which may be important i n
a DA&C application . The time between assertion of the DREQ
line and transferring the first data byte is often an equally crucia l
consideration . This latency time depends upon the priority of th e
DMA channel and whether other DMA requests are pending . The
minimum time for completion of a single-byte transfer (i .e . a ful l
DMA write or read cycle) is at least six bus clocks on the XT bus o r
five clocks on ISA and MCA machines . Additional clock cycles wil l
be required if the system is configured to include bus wait states .
The latency time will typically be longer than this minimum transfe r
time . If a DMA channel is programmed for multiple-byte transfer s
this can increase the latency of other channels .

When should you use DMA ?

Although DMA is one of the fastest methods for transferring large
quantities of data, it is not always the most appropriate technique .
You should consider the following points when deciding whether t o
use DMA.

• Would programmed I/O be fast enough? For relatively lo w
acquisition rates, you may prefer the simplicity of polled or
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interrupt-driven I/O . The throughput obtainable with these tech-
niques will be highly dependent upon the speed of the DA& C
hardware as well as on the amount of processing to be performed
by the software. Assembly language routines may achieve rate s
of up to about 20 000–30 000 samples/s without the benefit of
hardware buffering (i .e. direct from an ADC) . Higher acquisition
rates may be possible by using a tight polling loop .

• Will DMA provide an adequate throughput? Most DA&C hardwar e
manufacturers provide typical DMA throughput figures . If you
require a higher throughput than is possible using DMA, or if the
DMA latency is unacceptable, it may be necessary to use a DA&C
card that provides high speed buffered input . Burst acquisitio n
rates of up to a few MHz are supported by some devices of thi s
type. At the end of a data-acquisition run, the contents of th e
card's memory buffer can be transferred to the PC 's memory
(albeit somewhat more slowly) by using either programmed inpu t
or DMA. techniques . The rate at which this transfer is performed
is usually also an important consideration .

• Would programmed I/O be faster than DMA? Single or Deman d
Transfer DMA can be used for reading data from hardware buffers .
These techniques provide transfer rates from several hundre d
KB/s up to approximately 1 MB/s. On 80286 and later processors
the REP INSW instruction allows data to be transferred from a
hardware buffer at up to about 1 to 2 MB/s, depending upon
processor type . This is significantly faster than DMA . The 32-bit REP

INSD instruction may provide an additional increase in throughput ,
but because of delays inherent in the DA&C hardware, 32-bit I/ O
will not generally provide twice the throughput of 16-bit transfers .
Whether 16-bit or 32-bit transfers are employed, the hardwar e
registers must, of course, be capable of responding to back-to-
back I/O instructions . REP INSW and REP INSD are only suitable for
reading buffered data. ADCs cannot generally supply a sequence
of digitized readings quickly enough to satisfy the repeated inpu t
requests .

• Will DMA programming overheads be significant? You shoul d
consider whether the overhead involved in reprogramming th e
DMA controller will exceed the time saved by using DMA . This
will, of course, depend upon the DMA rate achievable and th e
speed of the processor. It will be relatively more efficient to use
programmed I/O with faster processors . This consideration is only
relevant if the 8237A programming is carried out in a time-critica l
portion of the program .

• How will DMA bus cycles affect the software? Interweaving of bu s
cycles in Single Transfer mode will reduce the average execution
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speed of the DA&C program by approximately one half . Because
the DMA controller takes over the system bus whenever it need s
to service a DREQ, DMA cycles take precedence over even hig h
priority interrupt handlers and tasks . Systems that use Deman d
Transfer mode will also periodically suspend processing whil e
blocks of data are transferred .

• Is the data stream suitable for DMA? DMA is intended for trans-
ferring a regular stream of data to or from the PC's memory . If
individual readings, or blocks of varying size, are to be input at
irregular intervals, it might be more appropriate to use polled o r
interrupt-driven I/O .

• Will background operation be important? DMA is particularly
suited to background data acquisition . Once the DA&C hardwar e
and DMA controller are configured, data acquisition can procee d
with very little software intervention .

• Are there other reasons to avoid polled or interrupt-driven I/O ?
Data-acquisition programs running under non-deterministic oper -
ating systems and/or those with high interrupt latencies, suc h
as Microsoft Windows, may benefit from the more predictabl e
response of DMA based hardware techniques .

PCI bus mastering

The preceding discussion relates to the DMA system available o n
the ISA, EISA and MCA buses . Transfers analogous to DMA ca n
also take place on the PCI bus, although a somewhat differen t
and more flexible approach is adopted . The PC's motherboard
does not provide a general-purpose DMA controller for the PC I
bus. Instead the system allows for bus mastering. Each PCI devic e
(e.g. adaptor card) possesses its own special DMA type circuitr y
for initiating control of the PCI bus . This allows any PCI devic e
to communicate with another without involving the processor . A
DA&C card could, for example, continuously acquire data at a high
rate into an on-board FIFO buffer and periodically transfer th e
buffer contents over the PCI bus into system memory . The whole
process can be carried out without processor intervention, othe r
than that required to initially program the DA&C card and, perhaps ,
trigger the acquisition sequence . This capability provides a mean s
for high speed data transfers that have a minimal effect on softwar e
execution times. 32-bit implementations of the PCI bus, clocked a t
33 MI-Iz, can transfer data to or from a contiguous block of memor y
at up to 132 MB/s . This requires that a special addressing mod e
(burst mode) is used . The maximum data rate drops to 44 MB/s fo r
normally addressed data (multiplexed mode) .
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The PCI bus arbitrates between different devices wishing to tak e
control of the bus . To request control of the bus, a bus master (on ,
for example, a DA&C card) will activate the REQ bus line . The PCI
arbitration logic then asserts the GNT line, passing control of th e
bus to the requesting device (which is known as the initiator) .

The transfer is similar in principle to ISA-based DMA, althoug h
there are some important differences . The initiator provides th e
32-bit (or 64-bit) address of the target device, placing it on the
bus's Address/Data lines . Addressing is performed in one of two
ways. In burst mode the target address for the first transfer i s
transmitted over the bus and then the target device calculates th e
address for each subsequent transfer by incrementing the addres s
by the data size (4 or 8 bytes) . As the bus undergoes only an initia l
addressing phase, transfer speed is maximized, but it is possible t o
access only contiguous blocks of memory in this way. In multiplexed
mode, however, each transfer is explicitly addressed . It is these
additional addressing phases that reduce bus throughput. Time type
of data transfer – e .g. memory read, memory write, I/O read o r
I/O write – is specified by sending a command (i .e . a bit pattern on
special bus lines) to the PCI bus logic .

The initiator indicates the start of a transfer by asserting
the FRAME bus line . The initiator and target then control th e
transfer sequence via the IRDY and TRDY lines. When the transfer
is complete, the initiator deactivates the FRAME signal (se e
Buchanan (1999) ) .

An important feature of the PCI bus mastering system is that i t
allows DA&C cards with a degree of on-board intelligence to indepen -
dently initiate and control the transfer of large quantities of digitize d
data into system RAM . Some DA&C hardware manufacturers, suc h
as National Instruments, have developed optimized PCI bus maste r
circuits which employ techniques analogous to dual-channel DMA .
These facilitate continuous high speed transmission of acquired dat a
into multiple buffers or non-contiguous memory blocks .

6.3 Buffers and buffered I/O

As we have seen in the previous section, buffering is a usefu l
technique for decoupling DA&C hardware interfaces from the super-
vising software . By providing temporary storage for acquired data
it is possible to average out the irregularities in software timin g
that are introduced by interrupt latencies, task switching or DM A
operations. This allows data acquisition to proceed at a regular an d
guaranteed rate . Memory buffers are normally used in conjunction



Data transfer 24 5

with DMA and interrupt-driven data-acquisition systems to facilitate
asynchronous I/O . Choosing the correct type of buffering system can
greatly simplify subsequent management of data. We will conside r
two classes of buffer : hardware memory buffers, which are manage d
by the data-acquisition device, and software buffers maintained by
the DA&C application program itself.

Hardware buffering technique s

Many DA&C devices have a limited capacity for on-board bufferin g
of acquired data . FIFO buffers ranging from typically 1 to 64 KB are
used on some of the more sophisticated dumb data-acquisition cards .
Intelligent devices are often equipped with considerably larger dat a
buffers .

Acquired data can be channelled to a hardware buffer at very high
speed (often up to several MB/s) . This type of facility can allow
data acquisition to proceed at much higher rates than would be
possible if each reading had to be individually recorded by the PC .
The relatively time-consuming task of transferring data to the PC' s
memory can then be performed at the end of the data-acquisitio n
sequence. Many DA&C devices allow access to their memory buffer s
at the same time as new readings are being stored . When sufficient
data has been recorded in the hardware buffer, the device's interfac e
circuits generate an interrupt or DMA request in order to initiat e
transfer to the PC's memory .

The principal benefit offered by hardware buffering is that th e
DA&C system is not impaired by the variable response times inheren t
in most PC software. Hardware FIFOs are often essential where a non -
deterministic operating system such as Microsoft Windows is used .
Because of task switching and associated high interrupt latencies ,
I/O requests are not always serviced promptly under Windows .
Hardware buffers can help to overcome this problem by storing dat a
until the PC is ready to receive it .

Software buffers

The DA&C program itself may also possess its own memory buffers .
Such buffers not only supply the decoupling necessary for asyn-
chronous I/O, they can, if carefully implemented, also provide a
convenient framework for subsequent data processing . They are
usually used for receiving or supplying data during DMA transfer s
or in interrupt driven I/O .

Systems employing drivers, or many interacting interrupt handlers ,
tasks or threads might also make extensive use of temporary buffers .
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In an analogue input system, for example, an interrupt handle r
may place each successive reading in a buffer, from where it can b e
subsequently retrieved and processed by the main (non-interrupt )
portion of the program . This minimizes the processing required
within the interrupt handler, allowing it to return quickly and
be ready to respond should more data become available. Rapid
completion of the interrupt also ensures that lower priority code has
the opportunity to run .

Memory buffers can take many forms . We will consider only
two basic structures, of which there are a large number of imple-
mentations: LIFO buffers and FIFO buffers . All programmers wil l
be familiar with arrays in which each constituent element can b e
accessed via a numeric index. In high level languages, arrays ar e
used as the basis of various types of buffer . The characteristics of a
buffer are determined by the locations in which data is stored an d
by the order in which it is transferred to and from the buffer .

LIFO buffers

As the name implies, the last item of data to be recorded in a
Last-In-First-Out (LIFO) buffer is the first one to be made availabl e
when the buffer is read. You should already be familiar with one
implementation of LIFO buffers : the 80x86 processor's stack . The
usual analogy is that LIFO buffers operate like a pile of books . Jus t
as it is possible to gain access to only the last book placed on the
pile (i .e . the one on the top), items of data stored in a LIFO buffe r
can be retrieved only in the reverse of the order in which they wer e
stored. This property is of limited use in most DA&C systems, bu t
it is occasionally useful if it is necessary to process a sequence of
measurements in reverse time order .

Listing 6 .2 illustrates two simple C functions that can be used t o
implement a LIFO buffer . Each element of the buffer is a single
16-bit word, but the example can be readily adapted to handle othe r
data types . The sufCount variable should be initialized to zero befor e
storing data in the buffer. If your program reads from or writes to th e
LIFO buffer from within an interrupt handler, you should disabl e
interrupts whenever non-interrupt code accesses the buffer .

FIFO buffers

Also known as a circular buffer or a ring buffer, the First-In-First -
Out (FIFO) buffer is perhaps the most useful buffer structure i n
DA&C systems. FIFO buffers have many uses in DA&C application s
and are essential to facilitate communication between asynchronou s
processes . They are used as the basis of event-driven systems, for
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Listing 6.2 Accessing a LIFO buffe r

unsigned int Buffer[256] ;
unsigned int BufCount ;

void WriteLIFO(unsigned int Data, unsigned char *Full )
{
if (BufCount < 256 )

{

Buffer [BufCount] = Data ;
BufCount++ ;
*Full = 0 ;
}

else *Full = 1 ;

void ReadLIFO(unsigned int *Data, unsigned char *Empty )
{

if (BufCount > 0 )
{

BufCount-- ;
*Data = Buffer [Buf Count ] ;
*Empty = 0 ;

}
else *Empty = 1 ;

}

storing keyboard scan codes and for implementing message queues .
They also have many applications in DA&C software : for driver-clien t
interprocess communication, DMA based I/O and in filtering algo-
rithms. As we shall see in Chapter 8, FIFO buffers are also importan t
features of interrupt-driven serial communications software .

The first item of data recorded in the FIFO buffer is the first on e
retrieved when the buffer is read . Thus the order in which data i s
read from the buffer is the same as that in which it was originall y
stored. FIFO buffers can be visualized as a ring structure such a s
that shown in Figure 6 .3 . This example shows only 16 entries in the
buffer, but much larger buffers are often used in practice . As the
buffer fills, new readings are placed in successive locations aroun d
the ring, defined by an index labelled Bufln in the figure . When the
buffer is read, the oldest item of data is taken from the tail of th e
buffer . This is addressed by a second index, BufOut .

Listing 6 .3 shows C functions which can be used for reading
from and writing to a FIFO buffer. In this example, the buffer i s
implemented as an array named Buffer and has 256 entries. The
buffer is managed by means of the two indices Buf In and BufOut .

Buf In addresses the next free location in the buffer and BufOut points
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Figure 6 .3 The structure of a FIFO buffe r

to the oldest item of data. Although not shown in the listing, thes e
indices should both be initialized to 0 before accessing the buffer .
Likewise, the Buf Count variable, which is simply a count of the numbe r
of readings held within the buffer, should be initialized to 0 . Notice
that the Bufln and BufOut indices are incremented until they reac h
255 (the end of the Buffer array) . Subsequent accesses cause th e
indices to wrap around to the first element in the buffer in order t o
emulate the structure shown in Figure 6 .3 .

If the buffer is accessed by two or more asynchronous processes
(e.g. from within a hardware interrupt handler and by a non-
interrupt routine), calls to the WriteFIFO O Or ReadFIFO O functions
will constitute a critical section and must be appropriately protected .
You should, for example, disable interrupts when accessing the buffe r
from non-interrupt code. See Chapter 2 for more on critical sections .

Because memory buffers have a finite (and often quite limited)
size it can be easy to run out of space if data is stored at too high
a rate, or if the routine that reads the buffer is delayed for some
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Listing 6 .3 Accessing a FIFO buffe r

unsigned int Buffer [256] ;

unsigned int BufIn ;
unsigned int BufOut ;
unsigned int Buf Count ;

void WriteFIFO(unsigned int Data, unsigned char *Full )
{

if (Buf Count < 256 )
{
Buffer [BufIn] = Data ;
if (BufIn < 255 )

BufIn++ ;

else BufIn = 0 ;

BufCount++ ;
*Full = 0 ;
}

else *Full = 1 ;
}

void ReadFIFO(unsigned int *Data, unsigned char *Empty )
{

if (BufCount > 0 )
{
*Data = Buffer [BufOut ] ;
if (BufOut < 255 )

BufOut++ ;

else BufOut = 0 ;
Buf Count - - ;
*Empty = 0 ;
}

else *Empty = 1 ;
}

reason . The programmer has several options when this happens . One
possible course of action is to pass an error flag back to the caller ,
as in Listing 6 .3. However, to preserve the relationship between th e
data stream and the point at which the error occurred, it is ofte n
preferable to record the error in the buffer itself. The routine tha t
reads the buffer can then detect the discontinuity in the data strea m
and take appropriate action .

A third option is simply to record the new data, overwriting th e
oldest data in the buffer . This may be desirable in certain situations .
Some statistical process control applications require the software
to maintain a process history of predefined depth (i .e. the N mos t
recent sets of readings) . This can be easily accommodated by allowing
a FIFO buffer to continuously overwrite the oldest data as each ne w
item of data is received .
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Another situation where automatic overwriting of data is advanta-
geous is in pre-trigger logging -- i .e . where a number of readings mus t
be recorded immediately prior to some unpredictable trigger event .
An example would be destructive proof testing of steel member .
An increasing load may be applied until the member buckles or
fractures. The applied load and deformation of the component ar e
measured continuously, but only those readings taken immediatel y
prior to failure may be of interest . The readings can simply be
recorded in a FIFO buffer, such that at any given time (luring the tes t
the buffer holds only the N most recent readings . If data acquisition
is halted when the component fails, the final contents of the buffe r
will represent the period leading up to the point of failure .



7 Parallel buses

As far as interfacing to the PC is concerned, it is convenient to divid e
bus systems into two categories : the PC's internal buses (such as ISA
and PCI) and external buses . Although internal buses are an integra l
part of the PC and a necessary element of all DA&C systems, thei r
operation is largely transparent to the programmer . For this reason ,
and because they are adequately covered in several books on P C
architecture, they will not be described in further detail here . Instead ,
the present chapter (together with Chapter 8) concentrates on th e
various external buses that can be used for communicating wit h
devices such as data-logging modules and programmable controllers .

Chapter 8 will deal with serial bus systems, in which data is trans -
ferred one bit at a time along a single conductor (or pair of
conductors) . Parallel buses, which we shall consider in this chapter ,
possess a separate signal line for each bit . This enables a whole byte ,
word or double word to be transmitted in one operation, allowing
potentially higher data transfer rates .

We will deal with two widely used parallel interfaces : the Centronic s
parallel port and the IEEE-488 bus (or GPIB) . These are of particular
interest in PC-based data-acquisition systems . The former is a stan-
dard component of virtually all PCs, and there are now a number of
parallel-port DA&C devices on the market . The well-known IEEE-48 8
bus is popular in test and instrumentation applications and is ofte n
used for PC-based laboratory interfacing .

This chapter by no means constitutes a comprehensive coverag e
of parallel bus systems . The popular Small Computer Systems Inter -
face (SCSI) bus, and a number of more specialized backplane buse s
such as STE and VME, have been excluded . As we have seen in
Chapter 1, the latter are used principally for interfacing in industrial
DA&C applications. From the PC programmer's perspective the y
often appear as an extension of the PC's ISA bus . Tooley (1995 )
provides a useful introduction to these systems . Other bus systems
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(such as Metrabyte's MetraBus and the DT-Connect system avail -
able from Data Translation Inc .), which are designed specificall y
for interconnecting components of DA&C systems, have also bee n
excluded because of their proprietary nature .

7.1 Introduction

External parallel buses are usually somewhat simpler in their design
than the PC's internal expansion buses . They do not, for example ,
possess most of the address or control lines that are present on th e
ISA bus . However, many parallel bus systems do incorporate som e
form of handshaking in order to strobe data into the receiving device
and to control the flow of data across the bus . Handshaking signals
used with specific buses are discussed in more detail in the followin g
sections. In contrast to the ISA and PCI buses, some external buses
support only 8-bit data transfers .

Most parallel buses operate synchronously – i .e . a common timing
or strobe signal is used to synchronize transmission and reception
of data. Often, the handshaking signals are automatically generate d
and sensed by the interface hardware . This relieves the software o f
the time-consuming burden of having to poll the handshaking lines .
An interrupt channel may also be available on the bus, and thi s
allows the interface circuitry to request processor service wheneve r
it is ready to transmit a new byte or whenever new data is received .

Some parallel interfaces operate without the benefit of hand -
shaking or synchronization, and are said to be asynchronous. Because
data may arrive at any time, the software must sample the state of
the interface frequently enough to accommodate the highest trans-
mission rate . Sampling at too low a rate may result in data byte s
being missed . This obviously imposes a considerable overhead o n
the software . Asynchronous parallel interfaces are employed mos t
often in situations in which the `data' lines are used, not to carry a
byte of data, but instead to sense the state of one or more externa l
devices, such as a limit switch or relay. Interfaces of this nature are
more accurately described as a collection of digital control lines
rather than a parallel bus. There are now, on the market, a number
of parallel digital I/O cards designed for this type of operation .
These cards, which are often equipped with isolating circuitry (e .g.
relays or opto-isolators), have numerous uses and form an importan t
part of many DA&C systems .

Some parallel interface devices may be suitable for bot h
synchronous and asynchronous communication, depending upo n
the nature of the software that drives them. For example, the 8255A
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Programmable Peripheral Interface, which is used to implemen t
digital I/O on a number of commercial DA&C cards, can be
configured for several different operating modes . The Basic
I/O mode is suitable for asynchronous digital I/O while mor e
sophisticated modes implement the hardware handshaking feature s
that are necessary to connect to synchronous parallel buses .

7.2 Data acquisition using a parallel bu s

The principal benefit of using parallel, rather than serial, buse s
for data acquisition is that they usually offer significantly highe r
throughput. As a general rule, most serial buses provide transfe r
rates of up to about 10 KB/s, whereas a data rate of a few hundre d
KB/s is achievable with typical external parallel buses (i .e. IEEE-
488 and Centronics systems) . This speed advantage does not alway s
apply, however . As we will see in Chapter 8, some newer serial bu s
designs offer the potential for extremely high speed data transfers :
up to several tens of MB/s !

One of the most serious restrictions imposed by parallel buses i s
that they are mostly designed for use with relatively short cables .
Unless fibre optic links are employed, this precludes their use for
communicating with remote data loggers and similar systems . It i s
not usually advisable to employ cables longer than about 1 metr e
with buses driven directly from TTL devices such as an 8255A
Programmable Peripheral Interface (PPI) . Up to about 2 to 3 metre s
of good quality shielded cable may normally be used in conjunctio n
with the Centronics parallel port, while the IEEE-488 bus support s
a total cable length of not more than 20 m . This compares with
distances of up to several thousand metres that are permissibl e
with some serial interfaces . The maximum practicable transmissio n
distance with any parallel bus does of course depend upon th e
impedance of the cable and the rate at which data is to be transmitted .
The degree of coupling between the bus lines may also be an
important consideration. Slow transmission rates can, in some cases ,
permit slightly longer cables to be used .

Most parallel systems employ a `multi-drop' bus topology – i .e .
several devices connected in parallel to the same data and control
lines. A good example of this is the IEEE-488 (GPIB) bus which we
will discuss later in this chapter . Point-to-point topologies are als o
sometimes used . This configuration is often employed with device s
connected to the PC ' s parallel (Centronics) port .

Parallel buses are used in a great variety of data-acquisition systems .
Their principal role is for high speed communication with laboratory
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test equipment and instruments such as digital voltmeters, frequenc y
counters or logic analysers . A number of products are available which
make use of, for example, the PC's Centronics port to interfac e
directly to an ADC . When used in conjunction with suitable line
drivers, relays, or opto-isolators, parallel interfaces can also be use d
in industrial systems to interface to Programmable Logic Controller s
(PLCs), control panels, indicators, motor drives and a multitude o f
other devices .

7.3 The PC's parallel port

Almost all PCs are equipped with at least one parallel port, bu t
most machines will accommodate up to three separate ports . The
parallel port was designed specifically for interfacing to printers . The
terminology used to describe the various connector pins and signals
reflects this. On some systems the parallel port may be used for othe r
purposes, such as connecting to external disk drives, tape devices
or to copy-protection keys (dongles) . It also provides a convenien t
means of interfacing to data-acquisition and/or control systems . We
will not discuss in detail how to drive a printer via the parallel port – i t
is normally preferable to use the operating system or BIOS service s
that are provided for this purpose (see, for example, the texts by
Norton and Wilton (1988), Phoenix Technologies Ltd (1989) o r
Dettinann and Johnson (1992)) . Instead, this section will concen-
trate on the operation of the parallel port's hardware and will discus s
how it can be programmed for use in DA&C applications .

Parallel port standards

Modern PCs are equipped with parallel ports conforming to a variet y
of standards . There are four basic classes of parallel port :

1. The standard unidirectional port: present on IBM PC, XT an d
AT machines.

2. The bidirectional port which was introduced in the IBM PS/ 2
range .

3. The Enhanced Parallel Port (EPP) developed by Xircom Inc . ,
Intel and Zenith Data Systems .

4. The Enhanced Capabilities Port (ECP) developed by Hewlet t
Packard and Microsoft .

The standard parallel port was designed primarily for unidirectional
output . As such, it possesses only one 8-bit output port and a group o f
five digital input lines . The latter usually carry control information,
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but in some applications they provide a means of inputting data
from external devices. Data is usually read one nibble (4 bits) at a
time: the fifth input line carries control or interrupt signals .

The bidirectional parallel port is present on the IBM PS/2 rang e
and on some older AT `clone' machines . For compatibility with
earlier systems, this port emulates the standard unidirectional por t
by default . However, it can be switched, by software, to an inpu t
mode, allowing its 8-bit data port to receive a byte of informatio n
from a peripheral device .

More modern ISA/PCI machines are equipped with an Enhanced
Parallel Port (EPP) which is a further extension of the standard
parallel port . This type of system employs a bidirectional data bus ,
but also carries out the data transfer handshake automatically as soo n
as the software writes data to the port . This removes the burden o f
handshaking from the software and allows a byte to be transferred in
only one I/O cycle . At least four OUT or outportb t) /outp c) instructions
would be required for a software-controlled handshaking sequenc e
using a standard parallel port .. The EPP can, of course, emulate a
standard parallel port if the high speed data transfer capability i s
not required. To maintain compatibility with the standard port, th e
EPP defaults to this emulation mode when power is first applied .
The enhanced high speed mode may subsequently be activated by
software . A number of the parallel port 's connector pins (STROBE ,
AUTOFEED, and SELECT-IN: see Connector pin assignment later
in this chapter) are used for different purposes when the EPP' s
enhanced mode is activated, although they revert to their norma l
function in the default standard mode . The EPP is used on some
portable computers to circumvent their limited expansion capability
and to provide a meads of interfacing them to peripherals othe r
than printers .

The ECP provides similar facilities to those of the EPP, but, i n
addition, implements data compression and error detection facilitie s
as well as an addressing scheme that allows a single port to addres s
one of up to 128 separate I/O devices .

The IEEE-1284 (1994) standard encompasses all four classes o f
parallel port and defines every aspect of the parallel port interface . I t
reclassifies the previous port designs as separate modes of a new type
of port. This standard is becoming widely adopted for interfacing
to peripherals and to some DA&C devices, but there are still a very
large number of the older port designs in use .

Most data-acquisition applications do not require the very high
rates of throughput possible with the EPP, ECP and IEEE-1284 ports .
In the remainder of this chapter, we will concentrate on the basi c
features offered by the unidirectional and bidirectional parallel



256 PC interfacing and data acquisitio n

ports or modes. Unless specified to the contrary, the followin g
text excludes any discussion of the more advanced features of
EPP, ECP and IEEE-1284 . Remember, however, that these standard s
maintain backward compatibility with the earlier devices and s o
the information provided will also be of use on modern IEEE-128 4
compliant machines. Further information on the EPP may be foun d
in the texts by van Gilluwe (1994) and Buchanan (1999) . Roscli
(1996) also provides a detailed account of the various parallel por t
standards .

Data acquisition via the parallel port

The parallel port offers several advantages for DA&C . First, it i s
cheap to use – it is a standard component of all PCs – and it is ofte n
only necessary to purchase or construct a suitable connector an d
cable. Also, the computer can be easily unplugged from the externa l
device : there is no need to insert special adaptor cards in the PC' s
expansion slots . This is a particularly relevant consideration whe n
the number of expansion slots is limited (e .g. when using a portable
PC) . Finally, and often most importantly, the parallel port offers th e
potential for quite high speed data transfer .

Speeds of up to about 150 KB/s are possible on a standard unidi-
rectional parallel port, although the actual maximum data transfe r
rate will, of course, depend upon the speed of the controlling soft -
ware and upon the response time of the device attached to th e
port . Most printer interfaces, for example, are driven at a fractio n
of the maximum rate : perhaps 10 KB/s or less . Some new version s
of the parallel port, conforming to the EPP standard or the mor e
recent IEEE-1284 standard, are capable of transmitting data at u p
to 2 MB/s, although it is difficult in practice to sustain data rates o f
more than about 800 KB/s .

A number of manufacturers now produce DA&C modules whic h
connect directly to the PC's parallel port . Some devices are very
simple and inexpensive, incorporating, for example, a single channe l
8-bit ADC. Others provide a more comprehensive set of features :
multiplexed analogue input, multi-channel analogue output, digita l
I/O or complex counter/timer devices for digital pulse an d
frequency measurement .

The main disadvantage with using a parallel port for data acqui-
sition is that cable lengths must be limited to less than about . 1 .5 to
3 m, depending upon port design and cable quality. Transmission
distance can be extended by using fibre optic adaptors .

A further limitation is that the port provides only a small number of
I/O lines . There are five input lines on the standard unidirectional
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parallel ports and this may be inadequate in some applications .
The parallel ports present on a few older clone machines do not
even conform to the basic unidirectional port standard and hav e
an even smaller number of active input lines! Some peripheral
devices (most notably copy protection `dongles') circumvent thi s
limitation by transferring data bits in a serial manner, using jus t
one of the available I/O lines . This does negate the parallel port' s
speed advantage and complicates programming somewhat. In the
absence of bidirectional, EPP or ECP ports, the most satisfactor y
means of increasing the number of I/O lines and of implementing
bidirectional data transfers is to interface the port to a device suc h
as an 8255A PPI via non-inverting octal buffers and suitable logic .

Parallel port addresses

Each parallel port appears to the programmer as a set of thre e
registers in the PC's I/O space . The starting (or base) address o f
each register group is recorded by the BIOS's POST routines in a
four-word table at address 0040 :0008h in the BIOS Data Area . This
is shown in Table 7 .1 . The total number of parallel ports present i n
the system is stored as a binary-coded number in bits 14 and 15 o f
the word at 0040 :OO101i in the BIOS Data Area .

The IBM PC and XT, and compatible machines, will accommodat e
up to four separate parallel ports. All four of the above locations
may be occupied on these systems . However, on the IBM AT and
modern PCs, the location previously used to hold the fourth paralle l
port address (i .e . 0040:000Eh) is reserved . On the PS/2 range of
machines (and some AT compatibles) this location contains the
segment address of the Extended BIOS Data Area. The parallel por t
base addresses that are normally used on the various models of P C
and PS/2 are listed in Table 7 .2. As there can be some variation

Table 7 .1 Parallel port address table in the BIOS Data Are a

Address

	

Contents

0040 :0008h I/O address of first parallel port .
0040 :000Ah I/O address of second parallel port (or 0 if less than 2 ports present) .
0040 :000Ch I/O address of third parallel port (or 0 if less than 3 ports present) .
0040 :000Eh IBM PC, XT : I/O address of fourth parallel port (or 0 if not present) .

IBM AT : Reserved .
IBM PS/2 : Segment address of extended BIOS Data Area .

0040 :0010h Bits 14 and 15 hold the number of parallel ports detected by th e
BIOS .
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Table 7 .2 Usual parallel port addresse s

Parallel port
Base address on

PC, XT
Base address on

AT
Base address on
MCA systems

1
2
3

3BCh or 378h
378h or 278 h

Undefined

378 h
278 h

Undefined

3BC h
378 h
278h

between the various `compatible' machines, it is prudent to obtai n
the port's base address from the BIOS Data Area rather than to cod e
the address into your program .

Note that the BIOS printer services obtain the parallel por t
addresses from the BIOS Data Area and, if all parallel-port drive r
software is designed to do likewise, it is then very simple to redirec t
I/O operations to a different port by simply rearranging the content s
of the address table .

The structure of the parallel port

Although the parallel port is a fairly simple device, there are a numbe r
of difficulties associated with using it for two-way data interchange .
Before considering the topic of communication we will first discuss
the parallel port's structure and method of operation .

Overview
Figure 7.1 is a schematic representation of the structure of th e
parallel port . Each parallel port contains three registers which occupy
contiguous addresses in the PC's I/O space . Actually, read and writ e
operations performed on two of these I/O addresses (i .e. the Data
and Control Register addresses) cause different internal registers t o
be accessed. However, most of the bits within each pair of registers
are mapped to the same signal lines and, for this reason, it is more
convenient to think of reading and writing operations as accessin g
the same register.

The majority of the bits that can be addressed via these register s
are used to directly control or sense the state of the various signa l
pins present on the connector (see the following section for a list o f
pin connections) . In most cases, a logical 1 bit corresponds to a high
voltage (+5 V) at the associated connector pin, but the SELECT-IN ,
AUTOFEED, STROBE and BUSY lines are inverted as shown i n
Figure 7.1 . Other bits present in the various registers are used t o
enable or disable interrupts and, on bidirectional ports, for selectin g
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Figure 7 .1 Schematic representation of the parallel port
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the direction of data transfer. Note that the overstrike (e .g. in
STROBE) indicates only that the signal is active, or asserted, when at
a logic-low level : it is not meant to indicate that the signal is inverte d
between the Status or Control Register and the connector pin .

The standard unidirectional parallel port, does not allow data t o
be input via the Data Register . However, the bidirectional type of
parallel port can be programmed (via bit 5 of the Control Register )
to permit both input and output via the Data Register . Listing 7 .1 ,
shown later in this chapter, includes a function which illustrates
how to determine whether the parallel port hardware supports this
`extended' mode .

The ACK input line may be sensed via bit 6 of the Status register . As
shown in Figure 7.1, this line can also be used to generate interrupts .
The falling edge of a pulse on ACK will cause an interrupt to occur ,
but only if bit 4 of the Control Register is set . The 8259 PIC's interrupt
mask must also have been modified in order to enable interrupts o n
the appropriate IRQ line . The first parallel port is usually assigne d
to IRQ7 and the second to IRQ5 . No specific interrupt levels ar e
reserved for other parallel ports which might be present in the
system. In these cases it is usual to configure the port to use any free
interrupt channel . The IRQ level may usually be selected by mean s
of a jumper or DIP switch. Once an interrupt signal has occurred on
the ACK line, bit 2 of the Status Register indicates that an interrup t
is pending . Note that the BIOS's printer services do not make use o f
the parallel port's interrupt facilities, although some Windows EP P
or ECP drivers do .

Connector pin assignment
The PC's parallel port employs a female 25-way D-type connector .
This usually connects to a printer via a cable terminated with a
male 36-way Arnphenol connector . The pin assignments for both
connector types are listed in Table 7 .3 .

Registers and programming detail s
The Standard parallel port has three registers : the Data. Register, the
Status Register and the Control Register . These are also supporte d
by the more advanced implementations of the parallel port (e .g .
IEEE-1284 compliant ports) .

The Data Register (offset 0, RAN)

This is normally used for sending 8-bit characters to a printer, but i n
DA&C applications it may also be used for sending out commands ,
data or other signals to data-logging or control units .
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Table 7 .3 Parallel port connector pin assignment s

Pin number

25-way D-type 36-wayAmphenol Signal

1 1 STROB E
2 2 D O
3 3 D 1
4 4 D 2
5 5 D 3
6 6 D 4
7 7 D 5
8 8 D 6
9 9 D 7
10 10 AC K
11 11 BUSY
12 12 P E
13 13 SELECT
14 14 AUTOFEE D
15 32 ERRO R
16 31 INI T
17 36 SELECT-I N

18-25 19-30, 33 Signal ground
15 Not connecte d

- 16 0 V (logic ground )
- 17 Chassis groun d
- 18 Not connecte d

34 Not connecte d
- 35 Logic 1

On the standard parallel port, or on the bidirectional port whe n
read mode is disabled (Control Register, bit . 5 = 0), all bytes writte n
to the Data Register are latched so that the data remains on th e
corresponding connector pins . Any subsequent read operations wil l
return the last byte written to the register. Note that reading th e
Data Register will return the data previously latched : it is not possibl e
to read the state of the connector's D0 —D7 pins on the standard
unidirectional parallel port .

When data reads have been enabled (Control Register, bit 5 = 1) ,
the data output latch is isolated from the connector pins so that any
bytes written to the Data Register are prevented from reaching th e
parallel port connector . In this mode, it is possible to sense the stat e
of the D0—D7 connector pins by reading the Data Register .



262 PC interfacing and data acquisitio n

Table 7 .4 The Status Register

Bit

	

Description

0

	

Unused/reserved .
1

	

Unused/reserved .
2

	

Interrupt request (IRO) pending on MCA systems . Unused o n
non-MCA systems .

3

	

ERROR line status (1 = +5 V nominal) .
4

	

SELECT line status (1 = +5 V nominal) .
5

	

PE line status (1 = +5 V nominal) .
6

	

ACK line status (1 = +5 V nominal) .
7

	

BUSY line status – inverted (0 = +5 V nominal) .

The Status Register (offset 1, R/O)

This register is normally used for reading the status of an attache d
printer. Bits 3 to 7 of the Status register reflect the state of the fiv e
input lines listed in Table 7 .4. Note that the BUSY line is inverte d
so that a high voltage (+5 V) on the connector pin will result in a
zero BUSY bit . As mentioned previously, a low pulse on the ACK lin e
can be made to generate an interrupt if required . On a bidirectional
parallel port, bit 2 indicates whether an interrupt is pending .

The Control Register (offset 2, R/W)

When a printer is connected to the parallel port, the Control
Register is normally used to control data transfers to the printer .
This is accomplished by means of four digital output lines which
can be manipulated via the four low order bits of the Contro l
Register . When interfacing to equipment other than a printer, thes e
lines can be used for a variety of different purposes. The STROBE,
AUTOFEED and SELECT-IN lines are inverted so that each bi t
must be set to 0 in order to generate a high (+5 V) voltage at th e
corresponding connector pin . However, the INIT output line is no t
inverted. The four output lines are all latched so that, once written ,
the same bit pattern will normally remain on the connector pins .
Reading from this register will return the values previously writte n
to these lines .

Two other bits are also present in the Control Register . These are
used for enabling the parallel port interrupt and, on a bidirectiona l
parallel port, for controlling the direction of data flow through th e
Data Register. Table 7.5 lists the bits present in this register .
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Table 7 .5 The Control Registe r

Bit Write Read

0 STROBE pin status (0 = +5 V
nominal) .

STROBE pin (0 = +5 V nominal) .

1 AUTOFEED pin (0 = +5 V nominal) . AUTOFEED pin status (0 = +5 V
nominal) .

2 INIT pin (1 = +5 V nominal) . INIT pin status (1 = +5 V nominal) .
3 SELECT-IN pin (0 = +5 V nominal) . SELECT-IN pin status (0 = +5 V

nominal) .
4 0 = Disable parallel port interrupt .

1 = Enable parallel port interrupt .
Current interrupt-enable status .

5 0 = Write via Data register enable d
(standard/compatibility mode) .

1 = Read via Data register enabled
(write via Data registe r
disabled) .

Unused/reserved .

6 Unused/reserved . Unused/reserved .
7 Unused/reserved . Unused/reserved .

Driving a printer via the parallel port

So far we have seen how each control and status line present in th e
parallel port is mapped to the various registers, but we have refrained
from discussing the mechanisms used to transfer data to a printer.
This information is, of course, superfluous if the parallel port is t o
be used for interfacing to devices such as relays, stepping motors o r
data-logging equipment . However, if it is necessary to interface to
a printer, or to a DA&C device which operates in a similar way, i t
is important to understand the basic principles of the data transfer
sequence involved .

Table 7.6 indicates how the various control and status signals ar e
used to control a printer. Normally, the printer-driving software wil l
force the SELECT-IN line low to select the printer . This may occur
once only, perhaps at the beginning of a program . The printer wil l
subsequently set the SELECT line high . To transfer each character ,
the following sequence of events occurs :

1. The software waits until the printer 's BUSY signal goes low, whic h
indicates that the printer is ready to receive a character .

2. The software places a character code on the DO–D7 lines and ,
after a short delay pulses the STROBE line low . The falling edg e
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Table 7 .6 Printer control and status signal s

Pin/signal Direction Descriptio n

BUSY Input High when the printer is busy and unable to accept an y
further data . Goes low when ready to receive more data .

ACK Inpu t
Output

Inpu t
Inpu t
Inpu t

Output

Pulses low to acknowledge receipt of data .
Pulses low to indicate that valid data is present on D0—D7 .

The printer must read D0—D7 when it detects th e
STROB E

P E
SELECT

STROBE pulse .
High when the printer has run out of paper .
High when the printer is selected and active .
Low when the printer detects a paper out (PE) erro r

condition, when the printer is off line, or when som e
other error is detected .

Low selects the printer . This signal is ignored on som e
printers .

ERROR

SELECT-I N

INIT

	

Output Low pulse, lasting at least 50 µs, initializes the printer .
Low causes the printer to automatically generate a Line

Feed character immediately after receiving each Carriag e
Return character . This signal is ignored by some printers .
The auto-line feed facility is often selectable via th e
printer's DIP switches or front panel .

AUTOFEED

	

Output

of the STROBE pulse causes the printer to immediately set th e
BUSY line high and then to read the data from the DO—D7 lines .

3 . When the printer has read and stored the data, it pulses the ACK
line low in order to acknowledge receipt of the data. As ACK
returns to a high state, the printer pulls the BUSY line low agai n
to signal that it is ready to receive the next character .

The ACK pulse can be made to generate an interrupt. Using this
facility, you can install an interrupt handler to transfer a series o f
characters from a memory buffer to the printer .

The PC may pulse the INIT line at any time to reset the printer .
The driving software should monitor the PE and ERROR lines i n
order to detect error conditions such as the printer running out o f
paper or being switched off line . Many different types and models
of printer can be connected to the parallel port . Most have stable
and noise-free interfaces, but in some cases electrical noise, cause d
by badly shielded or grounded cables, may be problematic . When
writing interface software to sense the condition of the ACK, BUSY ,
PE, SELECT and ERROR lines it is advisable to sample the relevan t
bits in the Status Register at least two or three tunes . This reduces
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BUSY

DO-D7
0

1	
STROBE

0

AC K

Figure 7 .2 Handshake sequence for data transfer via the parallel port to a printe r

the likelihood that spurious noise spikes will disturb the handshake
sequence. The data transfer handshake is illustrated in Figure 7 .2 .

The timing specification for the transfer is only loosely defined ,
particularly in the case of older hardware designs . The minimum
delay times required to transfer data to a fast printer are A = B =-
C = D = 0 .5 is. Some printers may require the various signals to
be held for a greater length of time. Sanchez and Canton (1994 )
recommend that the STROBE pulse should last for 5 is or more .
Buchanan (1999) gives similar figures while the IEEE monographs b y
Maine (1986) and Marnham (1994) specify the following minimu m
timings :

A. STROBE pulse delay 50 is
B. STROBE pulse period 1 gs
C. ACK pulse period 100 ns
D. Delay after ACK before removing data 10 gs

The variation in the quoted timing figures reflects the loosely
defined standards adopted by early parallel port implementations .
According to Rosch (1996), the more rigorous IEEE-1284 standard' s
Compatibility mode (which emulates a unidirectional port) speci-
fies a STROBE pulse period (B) of 0 .5-500 is and an ACK puls e
period (C) of 0 .5-10 is .

Printer store s
data
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A simple parallel port drive r

Listing 7 .1 is an example of a basic parallel port driver which provide s
access to the various I/O lines present at the connector . The listing
consists simply of a library of (almost) independent C routines tha t
can be called to perform specific tasks . Functions are included to
determine the address of each parallel port in the system and t o
check whether the ports are of the bidirectional type .

To use this driver, the caller must first invoke th e
SearchForLPTPorts () function. This will initialize the array of LPT

structures according to the number, type and location of LPT (i.e .
parallel) ports found . The caller may then examine the BaseAddr and
ExtMode fields of each element in the array to determine whether
the corresponding parallel port is available and, if so, whether i t
supports the so-called `extended' (read) mode of the bidirectiona l
port . Thereafter, the remaining functions contained within the
listing can be called as and when needed to read or write data vi a
the parallel port. Each function is individually documented and its
purpose should be self-explanatory.

The driver automatically inverts the states of the SELECT-IN ,
AUTOFEED, STROBE and BUSY signals so that a high bit passe d
between the calling routine and the driver functions always corre-
sponds to a high voltage (+5 V) at the corresponding connector pin .
When using this driver, the programmer need not be concerned
with the locations of each bit within the various registers: all I/O

Listing 7 .1 A parallel port software drive r

/*

		

Bidirectional Parallel Port Driver

--------------------------------- -

This driver allows access to the three parallel port registers . The connecto r

pins corresponding to the various bits in the bit patterns passed to/fro m

these driver procedures are mapped as follows :

---------------------------------------------------------------------- -

Port

	

Bit pattern passed to or from driver procedure s

7

	

6

	

5

	

4

	

3

	

2

	

1

	

0

---------------------------------------------------------------------- -

Data port

	

D7

	

D6 D5 D4 D3 D2 D1 D O

Status port --- BUSY ACK PE SLCT ERRO R
Control port

	

- - --- SL-IN INIT AFD STROBE
---------------------------------------------------------------------- -

All high bits passed as arguments to the driver procedures correspond to

logical high signals at the corresponding connector pins - i .e . the software

compensates for the logical inversion of some of the LPT port lines (BUSY ,
-SL-IN, -AFD and -STROBE are all inverted in hardware and this is compensated

for by the software) .
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Listing 7 .1 (continued)

The driver allows individual bits in the data port or control port to be se t

without disturbing any other bits in the port . It also allows the bit pattern

of the whole port to be changed in one operation . The five status lines may

also be read in one operation .

Extended read mode can be enabled (if supported) to allow read operations t o
be performed via the data port .

The -ACK line can be used to generate an interrupt whenever it pulses low .
The interrupt can be enabled or disabled as required using this drive r
(although code for manipulating the 8259 PIC and for intercepting th e

interrupt is not included) .
* /

*include <dos .h >

#define MaxNumLPTPorts 3

*define True

	

1

*define False

	

0

/*	 Data Declarations =	 * /

struct LPTPortRe c
{

unsigned int BaseAddr ; /* Base address of parallel port hardware * /

unsigned char ExtMode ; /* >0 if extended mode supported * /

unsigned char LastData ; /* Last data output via the Data register * /

unsigned char LastCtrl ; /* Last data output via the Control register */

) ;

struct LPTPortRec LPT[MaxNumLPTPorts] ;

	

/* One structure for each port * /

/* ========================== Function Prototypes ========================== * /

unsigned int LPTPortBaseAddress(unsigned char Port) ;
unsigned char ExtendedModeSupported(unsigned char Port) ;
void SearchForLPTPorts(void) ;
void WriteData(unsigned char Port, unsigned char Data) ;

unsigned char ReadData(unsigned char Port) ;

unsigned char ReadStatus(unsigned char Port) ;
void WriteCtrl(unsigned char Port, unsigned char Data) ;

void SetDataBit(unsigned char Port, unsigned char BitNum, unsigned char High) ;

void SetCtrlBit(unsigned char Port, unsigned char BitNum, unsigned char High) ;

void SetExtendedMode(unsigned char Port, unsigned char Enable) ;
void SetACKlnterrupt(unsigned char Port, unsigned char Enable) ;
void InitializeLPTPort(unsigned char Port) ;

/* ======================= Function Implementations ======================== * /

unsigned int LPTPortBaseAddress(unsigned char Port )
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Listing 7 .1 (continued)

/* Returns the base address of the specified LPT port . The Port parameter i s
zero based . * /

{
return peek(0x40,(0x08 + (2 * Port))) ;
}

unsigned char ExtendedModeSupported(unsigned char Port )
/* Determines whether the specified LPT port supports extended read mode . * /
{
unsigned char CtrlPort ;
unsigned char BitPtn ;
unsigned char Supported ;

CtrlPort = inportb(LPT[Port] .BaseAddr+2) ;

	

/* Get control port status * /
outportb(LPT[Port] .BaseAddr+2,(CtrlPort I 0x20)) ;

		

/* Try to activate the * /
/* Extended mode * /

/* Check whether we can still read back data * /
Supported = False ;
BitPtn = OxOO ;
do

{

outportb (LPT [Port] . BaseAddr, BitPtn) ;
if (inportb(LPT[Port] .BaseAddr) != BitPtn) Supported = True ;
BitPtn++ ;
}

while (BitPtn != OxFF) ;

outportb(LPT[Port] .BaseAddr+2,CtrlPort) ;

	

/* Restore original control port * /
return Supported ;
}

void SearchForLPTPorts( )
/* Searches through the BIOS data area locations at offsets 08h, OAh and OC h

to determine the addresses of LPT1, LPT2 and LPT3 ports . A value of zero i n
any one of these locations indicates that no corresponding parallel port i s
available . This function checks whether each port supports extended mod e
(i .e . bidirectional data transfer) . * /

{
unsigned char Port ;

for (Port = 0 ; Port < MaxNumLPTPorts; Port++ )
{
LPT[Port] .BaseAddr = LPTPortBaseAddress(Port) ;
if (LPT[Port] .BaseAddr != 0 )

LPT[Port] .ExtMode = ExtendedModeSupported(Port) ;
else LPT[Port] .ExtMode = False ;

}
}

void WriteData(unsigned char Port, unsigned char Data )
/* This function writes the specified Data byte to the data register of th e

LPT port specified by Port . A low bit corresponds to a logical low signa l
on the corresponding connector pin . */
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Listing 7.1 (continued)

LPT[Port] .LastData = Data ;
outportb(LPT[Port] .BaseAddr,Data) ;
}

unsigned char ReadData(unsigned char Port )
/* This reads the data port if extended mode is supported and data reads ar e

enabled (via the Direction Control bit in the control port) . If reads are
not possible, this function returns the last data written to the contro l

port . A low bit in Data corresponds to a logical low signal at the

corresponding connector pin . * /
{
if ((LPT[Port] .ExtMode) && ((LPT[Port] .LastCtrl & 0x20) == 0x20) )

return inportb(LPT[Port] .BaseAddr) ;
else return LPT[Port] .LastData ;

}

unsigned char ReadStatus(unsigned char Port )
/* Reads the Status port lines and returns them, coded as follows (MSB first) :

BUSY, -ACK, PE, SLCT and -ERROR . A low bit corresponds to a logical low
signal on the corresponding connector pin . * /

{
return (((inportb(LPT[Port] .BaseAddr+l) A 0x80) >> 3) & OxlF) ;
}

void WriteCtrl(unsigned char Port, unsigned char Data )
/* This function writes the low order four bits of Data to the Control registe r

leaving the Interrupt Enable and Direction Control bits unchanged . The fou r
bits are, in order from MSB to LSB : -SL-IN, -INIT, -AFT and -STROBE . A low
bit corresponds to a logical low signal on the corresponding connecto r

pin . * /
{
LPT [Port] . LastCtrl = ((Data A OxOB) & OxOF) I (LPT[Port] . LastCtrl & OxFO) ;
outportb (LPT [Port] .BaseAddr+2, LPT [Port] . LastCtrl) ;
}

void SetDataBit(unsigned char Port, unsigned char BitNum, unsigned char High )
/* Sets the state of a single bit (BitNum = 0 to 7) in the specified LPT port' s

data port . If High is True, the corresponding connector pin is set to a
logical high state . * /

unsigned char Mask ;

Mask = Ox01 << (BitNum % 8) ;
if (High )

LPT[Port] .LastData = LPT[Port] .LastData I Mask ;
else LPT[Port] .LastData = LPT[Port] .LastData & ' Mask ;

outportb (LPT [Port] .BaseAddr, LPT [Port] . LastData) ;
}

void SetCtrlBit(unsigned char Port, unsigned char BitNum, unsigned char High )

/* Sets the state of a single bit (BitNum = 0 to 3) in the specified LPT port' s
control port . If High is true, the corresponding connector pin is set to a
logical high state . */
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Listing 7 .1 (continued )

{
unsigned char Mask ;

Mask = Ox01 << (BitNum % 4) ;
LPT[Port] .LastCtrl = LPT[Port] .LastCtrl A OxOB ; /* Uninvert bits in LastCtrl * /
if (High )

LPT[Port] .LastCtrl = LPT[Port] .LastCtrl I Mask ;
else LPT[Port] .LastCtrl = LPT[Port] .LastCtrl & Mask ;

LPT[Port] .LastCtrl = LPT[Port] .LastCtrl A OxOB ; /* Reinvert bits in LastCtrl * /
outportb (LPT [Port] .BaseAddr+2, LPT [Port] . LastCtrl) ;
}

void SetExtendedMode(unsigned char Port, unsigned char Enable )
/* Enables or disables the parallel port's extended mode (if available) . Thi s

procedure has no effect if the port does not support extended mode . * /
{
if (LPT[Port] .ExtMode )

{
if (Enable )

LPT[Port] .LastCtrl = LPT[Port] .LastCtrl ( 0x20 ;
else LPT[Port] .LastCtrl = LPT[Port] .LastCtrl & OxDF ;

outportb (LPT [Port] .BaseAddr+2 ,LPT [Port] . LastCtrl) ;
}

}

void SetACKInterrupt(unsigned char Port, unsigned char Enable )
/* Enables or disables the parallel port's interrupt . * /
{
if (Enable )

LPT[Port] .LastCtrl = LPT[Port] .LastCtrl I OxlO ;
else LPT[Port] .LastCtrl = LPT[Port] .LastCtrl & OxEF ;

outportb (LPT [Port] .BaseAddr+2, LPT [Port] . LastCtrl) ;
}

void InitializeLPTPort(unsigned char Port )
/* Sets all outputs to logical low levels and disables the parallel por t

interrupt and extended mode (if available) . * /
{
WriteData(Port,OxOO) ;
WriteCtrl(Port,OxOO) ;
SetExtendedMode(Port,False) ;
SetACKInterrupt(Port,False) ;
}

lines are mapped to the low order bits of each register as noted i n
the listing .

7.4 The IEEE-488 (GPIB) bu s

The IEEE-488 bus standard is also known as the General Purpos e
Interface (or Instrument) Bus or GPIB . It originates from the HP-IB
bus originally developed by Hewlett Packard in the mid-1960s . It
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was adopted by the Institute of Electrical and Electronics Engineer s
(IEEE) as the basis of a new standard for parallel communica-
tions designated IEEE-488 . This was revised in 1978 and updated
again in 1987 . These two revised standards are often referred t o
as IEEE-488 .1 and IEEE-488 .2 respectively, the latter maintainin g
backward compatibility with the earlier standard . The original IEEE-
488 specification relates mainly to the hardware elements of th e
bus. IEEE-488 .2, however, is concerned more with command proto-
cols, defining such things as the order of multiple bus command s
and transaction timeouts . Error handling and status reporting were
also standardized along with some commonly used commands and
data structures. In the remainder of this chapter we will refer t o
both standards simply as `IEEE-488' except where discussing specifi c
differences between them.

The IEEE-488 bus was originally used for interfacing to laboratory
test equipment (e .g. frequency meters, spectrum analysers, calorime-
ters, logic analysers etc.) and to printers or plotters . Today the bus
has become very popular in both manufacturing and research envi-
ronments, and a great diversity of instruments are equipped with
IEEE-488 interfaces . It is now possible to connect many common an d
relatively inexpensive measuring instruments – digital voltmeters, fo r
example – to the IEEE-488 bus .

Overview of the IEEE-488 bus

The IEEE-488 standard allows up to 15 devices (including the PC )
to be connected together on the same party-line bus as illustrated i n
Figure 7 .3. The total length of the interconnecting cables must no t
exceed 20 m and the distance between any two bus devices must b e
no more than 2 In .

Each of the 15 possible devices is assigned a unique address
in the range 0 to 30 . This is known as the primary address an d

Controller

	

IEEE-488 BU S

Device 1

	

Device 2

	

Device 3
(listener)

	

(talker)

	

(listener)

Figure 7 .3 IEEE-488 bus topology
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is usually configured by means of a DIP switch or an analogous
programmable facility. Each bus device may also incorporate u p
to 32 sub-units which are capable of operating independently o f
each other . These sub-units may be individually addressed usin g
secondary addresses in the range 0 to 31 . The sub-units within each
bus device consist of logically independent (although not necessaril y
physically separate) units . Secondary address allocation is generall y
device specific . In some cases, the secondary addresses are used to
select specific features or data processing modes of a single unit.
One secondary address may, for example, be reserved for receip t
of configuration commands, while another is reserved for receiving
operational commands . Alternatively, a device connected to multipl e
sensors might use different secondary addresses to configure an d
access each sensor .

As indicated in Figure 7 .3, three classes of device may exist at each
primary address on the bus . These are referred to as listeners, talker s
and controllers .

Listeners

A listener can only receive data and commands from the bus; i t
cannot transmit them. A typical example of a listener is a printer
which only receives data and control characters from other device s
on the bus. There may be up to 14 active listeners present on th e
bus at the same time .

Talkers

Talkers are capable of transmitting data to other devices on the bus ,
but are incapable of receiving data or commands . Only one talker is
allowed to be active at any one time.

Controllers

The controller supervises the transfer of data along the bus . This
role is usually (but not always) performed by a PC equipped with
a suitable IEEE-488 adaptor card . The controller can assign any
device on the bus to act as a talker or listener. Many instruments
are capable of acting as both a talker and a listener (and sometime s
also as a controller) . These devices are often dynamically switche d
(via commands sent from the current controller) between listene r
and talker modes . There may be more than one controller in th e
system but only one controller can be active at any time . The active
controller can pass control to any other suitable device by issuin g
a Take Control (TCT) command . Before any data or messages can
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be transferred over the bus, it is the responsibility of the active
controller to initialize all other devices as either talkers or listeners .

Throughput

The IEEE-488 standard specifies that the maximum bit rate presen t
on any one line of the bus must not exceed 1 Mbit/s . Some propri-
etary systems will allow significantly higher transfer rates . In practice ,
throughput will depend upon the performance of the IEEE-48 8
adaptor used, the PC's host bus (ISA, EISA, PCI, parallel port or RS -
232 port) and driver software. In many cases, however, it is possibl e
to attain data transfer rates of no more than about 250 KB/s usin g
a standard IEEE-488 system . Transfer rates of a few hundred byte s
per second are more typical when very slow devices are present on
the bus .

The IEEE-488 handshake protocol guarantees that the overal l
speed of data transfer is determined by the slowest active listene r
present. This prevents data from being transferred too quickly fo r
the listener to handle .

The handshaking protocol (discussed in more detail in th e
Data transfer handshake section later in this chapter) is fairly tim e
consuming and can restrict throughput in some cases . National
Instruments Corporation have developed a faster protocol, know n
as HS488 . This is compatible with the standard IEEE-488 .1 protocol ,
in so far as HS488 devices will employ the normal protocol to com -
municate with standard IEEE-488 devices . If all talkers and listeners
on the bus are HS488 compliant, the faster protocol is automaticall y
adopted . HS488 is implemented using special hardware and is soft -
ware compatible with standard IEEE-488 systems . Slightly differen t
cable-length restrictions apply, however . Throughput is dependen t
upon the host P C ' s bus and driver software, but 7 .7 MB/s have been
claimed for HS488 using a PCI bus-based adaptor under Window s
NT. As HS488 is less widely used than the standard IEEE-488 protoco l
it will not be discussed further here .

The structure of the IEEE-488 bu s

The bus consists of 16 signal lines together with a number of groun d
and shield wires. The IEEE-488 cable is usually terminated with a
24-pin Amphenol connector . The connector pin assignments are
shown in Table 7.7 .

Eight bidirectional data lines (DIO1 –D108) are used for carryin g
data and command messages . The messages are transferred in ac-
cordance with a handshaking protocol implemented with the DAV,
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Table 7 .7 IEEE-488 bus lines and connector pin assignmen t

Pin Mnemonic Name Function

1 DI01 Bidirectional data Transfer data or command codes .
2 D102 bus line s
3 DI03
4 DI04
13 D10 5
14 DI06
15 DI07
16 DI08
6 DAV Data valid Asserted by talker to indicate bu s

holds valid data .
7 NRFD Not ready for data Asserted by listener to indicate that i t

cannot receive data .
8 NDAC Not data accepted Asserted by listener while readin g

data .
5 E01 End or identify Asserted by talker to identify the last

byte of data in a block or message .
Also used in parallel poll .

9 IFC Interface clear Asserted by controller to initialize al l
bus devices .

10 SRQ Service request Asserted by any device to reques t
the attention of the controller .

11 ATN Attention Asserted by the controller to indicate
that the data bus holds a
command/address rather tha n
data .

17 REN Remote enable Asserted by controller to disable an y
front panel controls .

18 DAV gnd Ground .
19 NRFD gnd Ground .
20 NDAC gnd Ground .
21 IFC gnd Ground .
22 SRQ gnd Ground .
23 ATN gnd Ground .
24 Logic gnd Ground .
12 Shield Shield .

NRFD and NDAC lines . In addition, five interface management line s
(ATN, IFC, SRQ, REN and EOI) are used for carrying control an d
status information . All signals on the bus are active low — i .e . the line s
are considered to be asserted (or active) when at a low logic leve l
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(<0 .4 V) . All signal lines use TTL logic levels, although DAV, NRFD
and NDAC employ open collector outputs. This allows them to b e
used in a wired-OR configuration so that any one of the bus device s
can independently assert these lines. When unasserted, these lines li e
at the logical high level of about 3 .3 V .

Data transfer handshake

All message bytes are transferred from the talker to one or more
listeners by means of a sequence of handshake signals . As mentioned
previously, this process is designed to allow the slowest device on th e
bus to control the rate of data transfer . The handshaking sequence
is illustrated in Figure 7 .4 and is described below .

1. Each listener asserts the NRFD line while it is busy, only releasin g
it when it is ready to receive a message byte on the DIO lines fro m
another device . Consequently, NRFD will go high (inactive) onl y
when all active listeners are ready and have released NRFD . Each
listener should also normally hold the NDAC line in an active
state when ready for the next message byte .

2. Upon detecting that NRFD is inactive and NDAC is asserted, th e
talker places a message byte on the DIO lines .

3. The talker waits for 2 ms to allow the DIO lines to settle . It
then asserts the DAV line to indicate that a valid message byte is
present.

All devices read y
for dat a

NRFD

DIO1—8 'Mr New data byte

DAV

	

Data valid

NDAC ; ; .,

All devices have
accepted dat a

Figure 7 .4 IEEE-488 handshaking sequence
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4. The listeners, detecting that the DAV line has been asserted ,
begin to read the DIO lines . While performing this action, the y
each assert NRFD to indicate that they are busy .

5. Each listener acknowledges receipt of the message byte b y
releasing NDAC .

6. When all listeners have released NDAC, it goes high . This indicate s
to the talker that all of the listeners have accepted the message .
The talker then completes the handshaking sequence by releasin g
the DAV line . At this point NRFD is still asserted, NDAC has bee n
released, and the whole sequence may then be repeated in order
to transfer the next byte .

Note that both NDAC and NRFD must be released by all listener s
before they will go high . Each active listener releases these lines a t
its own rate and in this way the handshaking sequence is controlle d
by the slowest listener present on the bus . This prevents data fro m
being transferred too quickly for the slowest listener to handle .

Interface management lines

The IEEE-488 bus possesses a number of lines for controlling device s
on the bus, for issuing commands and for requesting service .

The IFC (Interface Clear) line may be asserted by the activ e
controller to reset and initialize all bus devices . On receipt of thi s
signal, the actions performed by each instrument connected to the
bus will be device dependent . The IFC line is normally used by th e
controller at the beginning of a communications session to ensur e
that all devices are in a known default state . The controller asserts
the ATN (Attention) line whenever it transmits a message that mus t
be interpreted as a bus-management command, as opposed to a
device-specific message or data (the differences between messag e
types are described later in this chapter) . When ATN is asserted, all
devices on the bus will read any transmitted message byte, regardles s
of whether they have been configured as active listeners .

REN (Remote Enable) must be asserted to enable an instrumen t
to be controlled by commands received over the bus . When REN is
unasserted, the device can be controlled only via its front panel (i f
such facilities are available) .

When a device on the bus requires attention from th e
controller – for example, if it has valid data available or if an erro r
has occurred – it may assert the SRQ (Service Request) line . Upon
detecting the SRQ signal, the controller will finish whatever tas k
it is currently engaged in and then determine which device issued
the request for service. Remember that the same SRQ line is share d
between all bus devices, so when it is asserted, the controller only
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knows that one (or possibly more than one) device requires attention .
In order to detect which device issued the SRQ the controller initiate s
either a serial or parallel poll (see the following section) . Each devic e
responds to the poll command by issuing status information which
informs the controller whether it requires service . The controller
then services the appropriate devices) by, for example, reading an y
available data .

Finally, the EOI (End or Interrupt) line is asserted by the activ e
talker during transmission of the last byte of a multi-byte message .
This provides a convenient means of identifying the end of a message
or block of data . The EOI line also has an alternative use . It may be
asserted by the active controller in conjunction with ATN in orde r
to initiate a parallel poll as described in the following section .

Polling

The IEEE-488 interface implements a polling facility that allows th e
active controller to determine the status of each device on the bus .
This is used, after the controller has received a Service Request
(SRQ) signal, to determine which device needs attention . Two types
of polling may be performed : serial or parallel .

A serial poll is enabled by issuing a universal SPE comman d
(see the following section) . This enables all devices on the bus i n
preparation for a serial poll . The controller then addresses eac h
device, in turn, to talk by transmitting a TAG command . The device
responds by transmitting a single status byte on the data bus . Bit 7 of
the status byte is set if the addressed device is requesting service . The
remaining bits carry device-dependent status information . When
the serial poll has been completed, the controller usually issues the
universal SPD (Serial Poll Disable) command so that normal bu s
operation can be resumed .

A parallel poll provides a faster alternative to the serial poll . This
allows the controller to poll up to eight separate devices in one simpl e
bus transaction. The devices participating in a parallel poll eac h
transmit a status bit on one of the eight data lines . The bit allocations
used by each device must previously have been programmed b y
means of the PPC (Parallel Poll Configure) command . The PPC
command is first transmitted by the controller to a specific device .
This is followed by a supplementary command byte, which assign s
one of the eight data lines to the device for use in the subsequent
parallel poll . The three low order bits of the supplementary byt e
contain the binary-coded ordinal index of the data line to be used .
Note that the index runs from 0 (000b) for DIO1 to 7 (111b) fo r
DIO8. Bit 3 of the supplementary byte indicates the polarity of the
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device 's status bit that is needed to request service : if bit 3 is high ,
the status bit must also be high during the poll in order to reques t
service .

After all devices have been suitably configured, the controller i s
able to initiate a parallel poll at any appropriate time by simulta-
neously asserting the EOI and ATN lines . The devices on the bu s
respond by asserting (or unasserting) the appropriate data lines, ind i-
cating to the controller which devices require service . The universal
PPU (Parallel Poll Unconfigure) command may be issued by th e
controller to disable the parallel poll facility .

Messages

So far we have referred only to messages being transmitted over th e
IEEE-488 bus. In fact, these messages can each be one of two types :
dam messages or bus-management commands .

Data message s

Data messages can represent just about anything that makes sense
to a specific device . They can be pure data (e .g. the result of a
measurement) or they may be device-specific commands . The form
of a data message is purely device specific and is not defined b y
IEEE-488.1 . Although some aspects of data messages are standard-
ized in IEEE-488 .2, many instruments employ completely differen t
command sets. In an attempt to overcome some of the difficultie s
inherent in developing multi-instrument applications, a consortiu m
of prominent IEEE-488 equipment manufacturers proposed a stan-
dard command set for IEEE-instruments in the early 1990s . This
is known as Standard Commands for Programmable Instruments
or SCPI. It visualizes every instrument as a hierarchical group o f
functional blocks and provides standard commands to control eac h
block. This additional degree of standardization has the potentia l
to greatly simplify programming and interchanging of instruments .
A description of SCPI is beyond the scope of this book . For details ,
the reader is referred to programming guides supplied with SCPI
compliant instruments .

Bus-management command s

Bus-management commands are not device specific . They are an
essential part of the IEEE-488 standard and all devices on the bu s
must respond to them . The active controller can transmit bus-
management commands to any or all devices on the bus . During
transmission, the normal handshake protocol is used, except that
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Table 7 .8 The IEEE-488 bus-management command byt e

Bit

	

Descriptio n

	

4—0

	

If bits 6,5 = 00 : bits 0—4 hold the code of the Universal or Addressed
Command .

If bits 6,5 00: bits 0—4 hold a primary or secondary address .

	

6,5

	

Command type :
00 = Bus command (for sending both Universal and Addresse d

Commands) .
01 = Listen Address Group (for commanding a specific device to listen) .
10 = Talk Address Group (for commanding a specific device to talk) .
11 = Secondary Command Group (for accessing sub-units in a device) .

7

	

Unused .

the controller first asserts the ATN line. This causes the active talker
to relinquish control of the DAV line . The controller then becomes
the active talker and is able to transmit command bytes .

When ATN is asserted, all devices read the commands that are
transmitted by the controller, and participate in the handshak e
sequence regardless of whether they are configured as listeners .
When the ATN line is unasserted, only the devices previously config-
ured as talkers and listeners take part in subsequent communications .

The bus-management commands transmitted by the controlle r
each take the form of a single byte, as shown in Table 7 .8. Bit 7
(i .e. DIO8) is unused and should be zero . Bits 5 and 6 indicate th e
command group (i .e. the type of command that is being sent) an d
the remaining bits are interpreted either as a command code or as a
primary or secondary address .

Addressed Command Group (ACG)

The commands in this group affect only those devices that hav e
previously been addressed to listen . Bits 0 to 4 of the command byt e
specify the type of Addressed Command as shown in Table 7 .9 .

Universal Command Group (UCG)

The Universal Commands affect all devices connected to the bus .
Bits 0 to 4 of the command byte specify the type of Universa l
Command as shown in Table 7.10 .

Listen Address Group (LAG)

This group contains two commands which may be used to activate or
deactivate a device's listen mode . In both cases bit 5 of the command
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Table 7 .9 Addressed command group

Command
byte

	

Name Description

01 h

	

GTL Go to local . Causes the device to be programmed locall y
(i .e . via its front panel) . The device must be addressed to
listen using the LAG command (see Table 7 .8) in order fo r
it to exit local mode . This command cancels the Universa l
LLO command for the listening device .

04h

	

SDC Selected Device Clear. Initializes the listening device an d
resets it to its default state . The action performed is
device dependent .

05h

	

PPC Parallel Poll Configure . Configures the device to respond to
a parallel poll signal (EOI + ATN asserted) .

08h

	

GET Group Execute Trigger . Simultaneously configures al l
devices configured to listen . Used to synchronize a grou p
of devices to perform some pre-programmed task .

09h

	

TCT Take Control . Issued by the active controller to cause th e
recipient of the command to take control of the bus . The
new controller then becomes the active controller .

Table 7 .10 Universal command group

Command
byte

	

Name Descriptio n

11h

	

LLO

	

Local Lockout . Disables the local (front panel) controls of al l
bus devices .

14h

	

DCL Device Clear . Resets all devices . The action performed wil l
be device dependent .

15h

	

PPU

	

Parallel Poll Unconfigure . Removes the parallel pol l
configuration of each bus device and prevents th e
devices from participating in a parallel poll .

18h

	

SPE

	

Serial Poll Enable . Sets all devices to serial poll mode . In this
mode, each device will return one status byte when it is
addressed to talk .

19h

	

SPD

	

Serial Poll Disable . Disables serial poll mode .

byte is set to 1 and bits 0—4 contain a primary address . The LAG
command configures a specific device as a listener . The primary
address of the device that is to listen (coded in bits 0—4) may fall i n
the range 0 to 30 . The address value of 31 (i .e . bits 0—4 all set to 1 )
is invalid in the LAG command . Address 31 is known as the `unlisten
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address' and a Listen Address Group command byte containin g
the unlisten address (i .e. 00111111b) defines the UNL (unlisten )
command. This is used to globally disable all listeners on the bus .

When a device detects a LAG command in which bits 0 to 4 matc h
its own primary address, it becomes an active listener . Thereafter ,
it reads all data bytes transmitted on the bus until it detects a UN L
command .

Talk Address Group (TAG)

The talk address group contains two commands, TAG and UNT
(untalk), which are analogous to the LAG and UNL commands
described above, except that the TAG and UNT commands contro l
which bus device is configured to talk. Commands in this group are
distinguished from other command groups by the states of bits 5 an d
6, as indicated in Table 7 .8 .

Secondary Command Group (SCG )

The Secondary Commands work in a similar way to the LAG and TA G
commands in so far as they control which sub-unit in a previousl y
defined talker or listener is active (i .e. transmits or receives data) .
Bits 5 and 6 identify the command as belonging to the Secondary
Command Group .

Typical command and data transfer sequences

A simple example follows which will illustrate the sequence of
commands and bus signals required to configure the talker an d
listener devices on the bus. The current controller must issue th e
following commands :

1. Assert the ATN line to identify the following as commands .
2. Issue an UNL command to unlisten all devices .
3. Issue a TAG command (including the appropriate talk address )

to specify one talker .
4. Issue one or more LAG commands to specify one or mor e

listeners .
5. Unassert ATN .

Suppose we subsequently wish to select the measurement range of a
digital voltmeter on the IEEE-488 bus . The appropriate message to
select measuring range 2 may, for example, be `R2' . Note that this
message will be device specific and may vary between different volt -
meters . In the case of a SCPI compliant instrument, an appropriat e
SCPI command sequence would be used instead . If the message has
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to be sent to primary address 10, secondary address 5, the followin g
sequence would then be used .

1. Assert the ATN line to identify the following as commands .
2. Issue a UNL command to unlisten all devices .
3. Issue a LAG 10 command to cause the voltmeter (primary

address 10) to listen .
4. Issue a SCG 5 command to access secondary address 5 .
5. Unassert ATN .
6. Transmit an `R' character .
7. Transmit a `2' character . This may be followed by a CR, LF pair.

The EOI line is asserted during transmission of the last characte r
in the sequence .

8. Assert ATN .
9. Issue an UNL command to unlisten the voltmeter .

10. Unassert ATN .

It is not practicable to attempt to cover device-specific comman d
sequences here . Please refer to manufacturer's manuals for detaile d
information on configuring and operating specific equipment .

Interfacing IEEE-488 devices to the PC

The PC is usually interfaced to the IEEE-488 bus by means of a n
ISA, EISA or PCI adaptor card, although parallel port and seria l
port adaptors are also available . Most of these devices are softwar e
compatible with the `industry standard' National Instruments GPIB-
PCII and GPIB-PCIIA cards . The latter is functionally identical t o
IBM's GPIB adaptor . These cards conform to the IEEE-488 .1 stand-
ard, but enhanced cards, which support the additional function s
specified by IEEE-488.2, are also available . Adaptor cards usuall y
allow the PC to act as a talker, listener or controller and allow up to
14 bus devices to be interfaced to the PC . The throughput offered by
these cards varies, but most permit data transfer rates of up to abou t
300 KB/s .

Some adaptor cards include firmware drivers contained in ROM .
The services provided by these drivers can be accessed via an inter-
rupt interface in much the same way as BIOS services are invoked .
Most cards, however, are accompanied by disk-based software whic h
can be used by an applications program to communicate with th e
various instruments on the bus. Software drivers tend to take two
forms: object files which can be linked to user written programs ; or
operating system device drivers (e .g. installable DOS device driver s
or kernel-mode drivers under Windows NT) which are usually loade d
into memory when the PC is booted . Operating system device drivers
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are usually accessed from an application program via a special HL L
library file supplied by the driver's manufacturer . Some manu-
facturers also supply configuration, diagnostics and developmen t
utilities, often as an integral part of the driver's API .

Software drivers are controlled with a variety of commands . Some
commands are roughly equivalent to the single-byte bus commands ,
while others initiate lengthy sequences of bus transactions . Higher
level commands are usually also available . These facilitate, fo r
example, on-board buffering of data, control of multiple devices ,
and sophisticated bus management . Such a command mix provide s
the optimum combination of power and flexibility and means tha t
there is usually no need for the programmer to be concerne d
with manipulating the interface hardware directly . The form and
syntax of the commands tends to vary between the drivers offered
by different manufacturers, but most provide a broadly similar se t
of functions . Note, however, that IEEE-488 .2 drivers will include an
extended API in order to accommodate the additional functionalit y
encompassed by this standard . It is advisable to carefully study the
manuals accompanying your IEEE-488 driver for full programmin g
details .



8 Serial communication s

As we have seen in the previous chapter, parallel buses provide
a simple means of transferring data rapidly between the PC an d
external test instrumentation . They do, however, suffer from a
number of limitations . Foremost amongst these are the expense
associated with using long runs of multi-core cable and indeed th e
inability of many parallel buses to transmit over distances of mor e
than a few metres . Each parallel interface also requires at least eigh t
line drivers for the data bus and often several more to accommodat e
the various control lines, further increasing the cost of parallel bu s
interfaces .

Serial buses, on the other hand, provide a relatively cheap metho d
of communicating over long distances . In serial systems, the data
is broken clown into a series of bit patterns and transmitted on e
bit at a time over a single wire (or pair of wires) . This not only
reduces the number of bus drivers needed and minimizes cabl e
costs, it also allows data to be transmitted over very much greate r
distances. The RS-422 serial interface standard, for example, permits
communication over distances of 1200 In using relatively inexpensive
twisted-pair cable .

Serial transmission is normally slower than parallel I/O (althoug h
some serial systems allow for very high bit rates) . With one o r
two exceptions, typical maximum serial transmission rates are abou t
10 KB/s with the PC . This is often quite adequate in data-acquisition ,
automation and industrial control applications where a throughpu t
of 1–2 KB/s is more typical .

This chapter discusses the basic principles of serial communicatio n
and describes common standards and techniques that can be used
for linking PCs and data-acquisition equipment .

8.1 Some common terms

Before proceeding with a description of serial communicatio n
systems, it is useful to define a few common terms .
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Simplex and duplex communication s

The terminology used to describe communication traffic can b e
confusing, primarily because different definitions of the terms
simplex and duplex are used in the USA and in Europe . Because
a majority of DA&C hardware, software and related literature orig-
inates from the USA, we will use the American National Standard s
Institute (ANSI) definitions throughout this book . The European
alternatives are noted in the following paragraph .

The simplest form of serial communication involves transmissio n
in a single direction, such as from a PC to some form of actuator
or remote display unit. Unidirectional communication is terme d
simplex communication . Systems which allow data to be transmitte d
in two directions (i .e. to be transmitted and received by the sam e
device) may be full duplex or half duplex. Half duplex interface s
(also known as simplex interfaces in Europe) accommodate trans -
mission and reception, but not both at the same time, while a full
duplex (duplex in Europe) device may transmit and receive dat a
simultaneously .

Synchronous transmissio n

Synchronous serial transmission is the most efficient method of
transmitting large quantities of data along a serial communication s
link. In a synchronous system, the link carries timing informatio n
which is used to synchronize the operation of the transmitting an d
receiving elements. The widely used RS-232 standard includes a
number of control lines for this purpose, although these are no t
normally used in PC-based RS-232 implementations .

Data is generally transmitted in blocks which also contain variou s
flags and header information . The advantage of this technique is
that separate serial frames and the associated start and stop bits
(see the following section) are not required for each transmitte d
character . This minimizes the overall time taken to transmit eac h
byte . Synchronous transmission is used mainly in telecommunicatio n
and mainframe computer systems . As it is rarely used for data
acquisition, it will not be discussed further in this book .

Asynchronous transmission

Asynchronous serial transmission is of more relevance to PC-base d
data acquisition . In an asynchronous system, the transmitter an d
receiver are not synchronized and each character is transmitte d
along the serial link independently of the last . In this case the
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receiver automatically detects the start of each character and it the n
assumes that all subsequent data (and control) bits which constitut e
the character will arrive at a predetermined rate .

Usually a start bit is transmitted first and this alerts the receiver to
the beginning of each new character . A series of up to 8 data bits
are then transmitted and these are followed by one or more sto p
bits which mark the end of the character . An optional parity bit,
which provides a limited error checking facility, is also sometimes
transmitted immediately before the stop bit(s) .

Transmission rate

The rate at which information is carried along the serial bus i s
measured in bits per second (bps) or, alternatively, baud. There i s
an important difference between these two terms although in man y
systems they are equivalent and are used synonymously . Technically,
the baud rate refers to the number of discrete signal events (i .e .
signalling elements or potential number of logical state transitions)
occurring per second. In almost all asynchronous systems (with th e
exception of modem to modem communications), the state of eac h
bit is coded by only one discrete signal event and thus the baud rat e
is numerically equal to bps . An exception to this is Hewlett Packard' s
Interface Loop (HP-IL) system in which each bit is represented b y
three state changes (or two discrete states) . In this case the baud rate
is not equal to the number of bits per second . Serial transmission
rates usually range from about 50 baud to 115 200 baud and above ,
but most PC data-acquisition and industrial communications systems
use baud rates in the range 1200 to 38 400 .

8.2 Introduction to asynchronous communicatio n

Asynchronous communication techniques are popular for industria l
communication and for interfacing the PC to remote data-logging
systems. PCs are normally equipped with at least one RS-232 port,
although they can accommodate two or sometimes four separate
ports. A number of other adaptor cards can be added to the basi c
PC architecture in order to provide RS-422 or RS-485 compatibl e
communications facilities . Each additional port employs the same (o r
functionally compatible) type of controller (DART) as the standar d
RS-232 port and thus appears to the driving software to be identica l
at the register level .
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The serial character frame

All characters transmitted asynchronously are packaged into a seria l
frame . This includes a start bit, the data bits and one or more sto p
bits . Asynchronous serial data can be framed and transmitted ove r
RS-232, RS-422 or RS-485 buses in a variety of ways . However, the
same protocol is used in the vast majority of cases .

When the transmitter is idle, the transmission line is forced to
a logical high (or marking) state . The start bit consists of a singl e
bit period (the length of which is dependent upon the baud rat e
or bps) during which the transmission line is placed in the logica l
low (spacing) state. The receiver detects the high-to-low transitio n
which marks the beginning of the start bit and then prepares to
receive a stream of up to 8 further data bits and an optional parity
bit . Within the 8 data bits, the least significant bit is sent first . The
serial frame is terminated by one or more stop bits, each consistin g
of a single bit period during which the transmission line is held i n
the marking (high) state . Figure 8 .1 illustrates the usual form of the
serial character frame . In this example the value 45h (i .e . ASCII `E '
or 01000101b) is coded into a stream of 8 bits . This is preceded by
the start bit (which is always low) and in this example followed by a n
odd parity bit and 2 stop bits .

The parity bit provides a limited error checking facility by indicat-
ing whether the total number of high data bits is odd or even . In an
even parity system, the state of the parity bit transmitted within eac h
serial frame is such that the number of high bits contained withi n
the data-plus-parity bit pattern is even . If odd parity is selected, th e
converse is true . Thus if 1 data bit is incorrectly detected by th e
receiver (due to noise on the transmission line, for example), ther e
will be a mismatch between the high bit count and the parity bit .
The receiver will then be able to flag the received character as being

Marking -~
leve l

Spacing -~
level Tim e

0111011lol0l0I110101111
I	 I	 I	 I	 I	

LSB

	

MSB Stop bits (always marking state )
Parity bit (odd in this case)
8 data bits (45h = 'E' )
Start bit (always spacing state )

Figure 8 .1 The serial character frame
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corrupted. This technique does not, of course, allow more than on e
erroneous bit to be detected in each serial frame .

In order to discover the state of each bit, the receiver sample s
the transmission line at times corresponding to the centre of eac h
bit. In fact, each bit is usually sampled more than once in order to
enhance the system's noise immunity. The timing of each sampl e
is performed relative to the beginning of the start bit. Both the
transmitter and the receiver contain clocks, which are used to time
the transmission and sampling of the bit stream . Because the start
bit provides a means of synchronizing both devices, this method o f
communication is relatively insensitive to small inaccuracies in the
timing elements . Timing variations of up to about 5 per cent can b e
accommodated in most systems .

Handshaking

It is obviously essential for the transmitting and receiving devices
to agree when to allow data to be transferred . This requires som e
independent method of communication so that the transmitter doe s
not place characters on the bus until the receiver is ready. Additiona l
control lines are incorporated into some serial buses for this purpose .
These enable the bus device to signal that it is ready to communicat e
and to request (and then to receive) clearance to transmit data . Thi s
technique is termed hardware handshaking .

A number of control lines are specified by the different seria l
communications standards (such RS-232 or RS-422), but within eac h
standard, there is some variability as to which of the available contro l
or handshaking lines are actually used . Some systems employ quite
extensive handshaking, using three or four control lines, whil e
others dispense with hardware handshaking completely . Hardware
handshaking in RS-232 systems is discussed in the section Control
lines, handshaking and null modems later in this chapter .

In cases where no hardware handshaking is used, other technique s
must be employed . These can range from simple timing loops, whic h
prevent devices from transmitting at certain pre-arranged times ,
to rules governing the type and length of messages that may b e
transmitted. Often one of the devices on the serial bus (usually th e
PC) is designated as a controller and only this device is allowed to
initiate activity on the bus . The listening device (e .g. a remote data
logger) might then be required to respond to commands from th e
controller within a predetermined time limit . Often the controlle r
will transmit characters one at a time and wait for the listening devic e
to respond by echoing the character back . This has the benefit of
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simplifying error detection, although it does slow down the overal l
transmission rate .

Conventional software flow control protocols allow the receiving
device to control the rate of data flow by transmitting special
control characters. When these are detected by the transmitter ,
it temporarily suspends transmission . Flow control protocols usually
use the XON (DC1) and XOFF (DC3) ASCII control character s
to enable and disable transmission, although other characters ar e
sometimes employed for this purpose .

Timing, echoing and XON/XOFF flow control techniques ar e
usually quite simple to implement in PC-based data-acquisitio n
systems. Because no control lines are needed, inexpensive two -
or three-core cable can be used . This tends to make softwar e
flow control somewhat cheaper to implement than hardware hand-
shaking, particularly where long cable runs are required .

The UART

The PC's asynchronous serial communications interface is controlled
by a device known as a UART (standing for Universal Asynchronou s
Receiver/Transmitter) . This component usually takes the form of
a single IC, although a few data-acquisition and intelligent signal -
conditioning products simulate the actions of a UART in software .
The UART automatically converts all data which the software writes to
its transmitter register into serial format and then adds the necessary
start, stop and parity bits . The serial bit pattern is transmitted at a
frequency consistent with an agreed and preprogrammed baud rate .
A UART in the receiving device detects each bit in the serial frame ,
strips out the start, stop and parity bits and converts the data bac k
into a parallel (byte) format which can be read by the receivin g
software. The receiving UART usually performs some limited erro r
checking (e .g. for parity and errors in the composition of the seria l
frame) and sets status and error flags which may be read by th e
receiver's software .

UARTs usually also possess several digital inputs and outputs .
These are used primarily to drive and sense the hardware hand-
shaking lines although, as we will see later, they sometimes serv e
other purposes. The digital I/O lines are generally accessed by th e
software via the UART's registers .

The UART may also provide interrupt facilities . These allow the
communications port to interrupt the current program in order for
the processor to perform an urgent task such as reading the next
received character . Interrupt facilities can, in many instances, reduce
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the software overhead by allowing the transmitting or receivin g
process to continue with other tasks until the UART requires service .

The various UARTs used on the PC are discussed in more detai l
later in this chapter .

Serial protocols

The term `protocol' refers to the set of rules that specify how
data is to be encoded as a serial bit stream, transferred along the
communications link and then interpreted by the receiver .

Handshaking and the serial frame together form what might b e
termed the low level or byte-transfer protocol . This specifies how
communication is to be established and how individual bytes ar e
encoded into a serial bit pattern .

A higher level protocol defines the format of data as well as th e
timing and the nature of messages that pass between the variou s
devices on the bus . With a few exceptions, there is very littl e
standardization between serial-bus DA&C devices . Most devices use
a command protocol based on short strings of characters . Because
of the variety of different command sets in use, it is inappropriate t o
attempt to cover them here other than to mention some commo n
character encoding schemes . The most widespread of these is the
ASCII scheme which is described in Appendix B. This assigns eac h
of 128 characters to a unique 7-bit binary number . The first 32 of
these characters are designated as control characters and are used
for actions such as software flow control . The XON, XOFF, SOH ,
ENQ, ACK, NAK and EOT characters referred to below are all ASCI I
control characters. Several other character coding schemes may b e
used and these are discussed in Appendix B .

Networks of serial devices (see the Serial network and bus structure
section later in this chapter) will usually be designed to operate in th e
absence of any synchronization mechanism – i .e . using a so-calle d
asynchronous protocol . In such a system, one device is designated a s
a bus controller . Typically, when power is first applied, all devices on
the bus will enter their receive mode . The controlling device (usuall y
the PC) will then initiate each buts transaction by sending command s
to one or more devices, which will respond by transmitting a bloc k
of data or some form of acknowledgement back to the PC . Timeouts
are usually applied in order to guarantee that the network returns t o
a known state in the event of a communication error . Error checking
schemes may also be incorporated into the protocol .

There are several ways in which data can be packaged and trans-
mitted. The most efficient protocols allow data to be buffered an d
transmitted as one large block . Block transmission techniques, which
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are normally referred to as file transfer protocols, usually require
a header block to be transmitted before any data . The header
might contain information to identify the data block being sent, th e
number of bytes in the block, and special control characters (e .g .
ASCII Olh, SOH) to mark the start of each header . The heade r
can also facilitate implementation of error detection schemes b y
allowing checksums to be transmitted along with the data block . The
data encapsulated in each block might represent text (using, fo r
example, the ASCII encoding scheme) or it might represent a serie s
of binary codes – ADC readings, for example .

Protocols such as XMODEM or KERMIT are commonly used fo r
transferring files between computers . These are generally less useful
in data-acquisition applications although similar, but less complex ,
systems are sometimes employed for downloading readings from a
remote data logger .

Block transfer usually requires some form of software handshaking
in order to allow the receiver to control the rate of data flow .
The XON/XOFF protocol has already been discussed, but othe r
techniques employing, for example, ENQ/ACK or ACK/EOT can
be used .

The ENQ/ACK protocol allows the transmitting device to poll th e
receiver in order to determine whether it is ready to receive a bloc k
of data. The transmitter first sends the ENQ character and waits unti l
it receives an ACK character back from the receiver before it starts
transmitting the block of data . When the transmission is complete ,
the transmitter continues polling the receiving device by sendin g
ENQ characters .

In the ACK/EOT protocol, the receiver initiates transmission b y
sending an ACK character to the transmitter which, in turn, transmit s
a block of data. When it has finished, the transmitter then send s
an EOT character to mark the end of transmission. The XMODEM
protocol employs a similar technique, but uses ACK only to reques t
the next data block in a sequence . The NAK character is sent
instead to initiate transmission or to request retransmission of th e
previous block .

The reader is referred to Stallings (1997) for more on hand -
shaking, protocols and error detection .

8.3 Data acquisition via a serial lin k

Serial interfaces are often used to communicate with remote data-
logging stations or signal conditioning modules. The simplest
serial data-acquisition and control devices possess no on-board
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processing capability and these usually operate as basic parallel-to-
serial converters, allowing digital I/O lines and ADCs to be controlled
or sensed via the serial port .

More typical data-logging modules incorporate their own
processing units that can be configured or programmed via th e
PCs serial port . Often, these devices can acquire and log dat a
independently of the host PC . Many can also perform basic contro l
operations and execute simple data-reduction algorithms whic h
obviate the need to transmit large quantities of data back to the PC .
Indeed, some data-logging stations can operate independently in th e
field for many days or weeks and can then periodically download th e
acquired data to a portable PC for permanent storage and analysis .

Intelligent data-acquisition units can usually be configured to
automatically scale and linearize acquired data. Calibration scalin g
factors and linearizing polynomials (see Chapter 9) can be down -
loaded to the unit prior to the data-gathering period . By issuing
suitable commands, the PC can cause the data-acquisition unit t o
perform operations such as correcting for zero-drift, setting th e
sampling rate or configuring comparators . Acquired data might b e
transmitted back to the PC in text or 16-bit binary-word format .
The latter is suitable for transmission of unscaled ADC readings .
However, text transmissions are usually used for scaled data whic h
has to be represented in floating-point format . (One may, of course ,
encode floating-point scaled data in 48-bit, 64-bit or 80-bit binary
format for transmission, but this is rarely done in data-acquisition
applications . )

Apart from the independence and parallelism which intelligen t
data-acquisition units offer, one of their main advantages is that they
are often small, portable devices and can usually be sited in quite
remote and inhospitable environments . This type of installation
requires a robust, long-distance communications link. Such a link
can be established using one of the serial interface standards suc h
as RS-422 . In long-distance communications systems, the cost o f
cabling can be a significant consideration and in order to minimiz e
this, handshaking and other control lines are often dispensed with .
Communication then takes place using only single or double twisted -
pair cables . Data-acquisition systems of this type tend to emplo y
software flow control and/or character-echoing techniques instea d
of a hardware handshaking protocol .

Serial network and bus structur e

A number of different interconnection schemes can be used in seria l
data-acquisition systems . Several examples are shown in Figure 8 .2 .
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Figure 8 .2 (continued)

Each interconnection line in this figure represents a single-ende d
electrical connection in the case of RS-232, or a differential connec -
tion in the case of RS-422/485 interfaces . The simplest scheme is
the linear, point-to-point arrangement shown in Figure 8 .2(a) . This
is the ideal arrangement where only one device has to be connecte d
to the PC. Simplex, half duplex and full duplex systems can h e
supported using this structure. All of these can be implemente d
using the RS-232 or RS-422 standards. Point-to-point systems ca n
be extended to form a loop structure in which each device on th e
network receives data or a command from an adjacent device an d
then relays it to the next device in the loop as shown in Figure 8 .2 (b) .
The data continues to be passed around the loop until it returns to
the device that originally issued it. As well as making for an orderly
communication protocol, this also allows the originator of the data to
check that the echoed character matches that originally transmitte d
and thus to ensure complete data integrity . However, the repeated
relaying of data does tend to slow the whole operation, particularly
when low baud rates or slow devices are present on the loop .

Figure 8.2(c) shows an alternative serial network topology tha t
can be used with interfaces conforming to the RS-422 standard . Thi s
allows the PC to transmit data to a number of separate devices, bu t
only one of these devices can transmit data back to the host PC .

Finally, we have the so-called multi-drop, or bus, arrangemen t
shown in Figure 8 .2(d) . This allows several transmitting and receivin g
devices to be connected to the same bus without the need to relay
data from one device to the next. The multi-drop bus topology can
be implemented with devices conforming to the RS-485 standard .
Because it allows multiple transmitters and receivers to reside o n
the same bus, this arrangement can accommodate only simplex or
half duplex operation . It is, however, very useful for interconnectin g
distributed signal-conditioning modules, such as might be employed
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to monitor movement or loads at different points on a bridge, for
example .

Speed and transmission distance

The maximum practicable rate of transmission along a modemles s
serial communications link varies with the total distance between th e
transmitter and receiver . The resistance and capacitance inheren t
in long cables tends to round off the sharp transitions present i n
digital signals . The effect of this rounding is most apparent when
short duration pulses have to be detected (i .e. at high baud rates )
and there is consequently a reciprocal relationship between the
maximum baud rate and the total transmission distance . Note that
while a system might operate satisfactorily with cables of a certai n
length it is always good practice to use the shortest practicabl e
cable runs . Marnham (1994) discusses cable length calculations i n
some detail .

The RS-232 standard is capable of transmitting data over distance s
of up to 15 m, and speeds of up to 20 Kbps can be employed .
Although this is often adequate for use within the limited confine s
of a laboratory, RS-232 is not a suitable solution for communicating
with remote and inaccessible devices .

The RS-422 and RS-485 standards accommodate total transmissio n
distances of up to 100 m at 1 Mbps using suitable twisted-pair cable .
The maximum transmission rate is also much greater, being up to
10 Mbps . Typically this transmission speed is used over distances of
less than 15 m. Such high rates cannot normally be achieved with
the PC and an upper limit of 115 200 baud is imposed by the baud
rate generator circuitry present in the PC's UART . Because of th e
lower transmission speeds possible with the PC, the recommende d
maximum cable lengths can be exceeded in some situations withou t
introducing an unacceptable level of communication errors. If suit-
able drivers and/or cables are employed in RS-422/485 systems it i s
possible to extend transmission distances up to around 1200 m .

The highest transmission rates normally employed for long -
distance (i .e . up to 1200 m) communications via RS-422 and RS-48 5
interfaces are about 19 200 to 38 400 baud . If lower baud rates
are used, these interfaces will often tolerate even longer cables .
RS-422/485 transmitters are available for transmission up to 11 000 m
(7 miles) at 1200 baud.

Special signal converters are also available to extend the trans -
mission range of standard RS-232 interfaces . These use fibre opti c
or current loop techniques . The latter will generally accommodate
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data rates of 9600 baud or greater and will transmit over distances o f
several kilometres (typically 1000 to 8500 m) .

8.4 Serial interface standards

We have already mentioned the standards, such as RS-232, develope d
by the Electronic Industries Association (EIA) . This section outline s
some important characteristics of these standards .

The RS-232 standard

The RS-232 standard was developed in the 1960s for transferring dat a
between computers and peripheral devices (teletypes and printers) ,
and for intercomputer communications . The RS-232C revision i s
most widely complied with, although it was superseded in 1987 by
RS-232D and then in 1991 by revision E. From the PC programmer' s
perspective, however, the differences between the various revision s
are of little significance and so this standard will be referred to simpl y
as RS-232 in the remainder of this book . Additional information can
be found in the texts by Putman (1987), Maine (1986), Marnha m
(1994) and Tooley (1992) .

TD

SG

DTE

	

DCE

RD

Figure 8 .3 Single-ended serial transmission over an RS-232 interface



Serial communications 29 7

This standard is used for interfacing computers to modems fo r
long-distance communication via the telephone network . RS-232 was
originally designed with this application in mind and much of th e
terminology used (e .g. names of control signals etc .) reflects this .

RS-232 specifies a single-ended transmission system in which trans-
mitted signals and received signals are each carried on a singl e
wire. The voltage on each wire is measured with reference to a
common signal ground as indicated in Figure 8 .3. As mentione d

Table 8 .1 RS-232D connector pin assignments

Signal/circuit I/O relative
25 way 9 way

	

mnemonic to DTE Full name

1

	

- FG/AA - Frame ground
2

	

3 TD/BA Out Transmit data
3

	

2 RD/BB I n Received data
4

	

7 RTS/CA Out Request to sen d
5

	

8 CTS/CB In Clear to sen d
6

	

6 DSR/CC In Data set ready
7

	

5 SG/AB - Signal groun d
8

	

1 DCD/CF In Data carrie r
detect/received lin e
signal detect

9

	

- - - Reserved/Testin g
10

	

- - Reserved/Testin g
11

	

- - - Unassigned
12

	

- SCF In Secondary CF (DCD )
13

	

- SCB In Secondary CB (CTS )
14

	

- SBA Out Secondary BA (TD )
15

	

- DB In Transmitter signal elemen t
timing

16 SBB In Secondary BB (RD )
17 DD In Receiver signal elemen t

timing
18 LL Out Local loop-back signa l
19

	

- SCA Out Secondary CA (RTS )
20

	

4 DTR/CD Out Data terminal ready
21

	

- CG In Signal quality detecto r
22

	

9 RI/CE In Ring indicator
23

	

- Cl/CH In/Out Data signal rate selecto r
24 DA Out Transmitter signal elemen t

timing
25

	

- - Unassigned/Testing
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in the previous section, this single-ended operation restricts the
maximum baud rate and transmission distance .

The RS-232 specification allows for only one transmitter and
one receiver to be present on each signal line and this limits th e
topology to a linear point-to-point arrangement or a loop structur e
(see Figure 8 .2) . Full duplex, half duplex and simplex transmissio n
modes can be used .

Connector pin assignments
RS-232 specifies a 25-way D-type connector with the pin assignment s
listed in Table 8.1 . Two separate serial communications channels
are supported by the standard, but only one of these — the Primar y
channel — is used on the PC's serial ports . The slower Secondary RS-
232 channel is not available on the PC and this is reflected in th e
connector pin usage. All 25 pins are defined by the RS-232 standard ,
although only nine of these are in common use . Most modern PCs
make only these nine signals available via a 9-way D-type connecto r
(also listed in the table) . Some IBM PC/XT or AT clones possess a 25 -
way connector, but with only the nine commonly used pins connected .

The RS-232 signals can be divided into four classes: data, control ,
timing and ground. The timing signals are defined for use i n
synchronous communication systems . Because the PC's serial ports
support only asynchronous communication, these timing signals are
not present .

Voltage level s
RS-232 defines the digital logic levels shown in Table 8 .2. These
levels are used on both the data and control lines .

This definition of logical states is used to represent the bit pattern
within each serial frame . A logic 1 level, equivalent to a negative
voltage, represents a high (1) data bit . The control lines are, however ,
generally active (i .e . on or asserted) when at logic zero (i .e . a positive
voltage) .

DTE and DC E
When considering the RS-232 interface you should remember tha t
it was originally designed for connecting a computer terminal to a

Table 8 .2 RS-232 voltage and logic levels

Logic level

	

Voltage

	

Data line state

0 +3 V to +25 V Space
1 -3 V to -25 V Mark
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modem in order to facilitate communication with a remote (usuall y
mainframe) computer . The modem performed the task of commu-
nicating over a long distance (i .e. telephone) link with a remote
modem. At one end of the link, the local modem was connected to a
computer terminal using an RS-232 interface and, at the other end ,
the remote modem was coupled to the remote computer, also b y
means of an RS-232 standard interface .

For this reason, RS-232 systems use terminology relevant to thi s
mode of communication . Data Terminal Equipment (DTE) refer s
to those elements of the system that reside at the termini of th e
communications link . In the terminal-to-computer example, bot h
the terminal itself and the remote computer would be classed a s
DTE. The moderns, which established the long-distance link, are
classed as Data Communications Equipment (DCE) .

Of course, in the context of PC-based data-acquisition systems, th e
computer (i .e. PC) and the terminal are one and the same, and the
RS-232 communications link is established between the PC and a
device such as a data-logging unit, without the aid of a modem . In
this case both the PC and the data logger are classed as DTE . No
DCE (modem) is used .

Control lines, handshaking and null modem s

The handshaking protocols used in RS-232 systems stem from th e
standard's original function as a way of connecting DTE and DCE .
Table 8.3 lists the common handshake lines available on the standar d
RS-232 connector.

These lines are also present on the PC ' s 9-way connectors . The
table provides a summary of the original usage of the various contro l
lines, but this should be treated as only a very rough guide . In PC-
based data-acquisition (and other) systems, the handshaking line s
are actually used in a variety of different ways . In some cases, mos t
or all of the lines are used ; in others, only one or perhaps two of
the available signals are needed . A number of systems dispense with
hardware handshaking altogether . The timing of the handshakin g
signals' also varies to some extent .

Some common handshaking sequences are listed below. Note
that the RI and DCD inputs to the DTE are not checked in these
examples, although they may be used in some applications . The RI
signal indicates that the DCE has detected a ringing signal fro m
the remote equipment. DCD is generally asserted when the DCE
(modem) detects a carrier signal from the remote equipment . In
applications where the DCE, is actually a data logger or similar ,
the DCD line may be asserted when the logger is switched on and
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Table 8 .3 Common RS 232 handshaking lines

Mnemonic I/O relative to DTE Usual use

DTR

DS R

DC D

RTS
CTS

RI

Out

I n

I n

Ou t
I n

In

Indicates that the DTE is ready and cause s
the modem to establish the long-distanc e
(telephone) link .

Indicates that the modem is ready, but doe s
not necessarily indicate that the remot e
communications link has been established .

Indicates that the local modem has detecte d
the data carrier signal from the remot e
modem and that the remot e
communications link has been established .

Indicates that the DTE is ready to transmit .
The modem asserts this line, in response t o

DTR and RTS, when it is ready to allow th e
DTE to transmit . RTS should go inactive
after CTS has been asserted . RTS shoul d
not then be activated again until CTS i s
unasserted .

Indicates that the local modem is receiving a
ringing signal from a remote device . This i s
normally used by communication s
software to answer an incoming call .

functioning correctly. More commonly in this type of application ,
however, neither DCD or RI are used .

Transmission

1. DTE asserts DTR to indicate that it is ready to communicate .
2. DTE waits for the DCE to respond. DCE responds by assertin g

DSR. The assertion of DSR generally means that the DCE i s
ready; it does not necessarily mean that the DCE has established
a communications link to the remote equipment . If the DSR line
is not asserted within a predetermined timeout period (usually
about 2 to 10 ms), the DTE assumes communication with th e
DCE cannot be established and times out .

3. DTE asserts RTS to request permission to transmit.
4. DTE waits for the DCE to assert CTS . If this line is not asserted

within a predetermined timeout period (usually about 2 to 10 ms) ,
the DTE assumes communication cannot be established and time s
out .
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5. If a timeout did not occur, the DTE transmits the data . Either
single characters or a block of several characters may be trans-
mitted .

6. The DTE deactivates RTS at the end of transmission . Once RTS
is deactivated, it should not be reasserted until after the DCE has
deactivated CTS . DTR may remain active if the DTE wishes to sta y
on line .

Note that, in some systems, the transmission handshake is imple-
mented using only the RTS/CTS handshake and the DTR and DSR
lines are unused . The above transmission sequence is illustrate d
diagrammatically in Figure 8 .4. The circled numbers in the figure
refer to the steps in the foregoing sequence .

Reception

1. DTE asserts DTR to indicate that it is ready to communicate .
2. DTE waits for the DCE to respond . DCE responds by assertin g

DSR. If this line is not asserted within a predetermined timeout
period (usually about 2 to 10 ms), the DTE assumes communica -
tion cannot be established and times out .

3. If a timeout did not occur, the DTE waits to receive data from th e
DCE. Either single characters or a block of several characters ma y
be transmitted .

4. The DTE may deactivate DTR at any time to suspend the DCE' s
transmission .

DTR 0

ONE OR MORE SERIAL CHARACTE R
FRAME S

Figure 8 .4 Typical handshaking sequence used during serial transmissio n

DSR
0

RTS
0

CTS
0

TD
0

0
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Null modems

In a PC-based data-acquisition system, there is generally no mode m
(DCE), and the PC is usually connected directly to a data logge r
or signal-conditioning module . Both the PC and data logger (etc . )
are classed as data terminal equipment (DTE) . In this case it is
often necessary to make it appear to each DTE element that th e
handshaking signals have originated from a modem . To this end ,
special cables or adaptors, known as null modems, can be used .
These employ crossed wiring which causes, for example, the TD pi n
of one terminal to be connected to the RD pin of the other (and vic e
versa) . The handshaking lines are also crossed and/or looped bac k
so as to emulate the signals that would otherwise have been provide d
by a modem . The exact design of these adaptors depends upon th e
requirements of each application and there is some variability in th e
wiring schemes used .

Figure 8.5 illustrates the connections employed in a variety o f
common null modem adaptors . These fall into two categories . Loop-
back adaptors feed the control outputs (DTR and RTS) back t o
the input lines (DSR, DCD and CTS) of the same device . These
connections do not provide any real handshaking facilities : they
are merely used to circumvent any handshake requirements tha t

TD •

	

• TD

	

TD •

RD O<

	

>O RD

	

RD O-A

RTS 0	 	 0 RTS

	

RTS 0

	

0 RT S

CTS O	 •c	 	 	 > O CTS

	

CTS 0-4	 	 	 >0 CT S

DSR O<

	

DSR

	

DSR •

	

• DSR

DCD 0-<	 	 >0 DCD

	

DCD •

	

• DCD

DTR 0	 	 	 O DTR

	

DTR •

	

• DTR

(a) Loop back

		

(b) Crossover with RTS-DCD/DTR-DS R
handshakin g

Figure 8 .5 Some common null modem connections

• TD

>O RD
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TD •

	

• TD

RD Q<	 	 O R D

RTS Q	 	 O RT S

CTS 04

	

CTS

DSR O<	 	 >Q DS R

DCD Q	 <	 	 >0 DC D

DTR •

	

• DTR

(c) Crossover with RTS-DCD/DTR-CT S
handshakin g

Figure 8 .5 (continued)

may have been imposed by the DTE's communications software .
The second class of null modems does implement some degree o f
handshaking between the two DTEs . In this case, crossed wiring i s
used to simulate the effect of communicating with a local modem .

There are several other types of null modem and crossed-wir e
adaptors . Some are required specifically for applications such a s
interfacing to a printer via the serial port . Devices, known as breakou t
boxes, are available which allow the various interconnections to b e
made and easily modified . These are ideal for experimentation in
order to establish the correct null modem connections for use wit h
an unfamiliar system .

The RS-422 standard

This standard is used widely in industry for communicating ove r
longer distances than is normally practicable with RS-232 . It wa s
revised in 1994 and this revision is known as RS-422B (or EIA/TIA
422-B) . Unlike the RS-232 standard, in which the signal voltages
are all measured with reference to a common ground wire, RS-42 2
systems employ balanced differential transmission . In this mode,
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TD+

TD-

DTE

	

DC E

RD-

R D +

Figure 8 .6 Balanced differential transmission over an RS-422 interfac e

signals are transmitted by means of pairs of wires which are labelle d
TD+ and TD— for the transmission circuit or RD+ and RD— a t
the receiver (also sometimes referred to as TD and TD Commo n
or RD and RD Common) . This transmission mode is illustrated i n
Figure 8.6 and should be compared with the single-ended mode
employed by RS-232 (Figure 8.3) .

Differential transmission permits some RS-422 compatible lin e
drivers to achieve data rates of up to 10 Mbps over distances of
around 300 m, although many standard RS-422 devices are capabl e
of transmitting up to only 12—15 in at this speed . However, this i s
largely academic when using the PC as the standard 16450 UART ca n
transmit at up to only 115 200 baud, and the maximum practicabl e
transmission rates are often considerably lower . The transmitter and
receiver can be separated by up to 1200 m provided that lower trans -
mission rates (i .e . no more than 19 200 to 56 000 baud) and suitabl e
twisted-pair cables and line drivers are employed . As noted earlier,
RS-422 compatible transmitters are available for communicating ove r
distances of up to 11 000 in (7 miles) at 1200 baud . Note, however,
that the maximum recommended cable lengths tend to vary some -
what between different proprietary RS-422 compatible systems and
you are advised to consult the manufacturer of your equipment fo r
precise details .

Because separate TD and RD circuits are used, RS-422 is suitabl e
for full duplex communication . RS-422 can also accommodate u p
to ten receivers on the same bus although, like RS-232, only on e
transmitter can be present. This allows a point-to-point, looped o r
fan topology to be employed .
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The connector pin assignments used on industrial RS-422 device s
tend to vary somewhat, although most interfaces and converter s
employ a 9-way male D-type connector incorporating pairs of pins fo r
the TD, RD, RTS and CTS signals together with a single signal-groun d
pin . Only RTS/CTS handshaking is normally possible, because line s
such as DTR, DSR, DCD are normally not required for RS-422
communications and are not present on the RS-422 connector .

The RS-485 standard

The RS-485 standard (introduced in 1983) can be considered a n
adaptation of RS-422 which allows many drivers and receivers to b e
present on the same bus (although only one driver may be active a t
any time) . RS-485 employs balanced differential signal lines, muc h
like RS-422. Full duplex implementations are possible using a point -
to-point topology and separate twisted-pair conductors for the receiv e
and transmit signals . In addition, RS-485 facilitates construction o f
multi-drop networks . This arrangement uses the same pair of wires
for both transmission and reception of data . Although this helps to
reduce cabling costs, it precludes full duplex operation . Figure 8 . 7
illustrates the structure of the half duplex RS-485 bus .

Notice that both the transmitter and receiver are connected t o
the same pair of wires . The transmitter and receiver are collectively
known as a transceiver . Each device controls whether the transmitting
or receiving element of the transceiver is active by means of the digita l
TE (Transmit Enable) line . This line may be driven either by software
or by circuitry which senses when the device begins to transmit .

• RD

T D+/ R D +

TD-/RD-

	

TE

TD

TE

RD •

Figure 8.7 Half duplex transmission over a balanced differential RS-485 bus
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The maximum permissible data transfer rates and cable length s
are similar to those described for the RS-422 standard . RS-485 will ,
however, support up to 32 drivers and 32 receivers on the same bus ,
although only one driver may be allowed to transmit at any time .

Like RS-422, the connector pin assignments used on many indus-
trial RS-485 devices also tend to vary . In fact, the connector type an d
pin-out are not defined under the standard (Marnham, 1994) . Some
interfaces and converters employ a 9 -way male D-type connector
incorporating a pair of pins for the TD/RD signal together wit h
ground and +5 V connections . Some devices offer both RS-422 and
RS-485 operation and provide a dual-purpose connector . In RS-422
mode, the connector provides the normal RS-422 pins describe d
in the previous section . In RS-485 mode, the RD pair of inputs is
unused – the TD pins may then be used for both transmission an d
reception .

The half duplex nature of the RS-485 bus, together with the lac k
of handshaking in many implementations can make the design o f
protocols and message timing more complicated than with RS-23 2
or RS-422, and can place an additional burden on the softwar e
designer. In addition, as noted previously, it is necessary for eac h
device on the bus to independently enable and disable its transmitte r
and receiver by controlling the state of the TE line . (Note that th e
TE line is not part of the RS-485 bus : it simply controls the direction
of data flow through the transceiver . )

Some RS-232 to RS-485 converters that connect directly into th e
PC's RS-232 serial ports use one of the handshaking lines (e .g. RTS
or DTR) to control TE . RS-485 interfaces on plug-in expansio n
cards generally have their own UART which also drives the T E
line via the RTS or DTR (or occasionally the OUT1) lines etc .
These are accessible via the normal UART registers . In some cases ,
custom circuits permit the receiver and transmitter to be enabled o r
disabled independently and these devices map the transmit enabl e
and receive-enable controls to different portions of the PC's I/O
space: e.g. so as to overlap the UART's scratch-pad register .

Fortunately, an increasing number of RS-485 devices on the marke t
are beginning to employ circuits which sense when the device begins
to transmit and automatically enable the transceiver's transmittin g
element .

Because of its low cabling costs, high speed, and capability to
transmit over long distances, the RS-485 standard is ideal for use i n
distributed control applications . It has been adopted as the basis for a
number of industrial communications networks such as Profibus an d
Intel's Bitbus. These buses implement long-distance communicatio n
between distributed PCs and local controllers or sensors . Fieldbus
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systems such as Profibus employ protocols for passing message s
and data within fixed real-time constraints . So-called cyclic dat a
transfers provide a means of implementing control loops via th e
network with guaranteed latency times . High transmission rates are
also possible : 1 .25 Mbps with Profibus . Bitbus operates in either a
synchronous transmission or self-clocked mode . In the latter mode ,
two differential pairs are used . One carries transmitted data and th e
other is used for transceiver control . Self-clocking allows data to b e
transferred at up to 375 Kbps over distances up to approximatel y
300 m or 62 .5 Kbps up to 1200 m. Bitbus can also operate usin g
a synchronous protocol based on IBM's Synchronous Data Lin k
Control (SDLC) . This allows transmission at much higher rates – u p
to 2.4 Mbps over distances less than 300 m. The Bitbus interfaces to
the PC via a dedicated adaptor unit and software drivers .

Other serial buses and standards

A number of other serial interfaces are also suitable for data acqui-
sition, although, for PC-based applications, they are less widel y
used than the standards discussed previously . Standards such as
the unbalanced differential RS-423 bus and RS-449 are discusse d
more fully in the texts by Maine (1986), Marnham (1994) an d
Tooley (1992) .

Current loop system s
A variant of RS-232 employs current loop drivers in order to exten d
the maximum transmission distance . This type of interface wa s
originally developed for driving devices such as teletypes, but severa l
manufacturers now offer RS-232 current loop converters for us e
with industrial communications systems . These drivers represent th e
logical states within the serial character frame by the magnitude of
current flowing through the loop. Most operate in the industria l
standard 4–20 mA range and some allow transmission up to severa l
kilometres (typically up to 8500 m) .

The Universal Serial Bus (USB )
Intel's Universal Serial Bus is supported by a number of prominen t
PC and component manufacturers . It was introduced in the mid -
1990s and most new PCs possess a USB controller that provides a
USB root hub and two USB ports .

USB is a very high speed serial link that is capable of transfer
rates rivalling some parallel buses (tip to 12 Mbps) . Each USB por t
can address up to 63 separate devices via a simple and inexpensive



308 PC interfacing and data acquisitio n

4-conductor cable . Cable length is limited to 5 m for 12 Mbps trans -
mission rates. USB devices can he daisy-chained so that in man y
applications the PC will require just one USB port .

Only a small number of DA&C products are currently available fo r
the USB. Most of these are laboratory or test instruments (oscillo-
scopes or high precision voltmeters etc .) although this may change
in the next few years as USB is implemented more widely . Because
USB devices mostly require their own enclosures and external powe r
supplies, USB implementations of simple DA&C products (digita l
I/O cards or simple ADC cards) may not be cost effective . In the
field of data acquisition, it is likely that USB will be used first fo r
interfacing to more complex devices . Another potential use for USB
is as the primary interface between the PC and an external fieldbii s
or instrumentation bias such as IEEE-488 .

Firewire (IEEE-1394)
Like the USB, IEEE-1394 is a relatively new development in seria l
buses. It is derived from a high speed supplementary serial bu s
intended for use in VME-based computers . IEEE-1394 (also known
as Firewire) has many potential uses and implementations on P C
compatible computers although, at the time of writing, most of these
have yet to be realized. Microsoft's recently announced plans to
use the bus in PC-based home entertainment systems may help to
enhance the popularity of IEEE-1394 . It is conceivable that. in the
long term IEEE-1394 will become the standard communications an d
networking interface present on the PC ; possibly even replacing the
RS-232 and Centronics interfaces .

The most important feature of IEEE-1394 is its capability to transfe r
data at very high speeds . The bus permits transmission at up to severa l
hundred Mbps (400 Mbps and 1 Ghps in its fastest implementations )
over cables up to 4 .5 In long. Such rates of throughput make IEEE-
1394 suitable for video disk drives and other high speed applications .
Up to 63 devices can be connected on one daisy-chained network .
Devices are linked via simple and relatively cheap cables whic h
employ two double-shielded twisted-pair signal wires together with a
pair of power lines .

8.5 Asynchronous serial I/O on the PC

Modern PCs are normally equipped with one or two RS-232 compat-
ible serial ports . Some machines (particularly those of the PS/2 line )
can accommodate up to four serial ports . Real-mode (e .g. DOS)
programs may require drivers to be specially written because serial
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I/O via the DOS file system or the BIOS is usually too slow an d
inflexible for data acquisition . It is less likely that. Windows and
OS/2 programmers will need to write serial port drivers as suitabl e
software is available from most manufacturers of serial communi-
cations products . Whatever your interest in serial communications ,
it is instructive to investigate the workings of the UART as its
features will have an important bearing on the capabilities of you r
communications software .

With the exception of one or two older PC clones, there is a
great deal of standardization, in terms of UART types and addresses ,
between the various IBM compatible machines on the market . This
greatly simplifies programming the UART and means that it is no t
always necessary (or desirable) to resort to the BIOS's serial por t
services. However, certain aspects of the serial port BIOS are usefu l
and we will briefly discuss these before progressing to the topic of
UART programming .

Serial port parameters in the BIOS Data Are a

The BIOS Data Area contains a block of four words that hold th e
base addresses of each UART present in the system's I/O space .
These are initialized by the BIOS's POST routines . On most PCs ,
only the first two of these ever contain valid addresses, but on som e
clone machines and PS/2 machines, all four may be defined . Al l
undefined entries in this table of addresses are set to zero . The table is
constructed beginning at address 0040:0000h such that the addresse s
of all ports are placed in contiguous positions in the table – i .e . a
blank (zero) entry will never be placed between two valid UART
addresses . Bits 9 to 11 of the word at 0040 :001011 contain a binary-
coded representation of the total number of UARTs detected by th e
BIOS. These addresses are summarized in Table 8 .4 .

In most systems the first two UARTs reside at addresses 3F8h and
2F8h in the I/O space . It is not advisable to rely on this, however, a s
the UARTs may be mapped to different addresses in some machines .
You should always obtain the UART addresses by referring to the
table at 0040 :0000h as shown in Listing 8 .1 .

A second table in the BIOS Data Area contains the serial por t
timeout values that are used by the BIOS 's serial port services . The
table starts at 0040 :007Ch and contains 1 byte for each of the fou r
possible ports . Each byte represents a timeout interval in units o f
approximately 2 ms (although the actual timing will vary somewha t
between different machines) .

Both the address table and the timeout table will always includ e
space for up to four entries even though, on most PC and AT
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Table 8.4 Serial port parameters in the BIOS Data Are a

Address Size (bytes) Descriptio n

0040 :0000h 2 Serial port 1 I/O addres s
0040 :0002h 2 Serial port 2 I/O addres s
0040 :0004h 2 Serial port 3 I/O addres s
0040 :0006h 2 Serial port 4 I/O addres s
0040 :0010h 2 Bits 9-11 = Number of serial ports detected
0040 :007Ch 1 Serial port 1 timeout
0040 :007Dh 1 Serial port 2 timeout
0040 :007Eh 1 Serial port 3 timeou t
0040 :007Fh 1 Serial port 4 timeout

Listing 8 .1 Determining UART addresse s

unsigned char NumSerialPorts ;
unsigned int BaseAddr[4] ;
unsigned char PortNum ;

NumSerialPorts = 0 ;
for (PortNum = 0 ; PortNum <= 3 ; PortNum++ )

{

BaseAddr[PortNum] = peek (0x0 04 0 , (2 * PortNum)) ;
if (BaseAddr[PortNum] != 0) NumSerialPorts++ ;
}

compatible systems, the BIOS's POST routines will only search fo r
the first two serial ports at addresses 3F8h and 2F8h.

Serial I/O using the BIOS

The BIOS services available on most modern PCs allow single charac -
ters to 1)e transferred at up to 9600 baud via any of the available seria l
ports. The PS/2 BIOS permits a higher maximum (documented )
transmission rate of 19 200 baud. These services do not provide inter-
rupt driven or buffered I/O (in fact, the BIOS POST routines disabl e
the UART's interrupts) and, because of this and the maximum trans -
mission rate of 9600 or 19 200 baud, they are generally unsuitabl e
for high speed I/O. However, the BIOS services (accessed via inter-
rupt 14h) do provide a very simple means of accessing the seria l
ports and so this method may be preferable when throughput is no t
critical . The reader is referred to one of the many PC programmers '
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reference books, such as Sanchez and Canton (1994), Dettman n
and Johnson (1992) or van Gilluwe (1994) for more information o n
this topic .

Programming the UART

The IBM PC, XT, AT, PS/2 and the various compatible machine s
are equipped with a range of different UARTs . The original PC
used the 8-bit National Semiconductor INS 8250 UART, but mos t
later machines possess the faster 16-bit National Semiconducto r
16450 IC which in other respects is identical to the 8250 and may b e
programmed in the same way . Some newer models are equipped wit h
the 16550 UART instead . This is compatible with the earlier 8250 an d
16450 UARTs but also includes a facility for buffering both receive d
data and data that is to be transmitted . The buffer holds up to
16 bytes and allows the UART to process more data before requirin g
service from the processor, thus reducing the software overhead . This
is a particularly useful feature in multitasking and real-time systems .
Note that on some machines the UART functionality is provided o n
the motherboard by a device such as an 82091AA integrated circuit .
This is software compatible with the standard 16450 UART .

Many serial port adaptor cards that plug into the PC ' s expansio n
sockets are equipped with 16450 or 16550 UARTs . High speed
industrial communications adaptors, in particular, often make use
of the 16550 UART to enhance throughput. A number of other
compatible UARTs are also available and these may be used in a few
systems . Because most UARTs used in the PC and in PC-based DA&C
systems are software compatible with the 8250, 16450 or 16550 ,
reference will be made only to these basic UART devices in th e
remainder of this chapter . Serial ports based on enhanced design s
(such as the 82510, 161450, 161550 and compatible devices) can als o
be programmed on the basis of the information supplied .

Overview of the UART and serial por t
The main functional components of the PC's serial port are show n
in Figure 8 .8. This illustrates an RS-232 port in which an 8250 o r
16450 UART is interfaced to the serial port connector via an arra y
of inverting line drivers . In the case of an RS-422 or RS-485 port ,
some or all of the handshaking lines may not be connected eve n
though they are present on the UART. As mentioned previously, a n
RS-485 port would employ a transceiver (see Figure 8 .7), which may
be enabled to transmit or receive by means of one of the unuse d
control lines (e .g. RTS) or by additional circuitry.
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The blocks shown along the left-hand side of the UART each
represent one 8-bit register that can be read or written by software .
Most of the registers are mapped permanently to different I/ O
addresses, but the THR and RBR both occupy the same address .
Writing to this address loads a byte into the THR, while a rea d
operation accesses the contents of the RBR. On the 16550 UART ,
the THR and RBR are each supplemented by a 16-byte FIFO buffer
(not shown) . The operation of these buffers is controlled by means
of the FIFO Control Register (FCR) as described in the FIFO Buffer
Control Register section later in this chapter. The Transmitter Shift .
Register (TSR) is used internally by the UART for composing th e
serial bit stream . The Receiver Shift Register (RSR) performs th e
converse function . Neither the TSR nor the RSR can be accesse d
directly by software .

The baud rate divisor latch registers, DLL and DLM, are mappe d
to the same locations as the RBR/THR and IER, respectively . DLL
and DLM are accessible only when the DLAB bit in the LCR is se t
to 1 . DLAB should be set when accessing these registers : it should
always be reset to zero for normal transmission and reception of data .
Table 8 .5 summarizes the various registers and lists their addresse s
(i .e . their offsets) relative to the UART's base address.

The UART's register s
The following sections describe each of the UART's registers an d
the conditions under which they can be accessed . It is necessary to

Table 8.5 8250, 16450 and 16550 UART registers

Offset Mnemonic Name R/W Notes

0 RBR Receiver Buffer Register R/O DLAB = 0
0 THR Transmitter Holding Register W/O DLAB = 0
0 DLL Divisor latch LSB R/W DLAB = 1
1 DLM Divisor latch MSB R/W DLAB = 1
1 IER Interrupt Enable Register R/W DLAB = 0
2 IIR Interrupt Identification Register R/0
2 FCR FIFO Buffer Control Register W/O 16550 an d

compatible s
3 LCR Line Control Register R/W DLAB is bit 7
4 MCR Modem Control Register R/W
5 LSR Line Status Register R/O
6 MSR Modem Status Register R/W
7 SCR Scratchpad Register R/W Not present on

some 8250s
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set DLAB to either 0 or 1 in order to read or write certain registers .
Where registers can be accessed independently of the state of DLAB ,
it is advisable always to set DLAB to 0 in order to ensure compatibilit y
with later devices .

Transmitter Holding Register (THR, offset 0, W/O, DLAB = 0 )

This register holds the next data byte to be transmitted . Once data
has been written to the THR, the UART will automatically convert i t
into serial format, adding the appropriate start, parity and stop bits .
It will then begin transmitting the serial frame via the Transmitte r
Shift Register (TSR) . The low order bit is transmitted first . If fewer
than 8 data bits have been specified, the unused high order bit s
in the TI-IR are ignored . The driving software should not attempt
to load data into the THR until the THRE flag in the Line Statu s
Register is 1 .

Receiver Buffer Register (RBR, offset 0, R/O, DLAB = 0 )

As the UART receives each successive data byte via its Receiver Shif t
Register (RSR) , it strips off the start, parity and stop bits and convert s
the data bits into parallel format . The resulting byte is then store d
in the RBR from where it can be read by the software . If fewer than
8 data bits are included in the serial frame, the high order bits i n
RBR are all set to 0 . The DR bit in the Line Status Register is set . high
whenever new data is transferred into the RBR. The driving softwar e
should check the state of the DR bit and, when it is 1, the softwar e
should read the RBR. Failing to read the RBR when new data is ready
will result in it being overwritten when a new byte is received . This
condition, known as an overrun error, is detected by the UART and
flagged by means of the OE bit in the Line Status Register .

Divisor Latch LSB (DLL, offset 0, R/W, DLAB = 1 )

This register contains the least significant byte of the 16-bit divisor
used to generate the required baud rate . It can be accessed only
when the DLAB bit in the Line Control Register is set .

Divisor Latch MSB (DLM, offset 1, R/W, DLAB = 1 )

This register contains the most significant byte of the 16-bit divisor
used to generate the required baud rate . It can be accessed onl y
when the DLAB bit in the Line Control Register is set .

Interrupt Enable Register (IER, offset 1, R/W, DLAB = 0)

The IER contains the 4 bits listed in Table 8 .6. These are used to
enable or disable the UART's interrupts . The UART can generate
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Table 8 .6 The Interrupt Enable Register (IER)

Bit

	

Mnemonic

	

Description

0

	

DRI

	

1 = Enable Data Ready interrupt . Interrupt occur s
whenever data is available in RBR . On the 16550 if
FIFO is enabled, this bit enables the character timeou t
interrupt .

1

	

THREI

	

1 = Enable THR Empty interrupt . Interrupt occurs whe n
the THR is empty and ready for the next byte .

2 RLSI 1 = Enable Receiver Line Status interrupt . Interrup t
occurs when framing, overrun or parity errors are
detected or when Break is detected .

3

	

MSI

	

1 = Enable Modem Status interrupt . Interrupt occur s
whenever CTS, DSR, RI or DCD is asserted .

7—4

	

—

	

Unused — set to O .

interrupts as a result of several conditions and these can be selectivel y
enabled or disabled by writing to this register . A high bit in any of the
four low order positions will enable the corresponding interrupt . Any
combination of interrupts can be enabled . A detailed description of
the UART's interrupt system is provided later in this chapter .

Interrupt Identification Register (IIR, offset 2, R/0, DLAB = 0/1 )

Once an interrupt has been generated, it is important for the
interrupt handling software to be able to check the source of the
interrupt in order to respond appropriately. The bits containe d
in the IIR (see Table 8.7) indicate, first, whether an interrupt i s
pending and, second, what particular UART condition generate d
the interrupt .

On the 16550 (or compatible UARTs), but not the 8250 or 16450 ,
this register also contains bits that can be used to identify the type o f
UART and whether the FIFO buffers are enabled .

FIFO Buffer Control Register (FCR, offset 2, W/O, DLAB = 0 )

This register provides a means for the software to enable and control
the transmit and receive FIFO buffers which are present on the 1655 0
and compatible UARTs (e .g. the 16552 and 16554) . The FCR is not
present on the 8250 or 16450 . The bit assignments for this registe r
are shown in Table 8 .8. Please refer to the later section Operation of
the 16550 FIFO buffer for further details on interrupt generation .
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Table 8.7 The Interrupt Identification Register (lIR )

Bit Mnemonic

	

Descriptio n

	

0

	

IP

	

0 = Interrupt is pending

	

3—1

	

ID Table

	

000b = Modem Status interrupt
001b = Transmit Holding Register Empty interrup t
01 Ob = Data Read interrupt (received data is present i n

RBR )
011 b = Receiver Line Status interrup t
110b = Character timeout interrupt (16550 in FIFO mode )

	

5,4

	

—

	

Unused — should be 0

	

7,6

	

FIFO

	

00b = FIFO disabled, or not 1655 0
Indicator

	

10b = FIFO disabled (16550 with faulty FIFO)
x1b = FIFO enabled

Table 8 .8 The FIFO Buffer Control Register (FCR)

Bit Mnemonic

	

Description

0

	

FE

	

FIFO buffer enable . 0 disables and flushes both the transmi t
and receive FIFOs . 1 enables both FIFO buffers . NB. Whe n
writing to this register, bit 0 must be 1 in order to change th e
states of any of the remaining bits .

1

	

RRF

	

Reset receiver FIFO . A 1 bit empties the receiver FIFO . It has
no effect on the RSR .

2

	

RTF

	

Reset transmitter FIFO . A 1 bit flushes the transmitter FIF O
buffer . It has no effect on the TSR .

3

	

Unused on the PC .
4

	

—

	

Unused .
5

	

—

	

Unused .
7,6

	

RTL

	

Receiver trigger level . Specifies the number of bytes whic h
must be available in the receiver FIFO before a Data Ready
interrupt will be generated :
00b = Interrupt triggered by 1 byte in FIF O
Olb = Interrupt triggered by 4 bytes in FIF O
10b = Interrupt triggered by 8 bytes in FIF O
11 b = Interrupt triggered by 14 bytes in FIFO .

Line Control Register (LCR, offset 3, R/W, DLAB = 0/1 )

The LCR is used to specify the composition of each serial frame . Its
contents define the parity as well as the number of data and stop bits
to be used, as shown in Table 8 .9 .
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Table 8 .9 The Line Control Register (LCR)

Bit Mnemonic

	

Descriptio n

1,0

	

WLSB

	

Word length select bits . Specifies the number of data bits i n
the serial frame :
00b = 5 data bits
01 b = 6 data bit s
1 Ob = 7 data bit s
11 b = 8 data bit s

2

	

STB

	

Number of stop bits . This is interpreted differently, dependin g
upon the number of data bits specified :
STB = 0 always indicates 1 stop bit
STB = 1 indicates 2 stop bits with 6, 7 or 8 data bits, bu t
only 1 .5 stop bits if 5 data bits have been selected .

3

	

PEN

	

Parity enable . A 1 bit enables parity . A 0 bit disables parity ,
regardless of the states of bit 4 .

4

	

EPS

	

Even parity select . A 1 bit selects even parity . A 0 bit select s
odd parity .

5 SP Stick parity . A 1 bit forces the parity bit in the serial frame to a
fixed state, regardless of whether there are an even or odd
number of data bits . In this case the actual state of the parity
bit is equal to the inverse of EPS .

6

	

SB

	

Set break. When this bit is set to 1, the UART forces the T D
line to a spacing state . If this state is maintained for more
than one character transmission period, the receiving UART
will detect the break condition and (if programmed to do so )
will generate a break interrupt .

7

	

DLAB

	

Divisor latch access bit . This bit should normally be 0 and onl y
set to 1 while accessing the divisor latch (DLL and DLM )
registers . It should always be reset to 0 after programmin g
the divisor .

The Divisor Latch Access Bit (DLAB) is also contained in thi s
register. This bit should be 0 for normal operation . It should be se t
to 1 only to access the baud rate divisor latches .

Modem Control Register (MCR, offset 4, RAN, DLAB = 0/1 )

The primary purpose of this register is to allow driving software
to control the state of the serial port's DTR and RTS lines . This
is accomplished by setting or resetting bits 0 and 1 as shown i n
Table 8 .10 .
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Table 8 .10 The Modem Control Register (MCR)

Bit

	

Mnemonic

	

Description

0

	

DTR

	

1 = Assert the RS-232 DTR line .
1

	

RTS

	

1 = Assert the RS-232 RTS line .
2

	

OUT1

	

Unused on the PC .
3

	

OUT2

	

1 = Enable UART interrupts to be passed to the 8259A PIC .
4

	

LOOP

	

1 = Loop-back mode active .
7-5

	

-

	

Unused .

The OUT2 bit controls whether any interrupt signals generated
by the UART reach the PC's 8259A PIC and thus cause an interrupt .
OUT2 should be set high to enable UART interrupts .

The UART's loop-back facility can be enabled l)y setting the LOO P
bit to 1 . When loop-back mode is active, the modem control bits and
OUT1 and OUT2 defined in the MCR are automatically fed back t o
the modem status input bits of the MSR. This feature is provided i n
order to facilitate testing .

Line Status Register (LSR, offset 5, R/O, DLAB = 0/1 )

The Line Status Register contains a number of bits which indicate the
status of the receiver and transmitter . These are listed in Table 8 .11 .
The various error flags (PE, FE etc .) should be read at the tim e
that the high DR bit is detected . These flags indicate whether an y
errors occurred during reception of the character currently waitin g
in the RBR. If the 16550's FIFO buffers are enabled, the receiver' s
error status is stored along with each received character in the FIF O
buffer . As each new character is presented at the RBR, the UART
loads the corresponding error status bits into the LSR .

Modem Status Register (MSR, offset 6, R/O, DLAB = 0/1 )

The various RS-232 control lines can be sensed via the high orde r
4 bits of this register . In addition, the low order bits indicate whethe r
the control lines have changed state since the last time that th e
software read the MSR. These are listed in Table 8 .12 .

Scratchpad Register (SCR, offset 7, R/W, DLAB = 0/1)

This register may be used for temporary storage of data : it is not
actually used by the UART's internal circuitry and therefore th e
contents of this register have no effect on the functioning of th e
UART. It is present on most 16450-compatible UARTs.
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Table 8 .11 The Line Status Register (LSR)

Bit Mnemonic

	

Descriptio n

0 DR Data ready. A 1 bit indicates that data is available in the RBR .
On a 16550 with FIFO mode enabled, a 1 bit indicates tha t
the FIFO holds one or more bytes of data .

1

	

OE

	

1 = Overrun error occurred . Cleared by reading LSR .
2

	

PE

	

1 = Parity error occurred . Cleared by reading LSR .
3

	

FE

	

1 = Framing error occurred . Cleared by reading LSR .
4

	

BI

	

1 = Break detected . Cleared by reading LSR .
5

	

THRE

	

1 = THR is empty and ready for a new byte to be loaded . I n
16550 FIFO mode, a 1 bit indicates that the transmit FIFO i s
empty .

6

	

TEMT

	

1 = THR and TSR are both empty . In 16550 FIFO mode, a 1 bit
indicates that the TSR and transmit FIFO are both empty .

7

	

ERF

	

Error in receiver FIFO . Present only on 16550 and compatibles
when FIFO mode is enabled . A 1 bit indicates that th e
receiver FIFO contains one or more characters for which a n
error occurred (i .e . framing, parity, overrun or break) . Not e
that the error status of each received character is recorded i n
the FIFO and presented at the appropriate bits in the LS R
each time a new character from the FIFO is presented at the
RBR. If FIFO mode is unsupported or disabled, this bit i s
unused and is set to 0 .

Table 8.12 The Modem Status Register (MSR)

Bit Mnemonic

	

Description

0

	

DCTS

	

1 = CTS input has changed state . Cleared by reading MSR .
1

	

DDSR

	

1 = DSR input has changed state . Cleared by reading MSR .
2

	

TERI

	

1 = RI input has changed state . Cleared by reading MSR .
3

	

DDCD

	

1 = DCD input has changed state . Cleared by reading MSR .
4

	

CTS

	

1 = CTS input is asserted .
5

	

DSR

	

1 = DSR input is asserted .
6

	

RI

	

1 = RI input is asserted .
7

	

DCD

	

1 = DCD input is asserted .

Baud rate selectio n

The PC's DART can be configured to operate at baud rates betwee n
2 and 115 200 baud. Its baud rate generator circuit operates b y
dividing down the frequency of a periodic signal provided by an
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external clock . The divisor (and hence bawl rate) can be modified
by loading an appropriate 16-bit value into the UART's divisor latc h
registers DLL and DLM . The divisor, D, can be calculated from th e
following formula:

faD =

	

	 	 (8 .1 )
16 x b

where fk is the frequency of the clock and b is the desired baud
rate . On the IBM PC and all compatibles (except for the PCjr, fck

is 1 .8432 MHz. The frequency used on the PCjr is 1 .7895 MHz. Thus
on all machines except for the PCjr, this equation reduces t o

115 200
D =

	

	 	 (8 .2 )
b

where the maximum value of b is 115 200 (D cannot. be less than 1) .
Table 8 .13 lists the divisors necessary to generate a range of common
baud rates using Equation 8 .2 . Note that some baud rates cannot be
set exactly and that there is consequently a slight error in the timin g
of the serial frame when using these settings . Fortunately, the UART
is generally capable of tolerating an error of up to about 5 per cen t
in the baud rate .

Table 8 .13 Divisors for common baud rates on the IBM PC, XT, AT, PS/2 an d
compatible machines

Nominal baud rate Divisor Error Notes

2 E100h No practical use other than for testing an d
debugging .

50 900h
75 600h

110 417h 0 .026 %
150 300h
300 180h
600 COh

1 200 60h
2 400 30h
4800 18 h
9 600 OC h

19 200 6 h
38 400 3 h
56 000 2h 2 .86%

115200 1h Not available on 8250 .
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Listing 8 .2 Loading the divisor into the UART's Divisor Latch Register s

union dbyte

	

/* For accessing high and low order bytes of * /

{

	

/* the baud rate divisor * /

unsigned int I ;
unsigned char Ch [ 2 ] ;
} ;

union dbyte Divisor ;

AddrDLL = BaseAddr ;

	

/* Usually 3F8h for COM1 or 2F8h for COM2 * /

AddrDLM = BaseAddr + 1 ;

	

/* Usually 3F9h for COM1 or 2F9h for COM2 * /

AddrLCR = BaseAddr + 5 ;

	

/* Usually 3FDh for COM1 or 2FDh for COM2 * /

OrigLCR = inportb(AddrLCR) ;

	

/* Get current state of LCR * /
outportb(AddrLCR,(OrigLCR

	

Ox8O)) ;

	

/* DLAB = 1 to access baud div regs . * /
outportb(AddrDLL,Divisor .Ch[O]) ;

	

/* Output LSB of baud rate divisor * /
outportb(AddrDLM,Divisor .Ch[l]) ;

	

/* Output MSB of baud rate divisor * /
outportb(AddrLCR,(OrigLCR & Ox7F)) ;

	

/* DLAB = 0 * /

Once the required divisor has been determined, it is necessary
to load it into the UART's DLL and DLM registers as shown i n
Listing 8 .2 . Note that, in this listing, the Divisor is defined as a dbyte
union in order to access its high and low order bytes individually .
For brevity, other variable declarations are not shown .

After defining the addresses of the various registers in the PC' s
I/O space, the next task is to set the DLAB bit in the Line Control
Register to 1 in order to permit the divisor latch registers DLL an d
DLM to be accessed . Each register holds only 8 bits of the 16-bi t
divisor: the least significant byte is loaded into the DLL and the mos t
significant byte into DLM. Finally, the DLAB bit in the LCR shoul d
be restored to zero .

Serial transmission errors
The UART is capable of detecting a number of different erro r
conditions during transmission and reception of the serial bit stream .
Parity errors have already been mentioned . If a parity error is
detected, the UART sets the PE bit in the LSR . Two other erro r
conditions — overrun and framing errors — are flagged in a similar
way. The OE and FE bits are used for this purpose .

Overrun errors occur during reception of data if the software doe s
not read the received data bytes from the RBR at a high enoug h
rate. On UARTs without a FIFO, the RBR can hold only one byt e
of received data . The software must ensure that it reads this byte
before it is overwritten by any subsequent bytes . If the byte is not rea d
quickly enough, the UART sets the OE bit in the LSR to indicat e
that one or more bytes have been overwritten .
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Framing errors occur if the UART cannot detect a valid stop bit.
Each stop l)it should consist of a logic-high pulse, but if the received
data line is in a low state when the UART expects to sample a
stop bit, a framing error will be generated and flagged by means o f
the FE bit in the LSR. Framing errors can be caused by noise o n
the transmission line . They might also arise if the transmitter an d
receiver have been erroneously programmed to operate at differen t
baud rates .

Note that for the software to detect a parity, overrun or framin g
error it must read the PE, OE and FE flags from the LSR before i t
reads the received data from the RBR, since these flags are reset by
the act of reading the RBR. Ideally, the routine that checks the D R
flag in order to determine whether any new data is available shoul d
also record the state of PE, OE and FE at the same time .

Although these error detection facilities are very useful, they
cannot detect certain types of error in the received data . If an eve n
number of data bits in a single character frame are corrupted, du e
to excessive noise on the transmission line, for example, the UART
will not be able to detect a parity error. A number of more robust
schemes may be used to verify the integrity of received data . One
such scheme is to transmit checksums or cyclic redundancy checks
with each block of data sent .

One (almost) fail-safe error checking technique, which has already
been mentioned, is for the receiving device to immediately retransmi t
each byte of received data. This can be implemented in point-to -
point or looped networks and allows the transmitter to check tha t
the echoed byte exactly matches the one originally transmitted .

Polled transmission and reception of dat a
The simplest, and often the fastest, method of transferring data vi a
the UART is to continuously poll the UART's status flags . This allows
the software to determine when the UART is ready to transmit a
new byte, and when it has received a character over the serial link .
Listing 8 .3 illustrates the procedures involved .

These functions illustrate how the software should wait for the I) R
or THRE flags to go high before attempting to read data from th e
RBR or to write data to the THR, respectively . Both routines also
include a facility to return to the caller after a predetermined timeou t
period (controlled by the global TxTOLimit or RxTOLimit variables) .

Polling the RD or THRE flags provides a very fast response ,
particularly if the polling routines are written in assembly language .
This technique is ideal if the maximum possible throughput i s
required and if it is feasible to dedicate the processor to polling an d
servicing the UART. However, the software overhead involved in
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Listing 8 .3 Polled half duplex transmission and reception of dat a

void ReadCom(unsigned char *Data, unsigned char *OE ,
unsigned char *PE, unsigned char *FE )

/* Reads the next character received by serial port . If no characters becom e
available within approximately RxTOLimit milliseconds the global TxTimeou t
flag is set . If an overrun, parity or framing error is detected, ReadCo m
returns with the OE, PE or FE flags set as appropriate .

* /
{
unsigned char DataReady ;
unsigned char LSR ;

unsigned int Timer ;

/* Wait for DR bit to go high before reading the RBR * /

Timer = 0 ;
do

{

Timer++ ;

delay(1) ;

	

/* Delay for 1 ms * /

LSR = inportb(AddrLSR) ;
DataReady = ((LSR & 0x01) == 0x01) ;
}

while ((!DataReady) && (Timer < RxTOLimit)) ;
if (DataReady )

{
*Data = inportb(AddrRBR) ;

	

/* Read received data byte from RBR * /

*OE

	

= ((LSR & 0x02) == 0x02) ;

	

/* Check for overrun error * /
*PE

	

= ((LSR & 0x04) == 0x04) ;

	

/* Check for parity error * /
*FE

	

= ((LSR & 0x08) == 0x08) ;

	

/* Check for framing error * /
}

if (Timer >= RxTOLimit) RxTimeout = 1 ;

	

/* Signal timeout error * /

}

void WriteCom(unsigned char *S, unsigned char *NumCopied )
/* This writes each character contained within the ASCIIZ string S to th e

serial port's THR for transmission . If the THR does not empty withi n
TxTOLimit milliseconds, this function sets the global TxTimeout flag an d
returns . The number of bytes actually copied to the THR is returned in th e
NumCopied parameter .

* /

{
unsigned int Timer ;
unsigned char THREmpty ;

*NumCopied = 0 ;

while ((S [ *NumCopied]) && ! (Error . TxTimeout) )
{
/* Check THR is empty before writing next character * /
Timer = 0 ;

do
{

Timer++ ;
delay(l) ;

	

/* Delay for 1 ms * /

THREmpty = ((inportb(AddrLSR) & 0x20) == 0x20) ;
}
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Listing 8.3 (continued)

while ((!THREmpty) && (Timer < TxTOLimit)) ;
if (THREmpty )

outportb (AddrTHR, S [ *NumCopied]) ;
(*NumCopied) ++ ;

)
else TxTimeout = 1 ;

)

continuous polling would be impracticable in many data-acquisitio n
applications and, in these cases, it is necessary to make use of th e
UART's interrupt facilities .

The UART's interrupt system
The UART is capable of generating an interrupt whenever on e
of a predetermined set of events occurs . This allows it to reques t
processor service when, for example, a new character has bee n
received .

By using interrupts in this way, rather than polling the UART' s
line status flags, it is possible for the software to continue with othe r
tasks until the UART requires service . Interrupt. latencies and th e
software overhead involved in responding to interrupts can, in a few
instances, outweigh this advantage, and in order to achieve the fastes t
possible throughput it may be necessary to use tightly coded pollin g
loops instead . However, most applications benefit from the interrup t
facilities offered by the UART . It is feasible to use interrupt driven ,
buffered I/O at baud rates up to 56 000 or even 115 200, dependin g
upon the speed of the PC and the software it is running .

If it is possible for processes (e .g. interrupt handlers) with higher
priorities than the serial port interrupt to retain control of the syste m
for longer than the time interval between reception of successiv e
bytes, data may be lost as a result of an overrun error . A similar
problem occurs in multitasking environments, such as Microsof t
Windows, which periodically disable interrupts while performing a
task switch . In such operating systems interrupt latencies tend to b e
much longer and less predictable than under DOS . One solution to
the problem is to use a hardware FIFO buffer such as that presen t
in the 16550 UART. Note that Windows 3 .1 assumes that a 16450
is present and must be specially configured to take advantage of
the 16550 .

The first (COM1) serial port interrupt is usually assigned t o
IRQ4 and the second (COM2) is assigned to IRQ3 . There are no
specific interrupts reserved for other UARTs present in the system
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(those controlling an additional RS-422 port, for example) and thes e
devices may be assigned to any available interrupt (IRQ) channel .
The PS/2 range of computers permit different devices to share th e
same IRQ level and on these machines all serial ports in the syste m
often share IRQ 4 .

The 8250 and 16450 UARTs support four types of interrupt a s
listed in Table 8 .14. The 16550 incorporates an additional interrup t
facility which allows the software to read the contents of the receiver' s
FIFO buffer . Each type of interrupt can be enabled by setting on e
of the low order 4 bits of the Interrupt . Enable Register (IER) — see
Table 8 .6 . When an interrupt occurs, the interrupt handler routin e
must read the Interrupt Identification Register (IIR) to determine
what caused the interrupt . Bits 1 to 3 of the IIR indicate the natur e
of the pending interrupt as shown in Table 8 .7 .

Table 8 .14

	

UART interrupts and reset action s

Priority

	

Type

	

Causes Reset action IIR Bits 1—3

1 Receiver Lin e
Status

Overrun, parity o r
framing errors, o r
break detected .

Read LSR 011 b

2 Data Ready Received data i s
available in RB R
(DR = 1) .

Read RBR 010b

2* Data Ready FIFO trigger level
exceeded .

FIFO contents
fall below
trigger

010b

2* Character
Timeout

Receiver FIFO is no t
empty and the FIF O
contents hav e
remained static over
the last four-fram e
period .

Read RBR 110 b

3 Transmitte r
Holding
Registe r
Empty

THR is now empty
(TH R E = 1) .

Read IIR o r
write THR

001 b

4 Modem Status Any of the DCTS ,
DDSR, TERI or DDC D
bits of the MSR g o
high .

Read MSR 000b

* 16550 and compatible devices only .
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When it has determined the cause of the interrupt and take n
whatever action is necessary, the interrupt handler must also reset o r
clear the interrupt. This is performed by reading or writing specific
registers as detailed in Table 8 .14. The software must, of course ,
also acknowledge the 8259A PIC through which the interrupt wa s
generated .

Listing 8 .4 illustrates how to enable all four of the UART's inter-
rupts . As the Data Ready and Transmitter Holding Register Empt y
interrupts are enabled, an interrupt will be generated whenever th e
DR or THRE bits in the LSR are set . This allows an interrupt handle r
to either copy received data from the RBR to a memory buffer or t o
write the next character to the THR so that the UART can transmit it .

This listing includes several lines which are required to circumvent
two quirks of the 8250's interrupt operation . First, the software waits
for a time period equal to that required to transmit one seria l
frame. This period will, of course, vary with the baud rate being
used. The delay is necessary because, when power is first applied to
the 8250, the THRE flag will automatically be set high . When the
THRE interrupt is first enabled, the high THRE flag will cause a
THRE interrupt to be generated even if the THR is not empty (i .e .
if previous data is still in the process of being transmitted) . Waiting
for a short time ensures that the UART has had sufficient time to
empty the THR. Another problem arises the first time the softwar e
writes to the IER in order to set the THREI bit (i .e. to enable the
THRE interrupt) . On the 8250 UART, this may not actually result i n
the THRE interrupt being enabled . To circumvent this problem, i t
is necessary to write to the IER twice in succession .

Note that, on the PC, the interrupt signal from the UART i s
channelled through a gate which must be enabled by setting th e
OUT2 bit of the Modem Control Register . The 8259A PIC mus t

Listing 8.4 Enabling serial port interrupts

delay(FrameTime) ;

	

/* Ensure THR is empty before proceeding * /
disable() ;

	

/* Disable interrupts while configuring UART * /

/* Initialize UART interrupts * /
outportb(AddrMCR,0x08) ;
outportb(AddrIER,OxOF) ;
outportb(AddrIER,OxOF) ;

/* Enable UART interrupt via OUT2 bit * /
/* Enable all UART interrupts * /

/* Bug fix for 8250 - requires two writes */

/* Clear any status bits which may already be pending * /
LSR = inportb(AddrLSR) ;
RBR = inportb(AddrRBR) ;
IIR = inportb(AddrIIR) ;
MSR = inportb(AddrMSR) ;

enable() ;

	

/* Re-enable interrupts * /
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also be enabled to generate interrupts on the appropriate channel ,
although this is not shown in Listing 8 .4. As mentioned previously ,
IRQ4 is used for ports 0 and 2 (COM1 and COM3) and IRQ3 is use d
for ports 1 and 3 (COM2 and COM4) on most PCs .

The UART may also generate interrupts in response to condition s
such as parity, framing or overrun errors, or in response to a chang e
occurring in the state of one of the Modem Status lines . Listing 8.5 ,
presented at the end of this chapter, illustrates how the interrup t
system allows the software to monitor for these UART conditions .

The character timeout interrupt can occur only on the 1655 0
UART (and compatible devices) and is not activated in Listing 8 .4 .
This interrupt and an extension of the Data Ready interrupt ar e
described in more detail in the following section .

Operation of the 16550 FIFO buffe r

The 16550 UART, and compatible devices such as the 16552 an d
16554, are equipped with a pair of `First-In-First-Out' (FIFO) buffers .
One holds data in readiness for transmission, the other store s
received data . The transmitter ' s FIFO can be loaded with up to
16 bytes at once and the UART will then transmit these in sequence .
Similarly, the receiver's FIFO can hold several bytes of received dat a
before requiring service from the processor. This greatly reduces the
software overhead involved in serial communications and enhance s
the rate of data throughput. The FIFO buffers allow the system
greater latitude in the regularity with which the UART is serviced .
This is particularly helpful if there is a possibility that high priorit y
interrupts or task switches will temporarily block the serial port' s
interrupt . For these reasons, the 16550 UART is used on a numbe r
of RS-422 and RS-485 plug-in cards for industrial communication .

It is interesting to note that some proprietary serial-port adapto r
cards incorporate longer FIFO buffers : typically around 8 KB . These
are often used in conjunction with some form of on-board processing
capability to increase data throughput while minimizing softwar e
overheads. These devices are particularly suited to transferring larg e
blocks of data, but may be less beneficial when single bytes or shor t
command strings are to be transmitted . In many PC-based data-
acquisition systems, the 16-bit FIFOs present on the 16550 provid e
an optimum (and relatively cheap) way of performing buffered
serial I/O .

Initializing the 16550's FIFO buffers

The 16550's FIFO buffers are unused by default – i .e. at power up,
both the transmit and receive FIFOs are disabled and the device
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functions in the same way as a normal 16450 . In order to enable the
FIFO mode of operation, it is necessary to set bit zero of the FIFO
Control Register (FCR) to 1 .

In order to achieve compatibility with earlier UARTs, the softwar e
should then check to ensure that the FIFO mode has indeed bee n
enabled by reading bit 6 of the IIR. If the UART is an 8250 or 1645 0
device (or one of the early versions of the 16550 that happened t o
possess a faulty FIFO buffer), FIFO mode will not be supported and
this bit will be zero. If the FIFO mode has been enabled successfully,
bit 6 will be set to 1 . Unfortunately, the 16550 `compatible' UART
present in some AT clones (the UM82C550) does not set bit . 6
even though it supports a fully working FIFO. If the driver software
determines that bit 6 is zero, it is advisable to perform an additiona l
check to determine whether the FIFO mode is actually available .
This may be accomplished by switching the UART into loop-bac k
mode and then transmitting 16 test bytes . The same sequence of
bytes should be subsequently detected at the RBR if the FIFO buffe r
is supported. If the UART does not possess working FIFO buffers, a n
overrun error will occur .

When enabled, the FIFO buffers effectively replace the norma l
THR and RBR, buffering both transmitted and received data. The
THR and RBR then act only as `windows' through which to access
the respective FIFO buffers . For simple polled operation, both
transmission and reception via the FIFO buffers are performe d
transparently to the driving software .

Polled transmission via the FIFO

To transmit data via the FIFO buffer, the software may load up t o
16 bytes at a time into the THR at offset 0 from the UART's bas e
address, provided that the THRE flag (in the Line Status Register)
is set . The UART will then transmit the bytes in sequence . When al l
of the bytes have been transmitted, the THRE flag will be set agai n
to indicate that the transmitter's buffer is empty and ready for up t o
16 further bytes .

According to van Gilluwe (1994), precautions should be take n
if only 1 byte is to be loaded into the transmitter's FIFO . If the
FIFO has just emptied and the last byte from the FIFO is still
being transmitted via the Transmitter Shift Register (TSR), and the n
a single byte is loaded into the FIFO, the new byte will not be
transmitted immediately. It will remain in the transmitter's FIF O
until 1 or more further bytes are also loaded into the buffer . To
prevent this problem occurring, it is advisable to wait until th e
TEMT flag in the Line Status Register is set before loading a single
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byte into the FIFO buffer. If more than 1 byte is to be loaded, th e
software need not wait for the TEMT signal .

Polled reception via the FIFO

As successive bytes are received via the UART's Receiver Shif t
Register, they are stored, together with any error information (i .e .
parity or framing errors, or a break interrupt), in the receiver' s
FIFO. When there are 1 or more bytes present, the DR bit in th e
Line Status Register is set to indicate that data can be read via th e
RBR. Only when all available bytes have been read from the FIFO
buffer, will the UART reset the DR flag.

Interrupt-based transmission via the FIFO

Interrupt-based transmission is similar to that used on the 825 0
and 16450. If the THRE interrupt is enabled, an interrupt will b e
generated when the transmit FIFO becomes empty, thereby allowin g
the software to load one or more further bytes into the buffer.

Interrupt-based reception via the FIFO

Interrupt-based reception via the FIFO is slightly more complex . A
Data Ready interrupt will be generated only when a preprogramme d
number of bytes are present in the receiver's FIFO . This number ,
known as a Receiver Trigger Level, may be set to 1, 4, 8 or 14 b y
means of the RTL bits in the FIFO Control Register . This allows th e
driving software to reduce the interrupt rate (and thus to enhanc e
the system's throughput) by using a higher trigger level . The UART
also provides a facility to periodically flush the receiver FIFO if ther e
has been no FIFO activity for a time period equivalent to four seria l
frames. This is accomplished by another type of interrupt known
as the Character Timeout Interrupt which is generated only if th e
FIFO is not empty and if no bytes have been added to, or read from,
the receiver's FIFO during the four-frame timeout period . When
the software detects a Character Timeout Interrupt, it should read
the entire contents of the receiver's FIFO. This type of interrupt is
cleared whenever the software reads a byte from the FIFO .

Error flagging in the FIF O

As mentioned previously, any errors which are detected in th e
received data byte are stored along with the data itself in the receiver' s
FIFO buffer. As each successive byte is presented at the RBR the asso -
ciated error flags (PE, FE and BI) are also presented in the Lin e
Status Register . If the FIFO receives more characters than it is able
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to handle (i .e. more than 16 characters) it generates an overru n
error which is flagged by means of the OE bit in the Line Statu s
Register. An overrun error occurs only if the FIFO buffer is frill and
an additional received byte causes it to overflow .

Loop-back mode

The UART provides a loop-back facility, which is intended fo r
testing the UART's transmit, receive and control circuits . It can
also be a useful means of testing and debugging communications
driver software, circumventing the need to connect the serial port
to any external test equipment. The UART may be configured fo r
loop-back operation by simply setting the LOOP bit in the Mode m
Control Register (MCR) . This is illustrated in Listing 8 .5 at the end
of this chapter .

When the loop-back mode is enabled, the UART's serial outpu t
(SOUT) pin is held in the marking (inactive) state . The serial input
(SIN) pin is disconnected from the UART's internal circuits an d
the output of the Transmitter Shift Register (TSR) is internall y
connected to the input of the Receiver Shift Register (RSR) . In
this way all `transmitted' data is immediately received at the RSR .
Similarly, the DTR, RTS, OUT1 and OUT2 pins are forced into thei r
inactive state and the corresponding bits in the MCR are loope d
back internally and connected to the DSR, CTS, RI and DCD bits i n
the MSR. These loop connections are summarized in Table 8.15 .

Note that the OUT2 pin goes high, so it is not possible to interrupt
the processor while the UART is in loop-back mode. Although the
UART will generate an interrupt signal if a preprogrammed interrup t
condition occurs, the signal will be prevented from reaching the PC' s
8259APIC . In order to test interrupt handlers in loop-back mode, it is
necessary to employ a polling loop which monitors the IP (Interrupt
Pending) bit of the IIR and issues a software interrupt whenever a
UART interrupt is detected . Remember that in such a test mode, th e

Table 8.15 Internal rerouting of signals in the UART's
loop-back mode

Output signal

	

Input signal

Transmitted Data (from TSR)

	

Received Data (input to RSR )
DTR (from MCR)

	

DSR (in MSR )
RTS (from MCR)

	

CTS (in MSR )
OUT1 (from MCR)

	

RI (in MSR )
OUT2 (from MCR)

	

DCD (in MSR)
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interrupt handler should not issue an End of Interrupt instruction
to the PIG !

The break facility
If the UART's receive input is held in the spacing state for a tim e
greater than one serial frame, a Break condition is generated . The
Break maybe detected by polling the BI bit in the UART's Line Statu s
Register (LSR) or by enabling the Receiver Line Status interrupt .
In the latter case, upon determining that a Receiver Line Statu s
interrupt is pending, the interrupt handler must check the BI bit. If
this bit is set, a Break condition has been detected . In this case, the
software should read the RBR, as the receiver will have placed a nul l
character (all bits zero) into the RBR .

To generate a Break condition, the transmitting UART must hol d
its transmit line in the spacing state . This can be accomplished
by setting the SB bit of the LCR for a short time (typically fo r
a few character frames) . The software should then reset SB after
this interval has elapsed so that communications can resume . Note
that the UART that initiated the Break cannot transmit any furthe r
characters (although it can still receive then) while the SB bit is set .

The Break facility originates from RS-232 mainframe/termina l
communications systems and was designed to allow the receivin g
terminal to suspend the communication session . It is of limited
use in data-acquisition applications, but it is possible to use it i n
proprietary systems to control transmission or, perhaps, to reset a
network of data-logging modules .

An 8250/16450 UART driver for buffered serial I/ O
This section draws upon the information presented previously t o
construct a suite of driver routines for use with 8250 and 1645 0
UARTs. The driver software, which is shown in Listing 8 .5, is also
compatible with enhanced UARTs such as the 16550 or 16552, bu t
does not make use of the FIFO buffer facilities available on thes e
devices . Neither hardware handshaking nor software flow contro l
are supported, but these can easily be added if required .

To begin communication you should first use InitializeCom () to
define the various serial communications parameters, and then cal l
OpenCom O which initializes the UART and activates the interrup t
system . At this point, you can undertake serial communication s
by means of the ComCharAvail ( ) , ReadCom 0 ) and WriteCom ( ) functions .
These functions can be invoked independently of each other as an d
when required by the calling program. Each function is thoroughly
commented and should be self-explanatory .
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Listing 8 .5 An 8250/16450 UART driver

HALF DUPLEX DRIVER FOR AT MACHINES EQUIPPED WITH 8250 AND 16450 UARTS
-------------------------------------------------------------------- -

Instructions for Use :
------------------- -

1. Call InitializeCom() to define the various serial communications parameters .

2. Call OpenCom() to configure the port and begin the communications session .
3. When needed call ComCharAvail() and ReadCom() to read received characters

via the selected serial port, or call WriteCom() to transmit characters vi a

the port .
4. To terminate communications call CloseCom() .

See text for more detailed instructions .

* /

#include <dos .h >

#include <stdlib .h >

/*	 DEFINES =_----	 * /	

#define MaxComPort 3

	

/* Supports up to 4 serial ports * /
#define RxBufLim 1023

	

/* Receive buffer size = 1024 bytes * /

#define TxBufLim 255

	

/* Transmit buffer size = 256 bytes * /

#define True

	

1

#define False

	

0
/* Boolean flag values * /
/* 11 "

	

* /

/*	 DATA DECLARATIONS ============================= * /

union dbyte

	

/* For accessing high and low order bytes of * /
{

unsigned int I ;

unsigned char Ch [ 2 ] ;
} ;

struct AddrRe c
{

unsigned int THR ;

unsigned int RBR ;
unsigned int DLL ;

unsigned int DLM ;

unsigned int IER ;
unsigned int IIR ;

unsigned int LCR ;
unsigned int MCR ;

unsigned int LSR ;

unsigned int MSR ;

/* the baud rate divisor * /

/* UART register addresses * /

/* Transmitter holding register * /

/* Receiver buffer register * /
/* Divisor latch LSB register

	

(if DLAB = 1)

	

* /
/* Divisor latch MSB register

	

(if DLAB = 1)

	

* /

/* Interrupt enable register * /
/* Interrupt identification register * /

/* Line control register * /

/* Modem control register * /
/* Line status register * /

/* Modem status register */
} ;



Serial communications 33 3

Listing 8.5 (continued)

struct SerialFrameRec

	

/* Serial communications parameters * /
{

unsigned char BaudCode ;

	

/* 0 = 2 ; 1 = 50 ; 2 = 75 . . 14 = 115200 * /

unsigned char DataBits ; /* 0 = 5 bits ; 1 = 6 bits ; 2 = 7 bits ; 3 = 8 bits * /

unsigned char StopBits ;

	

/* 0 = 1 bit ; 1 = 2 bits * /

unsigned char ParityCode ;

	

/* 0 = None ; 1 = Odd ; 3 = Even ; 5 = Sp; 7 = Mk * /

struct ComRec /* Serial port and PIC data * /

unsigned char PortNum ; /* Serial port number : 0 to MaxComPort * /
unsigned char Available ; /* Set >0 if active COM port is present * /

unsigned char IRQNum ; /* IRQ number used, or OxFF * /

unsigned char IntNum ; /* Interrupt vector type code * /

unsigned int PICAddr ; /* Base address of primary 8259A PIC * /

unsigned char PICMask ; /* Interrupt enable mask for PIC * /
unsigned char OrigPlCMask ; /* Original int enable mask for PIC * /

unsigned char OrigIER ; /* Original contents of IER * /

struct AddrRec Addr ; /* UART register addresses * /

struct SerialFrameRec SerialFrame ; /* Baud,

	

parity,

	

data,

	

stop bits etc . * /

unsigned int RxTOLimit ; /* Receive timeout in ms * /
unsigned int TxTOLimit ; /* Transmit timeout in ms * /
} ;

struct RxRec /* Received data buffer * /
{
unsigned char Buf[RxBufLim+l] ; /* Receive buffer * /
unsigned int BufIn ; /* Index of next free location in Buf[]

	

* /
unsigned int BufOut ; /* Index of oldest byte in Buf[]

	

* /
unsigned int Count ; /* Number of bytes in Buf[]

	

* /

} ;

struct TxRec /* Transmitted data buffer * /

unsigned char Buf[TxBufLim+l] ; /* Transmit buffer * /
unsigned int BufIn ; /* Index of next free location in Buf[]

	

* /
unsigned int BufOut ; /* Index of oldest byte in Buf[]

	

* /
unsigned int Count ; /* Number of bytes in Buf[]

	

* /
unsigned char Restart ; /* Transmission restart flag */

I ;

struct ErrorRec

	

/* Error flags * /

/* Set >0 if Rx buffer overflowed * /
/* Set >0 if Rx data not available * /
/* Set >0 if Tx buffer is full

	

* /
/* Set >0 when Break is received

	

* /
/* Set >0 if framing error occurs * /
/* Set >0 if parity error occurs

	

* /
/* Set >0 if overrun error occurs * /

struct ComRec

	

Com ;

	

/* COM port data * /
struct RxRec

	

Rx ;

	

/* Received data buffer * /

struct TxRec

	

Tx ;

	

/* Transmitted data buffer * /

struct ErrorRec

	

Error ;

	

/* Error flags to be read/reset by caller * /

unsigned char RxOverflow ;

unsigned char RxTimeout ;
unsigned char TxTimeout ;

unsigned char Breaklnt ;

unsigned char Framing ;
unsigned char Parity ;

unsigned char Overrun ;
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Listing 8 .5 (continued)

void interrupt (*OrigComVector)() ;

	

/* Previous interrupt handler * /

/*	 FUNCTION PROTOTYPES =	 * /

unsigned char ComCharAvail(void) ;
unsigned char ReadCom(void) ;
void WriteCom(unsigned char *S, unsigned char *NumCopied) ;
void SetBreak(unsigned char Active) ;
void SetLoopBackMode(unsigned char Active) ;
void InitializeCom(unsigned char PortNum) ;
void OpenCom(void) ;
void CloseCom(void) ;

/

	

---- FUNCTION IMPLEMENTATIONS =	 * /

void interrupt ComintHandler( )
/* UART interrupt handler . Invoked by Transmit Holding Register Empt y

interrupt, Received Data Available interrupt or Line Status (break, parity ,
framing or overrun error) interrupt .

* /

{
unsigned char IIR ;
unsigned char LSR ;
unsigned char Null ;

IIR = inportb(Com .Addr .IIR) ;
switch (IIR & OxOF )

{
case 2 :

if (Tx .Count > 0)
/* THR is empty - Priority 3 * /

{
/* One or more bytes are yet to be transmitted * /
outportb(Com .Addr .THR,Tx .Buf[Tx .BufOut]) ;
if (Tx .BufOut < TxBufLim )

Tx .BufOut++ ;
else Tx .BufOut = 0 ;

Tx .Count-- ;
Tx .Restart = False ;
}

else Tx .Restart = True ;
break ;

case 4 :

	

/* Received data is available - Priority 2 * /
if (Rx.Count <= RxBufLim)

{
Rx.Buf(Rx .BufIn] = inportb(Com.Addr .RBR) ;
if (Rx .Bufln < RxBufLim )

Rx .BufIn++ ;
else Rx .Bufln = 0 ;

Rx.Count++ ;

}
else Error.RxOverflow = True ;
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Listing 8.5 (continued)

break ;
case 6 :

	

/* Overrun, parity,

	

framing or break - Priority 1 * /
LSR = inportb(Com .Addr .LSR) ;
if

	

((LSR & OxlO)

	

_= OxlO )
{
/* Break received * /
Null = inportb(Com .Addr .RBR) ; /* Read and discard null character * /

Error .Breaklnt = True ;
}

else I
if ((LSR & 0x08) == 0x08) Error.Framing = True ; /* Framing error * /

if ((LSR & 0x04) == 0x04) Error.Parity

	

= True ; /* Parity error * /

if ((LSR & 0x02) == 0x02) Error.Overrun = True ; /* Overrun error */
}

break ;

}

/* Acknowledge interrupt by issuing a non-specific EOI to PIC(s) * /
if (Com.IRQNum > 7) outportb(OxAO,Ox20) ;
outportb(0x20,0x20) ;
}

unsigned char ComCharAvail( )
/* Returns True if a received character is available in the Rx .Buf buffer * /
{
unsigned char Avail ;

disable() ;
Avail = (Rx.BufOut t= Rx .BufIn) ;
enable() ;
return Avail ;
}

unsigned char ReadCom( )
/* Reads the next character from the Rx .Buf buffer . If no character becomes

available within approx . Com.RxTOLimit milliseconds, this function set s
the Error .RxTimeout flag and returns a Null character .

* /
{
unsigned int Timer ;
unsigned int Cnt ;
unsigned char Data ;

Timer = 0 ;
disable() ;
do

{
disable() ;
delay(1) ;
enable() ;
Timer++ ;
Cnt = Rx.Count ;
}
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Listing 8.5 (continued)

while ((Cnt == 0) && (Timer < Com .RxTOLimit)) ;
if (Cnt > 0 )

Data = Rx.Buf[Rx .BufOut] ;
if (Rx .BufOut < RxBufLim )

Rx.BufOut++ ;

else Rx.BufOut = 0 ;
Rx .Count-- ;
Error .RxTimeout = False ;
}

else (
Data = 0 ;
Rx .BufOut = 0 ;
Rx .BufIn = 0 ;
Rx .Count = 0 ;
Error .RxTimeout = True ;
}

enable() ;
return Data ;
}

void WriteCom(unsigned char *S, unsigned char *NumCopied )
/* This function copies the ASCIIZ string S (which must contain no more tha n

256 characters) into the transmission buffer, Tx .Buf, from where the UART' s
interrupt system will transmit them . If the buffer remains full for longe r
than approx . Com .TxTOLimit milliseconds, WriteCom will return with
the Error.TxTimeout flag set . If the transmission sequence has stopped ,
this function will attempt to restart it by writing to the THR directly .
The number of bytes successfully copied to the Tx .Buf is returned in the
*NumCopied parameter . If no timeout has occurred, *NumCopied should b e
equal to the length of the string S .

* /

unsigned char I ;
unsigned int Timer ;
unsigned char THREmpty ;

I

	

= 0 ;
*NumCopied = 0 ;

disable() ;
while ((SW) && ! (Error . TxTimeout) )

{
if (Tx .Count >= Com .TxTOLimit + 1 )

{

/* Tx .Buf is full so wait for a byte to become free, or timeout * /
Timer = 0 ;
do

{
enable() ;
Timer++ ;

delay(l) ;

disable() ;
}
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Listing 8.5 (continued)

while ((Tx .Count > TxBufLim) && (Timer < Com .TxTOLimit)) ;
if (Timer >= Com .TxTOLimit) Error .TxTimeout = True ;
}

if (1(Error .TxTimeout) )
{
/* Copy the next character to Tx .Buf * /
Tx .Buf [Tx .Bufln] = S [I] ;
if (Tx.BufIn < TxBufLim )

Tx.BufIn++ ;

else Tx .BufIn = 0 ;
Tx.Count++ ;

(*NumCopied)++ ;
}

I++ ;

	

/* Address next character in string S * /
}

/* If the previous transmission sequence has ended, the last THRE interrup t
did not cause a character to be loaded into the THR and there will ,
consequently, be no more THRE interrupts to continue transmitting the ne w

characters . In this case, "manually" load the first of the new characters
into the THR to restart transmission .

* /
if ((Tx.Restart) && (Tx .Count > 0) )

{
/* Check THR is empty before writing next character * /
Timer = 0 ;
do

{
enable() ;
Timer ++ ;

delay(l) ;
disable() ;
THREmpty = ((inportb(Com .Addr .LSR) & 0x20) == 0x20) ;
}

while ((Timer < Com .TxTOLimit) && 1(THREmpty)) ;
if (Tx .Count > 0)

	

/* Has Tx.Buf emptied while we have been waiting? * /
{

	

/* No, so restart transmission * /

if (THREmpty )

{
outportb(Com .Addr.THR,Tx .Buf[Tx .BufOut]) ;

	

/* Transmit new char * /
if (Tx .BufOut < TxBufLim )

Tx .BufOut++ ;
else Tx .BufOut = 0 ;

Tx.Count-- ;
Tx.Restart = False ;
}

else Tx.Restart = True ;

	

/* Postpone transmission restart * /
}

}

enable() ;
}

void SetBreak(unsigned char Active )
/* If Active = True, this function forces the TD line to a spacing state .

If this state is maintained for more than one serial frame time, it
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Listing 8.5 (continued)

generates a break condition (and possibly an interrupt) in the receiver .
* /
{
unsigned char LCR ;

LCR = inportb(Com .Addr .LCR) ;
if (Active )

outportb(Com.Addr .LCR,(LCR I 0x40)) ;
else outportb(Com .Addr .LCR,(LCR & OxBF)) ;

)

void SetLoopBackMode(unsigned char Active )
/* This allows the UART's loopback facility to be activated . When active ,

TD is connected to RD internally and the UART's output pins are connected
to its inputs as follows : DTR-->DSR; RTS-->CTS ; OUT1-->RI ; OUT2-->DCD .
This mode is used only for debugging and DART testing .

* /
{
unsigned char MCR ;

MCR = inportb(Com .Addr .MCR) ;
if (Active )

outportb(Com .Addr .MCR,(MCR I OxlO)) ;
else outportb(Com .Addr .MCR,(MCR & OxEF)) ;

void InitializeCom(unsigned char PortNum )
/* This initializes the Com structure for the specified serial port .

PortNum = 0 refers to COM1, PortNum = 1 refers to COM2 etc . PortNum shoul d
not exceed MaxComPort . Default IRQ and register addresses are defined
automatically. If you are using a non-standard IRQ level you will need t o
redefine the appropriate variables manually . InitializeCom also define s
default communications parameters : 9600 baud, 8 data, 1 stop, even parity .
Again, these can be modified, if required, before calling OpenCom() .

/
{

unsigned int BaseAddr ;

if (PortNum <= MaxComPort )
{

BaseAddr = peek(0x40,(2 * PortNum)) ;
if (BaseAddr != 0)

	

/* Does port exist? * /
{

Com.PortNum = PortNum ;
Com.Available = True ;
switch(PortNum )

{
case 0 :
case 1 :
case 2 :
case 3 :

Com.IRQNum = 4 ; break ; /* COM1 * /
Com.IRQNum = 3 ; break ; /* COM2 * /
Com.IRQNum = 4 ; break ; /* COM3 * /
Com.IRQNum = 3 ; break ; /* COM4 */

)
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Listing 8 .5 (continued)

Com.IntNum

	

=
Com.PICAddr =

8 + Com .IRQNum ;

0x20 ;
Com.PICMask =

Com.Addr .THR =

Com.Addr .RBR =

Com.Addr .DLL =

Com.Addr .DLM =

0x01 << Com .IRQNum ;
BaseAddr ;
BaseAddr ;
BaseAddr ;
BaseAddr +

	

1 ;

Com .Addr .TER = BaseAddr +

	

1 ;
Com .Addr .IIR = BaseAddr +

	

2 ;

Com .Addr .LCR = BaseAddr +

	

3 ;
Com .Addr .MCR = BaseAddr +

	

4 ;
Com .Addr .LSR = BaseAddr +

	

5 ;
Com .Addr .MSR = BaseAddr +

	

6 ;
Com .SerialFrame .BaudCode

	

= 10 ; /*

	

9600 baud * /

Com .SerialFrame .DataBits

	

= 3 ; /* 8 data bits * /

Com .SerialFrame .StopBits

	

= 0 ; /* 1 stop bit * /

Com .SerialFrame.ParityCode = 3 ; /* Even parity * /

Com .RxTOLimit = 2000 ; /* Approx .

	

2 .0 seconds * /
Com .TxTOLimit = 100 ; /* Approx .

	

100 ms * /
}

else Com .Available = False ;

}

else Com.Available = False ;

void OpenCom( )
/* OpenCom() prepares the system for serial communication . This function mus t

be called before any communication can take place . It initializes th e
Rx and Tx buffers, the DART and the PIC according to the values previousl y
stored in the Com structure . For this reason all fields within Com must be
properly initialized (by calling InitializeCom()) before OpenCom() i s
invoked .

* /

{
unsigned char MSR ;
unsigned char LSR ;
unsigned char RBR ;
unsigned char IIR ;
union dbyte Divisor ;
unsigned char Settings ;

if ((Com .Available) && (Com .IRQNum < 16) )

}
/* Initialize the Rx and Tx buffers * /
Rx.BufIn

	

= 0 ;
Rx.BufOut = 0 ;
Rx.Count

	

= 0 ;
Tx.BufIn

	

= 0 ;
Tx.BufOut = 0 ;
Tx.Count

	

= 0 ;
Tx.Restart = True ;

/* Initialize Error status record * /
Error .RxOverflow = False ;
Error .RxTimeout = False ;
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Listing 8 .5 (continued )

Error .TxTimeout = False ;
Error .Breaklnt

	

= False ;
Error .Parity

	

= False ;
Error .Overrun

	

= False ;
Error.Framing

	

= False ;

/* Setup baud rate, parity, data bits and stop bits * /
switch (Com .SerialFrame .BaudCode )

	

case 0: Divisor .I = OxE100 ; break ;

	

/* Debugging */

	

/* 2

	

baud * /

	

case 1 : Divisor .I = 0x0900 ; break ;

	

/* 50

	

baud * /

	

case 2 : Divisor .I = 0x0600 ; break ;

	

/* 75

	

baud * /

	

case 3 : Divisor .I = 0x0417 ; break ;

	

/* 110

	

baud * /

	

case 4 : Divisor .I = 0x0300 ; break ;

	

/* 150

	

baud * /

	

case 5 : Divisor .I = 0x0180 ; break ;

	

/* 300

	

baud * /

	

case 6 : Divisor .I = OxOOCO ; break ;

	

/* 600

	

baud * /

	

case 7 : Divisor .I = 0x0060 ; break ;

	

/* 1200

	

baud * /

	

case 8 : Divisor .I = 0x0030 ; break ;

	

/* 2400

	

baud * /

	

case 9 : Divisor .I = OxO018 ; break ;

	

/* 4800

	

baud * /

	

case 10 : Divisor .I = Ox000C ; break ;

	

/* 9600

	

baud * /

	

case 11 : Divisor .I = 0x0006 ; break ;

	

/* 19200 baud * /

	

case 12 : Divisor .I = 0x0003 ; break ;

	

/* 38400 baud * /

	

case 13 : Divisor .I = 0x0002 ; break ;

	

/* 56000 baud * /

	

case 14 : Divisor .I = Ox0001 ; break ;

	

/* 115200 baud * /

	

default : Divisor .I = Ox000C ; break ;

	

/* 9600

	

baud * /

Settings = ((Com.SerialFrame .ParityCode << 3) & 0x38 )
((Com .SerialFrame .StopBits << 2) & 0x04 )
(Com.SerialFrame .DataBits & 0x03) ;

outportb(Com.Addr .LCR,0x80) ;

	

/* DLAB=l to access baud div. regs . * /

	

outportb(Com.Addr .DLL,Divisor .Ch[0]) ;

	

/* Output LSB of divisor * /

	

outportb(Com.Addr .DLM,Divisor .Ch[1]) ;

	

/* Output MSB of divisor * /
outportb(Com.Addr .LCR,Settings) ;

	

/* Output settings & reset DLAB * /

disable() ;

	

/* Disable hardware interrupts * /

/* Initialize UART interrupts * /
/* The value loaded into the IER determines * /
/* interrupts are enabled * /
outportb(Com .Addr .MCR,0x08) ;
Com .OrigIER = inportb(Com.Addr .IER) ;

/* Enable UART int via OUT2 bit * /

outportb(Com .Addr .IER,OxOF) ; /* Enable all UART interrupts * /
outportb(Com .Addr .IER,OxOF) ; /* Bug fix for 8250 - needs 2 writes * /

/* Clear any status bits pending by reading registers * /
LSR = inportb(Com .Addr .LSR) ;
RBR = inportb(Com .Addr .RBR) ;
IIR = inportb(Com .Addr .IIR) ; /* <-- This line is also an 8250 bug fix * /
MSR = inportb(Com .Addr .MSR) ; /* in case loading IER previously * /

/* Install int handler */
/* generated a false THRE int . */

OrigComVector = getvect(Com.IntNum) ;

	

/* Save original vector * /
setvect(Com .IntNum,ComintHandler) ;

	

/* Redirect vector * /

/* Update PIC's interrupt enable mask * /
Com.OrigPlCMask = inportb(Com .PICAddr+l) ;

	

/* Get original PIC mask * /
outportb(Com .PICAddr+l ,
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Listing 8 .5 (continued)

(Com.OrigPlCMask & Com .PICMask)) ;

	

/* Enable UART's IRQ * /

/* Re-enable hardware interrupts * /

}

void CloseCom( )
/* This closes down the UART interrupt system and restores the origina l

interrupt vector . CloseCom() must be called before the program terminates .

{
disable() ; /* Disable hardware interrupts * /
outportb(Com.PICAddr+l,Com.OrigPlCMask) ; /* Disable UART's IRQ * /
setvect(Com.IntNum,OrigComVector) ; /* Restore original int vector * /
outportb(Com.Addr.IER,Com .OrigIER) ; /* Restore UART's original IER * /
enable() ; /* Re-enable hardware interrupts */
}

Periodically, and after each call to Readcom () and writeCom () , you
should examine the various fields of the Error structure to detec t
events such as buffer overflows, timeouts, break interrupts or parity ,
framing and overrun errors . Note that, for illustrative purposes, brea k
conditions and overrun, parity and framing errors are recorded in a
single global Error structure by the interrupt handler in Listing 8 .5 .
Often, however, this is not the best way of detecting such erro r
conditions, because the point at which the calling program detect s
that one of the Error flags has been set will not necessarily fal l
correctly in sequence with the character stream retrieved from th e
Rx .Buf buffer . Rx .Buf may hold, for example, 10 unread character s
at the time that the interrupt handler detects an error in the 11t h
character . The resulting error flag might be retrieved by the calle r
before it has read the previous 10 correctly received characters . If
you wish to preserve the temporal relationship between detection
of the error flags and reception of each individual character, yo u
should convert each entry in the Rx .Buf into a structure containing
both data and error code fields . The UART's PE, OE, FE and BI
flags must then be recorded along with each received character i n
the receive buffer, Rx .Buf .

To terminate a communications session your program should cal l
CloseCom . This function must be called at some point before th e
application terminates in order to restore the interrupt vector and
disable the UART's interrupt system .

Note that InitializeComO defines a set of default values for the
serial parameters . You may need to modify the interrupt para-
meters (IRQNum, IntNum, PICMask and PICAddr) if you are working with

enable() ;
}
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a non-standard hardware configuration . Different serial frame para-
meters can easily be substituted by changing the BaudCode, DataBits ,

StopBits, and ParityCode fields of the SerialFrameRec structure. If you
need to modify any of these variables, you should do so after callin g
InitializeCom () , but before invoking OpenCom 0 .



9 Scaling and linearizatio n

The task of a data-acquisition program is to determine value s
of one or more physical quantities, such as temperature, forc e
or displacement. We have seen in Chapter 3 that this is accom-
plished by reading digitized representations of those values from
an ADC. In order for the user, as well as the various elements
of the data-acquisition system, to correctly interpret the read-
ings, the program must convert them into appropriate `real-world '
units . This obviously requires a detailed knowledge of the char-
acteristics of the sensors and signal-conditioning circuits used .
The relationship between a physical variable to be measured (the
measurand) and the corresponding transduced and digitized signal
may be described by a response curve such as that shown in
Figure 9.1 .

Each component of the measuring system contributes to the shap e
and slope of the response curve . The transducer itself is, of course ,
the principal contributor, but the characteristics of the associate d
signal-conditioning and ADC circuits also have an important part t o
play in determining the form of the curve .

In some situations the physical variable of interest is not measured
directly : it may be inferred from a related measurement instead . We
alight, for example, measure the level of liquid in a vessel in orde r
to determine its volume . The response curve of the measuremen t
system would, in this case, also include the factors necessary fo r
conversion between level and volume .

Most data-acquisition systems are designed to exhibit linea r
responses. In these cases either all elements of the measuring
system will have linear response curves, or they will have been
carefully combined so as to cancel out any non-linearities present i n
individual components .

Some transducers are inherently non-linear . Thermocouples and
resistance temperature detectors are prime examples, but many
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Physica l
variable
(measurand )

Figure 9 .1 Response curves for typical measuring systems : (a) linear respons e
and (b) non-linear respons e

other types of sensor exhibit some degree of non-linearity . Non-
linearities may, occasionally, arise from the way in which the
measurement is carried out . If, in the volume-measurement exampl e
mentioned above, we have a cylindrical vessel, the quantity of interes t
(the volume of liquid) would be directly proportional to the level .
If, on the other hand, the vessel had a hemispherical shape, there
would be a non-linear relationship between fluid level and volume .
In these cases, the data-acquisition software will usually be require d
to compensate for the geometry of the vessel when converting the
ADC reading to the corresponding value of the measurand .

To correctly interpret digitized ADC readings, the data-acquisitio n
software must have access to a set of calibration parameters tha t
describe the response curve of the measuring system . These parame-
ters may exist either as a table of values or as a set of coefficients of a n
equation that expresses the relationship between t :he physical vari-
able and the output from the ADC. In order to compile the required
calibration parameters, the system must. usually sample the AD C
output for a variety of known values of the measurand. The resulting
calibration reference points can then be used as the basis of one of
the scaling or linearization techniques described in this chapter .

9.1 Scaling of linear response curves

The simplest and, fortunately, the most common type of respons e
curve is a straight line . In this case the software need only he
programmed with the parameters of the line for it to be able to

Transduced (ADC) ouput
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convert ADC readings to a meaningful physical value . In general ,
any linear response curve may be represented by the equatio n

y — yo = s (x — xo)

	

(9 .1 )

where y represents the physical variable to be measured and x is
the corresponding digitized (ADC) value . The constant yo is any
convenient reference point (usually chosen to be the lower limi t
of the range of y values to be measured), xo is the value of x at
the intersection of the line y = yo with the response curve (i .e. the
ADC reading at the lower limit of the measurement range) and s
represents the gradient of the response curve .

Many systems are designed to measure over a range from zero
up to some predetermined maximum value . In this case, yo can b e
chosen to be zero . In all instances yo will be a known quantity . The
task of calibrating and scaling a linear measurement system is the n
reduced to determining the scaling factor, s, and offset, xo .

The offset

The offset, x0, can arise in a variety of ways . One of the most common
is due to drifts occurring in the signal-conditioning circuits as a resul t
of variations in ambient temperature . There are many other source s
of offset in a typical measuring system. For example, small errors
in positioning the body of a displacement transducer in a gaugin g
jig will shift the response curve and introduce a degree of offset .
Similarly, a poorly mounted load cell might stiffer transverse stresse s
which will also distort the response curve .

As a general rule, xo should normally be determined each tim e
the measuring system is calibrated . This can be accomplished by
reading the ADC while a known input is applied to the transducer .
If the offset is within acceptable limits it can simply be subtracte d
from subsequent ADC readings as shown by Equation 9 .1 . Very large
offsets are likely to compromise the performance of the measurin g
system (e .g. limit its measuring range) and might indicate fault s
such as an incorrectly mounted transducer or maladjusted signal -
conditioning circuits . It is wise to design data-acquisition softwar e
so that it checks for this eventuality and warns the operator if an
unacceptably large offset is detected .

Some signal-conditioning circuits provide facilities for manua l
offset adjustment . Others allow most or all of the physical offset t o
be cancelled tender software control . In the latter type of syste m
the offset might be adjusted (or compensated for) by means of the
output from a digital-to-analogue converter (DAC) . The DAC voltage
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might, for example, be applied to the output from a strain-gauge-
bridge device (e .g. a load cell) in order to cancel any imbalance s
present in the circuit .

Scaling from known sensitivities

If the characteristics of every component of the measuring syste m
are accurately known it might be possible to calculate the values o f
s and xo from the system design parameters . In this case the task of
calibrating the system is almost trivial . The data-acquisition software
(or calibration program) must first establish the value of the AD C
offset, xo, as described in the preceding section, and then determin e
the scaling factor, s. The scaling factor can be supplied by the use r
via the keyboard or data file, but, in some cases, it is simpler for th e
software to calculate s from a set of measuring-system parameter s
typed in by the operator .

An example of this method is the calibration of strain-gauge-
bridge transducers such as load cells . The operator might enter th e
design sensitivity of the load cell (in millivolts output per volt inpu t
at full scale), the excitation voltage supplied to the input of th e
bridge and the full-scale measurement range of the sensor . From
these parameters the calibration program can determine the voltag e
that would be output from the bridge at full scale, and knowin g
the characteristics of the signal-conditioning and ADC circuits it ca n
calculate the scaling factor .

In some instances it may not be possible for the gain (and othe r
operating parameters) of the signal-conditioning amplifier(s) to b e
determined precisely. It is then necessary for the software to take
an ADC reading while the transducer is made to generate a known
output signal . The obvious (and usually most accurate) method o f
doing this is to apply a fixed input to the transducer (e .g. force
in the case of a load cell) . This method, referred to as prim e
calibration, is the subject of the following section . Another way of
creating a known transducer output is to disturb the operation o f
the transducer itself in some way . This technique is adopted widel y
in devices, such as load cells, which incorporate a number of resistive
strain gauges connected in a Wheatstone bridge. A shunt resistor
can be connected in parallel with one arm of the bridge in orde r
to temporarily unbalance the circuit and simulate an applied load .
This allows the sensitivity of the bridge (change in output voltag e
divided by the change in `gauge' resistance) to be determined, an d
then the ADC output at this simulated load can be measured in
order to calculate the scaling factor . In this way the scaling factor
will encompass the gain of the signal-conditioning circuit as well as
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the conversion characteristics of the ADC and the sensitivity of th e
bridge itself.

This calibration technique can be useful in situations, as migh t
arise with load measurement, where it is difficult to generate precisely
known transducer inputs . However, it does not take account o f
factors, resulting from installation and environmental conditions,
which might affect the characteristics of the measuring system . In
the presence of such influences this method can lead to seriou s
calibration errors .

To illustrate this point we will continue with the example of load
cells . The strain gauges used within these devices have quite smal l
resistances (typically less than 350 S2) . Consequently, the resistance o f
the leads which carry the excitation supply can result in a significan t
voltage drop across the bridge and a proportional lowering of the
output voltage . Some signal-conditioning circuits are designed to
compensate for these voltage drops, but without this facility it can b e
difficult to determine the magnitude of the loss. If not corrected for ,
the voltage drop can introduce significant errors into the calibration .

In order to account for every factor which contributes to the
response of the measurement system it is usually necessary to cali-
brate the whole system against some independent reference . These
methods are described in the following sections .

Two- and three-point prime calibration

Prime calibration involves measuring the input, y, to a transduce r
(e .g. load, displacement or temperature) using an independen t
calibration reference and then determining the resulting output ,
x, from the ADC . Two (or sometimes three) points are obtaine d
in order to calculate the parameters of the calibration line . In thi s
way the calibration takes account of the behaviour of the measurin g
system as a whole, including factors such as signal losses in lon g
cables .

By determining the offset value, xo, we can establish one poin t
on the response curve — i .e . (xo, yo) . It is necessary to obtain at least
one further reference point, (x 1 , yi ), in order to uniquely define
the straight-line response curve. The scaling factor may then be
calculated fro m

— yos _	
x l — xo

Some systems, particularly those which incorporate bipolar trans-
ducers (i .e. those which measure either side of some zero level )
do not use the offset point, (xo, yo), for calculating s . Instead, they

(9 .2)
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obtain a reading on each side of the zero point and use these value s
to compute the scaling factor . In this case, yo might be chosen t o
represent the centre (zero) value of the transducer's working rang e
and xo would be the corresponding ADC reading .

Accuracy of prime calibratio n

The values of s and xo determined by prime calibration are neede d
to convert all subsequent ADC readings into the correspondin g
`real-world' value of the measurand. It is, therefore, of paramoun t
importance that the values of s and xo, and the (xo, yo) and (xi, yi )
points used to derive them, are accurate .

Setting aside any sampling and digitization errors (see Chapters 3
and 4) there are several potential sources of inaccuracy in the (x, y )
calibration points. Random variations in the ADC readings might b e
introduced by electrical noise or instabilities in the physical variabl e
being measured (e .g. positioning errors in a displacement-measurin g
system) .

Electrical noise can be particularly problematic where low level
transducer signals (and high amplifier gains) are used . This is
often the case with thermocouples and strain-gauge bridges, whic h
generate only low level signals (typically several mV) . Noise levels
should always be minimized at source by the use of appropriat e
shielding and grounding techniques . Small amplitudes of residual
noise may be further reduced by using suitable software filters (se e
Chapter 4) . A simple 8x averaging filter can often reduce nois e
levels by a factor of 3 or more, depending, of course, upon th e
sampling rate and the shape of the noise spectrum .

An accurate prime calibration reference is also essential . Inaccu-
rate reference devices can introduce both systematic and rando m
errors . Systematic errors are those arising from a consistent measure -
ment defect in the reference device, causing, for example, al l
readings to be too large . Random errors, on the other hand, result i n
readings that have an equal probability of being too high or too lo w
and arise from sources such as electrical noise. Any systematic inaccu-
racies will tend to he propagated from the calibration reference int o
the system being calibrated and steps should, therefore, be taken t o
eliminate all sources of systematic inaccuracy . In general, the refer-
ence device should be considerably more precise (preferably at leas t
2 to 5 times more precise) than the required calibration accuracy .
Its precision should be maintained by periodic recalibration agains t
a suitable primary reference standard .

When calibrating any measuring system it is important to ensur e
that the conditions under which the calibration is performed match,
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as closely as possible, the actual working conditions of the transducer .
Many sensors (and signal-conditioning circuits) exhibit changes in
sensitivity with ambient temperature . LVDTs, for example, have
typical sensitivity temperature coefficients of about 0 .01 per cent/° C
or more . A temperature change of about 10°C, which is no t
uncommon in some applications, can produce a change in outpu t
comparable to the transducer's non-linearity . Temperature gradients
along the body of an LVDT can have an even more pronounced
effect on the sensitivity (and linearity) of the transducer .

Most transducers also exhibit some degree of non-linearity, but i n
many cases, if the device is used within prescribed limits, this wil l
be small enough for the transducer to be considered linear . This
is usually the case with LVDTs and load cells . Thermocouples and
resistance temperature detectors (RTDs) are examples of non-linea r
sensors, but even these can be approximated by a linear respons e
curve over a limited working range. Whatever the type of transducer ,
it is always advisable to calibrate the measuring system over the sam e
range as will be used under normal working conditions in order to
maximize the accuracy of calibration .

Multiple-point prime calibration

If only two or three (x, y) points on the response curve are obtained ,
any random variations in the transducer signal due to noise or
positioning uncertainties can severely limit calibration accuracy .
The effect. of random errors can be reduced by statistically averaging
readings taken at a number of different points on the response
curve . This approach has the added advantage that the calibratio n
points are more equally distributed across the whole measuremen t
range. Transducers such as the LVDT tend to deviate from linearit y
more towards the end of their working range, and with two- or three -
point calibration schemes this is precisely where the calibratio n
reference points are usually obtained. The scaling factor calculate d
using Equation 9 .1 can, in such cases, differ slightly (by up to abou t
0 .1 per cent for LVDTs) from the average gradient of the respons e
curve . This difference can often be reduced by a significant factor
if we are able to obtain a more representative line through th e
response curve .

In order to fit a representative straight line to a set of calibra-
tion points we will use the technique of least-squares fitting . This
technique can be used for fitting both straight lines and non-linea r
curves . The straight-line fit which is discussed below is a simple cas e
of the more general polynomial least-squares fit described later i n
this chapter.
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It is assumed in this method that there will be some degree o f
error in the yi values of the calibration points and that any errors
in the corresponding xi values will be negligible, which is usually
the case in a well-designed measuring system . The basis of the
technique is to mathematically determine the parameters of th e
straight line that passes as closely as possible to each calibration
point. The best fit straight line is obtained when the sum of the
squares of the deviations between all of the y i values and the fitte d
line is least . A simple mathematical analysis shows that the best fi t
straight line, y = sx + h, is described by the following well-known
equations .
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In these equations s is the scaling factor (or gradient of the respons e
curve) and h is the transducer input required to produce an AD C
reading (x) of zero. The Ss and Sh values are the uncertainties i n
s and h, respectively. It is assumed that there are n of the (x;, yi )
calibration points .

(9.3)
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Listing 9.1 C function for performing a first order polynomial (linear) least-
squares fit to a set of calibration reference points

#include <math .h >

*define True

	

1
*define False

	

0
*define MaxNP 500 /* Maximum number of data points for fit * /

struct LinFitResults

	

/* Results record for PerformLinearFit function * /
{

double Slope ;
double Intercept ;
double ErrSlope ;
double Errintercept ;
double RMSDev ;

double WorstDev ;
double CorrCoef ;
} ;

struct LinFitResults LResults ;
unsigned int

	

NumPoints ;
double

	

X [MaxNP] ;
double

	

Y [MaxNP] ;

void PerformLinearFit( )
/* Performs a linear (first order polynomial) fit on the X[],Y[] data point s

and returns the results in the LResults structure .
* /
{
unsigned int I ;
double SumX ;
double SumY ;

double SumXY ;

double SumX2 ;
double SumY2 ;
double DeltaX ;
double

	

DeltaY ;
double Deviation ;

double MeanSqDev ;

double SumDevnSq ;

SumX = 0 ;
SumY = 0 ;
SumXY = 0 ;
SumX2 = 0 ;
SumY2 = 0 ;

for (I = 0 ; I < NumPoints ; I++ )

SumX = SumX + X[I] ;
SumY = SumY + Y [ I ] ;

SumXY = SumXY + X[I] * Y [ I ] ;
SumX2 = SumX2 + X[I] * X[I] ;
SumY2 = SumY2 + Y[I] * Y [ I ] ;
}

DeltaX

	

= (NumPoints * SumX2) - (SumX * SumX) ;
DeltaY

	

= (NumPoints * SumY2) - (SumY * SumY) ;



354 PC interfacing and data acquisition

Listing 9.1 (continued)

LResults .Intercept = ((SumY * SumX2) - (SumX * SumXY)) / DeltaX ;
LResults .Slope

	

= ((NumPoints * SumXY) - (SumX * SumY)) / DeltaX ;

SumDevnSq

	

= 0 ;
LResults .WorstDev = 0 ;
for (I = 0 ; I < NumPoints ; I++ )

{
Deviation = Y[I] - (LResults .Slope * X[I] + LResults .Intercept) ;
if (fabs(Deviation) > fabs(LResults .WorstDev)) LResults .WorstDev = Deviation ;
SumDevnSq = SumDevnSq + (Deviation * Deviation) ;

MeanSqDev = SumDevnSq / (NumPoints - 2) ;
LResults .Errintercept = sqrt(SumX2 * MeanSqDev / DeltaX) ;
LResults .ErrSlope

	

= sqrt(NumPoints * MeanSqDev / DeltaX) ;
LResults .RMSDev

	

= sqrt(MeanSqDev) ;
LResults .CorrCoef

	

= ((NumPoints * SumXY) - (SumX * SumY)) /
sqrt(DeltaX * DeltaY) ;

)

These formulae are the basis of the PerformLinearFit () function
in Listing 9 .1 . The various summations are performed first and th e
results are then used to calculate the parameters of the best fi t
straight line . The Intercept variable is equivalent to the quantity h i n
the above formulae while slope is the same as the scaling factor, s . The
Errintercept and ErrSlope varial)les are equivalent to 8h and Ss, and
may be used to determine the statistical accuracy of the calibratio n
line. The function also determines the conformance between th e
fitted line and the calibration points and then calculates the root-
mean-square (rms) deviation (the same as a2) and worst deviation
between the line and the points .

It is always advisable to check the rips and worst deviation figure s
when the fitting procedure has been completed, as these provid e
a measure of the accuracy of the fit . The rms deviation may be
thought of as the average deviation of the calibration points fro m
the straight line .

The ratio of the worst deviation to the rms deviation can indicat e
how well the calibration points can be modelled by a straight line. As
a rule-of-thumb, if the worst deviation exceeds the rms deviation b y
more than a factor of about 3 this might indicate one of two possibili -
ties: either the true response curve exhibits a significant non-linearit y
or one (or more) of the calibration points has been measured inac-
curately . Any uncertainties from either of these two sources will b e
reflected in the Errorintercept and ErrorSlope varial)les .

Although there is a potential for greater accuracy with multiple-
point calibration, it should go without saying that the comments
made in the preceding section, concerning prime-calibration accu-
racy, also apply to multiple-point calibration schemes .
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To minimize the effect of random measurement errors ,
multiple-point calibration is generally to be preferred . However ,
it does have one considerable disadvantage : the additional tim e
required to carry out each calibration. If a transducer is to be
calibrated in situ (while attached to a machine on a productio n
line, for example) it can sometimes require a considerable degre e
of effort to apply a precise reference value to the transducer's input .
Some applications might employ many tens (or even hundreds) o f
sensors and recalibration can then take many hours to complete ,
resulting in project delays or lost production time . In these situation s
it may be beneficial to settle for the slightly less accurate two- o r
three-point calibration schemes . It should also be stressed that two -
and three-point calibrations do often provide a sufficient degre e
of precision and that multiple-point calibrations are generall y
only needed where highly accurate measurements are the primar y
concern .

Applying linear scaling parameters to digitized dat a

Once the scaling factor and offset have been determined they mus t
be applied to all subsequent digitized measurements . This usually
has to be performed in real time and it is therefore important t o
minimize the time taken to perform the calculation . Obviously, hig h
speed computers and numeric coprocessors can help in this regard ,
but there are two ways in which the efficiency of the scaling algorith m
can be enhanced .

First, floating-point multiplication is generally faster than division .
For example, Borland Pascal's floating-point routines will multipl y
two real type variables in about one-third to one-half of the tim e
that they would take to carry out a floating-point division . A similar
difference in execution speeds occurs with the corresponding 80x8 7
numeric coprocessor instructions. Multiplicative scaling factor s
should, therefore, always be used – i .e. always multiply the data
by s, rather than dividing by s-1 – even if the software specification
requires that the inverse of the scaling factor is presented on displays
and printouts etc .

Second, the scaling routines can be coded in assembly language .
This is simpler if a numeric coprocessor is available, otherwis e
floating-point routines will have to be specially written to perfor m
the scaling .

In very high speed applications, the only practicable course o f
action might be to store the digitized ADC values directly into RA M
and to apply the scaling factor (s) after the data-acquisition run ha s
been completed, when timing constraints may be less stringent .
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9 .2 Linearization

Linearization is the term applied to the process of correcting th e
output of an ADC in order to compensate for non-linearities presen t
in the response curve of a measuring system. Non-linearities can
arise from a number of different components, but it is often the
sensors themselves that are the primary sources.

In order to select an appropriate linearization scheme, it obviously
helps to have some idea of the shape of the response curve . The
response of the system might be known, as is the case with ther-
mocouples and RTDs. It might even conform to some recognized
analytical function. In some applications the deviation from linearit y
might be smooth and gradual, but in others, the non-linearitie s
might consist of small-scale irregularities in the response curve .
Some measuring systems may also exhibit response curves that ar e
discontinuous or, at least, discontinuous in their first and higher
order derivatives .

There are several linearization methods to choose from and what -
ever method is selected, it must suit the peculiarities of the syste m's
response curve . Polynomials can be used for linearizing smooth an d
slowly varying functions, but are less suitable for correcting irregula r
deviations or sharp `corners' in the response curve. They can b e
adapted to closely match a known functional form or they can b e
used in cases where the form of the response function is indeter-
minate. Interpolation using look-up tables is one of the simples t
and most powerful linearization techniques and is suitable for both
continuous and discontinuous response curves . Each method ha s
its own advantages and disadvantages in particular applications an d
these are discussed in the following sections .

The capability to linearize response curves in software can, i n
some cases, mean that simpler and cheaper transducers or signal -
conditioning circuitry can be used . One such case is that of LVDT
displacement transducers . These devices operate rather like trans -
formers . An AC excitation voltage is applied to a primary coil an d
this induces a signal in a pair of secondary windings . The degree of
magnetic flux linkage and, therefore, the output from each of th e
secondary coils is governed by the linear displacement of a ferrit e
core along the axis of the windings . In this way, the output from th e
transducer varies in relation to the displacement of the core .

Simple LVDT designs employ parallel-sided cylindrical coils .
However, these exhibit severe non-linearities (typically up to about.
5 or 10 per cent) as the ferrite core approaches the ends of the coil
assembly . The non-linearity can be corrected in a variety of ways ,
one of which is to layer windings in a series of steps towards the
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ends of the coil . This can reduce the overall non-linearity to abou t
0.25 per cent . It does, however, introduce additional small-scale
non-linearities (of the order of 0 .05 to 0.10 per cent) at points in the
response curve corresponding to each of the steps .

It is a relatively simple matter to compensate for the large-scal e
non-linearities inherent in parallel-coil LVDT geometries by usin g
the polynomial linearization technique discussed in the following
section. Thus, software linearization techniques allow cheaper LVD T
designs to be used and this has the added advantage that n o
small-scale (stepped winding) irregularities are introduced . This ,
in turn, makes the whole response curve much more amenable t o
linearization .

There are many other instances where software linearization tech-
niques will enhance the accuracy of the measuring system and at th e
same time allow simpler and cheaper components to be used .

9.3 Polynomial linearizatio n

The most common method of linearizing the output of a measurin g
system is to apply a mathematical function known as a polynomial .
The polynomial function is usually derived by the least square s
technique .

Polynomial least-squares fitting

We have already seen that the technique of least squares fitting ca n
generate coefficients of a straight-line equation representing th e
response of a linear measuring system . The least-squares method can
be applied to fit other equations to non-linear response curves . The
principle of the method is the same although, because we are no w
dealing with more complex curves and mathematical functions, th e
details of the implementation are slightly more involved .

A polynomial is a simple equation consisting of the sum of severa l
separate terms . For the purposes of sensor calibration we can defin e
a polynomial as an equation which describes how a dynamic variable ,
y, such as temperature or pressure (which we intend to measure )
varies in relation to the corresponding transduced signal, x (e .g .
voltage output or ADC reading) . Each term consists of some known
function of x multiplied by an unknown coefficient .

If we can determine the coefficients of a polynomial function tha t
closely fits a set of measured calibration reference points, it is then
possible to accurately calculate a value for the physical variable, y ,
from any ADC reading, x .
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Formulating the best-fit condition
This section outlines the way in which the conditions for the bes t
fit between the polynomial and data points can be derived . A more
detailed account of this technique can be found in many texts on
numerical analysis and, in particular, in the books by Miller (1993 )
and Press et al. (1992) .

Suppose we have determined a set of calibration reference points
(xi, yi ), (x2, y2) to (xn , yn ), where the xi values represent the AD C
reading (or corresponding transduced voltage reacting) and yi are
values of the equivalent `real-world' physical variable (e .g. tempera-
ture, displacement etc .) .

In certain circumstances, some of the yi values will be more
accurate than others and it is advantageous to pay proportionall y
more regard to the most accurate points. To this end, the data points
can be individually weighted by a factor wi . This is usually set equal
to the inverse of the square of the known error for each point .
The wi terms have been included in the following account of th e
least-squares method, but, in most circumstances, each referenc e
point is measured in the same way, with the same equipment, an d
the accuracy (and therefore weight) of each point will usually b e
identical. In this case all of the wi values can effectively be ignore d
by setting them to unity .

The polynomial which we wish to fit to the (xi , yi ) calibration
points is :

k=m

y' (x) = aogo(x) + a ig i (x) + a2g2 (x) _.}_ . . . + amgm(x) = E a k gk(x)
k=0

(9 .4)

There may be any number of terms in the polynomial . In this
equation there are m + 1 terms, but it is usual for between 2 an d
15 terms to be used . The number m is known as the order of th e
polynomial . As m increases, the polynomial is able to provide a more
accurate fit to the calibration reference points . There are, however,
practical limitations on m which we will consider shortly. In this
equation the ak values are a set of constant coefficients and gk (x )
represents some function of x, which will remain unspecified for th e
moment.

At any given order, m, the polynomial will usually not fit the data
points exactly . The deviation, Si, of each yi reading from the fitted
polynomial y ' (xi ) value i s

k=m

S i =

	

[akgk (Xi)] — yi

	

(9 .5 )
k=0
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The principle of the least-squares method is to choose the ak co-
efficients of the polynomial so as to minimize the sum of the square s
of all Bi values (known as the residue) . Taking into account the
weights of the individual points the residue, R, is given by

i=n
R = E wi82

	

(9 .6 )
i= 1

The condition under which the polynomial will most closely fit th e
calibration reference points is obtained when the partial derivative s
of R with respect to each a k coefficient are all zero . This statemen t
actually represents m + 1 separate conditions which must all be satis -
fied simultaneously for the best fit . Space precludes a full derivatio n
here, but with a little algebra it is a simple matter to find that eac h
of these conditions reduces to :

i=n

	

k= m
{wii (xi ) [>2(akk(xi))

	

0

	

(9 .7 )
i=1

	

k= 0

As the best fit is described by a set of m + 1 equations of this type
(for j = 0 to m) we can represent them in matrix form as follows .

00,0 01,0 02,0 . . . am,o \

	

/ ao \

	

/ Po
a0,1

	

ar1,1

	

a2,1

	

. . .

	

a»
:

, 1

	

a1

	

1
3

1

a0, 2 a 1, 2 a2, 2

	

a' m, 2

	

a2

	

=

	

N2

	

(9 .8 )

ao, m al,, a2,m

	

' '

	

a,,,,nz

	

a,,,

	

Pm

where
i=n

ak j —

	

wigk (xi )g; (xi )
i=
i=n

= >wjgj (x j )yj
i=

Solving the best-fit equations
The matrix equation (9 .8) represents a set of simultaneous equation s
which we need to solve in order to determine the coefficients, a j , of
the polynomial . The simplest method for solving the equations is to
use a technique known as Gaussian Elimination to manipulate th e
elements of the matrix and vector so that they can then be solved b y
simple back-substitution .
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The objective of Gaussian Elimination is to modify the element s
of the matrix so that each position below the major diagonal i s
zero. This may be achieved by reference to a series of so-calle d
pivot elements which lie at each successive position along the majo r
diagonal. For each pivot element, we eliminate the elements below
the pivot position by a systematic series of scalar-multiplication
and row-subtraction operations as illustrated by the following cod e
fragment .

for (Row = Pivot + 1 ; Row <= M ; Row++ )
{

Temp = Matrix[Pivot][Row] / Matrix[Pivot][Pivot] ;
for (Col = Pivot ; Col <= M ; Col++ )

Matrix [Col ] [Row] = Matrix [Col ] [Row] - Temp * Matrix[Col] [Pivot ] ;
Vector[Row] = Vector[Row] - Temp * Vector [Pivot] ;
}

The variable m represents the order of the polynomial . Matrix is a
square array with indices from 0 to M . This algorithm is used in th e
GaussElim () function shown in Listing 9 .2 later in this chapter . Once
all of the elements have been eliminated from below the majo r
diagonal, the matrix equation will have the following form . The
new matrix and vector elements are identified by primes to denot e
that the Gaussian Elimination procedure has generated differen t
numerical values from the original ak , j and t 3 f elements .

a0,0 a10 a2,0 . . . am, 0
0

	

a 1,i

	

a2,i

	

. . .

	

am, l
0

	

0

	

a2,2

	

. ' ' am, 2
. . .

	

. . .

	

. . .

	

. . .

	

. . .

0

	

0

	

0

	

••• am,m

(? )
a2a2

a„,

(9.9 )

The equations represented by each row of the matrix equation ca n
now be easily solved by repeated back-substitution. Starting with the
bottom row and moving on to each higher row in sequence we can
calculate am then a m- 1 then am_ 2 etc. as follows

Nn'

	

then am_ 1

	

t3 m'
-1 — amam,m- 1

	

am = ,

	

=

	

etc .

	

(9 .10)
am,m

	

am-1 ,m-

In general we have the following iterative relation which is coded as a
simple algorithm at the end of the GaussElim ( ) function in Listing 9 .2 .

l = m

	

,8'J

	

E ai ai, j

a j =
l=j+ 1

aj, j
(9 .11)
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The curve fitting procedure would not usually need to be performe d
in real time and so the computation time required to determin e
coefficients by this method will not normally be of great importance .
A 15th order polynomial fit can be carried out in several hundre d
milliseconds on an average 33 MHz 80486 machine equipped with a
numeric processing unit, but will take considerably longer (up to a
few seconds, depending upon the machine) if a coprocessor is no t
used. The total calculation time increases roughly in proportion t o
cube of the matrix size .

A number of other methods can be used to solve the matrix
equation . These may be preferable if Gaussian Elimination fail s
to provide a solution because the coefficient matrix is singular ,
or if rounding errors become problematic . A discussion of these
techniques is beyond the scope of this book . Press et al. (1992 )
provide a detailed description of curve fitting methods togethe r
with a comprehensive discussion of their relative advantages and
drawbacks .

Numerical accuracy and ill-conditioned matrices
All computer-based numerical calculations are limited by the finit e
accuracy of the coprocessor or floating-point library used . Gauss-
ian Elimination involves many repeated multiplications, division s
and subtractions . Consequently rounding errors can begin to accu-
mulate, particularly with higher order polynomials . While single
precision arithmetic is suitable for many of the calculations tha t
we have to deal with in data-acquisition applications, it does no t
usually provide sufficient accuracy for polynomial linearization .
When undertaking this type of calculation, it is generally benefi-
cial to use floating-point data types with the greatest possible degre e
of precision . The examples presented in this chapter use C 's long
double data type, which is the largest type supported by the 80x8 7
family of numeric coprocessors .

Even when using the long double data type, rounding errors ca n
become significant when undertaking Gaussian Elimination . For this
reason it is generally inadvisable to attempt this for polynomials o f
greater than about 15th order. In some cases, rounding errors may
also be important with lower order polynomials . If the magnitudes o f
the pivot elements vary greatly along the major diagonal, the proces s
of Gaussian Elimination may cause rounding errors to build up to a
significant level and it will then be impossible to calculate accurat e
values for the polynomial coefficients . The accuracy of the Gaussian
Elimination method can be improved by first swapping the rows of
the matrix equation so that the element in the pivot row with th e
largest absolute magnitude is placed in the pivot position on the
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major diagonal . This minimizes the difference between the variou s
pivot elements and helps to reduce the effect of rounding errors o n
the calculations .

If one of the pivot elements is zero the matrix equation canno t
be solved by Gaussian Elimination . If one or more of the pivo t
elements are very close to zero the solution of the matrix equation
may generate very large polynomial coefficients . Then when we
subsequently evaluate the polynomial the greatest. part of these coef-
ficients tend to cancel each other out, leaving only a small remainde r
which contributes to the actual evaluation . This is obviously quite
susceptible to numerical rounding errors .

The combination of elements in the matrix might be such tha t
rounding errors in some of the operations performed during th e
elimination procedure become comparable with the true result o f
the operation . In this case the matrix is said to be ill-conditione d
and the solution process may yield inaccurate coefficients .

It is usually advisable to check for ill-conditioned matrices by
examining the pivot elements along the major diagonal to ensure
that they do not differ by very many orders of magnitude . Obviously ,
if higher precision data types are used for calculation and storag e
of results (e.g. extended or double precision rather than singl e
precision), it is possible to accommodate a greater range of value s
along the major diagonal .

It is also possible to detect the effect of ill-conditioned matrice s
and rounding errors after the fit has been performed . This can b e
achieved by carrying out conformance checks, as described in th e
next subsection, for a range of polynomial orders . This is not a
foolproof technique, but in general, the root-mean-square deviation
between the calibration reference points and the fitted polynomia l
will tend to increase with increasing order once rounding error s
become significant.

Accuracy of the fitted curve
In the absence of any appreciable rounding errors, the accuracy wit h
which the polynomial will model the measuring system's response
curve will be determined by two factors : the magnitude of any rando m
or systematic measurement errors in the calibration reference points
and the `flexibility' of the polynomial .

Although the effect of random errors can be offset to som e
extent by taking a larger number of calibration measurements ,
any systematic errors cannot generally be determined or correcte d
during linearization and so must be eliminated at source . There
are many possible sources of random error . Electrical noise ca n
be a problem with low voltage signals such as those generated
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by thermocouples. There are also often difficulties in setting the
measurand to a precise enough value, especially where the sensor i s
an integral part of a larger system and has to be calibrated in situ.
Whatever the source of a random error, it generally introduces som e
discrepancy between the true response curve and the measured
calibration reference points .

A second source of inaccuracy might arise where the polyno-
mial is not flexible enough to fit response curves with rapidly
changing gradients or higher derivatives . Better fits can usually b e
achieved by using high order polynomials, but, as mentioned previ-
ously, rounding errors can become problematic if very high orders
are used .

Whenever a polynomial is fitted to a set of calibration reference
points it is essential to obtain some measure of the accuracy of the
fit. We can determine the uncertainties in the coefficients if w e
solve the best-fit equation (9.8) by the technique of Gauss Jordan
Elimination. As part of the Gauss Jordan Elimination procedure we
determine the inverse of the coefficient matrix and this can be use d
to calculate the uncertainties in the coefficients . The Gauss Jorda n
method is somewhat more involved than Gaussian Elimination and ,
apart from providing an easy means of calculating the coefficien t
errors, has no other advantage . This method is discussed by Pres s
et al. (1992) and will not be described here .

A simpler way of estimating the accuracy of the fit is to calculat e
the conformance between the fitted curve and each calibratio n
reference point . We simply evaluate the polynomial y' (xi ) for each xi
value in turn and then determine the deviation of the correspondin g
measured yi value from the polynomial (see Equation 9 .5) . This i s
illustrated by the following code fragment .

SumDevnSq = 0 ;
WorstDev = 0 ;

for (I = 0 ; I < NumPoints ; I++ )

{
Deviation = Y[I] - PolynomialValue (Order, X [ I ]) ;
if (fabs(Deviation) > fabs(WorstDev)) WorstDev = Deviation ;

SumDevnSq = SumDevnSq + (Deviation * Deviation) ;
}

RMSDev = sqrt(SumDevnSq / (NumPoints-2)) ;

In this example, the polynomial is evaluated for the Itll data point
by calling the PolynomialValue () function (which will, of course, vary
depending upon the functional form of the polynomial) . A functio n
of this type for evaluating a power-series polynomial is included i n
Listing 9 .2 later in this chapter .
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It is important not to rely too heavily on the conformance value s
calculated in this way . They show only how closely the polynomial fits
the calibration reference points and do not indicate how the poly-
nomial might vary from the true response curve between the points .
It is advisable to check the accuracy of the polynomial at a number
of points in between the original calibration reference points .

Choosing the optimum orde r
In general the higher the order of the polynomial the more closely
it will fit the calibration reference points . One might be tempte d
always to fit a very high order polynomial, but this has several
disadvantages . First, high order polynomials take longer to evaluat e
and, as the evaluation process is likely to be carried out in real time ,
this can severely limit throughput. Second, rounding errors ten d
to be more problematic with higher order polynomials as already
discussed. Finally, more calibration reference points are required i n
order to obtain a realistic approximation to the response curve .

For any polynomial fit, the number of calibration reference point s
used must be greater than m + 1, where m is the order of the
polynomial . If this rule is broken, by choosing an order which is
too high, the fitting procedure will not provide accurate coefficients
and the polynomial will tend to deviate from a reasonably smoot h
curve between adjacent data points . In order to obtain a smooth fi t
to the response curve it is always advisable to use as many calibratio n
reference points as possible, and the lowest order of polynomial
consistent with achieving the required accuracy . As the order of th e
fit is increased, the rips deviation between the fitted polynomial an d
the reference points will normally tend to decrease and then leve l
out as shown in Figure 9 .2 .

The shape of the graph will, of course, vary for different data sets ,
but the same general trends will usually be obtained. In this example ,
there is little to be gained by using an order greater than about 1 1
or 12 . At higher orders rounding errors may begin to come int o
play causing the rms deviation to rise irregularly . If the requirements
of an application are such that . a lower degree of accuracy woul d
be acceptable, it is generally preferable to employ a lower orde r
polynomial, for the reasons mentioned above .

Linearization with power-series polynomials

So far, in the discussion of the least-squares technique, the for m
of the gk (x) function has not been specified. In fact, it may be
almost any continuous function of x such as sin(x), ln(x) etc . For
correcting the response of a non-linear sensor it is usual to use a
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Figure 9 .2 Typical rms deviation vs . order for a power-series polynomial fit

power-series polynomial where each successive term is proportiona l
to an increasing power of x . For a power-series polynomial, the
elements of the matrix and vector in Equation 9 .11 become

i =n

	

i=n

ak.i = > w,xxf and

	

= > WjXfyi

	

(9 .12)
i=1

	

i=1

By setting all weights to unity, substituting these elements into
the matrix equation for a first order polynomial and then solvin g
for a0 and a l we can arrive at Equations 9 .3 for the parameters
of a straight line which were presented in the Multiple point prime
calibration section. (Note that the following substitutions must b e
made: a l = s; a0 = h . )

Power-series polynomials are a special case of the generalize d
polynomial function fit and are useful for correcting a variety o f
non-linear response curves . They are, perhaps, most often employed
for linearizing thermocouple signals but they can also be used wit h
a number of other types of non-linear sensor. The resistance vs .
temperature characteristic of a platinum RTD, for example, can b e
linearized with a second order power-series polynomial (Johnson,
1988), but for higher accuracy or wider temperature ranges a third
or fourth order polynomial should be used . Higher (typically 8th
to 14th) order polynomials are required to linearize thermocoupl e
signals, as the response curves of these devices tend to be quit e
non-linear . Power-series polynomials are most effective where th e
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response curve deviates smoothly and gradually from linearity (a s
is usually the case with thermocouple signals), but they normally
provide a poorer fit to curves that contain sudden steps, bumps o r
discontinuities .

Non-linearities often stem from the design of the transducer an d
its associated signal conditioning circuits . However, power-serie s
polynomials can also be used in cases where other sources of non-
linearity are present . For example, the mechanical design of a
measuring system might require a displacement transducer such a s
an LVDT to be operated via a series of levers in order to indirectly
measure the rotational angle of some component. In this case,
although the response of the LVDT and signal conditioning circuit s
are essentially linear, the transducer's output will have a non-linear
relation to the quantity of interest. Systems such as this often exhibi t
smooth deviations from linearity and can usually be linearized with
a power-series polynomial .

Fitting a power-series polynomia l
To fit a polynomial of any chosen order to a set of calibratio n
reference points, it is first necessary to construct a matrix equatio n
with the appropriate terms (as defined by Equations 9 .12) . The
matrix should be simplified using the Gaussian Elimination tech-
nique described in the previous section and the coefficients may
then be calculated by back-substitution .

Listing 9.2 shows how a power-series polynomial can be fitted to
an unweighted set of calibration reference points . As each point i s
assumed to have been determined to the same degree of precision ,
all weights in Equations 9 .12 can be set to unity. If required, weights
could easily be incorporated into the code by modifying the firs t
block of lines in the PolynomialLSF O function .

The code in this listing will automatically attempt to fit polynomial s
of all orders up to a maximum order which is limited by either th e
matrix size or the number of available calibration points. The present
example accommodates a 16 x 16 matrix which is sufficient for a
15th order polynomial . If necessary, the size of the matrix can b e
increased by modifying the #define N line. Bear in mind, however,
that if larger matrices and polynomials are used, rounding error s
may become problematic . As mentioned in the previous section ,
polynomial fits should not be attempted for orders greater tha n
n — 2, where n represents the number of calibration referenc e
points. The code will, therefore, not attempt to fit a polynomial i f
there are insufficient points available .

The (xi , y,) data for the fit are made available to the fitting func-
tions in the global x and y arrays . The results of the fitting are
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Listing 9 .2 Fitting a power-series polynomial to a set of calibration data point s

#include <math .h>

#define True

	

1
#define False

	

0

*define MaxNP

	

500

	

/* Maximum number of data points for fit * /

#define N

	

16

	

/* No . of terms . 16 accommodates 15th order polynomial * /

struct OrderRe c
{

long double Coef[N] ;

	

/* Polynomial coefficients * /

double

	

RMSDev ;

	

/* RMS deviation of polynomial from Y data points * /
double

	

WorstDev ; /* Worst deviation of polynomial from Y data points * /
} ;

struct PolyFitResult s
{

unsigned char MaxOrder ;

	

/* Highest order of polynomial to fit * /

struct OrderRec ForOrder[N] ;

	

/* Polynomial parameters for each order * /

struct PolyFitResults PResults ;

long double

	

Matrix[N] [N] ;

	

/* Matrix in equation 10 .11 * /

long double

	

Vector[N] ;

	

/* Vector in equation 10 .11 * /

unsigned int

	

NumPoints ;

	

/* Number of (X,Y) data points * /

double

	

X [MaxNP] ;

	

/* X data * /

double

	

Y [MaxNP] ;

	

/* Y data * /

long double Power(long double X, unsigned char P )

/* Calculates X raised to the power P * /
{

unsigned char I ;
long double

	

R ;

R = 1 ;
if (P > 0 )

for (I = 1 ; I <= P; I++ )

R = R * X ;
return(R) ;
}

void GaussElim(unsigned char M, long double Solution[N], unsigned char *Err )

/* Solves the matrix equation contained in the global Matrix and Vector array s
by Gaussian Elimination and back-substitution . Returns the solution vecto r

in the Solution array .
* /
{

signed char Pivot ;
signed char JForMaxPivot ;

signed char J ;
signed char K ;
signed char L ;

long double Temp ;

long double SumOfKnownTerms ;



368 PC interfacing and data acquisition

Listing 9 .2 (continued)

*Err = False ;

/* Manipulate the matrix to produce zeros below the major diagonal * /
for (Pivot = 0 ; Pivot <= M; Pivot++ )

/* Find row with the largest value in the Pivot column * /
JForMaxPivot = Pivot ;
if (Pivot < M )

for (J = Pivot + 1 ; J <= M; J++ )
if (fabsl (Matrix [Pivot] [J]) > fabsl (Matrix [Pivot] [JForMaxPivot]) )

JForMaxPivot = J ;

/* Swap rows of matrix and vector so that the largest matrix * /
/* element is in the Pivot row (ie . falls on the major diagonal) * /
if (JForMaxPivot != Pivot )

/* Swap matrix elements . Note that elements with K < Pivot are all * /
/* zero at this stage and may be ignored . * /
for (K = Pivot ; K <= M ; K++ )

{
Temp

	

= Matrix[K] [Pivot] ;
Matrix [K] [Pivot]

	

= Matrix[K] [JForMaxPivot] ;
Matrix [K] [JForMaxPivot] = Temp ;

)

/* Swap vector "rows" (ie . elements) * /
Temp

	

= Vector[Pivot] ;
Vector[Pivot]

	

= Vector[JForMaxPivot] ;
Vector[JForMaxPivot] = Temp ;

if (Matrix[Pivot] [Pivot] == 0 )
*Err = True ;

else {
/* Eliminate variables in matrix to produce zeros in all * /
/* elements below the pivot element * /

for (J = Pivot + 1 ; J <= M ; J++ )

Temp = Matrix[Pivot] [J] / Matrix[Pivot] [Pivot] ;
for (K = Pivot ; K <= M ; K++ )

Matrix [K] [J] = Matrix[K] [J] - Temp * Matrix[K] [Pivot] ;
Vector[J] = Vector[J] - Temp * Vector[Pivot] ;
)

)

/* Solve the matrix equations by backsubstitution, starting with * /
/* the bottom row of the matrix * /
if (!(*Err) )

if (Matrix [M] [M] == 0 )
*Err = True ;

else {
for (J = M; J >= 0 ; J-- )

{
SumOfKnownTerms = 0 ;
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Listing 9.2 (continued)

if (J < M )
for (L = J + 1 ; L <= M ; L++ )

SumOfKnownTerms = SumOfKnownTerms + Matrix[L] [J] * Solution [L] ;

Solution [J] = (Vector[J] - SumOfKnownTerms) / Matrix[J] [J] ;

}

void PolynomialLSF(unsigned char Order, unsigned char *Err )
/* Performs a polynomial fit on the X, Y data arrays of the specified Orde r

and stores the results in the global PResults structure .
* /

{
long double MatrixElement[2 * (N - 1)

	

+ 1] ;

	

/* Temporary storage * /

unsigned char KPlusJ ; /* Index of matrix elements * /

unsigned char K ; /* Index of coefficients * /

unsigned char J ; /* Index of equation / vector elements * /
unsigned int I ; /* Index of data points */

/* Sum data points into Vector and MatrixElement array . MatrixElement is * /
/* used for temporary storage of elements so that it is not necessary to * /

/* duplicate the calculation of identical terms * /

for (KP1usJ = 0 ; KPlusJ <= (2 * Order) ; KPlusJ++) MatrixElement[KPlusJ] = 0 ;

for (J = 0 ; J <= Order ; J++) Vector[J] = 0 ;
for (I = 0 ; I < NumPoints ; I++ )

{

for (KPlusJ = 0 ; KPlusJ <= (2 * Order) ; KPlusJ++ )

MatrixElement [KPlusJ] = MatrixElement [KPlusJ] + Power (X [I] , KP1usJ) ;

for (J = 0 ; J <= Order; J++ )

Vector[J] = Vector[J] + (Y[I] * Power (X [ I ] , J)) ;

/* Copy matrix elements to Matrix * /

for (J = 0 ; J <= Order; J++ )

for (K = 0 ; K <= Order; K++ )
Matrix [K] [J] = MatrixElement [K+J] ;

/* Solve matrix equation by Gaussian Elimination and backsubstitution . * /
/* Store the solution vector in the Results .ForOrder[Order] .Coef array . * /

GaussElim(Order,PResults .ForOrder[Order] .Coef,Err) ;

}

long double PolynomialValue(unsigned char Order, double X )

/* Evaluates the polynomial contained in the global PResults structure .
Returns the value of the polynomial of the specified order at the

specified value of X .

{

signed char K ;
long double P ;

}
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Listing 9.2 (continued)

P = PResults . ForOrder [Order] .Coef [Order] ;

for (K = Order - 1 ; K >= 0 ; K-- )

P = P * X + PResults . ForOrder [Order] .Coef [K] ;

return P ;

}

void CalculateDeviation(unsigned char Order )

/* Calculates the root-mean-square and worst deviations of all Y values fro m

the fitted polynomial .
*

unsigned int I ;

double

	

Deviation ;

double

	

SumDevnSq ;

SumDevnSq = 0 ;

PResults .ForOrder[Order] .WorstDev = 0 ;

for (I = 0 ; I < NumPoints ; I++ )

{

Deviation = Y[1] - PolynomialValue (Order, X [ I ]) ;

if (fabs (Deviation) > f abs (PResults . ForOrder [Order] .WorstDev) )
PResults .ForOrder[Order] .WorstDev = Deviation ;

SumDevnSq = SumDevnSq + (Deviation * Deviation) ;

PResults .ForOrder[Order] .RMSDev = sqrt(SumDevnSq / (NumPoints-2)) ;

void PolynomialFitForAllOrders(unsigned char *Err )

/* Performs a polynomial fit for all orders up to a maximum determined by th e

number of data points and the dimensions of the Matrix and Vector arrays .
* /

{

unsigned char Order ;

*Err = False ;

if (NumPoints > N )

PResults .MaxOrder = N - 1 ;

else PResults .MaxOrder = NumPoints - 2 ;

for (Order = 1 ; Order <= PResults .MaxOrder ; Order++ )

{

if (!(*Err) )

PolynomialLSF(Order,Err) ;

if (!(*Err)) CalculateDeviation (Order) ;
}

1
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stored in the global PResults structure (of type PolyFitResults) . The
PolynomialFitForAllOrders() function performs a polynomial fit t o
the same data over a range of orders by calling the PolynomialLSF ( )

function once for each order . This constructs the matrix and vector
defined in Equation 9 .11 using the appropriate power-series polyno -
mial terms and then calls the GaussElim () function to solve the matri x
equation. After each fit has been performed the CalculateDeviation ( )

function determines the rms and worst deviation of the ( xi , y,) points
from the fitted curve .

All of the fitting calculations employ C's 80-bit long double floating-
point data type . This is the same as Pascal's extended type and
corresponds to the Intel 80x87 coprocessor 's Temporary Real data
type. These provide 19 to 20 significant digits over a range of abou t
3.4 x 10—4932 to 1 .1 x 10+4932 .

The listing incorporates two functions that are actually include d
in some standard C libraries . Calls to the Power () function can
be replaced by calls to the C pow]. () function if it is supporte d
in your library . The function has been included here for th e
benefit of readers who wish to translate the code into language s
such as Pascal, which might not have a comparable procedure .
Users of Borland C++ or Turbo C/C++ may wish to replace th e
PolynomialValue () function with the poly() or poly' () library func -
tions. However, these are not defined in ANSI C and are not
supported in all implementations of the language.

Evaluating a power-series polynomia l

In order to calculate the rms and worst deviation, it is necessary for
the code to evaluate the fitted polynomial for each of the x i values .
The most obvious way to do this would have been to calculate each
term individually and to sum them as follows .

PolyValue = 0 ;
for (K = 0 ; K <= Order ; K++ )

PolyValue = PolyValue + Coef [K] *Power (X [I] , K) ;

However, this requires xk to be evaluated for each term, which result s
in many multiplication operations being performed unnecessarily b y
the Power () function . The following algorithm is much more efficien t
and requires only order + 1 multiplications to be performed . Note
that the index K is, in this case, a signed char .

PolyValue = Coef [Order] ;

for (K = Order-1 ; K >= 0 ; K-- )

PolyValue = PolyValue * X [I] + Coef [K] ;
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For a 15th order polynomial the first method requires 121 separate
multiply operations while only 16 are needed in the more effi-
cient second method . The second method minimizes the effect o f
rounding errors and will often make a significant improvement to
throughput .

Polynomials in other functions

A power-series polynomial can be useful where the functional for m
of a response curve is unknown or difficult to determine . However ,
the response of some measuring systems might clearly follow a
combination of simple mathematical functions (sin, cos, log etc . )
and in such cases it is likely that a low order polynomial in th e
appropriate function will provide a more accurate fit than a hig h
order power-series polynomial .

Thermistors, for example, exhibit a resistance (R) vs . temperature
(T) characteristic in which the inverse of the temperature is propor-
tional to a polynomial in In R (see Tompkins and Webster, 1988) :

T-1 = ao -F- a l In R + a3(ln R)3

	

(9 .13)

A response curve based on a simple mathematical function migh t
also arise where the non-linearity is introduced by the geometry o f
the measuring system. One example is that of level measuremen t
using a float and linkage as shown in Figure 9 .3 .

The float moves up and down as the level of liquid in the tan k
changes and the resulting motion (i .e . angle a) of the mechanica l

ROTARY
POTENTIOMETE R

Figure 9 .3 Measurement of fluid level using a float linked to a rotary poten-
tiometer

a
t

h
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link is sensed by a rotary potentiometric transducer . The output o f
the potentiometer is assumed to be proportional to a, and the level,
h, of liquid in the tank will be approximately proportional to cos(a) .

The best approach might initially seem to be to scale the outpu t
of the potentiometer to obtain the value of a and then apply th e
simple cos(a) relationship in order to calculate h . This might indeed
be accurate enough, but we should remember that there may b e
other factors which affect the actual relationship between h and
the potentiometer's output. For example, the float might sit at a
slightly different level in the liquid depending upon the angle a
and this will introduce a small deviation from the ideal cosinusoidal
response curve . Deviations such as this are usually best accounted fo r
by performing a prime calibration and then linearizing the resultin g
calibration points with the appropriate form of polynomial .

The polynomial fitting routine in Listing 9 .2 can easily be modi-
fied to accommodate functions other than powers of x . There are
only two changes which usually need to be made . The first is that the
PolynomialLSF () function should be adapted to calculate the matri x
elements from the appropriate gk (x) functions . The other modifica-
tion required is in the three lines of code in the PolynomialValue ( )

function which evaluates the polynomial at specific points on th e
response curve .

9.4 Interpolation between points in a look-up tabl e
Suppose that a number of calibration points, (x 1 , yl ), (x2, y2) to
(x„ , y1 , ), have been calculated, or measured using the prime calibra -
tion techniques discussed previously . If there are sufficient points
available, it is possible to store them in a look-up table and to use thi s
table to directly convert the ADC reading into the correspondin g
`real-world' value . In cases where a low resolution ADC is in us e
it might be feasible to construct a table containing one entry fo r
each possible ADC reading . This, however, requires a large amoun t
of system memory, particularly if there are several ADC channels ,
and it is normally only practicable to store more widely separate d
reference points. In order to avoid having to round down (or up )
to the nearest tabulated point it is usual to adopt some method of
interpolating between two or more neighbouring points .

Sorting the table of calibration points

The first step in finding the required interpolate is to determin e
which of the calibration points the interpolation should be based on .
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Two (or more) points with x values spanning the interpolation poin t
are required, and the software must undertake a search for thes e
points. In order to maximize the efficiency of the search routin e
(which often has to be executed in real time), the data shoul d
previously have been ordered such that the x values of each poin t
increase (or decrease) monotonically through the table .

The points may already be correctly ordered if they have bee n
entered from a published table or read in accordance with a stric t
calibration algorithm. However, this may not always be the case . It i s
prudent to provide the operator with as much flexibility as possibl e
in performing a prime calibration and this may mean relaxing any
constraints on the order in which the calibration points are entere d
or measured . In this case it is likely that the look-up table wil l
initially contain a randomly ordered set of measurements which wil l
have to be rearranged into a monotonically increasing or decreasin g
sequence .

One of the most efficient ways of sorting a large number (up t o
about 1000) of disordered data points is shown in Listing 9 .3. This i s
based on the Shell–Metzner sorting algorithm (Knuth, 1973, Press
et al., 1992) and arranges any randomly ordered table of (x, y) points
into ascending x order.

The shellsort o function works by comparing pairs of x value s
(luring a number of passes through the data . In each pass th e
compared values are separated by Deltal array locations and Delta l

is halved on each successive pass . The first few passes through th e
data introduce a degree of order over a large scale and subsequen t
passes reorder the data on continually smaller and smaller scales .

This might seem to be an unnecessarily complicated method of
sorting, but it is considerably more efficient than some of the simple r
algorithms (such as the well-known Search-and-Insert or Bubble Sor t
routines), particularly if the data set contains more than about 30 to
40 points . The time required to execute the shellsort O algorithm
increases in proportion to NumPoints to the power of 1 .5 or less, while
the execution time for a Bubble Sort increases with NumPoints squared .
However, if there are only a small number of calibration points (les s
than about 20 to 30) to be sorted the simpler BubbleSort 0 ) routine
shown in Listing 9 .4 will generally execute faster than shellsort ( ) .

The C language includes a qsort 0 function which can be use d
to sort an array of data according to the well-known Quick Sor t
algorithm. This algorithm is ideal when dealing with large quantitie s
of data (typically >1000 items), but for smaller arrays of calibratio n
points, a well-coded implementation of the Shell–Metzner technique
tends to be more efficient.
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Listing 9.3 Sorting routine based on the Shell-Metzner (Shell Sort) algorithm fo r
use with up to approximately 1000 data points

#define True

	

1
#define False

	

0
#define MaxNP 500

	

/* Maximum number of data points in lookup table * /

void ShellSort(unsigned int NumPoints, double X[MaxNP], double Y[MaxNP] )
/* Sorts the X and Y arrays according to the Shell-Metzner algorithm so tha t

the contents of the X array are placed in ascending numeric order . Th e
corresponding elements of the Y array are also interchanged to preserve the
relationship between the two arrays .

* /

{

unsigned int Deltal ; /* Separation between compared elements * /
unsigned char PointsOrdered ; /* True indicates points ordered on each pass * /
unsigned int NumPairsToCheck ; /* No . of point pairs to compare on each pass * /
unsigned int I0,I ; /* Indices for search through arrays * /
double Temp ; /* Temporary storage for swapping points */

if (NumPoints > 1 )
{

Deltal = NumPoints ;

do
{

Deltal = Deltal / 2 ;

/* Compare pairs of points separated by Deltal * /
do

{
PointsOrdered

	

= True ;
NumPairsToCheck = NumPoints - Deltal ;
for (I0 = 0 ; I0 < NumPairsToCheck ; I0++) ;

{
I = I0 + Deltal ;

if (X[10] > X[1] )
{
/* Swap elements of X array * /
Temp = X[1] ;
X [I]

	

= X[10] ;
X[10] = Temp ;

/* Swap elements of Y array * /
Temp = Y[1] ;
Y [I]

	

= Y[10] ;
Y[10] = Temp ;

PointsOrdered = False ;

	

/* Not yet ordered so do same pass again * /
}

}
}

while (l PointsOrdered) ;

while (Deltal != 1) ;
}
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Listing 9 .4 Bubble Sort routine for use with fewer than approximately 20 to 3 0
data points

	

#define MaxNP 500

	

/* Maximum number of data points in lookup table * /

void BubbleSort(unsigned int NumPoints, double X[MaxNP], double Y[MaxNP] )

/* Sorts the X and Y arrays according to the Bubble Sort algorithm so that

the contents of the X array are placed in ascending numeric order . The

corresponding elements of the Y array are also interchanged to preserve th e

relationship between the two arrays .
*

{

unsigned int I ;

unsigned int I0 ;
double

	

Temp ;

for (I0 = 0 ; I0 < NumPoints - 1 ; I0++ )

{
for (I = I0 + 1 ; I < NumPoints ; I++ )

{
if (X[I0] > X[I] )

{
/* Swap elements of X array * /
Temp = X[I] ;
X[I]

	

= X[I0] ;
X[10] = Temp ;

/* Swap elements of Y array * /
Temp = Y[I] ;

Y[I] = Y[10] ;
Y[I0] = Temp ;
}

}
}

}

The Bubble Sort algorithm is notoriously inefficient and shoul d
be used only if the number of data points is small . Do not be tempted
to use a routine based on the Bubble Sort method with more tha n
about 20 to 30 points . It becomes very slow if large tables of data hav e
to be sorted and, in these cases, it is worth the slight extra codin g
effort to replace it with the Shell Sort routine .

There are many other types of sorting algorithm . Most of these
are, however, designed specially for sorting very large quantities o f
data and there is usually no significant advantage to be gained b y
using them in preference to the shellsort o function. See Press et al.
(1992) and Knuth (1973) for more detailed discussions of this topic .

The sorting process should, of course, be performed immedi-
ately after the calibration reference points have been entered or
pleasured. It should not be deferred until run time as this is likely
to place an unacceptable burden on the real-time operation of th e
software .



Scaling and linearization 37 7

Searching the look-up table

In order to determine which calibration points will be used for the
interpolation, the software must search the previously ordered table .
The most efficient searching routines tend to be based on bisectio n
algorithms such as that identified by the Bisection Search comment
in Listing 9 .5. This routine searches through a portion of the tabl e
(defined by the indices Upper and Lower) by repeatedly halving it . I t
decides which portion of the table is to be bisected next by comparin g
the bisection point (Bisect) with the required interpolation poin t
(Targetx) . The bisection algorithm rapidly converges on the pair of
data points with x values spanning Targetx and returns the lower of
the indices of these two points. This is similar, in principle, to th e
successive-approximation technique employed in some analogue-to-
digital converters .

Listing 9 .5 Delimit-and-bisect function for searching an ordered tabl e

#define True

	

1
#define False

	

0
#define MaxNP 500

	

/* Maximum number of data points in lookup table * /

void Search(unsigned int NumEntries, double X[MaxNP], double TargetX ,
signed int *Index, unsigned char *Err )

/* Searches the ascending table of X values by bracketing and then bisection .
This procedure will not accommodate descending tables . NumEntries specifies
the number of entries in the X array and should always be less than 32768 .
Bracketing starts at the entry specified by Index . The bisection search then
returns the index of the entry such that X[Index] <= TargetX < X[Index+l] .
If Index is out the range 1 to NumEntries, the bisection search is performe d
over the whole table . If TargetX < X[l] or TargetX >= X[NumEntries], Err i s

set true .
*

{

signed int

	

Span ;
signed int Upper ;
signed int

	

Lower ;

unsigned int Bisect ;

if (X [0] > X[NumEntries-l] )

	

*Err = True ;

	

/*Descending* /
else *Err = ((TargetX < X[0]) I) (TargetX >= X[NumEntries-l])) ; /*Ascending* /

if (!*Err )
{

/* Define search limits * /
if ((*Index >= 0) && (*Index < NumEntries) )

{
/* Adjust bracket interval to encompass TargetX * /
Span = 1 ;
if (TargetX >= X[*Index] )
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Listing 9 .5 (continued)

/* Adjust upwards * /
Lower = *Index ;
Upper = Lower + 1 ;
while (TargetX >= X[Upper] )

{

Span = 2 * Span ;
Lower = Upper ;
Upper = Upper + Span ;
if (Upper > NumEntries - 1) Upper = NumEntries - 1 ;
}

else
/* Adjust downwards * /
Upper = *Index ;
Lower = Upper - 1 ;
while (TargetX < X(Lower] )

(
Span = 2 * Span ;
Upper = Lower ;

Lower = Lower - Span ;
if (Lower < 0) Lower = 0 ;
}

}
}

else (
/* *Index is out of range so search the whole table * /
Lower = 0 ;
Upper = NumEntries ;
}

/* Bisection search * /
while ((Upper - Lower) > 1 )

(
Bisect = (Upper + Lower) / 2 ;
if (TargetX > X [Bisect] )

Lower = Bisect ;
else Upper = Bisect ;

}
*Index = Lower ;

}
}

The total execution time of the bisection search algorith m
increases roughly in proportion to log 2 (n), where n is the number
of points in the range of the table to be searched .

The bisection routine would work reasonably well if the Upper
and Lower search limits were to be set to encompass the whol e
table, but this can often be improved by including code to define
narrower search limits. The reason is that, in many data-acquisitio n
applications, there is a degree of correlation between successiv e
readings. If the signal changes slowly compared to the sampling
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rate, each consecutive reading will be only slightly different fro m
the previous one . The search c > function takes advantage of any such
correlation by starting the search from the last interpolation point.
It initially sets the search range so that it includes only the las t
interpolation point (x value) used and then continuously extends
the range in the direction of the new interpolation point until th e
new point falls within the limits of the search range . The final range
is then used to define the boundaries of the subsequent bisectio n
search .

The search 0 function uses the initial value of the Index parameter
to fix the starting point of the range-adjustment process . The calling
program should usually initialize Index before invoking search 0 ) for
the first time and it should subsequently ensure that Index retains its
value between successive calls to search c ) . It is, of course, possible to
cause the searching process to begin at any other point in the tabl e
just by setting Index to the required value before calling the search 0

function .
If successive readings are very close, the delimit-and-bisect strateg y

can be considerably more efficient than always performing the bisec-
tion search across the whole table . The improvement in efficiency
is most noticeable in applications which use extensive calibratio n
tables. However, if successive readings are totally unrelated, this
method will take approximately twice as long (on average) to fin d
the required interpolation point .

The Search O function will work only on tables in which the x
values are arranged in ascending numerical order, but it can easily
be adapted to accommodate descending tables .

Interpolation

There are many types of interpolating function — the nature of eac h
application will dictate which function is most appropriate . The
important point to bear in mind when selecting an interpolating
function is that it must be representative of the true form of the
response curve over the range of interpolation . The present discus-
sion will be confined to simple polynomial interpolation whic h
(provided that the tabulated points are close enough) is a suitabl e
model for many different shapes of response curve .

Any n adjacent calibration points describe a unique polynomia l
of order n — 1 that can be used to interpolate to any other poin t
within the range encompassed by the calibration points . Lagrange' s
equation describes the interpolating polynomial of order n — 1
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passing through any n points, (x1, yi), (x2, )72) • • • (xn, yn ) :

(x— x2)(x — x3) . . . ( x — xn )
P(x) =

(XI — X2 ) (x l — x3) . . . (XI — xn )
y 1

(x — x1) (x — x3) . (x — x n )
+

(x2 — xi )(x2 — x3) . . . (x2 — xn ) Y2 +
. . .

(x — x1) (x — x2) . . . (x — xn-1 )
+

	

yn
(xn — XI ) (xn — X2) . (xn — x n -1 )

The Lagrange polynomial can be evaluated at any point, x i , where
1 < i < n, in order to provide an estimate of the true response
function y(xj ) .

The interpolating polynomial should not be confused with th e
best-fit polynomial determined by the least-squares technique . The
(n — 1) th order interpolating polynomial passes precisely through the
n reference points ; the best fit polynomial represents the closes t
approximation that can be made to the reference points using a
polynomial of a specified order . In general the order of the best fi t
polynomial is considerable smaller than the number of data points .

It is usually not advisable to use a high (i .e. greater than abou t
fourth or fifth) order interpolating polynomial either, unless ther e
is a good reason to believe that it would accurately model the rea l
response curve . High order polynomials can introduce an excessive
degree of curvature . They also rely on reference points that ar e
more distant from the required interpolation point and these are, o f
course, less representative of the required interpolate .

The other important drawback with high order polynomial inter-
polation is that it involves quite complex and time-consumin g
calculations . As the interpolation usually has to be performed i n
real time, we are generally restricted to using low order (i .e . linear
or quadratic) polynomials . The total execution time can be reduce d
if the calibration reference points are equally spaced along the x
axis . We can see from Lagrange's equation that, in this case, it woul d
be possible to simplify the denominators of each term and thus to
reduce the number of arithmetic operations involved in performin g
the interpolation .

In order to avoid compromising the accuracy of the calibration ,
it is necessary to ensure that sufficient calibration reference points
are contained within the look-up table . The points should be more
closely packed in regions of the response curve that have rapidly
changing first derivatives .

(9 .14)
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If the points are close enough, we can use the following simpl e
linear interpolation formul a

(x — xi) (Ye+1 — yi )y=

	

+yi

	

(9 .15)
(xi + 1 — xi )

A number of other interpolation techniques exist and these may
occasionally be useful under special circumstances . For a thorough
discussion of this topic the reader is referred to the texts by Frober g
(1966) and Press et al. (1992) .

9.5 Interpolation vs. power-series polynomial s

Interpolation can in some circumstances provide a greater degre e
of accuracy than linearization schemes that are based on the best-fi t
polynomial . A 50-point look-up table will approximate the respons e
of a type-T thermocouple to roughly the same degree of accuracy a s
a 12th order polynomial . It is relatively easy to increase the precisio n
of a look-up table by including more points, but increasing the orde r
of a linearizing polynomial can be less straightforward because o f
the effect of rounding errors .

Interpolation using a look-up table can also be somewhat faste r
than evaluating the best fit polynomial, particularly if the PC i s
not equipped with a numeric co-processor . The speed advantage
obtained with look-up tables will, of course, depend upon th e
number of points in the table and the order of the polynomial .
The time required to evaluate a power-series polynomial increases
in proportion to its order . Using the search 0 function in Listing 9 .5 ,
the total search time required prior to performing an interpolatio n
increases approximately in proportion to lo ge (r7) where 17 represents
the average number of elements to be searched . As mentioned previ-
ously, if successive readings are correlated, rl can be quite small . As a
rough rule-of-thumb, if a numeric coprocessor is used, it takes abou t
the same length of time to evaluate a 12th order polynomial as to
search a 25-point table and then perform a linear interpolation . If a
co-processor is not available, the balance will tend to shift in favou r
of the search-and-interpolate technique.

9.6 Interactive calibration program s
The users of a data-acquisition program will probably be familia r
with the measurements that it will be required to make . Indeed, i t
is quite possible that the software will have been commissioned in
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order to computerize some process that the operator has already
been carrying out for a number of years . The calibration procedure
is not generally related to the logic of the data-acquisition proces s
and, consequently, the end user is probably less likely to under-
stand the steps involved in calibration than any other part of th e
measuring system. Calibration often requires quite a high degre e
of operator involvement . Any mistakes will have the potential to
introduce serious errors into the measuring system and may disrup t
the system's control functions .

For these reasons, calibration can be one of the most problematic
aspects of a data-acquisition system and it is worthwhile makin g
the calibration software as efficient, informative and easy to use as
possible . This benefits not only the end user but also the supplier i n
fewer maintenance call-outs and telephone queries .

From the programmer's point of view, the simplest calibratio n
routines are those which require the user to calculate scaling factors ,
offsets or polynomial coefficients and to type in these values for
subsequent storage in a data file . Clearly, this procedure can be quit e
error prone . A more satisfactory alternative it to produce an interactiv e
calibration program which continuously displays the output fro m
the sensor and, when commanded to do so, samples the AD C
output and automatically calculates scaling factors or linearizatio n
parameters . This reduces the operator's job to simply adjusting th e
sensor input and/or the signal-conditioning (e .g. amplifier gain) an d
then selecting the appropriate menu options on the PC. Whatever
method is chosen, it cannot be overemphasized that the calibratio n
program should be as simple to use as possible, and should minimiz e
the potential for operator errors .

The user interface

The computer should, as far as possible, oversee the sequence o f
events that occur during the calibration process . The software might ,
for example, require the transducer's zero offset to be measure d
first, and a second calibration reference point to be obtained at th e
transducer's full-scale setting . It is, however, advisable to provide th e
operator with the option to abandon the calibration procedure an d
to either restart the whole process or to restore the scaling facto r
and other calibration parameters to their original values .

The calibration program's display screen should be as clear an d
informative as possible . Large digital displays might be used to
indicate the current scaled and unscaled sensor readings, whil e
analogue bar charts can provide a more graphic representation .
Different colours can be used for the scaled and unscaled displays
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in order to enhance clarity. It is sometimes useful to change th e
colours of the displays whenever the input is scaled or linearized ,
thereby shifting the visual emphasis from one set of indicators to
the other. Other useful facilities might include a noise-monitorin g
facility to ensure that the level of noise present will not compromise
calibration accuracy .

The calibration software should be designed to trap operato r
errors wherever possible . It should, for example, detect when obvi-
ously incorrect inputs are applied to the transducer . Clear on-screen
instructions, information panels and help screens are of considerabl e
value. Diagrams or other pictorial representations of the positions o r
status of the various sensors can also be a useful aid to understandin g
the calibration process .

9.7 Practical issue s

Calibration is usually a straightforward matter if easy access is avail-
able to the sensor and if it is possible to use the appropriate type
of measuring jig or calibration reference device . In many situations ,
however, the transducer forms part of a larger system – perhaps par t
of a machine working on a production line – and in these case s
the transducer may have to be calibrated in situ. This often intro-
duces a number of practical difficulties into the calibration process .
By designing the software to take account of these difficulties it i s
possible to greatly simplify the procedures involved in calibration . A
few of the relevant considerations are described below.

Flexible calibration sequence

At its simplest, prime calibration involves the following steps :

1. Sample the output of the measuring system with zero input .
2. Sample the output of the measuring system at (or near to) ful l

scale .
3. Calculate the offset and scaling factor from the two previous

calibration points .

Each of these steps may be performed in response to specific inputs
from the user (e .g. a key press, menu selection or mouse click) .
Obviously, three-point and multiple-point calibration schemes woul d
require more than two reference points to be obtained, but the basi c
principle still applies .

It should be borne in mind that, in multi-channel systems, ther e
may be a correlation between the readings obtained with two or
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more of the sensors — i .e . the various sensors might actually measur e
different aspects of the same physical process or object . For example ,
consider a system which uses 100 LVDTs in a gauging jig to measur e
the displacement at different locations on the surface of some
manufactured component . It might be difficult to individually set
each transducer to its zero position and then to its full-scale positio n
using a set of gauge blocks . A more practical method would be to
place two dummy components, or spacers, inside the jig : one to
define each of the two calibration reference points . In this case ,
the zero-level spacer would be inserted, to set all transducers to
their respective zero levels, and step 1 would be carried out for eac h
transducer in turn . A similar sequence would then be performed
with a different spacer for step 2 and so on .

The calibration program should not, in this case, assume that th e
whole calibration procedure will be completed for each transduce r
in turn. The riser should be allowed to change sensor channels a t
any stage between the various calibration steps, in order to begin
calibrating another channel . At some later time the user should then
be able to resume calibration of the original channel .

Offset correction

As mentioned previously, there are many possible sources of offset ,
some of which might change over time or with successive repetition s
of a measuring process . Offsets can be introduced by factors such as
tare weights of containers or other variables which affect the baselin e
of the measured quantity.

Most measuring systems should be recalibrated periodically . Fortu-
nately, the sensitivity and linearity of many systems remains fairly
constant, and in these cases, it may be sufficient to check only fo r
variations in the offset in each channel . This facility is essential i n
dimensional gauging systems such as that described in the previou s
section . In these systems a master or reference component is period -
ically placed in the gauging jig so that the software can measure an d
subtract out any offsets that might be caused by thermal expansion
or sensor movement etc .

If possible, the data-acquisition program should repeatedly chec k
for any drifts that might have occurred in the zero offset of eac h
sensor. This is most easily accomplished in systems which perfor m
repetitive tasks (e .g. component assembly machines on a production
line) where the measurand returns t.o some known starting value
after each measuring cycle is completed . This value can be compare d
on successive cycles in order to detect and correct for any change s
in offset.
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Generating a precise measuran d

Prime calibration requires that the output of the measuring system
is determined for a number of precisely known values of th e
measurand . However, it is sometimes impracticable for the sensor' s
input to be set precisely to any fixed value (e .g. the full-scale limit of
the measuring system) . In such cases it is clearly undesirable for th e
calibration software to require any specific value of the measuran d
to be applied, and the operator should be allowed some leeway i n
selecting or adjusting the calibration reference levels .

The following example may illustrate this point . Suppose tha t
an LVDT displacement transducer is attached to a hydraulic arm .
While the operator can accurately measure the displacement of th e
transducer's armature, it might be difficult to adjust the position
of the hydraulic arm with the degree of precision needed to brin g
about any specific displacement . If, (luring a calibration sequence, a
reference point. must be obtained near to the end of the transducer' s
range, it would be preferable for the software to allow the operato r
to set the calibration point anywhere within, perhaps, 90—100 pe r
cent of full scale, rather than demanding that the transducer is se t
precisely to full scale . Provided that the operator enters the value o f
the calibration point actually used, the software should be able t o
account for the difference between the ideal and actual values of the
measurand when calculating the scaling factor .

Remote indication and control

Interactive calibration is normally straightforward provided that th e
PC is located close to the measuring system, but if the sensor s
happen to be positioned in a separate room or high up on th e
support pillars of a bridge, for example, this procedure can b e
highly impracticable . The operator may be unable to see any visua l
display of the sensor's output on the computer's screen . It may also be
difficult to continually move between the sensor and PC during the
calibration process . However, with a little foresight, the programme r
or system designer can circumvent such difficulties with features
such as extra large displays, audible indicators, remote keypads o r
remote numeric indicators or simply by using a portable PC .

Security

It is often important to restrict access to the measuring system's cali-
bration facilities . This can be achieved by means of password protec-
tion schemes and file encryption techniques . In some applications
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security can he enhanced by appropriate choice of operating system .
A discussion of these topics is unfortunately beyond the scope, of thi s
book, but Grover (1989) provides a useful overview of cryptograph y
and software security issues in general .

Traceability

It is quite often necessary, for quality assurance purposes, to recor d
precise details of every calibration performed . The identity of the
operator who performed the calibration procedure might have t o
be recorded along with the calibration data itself. It is also usually
essential to record which instrument or gauge has been used as the
prime calibration reference so that the whole calibration is traceabl e
to a higher level standard . Collet and Hope (1983) discuss the subjec t
of traceability in greater detail .



10 Basic control technique s

Many machines and industrial processes are not inherently self-
regulating. These systems usually require some form of contro l
mechanism in order to maintain their operational parameters withi n
predefined limits . A control system serves two purposes . It can
preserve some steady operational state or it can be used to facilitat e
adjustments to the state of the process. Many data-acquisition system s
are required to generate control signals in order to, for example ,
start or stop a process or to implement dynamic regulation .

This chapter introduces some simple software techniques that ca n
be used as a basis for controlling actuators and peripheral device s
via the PC. The following material is presented in the context o f
industrial process control systems, but much of what is said ca n
also be applied to systems for use in laboratory, civil engineering ,
domestic or other environments .

It is not intended to cover the theory of control systems i n
any depth. Nor shall we discuss choosing and designing contro l
systems – this is the province of the control engineer . Instead, this
section is presented from the point of view of software engineer s
needing to incorporate control facilities within their data-acquisitio n
programs. The design of control systems is a complex subject whic h
cannot be covered in the space available . Personnel charged wit h
such tasks may need a more detailed understanding of contro l
theory than it is possible to impart here and are advised to consul t
an appropriate specialist text .

10.1 Terminology

While I have attempted to avoid unnecessary jargon, the use o f
some process-control terminology inevitably streamlines the text . I t
is, therefore, helpful to define a few basic terms before proceeding .



388 PC interfacing and data acquisition

Generally, a process is some system which we wish to control . It migh t
be a manufacturing process, involving a series of discrete operation s
such as moving a component into place, lowering a hydraulic ram ,
applying a quality control marker and then ejecting the component.
Alternatively it may consist of some continuous activity such a s
a chemical reaction . The reaction rate may be dependent upon
parameters such as temperature and reactant concentration which
have to be accurately and continuously regulated .

Process variables are those quantities that affect the balance of the
process and, therefore, its end result. The process will, in general ,
be characterized by several variables . Some will have a greater effec t
than others on the outcome of the process, and it is generall y
these variables that are regulated by the control system . Any proces s
variable that is directly manipulated by a control system is know n
as a controlled variable. There may be other process variables tha t
are not directly controlled . As they can also affect the balance of
the process, these uncontrolled variables characterize a process load
which will affect the way in which the control system maintains th e
process within desired operating tolerances .

When a process receives some form of control signal, there will be a
delay before it responds . This process lag may be due to several factors .
In a process involving a continuous chemical reaction, for example ,
the process lag may arise from the thermal inertia of a heate d
reaction vessel or from the time taken for reactants to flow in or ou t
of the vessel . Similarly, actuators and control mechanisms do no t
respond instantaneously . Heating elements or mechanical device s
such as valves generally take some time to respond to changes i n
their control signal and they have an associated controller lag. Sensing
systems also have finite response times (see Chapter 3), and thi s
introduces a measuring lag. As will become clear later in this chapter,
lag times have a profound effect on the dynamic behaviour of contro l
systems .

10 .2 An overview of control system s

Control signals can be issued independently of the current o r
previous state of the process. This type of control is generally referre d
to as open-loop control as it does not involve any feedback from the
process . In closed-loop systems, on the other hand, the PC measure s
one or more process variables and then interprets these measure-
ments in order to decide what control signals should be transmitte d
back to the process . Any changes in the process brought about by th e
control signal will then be reflected in subsequent measurements
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of the process variables . The whole sample-and-control cycle i s
repeated in order to maintain the variable(s) within some desire d
operating range .

A variety of different closed-loop systems are used for controllin g
industrial processes . These fall into two categories : discontinuou s
and continuous . Discontinuous controllers respond to changes i n
the process variable by switching the control element (i .e . a device that
directly influences the process) from one discrete state to another .
A discontinuous temperature controller might respond to a fall i n
temperature by switching on a heater . When the temperature rise s
sufficiently, the heating element is then switched off again . Contin-
uous controllers provide a more gradual response and generally are
capable of reacting proportionately to both large and small changes
in the process variable .

Figure 10.1 illustrates continuous and discontinuous contro l
loops. Both use a PC to convert measurements of the process variabl e
into control signals . The main differences between the two systems
arise from the types actuator and PC interface used . The controlling
software algorithms will, of course, also differ considerably . These
will be discussed in detail in the following pages .

The control element shown in Figure 10 .1 is usually an integral
part of the process itself. It may be a valve which controls the flow o f
reactant, or a heating element within a furnace . The actuator, on the
other hand, is the mechanism which drives the final control element .
It. may be an electric motor, solenoid or a hydraulic or pneumati c
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Figure 10 .1 Schematic diagrams of PC-based control loops : (a) continuous
control and (b) discontinuous control
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device . It may even consist of a simple relay or electrical circuit whic h
regulates the voltage supplied to the control element (e .g. a heater) .
Some actuators provide the capability for continuous variation ove r
their working range, while others provide only two-position control .

10.3 Programmable logic controllers

In many cases, the PC drives actuators via analogue or digital outputs
and signal-conditioning circuits . In other instances, the process may
require a dedicated controller to be used . This may take severa l
forms. Electronic controllers are commonly used to implemen t
continuous analogue control loops. Discontinuous control systems
are often built around digital microprocessor-based controllers .
These devices, which may be programmed to suit a wide variety
of processes, are known as Programmable Logic Controllers (PLCs) .
Although they are most often used for discrete state process contro l
or machine control, some PLCs have the capability to operate as
continuous controllers .

In certain applications, the PC may be required to interfac e
to a PLC. The PLC then directly controls the process while th e
PC acts in a supervisory role, perhaps monitoring certain process
variables, dynamically adjusting set points or logging data for subse-
quent quality-assurance checks . Communications may be established
between the PC and PLC by means of specially designed PLC commu -
nications modules which use an RS-232, RS-422 or RS-485 link an d
a vendor specific communications protocol (such as Allen-Bradley' s
DataHighway+) . Alternatively, status information and command s
may be passed between the PC and PLC via relays and suitable digital
I/O ports as indicated in Figure 10.2 .

Like the PC, PLCs are sequential devices that execute thei r
control programs one instruction at a time. This means that a PL C
does not provide an instantaneous response to its inputs . Neither
does it respond simultaneously to two or more inputs . The PLC
program executes in a continuous loop, scanning its inputs and the n
evaluating and updating its outputs repeatedly. The loop-executio n
time varies between different models of PLC and, of course, als o
depends upon the nature of the control program and the number
of I/O channels which have to be processed . Typical loop-executio n
times are of the order of 2 to 50 ms . Careful programming is required
to circumvent problems associated with PLC response tunes . The
system designer must take account of the effect of the PLC's sca n
time on the control system . He must also be aware of the poten-
tial problems which the inherent time lag might introduce whe n
interfacing to the PC .
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Figure 10.2 A PLC-based control system using the PC in a supervisory role

10.4 Safety and reliability of control system s

Before discussing the elements of a control system, we should
mention the most important consideration : safety. Many processe s
are intrinsically hazardous . The consequences of a control-system
failure and the ensuing loss of control can sometimes be catastrophic ,
resulting, at best, in lost production time or at worst in injury or
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death . A PC-based control system is founded on a number of comple x
interacting subsystems which may provide a significant potential fo r
failure . Although various steps can be taken to make the softwar e
element of such systems as robust as possible (see Chapter 2), it i s
still often the most unreliable element . Software-based controllers
should not be used in isolation in potentially hazardous or safety -
critical applications . Suitable backup mechanisms, processes an d
quality checking schemes should always be employed to ensur e
safety in the event of failure of the control system . Determining the
types of safety feature appropriate for any given system may require
a detailed knowledge of the dynamic behaviour of the process an d
of the control system itself. This task should be undertaken only by
a suitably qualified process engineer .

The following is a list of some basic (and, hopefully, obvious )
points which you should bear in mind when programming a PC-base d
control system .

• Consider the state of the controller's output(s) when power is firs t
applied or when a process is started up . Assess how this will affect
the subsequent stability of the system .

• All inputs on which controller calculations are based should b e
thoroughly range checked in order to prevent invalid data fro m
corrupting the control signal .

• The controller outputs may also be range checked, helping to
guard against the effects of errors in the control algorithm .

• When testing the system, always attempt to use inputs represen-
tative of the actual operational characteristics of the process t o
be controlled and check the system thoroughly under extrem e
conditions and with full-scale or out-of-range inputs .

• Be wary of accumulating significant rounding errors from repeate d
floating-point calculations . This is particularly important when
using iterative control algorithms where any calculation error s
have the potential to be multiplied many times over . It is pruden t
to test the software for stability over periods comparable with th e
expected operating timescale of the system .

10.5 Discontinuous control system s

Because of their simplicity and relatively low cost, discontinuou s
controllers are popular in a broad range of control applications.
As described previously, they operate by simply switching som e
operational parameter (such as the power supplied to a heating
element) between two or more discrete states . Such systems are
very amenable to digital control using the PC. A process variable is
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monitored via an analogue-input channel interfaced to the PC . This
provides a stream of data which is passed to a software comparato r
(see below) or similar algorithm . The resulting Boolean data is the n
used to drive the control element via a suitable digital I/O port an d
actuator .

Most discontinuous control systems operate in a two-position mod e
offering only two possible states . These states may, for example ,
determine whether or not power is applied to a heater, or whethe r
a motor is switched on or off etc . Such systems do not respond to
variations of the process variable between the two switching levels :
they react only when the variable exceeds or falls below one or othe r
of the levels . Other types of discontinuous controller employ thre e
or more discrete switching levels . These might, for example, be use d
to drive a control element to its zero, halfway or full-scale position .

Software comparators

These are simple routines which compare an analogue value (typi-
cally a sensor reading) with one or more predefined trip levels (or
set points as they are sometimes known) . The comparator routine
generates a Boolean output (i .e . an integer value 0 or 1) dependin g
upon the value of the analogue input in relation to the trip level(s) .
The comparator's output may then drive a discontinuous contro l
element via a suitable digital output port and actuator .

Comparators generally possess either one or two trip levels .
Facilities are often incorporated in the software to allow the trip level s
to be adjusted by the end user . Single-trip comparators are suitable
for virtually any application where only an upper or lower limit nee d
be applied . They are widely used in discontinuous control systems .
They are also often used for starting or stopping a data-acquisitio n
run when data exceeds some predefined level . In addition, they may
be applied to elapsed-time readings in order to trigger certain oper-
ations or events at appropriate times. In the case of comparators tha t
have a pair of trip levels, the Boolean output might, for example ,
be set to a 0 when the analogue value falls between the levels, and
to 1 when it. falls outside . These are used principally for applying
tolerance bands to sensor readings (e .g. in pass/fail testing) .

Hysteresis and stability
When an analogue signal is close to one of the trip levels, smal l
variations in the signal (e .g. noise) may cause a series of rapid
changes in the comparator's output. This is often problematic . If
the comparator is used to drive a discontinuous control system it will
cause the actuator and control element to repeatedly cycle between
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their `on' and `off' conditions. Depending upon the nature of the
control system, such cycling can result in poor control or excessiv e
wear of the actuator or control element . Another example wher e
noise may cause problems is in real-time displays . If a comparator
is used to control the colour of an on-screen digital display o r
annunciator, any rapid changes in the comparator's output wil l
cause the display to flicker or appear unstable .

These problems can be easily circumvented by introducing a
degree of hysteresis into the comparator . Hysteresis is a lag betwee n
a change in one variable and some consequent change in anothe r
variable – i .e. a lag between cause and effect. It influences the
behaviour of a system such that changes occurring in one vari-
able are affected l)y a `memory' of the previous state of the system .
Hysteresis often manifests itself in real devices or processes by
preventing a state change induced by a certain sequence of condi-
tions from being reversed by simply applying the opposite sequenc e
of conditions .

We can incorporate hysteresis into software comparator routine s
as follows. A neutral zone (or dead band) is applied to each tri p
level in such a way that the comparator's output does not chang e
state while the input to the comparator is within the (lead band . This
is illustrated in Figure 10 .3 and may be implemented in software
as shown in the following code fragment (which is meant to b e
executed repeatedly within a loop) .

Output = PreviousOutput ;
if (Input > TripLevel + Deadband) Output = 1 ;
if (Input < TripLevel - Deadband) Output = 0 ;
PreviousOutput = Output ;

Note that hysteresis results in the loss of some sensitivity . The
technique must be applied with care if the accuracy of th e
comparator or control system is not to be adversely affected . It is
obviously important, when selecting the width of the dead band (s) , t o
achieve a sensible compromise between stability and responsiveness .

It should be remembered that, although it can enhance stability ,
hysteresis cannot guarantee a smooth controller action . By thei r
very nature, discontinuous controllers affect the controlled variable
in a series of discrete steps. Consider, for example, a two-positio n
controller used to regulate the temperature of a furnace . When
the temperature rises above some upper limit (equal to the desire d
temperature plus (lead band), the controller switches off the heatin g
element. The temperature then begins to fall until it reaches a
predefined lower limit (desired temperature minus the dead band) ,
at which point the controller switches the heater on again . The
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procedure is repeated indefinitely, thereby allowing the temperatur e
to cycle between upper and lower operational limits as shown i n
Figure 10.4 .

The presence of any lags in the system mean that an instantaneou s
response is generally not possible . This will result in cyclic variation s
of the controlled variable that will exceed the controller's switchin g
levels. One can often compensate for such a behaviour by simply
reducing the width of the dead band, although this will tend to mak e
the system more susceptible to noise .
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Figure 10 .3 Implementing hysteresis in comparators by means of dead band s

Figure 10.4 Temperature cycling induced by a two-position discontinuou s
control system
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10.6 Continuous control system s

Continuous control systems maintain a process variable at or nea r
some desired value by providing a smooth, rather than stepwise ,
change in the control signal . The process is monitored via an
appropriate form of sensor, and a series of digitized and scale d
sensor readings is then passed to a continuous-control routine withi n
the software . The output from this routine is scaled, and used to
regulate some aspect of the process via a DAC, actuator and contro l
element as indicated previously in Figure 10 .1 .

A key feature of properly tuned continuous control loops is thei r
ability to provide a timely and proportionate response to proces s
load changes and to transient disturbances . Very small, or slowly
changing, deviations can be corrected by a correspondingly smal l
change in the control signal . Many (but not all) continuous contro l
loops are also characterized by the absence of any oscillation in th e
process variable .

The central question which we must address is : what form does th e
continuous control signal take and how should it react to change s
in the measured variable? There are a number of general-purpos e
continuous control techniques . Most of these are based on th e
concept of the error, E, in the process variable. This is the measure d
deviation of the variable from its desired operating value (i .e . the se t
point) and is usually expressed as a fraction of the range of allowabl e
input values :

E .
V Vsp

Vmax — Vmin

(10.1 )

In this equation, v represents the value of the controlled process
variable, vs,, is the set point (i .e. the desired ideal value of v) and v,,, i n

and V max represent the limits of the full-scale range of the variable .
The error, E, may take either positive or negative values . The signal
generated by the control unit (i .e . the PC) is related to the curren t
value of E and/or the history of E values .

Proportional-integral-derivative (PID) control

Continuous control systems generate signals which are some contin-
uous function of E. Often this function is a simple proportionality
(i .e . a E) or is proportional to the integral or derivative of E with
respect to time . Proportional, integral and derivative control mode s
each have specific advantages and disadvantages . Combinations of
these three terms are normally used in real control applications .
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This not only provides the cumulative benefits offered by each term ,
it also helps to negate some of the drawbacks of using certain modes
(i .e . terms) in isolation . The most generally useful (and widely used)
type of continuous control system employs all three modes. This
PID, or three-term, controller can be easily modelled in software to
allow the PC to manage a variety of process-control applications . The
following equation illustrates how a PID controller is formulated .
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Here, y is the controller output and is dimensionless ; t is the
elapsed time, and P, I and D are constants which are chose n
to match the characteristics of the control loop to those of th e
process being controlled . P is known as the proportional gain an d
is also dimensionless . It controls the scaling of all three terms i n
the equation . Its sign determines whether the controller provide s
a direct or reverse action (i .e. whether y increases or decreases
in response to an increasing error, E) . The contribution supplie d
by the integral term is determined by the magnitude of the reset
rate constant, I . The dimensions of I are time -1 . This constant is
sometimes expressed in terms of its inverse, known as the reset tim e
or integral time, T(=1'). Similarly, the derivative time constant, D ,
governs the effect of the derivative term . D has dimensions of time .

Note that, while E remains zero, the contribution from each o f
the three terms, and hence the controller's output, is also zero . In
a practical application this operating point may have to be offse t
(by adding an appropriate constant .) and the controller's outpu t
scaled in order to correctly drive the actuator and control elemen t
via a DAC. The offset and scaling factors used will be specific to
individual processes and control-loop implementations, and will b e
disregarded in the following discussion .

Programming a PID algorith m

The integral and differential terms in Equation 10 .2 can be approx-
imated by the following equation, which may be used with a serie s
of discrete samples . In this equation the n subscript represents th e
latest sample or calculation, while the i subscript is used simply a s
an index over which to sum values from all previous iterations of th e
control algorithm .

PI
=n

	

En — En- 1
y„ = PE1z +

	

E(Ei -I- Ei-1)( ti — ti_ 1 ) + PD	 	 (10.3)

2 i=1

	

t o — to-1
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Here, a simple linear approximation has been used to estimate th e
derivative term. The integral term is evaluated using the well-known
trapeziodal rule. These approximations should be adequate for
most control applications, provided that the error is sampled at a
rate of more than about ten times the maximum frequency of th e
input signal . You should, however, assess the accuracy of such an
approximation and its potential consequences in your own particula r
application . If in doubt, it is generally wise to use a sampling rate
as high as reasonably achievable, which will help to minimize an y
errors inherent in the approximation . Indeed, it is a requirement
of digital control systems in general (even those without an integral
term) that any lags introduced by the controller (in our case, th e
software) should be as small as possible and this in practice mean s
at least an order of magnitude less than the process lag.

You should also bear in mind the potential effects of timer accurac y
and granularity on integral and derivative calculations . Fortunately ,
most process-control applications require sampling to be carried ou t
at quite low frequencies — often once every few seconds or even ever y
few minutes . In most cases, this rate can be easily accommodate d
on the PC without incurring any serious problems associated with
timing inaccuracies .

Listing 10 .1 illustrates how Equation 10.3 may be implemented .
The PID calculation is performed by repeatedly calling the calcPID ( )
function and passing a new sample of the process variable, v, togethe r
with the time, T, at which the sample was taken. The time values may
be derived from the PC's system clock, RTC or any other convenien t
source . The controller output, y, is then calculated and passed bac k
to the caller . Each v value should be obtained from an appropriat e
sensor and suitably scaled and/or linearized before being passed t o
the Ca1cPID ( ) function. Similarly, scaling of the controller output, y ,

Listing 10.1 A simple PID algorithm

/* PID Variables - The following must be initialized before starting PID * /
unsigned int FirstLoop ;

	

/* Flag for first loop * /
double P ;

	

/* Proportional gain constant * /
double I ;

	

/* Integral (reset rate) constant * /
double D ;

	

/* Derivative time constant * /

double VSP ;

	

/* Set point * /

double VMax ;

	

/* Maximum input * /
double VMin ;

	

/* Minimum input * /
double YMax ;

	

/* Maximum output * /
double YMin ;

	

/* Minimum output * /

/* PID Variables - The following need not be initialized * /
double Integral ;

	

/* Summation for integral term * /

double LastE ;

	

/* Last error value * /

double LastT ;

	

/* Last time value */
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Listing 10 .1 (continued)

void
CalcPID(double V, double T, double *Y )
/* This function calculates the PID controller output, Y, for the new value o f

the variable V at time T . The first time that this function is called i t
returns Y = O .

*

{

double E ;
double DeltaT ;

/* Check V is within its specified limits * /
if (V > VMax) V = VMax ;
if (V < VMin) V = VMin ;

/* Calculate the error, E * /
E = (V - VSP) / (VMax - VMin) ;

if

	

(FirstLoop )
{
Integral = 0 ;
*Y =

	

0 .0 ;
FirstLoop = 0 ;
}

else
DeltaT = T - LastT ;
Integral = Integral + DeltaT *

	

(E + LastE) ;
*Y = P *

	

(E + I

	

* Integral / 2 .0 + D * (E

	

- LastE)

	

/ DeltaT) ;

}

/* Clip controller output to required range * /
if

	

(*Y > YMax )
if

	

(*Y < YMin)
*Y =

*Y =

YMax ;
YMin ;

/* Update record of last E and T values * /
LastE = E ;
LastT = T ;
}

will also be necessary before outputting the signal via a DAC to th e
actuator and control element .

A number of global variables are declared at the beginning o f
the listing. Several of these must be initialized before calling th e
Ca1cPID ( function for the first time . The p , I and D variables ar e
simply the PID constants defined previously. vsP is the set point fo r
the process variable . YMax and vain specify the range of the process
variable (they are the same as Vinax and Vmin in Equation 10.1), whil e
YMax and YMin define the limits of the controller's output range . The
FirstLoop variable should also be initialized to 1 before commencin g
a sequence of PID calculations . This variable acts as a flag to preven t
the ca1cPID ( ) function from attempting to perform a PID calculation
the first time that it is called . The Integral, LastE and LastT variables
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are initialized automatically by calcPID o ) and may be left undefine d
by the caller .

You should ensure that the units of all variables are consistent .
The derivative time, D, and the sample time, T, have dimensions of
time and should be allocated units of minutes or seconds . The rese t
rate constant, I, should be expressed in minutes -1 or seconds -1 as
appropriate . Listing 10 .1 can be modified in practical applications to
incorporate the global variables as fields within a structure or ol-)ject .
By allocating a separate instance of the structure (or object) to eac h
process variable, the same function may be used to operate severa l
PID loops.

The technique employed for the PID calculation will accommo-
date slight variations in the sampling rate (provided that thos e
variations are accurately reflected in the T values passed to th e
calcPID 0 function) . It also employs the trapezoidal method of calcu-
lating the integral term. However, if we fix the sampling rate an d
employ a rectangular, rather than trapezoidal, approximation for th e
integral (i .e . each discrete panel in the E(t) function is approxi-
mated by a series of rectangles of height E(ti )) it is possible to greatly
simplify calculation of the controller output . In this case, the nt h
output is given by:

	

yn = P [Efl +IEt + D (EnE	 	 — E n

	

1

	

tn

	

t o - 1

i=n

(10.4 )

where At is the time interval between successive samples . An equatio n
of the same form can also be written for the controller outpu t
obtained at the previous stage, yn — 1 . Then by subtracting the expres-
sion for yn-1 from that for yn we obtain :

yn = yn — 1 +En [P+PIt+
PD

At

2D

	

PD
—En-1 P+

	

+En-2 	 	 (10.5 )
At

	

Ot

The terms in brackets consist simply of constants and can be eval-
uated before commencing the PID calculations . This formula is
often used in computer-based PID controllers as the basis of a n
iterative control method . It is somewhat simpler than Equation 10 .3
and requires calculation of only the change in controller output at
each step. It is a simple matter to adapt Listing 10 .1 for use with
Equation 10 .5 .

There is an obvious, although sometimes overlooked, considera-
tion when designing a PC-based continuous control system . The
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discrete nature of the digitization processes inherent in readin g
samples and outputting control signals may limit the accuracy of the
control loop . This can prevent the system from achieving a stead y
equilibrium (E = 0) state and can cause the controlled variable t o
fluctuate by an amount equivalent to the combined resolution of the
measuring and control subsystems .

Characteristics of the P, I and D term s

It is instructive to briefly examine the contribution that each of th e
three PID terms makes to the controller 's output. The proportiona l
term (also known as the modulating term) provides a smooth linea r
response to changes in E . As shown in Figure 10.5, the proportional
response curve saturates at the extremities of the controller's outpu t
range. Thus, there is a limited range of E values — known as the
proportional band — over which proportional control is maintained .
In the absence of any contribution from the other terms, an erro r
value of E = 0 is usually chosen to generate an output halfway along
the controller's range .

Proportional band

Saturatio n

F S

t

a FS/2	

	

Slope = P
0

o

0V

0
Error(E) -+-

Figure 10 .5 Contribution from the proportional term
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The slope of the curve is simply the proportional gain constant, P ,
and may be either positive or negative (a negative slope is shown) .
Larger values of P will lead to a smaller proportional hand . They can
also give rise to oscillations in the controlled variable . If P is too large ,
it can cause the controller's output to overshoot the desired setting ,
which may result in cycling of the process variable . An element of
proportional control is, however, usually desirable as it gives a one-
to-one correspondence between the error and controller output an d
has an effect which is independent of the frequency at which the
error changes.

The contribution from the integral terns changes at a rate propor-
tional to E. It increases (or decreases) steadily during periods whe n
E is non-zero . Positive errors cause the output to increase while nega-
tive errors cause it to decrease . The longer that. E deviates from zero ,
the greater will be the controller output. The inverse of the reset rat e
constant, I, is actually the time taken for the integral contribution t o
duplicate the proportional output . The integral term is capable of
providing a response to large errors and has a greater effect on lo w
frequency variations in E . It is extremely useful in control system s
that are subject to sizeable load changes . Without this term, a larg e
proportional gain would be required in order to maintain E within
some desired range, and this may induce cycling of the controlled
variable .

While the integral term provides a slow response to long-term
trends, the derivative term responds quickly to transient disturbance s
in the controlled variable . It supplies an initial response to sudde n
changes in E which, if left unchecked, might quickly give rise to large r
deviations from the set point . For this reason the derivative mode
is also sometimes referred to as anticipatory control. An importan t
property of the derivative term is that it provides a degree of
damping. This helps to suppress oscillations that tend to occur when
a high proportional gain is used in systems with large process lags .

The derivative term cannot be used alone, because it always
provides a zero output when E remains constant . It does not reflect
the magnitude of E . A large but constant error would still give ris e
to a zero derivative term . The derivative term will also accentuate
any noise present on the input signal, so steps should be taken t o
minimize noise amplitude . Care should be taken when filtering th e
input signal to ensure it does not excessively suppress any real hig h
frequency variations in the process variable .

The contributions made by each term, in response to a load
change and change in E, are illustrated in Figure 10 .6 .

The proportional mode exhibits one characteristic whic h
precludes its use, in isolation, in some PID systems . If the process load
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Error (E)

Tim e

Controlle r
output

(Y)

Tim e

Figure 10 .6 Contributions of the P, 1 and D term s

changes, this will induce a non-zero error, E . The controller's output
will then automatically adjust to maintain a zero error . As we are
dealing with a semi-permanent load change, rather than a transien t
disturbance, the level of controller output required to achieve zer o
error will then be offset from its nominal (halfway) point towards on e
end of its operating range, thereby asymmetrically truncating th e
proportional controller 's operating range . The integral term help s
to eliminate the effects of this proportional offset . If a load change
occurs that would require a shift in controller output to maintain E
at zero, this shift can be provided (after a certain integration time )
by the integral term. This consideration is of most importance in PI D
control systems implemented using separate electromechanical or
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pneumatic controllers . It is of less concern in computer-based PID
systems as the three terms are not individually constrained within
limited operating ranges .

The proportional and integral terms can be used in isolation
under certain circumstances . More useful, however, are th e
combined proportional–integral (PI) and proportional–derivativ e
(PD) modes . The former tends to be suited to systems with large, but.
slow, changes in process load . The PD mode is capable of dealin g
with rapid changes in load . Equations 10 .3 and 10 .5, and Listing 10 .1 ,
may be adapted for PI or PD control by setting the coefficient of th e
unwanted term to zero .

Tuning PID loops: a brief overview

In order to provide a stable and responsive control mechanism ,
control-loop characteristics must be matched to the dynami c
behaviour of the process . This requires PID loops to be properly
tuned by careful selection of parameters such as the sampling rat e
and the P, I and D constants. Designing, tuning and maintaining a
control loop can be a complex task, requiring a detailed knowledg e
both of the specific process and of control-loop optimizatio n
techniques in general . This section does not attempt to describe
tuning techniques in any depth . The texts by Edgar (1996), Johnso n
(1988) and Wightman (1972) provide a good introduction to thes e
and related topics . The intention here is to present an overview of th e
operations and activities involved in control-loop optimization an d
thus to enable the DA&C programmer to comprehend any relate d
facilities that may need to be incorporated in control software .

The transfer functio n
Any signal applied to the input of a control system will be modified
in some way before being fed back to the process . In general, thi s
modification incorporates two components : amplification and phase
shift . We can define a transfer function that embodies the frequenc y
dependence of both of these components . The transfer function of a
process and associated control loop is, in many cases, not amenabl e
to analytical representation . Empirical techniques must be employe d
to assess the behaviour of the control loop .

The transfer function must be such that the controlled variabl e
remains stable at all frequencies . Instabilities arise if the gain an d
phase shift of the transfer function at any one frequency are such
that the feedback signal from the controller tends to reinforce a
periodic disturbance . If this were to happen, the magnitude o f
the disturbance (and, therefore, of the error E) would increase
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unchecked. The parameters of the control system must be chose n
so as to prevent any such instabilities . They must also be chose n
to provide the best possible degree of control . The criteria use d
for determining the optimum control conditions will vary to som e
extent between different applications .

Response to a load chang e
Whenever a load change occurs, the control system should act to
restore the process variable to its set point. A stable, controlle d
process variable may exhibit one of several types of behaviour i n
response to a change in process load . The type of response depends
upon the parameters of the control loop and upon the process an d
controller lag times .

The response of the controlled variable over time is of interest a s
it provides a measure of the efficiency or quality of the control loop .
Oscillations or cycling of the process variables sometimes occur a s
shown in Figure 10 .7. This phenomenon arises when the system i s
underdamped and it results in a periodic deviation of the proces s
variable about the set point. Oscillations may also occur when some
control systems are started up . An overdamped system on the othe r
hand will not oscillate when subjected to a load change, but it ma y
take an unacceptably long time to restore the variable to its set point .

It should be clear that, whether the system is underdamped ,
overdamped, or critically balanced between the two regimes, it wil l

Critically ` •
/ %

	

damped

	

Overdamped

Tim e

Loa d
change

	

Underdamped

Error (E )

0

Figure 10 .7 Responses of a stable, controlled variable to a load change
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never be possible to instantaneously restore the process variable to its
set point . The best that can be done is to ensure that the control
loop is tuned, by careful selection of the P, I and D constants, so as to
provide the best possible degree of control . This means minimizin g
the deviations of E from zero and also minimizing the time interval s
during which E falls outside the desired tolerance band .

PID tuning methods

Several methods can be used to determine the optimum value s
of the PID constants . Some methods involve measuring the phas e
shift and gain components of the transfer function over a rang e
of frequencies . The transfer function is then repeatedly modifie d
by adjusting the controller's P, I and D constants until the desired
functional form is obtained . Other methods, however, involve a mor e
empirical approach in which the transfer function is not explicitl y
determined .

One such technique, known as the open-loop response method ,
may be used only in inherently stable and self-regulating processes .
This requires the control loop to be broken, by disconnecting th e
controller's output from the actuator and control element . A smal l
disturbance is then manually induced in the control signal and th e
process variable should then change in response to the disturbance .
The rate at which it changes, the magnitude of the change and th e
time lags inherent therein are then measured, and the optimum
values of P, I and D are calculated from these parameters .

Another technique, which is more suited to processes that ar e
not inherently self-regulating, leaves the control loop intact . This
method, known as the Process Cycle method, induces oscillations o f
the process variable about its set point . The cycling characteristic s
are first measured and then used to calculate the optimum value s
of P, I and D . The method involves setting the derivative an d
integral constants to zero and gradually increasing P . Small transien t
disturbances are also regularly applied to the process in orde r
to trigger oscillations . When steady oscillations finally begin, thei r
frequency and the proportional gain at which the oscillations starte d
can be used to calculate the optimum values of P, I and D.

You should refer to a process-control text such as Johnson (1988)
or Edgar (1996) for the formulae required for calculating the PI D
constants. The formulae used in any program for calculating P, I
and D should always be specified by a qualified process engineer . It i s
not appropriate to discuss details of such calculations here – indeed ,
they might vary somewhat between different applications . Instead we
will make a few general comments on the facilities that you might
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need to include in your software in order to facilitate control-loop
optimization .

Software facilities
The first thing that should be borne in mind is that (as previousl y
stated) many process-control systems are so complex that a simpl e
analytic calculation of the transfer function is not possible . Conse-
quently, the tuning techniques which have to be employed are a t
least semi-empirical and generally involve a degree of informed tria l
and error. Second, set-point changes or changes in the PID constants
of any one control loop may have an effect on the behaviour of othe r
interacting process variables . The process engineer will usually nee d
to monitor the state of at least one, and possibly several, proces s
variables after any changes to the control system are made .

For both of these reasons, an interactive approach such as tha t
advocated for calibration and linearization in Chapter 9 is likely to
be one of the most usable solutions . This might allow the state of the
process to be continually monitored on screen, while adjustments
to the control parameters are made via the keyboard or mouse .
Graphical chart-recorder type displays, showing the history of one ,
or more, process variables, may be required, together with numeri c
representations of the current readings . Certain derived quantitie s
may also be of interest . Displays showing the maximum value of E ,
the lengths of time during which E exceeds acceptable limits, o r
the total accumulated error (i .e . the integral of E) over user-define d
intervals may be needed in order to assess the quality of the contro l
system .

When tuning closed-loop systems, it may also be necessary for th e
software to incorporate facilities for pleasuring cycling frequencies ,
process and controller lags, and phase differences between th e
process-variable inputs and the resulting controller outputs . These
parameters are required in order to determine the optimum values o f
the PID constants . Other facilities, such as the ability to label points ,
insert comments into the process-history graphs and to log th e
process variable data to disk may also be helpful in some instances .

In addition, it is possible for the software to provide a degree o f
automation in the tuning process . Open-loop tuning techniques are
facilitated if the control loop can be broken within the software ,
thereby removing the need for physical disconnection . Oscillations
or periodic disturbances which might have to be applied to th e
process can, in some cases, be generated via the software . Clearly ,
the facilities required and the details of their implementation wil l
depend upon the nature and complexity of the process to b e
controlled .



11 Example projects

This chapter presents several examples, based on real projects, whic h
illustrate how some of the topics discussed so far can be applied . A
few of the examples are parts of much larger systems or suites of data-
acquisition programs, and a complete analysis of (and justificatio n
for) certain elements of the design cannot be presented in the spac e
available .

Also, bear in mind that the projects described here are merely
representative examples of typical applications . Data-acquisition
techniques may be applied to a diverse range of measuremen t
tasks, such as fuel-flow monitoring, bridge jacking, strain measure-
ment, control of rolled sheet metal production, pile testing or bric k
manufacturing . You may encounter many others . It is important to
remember that the techniques described here will not always be th e
most appropriate solution for your own applications .

The examples presented encompass measurement of
displacement, load, torque, temperature and light intensity ;
dynamic sampling issues; linearization ; cold junction compensation ;
interrupt-based I/O ; serial I/O; discontinuous control, and PLC
interfacing functions . We will begin with two examples illustratin g
some of the practical problems associated with sensor calibration .

11 .1 Dimensional gauging of railway carriag e
wheels

An example of how linearization techniques can be applied to overcome deficiencies
in the sensor ' s response and poor measurement geometries .

Overview
The purpose of the project was to provide instrumentation an d
software for a portable gauging system intended to measure the
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Figure 11 .1 Apparatus for measuring railway carriage wheel diameters

radius of curvature (and thus the degree of wear) of railway carriage
wheels . The client's gauging jig consisted of a rigid frame into which
the body of an LVDT displacement transducer was to be fixed (se e
Figure 11 .1) . The displacement of the tip of the probe (point A i n
Figure 11 .1) was measured relative to two fixed reference points P i
and P2. As all three points were in contact with the wheel rim, th e
measured displacement provided an indication (albeit a non-linear
one) of the wheel's radius of curvature .

The LVDT was coupled via a portable signal-conditioning modul e
and 16-bit ADC (PCMCIA) card to an 80486-based laptop PC . The
principal programming task was to derive linearization factors tha t
could be used to convert the probe displacement (ADC counts) t o
a readout of wheel radius . These factors were readily obtained fro m
an analysis of the geometry of the apparatus .

Special problems and considerations

The client had designed the measurement geometry such that a large
range of wheel diameters (0.7–1 .8 m) could be encompassed by a
relatively small displacement of the LVDT (full-scale range 50 min) .
This introduced two problems . First, there was the potential for
small pits and irregularities in the vicinity of points A, P I and P2 to
significantly affect the accuracy of the system. Second, the very small
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inaccuracies inherent in the LVDT and electronic components wer e
expanded into relatively large uncertainties in wheel diameter . The
former problem could be circumvented to some extent by training
the operators to avoid irregularities on the wheel rim and to average
several readings taken at various positions around the rim . The latter
consideration was more problematic .

The principal source of inaccuracy in the electronic component s
was the non-linearity of the LVDT itself . This was minimized by
using an LVDT with parallel coil geometry . The smooth respons e
of this type of transducer can, when linearized using a power-
series polynomial, offer a greater precision than an LVDT wit h
conventional stepped windings (see Chapter 9) . In this case th e
non-linearity of the LVDT was reduced to 0 .05 per cent of full scale ,
leading to a theoretical precision of +0 .2 mm and +1 .5 mm in th e
wheel radius readout for diameters of 0 .7 rn and 1 .8 in respectively .

These figures were difficult to realize in practice, however. The
effects of thermal expansion on the gauging jig and LVDT can
easily introduce significant errors in the gauge's output. Neverthe-
less, provided reasonable handling precautions and environmenta l
restrictions were observed, the device was able to provide th e
required degree of accuracy and repeatability .

11 .2 In-situ sensor calibration on a
tube-straightening machin e

An illustration of some of the problems encountered during in-situ calibration of
sensors in a production environment .

Overview

The client required software for in-situ calibration of a multi-channel
array of displacement transducers used on a tube-straightening
machine. The machine possessed 16 sets of angled rollers, throug h
which lengths of steel tube were passed after manufacture . The
positions of the rollers were varied hydraulically under compute r
control in order to remove bends from the tubes . A series of
displacement transducers (two per roller set) was used to monitor
the position of the rollers .

The displacement transducers were interfaced to an 80486-base d
PC via an intelligent 64-channel data logger (only 32 channels of
which were used) . The data logger provided transducer excitation ,
signal conditioning and a 16-bit ADC. The unsealed ADC readings
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were transmitted back to the host PC via an RS-232 link . The PC was
in turn interfaced to the tube-straightening machine via three 16-bi t
digital output cards, an accessory relay panel and PLC. In this way ,
the roller positions could be varied and monitored by the contro l
program running on the PC .

Because vibrations, temperature fluctuations and other environ-
mental factors could influence the accuracy of the roller positio n
readings, a facility to periodically recalibrate the displacement trans-
ducers was required . A separate program was used on the PC for this
purpose and it is the design and operation of this element of th e
system that we shall concentrate on here .
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Calibration program

The function of this program was to perform two-point linear cali-
bration on each displacement transducer. The calibration factors
determined in this way were then stored in a space-delimited ASCI I
file on the PC's hard disk, and were subsequently used by the machin e
control program to convert ADC readings to values of roller positio n
in millimetres .

The program was designed to run under Microsoft MS-DO S
version 5 and was written using a combination of Borland Pasca l
and assembly language, the latter being used to implement a serial
port driver .

The interface to the data logger consisted of a half-duplex RS-23 2
link running at 19 200 baud . The serial port driver programme d
the PC's UART directly (i .e. at the register level) in much th e
same way as the example given in Chapter 8 . This is a particularly
simple task in real mode, which is fortunate because it is not
possible to obtain 19 200 baud via DOS's own serial port services . The
serial port driver employed interrupt-driven reception techniques .
Transmission, being less time critical in this instance, was initiate d
when required from the main program thread, rather then from a n
interrupt handler . A 10 ins delay was inserted after transmission o f
each character as a simple means of avoiding overrun errors in th e
data logger's UART .

The communications protocol employed by the data logge r
consisted of a proprietary high level ASCII command set incor-
porating 16-bit true-binary data transmission . Flow control was
implemented entirely in software using a combination of simpl e
timing techniques and echoing of a special acknowledgemen t
character .

In-situ calibration was potentially time consuming as it require d
each of the 32 displacement transducers to be set manually (vi a
the machine's control panel) to both limits of its range, and
for these displacements to be independently measured by som e
mechanical means (gauge blocks or dial gauges) . The measured
displacements were then entered into the PC, at which point they
could be compared with the ADC readings in order to calculate th e
calibration scaling factors .

Frequent recalibration of the displacement transducers was
deemed to be necessary in the initial stages of development an d
operation, i .e . until the long-term stability of the equipment coul d
be proved in a production environment .

To minimize lost production time, it was important for the cali-
bration program to be as easy to use as possible and to reduce the
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likelihood of operator errors . To this end, an interactive approac h
was adopted . The program was designed to lead the operator throug h
the calibration process, providing prompts to indicate the nex t
operation required of the user . Commands were entered via a simple
menu, which allowed calibration data to be reset and new calibra-
tion reference points to be sampled . All numeric data entered by
the operator were range checked and facilities were provided for th e
operator to edit or re-enter the data . A number of other features wer e
incorporated into the program to simplify the calibration procedure :

• Large digital readouts and bar graphs were displayed on scree n
to indicate the current ADC reacting and, when appropriate, the
corresponding scaled displacement reading .

• The operator was allowed a degree of latitude in selecting th e
displacement values that would be used as calibration referenc e
points. This simplified the adjustment of the transducer/rolle r
assembly, which was controlled via a powerful hydraulic syste m
and could be varied only in coarse steps .

• The operators found it simpler to reposition all of the rollers in
one operation. To accommodate this, the software allowed th e
lower calibration reference points to be sampled for all trans-
ducers before requiring the upper calibration reference point s
to be obtained, rather than requiring both the upper and lowe r
reference points to be obtained for each transducer in turn . The
distinction between the two sampling sequences was a minor on e
in terms of software structure, but it had a profound effect o n
usability .

11 .3 Dimensional gauging of turbine blades
This is a particularly interesting example of a technique that is widely used fo r
checking the dimensions of castings or other components with complex shapes .

Background

Because of the very high speed of rotation inherent in aircraft
engines, the geometry of the engines' turbine blades is critical . In
order to avoid turbulence in the air flowing across the blade's surfac e
its dimensions and shape have to be controlled very precisely during
manufacture . Verifying the dimensions of each blade is quite a n
involved task because of its complex shape . The thickness of th e
aerofoil portion of the blade varies along its length and width ; the
upper and lower surfaces are both precisely curved, and the blade i s
twisted along its length.
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Overview

To measure the dimensions of the blade, it is placed in a gauging ji g
where its aerofoil portion rests on the tips of three datum probes .
A number of gauging probes are then brought into contact with
the upper and lower surfaces of the blade and their displacemen t
(relative to the plane defined by the three datum probes) is recorded .
The probes are positioned in a grid-like structure across the blade' s
surface and are arranged in pairs (one on the upper surface and on e
on the lower) so as to facilitate measurement of the blade thicknes s
(see Figure 11 .3) .

In this instance, the probes were high precision gauging LVDTs ,
each possessing a full-scale range of 2.0 mm . These were connecte d
to a 256-channel data logger, which provided excitation, signa l
conditioning and 16-bit digitization . As in the previous example th e
data logger was interfaced to the host PC via a half duplex RS-23 2
link and the same ASCII communications protocol was employed .
A baud rate of 9600 was chosen in order to accommodate slightl y
longer RS-232 cables .

Each displacement reading was required to be accurate to withi n
±0.02 mm. As is often the case in this type of application, the
main contribution to the total inaccuracy of the system arose from
the linearity of the gauging transducers (0 .004 mm) . The signal-
conditioning and digitization modules of the data logger contribute d
comparatively small inaccuracies . As this was a static data-acquisition
system (i .e . the parameters being measured do not vary durin g
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the time required to sample them), the dynamic behaviour of th e
system (aperture time, aperture error etc .) was not an importan t
consideration .

The data-acquisition software was designed to run on a 350 MHz
Pentium II PC under Microsoft Windows NT 4 . It was written i n
ANSI C using National Instruments' LabWindows/CVI version 5
development environment. This allowed the serial communicatio n
routines to be implemented easily using the RS-232 library supplie d
with LabWindows/CVI . The facilities offered by the Windows GU I
were also highly beneficial in this instance because of the hig h
proportion of user I/O required .

Gauging procedure

In the late stages of manufacture, the surfaces of the turbine blades
are repeatedly etched, ground and buffed until they attain th e
desired shape . After each etching or buffing step, the operator place s
the blade in the gauging jig and the PC records the displacemen t
of the upper and lower surface of the blade at each probe position .
Depending upon the stage of manufacture, other parameters such a s
thickness, twist angle and rate of twist are calculated and compare d
against predefined tolerances . The probe position and derived data
are then displayed on a graphical representation of the blade, an d
out-of-tolerance readings are highlighted . Using this information ,
the operator is able to adjust the amount of etching or buffin g
applied in the next stage .

The display also includes a number of other features such a s
pass/fail indicators, the maximum and minimum thickness still t o
be removed from the blade and recommended strength of etchan t
to be used .

One of the most important benefits that automation of the gaugin g
procedure affords is the ability for the PC to maintain a record o f
the current stage of manufacture of each blade and to store detaile d
size and shape information . This data is extremely useful for quality
control purposes and is collated and analysed by the client using a
commercial SPC (Statistical Process Control) software package .

Configuring the system

The gauging software and the multi-channel data logger were bot h
designed to be highly configurable . By removing or adding gauging
LVDTs and signal-conditioning modules (and also replacing the
gauging jig), different models of turbine blade could be accommoda-
ted. The software incorporated facilities for setting up the system
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for use with different blade geometries and probe configurations . A
number of parameters had to be defined prior to gauging . These
included :

• blade model numbe r
• blade orientation
• datum surface (upper, lower, convex or concave )
• probe grid size and distribution
• probe channel assignment and calibratio n
• probe orientation (parallel orientation or normal to the nomina l

blade surface )
• datum probe positions
• display options (i .e . whether certain types of display will be shown

during gauging) and
• tolerances for each probe position and thickness reading .

Probe calibration and zeroing

During high precision dimensional gauging, it is particularly im-
portant that the probes and their mountings are mechanically stable .
Although errors due to thermal expansion or movement of the
probes in their mountings are small, they are not always insignificant .
One must also remember that the output from gauging transducer s
and other electronic components are liable to drift slightly over time ,
particularly in response to temperature changes . The software was
designed to accommodate these variations by allowing the probes t o
be periodically recalibrated and rezeroed .

Initially, all probes were calibrated against a precise standard
before being mounted into the gauging jig . A three-point prime
calibration technique was used (see Chapter 9) and the PC recorde d
the scaling factor and zero offset for subsequent use during gauging .
A reference blade (with accurately known dimensions) was the n
placed into the gauging jig and the probe-offset readings were
displayed on screen. Each of the probe mountings was then adjuste d
so as to give an offset reading of zero .

Fortunately, the probe (LVDT) scaling factors tend to be relativel y
stable, so in this case the full calibration procedure had to be
carried out only infrequently. A much greater potential source o f
measurement error affects the probes' zero positions . This arises due
to thermal expansion of the mechanical components and movemen t
of the transducers in their mountings . For this reason, the software
enforced a strict zero-offset checking regime in which the operato r
was required to periodically verify the accuracy of the system agains t
a reference blade .
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The system supervisor would enter a limit on the number of
gauging operations that could be performed (typically 20) befor e
the operator would be forced to check the probe offsets . If any
offset exceeded a predefined limit, the operator would be warne d
and asked to confirm acceptance, in which case the software woul d
record the probe offsets and use them to correct all subsequent
displacement readings. If any of the offset readings was found to
be greater than a second predefined limit (indicating that a probe
had moved appreciably in its mounting) further gauging would b e
prohibited until the fault had been rectified .

11 .4 Torsional rigidity testing of car bodie s

This is another, rather specialized, example of a multi-channel static data-acquisitio n
system. Although the nature of the application is rather different, this project i s
based on a similar configuration of data-acquisition hardware to that used in turbin e
blade gauging.

Background

One of the numerous tests required (luring development of a ne w
model of automobile is to determine the torsional rigidity of it s
body shell . This is effectively the resistance to a twisting momen t
applied between the axes of the front and rear wheels . The clien t
had, for many years, been performing these tests manually . The body
shell was clamped to a test rig that could be adjusted hydraulicall y
to apply various torques between the front and rear wheel axes .
Up to 80 dial gauges (devices with analogue dial readouts, use d
for measuring linear displacements) were distributed symmetrically
about the centre line of the body shell . The applied torque was
increased in a number of steps and at each stage the displacement s
registered by the dial gauges were recorded manually (using pe n
and paper) . Readings were then taken over a decreasing range o f
torque values until the torque returned to its initial value of zero
and any residual deformation would be recorded . In some cases th e
whole cycle of measurements would be repeated several times usin g
both clockwise and anticlockwise twisting moments .

Overview

Because the measurement process was carried out manually, it was
very time consuming and potentially error prone. The client wante d
to automate the data-gathering procedure by substituting linear
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displacement transducers for the dial gauges and in this way t o
record the displacements and applied load electronically .

The client wished to introduce the electronic components gradu-
ally, both for reasons of cost and to allow the performance of the ne w
technology to be verified against the old measuring system . Initially ,
only about half of the dial gauges were to be replaced by electroni c
sensors . The remainder would still be read manually, but the dat a
would now be entered directly into a handheld electronic keypad.
The most appropriate solution (at the time of developing the system )
was a Psion Organiser II . This was a small, programmable, battery
powered unit with an alphanumeric keypad . It had sufficient memory
to store all of the data required as well as a specially written data-entry
program, and possessed an RS-232 interface for downloading dat a
to the PC .

The PC itself was equipped with a 25 MHz 80386 processor, 4 MB o f
RAM, 80 MB hard drive, one Centronics parallel port and two RS-23 2
serial ports . One serial port was used for the Psion Organiser Comrn s
Link interface, the other for linking to an intelligent multi-channel
data logger .

Data-acquisition hardware

The data logger was equipped with signal-conditioning and exci-
tation modules for up to 80 LVDT and eight strain-gauge-bridge
transducers . Only one of the strain-gauge-bridge channels was used
and this was connected to a tension/compression load cell with a
full-scale measurement range of ±2500 N . This channel was scaled ,
in accordance with the geometry of the torsion rig, to generate
torque readings of ±5000 Nm, accurate to ±25 Nm . LVDTs with
various full-scale ranges were used for the displacement measure-
ments . Each possessed a linearity figure better than 0 .25 per cent .
All other sources of inaccuracy in the electronic components of th e
system were comparatively small and could be ignored . As in the
previous two examples, the data logger communicated with the PC
via a half-duplex link using a proprietary ASCII communication s
protocol .

Data-acquisition software

The software was designed to run under Microsoft MS-DOS version 5
and had three principal components : calibration routines, tes t
configuration facilities and the data-acquisition routines .
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All of the displacement sensors were removed from the test ri g
prior to calibration. The LVDT displacement transducers were cali-
brated against a precision micrometer standard, using an interactive
linear three-point technique (see Chapter 9) . Three-point prime cali-
bration is a particularly appropriate method because LVDTs posses s
an intrinsic null position at the centre of their measurement range
(see Chapter 3) . Prime calibration techniques were also employed
for load cell calibration . The scaling factors and zero offsets for eac h
channel were recorded in a binary file on the PC's hard disk for use
during subsequent torsion tests .

The test configuration routines allowed the operator to specify al l
of the parameters needed to identify and automate each test, fo r
example :

• body shell part/model identificatio n
• the identification code and channel assignments of each displace-

ment sensor
• the longitudinal and lateral coordinates of each senso r
• the body component (roof, underframe, valance etc .) to which

each sensor was assigne d
• whether each displacement reading would be carried ou t

electronically or manuall y
• the number of load steps to be employed during the test .

Once all of the configuration data had been defined, it was save d
on the PC's hard disk and a file of configuration information woul d
then be downloaded to the handheld keypad in order to provide a
template for manual data entry .

The data-acquisition process itself was quite straightforward .
Various torque values would be applied in a series of increasin g
or decreasing steps . The applied torque was monitored on a digita l
display (updated three times per second) until each desired level o f
torque was obtained . At this point the applied torque would be hel d
at a constant value and the operator would commence acquisition on
all displacement channels by means of a single keystroke . The data
logger returned a stream of unscaled readings in true binary format ,
and these were scaled by the PC's software to give displacemen t
readings in mm . In fact, to reduce the effect of random noise ,
the LVDTs were scanned eight times and an average reading was
obtained for each transducer . The operator would then record all of
the dial gauge readings on the keypad before proceeding to appl y
the next torque value .

At the end of the test, the software would combine the readings
acquired via the data logger with those recorded on the keypad an d
would then sort them according to the longitudinal coordinate of
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the corresponding sensor . Finally, the data were packaged into a
comma-delimited ASCII file and loaded into a spreadsheet progra m
(Lotus 123) . Specially written worksheets and macros were provided
for the test engineers to facilitate analysis and plotting of the data .

11 .5 Winch testing system

This is a simple example of low speed, but real-time, data-acquisition employin g
the technique of simultaneous sample and hold . Digital I/O channels are used to
interface to external apparatus .

Overview

The client manufactured winches for various automotive function s
such as manipulating spare tyres and wheels on trucks . A data-
acquisition system was required for checking the performance an d
structural integrity of each winch .

During the test procedure, load cells were used to monitor th e
load developed at various points on the winch mounting and rollers ,
and to measure the torque applied by the winch mechanism . The
speed of rotation was measured using an optical encoder couple d
to a conditioning circuit that produced a DC output in proportio n
to the rotational speed . There were seven channels in total and i t
was required to sample each channel ten times per second and t o
provide a real-time display of the sampled data on the PC's screen .

Reconstruction accurac y

The maximum fractional rate of change of the signals to be measure d
was specified as 250 per cent of full scale per second, which was equiv -
alent to a frequency of approximately 0 .8 Hz. However, the average
rate of change was likely to be closer to 10 per cent of full scale pe r
second (=0 .03 Hz). As the data was to be displayed and interprete d
graphically, it was appropriate in this case to estimate the averag e
accuracy inherent in signal reconstruction using the first orde r
reconstruction equation – i .e. linear interpolation between point s
(see Chapter 2) . On this basis, a sampling rate of 10 samples/s (pe r
channel) was selected . This yields a 1 per cent average reconstructio n
error at the maximum signal frequency and about 0 .002 per cen t
error at the average signal frequency . Both figures compared well
with the specified accuracy requirements .
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Data-acquisition hardware

The sensors were connected to a high speed signal-conditionin g
unit possessing simultaneous sample-and-hold circuitry and slots fo r
up to eight single-channel conditioning modules . The (differential )
conditioned outputs from this unit were fed to an eight-channe l
multiplexed ADC card with 12-bit resolution . The ADC possessed a
total non-linearity better than 1 LSB and contributed a negligible
inaccuracy to the readings . The ADC card's fixed-gain instrumenta-
tion amplifier was able to settle to better than 1 LSB accuracy withi n
10 gs of a multiplexer channel change, and the ADC conversion tim e
was 30 µs . Both of these figures could be easily accommodated while
maintaining the required sampling rate and dynamic accuracy.

The simultaneous sample-and-hold (SSH) facility of the signal-
conditioning unit was controlled by a TTL-level signal generated via
one of four digital output lines provided on the ADC card . The SSH
circuit possessed an acquisition time of 10 gs (to an accuracy 0 .01
per cent) and a settling time of 2 µs . Again, these figures did no t
impose any undue limitations on the sampling rate .

Only seven of the eight available channels read data from sensors .
The eighth channel carried an excitation reference voltage fro m
the signal-conditioning unit and this allowed the software to correc t
the load readings for small excitation drifts caused by temperatur e
variations etc .

A number of digital input and output channels were provided fo r
optional interfacing to a control panel, indicator lamps and motor -
control apparatus. An eight-channel optically isolated digital inpu t
card allowed external equipment to control (i .e . start or abort) the
test, and a 16-channel relay output card was used to signal test-statu s
information . The optically isolated inputs provided a degree of nois e
immunity, but imposed a lower limit of about 1 ms on the duration o f
detectable digital pulses. The relay switching time was 500 µs . Both of
these figures were negligible compared with specified performanc e
requirements .

The PC itself was based on the 33 MHz 80486 DX processor an d
was equipped with 8 MB of RAM, a 170 MB hard disk drive and a
VESA SVGA video system.

Test procedure

In preparation for the test, the operator would configure the soft -
ware, defining parameters such as the file name for logging of tes t
data, the test title and the duration of the test (up to 200 s) .
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The test would then be started either manually from the keyboard
or automatically via one of the digital input lines . Automatic
operation was facilitated by a handshaking sequence involvin g
PC-controlled relays designated as `Ready to begin' and `Test i n
progress' . Both of these relays were assigned to operate in failsafe
mode: closed contacts indicated their active state . When power was
removed (i .e. the PC is switched off) the contacts return to thei r
inactive (open) state .

During the test, the channels were scanned ten times per secon d
and the acquired data was displayed on the screen in both graphica l
and digital format. The various channels were colour coded fo r
clarity . Also shown were upper and lower limits that could be applie d
to selected channels . These limits could be adjusted manually prior t o
commencing the test and were used to control software comparator s
and associated relays. Again these relays operated in failsafe mode :
a closed contact indicating that the signal was within a specifie d
tolerance band . When power was removed, the contacts would open
indicating an out-of-tolerance condition .

At the end of the test, the acquired data would be logged (i n
seven-column space-delimited ASCII format) to a user specified dis k
file or could be downloaded to a printer for permanent storage .

Software

As the user interface requirements were quite modest, the facilities
offered by Windows were outweighed by the greater degree of deter-
minism and easy control over I/O possible with MS-DOS version 5 .
The software was written using the Borland Pascal 7 compiler and
assembly language.

The sampling itself was interrupt based . The PC's system tinier wa s
reprogrammed to generate interrupts 20 times per second . A new
interrupt. 08h routine (written in assembly language) was installe d
to handle the interrupts and care was taken to call the original BIO S
handler at the correct average rate (18 .2 Hz) . As this interrupt has
the highest priority, it is suitable for performing certain time-critica l
tasks provided, of course, that lower priority handlers and the main
program thread do not disable interrupts for a significant lengt h
of time .

On every second timer interrupt (i .e . every 100 ins), the ADC was
commanded to sample each channel and the readings, and the n
scaled, corrected for excitation drift (if appropriate) and stored i n
a FIFO buffer. The buffer provided a degree of decoupling betwee n
the interrupt handler and main program thread, allowing the latte r
to perform the relatively time-consuming task of displaying the data
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on screen . As the timing of the limit-relay signals was not critical ( a
delay of up to 2 s was acceptable in this case) the task of updating th e
relay outputs was delegated to the main program thread . Obviously,
in applications where a more rapid (and deterministic) response is
required, interrupt based I/O might be more appropriate .

11 .6 Brake actuator test system
The requirement to dynamically measure the load vs . displacement characteristi c
of a component under test is common in manufacturing industries . This exampl e
uses an external timer to pace the load/displacement sampling sequence at 100 Hz .

Overview

As part of a quality control programme, a manufacturer of hig h
performance brake actuators manually tested every assembly coming
off the production line . The actuator was placed into a test jig and it s
piston was moved using a hand-operated screw drive, as illustrate d
in Figure 11 .4. The resistance to motion offered by the piston aros e
from the combined action of a spring and friction bush and would
vary throughout the test as a function of axial displacement .
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Figure 11 .4 Brake actuator test apparatus
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A data-acquisition system was required to record the loa d
(resistance to motion) vs . displacement characteristic of the actuato r
and to display this graphically at the end of each test . The
load/displacement curve was expected to pass through four distinc t
regimes, characterized by the action of the spring, friction bush an d
other elements of the actuator . The loads at various points on th e
curve and the displacements at which one regime gave way to the
next represented critical design parameters .

Hardware

The sensors used consisted of an LVDT with a frill-scale range o f
10 mm, and an 8000 N load cell, linked to single-channel AC and D C
signal-conditioning modules respectively . The latter provided th e
appropriate sensor-excitation supply but did not include facilitie s
for excitation monitoring . The conditioned signals were fed t o
differential inputs of an eight-channel multiplexed ADC card place d
in one of the PC's ISA expansion slots . The ADC card also provide d
a timer/counter circuit, which could be configured to trigger ADC
conversions and to generate interrupts within the PC . The hardware
(lid not provide simultaneous sample-and-hold capabilities so th e
potential delay between sampling of the load and displacemen t
channels was of some concern .

The PC used was a 25 MHz 80386 unit, with numeric coprocessor ,
4 MB of RAM and a 90 MB hard disk . The system was designed t o
operate under Microsoft MS-DOS and the software was written in a
combination of C++ and assembly language .

Dynamic accuracy

The maximum permissible errors specified for the load and displace -
ment channels were +1 .0 per cent and +0 .25 per cent of full scal e
respectively .

The ADC card provided 12-bit resolution with a total non-linearit y
better than 1 LSB (i .e. accuracy of +0.025 per cent of frill scale) .
The load cell and LVDT signal-conditioning units were of a hig h
quality and contributed comparatively small non-linearities an d
temperature coefficients . The principal sources of inaccuracy in the
measurement system arose from the non-linearities of the sensors
themselves (±0 .1 per cent for the LVDT and +0 .5 per cent for the
load cell) and from the effects of dynamic sampling .

The maximum rate of change of the displacement signal wa s
specified as 50 per cent of full scale per second, which is equivalen t
to a maximum frequency component in the signal of about 0 .16 Hz .
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The corresponding figures for the load signal were somewhat greater ,
being 1000 per cent of full scale per second and 3 .2 Hz .

The aperture time of the sample-and-hold amplifier on the fron t
end of the ADC was specified as 2 gs to an accuracy of 1 LSB . This
enabled the ADC to sample signal frequencies up to around 60 H z
to ±1 LSB – considerably higher than either of the maximum signa l
frequencies .

The interchannel slew error was of greater concern, however.
As a simultaneous sample-and-hold circuit was not available, th e
slew error was determined by the speed at which the system coul d
sample the load and displacement channels . The settling time of
the ADC card's instrumentation amplifier (10 gs for 1 LSB accuracy)
and the ADC conversion time (25 µs) were not limiting factors . The
sampling routine, which was part of an interrupt handler, was writte n
in assembly language and, in the context. of this application, it wa s
possible to consistently obtain an interchannel slew time of less tha n
100 µs and an associated slew error of ±0 .15 per cent .

Sampling rate

In order to allow the data to be unambiguously interpreted from
its graphical representation on screen, it was necessary to sampl e
at a sufficiently high rate . The average error involved in visually
interpolating between points was approximated by the first orde r
reconstruction equation presented in Chapter 2 . This showed that
an acquisition rate of at least 32 load samples per second would b e
required in order to maintain an average reconstruction error o f
2.0 per cent of full scale . Clearly, this exceeds the specified accurac y
figures, but because the PC would not make decisions or issue contro l
signals on the basis of the reconstructed signal, this degree of erro r
was acceptable .

An upper limit on the number of samples that could usefully b e
obtained per second was imposed by the bandwidths of the signal -
conditioning units . These were quoted as 500 Hz for the LVD T
conditioner and 200 Hz for the strain-gauge-bridge (load cell) unit .

An intermediate sampling rate of 100 Hz per channel was selected .
This rate, rather than the lower limit of 32 samples/s, was chosen so
as to facilitate the addition of a moderate degree of filtration shoul d
this be subsequently required .

Test sequence and sampling

The test was started and stopped via the keyboard . Because data wa s
to be recorded in an internal memory buffer of limited size, the test
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duration was limited to 120 s . During the test, the load and displace-
ment signals were sampled within an interrupt handler . An 8254
timer/counter IC provided on the ADC card was programmed to
generate interrupts on IRQ3 at 100 Hz (the COM2 serial port, whic h
usually uses IRQ3, was not fitted in this instance) . Within the inter-
rupt handler, the software first obtained one load reading and the n
one displacement reading from the ADC. The interrupt code was
written in assembly language in order to minimize interchannel slew .

A potential problem with using IRQ3 for data acquisition is that
it has a lower priority than some other hardware interrupts in the
system (e .g. system timer and keyboard) . Interrupt processing coul d
be temporarily and unpredictably blocked if the processor happene d
to be responding to one of the higher priority interrupts at the
time that IRQ3 was asserted . However, the maximum variability i n
interrupt latency was assessed to be just a few hundred microseconds .
This was within acceptable limits provided that it did not affect th e
interchannel slew time . The latter possibility was circumvented b y
careful control of processor interrupts within the IRQ3 handler .

11 .7 Monitoring of bush-insertion load

This example is very similar to the brake actuator test system in that almost identica l
sampling techniques are used to measure load and displacement . Additional feature s
in this example include a machine-control interface implemented via an array o f
relays and PLC, and pass/fail component testing .

Overview

The client used a twin-ram hydraulic press to insert bushes into
circular apertures in car suspension arms . Each hydraulic ram
performed an identical function : two rams simply allowed twice as
many components to be processed . Once inserted into the suspen-
sion arm, each bush was held in place by friction (assisted by a
shallow recess around the rim of the bush), and consequently th e
insertion load was an important indicator of the integrity of th e
assembly . Too low a load would denote a loose fit ; too great a load
might result from an obstructed aperture or defective bush .

It was necessary to devise a data-acquisition system for monitor-
ing the load vs . displacement characteristics of the bush-insertio n
process. The client required the data to be monitored for bot h
hydraulic rams independently . In each case the data was to be
compared against upper and lower tolerance curves in order tha t
components with improperly seated bushes could be rejected. The
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load vs . displacement data would then be recorded on a batch-by-
batch basis for quality control purposes . An additional requiremen t
was that the software had to interface, via an array of relays, to a PL C
that was used to control the operation of the press .

Hardware

Each hydraulic ram was fitted with a 250 kgf load cell an d
200 mm LVDT having linearities of 0 .5 per cent and 0.25 per cen t
respectively (see Figure 11 .5) . The sensor signals were conditione d
using an eight-slot unit fitted with four single-channel signal -
conditioning cards. The LVDT conditioning cards had bandwidth s
of 800 Hz (to -3 dB) and those for the load cells had bandwidth s
of 500 Hz (to -3 dB) . The conditioning rack was equipped with a
simultaneous sample-and-hold circuit and a facility for monitorin g
excitation reference voltages . The conditioned signals were digitized
with a 12-bit ADC mounted on a plug-in card inside the PC .
The ADC card had eight (differential) multiplexed inputs an d
exhibited a linearity of ±1 LSB, an aperture time of 8 gs to 1 LSB ,
an instrumentation amplifier settling time of 20 gs to 1 LSB and a
conversion time of 35 µs .

The PC was a 16 MHz 80286 unit, equipped with 1 MB RAM and
a 40 MB hard disk drive . The software was written in a mixture of
Pascal and assembly language and ran under Microsoft MS-DO S
version 3 .3 .
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Dynamic accuracy and sampling

In terms of software design, this application has many similarities
with the brake actuator test system. Load and displacement ar e
again monitored at a rate of 100 samples/s (on each channel) using
an almost identical technique . For this reason we will not discus s
the dynamic analysis or interrupt-based sampling technique again ,
except to note that a simultaneous sample-and-hold circuit was use d
in this instance in order to minimize interchannel slew .

Press control functions

The PC was housed in a locked industrial enclosure, sealed to IP65 .
Although the screen was visible to the press operator, the keyboar d
could be accessed only by the production-line supervisor. During
normal operation, therefore, the software could accept command s
only via the machine's control panel and PLC interface. Control
commands issued by the PLC consisted of digital pulses on specifi c
opto-isolated input lines. The relay card allowed the PC to send
level-sensitive status information back to the PLC .

A simple handshaking sequence was devised to synchronize the P C
software with the operation of the press . When ready to begin moni-
toring, the PC would activate a `Ready' relay. When the hydrauli c
press was ready (i .e . components in place ; rains at start position ; safety
guard closed), the PLC would generate a 240 ms pulse on one of th e
PC's opto-isolated inputs . This would cause the data-acquisition soft -
ware to begin monitoring the displacement channels . At the same
time, the PC would issue a second relay signal to indicate that th e
hydraulic rams could begin to descend (see the safety note below) .

The software would monitor the rains' displacement as they passe d
a sequence of user-specified trip levels . Each level was assigned an
individual channel on the PC's relay card . The relay contacts wer e
closed on the rams' down stroke as the measured displacement fell
below each trip level in turn. They opened again in reverse orde r
as the rams returned to their start positions . In determining the
optimum settings for these trip levels, careful attention was paid to
the scan time of the PLC (40 ms in this instance) . The hydraulic rain
could move a considerable distance in the time taken by the PL C
to recognize that a trip level had been reached and this had to b e
accounted for in setting the trip levels .

The control functions were implemented in the software as par t
of the sampling algorithm — i .e. within the same interrupt handler .
Each ADC reading increased monotonically (and linearly) wit h
the corresponding measurand, and this allowed scaling of the
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data to be deferred . Instead, each displacement trip level wa s
converted to the corresponding ADC value prior to commencing
the sampling cycle, permitting the interrupt handler to manipulat e
and compare unscaled data (i .e. ADC counts) using relatively fas t
integer arithmetic .

Additional trip levels were defined for starting and stoppin g
the load-sampling sequence . As these were used internally by th e
software, no corresponding relay signals were generated . During the
sampling sequence, the acquired data was plotted on twin load vs .
displacement graphs . The plotting algorithm was implemented i n
the main program thread and decoupled from the input and outpu t
functions in the interrupt handler by means of a FIFO buffer . At the
end of sampling, the recorded data points were compared agains t
load tolerance curves and a pass/fail signal was transmitted to th e
PLC via the PC's relay card . The PLC and press used this signal t o
mark every component passing the test with a dot of paint .

Safety notes

1. The polarity of the relay signals was chosen in relation to thei r
power-off state and to the logic of the PC–PLC handshaking
sequence in order to achieve fail-safe operation .

2. It is unsafe to entrust control of potentially hazardous machiner y
such as a hydraulic press to PC-based software . For this reason,
mechanical interlocks were used to prevent ram activation unti l
the machine's safety guard had been closed .

11 .8 Laboratory furnace temperature contro l

A simple example illustrating thermocouple cold junction compensation, lineariza-
tion and discontinuous control techniques .

Overview

Fission tracks are microscopic trails of radiation-induced damage i n
the crystal lattice of geological minerals . Elevated temperatures tend
to modify their structure, and thermal studies of fission-track-bearing
minerals are employed to infer the thermal history of rocks in th e
oil exploration industry .

Thermal stability studies of fission tracks have been carried out
in the laboratory by heating samples at constant temperatures for a
variety of fixed time intervals . The client required a means of auto-
matically applying more complex temperature profiles, the results of
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which could be compared with conventional isothermal annealin g
experiments. The heating episodes were required to last from 1 5
minutes (isothermal) up to several weeks and would span tempera-
tures from 50°C to 550°C, although most experiments would requir e
temperatures in the range 200-450°C .

Hardware

The samples were heated in a Gallenkamp Tube Furnace . The
furnace's manual temperature control circuitry was adapted fo r
interfacing to a PC. Its electrical heating element was controlled by
a power relay which was in turn switched by a low current relay o n
an 8-bit digital output card in one of the PC's expansion slots . The
PC was an IBM AT model running at 8 MHz and equipped with a n
EGA display and 20 MB hard disk drive .

The sample temperature was sensed using a type K thermocouple ,
connected to a low noise thermocouple amplifier . The amplified
signal was fed to one differential input of an eight-channel, multi-
plexed ADC card . A second channel received the output from a
semiconductor temperature sensor, which was placed in close prox-
imity to the thermocouple's reference (cold) junction. The ADC
possessed a 12-bit resolution and a total non-linearity of 4 LSB .

Software

The software, written in IBM compiled BASIC, allowed the exper-
imenter to specify, in tabular format, the temperature profil e
required . This consisted of a series of up to 20 isothermal episodes ,
linear heating episodes and exponential cooling episodes . The
heating and cooling rates specified were checked against the pre -
determined maximum heating and cooling rates that could b e
obtained with the furnace, and any unattainable settings were noti-
fied to the experimenter before the heating sequence began .

Throughout the heating sequence, the software displayed the
current heating step and provided a continuous digital indication o f
the sample temperature (thermocouple reading) . In addition, any
temperature excursions outside a user-specified band were indicated
on the screen .

Sampling and contro l

The thermocouple signal and reference junction temperature were
sampled approximately nine times per second . To minimize noise ,
groups of 16 consecutive readings were averaged . After compensating
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for the reference junction temperature (see Chapter 3), the thermo-
couple signal was linearized using a 12th order polynomial . Inac-
curacies in the temperature measurement arose from the thermo-
couple and amplifier (±1°C), the semiconductor temperature sensor
(±0.5°C), the combined error of both ADC channels (±1 .5°C) ,
accuracy of the cold junction-compensation parameters (±0 .1°C) ,
and the accuracy of the linearizing polynomial (±0 .2°C) . The tota l
uncertainty in the temperature measurement was thus ±3.3°C .

The rneasurand was used to regulate the furnace's temperatur e
using a discontinuous (on/off) control technique . When the temper-
ature reading reached the desired temperature plus 2°C the heater
relay was deactivated . When the temperature fell to 2°C below th e
desired temperature, the heater element was switched on again . In
this way the temperature cycled in a narrow band about the desire d
level. The thermal inertia of the furnace introduced a degree o f
overshoot and it was found that the sample temperature could b e
confined to a band of width ±3°C about the desired setting .

11 .9 Thermoluminescence spectrometr y
This example illustrates how, in a real-time data-capture application, much o f
the burden of time-critical I/O can be off loaded to dedicated control an d
interfacing hardware, allowing data-acquisition software to run tinder the largely
non-deterministic Windows operating system .

Background

Thermoluminescence (TL) is a phenomenon exhibited by crystallin e
media that have been subjected to a field of ionizing radiation . I t
is used for radiation dosimetry and to study the thermal histor y
of archaeological, geological and meteoritic material . Radiation
incident upon a crystalline medium will tend to displace electron s
within the crystal lattice to so-called trap sites, where they may remai n
for long periods (up to thousands or even millions of years) . Heating
episodes – either natural or induced in the laboratory – allow som e
of the trapped electrons to return to their normal sites, releasin g
their stored energy in the form of visible light . The temperature at
which this occurs provides researchers with information about th e
traps, and the wavelength (colour) of the TL emissions indicates th e
nature of the luminescence centres within the crystal .

Overview

The client wished to construct a PC-based system for determining T L
intensity as a function of temperature and wavelength . Figure 11 .6
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information to the PC via suitable signal-conditioning and cold-
junction-compensation circuitry .

As the temperature is gradually increased, the sample emits ligh t
in a series of `glow peaks', and the spectrum of the light is measured
by means of a grating monochromator . This allows only light tha t
falls within a selected narrow band of wavelengths to enter the aper-
ture of a sensitive photomultiplier . The photomultiplier is operated
in photon-counting mode and individual photon pulses are condi-
tioned and passed through a high speed ECL discriminator an d
converted to TTL-level pulses .

The wavelength band transmitted by the monochromator is deter-
mined by the orientation of its diffraction grating, which is controlle d
using a stepper motor and associated driving circuit. The rate of wave-
length change is determined by a programmable counter, whic h
divides the clock rate down to the required stepping speed. The
extent of motion of the monochromator's grating is controlled b y
a second counter. The programmed count represents the change
in wavelength required (usually the wavelength increment betwee n
successive readings) . While a scan bit is held in an active state ,
the counter automatically reloads and resumes counting when i t
reaches zero . The transition through zero generates a digital puls e
that serves two functions . First, it latches the photon pulse count an d
thermocouple ADC readings into 24-bit and 10-hit buffers, zeroin g
the photon-pulse counter in the process . Second, it indicates to th e
PC's software that the monochromator has moved to the require d
wavelength. The PC uses this signal as a trigger to read the photo n
pulse count and thermocouple readings from the buffers . This
action proceeds while the monochromator is moving on to the nex t
wavelength.

By performing the time-critical portions of the control sequenc e
in hardware, some of the burden of real-time operation is remove d
from the PC and this allows a non-deterministic operating syste m
to be employed. The instrument control program was designed t o
run under Microsoft Windows NT 4 on a 266 MHz Pentium II-base d
PC. It was written using an ANSI C compiler and the Nationa l
Instruments LabWindows/CVI development environment .

Software facilities

After configuring the software for the required wavelength rang e
and scanning rate, the experimenter was required to commenc e
wavelength scanning by means of a single keystroke . At the same
moment, the heater control unit's ramp generator would be started ,
also by manual means . Small timing errors introduced by this manual
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synchronization were unimportant because the PC measured the
temperature of the sample independently each time a photon coun t
was obtained .

Throughout the test, the monochromator scanned many time s
through all wavelengths of interest . During each scan the soft -
ware recorded typically 20 to 50 sets of temperature, light intensity
(photon count) and wavelength readings . The total number of read-
ings obtained per test was usually of the order of several hundred t.o
two thousand, depending upon the range of experimental variable s
selected .

The software automatically interpolated between readings
to obtain average temperature and wavelength values ove r
each measurement interval. It also possessed facilities for
interpolating between the skewed matrix of readings on the
temperature—wavelength plane in order to provide eithe r
temperature-independent or wavelength-independent subsets o f
the data.

Calibration and measurement accuracy

The thermocouple signal was linearized using a 12th order poly-
nomial to an accuracy of ±0.2°C. Other sources of inaccuracy were
the electronic cold-junction-compensation module (±0 .5° C) and the
thermocouple itself (±1°C) . The thermocouple signal was amplified
such that the ADC input range would encompass temperatures fro m
O° C to just over 360°C . At a 10-bit resolution, this corresponds to a
quantization error of +0 .2°C. ADC linearity errors were negligible .
These sources introduced a total uncertainty in the temperatur e
measurement of just under ±2°C .

Calibration of the optical system was more problematic . The
photocathode of the photomultiplier tube, the monochroinator' s
diffraction grating and other optical components exhibit wavelength -
dependent transmission efficiencies . In many cases, the transmissio n
curves do not vary smoothly with wavelength over the entire visibl e
range (350—700 nm) and so a look-up table was constructed, into
which the experimenter could load transmission-efficiency factors .
These would either be measured directly using calibrated optical
sources or be derived from manufacturer's specifications .

An additional correction was necessary because the finite width
of the TTL pulses generated by the photomultiplier's discriminato r
unit meant that if two or more photons arrived within one TTL puls e
cycle (typically 1 µs) they would generate only a single TTL pulse .
This so-called dead time is problematic at very high pulse rates an d
statistical correction techniques, based on the proportion of total
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detection time occupied by dead time, were applied automatically
by the software .

The software allowed the experimenter to select subsets of th e
data and to record them in comma-delimited ASCII format on th e
PC's hard disk . Commercial spreadsheet programs and specialize d
analysis software were then used for data reduction and graphing .



Appendix A Adaptor installatio n
reference

When installing data-acquisition cards or communications adaptors
within the PC, it is usual to have to configure the card's I/O port base
address, and other settings . This is normally accomplished by mean s
of DIP switches, jumpers or installation software . To avoid memory ,
I/O or interrupt conflicts, these settings should be different fro m
those chosen for other adaptor cards . Reference tables are provided
in this appendix to aid in card configuration .

It is clearly impossible to list the settings used by every PC interface
card on the market . Instead, only information relating to standard
PC configurations and some of the more common options is shown .
You should bear in mind that the information provided here i s
for guidance only. The assignments and addresses used in some
machines may vary in certain respects from those listed here. In
addition, equipment already installed in the PC might occupy th e
IRQ levels, DMA channels or memory and I/O addresses that appea r
as unused in the following tables .

Table Al

	

DMA channel assignments

Channel

	

Bits PC XT AT and EISA PS/2

0 8 DRAM refresh Unused Unused' Unused
1 8 Unused2 Unused 2 Unused 2 Unused2
2 8 Diskette Diskette Diskette Diskett e
3 8 Hard disk Hard disk Unused Unused
4 16 Not available Not available Cascade DMA1 Cascade DMA 1
5 16 Not available Not available Unused Hard dis k
6 16 Not available Not available Unused Unused
7 16 Not available Not available Unused Unused

Notes :

1. DMA channel 0 may be unavailable on some AT clones .
2. DMA channel 1 may be used for an SDLC serial port, if installed .
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Table A.2 Hardware interrupt (IRO) assignments

Usual AT/ISA Compatible
IRO

	

vector PC XT and EISA PS/2

0 08h System timer System timer System timer System timer
1 09h Keyboard Keyboard Keyboard Keyboar d
2 OAh LPT2 Reserved Slave PIC Slave PI C
3 OBh COM2/4 COM2/4 COM2/4 COM2/4
4 OCh COM1/3 COM1/3 COM1/3 COM1/3
5 ODh Hard disk Hard disk LPT2 Reserve d
6 OEh Diskette Diskette Diskette Diskette
7 OFh LPT1 1 LPT1 1 LPT1 1 LPT1 '
8 70h Reserved 2 Reserved 2 Real-time clock Real-time clock
93 71 /0Ah Reserved 2 Reserved 2 Reserved Reserve d

10 72h Reserved 2 Reserved 2 Reserved Reserve d
11 73h Reserved 2 Reserved 2 Reserved Reserved
12 74h Reserved 2 Reserved 2 Reserved 4 Pointing device
13 75h Reserved 2 Reserved 2 Coprocessor Coprocesso r
14 76h Reserved 2 Reserved 2 Hard disk Hard dis k
15 77h Reserved 2 Reserved 2 Reserved Reserved

Notes :

1. Not used by BIOS . LPT1 interrupt is often disabled . IRQ7 is also generated if an unknow n
interrupt, caused, for example, by noise on any of the IRO lines, is detected .

2. IRO is not available on the PC and XT .
3. IRQ9 is software redirected on AT, PS/2 and EISA systems so that an interrupt reques t

on this line ultimately invokes the IRQ2 handler via vector OAh .
4. IRQ12 is used for the pointing device (i .e . usually a PS/2 style mouse) interface on som e

AT clones and EISA machines .
5. On many systems, certain IRQs marked as Reserved are used by add-in adaptor cards .

Other IRQs may be adopted for different purposes . IRQ3, for example, may be allocate d
to a network adaptor card if COM2 or COM4 is not installed . On AT, PS/2 and EISA
systems, IRQ5 is commonly employed by network adaptor cards, rather than for LPT2 .

Table A.3 I/O port map for IBM PC, XT, AT and PS/2 machine s

Address AT/ISA compatible
range PC, XT and EISA MCA

000—OFFh Used by motherboard Used by motherboard Used by motherboar d

100—107h Reserved for motherboard I/O channel PO S
108—10Fh Reserved for motherboard I/O channel Undocumente d

110—11 Fh Reserved for motherboard I/O channel Undocumented

120—12Fh Reserved for motherboard I/O channel Undocumente d

130—13Fh Reserved for motherboard I/O channel Undocumented
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Table A .3 (continued)

Addres s
range PC, XT

AT/ISA compatible
and EISA MCA

140-14Fh Reserved for motherboard I/O channel Undocumented

150-15Fh Reserved for motherboard I/O channel Undocumente d

160-16Fh Reserved for motherboard I/O channel Undocumente d

170-177 h
178-17Fh

Reserved for motherboard
Reserved for motherboard

Hard disk 1
Reserved

Undocumented
Undocumente d

180-18Fh Reserved for motherboard I/O channel Undocumente d

190-19Fh Reserved for motherboard I/O channel Undocumente d

1 AO-1 AFh Reserved for motherboard I/O channel Undocumente d

1 B0-1 BFh Reserved for motherboard I/O channel Undocumente d

1 CO-1 CFh Reserved for motherboard I/O channel Undocumente d

1 DO-1 DFh Reserved for motherboard I/O channel Undocumente d

1 EO-1 EFh Reserved for motherboard I/O channel Undocumented

1 F0-1 F8h Reserved for motherboard Hard disk 0 Undocumente d

1 F9-1 FFh Reserved for motherboard Reserved Undocumente d

200-207 h
208-20Fh

Games adapto r
Reserved

Games adapto r
Reserved

Undocumente d
Undocumente d

210-217h
218-21 Fh

Expansion uni t
Reserved

Reserve d
Reserved

Undocumente d
Undocumente d

220-22Fh Reserved I/O channel Undocumented

230-23Fh Reserved I/O channel Undocumented

240-24Fh Reserved I/O channel Undocumented

250-25Fh Undocumented Reserved Undocumented

260-26Fh Undocumented I/O channel / Reserved Undocumente d

270-277 h
278-27A h
27B-27Fh

Reserved
LPT2
Reserved

Reserved
LPT 2
Reserved

Reserve d
LPT 2
Reserve d

280-28Fh Undocumented I/O channel Undocumente d

290-29Fh Undocumented I/O channel Undocumente d

2A0-2AFh

	

Undocumented I/O channel Undocumente d

2B0-26Fh Video subsyste m
(alternate)

Video subsyste m
(alternate)

Undocumented
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Table A .3 (continued)

Address
range PC, XT

AT/ISA compatible
and EISA MCA

2C0—2CFh Video subsystem
(alternate)

Video subsyste m
(alternate)

Undocumented

2D0—2DFh Video subsystem
(alternate)

Video subsyste m
(alternate)

Undocumented

2EO h

2E1 h
2E2—2E3 h
2E4—2EFh

Undocumente d

Undocumente d
Undocumente d
Undocumented

Video subsyste m
(alternate)

GPIB adaptor 0
Data-acq . adaptor 0
Reserved

Undocumente d

Undocumente d
Undocumented
Undocumente d

2F0—2F7 h
2F8—2FFh

Reserve d
COM2

Reserved
COM2

Reserved
COM 2

300—30Fh Prototype card Prototype card Undocumente d

310—31 Fh Prototype card Prototype card Undocumente d

320—32Fh Hard disk Hard disk Undocumente d

330—33Fh Undocumented Reserved / I/O channel Undocumented

340—34Fh Undocumented Reserved / I/O channel Undocumented

350—35Fh Undocumented I/O channel Undocumente d

360—36Fh Undocumented Reserved Undocumente d

370—377 h
378—37A h
37B-37Fh

Reserved 370—377 h
LPT1 or LPT2
Reserved

Diskette controlle r
LPT 1
Reserved

Undocumente d
LPT2
Undocumente d

380—38Fh SDLC or BSC controller 2 SDLC or BSC controller 2 Undocumente d

390—39Fh Undocumented Cluster adaptor Undocumente d

3A0—3AFh BSC controller 1 BSC controller 1 Undocumente d

3B0—3BB h
3BC-3BE h
3BFh

Video subsyste m
LPT1 (with MDA only)
Video subsystem

Video subsyste m
Reserve d
Video subsystem

Video subsystem
LPT 1
Video subsystem

3C0—3CFh Video subsystem Video subsystem Video subsystem

3D0—3DF h
3E0—3E7 h
3E8—3EFh

Video subsyste m
Reserved
Undocumented

Video subsyste m
I/O channel
I/O channel

Video subsystem
Undocumente d
Undocumente d

3F0—3F7h
3F8—3FFh

Diskette controller
COM1

Diskette controlle r
COM1

Diskette controlle r
COM1



Appendix A Adaptor installation reference 445

Table A.3 (continued)

Notes :

1. Those ports labelled 'I/0 channel ' may normally be used for DA&C cards provided, o f
course, that they are not already utilized by existing adaptors . Some of those addresse s
listed as 'Reserved' or 'Undocumented' may also be used, but you should be aware tha t
there is a greater potential for conflicts to occur with other installed equipment . It should
be remembered that many systems incorporate devices which are not listed . Network
cards for instance are often located at I/O address 360h .

2. The most commonly used addresses for ADC, DAC or digital I/O cards are within the
Prototype Card address range – i .e . 300h to 31 Fh, although other addresses are possible .
When installing additional serial communications (e .g . RS-422/485) cards on AT clones
and EISA systems, it is usual to select addresses 3E8h to 3EFh for COM3 and 2E8h t o
2EFh for COM4 .

3. EISA machines employ an extended I/O address scheme whereby each expansion slo t
is allocated 1024 unique addresses . This address space is divided into four blocks o f
256 contiguous I/O addresses starting at X000h, X400h, X800h and XCOOh, where X i s
the EISA slot number: 1, 2, 3 etc . In addition to this slot-specific address space, EISA
systems also incorporate the AT I/O ports which may be used with ISA compatible cards .
Address ranges 400h to 4FFh, 800h to 8FFh and COO to CFFh are also reserved for us e
by the EISA motherboard, although only the range 400h to 4FFh is currently used .

Table A.4 PC, XT, AT and PS/2 conventional-memory map

From To Size Description

00000h 003FFFh 1 K Interrupt vector tabl e
00400h 004FFh 256 bytes BIOS Data Are a
00500h 9FFFFh' 638 .75K DOS & BIOS data ; DOS ; DOS drivers ; transien t

program are a
A0000h BFFFFh 128K Display adaptor video buffers
00000h C7FFFh 32K Video adaptor ROM
C8000h DFFFFh 96K Non-video ROM expansio n
E0000h EFFFFh 64K Reserved for system ROM expansion (used b y

system ROM on MCA )
F0000h FFFFFh 64K System ROM

Note :

1 . The upper limit varies . Older systems may be equipped with less than 640K conventiona l
memory, leaving space below the 640K barrier for memory-mapped I/O devices an d
BIOSes .
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Table A .5 Common usage for display adaptor and ROM expansion area s

From

	

To Size

	

Use

B0000h B7FFFh 32K Monochrome display adaptor's video buffe r
B0000h BFFFFh 64K Hercules monochrome graphics adaptor's video buffe r
B8000h BFFFFh 32K CGA video buffer
A0000h BFFFFh 128K EGA, MCGA, VGA and SVGA video buffers
C0000h C3FFFh 16K EGA BIO S
C8000h CBFFFh 32K Hard disk BIOS (XT )
D0000h D7FFFh 32K Cluster adaptor BIO S
D0000h DFFFFh 64K LIM EMS page frame (although this may appear at othe r

addresses )

Notes :

1. Adaptor ROM BIOSes and memory-mapped I/O devices may be mapped to any unuse d
memory address range . Note, however, that many other installable devices may mak e
use of the available memory space so care should be taken to avoid conflicts with existin g
adaptor cards . Unoccupied addresses within the range C0000h to DFFFFh should normall y
be used .

2. On 80386 and later PCs using DOS version 5 or subsequent releases, some of th e
memory areas above A0000h (i .e . between the adaptor BIOSes and buffers etc .) may
have physical RAM mapped into them . These areas, known as Upper Memory Blocks
(UMBs) can be used to run drivers and TSR programs . After installing a new adaptor card,
it will normally be necessary to reconfigure the system software in order to remap th e
UMBs accordingly .
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Computers, data-acquisition units and process-control devices gener -
ally communicate by transmitting and receiving a series of characters .
Each character is, in fact, a binary number which is simply interpreted
as a character by the receiving device . Both the transmitter and th e
receiver must of course agree oil the numbers which will be used to
represent each character .

Many character encoding schemes have been devised and som e
are now largely obsolete . Baudot and Transcode, for example, were
compiled many years ago for telexes and paper-tape systems . The
former is a 5-bit code which utilizes a special shift character t o
distinguish between letters and digits, while Transcode is a full 6-bi t
code which can represent 64 different characters without the nee d
for a shift character .

The most popular character code currently in use is known a s
ASCII, standing for American Standard Code for Information Inter -
change. This is a 7-bit code, established by ANSI in the 1970s .
It is capable of representing 128 different characters as listed in
Table B .1 . An extended, 8-bit version of the ASCII code, which can
represent a total of 256 characters, is also in widespread use . The
additional characters available in the 8-bit . ASCII code are liste d
in Table B.2 . Other 8-bit codes include EBCDIC (Extended Binary
Coded Decimal Interchange Code) which is used almost exclusivel y
in IBM mainframe systems. Although EBCDIC has 256 possible char -
acter codes many of these are unassigned . Because of its limited
applicability to DA&C systems it will not be discussed here .

Virtually all character sets include a number of control codes .
These are generally non-printable character codes, although som e
will display as special graphics characters on the PC . They are
intended for text and message formatting and for controlling th e
receiving device . The common meanings and usage of these contro l
codes are listed in Table B .3 .
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Table B .1 The 7-bit ASCII character se t

Hex Dec Char Hex Dec

	

Char Hex Dec Char Hex Dec

	

Char

00 0 20 32

	

SP 40 64 @ 60 96
01 1 "A 21 33 41 65 A 61 96 a
02 2 A B 22 34

	

" 42 66 B 62 98 b
03 3 T 23 35

	

# 43 67 C 63 99 c
04 4 A D 24 36

	

$ 44 68 D 64 100 d
05 5 A E 25 37

	

To 45 69 E 65 101 e
06 6 T 26 38

	

& 46 70 F 66 102 f
07 7 "G 27 39 47 71 G 67 103 g
08 8 "H 28 40

	

( 48 72 H 68 104 h
09 9 "I 29 41

	

) 49 73 I 69 105 i
OA 10 "J 2A 42

	

* 4A 74 J 6A 106 j
OB 11 A K 2B 43

	

+ 4B 75 K 6B 107 k
OC 12 A L 2C 44 4C 76 L 6C 108 I
OD 13 A M 2D 45

	

- 4D 77 M 6D 109 m
OE 14 A N 2E 46 4E 78 N 6E 110 n
OF 15 A O 2F 47

	

/ 4F 79 0 6F 111 0
10 16 "P 30 48

	

0 50 80 P 70 112 p
11 17 A Q 31 49

	

1 51 81 Q 71 113 q
12 18 A R 32 50

	

2 52 82 R 72 114 r
13 19 A S 33 51

	

3 53 83 S 73 115 s
14 20 "T 34 52

	

4 54 84 T 74 116 t
15 21 "U 35 53

	

5 55 85 U 75 117 u
16 22 AV 36 54

	

6 56 86 V 76 118 v
17 23 "W 37 55

	

7 57 87 W 77 119 w
18 24 A X 38 56

	

8 58 88 X 78 120 x
19 25 A Y 39 57

	

9 59 89 Y 79 121 y
1 A 26 AZ 3A 58 5A 90 Z 7A 122 z
1B 27 3B 59

	

; 5B 91 [ 7B 123 {
1 C 28 ^\ 3C 60

	

< Sc 92 \ 7C 124 I
1D 29 3D 61

	

= 5D 93 1 7D 125 }
1E 30 3E 62

	

> 5E 94 7E 12 6
1F 31 3F 63

	

? 5F 95 _ 7F 127 A

Notes :

1. The first 32 characters are defined as non-printable control characters . On the PC these
characters may be entered by means of the Ctrl key (represented by '^' in the table) an d
the character shown, although they may display as graphics characters (i .e . happy face ,
card-suit symbols, arrows and other characters) .

2. Depending upon the software running on the PC, the control characters may have othe r
effects on the display such as moving to a new line or clearing the screen (also se e
Table B .3) .
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Table B .2 Additional characters available in 8-bit ASCI I

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

80 128 c AO 160 a CO 192 L EO 224 a
81 129 u Al 161 Cl 193 1 El 225 fi
82 130 e A2 162 o C2 194 T E2 226 I'

83 131 a A3 163 C3 195 E3 227 n
84 132 a A4 164 n C4 196 – E4 228 E
85 133 a A5 165 N - C5 197 t E5 229 a
86 134 6 A6 166 a C6 198 = E6 23 0
87 135 c A7 167 o C7 199 I- E7 231 r
88 136 e A8 168 C8 200 L E8 232 cl)
89 137 e A9 169 C9 201 fr E9 23 3
8A 138 e AA 170 CA 202 EA 234 S2
8B 139 •i AB 171 1 /2 CB 203 it EB 235 8

8C 140 AC 172 1 /4 CC 204 EC 236 o0

8D 141 AD 173 CD 205 = ED 237 q5
8E 142 A AE 174 < CE 206 i~ EE 238 E
8F 143 A AF 175 >> CF 207 EF 239 n
90 144 E BO 176 DO 208 11 FO 24 0

91 145 ae B1 177 1 D1 209 T F1 241 ±

92 146 B2 178 1 D2 210 IT F2 242 >
93 147 o B3 179 ( D3 211 U. F3 24 3

94 148 o B4 180 -I D4 212 1 F4 244 1
95 149 o B5 181 D5 213 F F5 245 J
96 150 u B6 182 D6 214 R F6 246

97 151 u B7 183 TI D7 215 iF F7 247
98 152 9 B8 184 9 D8 216 T F8 248
99 153 O B9 185 D9 217 j F9 249 •

9A 154 U BA 186 II DA 218 1 FA 25 0
9B 155 4 BB 187 1 DB 219 I FB 25 1
9C 156 £ BC 188 J DC 220 a FC 25 2

9D 157 BD 189 1I DD 221 I FD 253 2

9E 158 Pt BE 190 J DE 222 I FE 254 .
9F 159 f BF 191 1 DF 223 ■ FF 255

Notes :

1. These characters are available only in 8-bit ASCII . Characters OOh to 7Fh in 8-bit ASCI I
are identical to the standard 7-bit ASCII characters listed in Table B .1 .

2. Character FFh is a non-printing character .
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Table B .3 ASCII control codes

Hex Name Descriptio n

00 NUL Null : has no effect and contains no information ; often use d
to pad the beginning of a transmissio n

01 SOH Start of Header : identifies beginning of message heade r
02 STX Start of Text : identifies beginning of text / data block ;

usually follows a message header and may be used t o
mark the end of the heade r

03 ETX End of Text : identifies end of text / data bloc k
04 EOT End of Transmission : signals end of transmission ; may also

be used to terminate a communications sessio n
05 ENQ Enquiry: general request for status, information o r

identificatio n
06 ACK Acknowledgement : general affirmative response t o

queries/enquiries ; receiving device may transmit ACK to
indicate a data block has been received without erro r

07 BEL Bell : sounds bell, buzzer or speaker on receiving equipmen t
08 BS Backspace : move cursor/print position back one space o n

termina l
09 HT Horizontal Tab : move cursor/print position to next tab-sto p

position on the current lin e
OA LF Line Feed : move cursor/print position down to next lin e
OB VT Vertical Tab : move cursor/print position down to next

vertical tab line
OC FF Form Feed : move cursor/print position to top of next page ;

or eject printed pag e
OD CR Carriage Return : move cursor/print position to beginning of

current line
OE SO Shift Out : indicates that subsequent characters with codes

greater than 1 Fh are not ASCII encoded ; all character s
with codes less than or equal to 1 Fh are still interpreted
as ASCII control codes

OF SI Shift In : all subsequent characters are ASCII encode d
10 DLE Data Link Escape : marks escape sequences that are used t o

control transmission s
11 DC1 Device Control 1 : application specific ; often used as XO N

character in software flow contro l
12 DC2 Device Control 2 : application specifi c
13 DC3 Device Control 3 : application specific ; often used as XOF F

character in software flow contro l
14 DC4 Device Control 4 : application specifi c
15 NAK Negative Acknowledgement : general negative response t o

queries / enquiries
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Table B .3 (continued)

Hex Name Description

16 SYN Synchronous Idle : transmitted during synchronou s
communications to ensure synchronizatio n

17 ETB End of Transmission Block : indicates the end of eac h
transmitted data bloc k

18 CAN Cancel : cancels previous data (usually up to the last C R
character) ; may indicate that previous data containe d
error s

19 EM End of Medium : no more medium (e .g . printer paper or tape)
1 A SUB Substitute : used to replace a character that is known o r

suspected to be erroneou s
1 B ESC Escape : signifies the start of an escape sequence that i s

used to control devices such as printers ; also used as a
general 'abort' command in PC application s

1C FS File Separator : terminates transmitted files ; usage i s
application-specifi c

1D GS Group Separator : terminates data blocks within files ; usage
is application-specifi c

1E RS Record Separator : terminates records within groups ; usage
is application-specifi c

1 F US Unit Separator : terminates units within records ; usage i s
application-specifi c

7F DEL Delete : deletes character at cursor position

Note .
Many systems make use of only a few of these control codes . Their usage may no t
always be entirely consistent with that outlined . DC1 to DC4 and FS, GS, RS and US al l
have application-specific meanings . Their usage will vary between different devices an d
protocols .

Recently, a 16-bit character encoding scheme known as Unicode
has been developed as an international standard by a consortiu m
of companies, including IBM, Microsoft and Apple. This scheme
includes not only the Roman alphabet, but also Russian, Greek ,
Arabic, Chinese and other character sets as well as a number o f
mathematical symbols and punctuation marks . It is capable of repre-
senting up to 65 536 different characters in total . The first 128
Unicode characters are identical to the standard 7-bit ASCII char-
acter set . Unicode is presently used in Microsoft 's Windows NT .
Because of its size and complexity, it seems unlikely that Unicode
will supersede ASCII in industrial communications and real-tim e
data-acquisition systems, at least for some considerable time .
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16450, 311, 313, 318, 325 conversion time, 115, 117—20 ,
See also UART 126, 138, 141—2, 240, 423

16550, 311, 313, 315, 318, 324—5 full-scale range, 105, 113, 121,
FIFO buffer 327—30

	

12 5
See also UART

	

gain error, 99, 122— 3
nlonotonicity, 111—2, 115— 6

80186, 7

	

missing codes, 12 2
80286, 6—8, 10, 13

	

multiplexed inputs, 98—9
80386, 6-9, 13, 39, 41, 217-8,

	

non-linearity, 114-5, 117-8 ,
80486, 6, 10, 39, 52, 220

	

122— 4
8086, 6, 8, 217

	

offset error, 99, 122— 3
8088, 6

	

resolution, 104—5, 112—4, 117 ,
8237A, 222, 227—30

	

120, 125—6, 141, 373
See also DMA controller

	

See also Quantization error;
8250, 311, 325—6

See also UART
Quantization noise

8254, 107, 128

	

sensitivity, 9 6

8255A. See PPI

	

throughput, 117— 8

8259A. See PIC

	

Alias frequency, 135
Aliasing, 135—6

A20 line, 12

	

American Standard Code for

Accuracy:

	

Information Interchange. See

of analogue measurements, 124

	

ASCII

sampling, 136, 138

	

Amplifier, 98—9, 108, 110, 124—5 ,

signal reconstruction, 138—41,

	

423

423

	

See also PGA

Actuator, 71, 73—5, 95, 98, 387—90,

	

Analogue input, 7 3

393, 397

	

Analogue output, 73

ADC, 73—5

	

Analogue-to-digital converter . See
accuracy, 113—23

	

ADC
card, 15, 76, 99, 120-1, 125, 208,

	

Anti-aliasing filter . See Filter,
212, 240

	

anti-aliasing
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Anticipatory control . See Derivative

	

re-entrancy, 46
control mode

	

serial I/O, 31 0
Aperture error, 138, 430

	

BIOS Data Area, 257–8, 309–1 0
ASCII character codes, 290, 447–9

	

Bisection search algorithm, 377–9
control codes, 450–1

	

Bit, 72, 104– 7
Assembly language, 127, 129, 216

	

Bithus, 306, 30 7
Assertions, 63

	

Bits per second 286
Asynchronous parallel interface,

	

See also Baud rate
252

	

Break-out box, 30 3
Asynchronous serial transmission,

	

Bridge circuit :
285–6, 298

	

and resistive sensors, 92–4, 96 ,
AT bus. See ISA bus

	

348
Autoranging, 126

	

lead resistance, 93–4, 97, 349
Autoregressive filter . See Filter

	

linearity, 9 3
algorithm

	

self heating, 93
See also Noise, resistive bridge s

Backplane, 4, 24

	

Bubble sort, 374, 376
Back-to-hack I/O, 219–21

	

Buffers, 244– 5
Band-limited signal, 136

	

See also FIFO buffer; LIFO buffe r

Bank-switched memory . See

	

Bus mastering, 243– 4

Expanded memory
Baud rate, 286, 295, 319–21

	

Cable length, 253, 256, 295, 304 ,
See also Bits per second

	

307–8
BCD, 107

	

Calibration :
Beat frequency. See Alias frequency

	

accuracy, 350–1, 355, 362–4
Binary Coded Decimal . See BCD

	

frequency, 96
Binary coding :

	

from known sensitivity, 348– 9
complementary Offset binary,

	

in-situ, 413–6
106

	

interactive facility, 28, 381–3, 41 6
complementary Two's

	

prime, 348–54, 42 2
Complement, 106

	

procedure, 382–3, 385, 422
floating point, 103, 292

	

reference points, 351–2, 354,
natural binary . See Binary coding,

	

357–8, 364, 366, 374, 41 6
True binary

	

reference standard, 350
offset binary, 105–7

	

traceability, 38 6
one's complement, 106

	

Celeron, 7
true binary, 85, 103–5

	

Centronics parallel port, 251 ,
two 's complement, 105–7

	

253–4
See also BCD ; Gray code

	

See also Parallel por t
Binary counter ADC, 117–8

	

Circular buffer . See FIFO buffer
Binary digit. See Bit

	

_chain_intr 0 ) function, 196– 7
BIOS, 37, 165, 168, 179, 184–5, 188 Checksum, 32 2

real-time performance, 38

	

CLZ instruction, 170, 20 2
See also Real-time BIOS

	

CMOS RAM, 19, 184
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Code width, 12 1
See also ADC, resolution

Cold junction compensation :
hardware, 88, 96, 437
software, 88—90, 433— 4
See also Thermocouple

Common mode voltage, 9 8
CompactPCl, 24
Comparator, 393—95
Concurrent processing, 38—40, 5 0

See also Multitasking
Contact debouncing . See Relay ,

debouncing
Context switch, 1 0

See also Task switc h
Control algorithm, 29, 39 2
Control element., 389, 39 7
Controlled variable, 38 8

error, 396, 402
See also PID

oscillation, 395, 402, 40 5
Controller lag, 388, 40 5
Control loop tuning, 28
Control system, 387

algoritlnn, 20 5
closed-loop, 388—90
continuous, 389-90, 396—40 7
discontinuous, 389—90, 392—5 ,

434
open-loop, 38 8
start-up, 39 2

Coprocessor . See Numeri c
coprocessor

Coprocessor card, 207— 8
See also Single board computer

Counter, 12 8
See also Timer

Critical section, 44, 170
Cross coupling, 99, 10 0
Current loop, 30 7
Cut-off frequency. See Filter, cut-off

frequency
Cyclic redundancy check, 322

DA&C software :
configuration, 27
diagnostics, 27— 8
drivers, 29—30

See also Device drivers
run-time modules, 2 9
structure, 3 4

DAC, 73—75 :
as component of ADC, 117— 9
conversion process, 11 0
current-loop output, 10 8
double buffering, 109
gain error, 111— 2
linearity, 111— 2
monotonicity, 111-2, 12 2
offset error, 111— 2
reference voltage, 11 0
resolution, 105, 10 8
settling time, 109
transfer characteristic, 108—1 2

Damping, 402, 405
See also Controlled variabl e

Data Communications Equipment .
See DCE

Data I/O strategies :
DMA vs . programmed I/O, 218 ,

241— 3
free running ADC, 21 3
interrupts, 214—6, 324, 328—9,

415, 42 5
polling, 213—6, 322—4, 328—9 ,
throughput, 215— 6

Data loggers, 66, 209, 291— 2
Data Terminal Equipment. See DTE
Data transfer protocol, 211, 27 3
DCE, 298-30 2
Deadband, 394- 5
Deadlock, 44
Deferred Procedure Call . See DPC
Demand paging . See Memory ,

paging
Derivative control mode, 396,

402— 3
Derivative time, 397, 400
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Descriptor, 1 2
DESQview, 165, 168
Determinism, 32–3, 48–50

with remote DA&C units, 205 ,
209

under Windows, 46, 55, 57– 8
Device drivers, 29, 30, 55, 163, 202

See also DA&C software, driver s
Diagnostic routines, 28

See also Software, testing
Differential inputs, 97– 8

See also Pseudo-differentia l
inputs ; Single-ended inputs

Digital filter . See Filter; Filter
algorithm

Digital input, 7 3
Digital output, 73, 390
Digital Signal Processor . See DSP
Digital storage oscilloscope, 28, 63
Digital-to-analogue converter . See

DAC
Direct controller action, 39 7
Direct Memory Access . See DMA
DMA 33, 127, 222, 244

channels, 223–6, 230– 3
channel assignment on the PC ,

44 1
dual-channel, 240–1, 244
enabling and disabling, 234, 237
in protected mode, 234, 23 6
latency, 241– 2
mirror buffer, 23 5
page registers, 230–1, 237
request, 225, 24 5
transfer mechanism, 224–6
transfer rate, 240, 24 2
under Windows, 236
virtual, 23 6

DMA controller, 222– 7
autoinitialization, 22 7
Base Address register, 227, 23 1
Base Word Count register, 227 ,

232

Block Transfer mode, 228, 237 ,
240

Byte Pointer flip-flop, 231–2, 23 7
cascading, 223
Command register, 232– 3
Current Address register, 227 ,

23 1
Current Word Count register ,

227, 232
Demand Transfer mode, 228 ,

240, 243
I/O port base address, 228
Mask register, 23 4
Mode register, 227, 234– 5
on-chip, 7
priorities, 227
programming, 224, 236– 7
read operation, 224
Request register, 233, 23 6
Single Transfer mode, 228, 240 ,

242
Status register, 232– 3
write operation, 22 4
Write-All-Mask register, 234–5
See also 8237A

DOS, 37, 53, 164–5, 185, 18 8
file system, 4 8
real-time performance, 4 8

See also Real-time DOS
DOS extender, 4 9

See also DPMI
DOS Protected Mode Interface . See

DPMI
DPC, 56
DPMI, 49, 20 3

See also DOS extender ; Protected
mode

DSP, 207– 9
DTE, 298–303
Dual slope ADC, 116– 7
Dynamic range, 125– 6

See also SNR
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EBCDIC, 44 7
EISA bus, 33, 170, 175, 18 4

slot-specific addressing, 16, 2 0
See also I/O address, decoding

transfer rate, 21— 2
Embedded PC, 5
EMS, 14– 5
Encoder, 85— 6

See also Sensor
End-of-Conversion pin . See EOC pin
End of Interrupt. See EOI
Enhanced Industry Standard

Architecture bus . See EISA bu s
EOC pin, 15, 120—1, 212— 3
EOI, 174—5, 186, 189, 19 8

non-specific, 181—2, 194, 196
See also PIC

Error code, 6 7
Error messages, 6 7
Error handling, 62, 6 4
Excitation voltage, 93, 95, 97, 348
Expanded memory, 14— 5
Expanded Memory Specification .

See EMS
Expansion bus, 36, 76, 205, 22 0

See also EISA bus ; ISA bus; MCA
bus; PC bu s

Extended Binary Coded Decima l
Interchange Code . See EBCDIC

Extended memory, 14— 5
Extended Memory Specification.

See XM S

Fan network topology, 293—4, 304
Faults, responding to, 68, 18 5
FIFO buffer, 150–3, 155–7, 208–9 ,

245–50, 324, 425
See also LIFO buffe r

Filter:
anti-aliasing, 96, 13 6
bandwidth, 146
characteristic, 14 5
cut-off frequency, 136, 145—6,

149–50, 153–5, 157–9

electronic, 79, 84, 9 4
Finite Impulse Response, 14 8
Infinite Impulse Response, 148
low-pass, 144— 5
phase lag, 150, 155, 159, 160
response, 136, 149, 15 2
software, 128, 143, 148
See also Filter algorithm

Filter algorithm, 97, 24 7
accuracy, 146— 7
Auto-Regressive Moving Average ,

149
averaging, 147–8, 350
exponentially weighted FIFO ,

149, 151–7, 160
non-recursive, 148—50
recursive, 148—9, 157—6 0
stability, 15 7
testing, 146— 7
unweighted moving average ,

150—2, 160
weights, 150, 152– 3

Filtering, 66, 97, 141, 143– 4
Firewire . See IEEE-1394
Flash conversion . See Paralle l

digitization
Floating point :

calculations, 11, 35 5
data transmission, 292
rounding errors, 146, 361—2 ,

364, 366, 39 2
software libraries, 10, 146, 35 5
speed, 355
unit . See Numeric coprocesso r

Flow control . See Handshaking;
Serial communication s
protoco l

Flow sensor, 8 2
Full duplex, 285, 294, 29 8
Full scale, 8 2

See also ADC, hill-scale range
Furnace control, 31
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Gauging, 347, 384, 411—3, 416—20

	

protocol, 271, 273
Gaussian Elimination, 359—63

	

primary address, 27 1
GPIB . See IEEE-488

	

SCPI commands, 278, 28 1
Gray code, 85, 86

	

secondary address, 272
See also Shaft encoder

	

secondary command group, 28 1
serial poll, 277— 8

Half duplex, 285, 294, 298, 305

	

status byte, 27 7
Handshaking, 76, 212—3

	

talk address group, 28 1
IEEE-488, 273

	

talker, 272, 276, 28 2
parallel buses, 252

	

transfer rate, 273
parallel port, 255, 265

	

universal command group ,
serial communications, 288—9,

	

279—80
299—302, 305—6

	

unlisten address, 280
software, 212, 415

	

I11-conditioned matrix, 361—2
Heartbeat signal, 66

	

Industrial buses, 23— 5
Hexadecimal notation, 107—8

	

Industry Standard Architecture bus .
High level language, 127, 129, 190,

	

See ISA bus
221

	

IN instruction, 15, 215—7, 220
High Memory Area. See HMA

	

Initialization Command Word . See
HIMEM . SYS, 14

	

ICW
HMA, 12
Hold capacitor, 102—3

	

inp 0 function, 22 1
inportb () function, 22 1

See also S/H
inport () function, 22 1

Hysteresis, 66, 393—5
Input/Output ports . See I/O ports
Input/Output space . See I/O space

IEEE-1284 . See Parallel port
inpw () function, 22 1

IEEE-1394, 308
INSB instruction, 217—8

IEEE-488 :
INSD instruction, 217—8adaptor card, 282—3
INS instruction, 218— 9

addressed command group,
279—80

	

INSW instruction, 217—8

bus, 210, 251, 253, 271

	

int86 ( ) function, 18 8

bus structure, 273—6

	

int86x () function, 188

commands, 276, 278—83

	

IN'TA, 171—3, 176—8

connector pin assignments,

	

intdos () function, 188

273—4

	

intdosx() function, 188

controller, 272, 282

	

Integral control mode, 396, 402
drivers, 282—3

	

Integral time . See Reset rat e

handshaking, 273, 275—6

	

Interfacing, 3 3
HS488 protocol, 273

	

Interpolating function, 380
listen address group, 279—80

	

Inter-process communication, 42 ,
listener, 272, 276, 282

	

44, 48, 59
logic levels, 274—5

	

under Windows, 5 2
parallel poll, 277—8

	

Interrupt 21h, 188, 194
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Interrupt handler, 42, 44, 163, 186,

	

INTR line, 170–3, 17 6
204, 246, 248, 425, 429

	

Intr () procedure, 188
and servicing a watchdog timer,

	

I/O address, 1 6
130

	

allocation, 1 6
chaining, 176, 196–8, 203

	

decoding, 15– 6
installing, 191–2

	

See also EISA bus, slot-specific
hardware, 192, 194, 198, 200,

	

addressing
213—4

	

unaligned, 220
NMI, 184–5

	

I/O mapped registers, 22 1
serial port, 341

	

I/O port, 1 5
structure, 192–3

	

address, 15, 21 7
Unexpected, 165

	

map, 442– 5
Interrupt handling, 37

	

read only, 16
under windows, 56

	

recovery time, 21 9
interrupt keyword, 195

	

write only, 16
Interrupt latency, 37–8, 46, 60,

	

I/O protection mechanisms, 16– 7
201—2, 244—5, 324

	

I/O space, 15, 20 5
in operating system services, 202

	

I/O timing, 22 0
under DOS, 38, 46, 203

	

IRET instruction, 174, 186, 193—5 ,
under windows, 38, 46, 56, 58,

	

197–8, 20 2
203–4

	

IRQ, 165, 169–78, 182–3, 192, 21 4
Interrupt request. See IRQ

	

assignments on the PC, 44 2
Interrupts :

	

IRQL, 56
edge triggered, 175

	

ISA bus, 17–9, 33, 170, 174, 184 ,
external, 164—5, 168—70, 182,

	

222
184

	

clock speed, 1 9
in real time, 36

	

Isolation , 77
level triggered, 175

	

IVT, 164–5, 178, 186, 19 1

NMI, 164, 170, 183– 5
priority, 171, 176, 183–4, 186,

	

KERMIT protocol, 29 1
189–90

	

Kernel mode, 52, 55, 16 3
processor exceptions, 164, 168 ,

185, 188–9

	

Lagrange polynomial, 379–8 0
protected mode, 164, 174

	

Least significant bit. See LSB
remapping, 168, 178

	

Least squares fitting :
software, 164–5, 185–7

	

best-fit condition, 358–6 1
timer, 33

	

conformance, 362– 4
See also Data I/O strategies

	

polynomial, 357–73
Interrupt sharing, 173, 201

	

See also Gaussian Elimination
Interrupt Type Code, 173, 176, 178,

	

polynomial coefficients, 357– 8
184, 186–8

	

polynomial order, 358, 364—5 ,
Interrupt vector, 164, 165–8, 191–2

	

366
Interrupt vector table . See IVT

	

power-series polynomial, 364–7 2
INT instruction, 186–7

	

rms deviation, 354, 362, 364–5
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Least squares fitting : ( contd.)

	

addressing, 13, 5 1
straight line, 351–4

	

address map, 11–2, 44 5
weights, 358, 365

	

paging, 13, 54
worst deviation, 354

	

physical address, 13, 54–5, 23 5
LIFO buffer, 246–7

	

segmentation, 1 1
Linearization :

	

Message-passing protocol, 5 2
in software, 83, 89, 93, 127,

	

Micro-channel Architecture bus . See

356–81

	

MCA bus
interpolation, 356, 373, 379–81

	

Modem, 299, 30 3
searching a look-up table, 377–9

	

Mode switch, 203
sorting a look-up table, 373–6

	

Monochromator, 436– 7
polynomial, 91–2, 292, 356–73,

	

Moving Average filter. See Filte r
413

	

algorithm, non-recursive
See also Least squares fitting

	

MS-DOS. See DOS
polynomial evaluation, 371–2

	

Multibus, 24
techniques compared, 381

	

Multi-drop network, 66, 253, 294 ,
Linear Variable Differential

	

296 ,
Transformer. See LVDT

	

Multiplexer, 98–100, 121, 124
Linux, 58

	

settling time, 99–101, 126, 240 ,
Load cell, 92, 347–9, 351, 421–3,

	

423
427, 430

	

Multitasking, 39, 43–4, 5 2
Lockout, 44

	

prioritization, 44–5
Logic analyser, 28, 63, 253

	

real time, 42– 3
Looped network topology, 294,

	

under Windows, 7, 51– 2
304, 322

	

Mutex, 44, 48, 20 0
LPT port . See Parallel port

	

Mutual exclusion . See Mutex
LSB, 72, 104–5, 108, 113, 123
LVDT:

	

Neutral zone . See Deadband
calibration, 94, 419

	

NMI . See Interrupt handler, NMI ;
high-precision, 417

	

Interrupts, NMI
linearity, 95, 351, 356–7, 413,

	

Noise, 66, 79, 117, 142–3, 39 3
427, 430

	

during calibration, 350–1, 36 2
null position, 94

	

electrical, 86, 142, 144, 350
resolution, 94–5

	

resistive bridges, 9 3
signal conditioning, 82, 8 4

Marking state, 287–8, 298

	

See also Filter, Hysteresis ,
MCA bus, 19–21, 33, 175

	

Quantization noise
Programmable Option Select, 20 Non-linearity, 92– 3
transfer rate, 21–2

	

See also Sensor, linearity ;
Measurand, 81–2, 132, 137, 345,

	

Linearization
385

	

Non-maskable interrupt . See
Measuring lag, 388

	

Interrupt handler, NMI ;
Memory:

	

Interrupts, NM I
above 1 MB, 13–4

	

Null modem, 302–3
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Numeric coprocessor, 10, 146, 355,

	

unidirectional (standard) ,
381

	

254—5, 260, 262
Nyquist 's sampling theorem,

	

See also Centronics parallel port
132—4, 136, 142

	

Parallel processing, 39, 208
PCI bus, 17, 19—21, 33, 171, 17 3

Offset, 125—6, 347—9, 384, 419

	

bus mastering, 20—1, 222, 243— 4
Opto-isolator, 78–9

	

transfer rate, 21, 243
OS/2, 16, 39, 59

	

PC-DOS. See DOS
OUT instruction, 15, 205, 217, 220

	

PCMCIA, 22, 33, 7 6
outp() function, 221

	

Pentium, 5–8, 39, 52
outportb() function, 221

	

Personal Computer Memory Car d
outport O function, 22 1
OUTS$ instruction, 217–8

	

International Association . See

OUTSD instruction, 217—8

	

PCMCIA

OUTS instruction, 218–9 PGA, 75, 83, 125–6

OUTSW instruction, 217–8

	

Photomultiplier, 436
output() function, 221

	

PIC, 170–4
Overlap multiplexing, 127

	

cascaded, 176–8
ICW, 179–8 1

Pacing, 33, 128, 190

	

IMR, 172–3, 181, 192, 196, 198
Page translation . See Memory,

	

Initialization Command Word .
paging

	

See PIC, ICW
Parallel buses, 253

	

In Service Register . See PIC, ISR
Parallel digitization, 120

	

Interrupt Mask Register. See PIC ,
Parallel port :

	

IMR
base address, 257–8

	

Interrupt Request Register . See
bidirectional, 254–5

	

PIC, IRR
connector pin assignment, 260–1

	

IRR, 172–4, 181–2, 19 5
Control Register, 258–63

	

ISR, 172–3, 181–2, 194– 5
Data Register, 258–62

	

OCW, 179, 18 1
data acquisition using, 256

	

Operational Command Word . See
driver, 266–70 PIC, OCWdriving a printer, 263–5
ECP 254–7

	

priority resolver, 17 2

Enhanced Capabilities Port . See

		

program ming, 179
PID :Parallel port, ECP

Enhanced Parallel Port . See

	

algorithm, 128, 397–40 1

Parallel port, EPP

	

contribution from each term ,

EPP, 254—7

	

401—4
IEEE-1284, 255, 260

	

control, 396—40 7
interrupts, 260, 262, 264

	

transfer function, 404– 6
standards, 254–5

	

tuning, 404–7
Status Register, 259—62

	

PLC, 65, 76, 254, 390—1, 43 1
structure, 258–60

	

Point-to-point bus topology, 293–4 ,
timing, 265

	

298, 304, 322
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Polling loop, 34–5

	

See also Differential inputs ,
See also Data I/O strategies

	

Single-ended inputs
Port and Portw arrays, 22 1
POST, 65, 165, 178-9, 257, 309

	

Quantization error, 112-3, 124
Potentiometric sensors, 86

	

See also ADC
Power-On Self Test. See POST

	

Quantization noise, 113– 4
PPI, 77, 253

	

See also ADC; Noise Quantum,
Pressure transducer, 92

	

12 1
Pre-trigger logging, 250

	

See also ADC; DAC
Printer port. See Parallel Port

	

Queue, 52, 54
Priority inheritance, 45

	

Quick Sort algorithm, 37 4
See also Multitasking

Priority inversion, 44–5
See also Multitasking

	

RAM disk, 1 4
Privilege level, 52, 57–8

	

Range checking, 65, 39 2
and I/O operations, 16, 17

	

Ratiometric correction, 97
Privilege ring, 52

	

Real address mode . See Real mode
Process, 132, 387–9, 396

	

Realm ode, 14, 164
Process lag, 388, 398, 405

	

on 8088/86, 7– 8
Process load, 388, 402–5

	

Real-time, 15, 30–4, 38
Processor, 5

	

DA&C systems, 13, 31, 34, 37, 50 ,
Process variables, 388, 392

	

52, 55, 128
error in, 396

	

deadline, 33, 3 8
oscillation, 395–6, 405

	

response, 29, 31–2, 3 6
Profibus, 306–7

	

system requirements, 32–4, 3 6
Programmable Gain Amplifier . See

	

under DOS, 38, 45, 46, 4 8
PGA

	

under Windows, 45–6, 5 5
Programmable Interrupt

	

Real-time BIOS, 46, 6 0
Controller. See PIC

	

Real-time clock, 33, 128, 184
Programmable Interval Timer . See

	

Real-time control, 29, 48, 55, 207
8254

	

Real-tune DOS, 46, 48–9, 60, 20 3
Programmable Logic Controller .

	

Real-time operating system . See

See PLC

	

RTOS
Programmable Peripheral

	

Reconstruction (of sampled
Interface . See PPI

	

signals), 136, 138– 9
Proof testing, 250

	

accuracy, 138–9, 423
Proportional band, 401–2

	

artefacts, 13 9
Proportional control mode, 396,

	

error, 139–40, 148
401–2

	

Re-entrancy, 37, 199-20 0
Proportional gain, 397

	

BIOS, 19 9
Proportional-Integral-Derivative . See

	

under DOS, 37, 48, 199
PID

	

under Windows, 57, 200
Protected mode, 8, 9, 13, 17, 163

	

Registers, 9, 37, 188, 192–3, 197–8 ,
Pseudo-differential inputs, 97–8

	

217–9, 222
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32-bit, 10

	

Safety, 391–2
Flags, 9, 173–4, 186, 193–4, 198,

	

Sample, 143–4
202

	

Sample-and-hold, 74–5, 13 1
Relay, 75–9, 390

	

simultaneous, 98, 424, 430

cards, 79

	

See also S/H
debouncing, 80–1

	

Sampling accuracy, 136

fail-safe operation, 66, 79, 425

	

Sampling rate, 46–7, 97, 117–20 ,
solid state, 78

	

131–2, 136, 141–2, 428

switching time, 79, 424

	

coprocessor card, 208
Reliability, 34, 58, 61, 391–2

	

PID control, 397, 400

REP prefix, 219

	

See also Throughpu t
Reset rate, 397, 400

	

SC pin, 120, 212–3
Resistance temperature detector .

	

Scaling, 12 7
See RTD

	

algoritlnn, 355
Response curve (of a measuring

	

on-board, 207
system), 345, 379–80

	

Scaling factor, 292, 347–50, 255 ,
non-linear, 356—7, 365—6, 372

	

382, 41 9
straight-line, 346–7

	

Scheduling, 39, 5 9

See also Calibration; Offset ;

	

non pre-emptive, 39, 5 2
Scaling factor ; Sensor ;

	

pre-emptive, 41, 48, 50, 52
Linearization

	

See also Multitaskin g
RET instruction, 174

	

Selector, 12–3
RETF instruction, 194

	

See also Descripto r
Reverse controller action, 397

	

Self-modifying code, 18 7
Ring 0 driver . See VxD

	

Self test, 6 5
Ring buffer . See FIFO buffer

	

See also POST
Rotor tachometer, 85

	

Semaphore, 44, 48, 200
Rounding error. See Floating point

	

Semiconductor temperature
RS-232, 210, 285–6, 294–303, 308,

	

sensor, 84, 86– 7
390

	

Sensor, 71, 74
connector pin assignment,

	

accuracy, 82, 91, 124
297–8, 312

	

analogue, 81–95
handshaking, 299–301

	

digital, 8 5
logic levels, 298

	

dynamic range, 82– 3
RS-422, 286, 292, 294–5, 303–5,

	

linearity, 82–3, 86, 93–5, 124 ,
327, 390

	

345–6, 35 1
RS-485, 210, 286, 294—5, 305—7,

	

repeatability, 82—3, 86, 9 5

327, 390

	

resolution, 82, 86, 94— 5
RSS error, 124

	

response , 91— 2
RTDs, 90—4, 96, 351, 365

	

response time, 82—4, 87, 91— 2

RTOS, 29, 37—8, 42, 45—6, 57—9,

	

sensitivity, 348
208

	

stability, 82—3, 86, 92, 9 4

Ruggedized PC, 4, 5

	

temperature coefficient, 351
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Sensor (contd.)

	

S/H, 75, 12 1
time constant, 84, 91, 126

	

acquisition time, 101–2, 126
See also Encoder ; Transducer

	

aperture jitter, 102, 137–8, 14 1
Serial buses :

	

aperture time, 102, 137–8
balanced differential, 303–5

	

circuits, 99–100
hardware handshaking, 288,

	

droop rate, 10 3
299–303, 305–6

	

operation, 10 1
interface standards, 296–308

	

settling time, 102–3
single-ended, 296–7

	

simultaneous, 100
topology, 292–4

	

Shaft encoder, 73, 82, 85
transmission distance, 295–6,

	

Shared resources, 44, 170, 199, 20 0
304, 307–8

	

Shell-Metzner sorting algorithm ,
transmission rate, 284, 286,

	

374–6
295–6, 307–8

	

Shunt resistor, 348 . See also Bridge
See also Baud rate

	

circuit ; Load cel l
Serial communications errors :

	

Signal :
framing, 322, 327, 341

	

analogue, 72–3, 81, 103, 13 1
overrun, 314, 321–2, 324, 327,

	

bipolar, 103, 10 5
330, 341

	

digital, 72– 3
parity, 287, 321-2, 327, 341

	

pulsed, 73, 7 6
Serial communications protocol :

	

unipolar, 103
asynchronous, 290

	

Signal conditioning :
byte-transfer, 290

	

analogue, 74–5, 82, 95– 6
character echoing, 288, 294, 322

	

bandwidth, 97, 428, 430
file transfer, 291

	

digital, 74– 7
flow control, 288–90

	

drift, 34 7
high-level, 290–1

	

units, 136, 21 0
See also Handshaking ; Serial

	

Signal-to-noise ratio . See SNR
frame

	

Simplex, 285, 294, 298
Serial frame, 287–9, 314

	

Single board computer, 5
data bits, 286–7, 316–7

	

Single-ended inputs, 9 7
parity bit, 287-8, 316–7

	

See also Differential inputs ;
start bit, 287–8

	

Pseudo-differential inputs
stop bits, 286–7, 316–7

	

SNR, 114
timing, 288, 320

	

Software :
Serial port :

	

failures, 63, 185
parameters in the BIOS Data

	

libraries, 62
Area, 309–10

	

testing, 62, 392
structure, 311–2

	

Spacing state, 287–8, 298
timeout, 309–10

	

SPC, 30
See also RS-232 ; UART

	

Spectrum :
Serial multiplexing, 127

	

noise and signal, 14 4
Set point, 390, 393

	

sampled waveform, 132– 4
See also Trip level

	

Stack, 174, 186, 193, 197–8, 246
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Start Conversion pin. See SC pi n
Statistical Process Control . See SPC
STD bus, 2 4
STE bus, 24— 5
STI instruction, 170, 186, 194, 202
Strain gauges, 92—3, 96, 34 8
Successive approximation ADC,

118— 9
Surge suppression, 95— 6
Synchronous serial transmission ,

285, 298
System timer, 128, 214, 42 5

Tare weight, 38 4
Task, 4 1
Task switch, 41, 44, 52, 203, 244 ,

32 7
overhead, 48

Temperature coefficient, 90— 1
Test harness, 28, 6 3
Timekeeping, 33, 19 0
Timer, 33, 76, 128, 214

accuracy, 38
granularity, 128, 39 8

Time stamp, 3 3
Therinistors, 84, 90—3, 37 2
Thermocouple

linearization, 87, 365—6, 434, 437
reference junction, 8 8

See also Cold junction
compensation

response time, 84, 87—8,
sensing junction, 8 9
tolerance, 87, 90

Thread, 41, 5 2
Three-term controller. See PID
Throughput:

DMA, 240
of analogue measuring systems ,

126-7, 207
parallel buses, 253, 255-6, 273
programmed I/O vs . DMA, 218 ,

241— 3
sensor limited, 83
serial buses, 295—6, 307—8, 327

signal-conditioning limited, 9 7
software limited, 12 7

Thunk, 5 1
Tracking ADC, 11 8
Transceiver, 305, 31 1

See also RS-485
Transducer, 71, 346—7
Transistor-transistor logic . See TTL
Trip level, 393—4

See also Set poin t
TTL, 76— 7

UART, 286, 289—9 0
base address, 309—1 0
baud rate generator, 312—3, 31 9
break condition, 33 1
Character Timeout interrupt ,

325, 327, 32 9
Divisor Latch Access Bit . See

UART, DLA B
DLAB, 314, 317, 32 1
DLL, 312—4, 32 1
DLM, 312—4, 32 1
Driver, 331—42
FCR, 312-3, 315-6, 328— 9
FIFO buffer, 313—5, 327—3 0
FIFO Control Register . See

UART, FCR
IER, 312—4, 32 5
IIR, 312—3, 315—6, 32 5
Interrupt Enable Register. See

UART, IER
Interrupt. Identification Register .

See UART, IIR
interrupts, 289, 310, 314, 316,

318, 324-7, 329-30, 34 1
LCR, 312-3, 31 6
Line Control Register. See UART,

LCR
Line Status Register. See UART ,

LSR
Loop-back mode, 318, 328 ,

330— 1
LSR, 312—3, 318—9, 331
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UART (contd.)

	

V86 mode, 8–9, 13, 17
MCR, 312–3, 317–8, 326, 330

	

Virtual 8086 mode. See V86 mode
Modem Status Register. See

	

Virtual address, 13, 5 1
UART, MSR

	

Virtual disk . See RAM disk
Modem Control Register. See

	

Virtual machine, 5 1
UART, MCR

	

Virtual memory, 54
MSR, 312–3, 318–9, 330

	

VME bus, 24– 5
OUT2, 312, 318, 326

	

Voltage-to-frequency conversion
RBR, 312-4, 326, 328, 331

	

ADCs, 11 5
Receiver Shift Register. See

	

VxD, 55, 57–8
UART, RSR

	

VXI bus, 17, 2 4
Receiver Trigger Level, 32 9
RSR, 312–3, 330

	

Watchdog timer, 67, 129–30, 185
Scratchpad Register, 318

	

Win32 API, 50
THR, 312–4, 326, 328

	

Windows, 38–9, 245, 32 4
Transmitter Shift Register. See

	

Windows 3 .1, 13, 50, 52, 57, 324
UART, TSR

	

Windows 95, 13, 53, 55, 168
TSR, 312–3, 330

	

Windows 98, 49–55, 57– 9
UMB, 14

	

Windows for Workgroups, 5 0
Unicode, 451

	

Windows NT, 13, 16, 30, 49–52 ,
Universal Asynchronous Receiver

	

54–9, 164, 191, 45 1
Transmitter. See UART

Universal Serial Bus . See USB

	

XENIX, 58
UNIX, 39, 58–9

	

XMODEM protocol, 29 1
Upper Memory Block . See UMB

	

XMS, 14– 5
Upper memory region, 216

	

XT bus . See PC bus
USB, 307– 8

V20, 7
V30, 7

Zero drift, 65, 96, 384, 419
Zero offse t . See Offset
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