PC Interfacing and Data Acquisition
Author: Kevin James

Paperback

448 pages

Publication date: JUL-2000

ISBN-13: 978-0-7506-4624-6
ISBN-10: 0-7506-4624-1

Imprint: NEWNES

Preface

Until fairly recently most scientific data-gathering systems and indus-
trial control procedures were based on electromechanical devices
such as chart recorders and analogue gauges. The capability to
process and analyse data was rather limited (and in some cases error
prone) unless one had access to a minicomputer or mainframe.
Today, that situation has changed considerably. I am sure that most
potential readers of this book will be aware of the profound effect
the PC has had on the way in which engineers and scientists are able
to approach data-gathering tasks.

Despite the now widespread use of various types of PC for
automated data capture, there has been only a small number of
publications on PC-based DA&C. Most if not all of these texts have
concentrated on the hardware aspects of interfacing and measure-
ment. A book emphasizing the design of DA&C software is long
overdue.

One of the reasons for this has become increasingly apparent
to me during the course of writing the present text. The subject
spans numerous conventional disciplines and no single book can
really do full justice to every aspect of this interdisciplinary subject.
DA&C programming tends to require skills in (or at least a basic
knowledge of) a range of subjects and, for this reason, the book
draws together elements of programming, PC architecture, oper-
ating systems, interfacing, communications, sampling theory and
process control.

My task has been complicated because of the wide range of
backgrounds from which DA&C programmers tend to originate.
Amongst the readership there will, no doubt, be fairly experienced
programmers as well as engineers and scientists whose main area
of expertise lies in fields other than computer programming. Some
readers will already have a sound knowledge of data acquisition, while
for others the principles of interfacing, measurement and control
will be relatively new. With such a broad spectrum of potential

X Preface

readers, it is inevitable that some users of the book will find that
certain chapters provide unnecessary detail or that some topics are
presented too concisely.

I have not assumed that the reader possesses any particular range
of skills, although a broadly numerate or technical background and
a basic knowledge of computer programming will undoubtedly be
of benefit.

I have attempted to ensure thatall information provided is correct
and unambiguous. However, it is possible that a few minor errors will
have found their way into the text. Unfortunately, itis in the nature of
DA&C software that minor errors can have catastrophic results and,
for this reason, I strongly advise you to cross-check all critical informa-
tion that you use in your software against independent sources, and
to thoroughly test all programs before ‘going live’. I would greatly
appreciate hearing of any errors in the text, whether technical or
typographic. I can be contacted at: kjames_sd@hotmail.com.

A note on software examples

The code examples are presented with the primary intention of
conveying the ideas presented in the text. In some cases this involves
a trade-off between clarity and execution speed. In most instances
I have favoured the former. You may wish to recode some of the
examples to improve their efficiency and speed.

Note that the software listings are intended only as examples of
how one might go about solving isolated coding problems. They
are not intended as complete working programs or solutions to
specific problems. For reasons of clarity, the examples are designed
to operate in a real-mode (DOS) environment. In many cases the
code may be adapted for use in protected mode or under 32-bit
multitasking operating systems such as Microsoft Windows NT.

Although I have tested every example and they work correctly
under my test conditions, factors such as execution speed and timing,
hardware variability, and incompatibilities with other software (e.g.
operating systems) may affect them. If you use them in your own
programs you should thoroughly test them to ensure that they work
correctly and reliably within the context of your application.

The examples are presented in a mixture of C and assembly
language. While assembly language is essential for some low level
programming tasks, the programmer has more scope when choosing
a high level language (HLL). I have chosen C (specifically Borland
C version 3) for the examples in this book mainly because it is the
most widely used language in DA&C and interfacing applications.

Preface xi

I recognize that C code does not have a favourable reputation
for clarity. For this reason, and to enable readers to translate easily
to other languages, 1 have avoided C’s shorthand notation and
have used only constructs which have analogues in other HLLs.
You should bear in mind that there tends to be subtle variations
between different dialects of C. One such variation occurs in the
various 1/0 instructions as described in Chapter 6. Another that is
particularly relevant here concerns integer data types. Throughout
the text, I have used the int data type as a 16-bit quantity, but in
some 32-bit compilers (e.g. Microsoft Visual C + + version 4.0) it is
treated as a 32-bit integer. Be sure that you know how your system
interprets int declarations. Those readers who have any doubts over
the meaning of C data declarations and statements should consult
one of the numerous introductory C texts as well as their C compiler’s
programming manual.

1 The PC as a platform for data
acquisition

The field of data acquisition and control (DA&C) encompasses a
very wide range of activities. At its simplest level, it involves reading
electrical signals into a computer from some form of sensor. These
signals may represent the state of a physical process, such as the
position and orientation of machine tools, the temperature of a
furnace or the size and shape of a manufactured component. The
acquired data may have to be stored, printed or displayed. Often
the data have to be analysed or processed in some way in order
to generate further signals for controlling external equipment or
for interfacing to other computers. This may involve manipulating
only static readings, but it is also frequently necessary to deal with
time-varying signals as well.

Some systems may require data to be gathered slowly, over time
spans of many days or weeks. Other will necessitate short bursts of
very high speed data acquisition — perhaps at rates of up to several
thousand readings per second. The dynamic nature of many DA&C
applications is a fundamental consideration which we will repeatedly
return to in this book.

The IBM PC is, unfortunately, not an ideal platform for DA&C.
There are a number of problems associated with using it in situations
which demand guaranteed response times. However, it is used widely
for laboratory automation, industrial monitoring and control, as well
asin avariety of other time-critical applications. Sowhyisitso popular?

The most obvious reason is, of course, that the proliferation of
office desktop systems, running word processing, accounting, DTP,
graphics, CAD and many other types of software, has led IBM and
numerous independent PC-clone manufacturers to develop ever
more powerful and inexpensive computer systems. The technology
is now well developed and stable in most respects. For the same
reason, an enormous software base now exists for this platform. This
includes all manner of scientific, statistical analysis, mathematical and

4 PC interfacing and data acquisition

engineering packages that may be used to analyse acquired data. A
wide range of software development tools, libraries, data-acquisition
hardware and technical documentation is also available. Perhaps
the most important reason for using the PC for data acquisition
and control is that there is now a large and expanding pool of
programmers, engineers and scientists who are familiar with the PC.
Indeed it is quite likely that many of these personnel will have learnt
how to program on an IBM PC or PC clone.

This book sets out to present some of the basic concepts of DA&C
programming from a practical perspective and to illustrate how
elements of the PC architecture can be employed in DA&C systems.
Although it contains quite detailed descriptions of certain elements
of the PC’s hardware and interface adaptors, the text concentrates
on the software techniques that are required to make effective use
of the PC for DA&C. The first two chapters begin by discussing the
structure of DA&C systems and attempt to assess how well the PC
and its operating systems meet the stringent requirements of data
acquisition and real-time operation.

1.1 Types of PC

Since the first models of the IBM Personal Computer (PC) were
introduced in the early 1980s there have been many variants issued
by IBM and by numerous ‘clone’ manufacturers. Each new variant
has tended to introduce improved components or subsystems which
enhance speed or provide some other system capability. We will not
describe the various models of PC in detail here as most readers will
already be familiar with the basic differences between the XT, AT,
PS/2 and EISA machines. It is sufficient to note that the basic archi-
tecture of most types of PC is very similar. The differences in perfor-
mance between systems arise from the different types of processor,
memory subsystem and expansion bus used. These are perhaps the
most important considerations although other components, such as
the disk and video subsystems, can substantially affect throughput.
The IBM PC was originally developed as a stand-alone machine
for office desktop use. While many DA&C applications can, and
do, run successfully on such systems, desktop models do not always
provide the required degree of robustness for use in harsh environ-
ments. This has led a number of manufacturers to produce more
rugged versions of the PC. Many systems are built into rack-mounted
chassis. They may incorporate conventional motherboard designs
or they may utilize a backplane system into which a processor card,
video adaptors and disk drive controllers are inserted. Ruggedized
industrial PCs offer benefits such as sealed keyboards, positively

The PC as a platform for data acquisition 5

pressurized cooling systems, and anti-vibration shock mountings.
Both hard disks and floppy disk drives tend to be easily damaged
by dust, vibration and magnetic fields. These problems are circum-
vented in some systems by substituting a solid state (i.e. EPROM or
SRAM based) disk emulation card which is generally less susceptible
to damage.

Some industrial PCs may possess interfaces for disks, serial ports,
parallel ports, and other peripheral devices on the same circuit
board. Single-board computers are often integrated into dedicated
equipment which is used, for example, in industrial or medical
monitoring applications. These embedded systems are normally
designed so as to minimize size, power consumption and cooling
requirements. In these systems, hard disks are frequently replaced by
ROM-based devices which provide storage for all software, including
the operating system. Embedded PC controllers are also used in
mobile equipment. However, there are a number of other options
when it comes to mobile computing. There are now many notebook
PCs and ruggedized portable computers on the market. These can
easily interface to external data logging or control equipment in
order to facilitate configuration or downloading of acquired data.

Ruggedized PCs, embedded PC systems, portable machines and
desktop PCs all share the same basic architecture and are generally
capable of running the same software. The structural differences
between them are largely irrelevant to the software engineer. Indeed
software can usually be developed on a desktop system and then
transferred to a ruggedized or portable PC without modification,
although minor changes may sometimes be needed when porting to
embedded systems in order to accommodate ROM-based operating
systems or to interface to specialized external buses.

1.2 The processor

Most readers of this book will already be aware of the different types of
processor and coprocessor used in the PC range. This section summa-
rizes the most important characteristics of each of the main classes
of processor. The text by Hummel (1992) provides more detailed
descriptions of the various processors and coprocessors available.

The 80x86 family of processors

Pentium processors are perhaps the most recognized components
of today’s PCs. They originate from a long line of Intel processors
dating back to the 1970s (see Table 1.1). The capabilities of the

6 PC interfacing and data acquisition

Table 1.1 Comparison of 80x86/Pentium processors

Data Clock Approx.
Address width (internal) relative

Processor range (bits) (MHz} speed® New features and notes

8088 1 MB 8 4.77 1 Real mode only.

8086 1TMB 16 4.77,8 1.5 Real mode only. Required
8087 floating-point unit.

80286 16MB 16 6-16 5 Limited protection features in
protected mode. Required
80287 floating-point unit.

80386SX 16MB 32" 16-25 10 Enhanced protected V86
mode. Required 80387
floating-point unit.

80386DX 4GB 32 16-40 15 32-bit data and address
buses. Required 80387
floating-point unit.

80486SX 4GB 32 25-40 40 Parallel instruction execution.
8 Kbyte on-chip cache.
Internal clock doubling,
tripling and quadrupling
circuits. Required 80487
floating-point unit.

80486DX 4GB 32 25-100 60 On-chip numeric processor.

Pentium 4GB 32?9 60-166 200 Dual execution pipeline.
Enhanced branch
prediction. Enhanced V86
paging. Multiprocessor
support.

Pentium Pro 64 GB 32 200,266 500 Triple pipelining. 256 Kbyte
L2 cache. 36-bit address
bus.

Pentium I} 64 GB 32@ 200-450 800 Enhanced L1 and L2 caches.
Power saving features.
MMX extensions.

Pentium Il 64 GB 32 500+ 1000+ Very efficient floating-point

unit. Katmai New
Instructions and new KNI
mode.

16-bit external bus.
D64-bit external bus.
®Integer processing. Figures are a rough guide only. Actual speed depends on clock rate,
instruction mix and performance of PC subsystems.

The PC as a platform for data acquisition 7

earlier processors will be of little relevance to most readers who,
nowadays, are not likely to encounter anything more primitive than
an 80486. For this reason we will not discuss them in any further
detail. We should remember, though, that some specialized systems
(particularly embedded PC applications) still make use of the earlier
8086, 80286 and 80386 processors. Indeed, special versions have
been developed for this market. The 80186, for example, is similar
to the 8086, but also possesses on-chip DMA (Direct Memory Access)
and interrupt controllers and other support circuitry. The 80186
and similar special-purpose processors are not used in a normal PC.

From the viewpoint of application-software development, it is
convenient to divide the various PC processors into three classes:
real-mode processors (8088, 8086 and compatibles such as the NEC
V20 and V30); the intermediate 80286 processor (which we will not
discuss); and full 32-bit processors (80386, 80486, Pentiums and
Celeron processors).

In essence the early real-mode processors (used on the first models
of PC) ran only one program at a time, provided limited memory
addressing (up to 1 MB), and operated relatively slowly (being
clocked at 4.77 to 10 MHz, typically).

At the other extreme, the 80486DX and Pentium class processors
can address large amounts of memory (4 GB), and possess features
for task switching, high speed processing and memory/hardware
protection. These capabilities are used by sophisticated 32-bit oper-
ating systems such as Windows NT to implement efficient multi-
tasking and to control access to system resources.

Intel released a cheaper alternative to the Pentium in 1998: the
Celeron processor. This is similar to the Pentium II, but without the
latter’s built-in level 2 cache. Despite the fact that, by most standards,
the Celeron is significantly slower, it is becoming popular in some
industrial applications, particularly in embedded systems.

Pentium II processors operate at up to 450 MHz internally. This
and enhancements such as 64-bit external data bus, separate caches
for instructions and data, a much improved instruction handling
capability and very efficient numeric processing are responsible for
the superior performance of Pentium-based PCs. The Pentium III
offers further improvements in performance. Initial versions are
clocked at up to 500 MHz and faster versions will no doubt be avail-
able by the time this book is published. Floating-point performance
has been enhanced in the Pentium III with the addition of a special
instruction set (Katmai New Instructions, or KNI) and new regis-
ters. This provides up to about 2 x 10° floating-point operations per
second (2 Gflops): sufficient for the processor to take on tasks that

8 PCinterfacing and data acquisition

might otherwise have required a specialized Digital Signal Processor
(DSP): real-time audio processing, for example.

Because each new processor in the sequence incorporates a
superset of the instructions and features of earlier processors, they
are termed ‘backward compatible’. Software written for an 80286
processor, for example, will generally be able to run on 80386 and
all later processors. Even the latest Pentium processors can operate
in real mode, emulating the early 8086. Note, however, that the
converse is not true: an 8086 will not run most of the software written
for the Pentium. In spite of this backward compatibility, the timing
of many instructions varies between processors. The speed of most
instructions tends to be greater in the newer processors although
some instructions may execute more slowly. This point should be
borne in mind when writing very time-critical code, particularly if
the software is intended to run on a range of different processors.

Processor modes

The 8086 processor is capable of directly addressing up to 1 MB
of memory. It is designed to support the execution of only one
program (or process) at any time. This process has complete control
over the PC and has direct access to all addressable memory and
I/0 locations, even those belonging to the system BIOS or to the
operating system itself. Because there are no protection mechanisms
to prevent interference between processes it is difficult to implement
safe multitasking (see Chapter 2) on the 8086. The 8086’s mode of
operation is known as real address mode (often abbreviated to just
‘real mode’). All later processors support real mode as well as other
modes that allow access to more than 1 MB of memory.

The protected mode available on 80286 and later processors helps
to circumvent the 1 MB limitation. As well as providing access to
more memory, it incorporates a number of mechanisms which help
to prevent processes from conflicting with each other or with the
operating system. All subsequent processors (i.e. 80386 and later)
also possess a virtual 8086 (V86) mode. In this mode, the processor
operates as multiple virtual 8086 machines, dividing its time between
each. Programs are allocated their own virtual machine and in this
way it appears to the program that it is running on its own 8086
processor. Each virtual machine may have its own DOS environment
and is isolated from the rest of the system. The program running on
each virtual machine believes that it has full control of the system, as
on a real 8086. Interprocess memory conflicts and I/O conflicts are
avoided by means of sophisticated protection mechanisms provided
by the processor (as described later in this chapter). In order to

The PC as a platform for data acquisition 9

perform multitasking using the processor’s protected or V86 modes
the whole machine has to be managed by suitable operating system
software. We will discuss this topic in Chapter 2.

Although the modes available on the more advanced processors
are very efficient, their protection mechanisms can involve a substan-
tial software overhead, especially if complex multitasking operating
systems are used to mediate between processes. DA&C programs are
normally relatively small and uncomplicated, and a simple real-mode
environment (e.g. a DOS-based system) is often the most suitable.
A protected-mode system can, however, provide the potential for a
greater degree of reliability. The inherent protection mechanisms
can help to prevent resource conflicts and may highlight certain
types of coding error during development.

Registers

Throughout this book I will make frequent references to an impor-
tant feature of the processor: its registers. The basic concepts are
introduced below. However, this is only a very brief overview to
aid your understanding of the examples presented in subsequent
chapters. You should consult a specialist text on processor archi-
tecture or assembly language programming ~ e.g. Hummel (1992),
Swan (1989) or Holzner and Norton (1991) - for a more detailed
discussion of this subject.

Each processor in the 80x86 family possesses several 16-bit regis-
ters which are used to hold data and memory addresses. In many
operations, you have a choice of which register to use. However,
most registers are designed specifically for certain operations. Some
registers, such as CS, DS and SS, address particular memory segments
(blocks of up to 64 KB addressable in real mode). Others (e.g. IP,
SP, BX) can be used to address individual bytes or words as offsets
from the beginning of an associated segment. Yet other registers are
used to hold numeric data. Some of the 16-bit registers (i.e. AX, BX,
CX and DX) allow their high and low order bytes to be addressed
separately. For example, the high order byte of AX is referenced
within an assembly language program as AH, and the low order byte
as AL. The AX register is used exclusively in certain operations such
as reading from or writing to an I/O port. The Flags register contains
various bits which indicate the results of arithmetic operations or
which control how particular features of the processor operate.

The 80386 and subsequent processors are equipped with 32-bit
registers. Each of the 16-bit registers mentioned above is actually
implemented as the low order 16 bits of the corresponding 32-bit
register. Just as it is possible to separately reference the high and low

10 PC interfacing and data acquisition

order bytes of certain 16-bit registers, one can reference either the
full 32-bit register (by preceding the normal register designation with
an ‘E’, e.g. EAX) or only the low order 16 bits (e.g. AX). For the sake
of simplicity and compatibility with the 80286 and earlier processors,
only the 16-bit register set is used in the examples presented in
the remainder of this book. Those readers who are unfamiliar with
assembly language should consult a book such as Swan (1989) for
an introduction to this subject.

The most important point to remember about the registers is
that their contents completely define the state of the processor at
any given time. The registers may hold a variety of information
relating to the current process. This includes the address of the
next instruction to be executed, intermediate results, the interrupt
state and many other essential parameters. If the register contents
are incorrectly modified or become corrupted it is very likely that
this will result in the failure of the software. You should bear this
in mind when dealing with any form of context switch such as an
interrupt or task switch, and take appropriate steps to preserve the
state of the registers. Refer to Chapter 2 for more on task switches
and concurrent processing, or to Chapter 5 for a detailed discussion
of interrupts.

Numeric processing

Predecessors of the 80486DX have a limited mathematical processing
capability. While they are able to perform a variety of integer arith-
metic, data transfer, and logical operations, they were not designed
to undertake floating-point calculations. Many compilers and devel-
opment tools incorporate floating-point software libraries. These
contain long and complex routines to facilitate floating-point compu-
tation. Unfortunately, floating-point software can be slow. When
many calculations have to be performed, the burden placed on the
processor may unacceptably degrade the system’s throughput. This
problem can be particularly acute in high speed DA&C applications.

The alternative technique is to use special hardware for numeric
processing. A numeric processing unit is dedicated to performing
floating-point calculations and operates more or less in parallel
with the main processor. It supports a number of floating-point
data types and provides facilities for performing trigonometric and
transcendental functions. The 80486DX and Pentium class proces-
sors have built-in numeric processing units, but earlier processors
required a matching numeric coprocessor IC. This hardware solution
makes very substantial increases in throughput possible, although
the degree of benefit gained does, of course, depend upon the

The PC as a platform for data acquisition 11

nature of the software. Numeric processors are not essential in all
DA&C applications. Many programs execute only integer instruc-
tions during the period of data acquisition. However, a numeric
processor can be invaluable in applications which have to execute
mathematical control algorithms (e.g. PID control) or which must
undertake any form of real-time signal processing.

The presence or otherwise of a numeric processor is normally
transparent to programmers working with C, Pascal or other high
level languages. The programmer will normally only have to select a
compiler ‘switch’ in order to generate code for a numeric processor
or to emulate one in software. He or she need not be concerned with
how floating-point calculations are actually performed. This is not
true, however, for assembly language programmers. These readers
are advised to consult more specialized texts on the subject such as
Hummel (1992) or Holzner and Norton (1991).

1.3 Memory

As we have already seen, modern PCs can address up to 4 GB of
memory, although most contain very much less. Figure 1.1 illustrates
the PC’s memory space and shows some important regions within
the address map. The addressable range is processor (and mode)
dependent.

When operating in real mode, the 80x86 and Pentium processors
employ a segmented memory addressing scheme. Each memory
address is specified in the software by the contents of a segment
register and an offset register. In real mode both of these registers are
16 bits wide and thus a memory segment is defined as a memory block
up to 65536 bytes in length. A segment begins on any paragraph
(16-byte) boundary. The contents of the segment and offset registers
are combined to form a physical address by multiplying the contents
of the segment register by 16 and then adding the result to the
value held in the offset register. This generates a 20-bit address
which can be used to access any location in the 1 MB memory
area. The segmented memory scheme can complicate programming
somewhat, although it does have a number of practical advantages. It
provides a means of dividing memory up into convenient segments,
the beginning of each segment being addressed by the contents of
the segment register. Successive bytes within a segment can then be
easily referenced by incrementing or decrementing a single 16-bit
offset register.

The addressing method used in the 80286’s protected mode
is similar, However, the value held in the segment register no

12 PC interfacing and data acquisition

- FFFF FFFFh
32-bit protected-mode
operating systems
Extended ° a%dy
memory application programs
{80386 and PP preg
above only) {e.g. Windows 98/NT
X Unixand 08/2) %
- - OFFF FFFFh
16-bit protected-mode
operating systems
Extended vt and vt
memory application programs
{80286 and
above only) (e.g. DPMI / Windows 3.x}
High memory x| O010FFFFh
area (64K) DOS 5/6 Drivers
RO BIOS I O0OF FFFFh
- 000E FFFFh
Adaptor card ROMs
Upper memory DOS UMBs
area (384K) EMS page frames
Memory-mapped adaptors
(e.g. video)
__________ N 0009 FFFFh
Real-mode
addressable
memory Extended BIOS Data
{all processors) Reaa!;n?g;igo& Area {size variable,
prggrams but typically 1K)
* The HMA is
addressable in real
] mode by enabling
the A20 line
DOS code and data 4000 05001 via the chipset
BIOS Data Area B
Interrupt vector table [~ 0000 03FFh
0000 0000h

Figure 1.1 The PC’s memory map

longer corresponds to a physical segment base address. Instead,
it is used as a selector. This is a pointer to an entry in a table
maintained by the operating system. Each entry in this table is
known as a descriptor and specifies the physical address of the
segment of memory which is to be accessed. The selector and
descriptor also contain other data relating to the memory segment.
This includes the information necessary for operating systems to
implement interprocess protection and memory management. For
example, the descriptor specifies whether the segment referenced
is a code or data segment and thus provides a mechanism for the

The PC as a platform for data acquisition 13

operating system to trap actions such as inadvertent writes to a code
segment. It also specifies the size of the segment so that accesses to
memory beyond the segment limit can be detected. The 80286 can
access up to 16 MB of memory.

A similar system is used on the 80386 and later processors when
they are running in protected mode. However, these processors can
use a 32-bit flat addressing scheme in which the selector is kept fixed
by the operating system and the programmer addresses memory by
means of only a 32-bit offset. This provides access to up to 4 GB of
memory. The 80386 and later processors also provide an additional
memory management facility, known as paging. When paging is
disabled, the address determined from the descriptor represents
the physical memory address (as in the 80286 processor). When
paging is enabled, the linear (or virtual) address read from the
descriptor table has to undergo another translation step in order
to arrive at the physical address. The page translation mechanism
makes possible the V86 mode and is also essential for a number of
other advanced operations on the 80386 and later processors. Unlike
the segmentation scheme, page translation is generally transparent
to the applications programmer. It is normally managed invisibly
by the operating system. However, the paging mechanism does
have certain implications for real-time DA&C systems. It allows an
operating system, such as Windows NT, Windows 95/98 (or Windows
3.1 operating in enhanced mode), to temporarily swap blocks of
memory out to a hard disk. Although this can be a great advantage in
non-time-critical systems it may be unacceptable in real-time DA&C
applications as it has the potential to introduce variations in the time
taken for the DA&C program to respond to external events.

The protected-mode segmentation scheme, the page translation
mechanism and V86 modes are quite involved topics and full descrip-
tions of them are beyond the scope of this book. You should consult
a text on the subject of operating system architecture or on the
processor itself (e.g. Hummel, 1992) for further information.

Accessing memory above 1 MB from real mode

Many DA&C applications are relatively straightforward and may not
need the complex multitasking and protection capabilities offered
by the processor’s protected and V86 modes. Often, however, they
do require large quantities of memory in which to store acquired
data, and this is not directly available in real mode. If you prefer
the simplicity, speed and degree of control offered by a real-mode
DOS-based system (perhaps one of the specialized real-time versions

14 PC interfacing and data acquisition

of DOS), there are several ways in which to gain access to memory
above the 1 MB limit.

First, you could make use of two BIOS services provided on
the IBM AT and compatible machines. These services allow data
to be moved between real-mode-addressable memory (i.e. memory
below the 1 MB boundary) and extended memory. This technique
is rather slow and requires a degree of buffering in real-mode-
addressable memory. It also relies upon the cooperation of all other
processes running on the machine in order that they do not overwrite
another’s data.

The second method of accessing extended memory is to employ
an extended memory driver conforming to the Extended Memory
Specification (XMS). Such a driver, HIMEM.SYS, is used by Microsoft
Windows 3.1 for managing extended memory. It provides a compre-
hensive set of services which can be used to access memory above
the 1 MB boundary as well as the so-called Upper Memory Blocks
(UMBs) in the 640 KB to 1 MB area.

The third method is simply to make use of a RAM disk (also known
as a Virtual disk) device driver. This sets aside an area of memory
(usually extended memory) to emulate a disk drive. The RAM disk
operates in the same fashion as a normal hard or floppy disk.
Although it is many times faster than a typical hard disk drive, data
still has to be transferred via the DOS file and device driver system
and so this method is generally slower than direct memory storage.

The final approach is to employ an expanded memory system. This
technique is largely obsolete on the PC, butitis instructive to consider
it briefly because some specialized data-acquisition hardware makes
use of a similar system for transferring data to and from the PC’s
memory. Expanded memory has been used in embedded systems
for some time, and a number of 8086-compatible processors that
have been developed especially for embedded applications include
on-chip expanded memory support.

Expanded memory is essentially bank switched memory which can
be selectively paged in and out of a memory window (known as a
page frame) residing below the 1 MB real-mode-address limit. Data
may be read from, or written to, expanded memory through this
window as though one were accessing the PC’s memory. The DA&C
program can select new pages at any time by calling a group of
system services that are provided by an expanded memory device
driver. The services generally conform to a standard known as the
Expanded Memory Specification (EMS). Versions 3.2 and 4.0 of this
standard are the most widely used. One of the more effective EMS
implementations utilizes the paging facilities provided by the 80386

The PC as a platform for data acquisition 15

and later processors, allowing some or all of the PC’s extended
memory (i.e. that above 1 MB) to be treated as expanded memory.

Although the bank switching and paging mechanisms used on the
PC are fast and ideally suited to DA&C, they have to be managed by
some form of device driver. As with all drivers and programs written
by third parties, you should be sure that they do not compromise the
deterministic qualities necessary in real-time systems (see Chapter 2).

EMS, XMS and the extended memory BIOS services are covered
in many books on the IBM PC such as Duncan (1989), Duncan et al.
(1990) or Dettmann and Johnson (1992).

1.4 Input/output ports

In addition to its memory, the PC has another entirely separate
address space. This is dedicated to transferring data to or from
peripheral devices and is known as Input/Output space (or simply
I/O space). just as the PC’s memory space is divided into separate
byte locations, the 1/O space consists of many byte-sized I/0 ports.
Each port is addressable in much the same way as memory, although
an additional control line is used within the PC to distinguish
between memory and I/O port accesses. I/O space consists of a
contiguous series of 1/0O addresses. Unlike memory space, the I/0
address space is not segmented and cannot be paged. In fact, the
processor references I/O ports by means of a 16-bit address and this
means that no more than 65536 I/0O ports can be supported by the
PC. In practice, this is further limited by the I/O address decoding
scheme used on the PC and its adaptor cards.

The I/0 ports provide a means of sending data to, and receiving
data from, devices such as the video adaptor, the disk subsystem,
or analogue-to-digital converters (ADCs) on plug-in data-acquisition
cards. Software can use the assembly language 1 or our instructions,
or their high level language counterparts, to communicate with
hardware devices via the 1/O ports. These are discussed in more
detail in Chapter 6, but for the moment we will consider a simple
example. Suppose that a plug-in 8-bit ADC card possesses control
and data registers that are each mapped to one of the PC’s /0
ports. The software starts the analogue-to-digital conversion process
by writing a bit pattern to the I/O port that maps to the ADC
card’s control register. When the ADC has finished the conversion
it might set a bit (known as the End of Conversion, or EOC, bit)
in another register to indicate that digitized data is now available.
In this way, the software is able to detect the EOC bit by reading
the corresponding I/O port. Knowing that the conversion had been

16 PCinterfacing and data acquisition

completed, the software would then read the digitized data from a
data register mapped to a third I/O port.

1/0 port allocation

Hardware devices map their registers to specific I/O ports simply
by decoding the PC’s address bus and control lines. In this way, a
specific combination of address and control lines is needed to cause
data to be transferred from the register to the PC’s data bus or vice
versa. Some I/O ports can only be read or written, while others are
capable of bidirectional data transfer. Whether ports are read-only
(R/0), write-only (W/O) or read-write (R/W) is determined by how
the hardware decodes the address and control lines. The processor
itself makes no distinction between ports in this regard. You can still
perform an 1n instruction for a write-only port although the results
of such an action will generally be indeterminate.

The PC and adaptor-card hardware do not fully decode the address
lines. In fact, in the IBM PC, XT, AT and compatible machines,
including the PS/2 line, only the lower 10 lines are used. This
means that it is possible to address only 1024 separate I/O ports.
Even certain addresses within this range are not fully decoded. Thus
some devices which should require only two or three registers may
actually occupy a much larger block of I/O addresses: the same
registers being mirrored at a series of other addresses within the
block. A much more satisfactory approach is taken on EISA systems.
These decode the address lines more fully, providing additional I/O
ranges that are dedicated specifically to the system motherboard or
to adaptors residing in each of the EISA expansion bus slots. On each
class of PC, certain 1/O addresses are reserved for particular devices.
Table A.3 in Appendix A provides an overview of I/O port usage and
may be used as an aid to selecting ports for use by data-acquisition
adaptor cards.

1/0 protection mechanisms

The PC’s I/0 ports are always accessible in real mode. In protected
and V86 modes, however, the processor can be programmed to
restrict access to I/O addresses. This facility is used in multitasking
operating systems such as OS/2 and Windows NT to control which
processes (i.e. running programs) will be allowed to read and write
the I/0 ports. In this way it is possible for the operating system to
mediate between two or more processes that need to access the same
I/0 device. The operating system runs at a high privilege level, which
means that it is allowed to execute certain privileged instructions.

The PC as a platform for data acquisition 17

These include instructions that access the I/0 ports and those which
change the state of the processor’s Interrupt Flag (see Chapter 5).

In protected and V86 modes, when a program operating at a
low privilege level attempts to execute one of the privileged 1/0
instructions, the processor generates a General Protection exception.
This causes control to be immediately passed to the operating system,
which can then oversee the I/O portaccess. The details of this process
are quite involved and cannot be covered here. You should consult
a text such as Hummel (1992) for more on this topic.

One of the consequences of the I/O protection mechanism is
that an application program running in protected or V86 mode
(e.g. under OS/2 or Windows) will generally be prevented from
directly accessing the 1/O ports. I/O port accesses require at least
some operating system intervention and this reduces the maximum
possible throughput of the system. It also contributes to a degree of
uncertainty in the speed at which the system will respond. This can
be a particularly important consideration when designing a real-time
DA&C program.

1.5 Buses and adaptor card slots

Passing data to and from a DA&C card via an I/O port actu-
ally involves transferring the data over one or more system buses.
Figure 1.2 illustrates a variety of buses that can be interfaced to the
PC. A typical PC may not contain all of the buses shown, although
the PCI and ISA buses are present in most systems. Other types
of bus (many of them proprietary systems) can be interfaced by
means of special adaptors or bridges to the PC. The IEEE-488 bus
and the VXI bus, for example, are used in specialized instrumen-
tation applications. Of primary concern here though are the PC’s
native buses —i.e. the ones that are an integral part of the PC’s own
architecture.

The type of bus used within the PC not only has a bearing on
the type of interface card that can be connected, it may also have
a profound effect on the throughput of the system as a whole.
Although normal bus operation cannot be modified under software
control and is largely transparent to the programmer, it is of great
importance in interfacing and so a brief overview is provided below.

The ISA bus

Until the mid-to-late 1990s, the Industry Standard Architecture (ISA)
bus dominated the PC market and was the interface used for most

18 PC interfacing and data acquisition

AN\ A\ -
DRAM 'Addr, data System |/Addr, data Pentium
& controt & control
\2Lgontroy, controller \E2ter/) - processor

Video
subsystem

Externat bus :
< eg. VMEAX! Bridge (

PCI bus

b\ Analogue 1O
———/ card < >

Hard SCSI device
disk(s) interface

Hard \‘/\:> EIDE disk ﬁ '/chr?éfoﬂer
disk interface PCLISA

USB bridge

Y

GPIB adaptor { |EEE-488
RS-232/422/485 | Serial port

y > adaptor/UART \
Slow digital /O §——3%
(e.g. relay) card [$———3
{ IEEE-1284 |} Parallel port {

A

Figure 1.2 Example bus connections and interfaces on a PC used for data
acquisition. Note that not all devices and buses shown will be present on every
system, and some systems will incorporate additional devices

ISA bus

plug-in DA&C cards. It is derived from the earlier, and slower, 8-bit
bus used in the IBM PC and XT (known as the PC bus or XT bus).
Note that the 16-bit ISA bus (also known as the AT bus because it
was introduced in the IBM AT computer) is in some literature also
misleadingly referred to as the PC bus.

The ISA bus incorporates a number of enhancements over the
XT bus, such as a 16-bit data path, a 16 MB addressing capability,

The PC as a platform for data acquisition 19

an increased number of interrupt request lines (see Chapter 5) and
additional DMA channels (see Chapter 6). The extra data, address
and control lines necessary to interface to ISA type adaptor cards
were added in a second connector placed in line with the original
XT type connector. Although a few of the connector pins on the XT
connector were redesignated, the ISA bus connector provides full
backward compatibility with the older XT cards. Most ISA machines
are equipped with several 16-bit ISA slots and one or two 8bit XT
type slots. With a few exceptions (noted below), 8-bit cards can also
be inserted in the XT portion of 16-bit ISA slots.

The ISA bus clock speed is not tied to the processor clock as
it was in the XT bus. Widely differing bus and processor clock
speeds are used on ISA machines and synchronization between the
two is maintained by means of special support circuits. The IBM
AT’s bus was clocked at 8 MHz. Many newer systems allow the bus
clock speed (and indeed the processor and DMA clock speeds) to
be reprogrammed using a BIOS configuration utility. The chosen
speed is recorded in the system’s CMOS RAM. A high frequency
(e.g. 10 or 11 MHz) may be selected provided that all adaptor cards
will operate reliably at this speed. Most modern ISA adaptor cards
are capable of running at 10 or 11 MHz, but some older DA&C cards
are not.

Bear in mind that even the standard 8 MHz ISA clock speed
may be incompatible with some older ADC or counter/timer cards
that were intended specifically for IBM PC or XT systems. These
cards are designed to provide their on-board components with clock
signals derived from the PC’s 4.77 MHz bus clock and are, therefore,
unsuitable for use with the higher clock frequencies present on the
ISA bus. Indeed they are also incompatible with the 8 or 10 MHz
XT buses employed in some XT clones. Generally speaking, this is
no longer a problem with modern DA&C cards as these tend to be
driven from their own dedicated oscillator, rather than from the
system bus clock. You should, however, be wary of this potential
difficulty when using some pre-1990 DA&C cards.

Today, new desktop PCs now rarely possess more than one or
two ISA card connectors, the remaining expansion capability being
provided by the PCI bus, which we will discuss shortly. However,
the ISA bus is far from obsolete in the industrial data-acquisition
market. Many rack-mounted industrial PCs still employ this standard
and there are numerous ISA bus DA&C cards still on the market.
Before discussing the PCI bus, it is appropriate to briefly mention
two other buses: the MCA bus and the EISA bus. Although these are
both technically superior to the ISA bus in many respects, they have
not enjoyed such widespread use.

20 PCinterfacing and data acquisition

The MCA bus

The MCA (Micro-Channel Architecture) bus was developed by IBM
for its range of PS/2 computers. MCA was more rigidly specified
than the ISA bus in terms of it physical, electrical and timing
characteristics, and incorporated a software-based card configura-
tion facility. The latter feature, called Programmable Option Select
(POS), circumvented the need to use DIP switches or jumpers
for selecting options such as base address or interrupt levels. As
all configuration is performed via manufacturer-supplied software,
the details of POS operation are rarely of interest to the DA&C
programmer. Readers are referred to the text by Eggebrecht (1990)
for more information on POS.

The EISA bus

The main disadvantage of the MCA bus was its incompatibility with
the earlier XT and ISA buses. A consortium of PC manufacturers
attempted to circumvent this problem by developing an enhanced
version of the ISA bus, known as the Extended Industry Standard
Architecture, or EISA, bus. This provided a number of benefits
similar to those of MCA while maintaining full backward compati-
bility with ISA cards. EISA buses, which are used in some 80386 and
later systems, incorporate a 32-bit data bus and have an enhanced
slot-specific I/O addressing capability. L.ike MCA, EISA cards are
configured by means of software utilities and data files supplied by
the manufacturer.

The PCI local bus

Local buses began to emerge as potential competitors to conven-
tional expansion buses such as ISA in the mid-1990s. Whereas
conventional buses have to employ special circuitry to manage bus
traffic and to synchronize high speed processors with slower bus
operations, local buses are more tightly coupled to the processor.
Currently, the dominant local bus standard is Intel’'s PCI
(Peripheral Component Interconnect) bus. Although the latest PCI
standard (version 2.2) allows for 64-bit transfers at 66 MHz, standard
PG-based PCI implementations currently provide a 32-bit data path.
Because PCI operates at the processor’s clock frequency (i.e. the
frequency of the clock signal supplied to the processor, rather than
the processor’s internal clock frequency), it is capable of very high
rates of throughput. The PCI bus also supports bus mastering in
which PCI devices can take control of the bus in order to transfer

The PC as a platform for data acquisition 21

data. This is much like the DMA technique used on the ISA bus (see
Chapter 6). The principal difference is that each device supplies
its own bus-mastering hardware rather than relying on the PC’s
DMA controller. Additional performance enhancements can often
be realized by this means because bus transfers can be carried out
in parallel with certain processor operations. PCI devices can, for
example, exchange data along the bus at the same time that the
processor is accessing system memory.

Transfer rates

Table 1.2 summarizes the main characteristics of the buses discussed
so far. A 32-bit PCI bus clocked at 33 MHz can, in theory, provide a
data transfer rate of 132 MB/s. This represents a huge increase over
conventional buses. An 8 MHz ISA bus was, for example, capable of
transferring data at up to 16 MB/s. The MCA and EISA buses fare

Table 1.2 PC expansion buses

Max.
throughout
Address Data Standard at standard
width width clock rate clock

Bus (bits) {bits) {MHz) (MB/s) Notes
PC (XT) 20 8 8 8 Six IRQ lines. Three DMA
channels.
ISA {AT) 24 16 8 16 Twelve IRQ lines. Seven
DMA channels.
MCA 24 32 Variable 20-160 Maximum transfer rates
(typi- achieved in data
cally streaming mode. DMA
10-20) implemented via bus

mastering with up to 16
arbitrating devices.

EISA 32 32 8 33 Quoted throughput
achieved in data
streaming mode.

PCl 32 32o0r64 330r66 1321 Intelligent bus mastering
with support for DMA.
Quoted transfer rate is
achievable in burst
mode only.™M

MFor a 32-bit implementation running at 32 MHz. Maximum throughput increases propor-
tionately for faster or wider versions of PCl.

22 PCinterfacing and data acquisition

somewhat better. MCA supports 32-bit data transfers at rates up to
20 MB/s. Higher rates (typically 40 to 80 MB/s) are achievable with a
special data streaming mode. EISA systems provide bus transfer rates
of up to 32 MB/s. Bear in mind that these maximum transfer rates
cannot always be realized in practice. Throughput is often limited
by factors other than bus bandwidth.

The AT’s DMA controller can provide a throughput of up to
approximately 1 MB/s (or 2 MB/s, depending upon whether an
8-bit or 16-bit DMA channel is used). A greater throughput can
sometimes be achieved using programmed 1/0: typically up to
3 MB/s on a fast machine. In practice, however, declays inherent
in other components (e.g. the ADC conversion time, multiplexer
settling times, signal conditioning bandwidth —see Chapter 3) tend
to be the principal throughput-limiting factors. For this reason, the
maximum bus transfer rate cannot usually be realized and in many
applications bus speed has only a minimal effect on the overall
system throughput. DMA, programmed 1/0 and throughput rates
are discussed in more detail in Chapter 6.

PCMCIA interface

Like local buses, PCMCIA cards (sometimes known as just PC
cards) are a fairly recent innovation in PC interfacing. The PCMCIA
(Personal Computer Memory Card International Association) stan-
dard defines a hardware and software interface for attaching minia-
ture adaptor cards to the PC. It was originally intended as a standard
bus for interfacing removable memory cards to portable computers,
although it has now been adopted for other peripheral devices
such as serial ports, modems, network interfaces and hard disks.
DA&C component manufacturers now also produce data acqui-
sition cards in PCMCIA format. At the time of writing, thesc
devices are largely limited to simple mainstream DA&C functions (8
channel multiplexed ADCs, dual DAC cards, counter/timers, simple
digital I/0 facilities etc.) and provide reasonably high, although not
exceptional, throughput. Few PCMCIA cards offer more advanced
features such as very high speed ADCs, FIFO buffers or an on-
board processing capability. A number of industrial communications
PCMCIA cards (RS-232/422/485 or IEEE-488) are also available.

As mentioned above, PCMCIA cards are small: about 2 inches
(50 mm) across. They are produced in various thicknesses: Type I
cards are 3.3 mm thick; Typell cards are 5.0 mm thick; and
Type HI are 10.5 mm thick. The extra thickness of Type I1I cards is
required principally to accommodate miniature hard disks and radio
frequency communications products. DA&C cards are normally of

The PC as a platform for data acquisition 23

Type I1. Most notebook PCs are able to accommodate at least two of
these Type II cards, permitting moderately complex DA&C systems
to be designed around a portable computer.

PCMCIA cards offer several benefits. They are software config-
urable, so installation (I/O address selection, interrupt selection
etc.) can generally be automated. Apart from the fact that they
follow a fairly rigid specification in terms of power usage, signal
timing, and physical size, they also offer specific advantages for users
of DA&C systems. Their 16-bit data bus provides reasonably high
rates of throughput at moderate cost. Because of their size, PCMCIA
cards are extremely portable and, when used in conjunction with
notebook PCs, open up the possibility of data acquisition in awkward
environments (e.g. in moving vehicles). They can be unplugged
from the PC or from other DA&C system components, facilitating
relocation from one DA&C site to another. PCMCIA cards also have
a hot insertion capability. This permits cards to be removed from the
computer and swapped for other cards without having to switch off
the PC.

Due to the small size of the cards, subminiature connectors are
employed. This means that PCMCIA DA&C cards normally have to be
used in conjunction with extension cables and screw terminal panels
which will accept the field connections from transducers or signal-
conditioning units. In certain applications, these devices may also
include sensor excitation references or isothermal connections for
thermocouple cold-junction compensation (see Chapter 3). As the
PCMCIA circuit board is fully enclosed it is difficult to gain access to
trimpots or to test points for calibration or fault diagnosis. However,
PCMCIA DA&C cards are normally factory calibrated where neces-
sary and any subsequent recalibration can usually be performed by
adjusting scaling factors and offsets in software (see Chapter 9). Most
PCMCIA card manufacturers supply software drivers and, in many
cases, configuration, calibration and diagnostics programs as well.

Industrial and instrumentation buses

As mentioned previously, the standard desktop PC format is not
robust enough for use in harsh industrial environments. Indus-
trial DA&C systems often employ ruggedized versions of the PC in
specially designed rack-mounted enclosures. However, the physical
properties of the enclosure are not the only consideration. The stan-
dard PC architecture may not have the interfacing support needed to
directly manage some complex industrial sensing or control systems.
It does, nevertheless, have many other advantages (noted in the

24 PC interfacing and data acquisition

introduction to this chapter) which makes it highly desirable in this
type of application.

A number of manufacturers have attempted to bridge the gap
between the desktop PC and more robust industrial systems by
producing versions of the XT, ISA or PCI buses in a passive backplane
format that is suitable for use in industrial 19 inch rack-mounted
enclosures. These backplanes usually have a large number of expan-
sion slots allowing various types of processor cards, [/O interface
boards, and other adaptor cards to be attached.

Special adaptors known as bridges are available, which permit
devices on the PC bus to interface to a range of more specialized
industrial buses. These buses tend to be modular and rigidly speci-
fied, allowing them to be easily interfaced to industry-standard I/0
devices. There are three main types of bus: STE/STD, Multibus
and VME. The STE bus is an 8bit bus capable of addressing 1 MB
of memory and 4 KB of 1/O space. STE was developed {rom the
earlier 8-bit STD bus standard. Multibus also permits access to a
1 MB memory space, but allows 16-bit data transfers. Its successor,
Multibus II, provides an enhanced addressing capability and is suit-
able for use with 32-bit processors. The VME bus has been widely
used in embedded systems for some years. It is capable of 8-, 16-,
32- or 64-bit data transfers. 32-bit VME systems can achieve data
transfer rates of up to 40 MB/s; 64-bit implementations can achieve
twice this. Depending upon its configuration, VME can address up to
4 GB of memory, but it has no I/O space. Instead all /O operations
are memory mapped. An important variant of the VME bus is VXI.
This incorporates the 32-bit VME data bus as well as a number of
extensions for synchronizing and managing instruments on the bus.

Finally there are specialized implementations of PCI. Several
versions of this standard bus have been developed for use in indus-
trial embedded systems. One of the most promising of these is
CompactPCI. From a functional point of view, this is very similar to a
standard PCI system, although it incorporates a number of mechan-
ical and electrical design enhancements (including a different
connector, a new circuit board format and support for hot swapping
of circuit boards) which make it more suited to industrial use.

It is necessary to employ a suitable interface (or bridge) in order
to connect an external bus, such as Multibus or VXI, to the PC’s ISA
bus. The bridge performs many functions. For example, registers
or buffers belonging to devices present on the external bus must
be mapped into the PC’s I/O space or into its memory space.
Various techniques can be used. Multibus employs DMA techniques
(see Chapter 6) to transfer data between the PC and the external
bus. Memory mapping may be accomplished using a type of page

The PC as a platform for data acquisition 25

mapping similar to that used by the EMS. This permits regions of
the external bus’s memory space to be selectively mapped into a
64 KB page frame within the PC’s addressable range. Alternatively,
the external memory is sometimes mapped to the top of the PC’s
4 GB memory space. The latter option is only possible with 80386
or later processors and with operating system software that permits
32-bit addressing. Interrupt requests on the external bus must also
be mapped onto the PC’s own interrupt levels (see Chapter 5 for
an explanation of interrupts). Again, a number of different schemes
are used. The external bus may provide more interrupt signals than
are available on the PC and, in these instances, several external
bus interrupts may be mapped to the same PC interrupt level.
Alternatively, the external bus may support shared interrupt lines
and the different interrupt allocations must be resolved by the bridge
interface (possibly in conjunction with suitable software).

In general, the interface is implemented in such a way that the PC
software can regard the external bus simply as an extension of its
own PCI or ISA bus. Manufacturers of VME and STE bus devices may
supply driver programs for use in conjunction with DOS or Windows
applications running on the PC. The presence of the external bus
is thus largely transparent to the DA&C programmer, although the
devices connected to it (e.g. other PC boards, instruments and I/0
devices) can have a profound effect on what the software is able
to do. In addition, the bus implementation and bridge circuits can
sometimes introduce interrupt (and other) latencies which may have
to be addressed in real-time systems.

Other buses

Many other buses and communications standards, which are
commonly used in PC-based DA&C systems, have not yet been
mentioned: for example, IEEE-488, the Centronics parallel port,
and a variety of serial buses such as RS-232, RS-422, RS-485 and USB.
We will describe most of these in subsequent chapters. In addition,
there are several systems and protocols, such as HART (Highway
Addressable Remote Transfer) and BitBus, used in industrial sensing
and control applications, as well as a number of proprietary DA&C
buses (e.g. DT-Connect and Metrabus), which are outside the scope
of this book.

2 Software considerations

The architecture of the PC is reasonably well suited to data acqui-
sition. Most of the problems that occur in designing DA&C systems
result from limitations imposed by software. In fact, the most serious
obstacles to writing effective data-acquisition software are usually
generated by the PC’s operating systems. In this chapter we will
discuss the main requirements of data-acquisition software and will
describe some of the problems posed by using operating systems
intended for desktop applications in the more demanding environ-
ment of a real-time DA&C system.

2.1 An overview of DA&C software

In addition to code that acquires data or issues control signals, it
is usual for DA&C software to incorporate a number of support
modules which allow the system to be configured and maintained.
Other routines may be required for sorting, analysing and displaying
the acquired data. A typical DA&C program may contain the
following modules and facilities:

program configuration routines

diagnostics modules

system maintenance and calibration modules
run-time modules

device drivers

data analysis modules.

With the exception of device drivers, these modules are executed
more or less independently of each other (although it is, of course,
possible for multitasking systems to execute two or more concur-
rently). A brief overview of the main software components of a
typical DA&C system is given below. Particular systems may, of

Software considerations 27

course, differ somewhat in the detail of their implementation but
most applications will require at least some of these modules.

Program configuration routines

These software routines may be used for initial configuration of
elements of the system that the end user would normally never
(or very infrequently) have to change. This might include facilities
for selecting and setting up hardware and driver options; for spec-
ifying how data is to be routed through software ‘devices’ (such
as comparators, triggers, data-scaling operators, software latches,
logical operators, or graphical displays etc.); for defining start, stop
and error conditions, or for selecting delays, run times and data
buffer sizes.

Diagnostic modules

Once a DA&C program has been tested and debugged, any diag-
nostic routines which the designer may have included for testing
are often removed or disabled. However, their value should not
be underestimated in ‘finished’ (i.e. operational) systems. Routines
such as these can be invaluable tools during installation and for
subsequent system maintenance. Often, the dynamic and transient
nature of input/output (I/0) signals and the complex interrelation
between them can make it very difficult to reproduce a fault during
static testing with a voltmeter, continuity tester or a logic probe. Well-
designed diagnostic routines can be a great benefit to maintenance
engineers should a fault occur somewhere in the DA&C system.

With a little care and thought it is usually quite straightforward to
implement a range of simple but useful diagnostic routines. These
can be made to monitor aspects of the DA&C system either during
normal operation or when the system is placed in d special test
mode. On the simplest level, the diagnostic routines might check for
incorrect hardware or software configuration. They might also be
designed to perform continuous tests during normal operation of the
system. This might include checking for interruptions in communi-
cation between system components, ensuring correct timing of I/O
control signals, and monitoring or validating data from individual
Sensors.

Diagnostic software routines have their limitations, however, and
other means of fault finding must be used where appropriate.
Various items of test equipment such as voltmeters, logic probes, and
logic pulsers may also be needed. More sophisticated equipment is
sometimes required, especially when dealing with rapid pulse trains.

28 PCinterfacing and data acquisition

Digital storage, or sampling, oscilloscopes allow high frequency
waveforms to be captured and displayed. These are especially suited
to monitoring digital signals on high speed parallel buses or serial
communications links. Where it is necessary to see the relationship
between two or more time-varying signals, logic analysers may be
used. These devices possess multiple (typically 32) probes, each of
which detects the logic state of some element of the digital 1/0
circuit under test. Logic analysers are controlled by a dedicated
microcomputer and can be programmed to provide a snapshot
of the logic states present at the probes on a display screen. The
conditions for triggering the snapshot—i.e. a selected pattern of
logic states — can be programmed by the user. The device may also
be used for timing analysis, in which case it operates in a similar way
to a multiple-beam oscilloscope.

In addition to these items of equipment, purpose-built test
harnesses may be used in conjunction with diagnostic software.
Test harnesses may consist of relatively simple devices such as a
bank of switches or LEDs which are used to check the continuity
of digital I/O lines. At the other extreme a dedicated computer
system, running specially designed test software, may be required
for diagnosing problems on complex DA&C systems. See the Soft-
ware production and testing section later in this chapter for more on
this topic.

System maintenance and calibration modules

Tasks such as calibrating sensors, adjusting comparators, and tuning
control loops might need to be carried out periodically by the user.
Because any errors made during calibration or control loop tuning
have the potential to severely disrupt the operation of the DA&C
system, it is essential for the associated software routines to be as
robust and simple to use as possible.

One of the most important of these system maintenance tasks is
calibration of analogue input (i.e. sensor) channels. Many sensors
and signal-conditioning systems need to be recalibrated periodi-
cally in order to maintain the system within its specified operating
tolerance. The simplest approach (from the program designer’s
perspective) is to require the user to manually calculate scaling
factors and other calibration parameters and then to type these
directly into a data file etc. It goes without saying that this approach
is both time consuming and error prone. A more satisfactory alterna-
tive is to provide an interactive calibration facility which minimizes
the scope for operator errors by sampling the sensor’s input at
predefined reference points, and then automatically calculating the

Software considerations 29

required calibration factors. We will resume our discussion of this
subject in Chapter 9 which covers scaling and interactive calibration
techniques in some detail.

Run-time modules

These, together with the device drivers, form the core of any DA&C
system. They are responsible for performing all of the tasks required
of the system when it is ‘live’ - e.g. reading sensor and status inputs,
executing control algorithms, outputting control signals, updating
real-time displays or logging data to disk.

The nature of the run-time portion varies immensely. In some
monitoring applications, the run-time routine may be very simple
indeed. It might, for example, consist of an iterative polling loop that
repeatedly reads data from one or more sensors and then perhaps
stores the data in a disk file or displays it on the PC’s screen. In
many applications other tasks may also have to be carried out. These
might include scaling and filtering the acquired data, or executing
dynamic control algorithms.

More complex real-time control systems often have very stringent
timing constraints. Many interrelated factors may need to be consid-
ered in order to ensure that the system meets its real-time response
targets. It is sometimes necessary to write quite elaborate interrupt-
driven buffered I/O routines or to use specially designed real-time
operating systems (RTOSs) in order to allow accurate assessments
of response times to be made. The software might be required to
monitor several different processes in parallel. In such cases, this
parallelism can often be accommodated by executing a number
of separate program tasks concurrently. We will discuss concurrent
programming later in this chapter.

Drivers

A diverse range of data-acquisition units and interface cards are now
on the market. The basic functions performed by most devices are
very similar, although they each tend to perform these functions in a
different manner. The DA&C system designer may choose from the
large number of analogue input cards that are now available. Many
of these will, for example, allow analogue signals to be digitized
and read into the PC, but they differ in the way in which their
software interface (e.g. their control register and bit mapping) is
implemented.

To facilitate replacement of the data-acquisition hardware it is
prudent to introduce a degree of device independence into the

30 PCinterfacing and data acquisition

software by using a system of device drivers. All1/0 is routed through
software services provided by the driver. The driver’s service routines
handle the details of communicating with each item of hardware.
The main program is unaware of the mechanisms involved in the
communication: it only knows that it can perform I/0 in a consistent
manner by calling a well-defined set of driver services. In this way
the data-acquisition hardware may be changed by the end user and,
provided that a corresponding driver is also substituted, the DA&C
program should continue to function in the same way. This provides
some latitude in selecting precisely which interface cards are to be
used with the software. For this reason, replaceable device drivers are
commonplace in virtually all commercial DA&C programs. Protected
operating systems such as Windows NT perform all I/O via a complex
system of privileged device drivers.

Data analysis modules

These modules are concerned mainly with post-acquisition anal-
ysis of data. This might include, for example, spectral analysis
or filtering of time-varying signals, statistical analysis (including
Statistical Process Control (SPC)), and report generation. Many
commercial software packages are available for carrying out these
activities. Some general-purpose business programs such as spread-
sheets and graphics/presentation packages may be suitable for
simple calculations and for producing graphical output, but there
are a number of programs which cater specifically for the needs of
scientists, engineers and quality control personnel. Because of this,
and the fact that the details of the techniques involved are so varied,
it is impracticable to cover this subject in the present book. A variety
of data reduction techniques are described by Press ¢t al. (1992) and
Miller (1993).

2.2 Data acquisition and control in real time

Data-acquisition systems that are designed for inspection or dimen-
sional gauging applications may be required to gather data at only
very low speeds. In these cases, the time taken to read and respond to
a series of measurements may be unimportant. Because such systems
usually have quite undemanding timing requirements, they tend to
be relatively straightforward to implement. The choice of computing
platform, operating system and programming language is usually not
critical. A surprisingly large number of industrial DA&C applications
fall into this category. However, many don’t.

Software considerations 31

High speed DA&C normally has associated with it a variety of
quite severe timing constraints. Indeed the PC and its operating
systems cannot always satisfy the requirements of such applications
without recourse to purpose-built hardware and/or special coding
techniques. High speed processors or intelligent interface devices
may be required in order to guarantee that the system will be capable
of performing certain DA&C operations within specified time limits.

A real-time DA&C system is one in which the time taken
to read data, process that data and then issue an appropriate
response is negligible compared with the timescale over which
significant changes can occur in the variables being monitored
and/or controlled. There are other more precise definitions, but
this conveys the essence of real-time data acquisition and control.

A typical example of a real-time application is a furnace control
system. The temperature is repeatedly sampled and these readings
are then used to control when power is applied to the heating
element. Suppose that it is necessary to maintain the temperature
within a certain range either side of some desired setting. The system
detects when the temperature falls to a predefined lower limit and
then switches the heating element on. The temperature then rises to
a corresponding upper limit, at which point the monitoring system
switches the heating element off again, allowing the temperature to
fall. In this way, the temperature repeatedly cycles around the desired
mean value. The monitoring system can only be said to operate in
real time, if it can switch the heating element in response to changes
in temperature quickly enough to maintain the temperature of the
furnace within the desired operating band.

This is not a particularly demanding application — temperature
changes in this situation are relatively slow, but it does illustrate
the need for real-time monitoring and control systems to operate
within predefined timing constraints. There are many other examn-
ples of real-time control systems in the process and manufacturing
industries (such as control of reactant flow rate, controlling compo-
nent assembly machines, and monitoring continuous sheet metal
production, for example) which all have their own particular timing
requirements. The response times required of real-time systems
might vary from a few microseconds up to several minutes or longer.
Whatever the absolute values of these deadlines, all real-time systems
must operate to within precisely defined and specified time limits.

Requirements of real-time DA&C systems

As mentioned previously, normal PC operating systems (DOS,
Microsoft Windows and OS/2) do not form an ideal basis for

32 PC interfacing and data acquisition

real-time applications. A number of factors conspire to make the
temporal response of the PC somewhat unpredictable. Fortunately
there are ways in which the situation can be improved. These tech-
niques will be introduced later in this section, but first we will
consider some of the basic characteristics that a real-time computer
system must possess. In addition to the usual properties required of
any software, a real-time system must generally satisfy the following
requirements.

Requirement 1: high speed

The most obvious requirement of a real-time system is that it should
be able to provide adequate throughput rates and response times.
Fortunately, many industrial applications need to acquire data at
only relatively low speeds (less than one or two hundred readings
per second) and need response times upwards of several tens of
milliseconds. This type of application can be easily accommodated
on the PC. Difficulties may arise when more rapid data acquisition
or shorter responses are required.

Obviously a fast and efficient processor is the key to meeting this
requirement. As we have already seen, modern PCs are equipped
with very powerful processors which are more than adequate for
many DA&C tasks. However, the memory and 1/0 systems, as well as
other PCsubsystems, must also be capable of operating at high speed.
The disk and video subsysterns are notorious bottlenecks, and these
can severely limit data throughput when large quantities of data are
to be displayed or stored in real time. Fortunately, most modern PC
designs lessen this problem to some extent by making use of high
speed buses such as the Small Computer Systems Interface (SCSI)
and the PCI local bus. Modern Pentium-based PCs are very powerful
machines and are capable of acquiring and processing data at ever
increasing rates. Older XT and 80286- or 80386-based computers
offer a lower level of performance, but are still often adequate in less
demanding applications.

Requirement 2: determinism

A deterministic system is one in which itis possible to precisely predict
every detail of the way in which the system responds to specific events
or conditions. There is an inherent predictability to the sequence
of events occurring within most computer programs, although the
timing of those events may be more difficult to ascertain. A more
practical definition of a deterministic system is one in which the times
taken to respond to interrupts, perform task switches and execute
operating system services etc. are well known and guaranteed. In

Software considerations 33

short, a deterministic system has the ability to respond to external
events within a guaranteed time interval.

Determinism is an important requirement of all real-time systems.
It is necessary for the programmer to possess a detailed knowledge
of the temporal characteristics of the operating system and device
drivers as well as of the DA&C program itself. This knowledge is an
important prerequisite for the programmer to assess the worst-case
response of the system and thus to ensure that it meets specified
deadlines.

Requirement 3: high resolution timekeeping and pacing
facilities

In addition to being able to operate within given time constraints, it
is important for most real-time systerns to be able to precisely measure
elapsed time. This ability is essential for the software to accurately
schedule I/O operations and other tasks. Where data is acquired
at irregular or unpredictable rates, it is particularly important to be
able to time stamp readings and other events. An accurate timing
facility is also an invaluable aid to fault finding in dynamic systems.
The PC is equipped with a real-time clock and a set of timers which
are useful for this purpose. The timers function by means of the
PCs interrupt system and provide a powerful means of pacing a
data-acquisition sequence or for generating precisely timed control
signals. The PC’s timing facilities are discussed briefly in Chapter 3.

Requirement 4: flexible interfacing capability

It should be obvious that any data-acquisition and control system
should be able to interface easily to sensors, actuators and other
equipment. This requirement covers not only the PC’s physical
interfacing capacity (i.e. the presence of appropriate plugs, sockets
and expansion slots), but also encompasses an efficient means of
transferring data in and out of the computer.

The PC possesses a very flexible interfacing system. As mentioned
previously, this is implemented by means of the standard ISA, EISA,
MCA or PCI expansion buses or PCMClA slots. The PC also facilitates
processor-independent high speed 1/0 using techniques known as
Direct Memory Access (DMA) and bus mastering. These facilities
give the PC the capability to interface to a range of external buses and
peripherals (e.g. data-logging units, sensors, relays and timers) via
suitable adaptor cards. Indeed, adaptor cards for RS-232 ports and
Centronics parallel ports, which can be used to interface to certain
types of DA&C hardware, are an integral component of almost all
PCs. Interfacing, data transfer and DMA are discussed in more detail
in Chapters 3, 6, 7 and 8.

34 PCinterfacing and data acquisition

Requirement 5: ability to model real-world processes

It should also be apparent to the reader that the logical structure
of a real-time DA&C system should adequately mirror the processes
that are being monitored. As we shall see on the following pages
this requirement sometimes necessitates using a specially designed
real-time operating system. In less demanding applications, however,
such a step is unnecessary provided that due care is taken to avoid
some of the pitfalls associated with standard ‘desktop’ operating
systems.

Requirement 6: robustness and reliability

Again, this is a rather obvious requirement but its importance
cannot be overstated. A number of steps can be taken to maximize
the reliability of both hardware and software. We will return to this
issue later in this chapter.

Simple DA&C systems

Some PC-based DA&C systems are fairly undemanding in regard
to the detailed timing of 1/O events. Many applications involve
quite low speed data logging, where samples and other events occur
at intervals of several seconds or longer. In other cases a high
average data-acquisition rate might be needed, but the times at which
individual readings are obtained may not be subject to very tight
restrictions. Often, only a single process (or a group of closely
coupled processes) will have to be monitored and in these cases it is
usually sufficient to base the run-time portion of a DA&C program
on a simple polling loop as illustrated in Figure 2.1.

This figure shows the sequence and repetitive nature of events that
might occur in a simple single-task application. When some prede-
fined start condition occurs (such as a keystroke or external signal)
the program enters a monitoring loop, during which data is acquired,
processed and stored. The loop may also include actions such as
generating signals to control external apparatus. The program exits
from the loop when some desired condition is satisfied —i.e. after
a certain time has elapsed, after a predefined number of readings
have been obtained or when the user presses a key. In some cases,
additional processing may be performed once the data-acquisition
sequence has terminated.

There are, of course, many variations on this basic theme, but the
essence of this type of program structure is that all processing is
performed within a single execution thread. This means that each
instruction in the program is executed in a predefined sequence,

Software considerations 35

INITIALIZE
Displays, files, program
variables

Y
WAIT FOR START CONDITION

Keystroke, external
signal, elapsed time /
alarm

4

WAIT FOR
PACING SIGNAL

¥

ACQUIRE - o m = -
DATA

[}

SCALE / ONE OR MORE
LINEARIZE PHYSICAL
7 PROCESSES

CONTROL
ALGORITHM

¥

UPDATE
) DISPLAYS

¥

LOG DATA
{File, printer etc.)

No

{keystroke, time,
data count
etc.)

POST-ACQUISITION PROCESSING

Update displays, close files
analyse data, pass / fail
tests

Figure 2.1 Schematic illustration of the structure of a typical DA&C program
based on a simple polling loop

36 PC interfacing and data acquisition

one after the other. There is no possibility that external events will
cause parts of the program to be executed out of sequence. Any tasks
which the computer does carry out in parallel with the execution
of the program, such as responding to keystrokes, ‘ticks’ of the in-
built timer or to other system interrupts, are essentially part of the
operating system and are not directly related to the functioning of
the DA&C program.

It should be noted that events such as a timer or keyboard
interrupt will temporarily suspend execution of the DA&C program
while the processor services the event (increments the time counter
or reads the keyboard scan code). This means that the timing of
events within the interrupted program will not be totally predictable.
However, such a system is still considered to operate in real time if
the uncertainty in the timing of the data-acquisition cycle is small
compared with the timescales over which the monitored variables
change.

Systems with more stringent timing requirements

All real-time systems have precisely defined timing requirements. In
many cases, these requirements are such that the system must be
designed to respond rapidly to events which occur asynchronously
with the operation of the program. In these cases, a simple polling
loop may not guarantee a sufficiently short response time. The usual
way to achieve a consistent and timely response is to use interrupts.

Interrupts

Interrupts are the means by which the system timer, the keyboard
and other PC peripherals request the processor’s attention. When
service is required, the peripheral generates an interrupt request
signal on one of the expansion bus lines. The processor responds, as
soon as possible, by temporarily suspending execution of the current
program and then jumping to a predefined software routine. The
routine performs whatever action is necessary to fulfil the request
and then returns control to the original program, which resumes
execution from the point at which it was interrupted.

Because an interrupt handling routine is executed in preference
to the main portion of the program, it is considered to have a higher
priority than the non-interrupt code. The PC has the capacity to
deal with up to 15 external interrupts (8 on the IBM PC, XT and
compatibles) and each of these is allocated a unique priority. This
prioritization scheme allows high priority interrupts to be allotted to
the most time-critical tasks. With appropriate software techniques,

Software considerations 37

the programmer may adapt and modify the interrupt priority rules
for use in real-time applications.

The PC is equipped with a very flexible interrupt system, although
the gradual evolution of the PC design has left something to be
desired in terms of the allocation of interrupts between the processor
and the various PC subsystems. When using interrupts, you should
bear in mind two important considerations (although there are
many others): re-entrancy and interrupt latency. These topics are
introduced below. The PC’s interrupt system, and the problems of
re-entrancy and interrupt latency, are described in more detail in
Chapter 5.

Re-entrant code and shared resources

This is relevant to all types of software, not just to real-time DA&C
programs. Because external interrupts occur asynchronously with the
execution of the program, the state of the computer is undefined
at the time of the interrupt. The interrupt handling routine must,
therefore, ensure that it does not inadvertently alter the state of
the machine or any software running on it. This means that it must
(a) preserve all processor registers (and other context information),
and (b) refrain from interfering with any hardware devices or data to
which it should not have access. The last requirement means that care
should be taken when calling any subroutines or operating system
services from within the interrupt handler. If one of these routines
happened to be executing at the time that the interrupt occurred,
and the routine is then re-entered from within the interrupt handler,
the second invocation may corrupt any internal data structures that
the routine was originally using. This can obviously cause severe
problems — most likely a system crash — when control returns to the
interrupted process. Of course, software routines can be written to
allow multiple calls to be made in this way. Such routines are termed
re-entrant.

Unfortunately most MS-DOS and PC-DOS services are not re-
entrant, and so calls to the operating system should generally be
avoided from within interrupt handlers. Specially designed real-
time operating systems (RTOSs) are available for the PC and these
normally incorporate at least partially re-entrant code. The run-
time libraries supplied with compilers and other programming tool
kits may not be re-entrant. You should always attempt to identify
any non-re-entrant library functions that you use and take appro-
priate precautions to avoid the problems outlined above. A similar
consideration applies when accessing any system resource (including
hardware registers or operating system or BIOS data) which may be
used by the main program and/or by one or more interrupt handlers.

38 PCinterfacing and data acquisition

Interrupt latencies

This consideration is more problematic in real-time systems. The
processor may not always respond immediately to an interrupt
request. The maximum time delay between assertion of an inter-
rupt request signal and subsequent entry to the interrupt handler
routine is known as the interrupt latency. The length of the delay
depends upon the type of instructions being executed when the
interrupt occurs, the priority of the interrupt relative to the code
currently being executed, and whether or notinterrupts are currently
disabled. Because interrupts are asynchronous processes, the effect
of these factors will vary. Consequently, the delay in responding to
an interrupt request will also vary. In order to ensure that the system
is able to meet specified real-time deadlines, it is important for the
system designer to quantify the maximum possible delay or interrupt
latency.

By careful design it is possible to ensure that the code within a
DA&C program does not introduce excessive delays in responding
to interrupts. However, most programs occasionally neced to call
operating system or BIOS services. The programmer must ensure
that the system will still respond within a specified time, even if
an interrupt occurs while the processor is executing an operating
system service. Unfortunately, standard desktop operating systems
such as DOS and Microsoft Windows are not designed specifically
for real-time use. These operating systems generally exhibit quite
long interrupt latencies (particularly Windows). Typical figures are
in the order of 10-20 ms, although you should not place too much
reliance on this value as it will vary quite considerably between
applications. Unfortunately, interrupt latency data for Windows and
MS-DOS is hard to come by. Such operating systems are known as
non-deterministic.

The magnitude of the problem can be reduced if real-time
operating systems (RTOSs) are used. These operating systems are
designed so as to minimize interrupt latencies. They are usually
essential if latencies of less than about 1 ms are required. The
interrupt latencies applicable to various parts of the RTOS are also
generally documented in the operating system manual, allowing the
programmer to ensure that the whole system is capable of meeting
the required response deadlines.

Concurrent processing

Systems monitored or controlled by real-time DA&C software often
consist of a number of separate processes operating in parallel. If
these processes are asynchronous and largely independent of each

Software considerations 39

other it may be very difficult to represent them adequately in a
simple, single-threaded program. It is usually more convenient to
model parallel processes within the computer as entirely separate
programs or execution threads. This arrangement is illustrated in
Figure 2.2 which shows three separate processes being executed
in parallel (i.e. three separate instances of the single-task loop of
Figure 2.1).

Ideally, each process would be executed independently by a
separate computer. We can go some way towards this ideal situa-
tion by delegating specific real-time tasks to distributed intelligent
data-logging or control modules. Many factory automation systems
adopt this approach. Dedicated data-acquisition cards, with on-board
memory buffers and an intrinsic processing ability, can also be used to
provide a degree of autonomous parallel processing. Other parallel
processing solutions are also available, but these generally involve
the use of separate multiprocessing computer systems and, as such,
are beyond the scope of this book.

The most common way of modelling parallel processes on the PC
is to employ concurrent programming (or multitasking) techniques.
Most modern PCs are equipped with 80386, 80486 or Pentium
processors and these incorporate features which greatly facilitate
multitasking. On single-processor systems such as the PC, concur-
rent execution is achieved by dividing the processor’s time between
all executing programs. The processor executes sections of each
program (or task) in turn, switching between tasks frequently enough
to give the impression that all tasks are being executed simultane-
ously. This technique is used in multitasking operating systems such
as OS/2, Windows and UNIX.

Scheduling

Clearly, there must be a set of rules governing how and when task
switching is to occur. These rules must also define the proportions of
time assigned to, and the priorities of, each program. The process of
allocating execution time to the various tasks is known as scheduling
and is generally the responsibility of the operating system. The
basic principles of scheduling are quite straightforward although the
details of its implementation are somewhat more complex.

There are several ways in which a task scheduler can operate. In
a system with pre-emptive scheduling, the operating system might
switch between tasks (almost) independently of the state of each task.
In non-pre-emptive scheduling, the operating system will perform a
task switch only when it detects that the current task has reached a
suitable point. If, for example, the current task makes a call to an
operating system service routine, this allows the operating system to

$855900.d [8jjeied JO [011U00 pue BulIOIUOW JUSLNIUOD JO UCHRIISNY J11eWsydS Z'Z anbiy

Cona)

H

ONISS3ID0dd
NOILISINQOvLSOd

ONISS3004dd
NOILISINDOv1S0d

ONISS3204Hd
NOILISINDIV4SOd

S3A S3A S3IA
ON ON ON
<~~~ T04INOD
3 z L

$53204d JSAIVNY $$3004d JASKIVNY $S320Yd ISATYNY

TYDISAH TVOISAHd TVDISAHd
F——="> 34IN0OJV -~ ——== 3IHINDIVY - ——— > 3HINOOV

J\

(CLvis)

€ 553004d

(lyvis)

¢ SS3004d

(Lwwis)

_
_
|
_
_
|
_
_
_
_
_
_
<T=" 108INOD | | ===~ T04LNOD

_
_
|
_
_
_
|
_
_
_
! I $33004d
|

Software considerations 41

check whether the task is idle (e.g. waiting for input). If it is idle,
the operating system may then decide to perform more useful work
by allowing another process to execute. This makes for efficient
use of available processor time, but, as it relies on an individual
task to initiate the switch, it does allow poorly behaved tasks to hog
the processor. This is obviously undesirable in real-time applications
because it may prevent other processes from executing in a timely
manner. Pre-emptive scheduling, on the other hand, provides for a
fairer division of time between all pending processes, by making the
operating system responsible for regularly initiating each task switch.

Task switching, threads and processes

Whenever the operating system switches between tasks it has to save
the current context of the system (including processor registers,
pointers to data structures and the stack), determine which task
to execute next, and then reload the previously stored context
information for the new task. This processing takes time, which
in a real-time operating system should be as short as possible.
Most multitasking ‘desktop’ operating systems use the advanced
multitasking features available on 80386 and later processors to
implementa high degree of task protection and robust task switching.
However, this type of task switching can be too time consuming for
use in high performance real-time systems.

Other operating systems, such as those designed for real-time
use, minimize the switching overhead by allowing each process (i.e.
executing program) to be divided into separate execution threads.
Threads are independent execution paths through a process. They
can generally share the same code and data areas (although they
each tend to have their own stack segment), and are normally
less isolated from each other than are individual processes in a
multitasking system. There is also less context information to be
saved and restored whenever the operating system switches between
different threads, rather than between different processes. This
reduces the amount of time taken to perform the context switch.
Although not intended for hard real-time applications, Microsoft
Windows NT supports multi-threaded processes.

The term ‘task’ is used somewhat loosely in the remainder of this
chapter to refer to both processes and threads.

Real-time design considerations: a brief overview

As mentioned previously many PC-based data-acquisition systems will
not be required to operate within the very tight timing constraints
imposed in real-tine control applications. However, it is useful for

42 PC interfacing and data acquisition

programmers involved in producing any type of time-dependent
application to have a basic understanding of the fundamentals
of real-time design. Even if you do not plan to implement these
principles in your own systems, the following introduction to the
subject may help you to avoid any related potential problems.

Structure of real-time multitasking programs

A typical real-time system might consist of several tasks running in
parallel. The division of processing between tasks will usually be
assigned on the basis of the real-world processes which the system
must model. Each task will often be assigned to a separate, and more
or less independent, physical process.

A typical example is the control of a manufacturing process
for producing rolled metal or polymer sheet. One task might be
dedicated to monitoring and controlling product thickness. Another
may be assigned to regulating the temperature to which the material
is heated prior to being passed through the rollers. Yet another task
could be used for periodically transferring thickness, temperature
and status information to the display. A similar arrangement is shown
in Figure 2.3.

The interface between the various tasks and the data-acquisition
hardware is often implemented by means of one or more interrupt
handlers. These are normally contained within some form of dedi-
cated device driver and are designed to allow the system to respond
quickly to external events. Data acquired via an interrupt handler
might be stored in a memory buffer until the associated task is able
to read and process it. The individual tasks are responsible for opera-
tions such as data logging, display maintenance or data reduction. A
task might also be assigned to perform real-time calculations or tests
on the acquired data. The results can then be used as the basis for
generating control signals which are output to external equipment.
In general, time-critical operations are performed by high priority
tasks, allowing them to take precedence over less critical operations
such as managing the user interface.

There is generally a need for some form of intertask communi-
cation. This facility is often based on the use of message queues
and memory buffers. Where shared memory or other resources are
used, special protection mechanisms must be employed to mediate
between tasks. Interprocess communication and protection mecha-
nisms are provided by real-time operating systems (RTOSs). We will
consider some of these facilities in more detail in the following
sections. Additional information on real-time and multitasking
systems can be found in the texts by Evesham (1990), Adamson
(1990), Ben-Ari (1982) and Bell et al. (1992).

WaIsAS Buysenynuu sLun-jee. [eoldA; e jo eintonis jenideouo) gz 94nbi4

S$S300Hd TVIISAHd

A
Y Y y
H31ANVH SADIAYIS 43TANVH
LdNYYILNI ol LdNHYILN
sjeubis sjeubis
0. 0.
v |0J1u0) jonuo) Y
4344N9 V1va H334N8 V1va
3N3IN0D
3OVSSIN /H344Ng
eleg eieq
Y Y Y
1011U00 + $58004d ‘peAY aoe}lalul Jasn |0AU0D + $S800.d ‘peay
{ALIHOIHd HOIH) sAe(dsip awi-|eay (ALIBOIYd HOIH)
TOYLINOD {ALIHOIHd MOT) JOHLINOD
JUNLYHIHNTL-E NSVL 31vadN AV1dSIA -2 XSV1 DNIDVHS HITIOH- | ¥SVL
V\mma 1 -7
2 -
YUy ~{¥3INAIHIS IAILINI YD |-~
+
N3LSAS ONILYHIJO

44 PC interfacing and data acquisition

Accessing shared resources and interprocess communication

Although the processes in a multitasking system tend to operate
more or less independently of each other, there usually has to be
some degree of communication between them in order to transfer
data or to synchronize certain features of their operation.

Interprocess communication involves accessing a shared resource
such as a buffer or message queue that is maintained somewhere in
the PC’s memory. The operating system is generally responsible for
coordinating access to these structures, and to other system resources
such as disk drives etc.

Whenever a task or an interrupt handler needs to access any shared
resource — including hardware, operating system services and data
structures — great care must be taken to avoid conflicting with any
other tasks that may be in the process of accessing the same resource.
Consider a section of code that accesses a shared resource. If the
code could possibly malfunction as a result of being pre-empted (or
interrupted) by a task that accesses the same resource, the code is
known as a critical section. It is necessary to protect critical sections
from this type of interference by temporarily blocking task switches
and/or interrupts until the critical section has been completed. This
requirement is known as mutual exclusion.

Mutual exclusion can be enforced by means of semaphores. These
are essentially flags or tokens that are allocated by the operating
system to any process wishing to access a particular resource. A
task may not proceed into a critical section until it has obtained
the appropriate semaphore. In some systems, implementations of
semaphores, for the purpose of enforcing mutual exclusion, are
referred to as Mutexes.

Deadlocks and lockouts

A deadlock occurs when all processes within a system become
suspended as a result of each process waiting for another to perform
some action. A lockout is similar, but does not affect all tasks. It arises
when conditions brought about by two or more processes conspire to
prevent another process from running. Great care must be taken to
avoid the possibility of deadlocks or lockouts in any real-time system.

Priorities

Many multitasking systems allow priorities to be assigned to the
individual tasks. Whenever the scheduler performs a task switch it
uses the priorities assigned to each task to decide which one to
execute next. This has the obvious benefit in real-time systems of
allowing the most important or time-critical tasks to take precedence.

Software considerations 45

In some systems, priorities can be changed dynamically. Priority
systems can be quite complex to implement and a number of
special programming techniques may have to be used, both within
the application program and within the operating system itself, to
ensure that the priorities are always applied correctly.

A common problem is priority inversion. If a low priority task
holds a semaphore and is then pre-empted by a higher priority task
that requires the same semaphore, the operating system will have
to let the low priority task continue to run until it has released the
semaphore. If, meanwhile, the low priority task is pre-empted by a
task with an intermediate priority, this will run in preference to the
highest priority task. Some of the solutions to priority inversion (such
as priority inheritance which dynamically alters the priority of tasks)
raise additional problems. Certain RTOSs go to great lengths to
provide generally applicable solutions to these problems. However,
many of these difficulties can be avoided if the programmer has a
detailed understanding of all of the software components running
on the system so that potential deadlocks or other incompatibilities
can be identified.

2.3 Implementing real-time systems on the PC

Thanks to its expansion bus and flexible interrupt system, the
PC has a very open architecture. This allows both hardware and
software subsystems to be modified and replaced with ease. Although
this openness is a great benefit to designers of DA&C systems,
it can introduce problems in maintaining the system’s real-time
performance. If non-real-time code is introduced into the system,
in the form of software drivers which trap interrupts or calls to
operating system services, it may no longer be possible to guarantee
that the system will meet its specified real-time targets. It should be
clear that there is a need to exercise a considerable degree of control
over the software subsystems that are installed into the PC.

In general, the architecture of the PC itself is reasonably well suited
to real-time use. Its operating system is often the limiting factor in
determining whether the PC can meet the demands of specific
real-time applications. Standard MS-DOS or PC-DOS, Microsoft
Windows and the PC’s BIOS present a number of difficulties which
may preclude their use in some real-time systems. However, there
are several specially designed real-time operating systems (RTOSs),
including real-time versions of DOS and the BIOS, which can help
to alleviate these problems. Real-time operating systems can be quite
complex, and different implementations vary to such a degree that

46 PC interfacing and data acquisition

it is impracticable to attempt a detailed coverage here. The reader
is referred to manufacturer’s literature and product manuals for
details of individual RTOSs.

As we have already noted, standard desktop operating systems
(e.g. MS-DOS and Microsoft Windows) were not designed specifi-
cally for real-time use. Interrupt latencies and re-entrancy can be
problematic. These operating systems frequently embark on lengthy
tasks, which can block interrupt processing for unacceptable (and
possibly indeterminate) lengths of time. Some of the instructions
present on 80386 and subsequent processors, which were designed
to facilitate multitasking (and which are used on systems such as
Windows, OS/2 and UNIX), are not interruptible and can occupy
several hundred processor cycles. Using these operating systems
and instructions can increase interrupt latencies to typically several
hundred microseconds or more.

Table 2.1 lists a few example applications which require different
degrees of timing precision and different sampling rates. Notice
that where timing constraints are more relaxed, non-deterministic
operating systems such as Windows may be used in conjunction with
slow software-controlled DA&C hardware. Tighter timing constraints
(near the bottom of the table) necessitate the use of buffered DA&C
cards, hardware triggering, autonomous data loggers or specialized
RTOSs. Note that the timing figures and sampling rates listed in the
table are intended only as a rough guide and in reality may vary
considerably between applications.

The BIOS

The PC’s BIOS can be a source of problems in real-time applications.
Several of the BIOS services can suspend interrupts for unpredictable
lengths of time. Some of the BIOS may also be non-re-entrant. At
least one manufacturer produces a real-time version of the BIOS for
use with its real-time DOS, and another supplies an independent
real-time BIOS that can be used with MS-DOS or compatible systems
(including real-time DOSes). These BIOSes provide many standard
low level 1/0 facilities while maintaining a short and guaranteed
interrupt latency.

DOS

MS-DOS is a relatively simple operating system designed for execu-
tion in real mode. It is largely non-re-entrant, and it does not
possess multitasking capabilities or the deterministic qualities (e.g. a
short and well-defined interrupt latency) required for real-time use.

‘pauteiutew si aleJ bundwes abesee aeinooe Bulunsse uawaimsesw 8jbuis e 40y,

"pied DAV PaIsyNg ‘Ise) YIm SO LY 10 IN SMOPUIM 'SOU-SIN 1= 000L=< (jo13u0d ou) Bunssl oipny
"Sp.ieD O/} pa1e|os-oido [0JIUOD BUYdBW pUB
pue pied DAV palayng pue paiebbul-aiempiey ‘paads ybiy yum SOLY 1> 0001 < Bunsel jooid aalonisag
[0JIU0D BUIYORW
yum Buniojuowd
gelicel JuBWIBE|dSIP/PED)
ORv(PeJaNg 'pajj0sIucd-dlempiey YiIm 86/LN SMOPUIAA 10 SOC-SIN A" 00¢-01 olweuAq
Bunsal
"UOIIBIUBWINIISUI 881Y-337) JO pied jusuodwiod jenuewl
ORV(A peleyng ‘pal1abbiil-alempiey YIM 86/1N SMOPUIM 10 SOJ-SIN S-¢ 05-01 Buunp Bunojuow peo
"1911011u00/18660| BlEp SNOWOUOINE
10 "HSS pue pie2 DRy PaJapng palabbul-aiempiey Yum | N SMOPUIA
"19660| e1EP ZEZ-SY 1O uonionpoud |elaw
‘HSS pue pied ORy(Q pelebbui-aiemijos peads wnipaw yium SOG-SIN oL-¢ 05-6 199US Ul |041U0D Jajjoy
"18110,1u00/18660| BB SNOWOUOINE
10 pled DRY(Q polabbui-aiempley pue paiayng Yiim | N SMOPUIAA
‘s9|INpowl |0J1u0d/uonisinboe j0.U09 ss8o04d
e1ep 1od |euas 10 pIed DAY Paloyng-uou paads mo| yim SOJ-SIN 05 G-1 |EDILIBYD pasds MmO
"g|inpow Buisuas ainjesodwial 1usebi||91ul G8H-SY JO p1ed [041U0D
JQV (paJayng-uou) peads MmO " | N SMOPUIAA JO 86 SMOPUIM 'SOQ-SIN 001 1> ainjesoduwal soeuin
-15660| elEp 10d |B1IAS [SUUBYDINW JO PIBD 0001
DAYV (paiayng-uou) paads MO “| N SMOPUINA 10 86 SMOPUIAA ‘'SOQ-SIN X M3 a|qeondde 10N Buibneb jeuoisuswitp of1e1s
uoneuIqUIoD aiempley pue LWaisAs Bunessdo ajqissod (sw) {,-S seydwes) uoneoyddy
o Awuiepsoun aiel
Buiwun Buiduwies
81qISSILUIE xoiddy

sawibal buituil SNoLIBA JO BAllelUSaSa.de) suoiesydde DRy

L'Zsjqgel

48 PC interfacing and data acquisition

Nevertheless, it is inexpensive and is often suitable as the basis for
simple DA&C systems provided that the real-time requirements are
not too stringent. For many low and medium speed data-acquisition
applications, in which timing accuracies of the order of 10 ms or so
are needed, DOS is ideal, being both relatively simple and compact.
Real-time control applications are often more demanding, however.

If timing is critical, it may be prudent to turn to one of the specially
designed real-time versions of DOS. These tend to be ROMable and
suitable for use in embedded PCsystems. It should be noted, though,
that not all ROMable DOSes are fully deterministic —i.e. interrupt
latencies and other timing details may not be guaranteed.

There are now several real-time versions of DOS on the market
such as General Software Inc.’s Embedded DOS and Datalight Inc.’s
ROM-DOS (available in the UK from Great Western Instruments
Ltd and Dexdyne Ltd, respectively). Real-time DOS systems are
fully deterministic, having well-defined interrupt latencies, and are
generally characterized by their ability to execute multiple processes
using pre-emptive task scheduling. Other facilities, such as task
prioritization and the option to utilize non-pre-emptive scheduling
are also often included.

The multitasking capabilities of real-time DOSes contrasts with
those of desktop operating systems. Because the requirements of
most real-time applications are relatively simple, the large quantities
of memory and the task protection features offered by heavy-
weight operating systems like Windows and OS/2 can often be
dispensed with.

Real-time DOSes are designed to minimize task switching over-
heads. Each task switch may be accomplished in a few microsec-
onds and interrupt latencies are often reduced to less than about
20 ps, depending, of course, on the type of PC used. Detailed
timing information should be provided in the operating system
documentation.

These operating systems are also generally re-entrant to some
extent. This allows DOS services to be shared between different tasks
and to be safely called from within interrupt handiers. Other features
found in real-time DOSes may include mutual exclusion primitives
(semaphores) for accessing shared resources and for protecting crit-
ical sections; software timers; interprocess communication features
such as support for message queues; and debugging facilities. These
operating systems also supporta range of other conﬁgurable features
which allow the operating system to be adapted for use in a variety
of different real-time or embedded systems.

Real-time DOSes retain a high degree of compatibility with MS-
DOS’s interrupts, file system and installable device drivers. Networks

Software considerations 49

may also be supported. Note that version numbers of real-time DOSes
may bear no relation to the version of MS-DOS which they emulate,
Some systems provide basic MS-DOS version 3.3 compatibility while
others also provide some of the features found in more recent
releases of MS-DOS.

In some cases, at least partial source code may also be available,
allowing the operating system itself to be adapted for more special-
ized applications. The main drawback with real-time versions of DOS
is that they can be considerably more expensive, particularly for use
in one-off systems. Royalties may also be payable on each copy of the
operating system distributed.

DOS extenders and DPMI

With the proliferation of sophisticated multitasking operating
systems, DOS extenders are now used much less frequently than
they were in the early 1990s. However, if you have to develop a
DOS-based DA&C system, an extender will allow you to access up
to typically 16 MB of memory. This is achieved by running your
program in protected mode and, when necessary, switching back to
real mode in order to access DOS and BIOS services. DOS extenders
conforming to the DOS Protected Mode Interface (DPMI) standard
are available from several vendors.

In spite of having a slightly greater potential for determinism
than processes running under Windows, for example, a DPMI-based
program may run more slowly that its real-mode counterpart. A
number of the problems outlined for Windows in the following
section also apply to DOS extenders. Mode switches are required
whenever DOS or BIOS services are called, or when the system has to
respond to interrupts. Some DOS extenders may also virtualize the
interrupt system, by providing services specifically for disabling and
enabling interrupts. To this end, they also prevent the program from
directly disabling or enabling interrupts by trapping the st1 and crr
instructions in much the same way as the processor might trap ix
and our instructions in protected mode. This point should be borne
in mind as it can affect the system’s interrupt performance. DOS
extenders are discussed in detail in the text by Duncan et al. (1990).

Microsoft Windows

Microsoft Windows 98 and Windows NT version 4 are the latest
releases in a long line of graphical windowing environments for
the PC. Since it was first introduced in 1985, Windows has evolved
from a simple shell sitting on top of DOS into a very powerful and

50 PC interfacing and data acquisition

complex operating system. The oldest version of Windows that is
still used in significant numbers is Windows 3.1. This version, which
was released in 1992, introduced many of the features present in
Windows today such as TrueType fonts and Object Linking and
Embedding (OLE). Windows for Workgroups, was subsequently
released in 1992. This included support for peer-to-peer networking,
fax systems and printer sharing, but in most other respects was
similar to Windows 3.1.

Subsequently, Windows development split, forming two product
lines, Windows 9x and Windows NT. At the time of writing the
latest releases are Windows 98 (which supersedes Windows 95) and
Windows NT version 4 (version 5 is due for imminent release).
Although Windows 98 and NT are distinctly different products they
share many similarities. Both are 32-bit protected mode operating
systems, supporting a 4 GB flat memory model, sophisticated security
features and support for installable file systems and long (256 char-
acter) file names. Both also use the same applications programming
interface: the Win32 APL

Several features of Windows NT and Windows 98 are important in
the context of real-time data acquisition and control. The ability to
pre-emptively multitask many threads and to interface to a range of
peripherals in a device-independent manner are especially relevant.
However, there are a number of quite serious problems associated
with using any of the current versions of Windows in real time. Rather
than having complete control of the whole PC (as is the case with
real-mode DOS programs, for example), programs running under
Windows execute under the control and supervision of the operating
system. They have restricted access to memory, I/O ports and the
interrupt subsystem. Furthermore, they must execute concurrently
with other processes and this can severely complicate the design of
DA&C programs. In order to build a deterministic Windows system, it
is necessary to employ quite sophisticated programming techniques.
The following sections outline some of the problems associated with
using Windows in real time.

While Windows NT and 98 are both essentially desktop operating
systems, Windows NT is the more robust of the two and is widely
regarded as a well engineered, secure and reliable operating system.
It contains pure 32-bit code, and possesses integrated networking
capabilities and enhanced security features. Windows NT has also
been designed to be portable across platforms, including multi-
processor and RISC systems. For these reasons Windows NT is
often used in preference to Windows 98 for industrial interfacing
applications.

Software considerations 51

Abriefintroduction to data acquisition under Windows is provided
in the following subsections. Those readers interested in program-
ming under Windows are advised to consult one of the numerous
books on this topic such as Solomon (1998), Templeman (1998),
Petzold (1996) or Oney (1996).

Windows overview

One of the main features of Windows NT and Windows 98 is
their ability to run 32-bit software. This offers significant (potential)
improvements in execution speed as well as many other advantages.

In contrast to Windows 95/98, Windows NT contains only 32-bit
code. This is beneficial since 16-bit portions of code within Windows
95/98 can have an adverse effect on performance. Problems can
arise when 32-bit code has to communicate with 16-bit code, and vice
versa. The process which permits such a communication is known
as a thunk. This is a complex action which, as it involves switching
between 16-bit and 32-bit addressing schemes, can slow program
execution considerably. In fact, it has been reported that Windows
95 can multitask 16-bit applications as much as 55 per cent slower
than they would run under Windows 3.1.

32-bit code offers many advantages to the programmer. Foremost
among these is the ability to use a flat memory addressing scheme.
This gives access to up to 4 GB of memory without the need to
continually reload segment registers. Access to memory is closely
supervised and controlled at the page level by the operating system.
Page level protection is implemented using the processor’s page
translation and privilege ring mechanisms. These actually virtualize
the memory map so that the memory addresses used by applica-
tion programs do not necessarily correspond to physical memory
addresses. All memory accesses are performed indirectly by refer-
ence to a set of page tables and page directories that are maintained
by the operating system. Under this scheme it is impossible for an
application to access (and thereby corrupt) memory belonging to
another 32-bit application. Memory management under Windows
is a complex business, but fortunately much of the mechanism is
hidden from the programmer.

Virtualization is not confined to memory. Windows 98 and NT
use features of the 80486 and subsequent processors to virtualize the
PC’s1/0 and interrupt subsystems. All of this virtualization allows the
operating system to completely isolate application programs from
the hardware. A complete virtual machine is created in which to run
each application. Although virtualization is efficient and makes for
a robust environment for multitasking, it does introduce additional

52 PC interfacing and data acquisition

overheads, and these can be difficult to overcome in real-time data
acquisition.

As we have seen in Chapter 1, the 80486 and Pentium proces-
sors provide several mechanisms that facilitate multitasking and
task protection. Among these are the assignment of privilege levels
to different processes. The privilege level scheme allows operating
system processes to take precedence over the less privileged applica-
tion program. There are four privilege levels known as Rings 0, 1, 2
and 3. Windows uses only two of these: Ring 0 (also termed Kernel
Mode under Windows NT) for highly privileged operating system
routines and drivers; and Ring 3 (also termed User Mode) for appli-
cations programs and some operating system code. This is illustrated
in Figure 2.4. Compare the Windows NT and 98 architecture with
that of a real-mode DOS system. In the latter case, the application
effectively runs at the same privilege level as the operating system,
and it can access any part of the PC’s hardware, BIOS or operating
system without restriction.

Multitasking and scheduling

Windows 3.1 utilizes a non-pre-emptive schedulmg mechanism. The
method employed is essentially cooperative multitasking in which
the currently active task has the option to either initiate or block
further task switches. Because of this, it is possible for an important
DA&C task to be blocked while some less time-critical task, such as
rearranging the user interface, is carried out. Under this scheme it is,
therefore, difficult to ensure that data is acquired, and that control
signals are issued, at predictable times.

Windows NT and Windows 98, however, employ a greatly improved
multitasking scheduler. 32-bit applications are multitasked pre-
emptively, which yields greater consistency in the time slicing of
different processes. The pre-emptive scheduler implements an idle
detection facility, which diverts processor time away from tasks
that are merely waiting for input. Another benefit is the ability
to run multiple threads within one application. It is important to
bear in mind that pre-emptive multitasking applies only to 32-bit
programs. The older style 16-bit programs are still multitasked
in a non-pre-emptive fashion and cannot incorporate multiple
threads.

Windows NT and Windows 98 also employ more robust methods
of interprocess communication. Windows 3.1 supporte(l a system of
messages that were passed between processes in order to inform
them of particular events. As these messages were stored in a single
queue, it left the system vulnerable to programs that did not partic-
ipate efficiently in the message passing protocol. Windows NT and

Software considerations 53

Application

l
DOs

} Installable l
djers

BIOS

Hardware

{a) DOS

Windows core modules

GDI USER KERNEL
Video and printer User interface Memory manager,
graphics management task scheduling
management and file /O

Ring 3 (.DRV) drivers

Ring 3

Figure 2.4

l Ring 0

Virtual machine Installable file
manager system manager

Device drivers (VxDs)

Hardware

(b} Windows 95/98

Comparative architecture of DOS and Microsoft Windows

54 PC interfacing and data acquisition

Applications Environment Services
subsystems

Ring 3 (User mode)

Ring 0 (Kernel mode)

Operating System Services (Executive API)

l |

Window Process Virtual
m or /O manager memory
anag manager manager

Graphics

device Device drivers Microkernel

drivers

Hardware Abstraction
Layer (HAL)
Hardware

{c} Windows NT 4

Figure 2.4 (continued)

Windows 98 enforce a greater degree of isolation between processes
by effectively allocating them each a separate queue.

Virtual memory and demand paging

We have already introduced the concept of virtual memory which
Windows uses to isolate applications from each other and from the
operating system. Under this scheme, Windows allocates memory
to each application in 4 KB blocks known as pages. Windows
NT’s Virtual Memory Manager and Windows 98’s Virtual Machine
Manager use the processor’s page translation mechanism to manipu-
late the address of each page. In this way, it can, for example, appear
to an application program that a set of pages occupies contiguous
4 KB blocks, when in fact they are widely separated in physical
memory.

An application’s address space is normally very much greater than
the amount of physical memory in the system. A 32-bit address
provides access to up to 4GB of memory, but a moderately

Software considerations 55

wellspecified PC might contain only 128 MB. If the memory
requirements of the system exceed the total amount of physical
memory installed, Windows will automatically swap memory pages
out to disk. Those pages that have been in memory the longest will
be saved to a temporary page file, freeing physical memory when
required. If a program attempts to access a page that resides on the
disk, the processor generates a page fault exception. Windows traps
this and reloads the required page.

This process is known as demand paging. It is performed without the
knowledge of the Ring 3 program and in a well-designed desktop
application has no significant effect on performance, other than
perhaps a slight reduction in speed. It does, however, have important
consequences in real-time systems. It is generally very difficult (or
impossible) to predict when a page fault will occur — particularly
when the page fault might be generated by another process running
on the system. Furthermore, swapping of pages to and from the disk
can take an indeterminate length of time, increasing latencies to
typically 10-20 ms (although this figure is not guaranteed). This is
clearly unacceptable if a fast and deterministic real-time response is
required.

Device drivers

In order to facilitate device-independent interfacing, Windows NT
and Windows 95/98 employ a system of device drivers. The system
used by Windows NT is complex and supports several types of device
driver. Of most interest are the kernel mode drivers, which can directly
access the PC’s hardware and interrupt subsystem. Windows 95 and
98 use a less robust system of device drivers, which are known as
VxDs (or Virtual Extended Drivers). Both types of driver operate
in Ring 0. Within the driver it is possible to handle interrupts and
perform high speed I/0 predictably and independently of the host
(Ring 3) program.

Even though VxDs and kernel mode drivers provide useful facilities
for the DA&C programmer, they do not solve all of the problems
of real-time programming under Windows. Real-time control is
particularly difficult. In this type of system, acquired data must be
processed by the host program in order that a control signal can be
generated. As the host program runs in Ring 3, it is not possible for
it to generate the required control signal within a guaranteed time.
The mechanisms used for routing data between the driver and the
host program can also introduce non-deterministic behaviour into
the system.

56 PC interfacing and data acquisition

Interrupt handling and latency

Interrupt latency is one of the most problematic areas under
Windows. Latency times can be many times greater than in a compar-
able DOS-based application. They can also be much more difficult
to predict. There are several reasons for this, although they are all
associated to some degree with the virtualization and prioritization of
the interrupt system, and with the multitasking nature of Windows.

To illustrate some of the problems we will consider interrupt
handling under Windows NT. Interrupts are prioritized within a
scheme of Interrupt Request Levels (IRQLs). This mirrors the 8259A
PIC’s IRQ) levels, but the IRQL scheme serves additional functions
within the operating system. When an interrupt occurs:

e Windows NT’s Trap Handler saves the current machine context
and then passes control to its Interrupt Dispatcher routine.

e The Interrupt Dispatcher raises the processor’s IRQL to that of the
interrupting device, which prevents it from responding to lower
level interrupts. Processor interrupts are then re-enabled so that
higher priority interrupts can be recognized.

e The Interrupt Dispatcher passes control to the appropriate Inter-
rupt Service Routine (ISR), which will reside in a device driver or
within Windows NT’s kernel.

e The ISR will generally do only a minimum of processing, such as
capturing the status of the interrupting device. By exiting quickly,
the ISR avoids delaying lower priority interrupts for longer than
necessary. Before terminating, the ISR may issue a request for a
Deferred Procedure Call (DPC).

¢ Windows will subsequently invoke the driver’s DPC routine (using
the software interrupt mechanism). The DPC routine will then
carry out the bulk of the interrupt processing, such as buffering
and transferring data.

From the DA&C programmer’s perspective, the difficulty with this is
that the delay before invocation of the DPC routine is indeterminate.
Furthermore, although interrupts are prioritized within the kernel,
the queuing of DPC requests means that any priority information
is lost. Interrupt-generated DPCs are invoked in the order in which
the DPC requests were received. Thus handling a mouse interrupt,
for example, can take precedence over an interrupt from a DA&C
card or communications port. This arrangement makes for a more
responsive user interface, but can have important consequences for
a time-critical DA&C application.

Handling interrupts under Windows is a fairly complex and time-
consuming process which, together with the potential for lengthy
page-fault exceptions, greatly increases interrupt latency and has an

Software considerations 57

undesirable effect on determinism. It can be very difficult to predict
the length of time before an interrupt request is serviced under
Windows, because of the complex rerouting and handling processes
involved.

Re-entrancy

Much of the code in the Windows 3.1 system is non-re-entrant and
should not, therefore, be called directly from within an interrupt
handler. Other techniques have to be used in cases where acquired
data is to be processed by non-re-entrant operating system services.
An interrupt handler contained within a VxD might, for example,
read pending data from an I/O port, store it in a buffer and then
issue a call-back request to Windows. At some later time, when it
is safe to enter Windows’ services, Windows will call the VxD back.
When the VxD regains control, it knows that Windows must be in
a stable state and so the VxD is free to invoke file I/0O and other
services in order to process the data which its interrupt handler
had previously stored. Note that similar techniques may be used
in simple DOS applications, although the call-back mechanism is
not supported by MS-DOS and must be built into the application
program itself.

The re-entrancy situation is somewhat better in the 32-bit environ-
ments of Windows NT and Windows 98, largely because re-entrant
code is a prerequisite for pre-emptive multitasking. Note, however,
that Windows 95/98 also contains a significant quantity of 16-bit
code. Much of this originates from Windows 3.1 and is not re-entrant.

Windows and real-time operating systems

Most recent versions of Windows can be run in conjunction with
specially designed real-time operating systems (RTOSs). The inten-
tion is to take advantage of the user interface capabilities of Windows
while retaining the deterministic performance of a dedicated real-
time operating system. This type of arrangement is useful for allowing
Windows to handle application setup and display processes while
the time-critical monitoring and control routines are run under
the supervision of the real-time operating system. The interaction
between Windows and an RTOS can be complex and only a very
brief overview will be provided here.

RTOSs work in conjunction with Windows by taking advantage of
the privilege levels provided by all post-80286 processors. Windows’
kernel operates in Ring 0 (the highest privilege level). This gives it
control of other processes and allows it to access all I/O and memory
addresses.

58 PC interfacing and data acquisition

The real-time operating system must also work at the highest
privilege level. It does this by either relegating Windows to a lower
level, while providing an environment for and responses to Windows
to make it ‘think’ that it is operating in Ring 0, or by coexisting
with Windows at the same privilege level. In the latter case the
RTOS interfaces to Windows (in part) via its driver interface —i.e.
by linking to Windows NT via its kernel mode driver interface or by
existing in the form of a VxD under Windows 95/98. Indeed, under
Windows 3.1, time-critical portions of data-acquisition software were
sometimes coded as a VxD, guaranteeing it precedence over other
processes.

Those parts of an application running under the RTOS operate in
Ring 0. Consequently, some RTOSs do not provide the same degree
of intertask memory protection as normally afforded by Windows.
This can compromise reliability, allowing the whole system to be
crashed by a coding error in just one task.

Developers have adopted very different approaches to producing
RTOSs. Several different techniques can be used, even under the
same version of Windows, but whatever method or type of RTOS
is chosen, the result is essentially that threads running under the
RTOS benefit from much lower interrupt latencies and a far greater
degree of determinism.

Other ‘desktop’ operating systems

In addition to the various versions of Microsoft Windows, two other
multitasking operating systems are worthy of mention: UNIX and
OS/2. Although these include certain features which facilitate their
use in real-time systems, they were designed with more heavyweight
multitasking in mind. They possess many features that are necessary
to safely execute multiple independent desktop applications.

UNIX has perhaps the longest history of any operating system. It
was originally developed in the early 1970s by AT&T and a number
of different implementations have since been produced by other
companies and institutions. It was used primarily on mainframes
and minicomputers, but for some time, versions of UNIX, notably
XENIX and Linux, have also been available for microcomputers
such as the PC.

In the PC environment, DOS compatibility was (and still is)
considered to be of some importance. In general, UNIX can coexist
with DOS on the PC allowing both UNIX and DOS applications to be
run on the same machine. A common file system is also employed so
that files can be shared between the two operating systems. DOS can
also be run as a single process under UNIX in much the same way as

Software considerations 59

itis under Windows NT or Windows 98. UNIX itself is fundamentally
a character-based system although a number of extensions and third-
party shell programs provide powerful user interfaces and graphics
support.

Of most interest, of course, is the applicability of UNIX to real-
time processing. As already mentioned UNIX provides a heavyweight
multitasking environment, the benefits of which have been discussed
earlier. The UNIX kernel possesses a full complement of the features
one would expect in such an environment: task scheduling, flexible
priorities as well as interprocess communication facilities such as
signals, queues and semaphores. In addition, UNIX provides exten-
sive support for multiple users. Its network and communication
features make it ideally suited to linking many processing sites.
Typical industrial applications include distributed data acquisition
and large-scale process control. UNIX also incorporates a number
of quite sophisticated security features, which are particularly useful
(if not essential) in applications such as factory-wide automation and
control.

Some of the concepts behind UNIX have also appeared in subse-
quent operating systems. IBM’s OS/2, for example, possesses many
features which are similar to those offered by UNIX. The latest
implementation for the PC, OS/2 Warp, was launched in 1994. This
is a powerful 32-bit multiprocessing operating system which is well
suited to complex multitasking on the PC. It requires only a modestly
specified PC, provides support for Microsoft Windows applications
and will multitask DOS applications with great efficiency.

Like UNIX, OS/2 provides comprehensive support for pre-
emptive multitasking including dynamic priorities, message passing
and semaphores for mutual exclusion of critical sections. OS/2
virtualizes the input/output system, but it also allows the
programmer of time-critical applications and drivers to obtain the
1/0 privileges necessary for real-time use.

While both OS§/2 and UNIX are extremely powerful operating
systems, it should be remembered that many real-time applications
do not require the degree of intertask protection and memory
management provided by these environments. These desktop oper-
ating systems might, in some cases, be too complex and slow for
real-time use. Nevertheless, they tend to be quite inexpensive when
compared to more specialized RTOSs and are worth considering if
robust multitasking is the primary concern.

Other real-time operating systems

We have already discussed versions of DOS and the BIOS designed
for real-time use and have also mentioned RTOSs that are capable of

60 PC interfacing and data acquisition

running in conjunction with Microsoft Windows. There are several
other realtime operating systems on the market, such as Intel’s
iRMX, Microware OS/9000, Integrated Systems pSOSystem and
ONX from QNX Software Systems Ltd. Unfortunately, space does
not allow a detailed or exhaustive list to be presented. Note that
most of these operating systems require an 80386 or later processor
for optimum performance. Some are also capable of running MS-
DOS and Windows (or special implementations of these operating
systems), although, for the reasons described previously, this may
result in a less deterministic system.

Summary

There are several options available to designers of real-time systems.
Simple and relatively undemanding applications can often be accom-
modated by using MS-DOS, although this does not provide multi-
tasking capabilities or the degree of determinisin required by more
stringent real-time applications. Microsoft Windows provides an even
less deterministic solution, and interrupt latencies imposed by this
environment can often be excessive. Various real-time operating
systems (RTOSs) are also available, some of which are ROMable and
suited for use in embedded applications. These include real-time
versions of DOS and the BIOS, which can provide low interrupt
latencies and efficient multitasking.

For many programmers, however, the choice of operating system
for low and medium speed DA&C applications — particularly those
which do not incorporate time-critical control algorithms — will be
between MS-DOS and Windows. While Windows provides a far
superior user interface, this benefit may be offset by poor inter-
rupt latencies. DOS applications are generally somewhat simpler to
produce and maintain, and it is often easier to retain a higher degree
of control over their performance than with Windows programs. You
should not underestimate the importance of this. To produce a
reliable and maintainable system, it is preferable to employ the
simplest hardware and operating system environment consistent
with achieving the desired real-time performance. Only you, as the
system designer or programmer, can decide which operating system
is most appropriate for your own application.

In the remainder of this book, we will refrain from discussing
characteristics of particular operating systems where practicable.
Note, however, that the software listings provided in the following
chapters were written for a real-mode DOS environment. If you
intend to use them under other processor modes or operating
systems, you should ensure that you adapt them accordingly.

Software considerations 61

2.4 Robustness, reliability and safety

Unreliable DA&C systems are, unfortunately, all too common.
Failure of a DA&C system may result in lost time and associated
expense or, in the case of safety-critical systems, even in injury or
death! The quality of hardware components used will of course
influence the reliability of the system. Of most practical concern
in this book, however, is the reliability of DA&C software. This is
often the most unreliable element of a DA&C system especially
during the time period immediately following installation or after
subsequent software upgrades. Several development techniques and
methodologies have been developed in order to maximize software
reliability. These generally impose a structured approach to design,
programming and testing, and include techniques for assessing the
complexity of software algorithms. These topics are the preserve of
software engineering texts and will not be covered here. It is imprac-
ticable to cover every factor that you will need to consider when
designing DA&C software, and the following discussion is confined
to a few of the more important general principles of software devel-
opment, testing and reliability as they relate to DA&C. Interested
readers should consult Maguire (1993), Bell et al. (1992) or other
numerous software engineering texts currently on the market for
further guidance.

Software production and testing

The reliability of a DA&C system is, to a great extent, determined by
the quality of its software component. Badly written or inadequately
tested software can result in considerable expense to both the
supplier and the end user, particularly where the system plays a
critical role in a high volume production process.

Aswe have already noted, an important requirement for producing
correct, error-free and, therefore, reliable programs is simplicity. The
ability to achieve this is obviously determined to a large extent by the
nature of the application. However, a methodical approach to soft-
ware design can help to break down the problem into simpler, more
manageable, portions. The value of time spent on the design process
should not be underestimated. It can be very difficult to compensate
for design flaws discovered during the subsequent coding or testing
stages of development.

Perhaps the mostimportant step when designing a DA&C program
(or indeed any type of program) is to identify those elements of the
software that are critical for correct functioning of the system. These

62 PCinterfacing and data acquisition

often occupy a relatively small proportion of a DA&C program.
They might, for example, include monitoring and control algo-
rithms or routines for warning the operator of error conditions.
Isolating critical routines in this way permits a greater degree of
effort to be directed toward the most important elements of the
program and thus allows optimal use to be made of the available
development time.

Libraries

A common means of reducing the development effort needed for
non-critical software, thus enabling resources to be concentrated
on the most critical routines, is to make use of pre-written software
libraries. The user interface, for example, often occupies a high
proportion of the total software development time, and this may
be reduced by using appropriate tools. A number of C and Pascal
user-interface libraries are currently on the market. These allow a
standardized user interface to be incorporated into the software. As
the library routines are generally well tested and normally include
thorough range checking, validation, and error trapping facilities,
this also helps to reduce the incidence of coding errors.

Dedicated DA&C libraries, such as those included with National
Instruments’ LabWindows/CVI, provide support for real-time graph-
ical displays and virtual instruments such as digital voltmeters and
oscilloscopes. Drivers for RS-232, IEEE-488, and a range of DA&C
cards might also be supplied, particularly in libraries provided by
manufacturers of DA&C hardware. Tools for post-acquisition analysis
of data may be included as well. Typically, these incorporate a range
of facilities, from simple arithmetic array operations to support for
complex signal processing (e.g. fast Fourier transforms, filtering and
signal generation). Many libraries are oriented towards development
of Windows programs, although some provide a degree of portability
between environments.

One of the most important points to bear in mind when selecting
a library is the availability of source code. Some libraries arc supplied
only in compiled object file format. This obviously limits the degree
to which the system can be adapted to a client’s needs.

Testing

Thorough testing is essential to ensure that each routine behaves as
expected when subjected to every possible combination of inputs.
In all but the simplest DA&C systems, this is usually facilitated by
testing each program module independently of the others. In this
way, the inputs supplied to each routine can be precisely controlled

Software considerations 63

in order to ensure that all possible code paths are executed. This
procedure usually involves supplying extreme or over-range inputs,
which the routine should never receive in a correctly functioning
system. Critical routines in particular should be designed to trap
erroneous inputs without propagating the error on to other code
modules.

Modular testing can be difficult to achieve in time-dependent
DA&C systems. This is particularly so in routines that measure
elapsed time or which check for timeouts in dynamic systems. The
behaviour of such a routine might vary depending upon the times at
which certain inputs are applied. In order to ensure that the dynamic
behaviour of the system can be adequately modelled during testing,
it may be necessary to build a complete test harness. This consists
of a hardware interface together with software support routines,
which provide a controlled environment for the module under test.
Test harnesses may range from a simple bank of lamps or switches
designed to monitor the states of digital 1/O lines, to a complex
suite of test programs or even to a dedicated test computer. They
may also incorporate items of test equipment such as logic analysers
and digital storage oscilloscopes.

When performing time-dependence tests, allowances should be
made for any variations in timing that might occur in a fully working
system. These variations might arise from changes in the system'’s
loading conditions or from occasional replacement of some system
component by a faster variant. It is generally good practice to
avoid making one routine dependent on the timing of some other
routine or hardware subsystem. There is, of course, a limit to how
far this requirement can be implemented in practical DA&C appli-
cations. Sufficient latitude should be built into the system (e.g.
by buffering data) to accommodate both transient and persistent
variations in timing.

When all modules have been independently tested, they should
be gradually combined and further checks performed to ensure
that there are no unforeseen interactions between them. Again,
thorough timing tests may have to be carried out, possibly with the
aid of a suitable test harness. Testing and optimization can also be
facilitated by using profiling techniques which accurately measure
the proportion of time spent executing each section of code.

Assertions

Coding errors can cause software to fail in one of two ways. The failure
may be immediately obvious resulting in, for example, a corrupted
display, a malfunctioning control system or the termination of a
DA&C program. Alternatively, the consequences of a failure may be

64 PC interfacing and data acquisition

more subtle, causing, for example, only a slight degradation in the
performance of a control system. These two classes of software failure
are sometimes, rather confusingly, termed hard and soft failures.

Hard failures are greatly preferable, simply because they are
immediately obvious to the user. Although soft failures are more
subtle, their consequences can ultimately be no less scrious. Indeed
they may be much worse. As the user will probably be unaware of
any problem, soft failures can go undetected for long periods. Hard
failures are generally the cheapest to rectify as most are detected
during the development and testing phase, prior to delivery of the
software.

What is needed is a way to convert insidious soft failures and
latent software errors into hard failures. Assertions are invaluable
for this purpose. These are simply software statements (actually
macros in C and C++) which terminate execution of the program
if their argument is FALSE or zero. Generally the argument of
an assertion is a logical expression that defines a set of acceptable
conditions at some point within the program. These conditions often
denote permissible ranges of selected variables. The argument of
the assertion must evaluate to TRUE (or 1) if all conditions are met,
in which case the program proceeds as normal. When an assertion
fails, however, the program is halted and the location of the failed
assertion is displayed on screen.

Assertions can be used at virtually any point within the code.
Remember though that they are suitable only to detect coding
errors and situations that should never occur within your program.
They should not be used to trap legitimate error conditions such asa
serial communications error or printer out-of-paper error. Assertions
tend to be used most frequently to range check function arguments
and function return values. An example of an assertion statement in
C is shown in the following code fragment.

double VMax; /* Maximum input */
double VMin; /* Minimum input */

void CalcPID{double V, double T, double *Y)

{
ASSERT ((V < VMax) && {(V > VMin) && (T »>= 0)); /* Range check V and T */

/* Function body: calculates result, Y, based on arguments V and T */

}

Most C and C++ compilers include an assert macro. Code gener-
ation within the asserr macro is controlled by the Debug compiler
option (or equivalent compiler define) allowing executable assertion
code to be generated only during development. Prior to delivery of

Software considerations 65

the software, assertions can be compiled out so that no performance
overheads are incurred in the final build.

System monitoring and error checks

The reliability of a working DA&C system can often be improved
by incorporating facilities for automatic self-testing. Such facilities
might be used to periodically test the status of hardware components
or to check the integrity of software modules. The PC’s BIOS
executes a number of self-test routines when the computer is started
up. These Power On Self Test (POST) routines include checks to
ensure that none of the memory locations are faulty and to verify
that the keyboard and disk subsystems are working correctly. It
may be advisable to incorporate similar test routines within your
DA&C applications in order to check that data-acquisition cards or
data-logging units are operating normally. These test routines might
run automatically when the system is first started and, perhaps,
periodically thereafter.

Tests that can usually be performed on start-up include those that
check for the presence of adaptor cards or that confirm the integrity
of communications links. It may also be necessary to ensure that
all subsystems on which the DA&C program is reliant (e.g. PLCs
or intelligent data loggers) are operational and on line. In long-
term data-logging applications, where the system might have to run
unattended, it is prudent to verify that all other essential peripherals
(e.g. printer) are connected and correctly configured before data
logging commences.

In applications that require a high degree of operator intervention
it might be desirable to give the user some control over when and
how the tests are performed. Such an approach provides greater
flexibility but does require a higher level of operator skill. Certain
checks, such as monitoring and correcting for zero drift in signal-
conditioning circuits (see Chapter 9) may, in many cases, have to
be carried out manually. Others tend to be more amenable to
automation. Even if certain checks cannot be automated, it may still
be possible to incorporate routines which will prompt the operator
when activities such as rezeroing or recalibration are overdue.

Range checking inputs and outputs

One of the most important safety features that can be built into
any program is a comprehensive system of range checking. A DA&C
program must be able to handle unexpectedly large or small data
arriving at its inputs. This necessitates writing extensive checking
and validation routines to handle usersupplied data as well as

66 PC interfacing and data acquisition

data acquired from sensors. By maintaining all inputs within an
acceptable range, it is possible to guard against problems such as
numeric overflows which, if undetected, can cause the system to fail
unpredictably.

Out-of-range data may arise as a result of factors such as electrical
noise, a faulty or inadequately calibrated sensor, or the failure of
some external subsystem. It might be possible to ignore or suppress
transient faults such as those due to electrical noise, although if
they occur frequently, they could be indicative of a more persistent
problem or of an inherent design fault. Techniques, such as filtering
and hysteresis, which can make the system more immune to the
effects of noise and transient fluctuations, are described in Chapter 4.

It is usually preferable to integrate range-checking code into the
routines that are responsible for inputting data into the system.
This reduces the likelihood that any erroneous data will be passed
on to other elements of the software. Range checking may also be
necessary at a number of other critical points within the program.
The acceptable range of values that each item of data is allowed
to take might be fixed throughout the execution of the program,
or it might vary dynamically depending upon other inputs or upon
the values of previous readings. When thoroughly implemented,
range-checking and validation routines will normally make up a
considerable proportion of the whole program. Bear in mind though
that the requirement for range checking, if enforced too rigorously,
can impose an unacceptable performance penalty and should always
be applied with discretion.

Status checks

When the PC has to communicate with one or more external units
(e.g. remote data loggers, PLCs or other computers), it can be useful
for each unit to provide some form of status indication. This allows
the PC to determine whether each external device is functioning
correctly. Typically status indicators consist of simple digital signals
controlled via relays or switches. These should usually be configured
to operate in the so-called fail-safe mode (see Chapter 3).

Other status-verification techniques can be used in some cases.
The PC might repeatedly poll each external unit to determine
whether it is on line. Properly functioning units would acknowledge
the poll by generating a suitable signal. The polling procedure
might be incorporated into routines which initialize the unit or
which regularly interrogate it. This type of approach can be used
on multi-drop bus-based systems: for example, an RS-485 network of
signal-conditioning modules. A similar, alternative method requires
one element of the DA&C system to issue a periodic heartbeat signal.

Software considerations 67

This is continuously monitored by other system components, which
might then be required to respond within predefined time limits.
Any interruptions in the periodic signal would indicate the failure of
some component or a faulty communications link. Periodic signals
can also be used to refresh dedicated monitoring circuitry, such as
watchdog timers. These systems notify the PC if the periodic refresh
signal from an external unit fails to arrive on time.

Responding to faults

When a fault is detected, its severity and nature (e.g. whether the
fault is transient, intermittent or persistent) should be assessed. A
decision must also be made as to whether the system can continue to
function reliably, albeit with a reduced functionality. This decision
may be made in advance by the system designer and hard-coded into
the DA&C software. Alternatively, it might be left to the operator to
decide what actions should be taken in the context of specific faults.

In either case it is important for the system to display appropriate
error or warning messages. Messages should be clear and precise.
Although numeric error codes can help to identify a particular error,
they should always be accompanied by an informative description of
the error. It is often useful to include a suggestion of any remedial
action that might have be taken by the operator. On-screen error
messages will be of little or no value in systems intended for long
periods of unattended operation. In these cases, it can be useful
for the PC to record operational faults on some form of permanent
storage device such as a hard disk or printer. The nature of the
fault, the date and time that it occurred, and any relevant condi-
tions prevailing at the time should also be logged in order to aid
subsequent fault tracing and diagnosis.

A fault or error may be detected at any one of many possible points
within the hierarchical function structure of a program. Faults are
often detected in interface and driver routines, which typically
reside at the lower levels in the structure. Error codes or flags then
usually have to be passed back up the structure to be handled (e.g.
recorded) by higher level routines. Although this tends to allow the
programmer to create a well-structured and tidy code, it requires a
degree of care. Once an error or fault has occurred it is possible
that it might then also trigger a stream of errors in related routines,
which must be handled in a well-defined and consistent manner.

It is essential to adopt a systematic and adaptable method of error
handling. One solution is to assign each possible error condition a
unique 8-bit or 16-bit integer code. The code should be unique to
the routine which detected the error and should also indicate the
type of error that it represents. As soon as an error is detected, an

68 PC interfacing and data acquisition

error-recording routine should be called. This might store the error
code in a queue or buffer and set a flag to indicate that one or more
errors have occurred. Control should then be returned through the
function hierarchy to a high level error handling routine, which
can then process any pending errors. In this type of error-handling
model, there will be a delay between recognition of the fault and a
subsequent response. The system designer must assess this delay and
decide whether it is acceptable within the time constraints imposed
by the software specification.

The course of action taken in response to a fault will be highly
dependent upon the nature of the application. Many faults will
be minor ones that can be rectified by requesting the operator to
make some adjustment to the system. Other faults can be more
serious, leaving the system in an unstable or moperable state. The
software should, in these cases, shut the system down in a safe and
orderly manner. Certain faults can be catastrophic, causing complete
failure of the DA&C program and/or the PC on which it is running.
Although the programmer should take whatever precautions are
necessary to ensure that the system will provide a controlled response,
there is little that can be done to prevent hardware problems such
as a disk failure, loss of power or electrostatic discharge.

PCs and the software running on them are very complex systems
and there are numerous ways in which they can fail. The potential for
failure of both hardware and software should be considered. Many
failure modes can be catastrophic and will result in complete failure
of monitoring and control systems. Because of this, PC-based systems
and software should not be relied upon to oversee safety-critical
processes without using appropriate backup mechanisms to ensure
total safety. Indeed, the information presented in this book is not
intended for use in safety-critical applications. If you use it in such,
you do so at your own risk. You are advised to cross-check each item
of information which you use in your software with independent
sources. You should also thoroughly test all program code that you
use, regardless of its source, to ensure that it works correctly and
reliably under the specific conditions of your application.

3 Sensors and interfacing

Hardware characteristics such as non-linearity, response times and
susceptibility to noise can have important consequences in a data-
acquisition system. They often limit performance and may necessitate
countermeasures to be implemented in software. A detailed knowl-
edge of the transfer characteristics and temporal performance of
each element of the DA&C system is a prerequisite for writing reliable
interface software. The purpose of this chapter is to draw your atten-
tion to those attributes of sensors, actuators, signal conditioning and
digitization circuitry that have a direct bearing on software design.
While precise details are generally to be found in manufacturer’s
literature, the material presented in the following sections high-
lights some of the fundamental considerations involved. Readers are
referred to Eggebrecht (1990) or Tompkins and Webster (1988) for
additional information.

3.1 Introduction

DA&C involves measuring the parameters of some physical process,
manipulating the measurements within a computer, and then issuing
signals to control that process. Physical variables such as temperature,
force or position are measured with some form of sensor. This
converts the quantity of interest into an electrical signal which can
then be processed and passed to the PC. Control signals issued by
the PC are usually used to drive external equipment via an actuator
such as a solenoid or electric motor.

Many sensors are actually types of transducer. The two terms have
different meanings, although they are used somewhat interchange-
ably in some texts. Transducers are devices that convert one form of
energy into another. They encompass both actuators and a subset of
the various types of sensor.

72 PCinterfacing and data acquisition

Signal types

The signals transferred in and out of the PC may each be one of
two basic types: analogue or digital. All signals will generally vary in
time. In changing from one value to another, analogue signals vary
smoothly (i.e. continuously), always assuming an infinite sequence
of intermediate values during the transition. Digital signals, on the
other hand, are discontinuous, changing only in discrete steps as
shown in Figure 3.1.

Digital data are generally stored and manipulated within the PC
as binary integers. As most readers will know, each binary digit
(bit) may assume only one of two states: low or high. Each bit can,
therefore, represent only a 0 or a 1. Larger numbers, which are
needed to represent analogue quantities, are generally coded as

Analogue
signal
Time
(a
Digital
signal
Time
(b}

Figure 3.1 Diagram contrasting (a) analogue and (b} digital signals

Sensors and interfacing 73

combinations of typically 8, 12 or 16 bits. Binary numbers can only
change in discrete steps equal in size to the value represented by
the least significant bit (LSB). Because of this, binary (i.e. digital)
representations of analogue signals cannot reflect signal variations
smaller than the value of the LSB. The principal advantage of digital
signals is that they tend to be less susceptible than their analogue
counterparts to distortion and noise. Given the right communication
medium, digital signals are more suited to long-distance transmission
and to use in noisy environments.

Pulsed signals are an important class of digital signals. From a
physical point of view, they are basically the same as single-bit digital
signals. The only difference is in the way in which theyare applied and
interpreted. It is the static bit patterns (the presence, or otherwise
of certain bits) that are the important element in the case of digital
signals. Pulsed signals, on the other hand, carry information only in
their timing. The frequency, duration, duty cycle or absolute number
of pulses are generally the only significant characteristics of pulsed
signals. Their amplitude does not carry any information.

Analogue signals carry information in their magnitude (level) or
shape (variation over time). The shape of analogue signals can be
interpreted either in the time or frequency domain. Most ‘real-world’
processes that we might wish to measure or control are intrinsically
analogue in nature.

It is important to remember, however, that the PC can read and
write only digital signals. Some sensing devices, such as switches
or shaft encoders, generate digital signals which can be directly
interfaced to one of the PC’s I/O ports. Certain types of actuator,
such as stepper motors or solenoids, can also be controlled via digital
signals output directly from the PC. Nevertheless, most sensors and
actuators are purely analogue devices and the DA&C system must,
consequently, incorporate components to convert between analogue
and digital representations of data. These conversions are carried
out by means of devices known as analogue-to-digital converters
(ADCs) or digital-to-analogue converters (DAGs).

Elements of a DA&C system

A typical PC-based DA&C system might be designed to accept
analogue inputs from sensors as well as digital inputs from switches
or counters. It might also be capable of generating analogue and
digital outputs for controlling actuators, lamps or relays. Figure 3.2
illustrates the principal elements of such a system. Note that, for
clarity, this figure does not include control signals. You should bear
in mind that, in reality, a variety of digital control lines will be

weisAs D1y paseq-Od [e01dAl v '€ 8nbig

Jojenioe Bujuoipuoo Buiuonpuod

o o TR G— < e | roie s sapum)
shejay euBIq o [N\—] eomep eubig

leubiq

od

Buiuonipuod
101eM OV [-— feubls e OVQ
anbojeuy

oav

ifi
i

Buonpuod

jeubis Josuas

piog anbojeuy
pue

s|dwes

Buonipuos
] jeubis Josusg
snbojeuy

Jaxsduyny

e Buonipuod
— |eubis Josusg
anbojeuy

Buuonipuod
— |eubis Josusg
snbojeuy

Sensors and interfacing 75

required by devices such as multiplexers, programmable-gain ampli-
fiers and ADCs. Depending upon the type of system in use, the
device generating the control signals may be either the PC itself or
dedicated electronic control circuitry.

The figure shows four separate component chains representing
analogue input, analogue output, digital input and digital output.
An ADC and DAC shown in the analogue I/O chains facilitate
conversion between analogue and digital data formats.

Digital inputs can be generated by switches, relays or digital
electronic components such as timer/counter ICs. These signals
usually have to undergo some form of digital signal conditioning,
which might include voltage level conversion, isolation or buffering,
before being input via one of the PC’s I/O ports. Equally, low level
digital outputs generated by the PC normally have to be amplified
and conditioned in order for them to drive actuators or relays.

Asimilar consideration applies to analogue outputs. Most actuators
have relatively high current requirements which cannot be satisfied
directly by the DAC. Amplification and buffering (implemented by
the signal conditioning block) is, therefore, usually necessary in
order to drive motors and other types of actuator.

The analogue input chain is the most complex. It usually incorpo-
rates not only signal-conditioning circuits, but also components such
as a multiplexer, programmable-gain amplifier (PGA) and sample-
and-hold (S/H) circuit. These devices are discussed later in this
chapter. The example shown is a four-channel system. Signals from
four sensors are conditioned and one of the signals is selected by
the multiplexer under software control. The selected signal is then
amplified, and digitized before being passed to the PC.

The distinction between elements in the chain is not always
obvious. In many real systems the various component blocks are
grouped within different physical devices or enclosures. To minimize
noise, it is common for the signal-conditioning and preamplification
electronics to be separated from the ADC and from any other digital
components. Although each analogue input channel has only one
signal-conditioning block in Figure 3.2, this block may, in reality,
be physically distributed along the analogue input chain. It might
be located within the sensor or at the input to the ADC. In some
systems, additional components are included within the chain, or
some elements, such as the S/H circuit, might be omitted.

The digital links in and out of the PC can take a variety of
forms. They may be direct (although suitably buffered) connections
to the PC’s expansion bus, or they may involve serial or parallel
transmission of data over many metres. In the former case, the ADC,
DAC and associated interface circuitry are often located on 1I/0

76 PC interfacing and data acquisition

cards which can be inserted in one of the PC’s expansion bus slots
or into a PCMCIA slot. In the case of devices which interface via the
PC’s serial or parallel ports, the link is implemented by appropriate
transmitters, bus drivers and interface hardware (which are not
shown in Figure 3.2). Data transfer techniques and the various types
of 1/0 interface devices available are discussed in Chapters 6 to 8.

3.2 Digital I/0

Digital (including pulsed) signals are used for interfacing to a
variety of computer peripherals as well as for sensing and controlling
DA&C devices. Some sensing devices such as magnetic reed switches,
inductive proximity switches, mechanical limit switches, relays or
digital sensors, are capable of generating digital signals which can be
read into the PC. The PC may also issue digital signals for controlling
solenoids, audio-visual indicators or stepper motors. Digital 1I/0
signals are also used for interfacing to digital electronic devices such
as timer/counter ICs or for communicating with other computers
and Programmable Logic Controllers (PLCs).

Digital signals may be encoded representations of numeric data or
they may simply carry control or timing information. The latter are
often used to synchronize the operation of the PC with external
equipment using periodic clock pulses or handshaking signals.
Handshaking signals are used to inform one device that another
is ready to receive or transmit data. They generally consist of level-
active, rather than pulsed, digital signals and, as we shall see in
Chapters 7 and 8, they are essential features of most parallel and
serial communication systems. Pulsed signals are not only suitable
for timing and synchronization: they are also often used for event
counting or frequency measurement. Pulsed inputs, for pacing or
measuring elapsed time, can be generated either by programmable
counter/timer ICs on plug-in DA&C cards or by programming the
PC’s own built-in timers. Pulsed inputs are often used to generate
interrupts within the PC in response to specific external events.

TTL-level digital signals

Transistor—transistor logic (TTL) is a type of digital signal charac-
terized by nominal ‘high’ and ‘low’ voltages of +5V and 0 V. TTL
devices are capable of operating at high speeds. They can switch their
outputs in response to changing inputs within typically 20 ns and can
deal with pulsed signals at frequencies up to several tens of MHz. TTL
devices can also be directly interfaced to the PC. The main problem

Sensors and interfacing 77

with using TTL signals for communicating with external equipment
is that TTL ICs have a limited current capacity and are suitable for
directly driving only low current (i.e. a few milliamps) devices such
as other TTL ICs, LEDs and transistors. Another limitation is that
TTL is capable of transmission over only relatively short distances.
While it is ideal for communicating with devices on plug-in DA&C
cards, it cannot be used for long-distance transmission without using
appropriate bus transceivers.

The PC’s expansion bus, and interface devices such as the Intel
8255 Programmable Peripheral Interface (PPI), provide TTL-level
I/0 ports through which it is possible to communicate with periph-
eral equipment. Many devices that generate or receive digital level
or pulsed signals are TTL compatible and so no signal conditioning
circuits, other than perhaps simple bus drivers or tristate buffers, are
required. Buffering, optical isolation, electromechanical isolation
and other forms of digital signal conditioning may be needed in
order to interface to remote or high current devices such as electric
motors or solenoids.

Digital signal conditioning and isolation

Digital signals often span a range of voltages other than the 0 to5V
encompassed by TTL. Many pulsed signals are TTL compatible, but
this is not always true of digital level signals. Logic levels higher or
lower than the standard TTL voltages can easily be accommodated
by using suitable voltage attenuating or amplification components.
Depending upon the application, the way in which digital I/O signals
are conditioned will vary. Many applications demand a degree of
isolation and/or current driving capability. The signal-conditioning
circuits needed to achieve this may reside either on digital 1/0
interface cards which are plugged into the PC’s expansion bus or
they may be incorporated within some form of external interface
module. Interface cards and DA&C modules are available with
various degrees of isolation and buffering. Many low cost units
provide only TTL-level 1/0 lines. A greater degree of isolation and
noise immunity is provided by devices which incorporate optical
isolation and/or mechanical relays.

TTL devices can operate at high speeds with minimal propagation
delay. Any time delays that may be introduced by TTL devices are
generally negligible when compared with the execution time of
software 1/0 instructions. TTL devices and circuits can thus be
considered to respond almost instantaneously to software 1n and
out instructions. However, this is not generally true when additional
isolating or conditioning devices are used. Considerable delays can

78 PCinterfacing and data acquisition

result from using relays in particular, and these must be considered
by the designer of the DA&C software.

Opto-isolated I/0

It is usually desirable to electrically isolate the PC from external
switches or sensors in order to provide a degree of overvoltage
and noise protection. Opto-isolators can provide isolation from
typically 500V to a few kV at frequencies up to several hundred
kHz. These devices generally consist of an infrared LED optically
coupled to a phototransistor within a standard DIL package as
shown in Figure 3.3. The input and output parts of the circuit
are electrically isolated. The digital signal is transferred from the
input (LED) circuit to the output (phototransistor) by means of
an infrared light beam. As the input voltage increases (i.e. when
a logical high level is applied), the photodiode emits light which
causes the phototransistor to conduct. Thus the output is directly
influenced by the input state while remaining electrically isolated
from it.

Some opto-isolating devices clean and shape the output pulse
by means of builtin Schmitt triggers. Others include Darlington
transistors for driving medium current loads such as lamps or relays.
Mains and other ACloads may be driven by solid state relays which are
basically opto-isolators with a high AC current switching capability.

Opto-isolators tend to be quite fast in operation, although some-
what slower than TTL devices. Typical switching times range from

O O

e B e
e B

OPTO TRIAC li

OPTO-TRAN-
N/C f\:z E/\] N/C EE SISTOR Ej

(a) {b)

¥
%

Figure 3.3 Typical opto-isolator DIL packages: (a) an opto-triac suitable for mains
switching, and (b} a simple opto-transistor device

Sensors and interfacing 79

about 3 ps to 100 ps, allowing throughputs of about 10-300 Kbit/s.
Because of their inherent isolation and slower response times, opto-
isolators tend to provide a high degree of noise immunity and are
ideally suited to use in noisy industrial environments. To further
enhance rejection of spurious noise spikes, opto-isolators are some-
times used in conjunction with additional filtering and pulse-shaping
circuits. Typical filters can increase response times to, perhaps,
several milliseconds. It should be noted that opto-couplers are also
available for isolating analogue systems. The temporal response of
any such devices used in analogue I/0 channels should be consid-
ered as it may have an important bearing on the sampling rate and
accuracy of the measuring system.

Mechanical relays and switches

Relays are electroimechanical devices which permit electrical contacts
to be opened or closed by small driving currents. The contacts are
generally rated for much larger currents than that required to initiate
switching. Relays are ideal for isolating high current devices, such as
electric motors, from the PC and from sensitive electronic control
circuits. They are commonly used on both input and output lines.
A number of manufacturers provide plug-in PC interface cards with
typically 8 or 16 PCB-mounted relays. Other digital output cards are
designed to connect to external arrays or racks of relays.

Most relays on DA&C interface cards are allocated in arrays of 8
or 16, each one corresponding to a single bit in one of the PC’s
I/0O ports. In many (but not all) cases a high bit will energize the
relay. Relays provide either normally open (NO) or normally closed
(NC) contacts or both. NO contacts remain open until the relay
coil is energized, at which point they close. NC contacts operate in
the opposite sense. Ensure that you are aware of the relationship
between the I/0O bit states and the state of the relay contacts you
are using. It is prudent to operate relays in fail-safe mode, such
that their contacts return to an inactive (and safe) state when de-
energized. Exactly what state is considered inactive will depend upon
the application.

Because of the mass of the contacts and other mechanical compo-
nents, relay switching operations are relatively slow. Small relays with
low current ratings tend to operate faster than larger devices. Reed
relays rated at around 1A, 24V (DC) usually switch within about
0.25 to 1 ms. The operating and release times of miniature relays
rated at 1 to 3 A usually fall in the range from about 2 to 5 ms.
Larger relays for driving high power DC or AC mains loads might
take up to 10 or 20 ms to switch. These figures are intended only as

80 PC interfacing and data acquisition

rough guidelines. You should consult your hardware manufacturer’s
literature for precise switching specifications.

Switch and relay debouncing

When mechanical relay or switch contacts close, they tend to vibrate
or bounce for a short period. This results in a sequence of rapid
closures and openings before the contacts settle into a stable state.
The time taken for the contacts to settle (known as the bounce time)
may range from a few hundred microseconds for small reed relays
up to several milliseconds for high power relays. Because bouncing
relay contacts make and break several times, it can appear to the
software monitoring the relay that several separate switching events
occur each time the relay is energized or de-energized. This can
be problematic, particularly if the system is designed to generate
interrupts as a result of each contact closure.

There are two ways in which this problem can be overcome: hard-
ware debouncing and software debouncing. The hardware method
involves averaging the state of the switch circuit over an interval of a
few milliseconds so that any short-lived transitions are smoothed out
and only a gradual change is recorded. A typical method is to use
a resistor/capacitor (RC) network in conjunction with an inverting
Schmitt buffer. Tooley (1995) discusses hardware debouncing in
more detail and illustrates several simple debouncing circuits.

The software debouncing technique is suitable only for digital
inputs driven from relays and switches. It cannot of course be applied
to relay signals generated by the PC. The technique works by repeatedly
reading the state of the relay contact. The input should be sensed
at least twice and a time delay sufficient to allow the contacts to
settle should be inserted between the two read operations. If the
state of the contacts is the same during both reads, that state is
recorded. If it has changed, further delays and read operations
should be performed until two successive read operations return
the same result. An appropriate limit must, of course, be imposed
on the number of repeats that are allowed during the debounce
routine in order to avoid the possibility of unbounded software
loops. Listing 3.1 illustrates the debouncing technique. It assumes
that the state of the relay contacts is indicated by bit 0 of 1/0
port 300h. The routine exits with a non-=zero value in CX and the
debounced relay state in bit 0 of AL. If the relay does not reach a
steady state after four read operations (i.e. three delay periods), CX
contains zero to indicate the error condition. The routine can easily
be adapted to deal with a different bit or I/O port address.

The delay time between successive read operations (implemented
by the pepelay subroutine which is not shown) should be chosen to be

Sensors and interfacing 81

Listing 3.1 Contact debouncing algorithm

mov dx,300h ;Port number 300h for sensing relay
mov cx,4 ;Initialize timeout counter

DBRead: in al,dx ;Read relay I/O port
and al,01h ;Isolate relay status bit (bit 0)

cmp ©Xx,4 ;Is this the first read ?

je DBLoop ; - Yes, do another

cmp al,bl ; - No, was relay the same as last time ?

je DBExit ; - Yes, relay in steady state so exit
DBLoop: mov bl,al ;iStore current relay state

call DBDelay ;Do delay to allow relay contacts to settle

loop DBRead ;iRead again, unless timed out

DBEXit:

justlong enough to encompass the maximum contact bounce period
expected. For most mechanical switches, this will be typically several
milliseconds (or even tens of milliseconds for some larger devices).
As a rough rule-of-thumb, the smaller the switch (i.e. the lower the
mass of the moving contact) the shorter will be the contact bounce
period. In choosing the delay time, remember to take account of
the time constant of any other circuitry that forms part of the digital
input channel.

Listing 3.1 is not totally foolproof: it will fail if the contact bounce
period exactly coincides with the time period between samples.
To improve the efficiency of this technique, you may wish to adapt
Listing 3.1 in order to check that the final relay state actually remains
stable for a number of consecutive samples over an appropriate time
interval.

3.3 Sensors for analogue signals

Sensors are the primary input element involved in reading phys-
ical quantities (such as temperature, force or position) into a
DA&C system. They are generally used to measure analogue signals
although the term ‘sensor’ does in fact encompass some digital
devices such as proximity switches. In this section we will deal only
with sensing analogue signals.

Analogue signals can be measured with sensors that generate
either analogue or digital representations of the quantity to be
measured (the measurand). The latter are often the simplest to inter-
face to the PC as their output can be read directly into one the PC’s

82 PC interfacing and data acquisition

I/0 ports via a suitable digital input card. Examples of sensors with
digital outputs include shaft encoders and some types of flow sensor.

Most types of sensor operate in a purely analogue manner,
converting the measurand to an equivalent analogue signal. The
sensor output generally takes the form of a change in some electrical
parameter such as voltage, current, capacitance or resistance. The
primary purpose of the analogue signal-conditioning blocks shown
in Figure 3.2 is to precondition the sensors’ electrical outputs and to
convert them into voltage form for processing by the ADC.

You should be aware of a number of important sensor charac-
teristics in order to successfully design and write interface software.
Of most relevance are accuracy, dynamic range, stability, linearity,
susceptibility to noise, and response times. The latter includes rise
time and settling time and is closely related to the sensor’s frequency
response.

Sensor characteristics cannot be considered in isolation. Sensors
are often closely coupled to their signal-conditioning circuits and
we must, therefore, also take into account the performance of this
component when designing a DA&C system. Signal-conditioning and
digitization circuitry can play an important (if not the most impor-
tant) role in determining the characteristics of the measuring system
as awhole. Although signal-conditioning circuits can introduce unde-
sirable properties of their own, such as noise or drift, they are usually
designed to compensate for inadequacies in the sensor’s response.
If properly matched, signal-conditioning circuits are often able to
cancel out sensor offsets, non-linearities or temperature dependen-
cies. We will discuss signal conditioning later in this chapter.

Accuracy

Accuracy represents the precision with which a sensor can respond
to the measurand. It refers to the overall precision of the device
resulting from the combined effect of offsets and proportional
measurement errors. When assessing accuracy, one must take
account of manufacturers’ figures for repeatability, hysteresis,
stability and, if appropriate, resolution. Although a sensor’s accuracy
figure may include the effect of resolution, the two terms must
not be confused. Resolution represents the smallest change in the
measurand that the sensor can detect. Accuracy includes this, but
also encompasses other sources of error.

Dynamic range

A sensor’s dynamic range is the ratio of its fullscale value to the
minimum detectable signal variation. Some sensors have very wide

Sensors and interfacing 83

dynamic ranges and, if the full range is to be accommodated, it
may be necessary to employ high resolution ADCs or Programmable-
Gain Amplifiers (PGAs). Using a PGA might increase the system’s
data-storage requirements, because of the addition of an extra vari-
able (i.e. gain). These topics are discussed further in the section
Amplification and extending dynamic range later in this chapter.

Stability and repeatability

The output from some sensors tends to drift over time. Instabilities
may be caused by changes in operating temperature or by other envi-
ronmental factors. If the sensor is likely to exhibit any appreciable
instability, you should assess how this can be compensated for in the
software. You might wish, for example, to include routines which
force the operator to recalibrate or simply rezero the sensor at peri-
odic intervals (see Chapter 9). Stability might also be compromised
by small drifts in the supplied excitation signals. If this is a possibility,
the software should be designed to monitor the excitation voltage
using a spare analogue input channel and to correct the measured
sensor readings accordingly.

Linearity

Most sensors provide a linear output —i.e. their output is directly
proportional to the value of the measurand. In such cases the sensor
response curve consists of a straight line. Some devices such as ther-
mocouples do not exhibit this desirable characteristic. If the sensor
output is not linearized within the signal-conditioning circuitry, it
will be necessary for the software to correct for any non-linearities
present. Chapter 9 demonstrates several software linearization tech-
niques.

Response times

The time taken by the sensor to respond to an applied stimulus is
obviously an important limiting factor in determining the overall
throughput of the system. The sensor’s response time (sometimes
expressed in terms of its frequency response) should be carefully
considered, particularly in systems which monitor for dangerous,
over-range or otherwise erroneous conditions. Many sensors provide
a virtually instantaneous response and in these cases it is usually
the signal-conditioning or digitization components (or, indeed, the
software itself) which determines the maximum possible throughput.
This is not generally the case with temperature sensors, however.

84 PC interfacing and data acquisition

Semiconductor sensors, thermistors and thermocouples tend to
exhibit long response times (upwards of 1s). In these cases, there
is little to be gained (other than the ability to average out noise) by
sampling at intervals shorter than the sensor’s time constant.

You should be careful when interpreting response times published
in manufacturers’ literature. They often relate to the time required
for the sensor’s output to change by a fixed fraction in response to
an applied step change in temperature. If a time constant is specified
it generally defines the time required for the output to change
by 1 —e~! (i.e. about 63.21 per cent) of the difference between
its initial and final steady state outputs. The response time will
be longer if quoted for a greater fractional change. The response
time of thermal sensors will also be highly dependent upon their
environment. Thermal time constants are usually quoted for still air,
but much faster responses will apply if the sensor is immersed in a
free-flowing or stirred liquid such as oil or water.

Susceptibility to noise

Noise is particularly problematic with sensors which generate only
low level signals (e.g. thermocouples and strain gauges). Low-pass
filters can be used to remove noise which often occurs predominantly
at higher frequencies than the signals to be measured. Steps should
always be taken to exclude noise at its source by adopting good
shielding and grounding practices. As signal-conditioning circuits
and cables can introduce noise themselves, it is essential that they
are well designed. Even when using hardware and electronic filters,
there may still be some residual noise on top of the measured signal.
A number of filtering techniques can be employed in the software
and some of these are discussed in Chapter 4.

Some common sensors

This section describes features of several common sensors which
are relevant to DA&C software design. Unfortunately, space does
not permit an exhaustive list. Many sensors that do not require
special considerations or software techniques are excluded from this
section. Some less widely used devices, such as optical and chemical
sensors are also excluded, even though they are often associated with
problems such as long response times and high noise levels. Details
of the operation of these devices may be found in specialist books
such as Tompkins and Webster (1988), Parr (1986) or Warring and
Gibilisio (1985).

Sensors and interfacing 85

The information provided below is typical for each type of sensor
described. However, different manufacturers’ implementations vary
considerably. The reader is advised to consult manufacturers’ data
sheets for precise details of the sensor and signal-conditioning
circuits which they intend to use.

Digital sensors and encoders

Some types of sensor convert the analogue measurand into an
equivalent digital representation which can be transferred directly to
the PC. Digital sensors tend to require minimal signal conditioning.

As mentioned above the simplest form of digital sensor is
the switch. Examples include inductive proximity switches and
mechanical limit switches. These produce a single-bit input which
changes state when some physical parameter (e.g. spatial separation
or displacement) rises above, or falls below, a predefined limit.
However, to measure the magnitude of an analogue quantity we need
a sensor with a response which varies in many (typically several
hundred of more) steps over its measuring range. Such sensors are
more correctly known as encoders as they are designed to encode
the measurand into a digital form.

Sensors such as the rotor tachometer employ magnetic pickups
which produce a stream of digital pulses in response to the rotation
of a ferrous disk. Angular velocity or incremental changes in angular
position can be measured with these devices. The pulse rate is
proportional to the angular velocity of the disk. Similar sensors are
available for measuring linear motion.

Shaft encoders are used for rotary position or velocity measure-
ment in a wide range of industrial applications. They consist of a
binary encoded disk which is mounted on a rotating shaft or spindle
and located between some form of optical transmitter and matched
receiver (e.g. infrared LEDs and phototransistors). The bit pattern
detected by the receiver will depend upon the angular position of the
encoded disk. The resolution of the system might be typically £1°.

A disk encoded in true (natural) binary has the potential to
produce large errors. If, for example, the disk is very slightly
misaligned, the most significant bit might change first during a
transition between two adjacent encoded positions. Such a situation
can give rise to a momentary 180° error in the output. This problem
is circumvented by using the Gray code. This a binary coding scheme
in which only one bit changes between adjacent coded positions. The
outputs from these encoders are normally converted to digital pulse
trains which carry rotary position, speed and direction information.
Because of this it is rarely necessary for the DA&C programmer to

86 PC interfacing and data acquisition

use binary Gray codes directly. We will, however, discuss other binary
codes later in this chapter.

The signals generated by digital sensors are often not TTL compat-
ible, and in these cases additional circuitry is required to interface
to the PC. Some or all of this circuitry may be supplied with (or
as part of) the sensor, although certain TTL buffering or opto-
isolation circuits may have to be provided on separate plug-in digital
interface cards.

Digital position encoders are inherently linear, stable and immune
to electrical noise. However, care has to be taken when absolute
position measurements are required, particularly when using devices
which produce identical pulses in response to incremental changes in
position. The measurement must always be accurately referenced to
a known zero position. Systematic measurement errors can result if
pulses are somehow missed or not counted by the software. Regular
zeroing of such systems is advisable if they are to be used for repeated
position measurements.

Potentiometric sensors

These very simple devices are usually used for measurement of
linear or angular position. They consist of a resistive wire and sliding
contact. The resistance to the current flowing through the wire and
contact is a measure of the position of the contact. The linearity of
the device is determined by the resistance of the output load, but
with appropriate signal conditioning and buffering, non-linearities
can generally be minimized and may, in fact, be negligible. Most
potentiometric sensors are based on closely wound wire coils. The
contact slides along the length of the coil and as it moves across
adjacent windings it produces a stepped change in output. These
steps may limit the resolution of the device to typically 25 to 50 pm.

Semiconductor temperature sensors

This class of temperature sensor includes devices based on discrete
diodes and transistors as well as temperature-sensitive integrated
circuits. Most of these devices are designed to exhibit a high degree
of stability and linearity. Their working range is, however, relatively
limited. Most operate from about —50 to +150°C, although some
devices are suitable for use at temperatures down to about —230°C
or lower. IC temperature sensors are typically linear to within a
few degrees centigrade. A number of ICs and discrete transistor
temperature sensors are somewhat more linear than this: perhaps
0.5 to £2°C or better. The repeatability of some devices may be as
low as £0.01°C.

Sensors and interfacing 87

All thermal sensors tend to have quite long response times. Their
time constants are dependent upon the rate at which temperature
changes are conducted from the surrounding medium. The intrinsic
time constants of semiconductor sensors are usually of the order of
1-10 s. These figures assume efficient transmission of thermal energy
to the sensor. If this is not the case, much longer time constants will
apply (e.g. a few seconds to about one minute in still air).

Most semiconductor temperature sensors provide a high level
current or voltage output which is relatively inmune to noise and
can be interfaced to the PC with minimal signal conditioning.
Because of the long response times, software filtering can be easily
applied should noise become problematic.

Thermocouples

Thermocouples are very simple temperature measuring devices.
They consist of junctions of two dissimilar metal wires. An electromo-
tive force (emf) is generated at each of the thermocouple’s junctions
by the Seebeck effect. The magnitude of the emf is directly related
to the temperature of the junction. Various types of thermocouple
are available for measuring temperatures from about —200°C to in
excess of 1800°C. There are a number of considerations which must
be borne in mind when writing interface software for thermocouple
systems.

Depending upon the type of material from which the thermo-
couple is constructed, its output ranges from about 10 to 70 pV/°C.
Thermocouple response characteristics are defined by various British
and international standards. The sensitivity of thermocouples tends
to change with temperature and this gives rise to a non-linear
response. The non-linearity may not be problematic if measure-
ments are to be confined to a narrow enough temperature range,
but in most cases there is a need for some form of linearization. This
may be handled by the signal conditioning circuits, but it is often
more convenient to linearize the thermocouple’s output by means
of suitable software algorithms. Chapter 9 illustrates a number of
linearization techniques which can be applied to thermocouples.

Even when adequately linearized, thermocouple-based tempera-
ture measuring systems are not awfully accurate, although it has to be
said that they are often more than adequate for many temperature-
sensing applications. Thermocouple accuracy is generally limited by
variations in manufacturing processes or materials to about 1 to 4°C.

Like other forms of temperature sensor, thermocouples have long
response times. This depends upon the mass and shape of the ther-
mocouple and its sheath. According to the Labfacility temperature

88 PC interfacing and data acquisition

sensing handbook (1987), time constants for thermocouples in still
air range from 0.05 to around 40s.

Thermocouples are rather insensitive devices. They output only
low level signals — typically less than 50 mV —and are, therefore,
prone to electrical noise. Unless the devices are properly shielded,
mains pickup and other forms of noise can easily swamp small signals.
However, because thermocouples respond slowly, their outputs are
very amenable to filtering. Heavy software filtering can usually be
applied without losing any important temperature information.

Cold-junction compensation

In order to form a complete circuit the conductors which make up
the thermocouple must have at least two junctions. One (the sensing
junction) is placed at an unknown temperature (i.c. the temperature
to be measured) and the remaining junction (known as the cold
junction or reference junction) is either held at a fixed reference
temperature or allowed to vary (over a narrow range) with ambient
temperature. The reference junction generates its own temperature-
dependent emf which must be taken into account when interpreting
the total measured thermocouple voltage.

Thermocouple outputs are usually tabulated in a form that
assumes that the reference junction is held at a constant temperature
of 0°C. If the temperature of the cold junction varies from this fixed
reference value, the additional thermal emf will offset the sensor’s
response. It is not possible to calibrate out this offset unless the
temperature of the cold junction is known and is constant. Instead,
the cold junction’s temperature is normally monitored in order that
a dynamic correction may be applied to the measured thermocouple
voltage.

The coldjunction temperature can be sensed using an indepen-
dent device such as a semiconductor (transistor or IC) temperature
sensor. In some signal-conditioning circuits, the output from the
semiconductor sensor is used to generate a voltage equal in magni-
tude, but of opposite sign, to the thermal emf produced by the cold
junction. This voltage is then electrically added to the thermocouple
signal so as to cancel any offset introduced by the temperature of
the cold junction.

It is also possible to perform a similar offset-cancelling operation
within the data-acquisition software. If the output from the semi-
conductor temperature sensor is read via an ADC, the program
can gauge the coldjunction temperature. As the thermocouple’s
response curve is known, the software is able to calculate the thermal
emf produced by the cold junction —i.e. the offset value. This is then
applied to the total measured voltage in order to determine that part

Sensors and interfacing 89

of the thermocouple output due only to the sensing junction. This is
accomplished as follows.

The response of the cold junction and the sensing junction both
generally follow the same non-linear form. As the temperature of
the cold junction is usually limited to a relatively narrow range, it is
often practicable to approximate the response of the cold junction
by a straight line:

Tcy=ao+aiVey 3.1

where T¢; is the temperature of the cold junction in °C, V¢, is
the corresponding thermal emf and gy and a; are constants which
depend upon the thermocouple type and the temperature range
over which the straightline approximation is made. Table 3.1 lists
the parameters of straight-line approximations to the response curves
of a range of different thermocouples over the temperature range
from 0 to 40°C.

The measured thermocouple voltage Vy is equal to the difference
between the thermal emf produced by the sensing junction (Vg;)
and the cold junction (V¢y):

Vu =Vsy — Ve (3.2)

As we are interested only in the difference in junction voltages, Vg,
and V ¢y can be considered to represent either the absolute thermal
emfs produced by each junction or the emfs relative to whatever
junction voltage might be generated at some convenient temperature
origin. In the following discussion we will choose the origin of the
temperature scale to be 0°C (so that 0°C is considered to produce a
zero junction voltage). In fact, the straight-line parameters listed in
Table 3.1 represent an approximation to a 0°C-based response curve
(ag is close to zero).

Rearranging Equation 3.1 and substituting for V¢, in Equation 3.2
we see that

Tcy—ag

Vs =Vy + ——— (3.3)
ai

The values of ap and a; for the appropriate type of thermocouple
can be substituted from Table 3.1 into this equation in order to
compensate for the temperature of the cold junction. All voltage
values should be in millivolts and T¢; should be expressed in °C.
The temperature of the sensing junction can then be calculated
by applying a suitable linearizing polynomial to the Vg, value, as
described in Chapter 9. Note that the polynomial must also be

90 PC interfacing and data acquisition

Table 3.1 Parameters of straight-line fits to
thermocouple response curves over the
range 0 to 40°C, for use in software
cold-junction compensation

Type ag(°C) a°’C mv') Accuracy(°C)

K 0.130 24.82 +0.25
J 0.116 19.43 +0.25
R 0.524 172.0 +1.00
S 0.487 170.2 +1.00
T 0.231 24.83 +0.50
E 0.174 16.63 +0.30
N 0.129 37.58 +0.40

constructed for a coordinate system with an origin at V =0mV,
T =0°C.

It is interesting to note that the type B thermocouple is not
amenable to this method of cold-junction compensation as it exhibits
an unusual behaviour at low temperatures. As the temperature
rises from zero to about 21°C, the thermoclectric voltage falls to
approximately —3 uV. It then begins to rise, through 0 V at about
41°C, and reaches +3 pV at 52°C. It is, therefore, not possible
to accurately fit a straight line to the thermocouple’s response
curve over this range. Fortunately, if the coldjunction temperature
remains within 0 to 52°C it contributes only a small proportion of
the total measured voltage (less than about £3 pV). If the sensing
junction is used over its normal working range of 600 to 1700°C,
the measurement error introduced by completely ignoring the cold
junction emf will be less than +0.6°C.

The accuracy figures quoted in Table 3.1 are generally better than
typical thermocouple tolerances and so the a¢ and a; parameters
should be usable in most situations. More precise compensation
factors can be obtained by fitting the straight line over a narrower
temperature range or by using a look-up table with the appropriate
interpolation routines (see Chapter 9). You should calculate your
own compensation factors if a different coldjunction temperature
range is to be used.

Resistive temperature sensors (thermistors and RTDs)

Thermistors are semiconductor or metal oxide devices whose re-
sistance changes with temperature. Most exhibit negative temper-
ature coefficients (i.e. their resistance decreases with increasing
temperature) although some have positive temperature coefficients.

Sensors and interfacing 91

Thermistor temperature coefficients range from about 1 to 5 per
cent/°C. They tend to be usable in the range —70 to +150°C, but
some devices can measure temperatures up to 300°C. Thermistor-
based measuring systems can generally resolve temperature changes
as small as £0.01°C, although typical devices can provide absolute
accuracies no better than £0.1 to 0.5°C. The better accuracy figure
is often only achievable in devices designed for use over a limited
range (e.g. 0 to 100°C).

As shown in Figure 3.4, thermistors tend to exhibit a highly non-
linear response. This can be corrected by means of suitable signal-
conditioning circuits or by combining thermistors with positive
and negative temperature coefficients. Although this technique can
provide a high degree of linearity, it may be preferable to carry out
linearization within the DA&C software. A third order logarithmic
polynomial is usually appropriate (see Chapter 9). The response
time of thermistors depends upon their size and construction. They
tend to be comparable with semiconductor temperature sensors
in this respect, but because of the range of possible constructions,
thermistor time constants may be as low as several tens of milliseconds
or as high as 100-200 s.

Resistance Temperature Detectors (RTDs) also exhibit a
temperature-dependent resistance. These devices can be constructed
from a variety of metals, but platinum is the most widely used. They
are suitable for use over ranges of about —270 to 660°C, although
some devices have been employed for temperatures up to about
1000°C. RTDs are accurate to within typically 0.2 to 4°C, depending

100 000
10 000 e
Resistance =
{ohms) a
1000
-
e
_-—’g‘
100
10 100 1000

Temperature (°C)

Figure 3.4 Typical resistance vs. temperature characteristics for (a) negative
temperature coefficient thermistors and (b) platinum RTDs

92 PCinterfacing and data acquisition

on temperature and construction. They also exhibit a good long-
term stability, so frequent recalibration may not be necessary. Their
temperature coefficients are generally of the order of 0.4 Q/°C.
However, their sensitivity falls with increasing temperature, leading
to a slightly non-linear response. This non-linearity is often small
enough, over limited temperature ranges (e.g. 0 to 100°C), to allow
alinear approximation to be used. Wider temperature ranges require
some form of linearization to be applxed a third order polynomlal
correction usually provides the optimum accuracy. Response times
are comparable with those of thermistors.

Resistance sensors and bridges

A number of other types of resistance sensor are available. Most
notable amongst these are strain gauges. These take a variety of
forms, including semiconductors, metal wires and metal foils. They
are strained when subjected to a small displacement and, as the gauge
becomes deformed, its resistance changes slightly. It is this resistance
which is indirectly measured in order to infer values of strain,
force or pressure. The Light Dependent Resistor (LDR) is another
example of a resistance sensor. The resistance of this device changes
in relation to the intensity of light impinging upon its surface.

Both thermistors and RTDs can be used in simple resistive
networks, but, because devices such as RTDs and strain gauges
have low sensitivities it can be difficult to directly measure changes
in resistance. Bridge circuits such as that shown in Figure 3.5 are,
therefore, often used to obtain optimum precision. The circuit is
designed (or adjusted) so that the voltage output from the bridge is
zero at some convenient value of the measurand (e.g. zero strain in
the case of a strain gauge bridge). Any changes in resistance induced
by changes in the measurand cause the bridge to become unbal-
anced and to produce a small output voltage. This can be amplified
and measured independently of the much larger bridge-excitation
voltage. Although bridge circuits are used primarily with insensitive
devices, they can also be used with more responsive resistance sensors
such as thermistors.

Bridges often contain two or four sensing elements (replacing the
fixed resistors shown in Figure 3.5). These are arranged in such a way
as to enhance the overall sensitivity of the bridge and, in the case of
non-thermal sensors, to compensate for temperature dependencies
of the individual sensing elements. This approach is used in the
design of strain-gauge-based sensors such as load cells or pressure
transducers.

Bridges with one sensing element exhibit a non-linear response.
Two-active-arm bridges, which have sensors placed in opposite arms,

Sensors and interfacing 93

Py
—8

Excitation voltage

———e

L o

Signal voltage
{output}

Figure 3.5 Bridge circuit for measuring resistance changes in strain gauges and
RTDs

are also non-linear. However, provided that only small fractional
changes occur in the resistance of the sensing element(s), the non-
linearities of one and two arm bridges are often small enough that
they can be ignored. Strain-gauge bridges with four active sensors
generate a linear response provided that the sensors are arranged so
that the resistance change occurring in one diagonally opposing pair
of gauges is equal and opposite to that occurring in the other (Pople,
1979). When using resistance sensors in a bridge configuration, it is
advisable to check for and, if necessary, correct any non-linearities
that may be present. Linearization and calibration of strain-gauge
bridges is discussed in Chapter 9.

Conduction of the excitation current can cause self-heating
within each sensing element. This can be problematic with thermal
sensors — thermistors in particular. Temperature rises within strain
gauges can also cause errors in the bridge output. Because of this,
excitation currents and voltages have to be kept within reasonable
limits. This often results in low signal levels. For example, in most
implementations, strain-gauge bridges generate outputs of the order
of a few millivolts. Because of this, strain-gauge and RTD-based
measuring systems are susceptible to noise, and a degree of software
or hardware filtering is frequently required.

Lead resistance must also be considered when using resistance
sensors. This is particularly so in the case of low resistance devices

94 PC interfacing and data acquisition

such as strain gauges and RTDs, which have resistances of typically
120 to 350 Q and 100 to 200 2, respectively. In these situations
even the small resistance of the lead wires can introduce significant
measurement errors. The effect of lead resistance can be minimized
by means of compensating cables and suitable signal conditioning.
This is usually the most efficient approach. Alternatively, the same
type of compensation can be performed in software by using a
spare ADC channel to directly measure the excitation voltage at the
location of the sensor or bridge.

Linear variable differential transformers (LVDTs)

Linear Variable Differential Transformers (LLVDTs) are used for
measuring linear displacement. They consist of one primary and two
secondary coils. The primary coil is excited with a high frequency
(typically several hundred to several thousand Hz) voltage. The
magnetic-flux linkage between the concentric primary and secondary
coils depends upon the position of a ferrite core within the coil
geometry. Induced signals in the secondary coils are combined in a
differential manner such that movement of the core along the axis
of the coils results in a variation in the amplitude and phase of the
combined secondary-coil output. The output changes phase at the
central (null) position and the amplitude of the output increases
with displacement from the null point. The high frequency output
is then demodulated and filtered in order to produce a DC voltage
in proportion to the displacement of the ferrite core from its null
position. The filter used is of the low-pass type which blocks the high
frequency ripple but passes lower frequency variations due to core
movement.

Obviously the excitation frequency must be high in order to allow
the filter’s cut-off frequency to be designed such that it does not
adversely affect the response time of the sensing system. The exci-
tation frequency should be considerably greater than the maximum
frequency of core movement. This is usually the case with LVDTs.
However, the filtration required with low frequency excitation (less
than a few hundred Hz) may significantly affect the system’s response
time and must be taken into account by the software designer.

The LVDT offers a high sensitivity (typically 100-200 mV/V at its
full-scale position) and high level voltage output which is relatively
immune to noise. Software filtering can, however, enhance noise
rejection in some situations.

The LVDT’s intrinsic null position is very stable and forms an
ideal reference point against which to position and calibrate the
sensor. The resolution of an LVDT is theoretically infinite. In
practice, however, it is limited by noise and the ability of the

Sensors and interfacing 95

signal-conditioning circuit to sense changes in the LVDT’s output.
Resolutions of less than 1 pm are possible. The device’s repeatability
is also theoretically infinite, but is limited in practice by thermal
expansion and mechanical stability of the sensor’s body and mount-
ings. Typical repeatability figures lie between £0.1 and £10 pm,
depending upon the working range of the device. Temperature
coefficients are also an important consideration. These are usually
of the order of 0.01 per cent/°C. It is wise to periodically recalibrate
the sensor, particularly if it is subject to appreciable temperature
variations.

LVDTs offer quite linear responses over their working range.
Designs employing simple parallel coil geometries are capable of
maintaining linearity over only a short distance from their null posi-
tion. Non-linearities of up to 10 per cent or more become apparent
if the device is used outside this range. In order to extend their oper-
ating range, LVDTs are usually designed with more complex and
expensive graduated or stepped windings. These provide linearities
of typically 0.25 per cent. An improved linearity can sometimes be
achieved by applying software linearization techniques as described
in Chapter 9.

3.4 Handling analogue signals

Signal levels and current-loading requirements of sensors and actua-
tors usually preclude their direct connection to ADCs and DACs. For
this reason, data-acquisition and control systems generally require
analogue signals to be processed before being input to the PC,
or after transmission from it. This usually involves conditioning
(i.e. amplifying, filtering and buffering) the signal. In the case of
analogue inputs it may also entail selecting and capturing the signal
using devices such as multiplexers and sample-and-hold circuits.

Signal conditioning

Signal conditioning is normally required on both inputs and outputs.
In this section we will concentrate on analogue inputs, but analogous
considerations will apply to analogue outputs: for example, the
circuits used to drive actuators.

Conditioning analogue inputs

Signal conditioning serves a number of purposes. It is needed to
clean and shape signals, to supply excitation voltages, to amplify and
buffer low level signals, to linearize sensor outputs, to compensate
for temperature-induced drifts and to protect the PC from electrical

96 PC interfacing and data acquisition

To ADC or

Passive conditioning multiplexer
From sensor | (resistive dividers, bridge Isolation and
————] AN . 1 N Filterin:
circuits, current-to- surge suppression 9

voltage conversion etc.)

Figure 3.6 Elements of a typical analogue input signal-conditioning circuit

noise and surges. The signal-conditioning blocks shown in Figure 3.2
may consist of a number of separate circuits and components. These
elements are illustrated in Figure 3.6.

Certain passive signal-conditioning elements such as potential
dividers, bridge circuits and current-to-voltage conversion resis-
tors are often closely coupled to the sensor itself and, indeed,
may be an integral part of it. The sensor is sometimes isolated
from the remaining signal-conditioning circuits and from the PC
by means of linear opto-couplers or capacitively coupled devices.
Surge-suppression components such as Zener diodes and metal
oxide varistors may also be used in conjunction with RC networks to
protect against transient voltage spikes.

Because typical ADCs have sensitivities of a few millivolts per bit, it
is essential to amplify the low level signals from thermocouples, strain
gauges and RTDs (which may be only a few tens of millivolts at full
scale). Depending upon the type of sensor in use, activities such as AC
demodulation or thermocouple coldjunction compensation might
also be performed prior to amplification. Finally, a filtering stage
might be employed to remove random noise or AC excitation ripple.
Low-pass filters also serve an anti-aliasing function as described in
Chapter 4.

So what relevance does all this have to the DA&C programmer?
In well-designed systems, very little — the characteristics of the signal
conditioning should have no significant limiting affect on the design
or performance of the software, and most of the characteristics of
the sensor and signal conditioning should be transparent to the
programmer. Unfortunately this is not always the case.

The amplifier and other circuits can give rise to temperature-
dependent offsets or gain drifts (typically of the order of 0.002-0.010
per cent of full scale per °C) which may necessitate periodic recali-
bration or linearization. When designing DA&C software you should
consider the following:

e the frequency of calibration

e the need to enforce calibration or to prompt the operator when
calibration is due

e how calibration data will be input, stored and archived

¢ the necessity to rezero sensors after each data-acquisition cycle.

Sensors and interfacing 97

You should also consider the frequency response (or bandwidth)
of the signal-conditioning circuitry. This can affect the sampling
rate and limit throughput in some applications (see Chapter 4).
Typical bandwidths are of the order of a few hundred Hz, but this
does, of course, vary considerably between different types of signal-
conditioning circuit and depends upon the degree of filtration used.
High gain signal-conditioning circuits, which amplify noisy low level
signals, often require heavy filtering. This may limit the bandwidth to
typically 100 to 200 Hz. Systems employing low frequency LVDTs can
have even lower bandwidths. Bandwidth may not be an important
consideration when monitoring slowly varying signals (e.g. tempera-
ture), but it can prove to be problematic in high speed applications
involving, for example, dynamic force or strain measurement.

If high gain amplifiers are used and/or if hardware filtration is
inadequate, it may be necessary to incorporate filtering algorithms
within the software. If this is the case, you should carefully assess
which signal frequencies you wish to remove and which frequencies
you will need to retain, and then reconcile this with the proposed
sampling rate and the software’s ability to reconstruct an accu-
rate representation of the underlying noise-free signal. Sampling
considerations and software filtering techniques are discussed in
Chapter 4.

It may also, in some situations, be necessary for the software to
monitor voltages at various points within the signal-conditioning
circuit. We have already mentioned monitoring of bridge excitation
levels to compensate for voltage drops due to lead-wire resistance.
The same technique (sometimes known as ratiometric correction)
can also be used to counteract small drifts in excitation supply. If
lead-wire resistance can be ignored, the excitation voltage may be
monitored either at its source or at the location of the sensor.

There is another (although rarer) instance when it might be
necessary to monitor signal-conditioning voltage levels. This is when
pseudo-differential connections are employed on the input to an
amplifier. Analogue signal connections may be made in two ways:
single ended or differential. Single-ended signals share a common
ground or return line. Both the signal source voltage and the
input to the amplifier(s) exist relative to the common ground. For
this method to work successfully, the ground potential difference
between the source and amplifier must be negligible otherwise the
signal to be measured appears superimposed on a non-zero (and
possibly noisy) ground voltage. If a significant potential difference
exists between the ground connections, currents can flow along the
ground wire causing errors in the measured signals.

98 PCinterfacing and data acquisition

Differential systems circumvent this problem by employing two
wires for each signal. In this case, the signal is represented by the
potential difference between the wires. Any ground-loop-induced
voltage appears equally (as a common-mode signal) on each wire
and can be easily rejected by a differential amplificr.

An alternative to using a full differential system is to employ
pseudo-differential connections. This scheme is suitable for appli-
cations in which the common-mode voltage is moderately small.
It makes use of single-ended channels with a common ground
connection. This allows cheaper operational amplifiers to be used.
The potential of the common ground return point is measured
using a spare ADC input in order to allow the software to correct
for any differences between the local and remote ground voltages.
Successful implementation of this technique obviously requires the
programmer to have a reasonably detailed knowledge of the signal
conditioning circuitry. Unless the common-mode voltage is relatively
static, this technique also necessitates concurrent sampling of the
signal and ground voltages. In this case simultaneous sample-and-
hold circuits (discussed later in this chapter) or multiple ADCs may
have to be used.

Conditioning analogue outputs

Some form of signal conditioning is required on most analogue
outputs, particularly those that are intended to control motors
and other types of actuator. Space limitations preclude a detailed
discussion of this topic, but in general, the conditioning circuits
include current-driving devices and power amplifiers etc. The nature
of the signal conditioning used is closely related to the type of
actuator. As in the case of analogue inputs, it is prudent for the
programmer to gain a thorough understanding of the actuator and
associated signal-conditioning circuits in order that the software can
be designed to take account of any non-linearities or instabilities
which might be present.

Multiplexers

Multiplexers allow several analogue input channels to be serviced
by a single ADC. They are basically software-controlled analogue
switches which can route one of typically 8 or 16 analogue signals
through to the input of the system’s ADC. A four-channel mult-
plexed system is illustrated in Figure 3.2. A multiplexer used in
conjunction with a single ADC (and possibly amplifier) can take
the place of several ADCs (and amplifiers) operating in parallel.
This is normally considerably cheaper, and uses less power, than an

Sensors and interfacing 99

array of separate ADCs and for this reason analogue multiplexers
are commonly used in multi-channel data-acquisition systems.

However, some systems do employ parallel ADCs in order to
maximize throughput. The ADCs must, of course, be well matched
in terms of their offset, gain and integral non-linearity errors. In
such systems, the digitized readings from each channel (i.e. ADC) are
digitally multiplexed into a data register or into one of the PC’s I/O
ports. From the point of view of software design, there is little to be
said about digital multiplexers. In this section, we will deal only with
the properties of their analogue counterparts.

In an analogue multiplexed system, multiple channels share the
same ADC and the associated sensors must be read sequentially,
rather than in parallel. This leads to a reduction in the number of
channels that can be read per second. The decrease in throughput
obviously depends upon how efficiently the software controls the
digitization and data-input sequence.

A related problem is skewing of the acquired data. Unless special
S/H circuitry is used, simultaneous sampling is not possible. This is
an obvious disadvantage in applications which must determine the
temporal relationship or relative phase of two or more inputs.

Multiplexers can be operated in a variety of ways. The desired
analogue channel is usually selected by presenting a 3- or 4-bit
address (i.e. channel number) to its control pins. In the case of a
plug-in ADC card, the address-control lines are manipulated from
within the software by writing an equivalent bit pattern to one of the
card’s registers (which usually appear in the PC’s 1/0 space). Some
systems can be configured to automatically scan a range of channels.
This is often accomplished by programming the start and end
channel numbers into a ‘scan register’. In contrast, some intelligent
DA&C units require a high-level channel-selection command to
be issued. This often takes the form of an ASCII character string
transmitted via a serial or parallel port.

Whenever the multiplexer is switched between channels, the input
to the ADC or S/H will take a finite time to settle. The settling time
tends to be longer if the multiplexer’s output is amplified before
being passed to the S/H or ADC. An instrumentation amplifier may
take typically 1-10 ps to settle to a 12-bit (0.025 per cent) accuracy.
The exact settling time will vary, but will generally be longest with
high gain PGAs, or where the amplifier is required to settle to a
greater degree of accuracy.

The settling time can be problematic. If the software scans the
analogue channels (i.e. switches the multiplexer) too rapidly, the
input to the S/H or ADC will not settle sufficiently and a degree
of apparent cross-coupling may then be observed between adjacent

100 PC interfacing and data acquisition

channels. This can lead to measurement errors of several per cent,
depending upon the scanning rate and the characteristics of the
multiplexer and amplifier used. These problems can be avoided
by careful selection of components in relation to the proposed
sampling rate. Bear in mind that the effects of cross-coupling may be
dependent upon the sequence as well as the frequency with which
the input channels are scanned. Cross-coupling may not even be
apparent during some operations. A calibration facility, in which
only one channel is monitored, will not exhibit any cross-coupling,
while a multi-channel scanning sequence may be badly affected. It
is advisable to check for this problem at an early stage of software
development as, if present, it can impose severe restrictions on the
performance of the system.

Sample-and-hold circuits

Many systems employ a sample-and-hold (S/H) circuit on the input
to the ADC to freeze the signal while the ADC digitizes it. This
prevents errors due to changes in the signal during the digitization
process (see Chapter 4). In some implementations, the multiplexer
can be switched to the next channel in a sequence as soon as the
signal has been grabbe(l by the S/H. This allows the digitization
process to proceed in parallel with the settling time of the multi-
plexer and amplifier, thereby enhancing throughput. S/H circuits
can also be used to capture transient signals. Software-controlled
systems are not capable of responding to very high speed transient
signals (i.e. those lasting less than a few microseconds) and so in
these cases, the S/H and digitization process may be initiated by
means of special hardware (e.g. a pacing clock). The software is
then notified (by means of an interrupt, for example) when the
digitization process is complete.

S/H circuits require only a single digital control signal to switch
them between their sample and ‘hold’ modes. The signal may be
manipulated by software via a control register mapped to one of the
PC’s 1/0 ports, or it may be driven by dedicated on-board hardware.
S/H circuits present at the input to ADCs are often considered
to be an integral part of the digitization circuitry. Indeed, the
command to start the analogue-to-digital conversion process may
also automatically activate the S/H for the required length of time.

Simultaneous S/H

In multiplexed systems like that represented in Figure 3.2,
analogue input channels have to be read sequentially. This
introduces a time lag between the samples obtained from

Sensors and interfacing 101

successive channels. Assuming typical times for ADC conversion
and multiplexer/amplifier settling, this time lag can vary from
several tens to several hundreds of microseconds. The consequent
skewing of the sample matrix can be problematic if you wish
to measure the phase relationship between dynamically varying
signals. Simultaneous S/H circuits are often used to overcome this
problem. Figure 3.7 illustrates a four-channel analogue input system
employing simultaneous S/H.

The system is still multiplexed, so very little improvement is
gained in the overall throughput (total number of channels read
per second), but the S/H circuits allow data to be captured from all
inputs within a very narrow time interval (see the following section).
Simultaneous S/H circuits may be an integral part of the signal
conditioning unit or they may be incorporated in the digitization
circuitry (e.g. on a plug-in ADC card). In either case they tend to be
manipulated by a single digital signal generated by the PC.

Characteristics of S/H circuits

When not in use, the S/H circuit can be maintained in either
the sample or hold modes. To operate the device, it must first
be switched into sample mode for a short period and then into
hold mode in order to freeze the signal before analogue-to-digital
conversion begins. When switched to sample mode, the output of
the S/H takes a short, but sometimes significant, time to react to
its input. This time delay arises because the device has to charge
up an internal capacitor to the level of the input signal. The rate
of charging follows an exponential form and so a greater degree of
accuracy is achieved if the capacitor is allowed to charge for a longer
time. This charging time is known as the acquisition time. It varies
considerably between different types of S/H circuit and, of course,

Signal Sample/
Sensor conditioning
CHANNEL]
p— SELECT | GAIN
gha Sample/
Sensor conditioning n—:
J—' Multiplexer
Signal Sample/
Sensor conditioning EOC PC
Signal Sample/
Sensor conditioning —

Figure 3.7 Analogue input channels with simultaneous sample and hold

.

S/H control

102 PC interfacing and data acquisition

depends upon the size of the voltage swing at the S/H’s input. The
worst case acquisition time is usually quoted and this is generally
of the order of 0.5-20 ps. Acquisition time is illustrated, together
with other S/H characteristics, in Figure 3.8. Accuracies of 0.01 per
cent are often attainable with acquisition times greater than about
10 ps. Lower accuracies (e.g. 0.1 per cent) are typical of S/H devices
working with shorter acquisition times.

While in sample mode, the S/H’s output follows its input (provided
that the hold capacitor has been accurately charged and that the
signal does not change too quickly). When required, the device is
switched into hold mode. A short delay then ensues before digi-
tization can commence. The delay is actually composed of two
constituent delay times known as the aperture time and the settling
time. The former, which is due to the internal switching time of the
device, is very short: typically less than 50 ns. Variations in the aper-
ture time, known as aperture jitter (or aperture uncertainty time),
are the limiting factor in determining the temporal precision of each
sample. These variations are generally of the order of 1 ns, so aper-
ture jitter can be ignored in all but the highest speed applications
(see Chapter 4 for more on the relationship between aperture jitter
and maximum sampling rate). The settling time is the titne required
for the output to stabilize after the switch and determines the rate at
which samples can be obtained. It is usually of the order of 1 us, but
some systems exhibit much longer or shorter settling times.

, Hold Sample) Hold i
i) > >
! |
1
Voitage : : i — . _‘_ Droop
! [
' | o K
A A
§ / : ! 1 :
! /\.\ | : [
() 1 1 t
i, Output | : Vo
f | o
- _;’ 1 : 1 I
) : ! : : Settling time
!) =
) Yoy
1 : Yoy
[} 1 : 1 1
Acquisition time . ' Aperture time
[e —] -) ———
Time

Figure 3.8 Idealized sample-and-hold circuit response characteristic

Sensors and interfacing 103

When the output settles to a stable state, it can be digitized by
the ADC. Digitization must be completed within a reasonably short
time interval because the charge on the hold capacitor begins to
decay, causing the S/H’s output to ‘droop’. Droop rates vary between
different devices, but are typically of the order of 1 mV/ms. Devices
are available with both higher and lower droop rates. S/H circuits
with low droop rates are usually required in simultaneous sample-
and-hold systems. Large hold capacitors are needed to minimize
droop and these can adversely affect the device’s acquisition time.

3.5 Digitization and signal conversion

The PC is capable of reading and writing only digital signals. To
permit interfacing of the PC to external analogue systems, ADCs
and DACs must be used to convert signals from analogue to digital
form and vice versa. This section describes the basic principles of the
conversion processes. It also illustrates some of the characteristics of
ADCs and DACs which you should be aware of when writing interface
software.

Binary coding

In order to understand the digitization process, it is important to
consider the ways in which analogue signals can be represented
digitally. Computers store numbers in binary form. There are several
binary coding schemes. Most positive integers, for example, are
represented in true binary (sometimes called natural or straight
binary). Just as the digits in a decimal number represent units, tens,
hundreds etc., true binary digits represent 1s, 2s, 4s, 8s and so on.
Floating-point numbers, on the other hand, are represented within
the computer in a variety of different binary forms. Certain fields
within the floating-point bit pattern are set aside for exponents or to
represent the sign of the number. Although floating-point represen-
tations are needed to scale, linearize and otherwise manipulate data
within the PC, all digitized analogue data are generally transferred
in and out of the computer in the form of binary integers.

Analogue signals may be either unipolar or bipolar. Unipolar
signals range from zero up to some positive upper limit, while
bipolar signals can span zero, varying between non-zero negative
and positive limits.

Encoding unipolar signals

Unipolar signals are perhaps the most common and are the simplest
to represent in binary form. They are generally coded as true binary

104 PC interfacing and data acquisition

numbers with which most readers should already be familiar. As
mentioned above the least significant bit (LSB) has a weight (value)
of 1 in this scheme, and the weight of each successive bit doubles as
we move towards the most significant bit (MSB). If we allocate an
index number, i, to each bit, starting with 0 for the LSB, the weight
of any one bit is given by 2'. Bit 6 would, for example, represent
the value 25(=64 decimal). To calculate the value represented by a
complete binary number, the weights of all non-zero bits must be
added. For example, the following 8-bit true binary number would
be evaluated as shown.

11001001 binary = 27 4 26 4 2% 4+ 20
=128 + 64 + 8 + 1 = 201 decimal

The maximum value which can be represented by a true binary
number has all bits set to 1. Thus, a true binary number with n bits
can represent values from 0 to V, where:

i=n—1

v=Y 2=9 1 (3.4)
i=0

An 8-bit true binary number can, therefore, represent integers in the

range 0 to 255 decimal (=2% — 1). A greater range can be represented
by binary numbers having more bits. Similar calculations for other
numbers of bits yield the results shown in Table 3.2. The accuracies
with which each true binary number can represent an analogue
quantity are also shown.

The entries in this table correspond to the numbers of bits
employed by typical ADCs and DAGCs. It should be apparent that
converters with a higher resolution (number of bits) provide the
potential for a greater degree of conversion accuracy.

When true binary numbers are used to represent an analogue
quantity, the range of that quantity should be matched to the range

Table 3.2 Ranges of true binary numbers

Number of bits Range (true binary} Accuracy (%)
6 Oto 63 1.56
8 Oto 2565 0.39
10 Oto 1023 0.098
12 0Oto 4095 0.024
14 0t0 16383 0.0061

16 0t0 65535 0.0015

Sensors and interfacing 105

(i.e. V) of the ADC or DAC. This is generally accomplished by
choosing a signal-conditioning gain which allows the full-scale range
of a sensor to be matched exactly to the measurement range of the
ADC. A similar consideration applies to the range of DAC outputs
required to drive actuators. Assuming a perfect match (and that
there are no digitizing errors), the limiting accuracy of any ADC or
DAC system depends upon the number of bits available. An n-bit
system can represent some physical quantity which varies over a

range 0 to R, to a fractional accuracy :i:é(SR where:

_ R
- on
This is equal to the value represented by one LSB. True binary

numbers are important in this respect as they are the basis for
measuring the resolution of an ADC or DAC.

SR (3.5)

Encoding bipolar signals

Many analogue signals can take on a range of positive and negative
values. It is, therefore, essential to be able to represent readings
on both sides of zero as digitized binary numbers. Several different
binary coding schemes can be used for this purpose. One of the most
convenient and widely used is offset binary. As its name suggests, this
scheme employs a true binary coding, which is simply offset from
zero. This is best illustrated by an example. Consider a system in
which a unipolar 0-10 Vsignal is represented in 12-bit true binary by
the range of values from 0 to 4095. We can also represent a bipolar
signal in the range —5 V to +5 V by using the same scaling factor (i.e.
volts per bit) and simply shifting the zero-volt point halfway along the
binary scale to 2048. An offset binary value of zero would, in this case,
be equivalent to —5V, and a value of 4095 would represent +5 V.
Ofiset binary codes can, of course, be used with any number of bits.

Two’s complement binary can also represent both positive and
negative numbers. It employs a sign bit at the MSB location. This bit
is 0 for positive numbers and 1 for negative numbers. Because one bit
is dedicated to storing sign information, it cannot be used for coding
the absolute magnitude of the binary number and so the range of
magnitudes which can be represented by two’s complement numbers
is half that which can be accommodated by the same number of
bits in true binary. To negate a positive binary integer, it is only
necessary to complement (convert Os to 1s and 1s to 0s) each bit
and then add 1 to the result. Carrying out this operation — which is
equivalent to multiplying by minus one - twice in succession yields
the original number. As most readers will be aware, this scheme is

106 PC interfacing and data acquisition

used by the IBM PC'’s 80x86 processor for storing and manipulating
signed integers because it greatly simplifies the operations required
to perform subtractive arithmetic. A number of ADGs, particularly
those designed for audio and digital signal processing applications,
also use this coding scheme.

There are a variety of less widely used methods of coding bipolar
signals. For example, a simple true binary number, indicating magni-
tude, may be combined with an additional bit to record the sign
of the number. Another encoding scheme is one’s complement
(or complementary straight) binary in which negative numbers
are formed by simply inverting each bit of the equivalent positive
true-binary number. Combinations of these coding schemes are
sometimes used. For example, complementary offset binary consists
of an oflset binary scale in which each code is complemented. The
result is that the zero binary code (all Os) corresponds to the positive
full-scale position, while the maximum binary code (all 1s) represents
the negative full-scale position. Yet another scheme, complementary
two’s complement, is formed by simply inverting each bit of a two’s
complement value. These methods of binary coding are less impor-
tant in PC applications although some ADCs may generate signed
true binary or one’s complement binary codes. Some DAC devices
use the complementary offset binary scheme.

The various bipolar codes are compared in Table 3.3. This shows
how a 3-bit binary number can represent values from —4 to +4 using
the different coding schemes. The patterns shown in this table can
be easily extended to numbers encoded using a greater number of
bits. Note that only offset binary, complementary offset binary and
two’s complement binary have a unique zero code. Note also that
these schemes are asymmetric about their zero point. Compare in
particular the two forms of offset binary.

Table 3.3 Comparison of bipolar binary codes

Offset Two's One’s Complementary
Value binary complement complement offset binary

+3 111 o 011 000
+2 110 010 010 001
+1 101 001 001 010

0 100 000 000 or 111 011
-1 011 111 110 100
-2 010 110 101 101
-3 001 101 100 110

-4 000 100 - 11

Sensors and interfacing 107

Conversion from offset binary to two’s complement binary is simply
a matter of complementing the MSB. Complementing it again reverts
back to offset binary encoding. It is a very straightforward task to
convert between the various bipolar codes and examples will not be
given here.

Other binary codes and related notations

There are two other binary codes which can be used in special
circumstances: the Gray code and BCD. Both of these are, in fact,
unipolar codes and cannot represent negative numbers without
the addition of an extra sign bit. We have already introduced the
Gray code in relation to digital encoders earlier in this chapter, but
because the DA&C programmer rarely needs to use this code directly
it will not be discussed further.

Binary coded decimal (BCD)

BCD is simply a means of encoding individual decimal digits in binary
form. Each decimal digit is coded by a group of 4 bits. Although
each group would be capable of recording 16 true binary values,
only the lower 10 values (i.e. corresponding to 0 to 9, decimal) are
used. The remaining values are unused and are invalid in BCD. A
number with N decimal digits would occupy 4N bits, arranged such
that the least significant group of 4 bits would represent the least
significant decimal digit. For example:

1234 decimal = 0001 0010 0011 0100 BCD

ADCGs which generate BCD output are used mostly for interfacing to
decimal display devices such as panel meters. Most ADCs employed
in PC applications (e.g. those on plug-in DA&C cards) use one of the
coding schemes described previously, such as offset binary. However,
a few components of the PC do make use of BCD. For example, the
16-bit 8254 timer counter used on AT compatible machines and
on some plug-in data-acquisition cards can operate in a 4-decade
BCD mode.

Hexadecimal notation

This is not a binary code. It is, in fact, a base-16 (rather than base-2)
numeric representation. Hexadecimal notation is rather like BCD in
that 4 bits are required for each hexadecimal digit. However, all 16
binary codes are valid and so each hexadecimal digit can represent
the numbers from 0 to 15 (decimal). Hexadecimal numbers are
written using an alphanumeric notation in which the lowest 10 digits

108 PC interfacing and data acquisition

are represented by 0 to 9 and the remaining digits are written using
the letters A to F. ‘A’ corresponds to 10 decimal, ‘B’ to 11 and so
on. Hexadecimal numbers are followed by an ‘h’ to avoid confusing
them with decimal numbers. The following example shows the binary
and decimal equivalents of a 2-digit hexadecimal number:

3Ah = 0011 1010 binary = (3 x 16) 4+ (10 x 1) = 58 decimal

Most numbers manipulated by computer software are coded using
multiples of 4 bits: usually either 8, 16 or 32 bits. Hexadecimal is,
therefore, a convenient shorthand method for expressing binary
numbers and is used extensively in this and other publications.

Digital-to-analogue converters

Digital-to-analogue converters (DACs) have a variety of uses within
PC-based DA&C systems. They may be used for waveform synthesis,
to control the speed of DC motors, or to drive analogue chart
recorders and meters. Many closed-loop control systems require
analogue feedback from the PC and this is invariably provided by
a DAC.

Most DACs generate fullscale outputs of a few volts (typically
0-10V, £5V, or £10 V). They have a limited current-driving capa-
bility (usually less than about 1-10 mA) and are often buffered
using operational amplifiers. In cases where a low impedance or high
power unit s to be driven, suitable power amplifiers may be required.
Current-loop DAGs with full-scale outputs of 4-20 mA are also avail-
able and these are particularly suited to long-distance transmission
in noisy environments. Both bipolar and unipolar configurations are
possible on many proprietary DAC cards by adjusting jumpers or
DIP switches.

The resolution of a DAC is an important consideration. This is
the number of input bits which the DAC can accept. As Equation 3.5
shows, it determines the accuracy with which the device can recon-
struct analogue signals (also see Chapter 4). 8-bit and 12-bit DACs
are, perhaps, the most common in DA&C applications although
devices with a variety of other resolutions are available. Figure 3.9
shows the ideal transfer characteristic of a DAC. For reasons of
clarity, this illustration is based on a hypothetical 3-bit DAC, having
eight possible codes from 000b to 111b. Note that although there
are eight codes, the DACG can only generate an output accurate to
one-seventh of its maximum output voltage, which is one LSB short
of its nominal full scale value, V ..

DAGs are generally controlled via registers mapped to one or more
of the PC’s 1/0O ports. When the desired bit pattern is written to the

Sensors and interfacing 109

Vinax

7/8 Vinax 1

6/8 Vinax

5/8 Vinax .

49 Vinax ﬁ

Analogue output voitage

3/8 Vinax

2/8 Vinax

g Vinax

T T T 7 T
000 001 010 o 100 101 110 111
Digital input code

Figure 3.9 Ideal DAC transfer characteristic (unipolar true binary encoding)

register, the DAC updates its analogue output accordingly. If a DAC
has more than 8 bits, it requires its digital input to be supplied either
as one 16-bit word or as two 8-bit bytes. The latter often involves a
two-stage write operation: the least significant byte is usually written
first and this is followed by the most significant byte. Any unused
bits (e.g. the upper 4 bits in the case of a 12-bit DAC) are ignored.
The two-stage method of supplying new data can sometimes cause
problems if the DAC’s output is updated imnmediately upon receipt
of each byte. Spurious transients can be generated because the least
significant byte of the new data is initially combined with the most
significant byte of the existing data. The analogue output settles to
its desired value only when both new bytes have been supplied. To
circumvent this problem, many DACs incorporate a double buffering
system in which the first byte is held in a buffer until the second byte

110 PC interfacing and data acquisition

is received, at which point the complete control word is transferred
to the DAC’s signal-generating circuitry.

Most devices employ a network of resistors and electronic switches
connected to the input of an operational amplifier. The network is
arranged such that each switch and its associated resistors make a
binary-weighted contribution to the output of the amplifier. Each bit
of the digital input operates one of the switches and thereby controls
the input to, and output from, the amplifier. The operational ampli-
fier and resistor network function basically as a multiplier circuit. It
multiplies the digital input (expressed as a fraction of the full-scale
digital input) by a fixed reference voltage. The reference voltage
may be supplied by components external to the DAC. Most plug-in
DA&C cards for the PC include suitable precision voltage references.
Some also provide the facility for users to connect their own refer-
ence voltage and thereby to adjust the full-scale range of the DAC.
Further details of DAC operation may be found in the texts by
Tompkins and Webster (1988) and Vears (1990).

The output of a DAC can usually be updated quite rapidly. Each
bit transition gives rise to transient fluctuations which require a short
time to settle. The total settling time depends upon the number of
bits that change during the update and is greatest when all input bits
change (i.e. for a full-scale swing). The settling time may be defined
as the time required after a full-scale input step for the DAC’s output
to settle to within a negligibly small band about its final level. The
term ‘negligibly small’ has to be defined. Some DAC manufacturers
define it as ‘within :t-é— LSB’, while others define it as a percentage of
full scale, such as 0.001 per cent. Quoted settling times range from
about 0.1 to 150 ps, and sometimes up to about 1 ms, depending
upon the characteristics of the device and on how the settling time
is defined. Most DACs, however, have settling times of the order of
5-30 ps. In practice the overall settling time of an analogue output
channel may be affected by external power amplifiers and other
components connected to the DAC’s outputs. You are advised to
consult manufacturers’ literature for precise timing specifications.

Characteristics of DACs

Because of small mismatches in components (e.g. the resistor
network), it is not generally possible to fabricate DACs with the
ideal transfer characteristic illustrated in Figure 3.9. Most DACs
deviate slightly from the ideal, exhibiting several types of imperfec-
tion as shown in Figure 3.10. You should be aware of these potential
sources of error in DAC outputs, some of which can be corrected by
the use of appropriate software techniques.

Sensors and interfacing 111

max

7/ 8 Vmax -

6/8Vmax 1

5/8 vmax T :
1
1
i

1

4/ 8 Vmax

Analogue output voltage

3/8 Vmex 7

Offset| ° | Sp-=--- 3
voltage

T T T T T T
000 001 010 o1t 100 101 10 M
Digital input code
(a)

max

7/8 Vinax 7 i

6/8Vmax 7

5/8 Vinax

Differential

non-linearity
4/8Vmax T

3/8Vma>< N

2/8 Vmax 7 /

1/8Vmax 7

Analogue output voltage

Non-monotonic bit

0 T T T T T T
000] 010 onm 100 101 1g m

Digital input code
(b

Figure 3.10 Non-ideal DAC transfer characteristics: (a) gain and offset errors and
(b} non-linearity and non-monotonicity

112 PC interfacing and data acquisition

The transfer characteristic may be translated along the analogue-
output axis giving rise to a small offset voltage. Incorrect gains will
modify the slope of the transfer characteristic such that the desired
fullscale output is either obtained with a binary code lower than
the ideal full-scale code (all 1s), or never reached at all. Gain errors
equivalent to a few LSB are typical.

Linearity is a measure of how closely the output conforms to a
straight line drawn between the end points of the conversion range.
Linearity errors, which are due to small mismatches in the resistor
network, cause the output obtained with some binary codes to deviate
from the ideal straight-line characteristic. Most modern monolithic
DAG:s are linear to within +1 LSB or less. Differential non-linearity
is the maximum change in analogue output occurring between any
two adjacent input codes. It is defined in terms of the variation from
the ideal step size of 1 LSB. Differential non-linearities are usually of
the order of 1 LSB or less. If non-linearity is such that the output
from the DAC fails to increase over any single step in its input,
the DAC is said to be non-monotonic. Monotonicity of a DAC is
usually expressed as the number of bits over which monotonicity is
maintained. If a DAC has a non-linearity better than i:% LSB, then it
must be monotonic (it cannot be non-monotonic, by definition).

Although one can often compensate for gain and offset errors
by manual trimming, it is not possible to correct non-linear or
non-monotonic DACs — these characteristics are intrinsic properties
of the device. Fortunately, most modern DAC designs yield quite
small non-linearities which can usually be ignored. If, however,
you are using a particularly non-linear device, you may wish to
consider employing one of the linearization techniques described in
Chapter 9.

Analogue-to-digital converters

An analogue-to-digital converter (ADC) is required to convert
analogue sensor signals into a binary form suitable for reading
into the PC. A wide variety of ADGCs are available for this platform,
either on plug-in DA&C cards or within remote signal-conditioning
units or data loggers. This section introduces the basic concepts
involved in analogue-to-digital conversion and describes some of
the properties of ADCs which are relevant to the design of DA&C
software.

Resolution and quantization error

It should be apparent to the reader that, because of the discrete
nature of digital signals, some analogue information is lost in the

Sensors and interfacing 113

conversion process. A small but finite range of analogue input
values are capable of generating any one digital output code. This
range is known as the code width or, more properly, as a quantum
as it represents the smallest change in analogue input which can
be represented by the system. Its size corresponds to 1 LSB. The
uncertainty introduced as a result of rounding to the nearest binary
code is known as quantization error and has a magnitude equal to
ié LSB. Obviously, the quantization error is less important relative
to the full-scale input range in ADCs that are capable of generating
a wider range of output codes (i.e. those with a greater number
of bits).

Some devices have a relatively low resolution of 8 bits or less,
while others, designed for more precise measurements, may have 12
or 16 bits. ADCs usually have full-scale input ranges of a few volts:
typically 0-10V (unipolar) or £5V (bipolar). The quantization
error is thus of the order of a few millivolts. Precise figures can easily
be calculated by applying Equation 3.5, knowing the device’s input
range and resolution, as shown in the following example.

Consider a 12-bit ADC system designed for monitoring the
displacement of some object using an LVDT over a range 0 to
50 mm. If the full analogue range is encompassed exactly by the
available digital codes, then we can calculate the magnitude of the
LSB from Equation 3.5:

5

OR = 5—, = 5)1% = 0.012 mm
In this example, the quantization error imposes an accuracy of
:E:%SR = $0.006 mm. This presupposes that we use the whole range
of available ADC codes. The effective quantization error is clearly
worse if only part of the ADC’s digitizing range is used. The quantiza-
tion error indicates the degree of precision that can be attained in an
ideal device. It is not, however, representative of the overall accuracy
of most real ADCs. We will discuss other sources of inaccuracy later
in this chapter.

Quantization noise

For a data-acquisition system equipped with an n-bit ADC and
designed to measure signals over a range R, we have seen that the
quantization error is £Q, where Q = %6R. The difference between
an analogue value and its digitized representation appears as a
varying noise signal superimposed upon the true analogue signal.
The amplitude of the noise signal varies by an amount determined
by the magnitude of the quantization error and, if the signal to

114 PC interfacing and data acquisition

be digitized consists of a pure sine wave of amplitude :}:%R, the
root-mean-square (rms) value of the noise component is given by:

N 2R (3.6)
rms — \/3 i
which, when we substitute for R, gives:
N %R 3.7
rms 2" ,\/3 e
The rms value of the signal itself is:
Srms = R (3.8)
rms \/2 .

so the ratio of the rms signal to rms noise values - the signal-to-noise
ratio, SNR - is given by

Sl‘l“S f
SNR = - — [Zon 3.9
New V27 @9

It is normal to express SNR in decibels (dB), where SNR4s =
20 log (SNR). This gives the approximate relationship:

SNRgg ~ 1.76 4+ 6.02n dB (3.10)

This equation relates the number of bits to the dynamic range of the
ADC —i.e. the signal-to-noise ratio (SNR) inherent in digitization.
Conversely, in a real measuring system, where other sources of noise
are present, Equation 3.10 can be used to determine the number
of ADC bits that will encode signal changes above the ambient
noise level. The contribution made by the low order bits of an ADC
may be considerably less than the rms level of noise introduced
by other system components. For example, differential and integral
non-linearities inherent in the ADC, electronic pickup, sensor noise
and unwanted fluctuations in the measurand itself may also degrade
the SNR of the system as a whole. In many systems the SNR is limited
to around 75 to 85 dB by these factors. Where large noise amplitudes
are present, it is fruitless to employ a very high resolution ADC. It
may, in such cases, be possible to use an ADC with a lower resolution
(and hence lower SNRyp) without losing any useful information.
Chapter 4 presents some simple techniques for removing unwanted
noise from digitized signals.

Sensors and interfacing 115

Conversion time

Most types of ADC use a multiple-stage conversion process. Each
stage might involve incrementing a counter or comparing the
analogue signal to some digitally generated approximation. Conse-
quently, analogue-to-digital conversion does not occur instanta-
neously. Depending upon the method of conversion used, times
ranging from a few microseconds up to several seconds may be
required. Conversion times are generally quoted in manufacturer’s
data sheets as the time required to convert a full-scale input. Some
devices (such as binary counter type ADCs) are capable of converting
lower level signals in a shorter time. In general, low resolution
devices tend to be faster than high resolution ADCs. The fastest 16-
bit ADGs currently have conversion times of about 1 us. As a rough
rule-of-thumb, the conversion time of the fastest devices currently
available tends to increase by roughly an order of magnitude for
every additional 2 bits resolution. The conversion times applicable
to the various types of ADC are described in the following section.

Types of ADC

There are several basic classes of ADC. The different conversion
techniques employed make each type particularly suited to certain
types of application. Some ADCs are implemented by using a combi-
nation of discrete components (counters, DACs etc.) in conjunction
with controlling software. This approach is particularly suited to
producing very high resolution converters. However, it tends to be
used less often in recent years as high resolution and reasonably
priced monolithic ADGCs are now becoming increasingly available.
The various types of ADC are described below in approximate order
of speed: the slowest first.

Voltage-to-frequency conversion ADCs

This type of ADC employs a voltage-to-frequency converter (VFC)
to transform the input signal into a sequence of digital pulses. The
frequency of the pulse train is proportional to the input voltage. A
binary counter counts the pulses over a fixed time interval and the
total accumulated count provides the ADC’s digital output. The time
period over which the pulses are counted varies with the required
resolution and full-scale frequency of the VFC. Typical conversion
times range from about 50 ms up to several seconds.

Because the input voltage is effectively averaged over the conver-
sion period, VFC-based ADCs exhibit good noise immunity. However,
their slow response restricts them to low speed sampling applica-
tions. This type of ADC is inherently monotonic, but linearities

116 PC interfacing and data acquisition

and gain errors can be variable. Devices based on lower frequency
(10 kHz) VFCs tend to be more accurate than those employing high
speed VFCs.

VFCs are sometimes used to digitize analogue signals at remote
sensing locations. The advantage of this approach is that sensor
signals can be more easily transmitted in digital form over long
distances or through noisy environments. The digital pulse train is
received by the PC or data-logging unit and then processed using
a suitable counter. The resolution and speed of such a system can
easily be modified under software control by reprogramming the
counter and timer hardware accordingly.

Dual-slope (integrating) ADCs

Dual-slope ADGCs each employ a binary counter in conjunction with
an integrating circuit that sums the input signal over a fixed time
period as shown in Figure 3.11. The rate of increase of the integral
during this time is proportional to the average input signal. When
the integration has been completed, a negative analogue reference
voltage is applied to the integrating circuit and the timer is started.
The combined integral of the two inputs then falls linearly. The time
taken for the integral to fall to zero is directly proportional to the
average input voltage. The binary output from the timer is then used
to provide the ADC’s digital output.

Because the input signal is integrated over time, this type of ADC
averages out signal variations due to noise and other sources. Typical

Integrated

ignal .
signa Increasing mean

input voltage

\ Discharge ramps
Mean input

voltage =V;

P bV : : Time
;5 tZ oc Vz ‘
t3= V3

Integration time

i

X

Figure 3.11 Signal integration in a dual-slope ADC

Sensors and interfacing 117

integration times are usually of the order of a few milliseconds or
longer, limiting the sample rate to typically 5-50 Hz. Dual slope
ADCs are particularly suited to use in noisy environments and are
often capable of rejecting mains-induced noise. For this reason, they
are popular in low speed sampling applications such as temperature
measurement. Dual-slope ADCs are relatively inexpensive, offer good
accuracy and linearity, and can provide resolutions of typically 12 to
16 bits.

The related singleslope (or Wilkinson) technique involves
measuring the time required to discharge a capacitor which initially
holds a charge proportional to the input signal. In this case,
the capacitor may be a component of circuitry used for signal
conditioning or pulse shaping. This technique is sometimes used
in conjunction with nuclear radiation detectors for pulse-height
analysis in systems designed for X-ray or gamma-ray spectrometry.

Binary counter ADCs

This type of ADC also employs a binary counter, but in this case it
is connected to the input of a DAC. The counter is supplied with
a clock input of fixed frequency. As the counter is incremented
it causes the analogue output from the DAC to increase as shown
in Figure 3.12(a). This output is compared with the signal to be
digitized and, as soon as the DAC’s output reaches the level of the
input signal, the counter is stopped. The contents of the counter
then provide the ADC’s digital output. The accuracy of this type
of converter depends upon the precision of the DAC and the
constancy of the clock input. The binary counting technique provides
moderately good resolution and accuracy, although conversion times

Voltage DAC output ramp Voltage DAC output
Analogue Analogue
input — input
signal signal

0 Time 0 t Time
(a) (b

Figure 3.12 DAC output generated by (a) binary counter ADCs and (b} tracking
ADCs

118 PC interfacing and data acquisition

can be quite long, particularly for inputs close to the upper end of
the device’s measuring range. This limits throughput to less than a
few hundred samples per second.

The main disadvantage with this type of converter is that the
conversion time varies with the magnitude of the input signal. A
variant of the simple binary counter method, known as the tracking
converter, provides a solution to this problem and also allows higher
sampling rates to be used. The tracking converter continuously
follows the analogue input, ramping its DAC output up or down to
maintain a match between its digital output and the analogue input
as shown in Figure 3.12(b). The software may, at any time after t,,
stop the tracking (which temporarily freezes the digital output) and
then read the ADC. After an initial conversion has been performed,
subsequent conversions only require enough time to count up or
down to match any (small) change in the input signal. This method
operates at a somewhat faster (and less variable) speed than the
simple binary counter ADC.

Successive approximation ADCs

The successive approximation technique makes use of a DAC to
convert a series of digital approximations of the input signal into
analogue voltages. These are then compared with the input signal.
The approximations are applied in a binary-weighted sequence as
shown in Figure 3.13 which, for the sake of clarity, shows only a 4-bit
successive approximation sequence. Eight to 16 bits are more typical
of actual ADC implementations.

A reference voltage corresponding to the ADC’s MSB is generated
first. If this is less than the input signal, a 1 bit is stored in the MSB
position of an internal Successive Approximation Register (SAR),
otherwise a 0 is stored. Each subsequent approximation involves
generating a voltage equivalent to all of the bits in the SAR which
have so far been set to 1, plus the value of the next bit in the
sequence. Again, if the total voltage is less than the input signal,
a 1 value is stored in the appropriate bit position of the SAR. The
process repeats, for bits of lesser significance until the LSB has been
compared. The SAR will then contain a binary approximation of the
analogue input signal.

Because this process involves only a small number of iterations
(equal to the number of bits), successive approximation ADCs can
operate relatively quickly. Typical conversion times are of the order
of 5-30 pus. Successive approximation ADCs offer between 8- and
16-bit resolutions and exhibit a moderately high degree of linearity.
This type of ADC is widely used in PC interfacing applications
for data acquisition at rates up to 100 kHz. Many manufacturers

Sensors and interfacing 119

Digital output

M~ m - == - — - mm s — m——— -
me4 m—mm—- |

new o _ -lt- —— —t_—_ SR PO Signal level
Mmo4q4 @ Tt - fr-----
1011 +
1010
1001
1000
0111 A
0110
0101
0100 +
0011
0010 +
0001
0000

Time

SAR 1 1 0 0

MSB
Figure 3.13 DAC output generated during successive approximation

provide inexpensive general-purpose DA&C cards based on succes-
sive approximation ADCs.

Unlike some other types of ADC, the process of successive approx-
imation does not involve an inherent averaging of the input signal.
The main characteristic of these devices is their high operating speed
rather than noise immunity. To fully utilize this high speed sampling
capability, the ADC’s input must remain constant during the conver-
sion. Many ADC cards employ on-board S/H circuits to freeze the
input until the conversion has been completed. Some monolithic
successive approximation ADCs include built-in S/H circuits for this
purpose. In these cases the total conversion time specified in manu-
facturer’s data sheets may include the acquisition time of the S/H
circuit.

Parallel (flash) ADCs

This is the fastest type of ADC and is normally used in only very high
speed applications, such as in video systems. It employs a network

120 PC interfacing and data acquisition

of resistors which generate a binary-weighted array of reference
voltages. One reference voltage is required for each bit in the ADC’s
digital output. A comparator is also assigned to each bit. Each
reference voltage is applied to the appropriate comparator, along
with a sample of the analogue input signal. If the signal is higher
than the comparator’s reference voltage, a logical 1 bit is generated,
otherwise the comparator outputs a logic 0.

In this way the signal level is simultaneously compared with each
of the reference voltages. This parallel digitization technique allows
conversions to be performed at extremely high speed. Conversion
times may be as low as a few ns, but more typically fall within the range
50-1000 ns. Parallel converters require multiple comparators and
this means that high resolution devices are difficult and expensive
to fabricate. Resolutions are consequently limited to 8 to 10 bits or
less. Greater resolutions can sometimes be achieved by cascading
two flash converters. Some pseudo-parallel converters, known as
subranging converters, employ a half flash technique in which the
signal is digitized in two stages (typically within about 1 ps). The first
stage digitizes the most significant bits in parallel. The second stage
digitizes the least significant bits.

Using ADCs

As well as their analogue input and digital output lines, most mono-
lithic ADCs have two additional digital connections. One of these, the
Start Conversion (also sometimes known as the SC or START) pin,
initiates the analogue-to-digital conversion process. Upon receiving
the SC signal, the ADC responds by deactivating its End of Conver-
sion (EOC) pin and then, when the conversion process has been
completed, it asserts EOC once more. The processor should sense
the EOC signal and then read the digitized data from the ADC’s
output register.

On plug-in DA&C cards, the SC and EOC pins are generally
mapped to separate bits within one of the PC’s I/O ports and can
thus be controlled and sensed using assembly language v and our
instructions. The ADC’s output register is also normally mapped into
the PC’s I/O space. In contrast, stand-alone data-logging units and
other intelligent instruments may initiate and control analogue-to-
digital conversion according to preprogrammed sequences. In these
cases ADC control is reduced to simply issuing the appropriate high
level commands from the PC.

As an alternative to software initiation, some systems allow the
SC pin to be controlled by on-board components such as counters,
timers or logic level control lines. Some ADC cards include a provi-
sion for the EOC signal to drive one of the PC’s interrupt request

Sensors and interfacing 121

lines. Such systems allow the PC’s software to start the conversion
process and then to continue with other tasks rather than waiting for
the ADC to digitize its input. When the conversion is complete the
ADC asserts EOC, invoking a software interrupt routine which then
reads the digitized data.

Most ADC cards will incorporate 1/O-mapped registers which
control not just the ADC’s SC line, but will also operate an on-board
multiplexer and S/H circuit (if present) as shown in Figure 3.14.
The details of the register mapping and controlline usage vary
between different systems, but most employ facilities similar to those
described above. Often the S/H circuit on the input to the ADC
is operated automatically when the SC line is asserted. It should
be noted, however, that simultaneous S/H circuits are generally
operated independently of the ADC via separate control lines. You
should consult your system’s technical documentation for precise
operational details.

ADC characteristics and errors

Figure 3.15 illustrates the characteristics of an ideal ADC. For the
sake of clarity, the output from a hypothetical 3-bit ADC is shown.
The voltage supplied to the ADC’s input is expressed as a fraction of
the full-scale input, FS.

Note that each digital code can represent a range of analogue
values known as the code width. The analogue value represented
by each binary code falls at the mid-point of the range of values
encompassed by that code. These mid-range points lie on a straight
line passing through the origin of the graph as indicated in the
figure. Consequently the origin lies at the mid-range point of the
lowest quantum. In this illustration, a change in input equivalent
to only é L.SB will cause the ADC’s output to change from 000b to
001b. Because of the positions of the zero and full-scale points, only
2" — 1 (rather than 2") changes in output code occur for a full-scale
input swing.

Conditioned { —»
onartione: Sarroie
analogue _..L 8<:hanne| ang ADC
sgns?(—multiplexer o o
T M PC bus
old SC EOC and [:
Y interface
Channel Registers circuitry
select and
control
logic

Figure 3.14 A typical multiplexed ADC card

122 PC interfacing and data acquisition

|
T
|
|
t
t
i
1
|
[
|
|
[
[
|
|
|
[
1
i
i
i
|
[
[
|

10 "/

101 1 /v
100 ’/

[
[
|
|
i
i
|
|
1
1
]
/] !
011 1 1
i
i
|
i
{
{
{
|
[
|
]
1

Digital output code

010 4 ’/
L

001 + /
Ve

T T T T 1 T T
O 1gFS 1,FS 34FS 1,FS BgFS 3,FS 7FS FS

000

Analogue input voltage

Figure 3.15 Transfer characteristic of an ideal ADC

Like DACGs, analogue-to-digital converters exhibit several forms of
non-ideal behaviour. This often manifests itself as a gain error, offset
error or non-linearity. Offset and gain errors present in ADCs are
analogous to the corresponding errors already described for DACs.
These are illustrated in Figure 3.16 which, for the sake of clarity,
shows only the centre points of each code. ADC gain errors can be
caused by instabilities in the ADC’s analogue reference voltage or by
gain errors in their constituent DACs. Gain and offset errors in most
monolithic ADCs are very small and can often be ignored.

ADCs may have missing codes ~i.e. they may be incapable of
generating some codes between the end points of their measuring
range. This occurs if the DAC used within the ADC is non-monotonic.
Non-linearity (sometimes referred to as integral non-linearity) is a
measure of the maximum deviation of the actual transfer charac-
teristic from the ideal response curve. Non-linearities are usually
quoted as a fraction of the LSB. If an ADC has a non-linearity of less
than % LSB then there is no possibility that it will have missing codes.

Differential non-linearity is the maximum difference between the
input values required to produce any two consecutive changes in the

Sensors and interfacing 123

R LR E R PRS- B

110 4

Integral

&S non-linearity
101 A

100

Digital output code

011 1

010

001

000

T 1 T 1

T T T T
0 1/8FS 1/4FS 3/8FS 1/2FS 5/8FS 3/4FS 7/8FS FS

Analogue input voltage

Figure 3.16 Errors in ADC transfer characteristics

digital output —i.e. the maximum deviation of the code width from
its ideal value of 1 LSB. Non-linearities often occur when several bits
all change together (e.g. as in the transition from 255 to 256) and
because of this they tend to follow a repeated pattern throughout
the converter’s range.

The overall accuracy of an ADC will be determined by the sum
total of the deviations from the ideal characteristic introduced by
gain errors, offset errors, non-linearities and missing codes. These
errors are generally temperature dependent. Gain and offset errors
can sometimes be trimmed or removed, but non-linearities and
missing codes cannot be easily compensated for. Accuracy figures
are often quoted in ADC data sheets. They are usually expressed as
a percentage of fullscale input range or in terms of the analogue
equivalent of the LSB step size. Typical accuracy figures for 12-
bit monolithic ADCs are generally of the order of :l:é to =1 LSB.
However, these figures may be significantly worse (perhaps 4 to 8 LSB
in some cases) at the extremes of the ADC’s working temperature
range. You are advised to study carefully manufacturers’ literature

124 PC interfacing and data acquisition

in order to determine the operational characteristics of the ADC in
your own system.

3.6 Analogue measurements

In this section we will discuss three topics of particular importance in
the design of analogue measuring systems: accuracy, amplification
and throughput.

Accuracy

The accuracy of the whole measuring system will be determined,
not just by the precision of the ADC, but also by the accuracy and
linearity of the sensor and signal-conditioning circuits used. Random
or periodic noise will also affect the measurement accuracy, intro-
ducing either statistically random or systematic uncertainties. The
inaccuracies inherent in each component of the system (e.g. sensor
instabilities, amplifier gain errors, S/H accuracy, ADC quantization
error and linearity) should be carefully assessed and summed with
the expected (or measured) noise levels in order to arrive at the total
potential error. A simple arithmetic sum will provide an estimate of
the maximum possible error. However, in some measurements, the
errors might be combined such that they oppose each other and
tend to cancel out. A figure more representative of the average
error which is likely to occur —i.e. the statistical root-sum-square
(rss) error - can be obtained by adding the individual errors in
quadrature, as follows:

k=j
e=1[> & (3.11)
k=0

Here, ¢ is the rss error (equivalent to the standard deviation of many
readings of a fixed input), j is the number of sources of error and
¢ is the kth source of error expressed either in terms of the units
of the measurand or as a fraction of the full-scale measurement
range. To simplify the calculation §; contributions of less than about
one-quarter of the maximum & can usually be ignored without
significantly affecting the result. Typical errors introduced by S/H,
multiplexer and amplifiers (assuming that they are allowed to settle
adequately) are often of the order of £0.01 per cent of full scale,
or less. This may be a significant source of error, particularly in
high resolution systems (i.e. those using ADCs of greater than 10 bits
resolution).

Sensors and interfacing 125

Amplification and extending dynamic range

The conversion accuracy of an ADC is ultimately limited by the
device’s resolution. Unless the range of signal levels generated
by the signal-conditioning circuitry is accurately matched to the
ADC’s full-scale range (typically up to 5 or 10V), a proportion of
the available conversion codes will be unused. In order to take
full advantage of the available resolution it is necessary to scale
the signal by means of suitable amplifying components. This can
easily be accommodated using fixed gain operational amplifiers or
instrumentation amplifiers. Many proprietary PC data-acquisition
cards incorporate amplifiers of this kind. The gain can generally be
selected by means of jumpers or DIP switches when the device is
installed in the PC. This approach is ideal if the system is intended to
measure some signal over a fixed range to a predetermined degree
of accuracy.

However, many sensors have wide dynamic ranges. LVDT displace-
ment sensors, for example, have a theoretically infinite resolution.
With suitable signal conditioning they can be used to measure
displacements either over their fullscale range or just over a very
small proportion of their range. To measure displacements to the
same fractional accuracy over full or partial ranges, it is neces-
sary to dynamically vary the gain of the signal-conditioning circuit.
This is generally accomplished by means of Programmable-Gain
Amplifiers (PGAs).

The gain of a PGA can be selected, from a set of fixed values, under
software control. In the case of plug-in ADC cards, gain selection
is usually effected by writing a suitable bit pattern via an I/O port
to one of the card’s control registers. It is possible to maximize the
dynamic range of the system by selecting an appropriate PGA gain
setting.

The software must, of course, compensate for changes in gain by
scaling the digitized readings appropriately. Binary gain ranges (e.g.
1x,2x,4x,8x etc.) are the simplest to accommodate in the software
since, to reflect the gain range used, the digitized values obtained
with the lowest gains can be simply shifted left (i.e. multiplied)
within the processor’s registers by an appropriate number of bits.
If systems with other gain ranges are used it becomes necessary to
employ floating-point arithmetic to adjust the scaling factors.

Amplifiers may produce a non-zero voltage (known as an offset
voltage) when a zero-volt input is applied. This can be cancelled by
using appropriate trimming components. However, these compo-
nents can be the source of additional errors and instabilities (such
as temperature-dependent drifts) and, because of this, a higher

126 PC interfacing and data acquisition

degree of stability can sometimes be obtained by cancelling the
offset purely in software. Offsets can also arise from a variety of
other sources within the sensor and signal-conditioning circuits. It
can be very convenient to compensate for all of these sources in one
operation by configuring the software to measure the total offset
and to subtract it from each subsequent reading. If you adopt this
approach, you should bear in mind that the input to a PGA from
previous amplification stages or signal-conditioning components still
possesses a non-zero offset. Changing the gain of the PGA can also
affect the magnitude of offset presented to the ADC. It is, therefore,
prudent for the software to rezero such systems whenever the PGA’s
gain is changed.

One of the most useful capabilities offered by PGAs is autoranging.
This permits the optimum gain range to be selected even if the
presentsignal level is unknown. An initial measurement of the signal
is obtained using the lowest (e.g. 1x) gain range. The gain required
to give the optimum resolution is then calculated by dividing the
ADC’s resolution (e.g. 4096 in the case of a 12-bit converter) by the
initial reading. The gain range less than or equal to the optimum
gain is then selected for the final reading. This technique obviously
reduces throughput as it involves twice as many analogue-to-digital
conversions and repeated gain changes.

Throughput

The throughput of an analogue measuring system is the rate at
which the software can sample analogue input channels and process
the acquired data. It is more conveniently expressed as the number
of channels read per second. The distinction between this and the
rate at which multiplexed groups of sensor channels can be scanned
should be obvious to the reader. A system scanning a group of eight
sensor channels 50 times per second will have a throughput figure
of 400 channels per second.

A number of factors affect throughput. One of the most important
of these is the ADC’s conversion time, although it is by no means
the only consideration. The acquisition time of the S/H circuit, the
settling times of the multiplexer, S/H, PGA and other components,
the bandwidth of filters, and the tine constant of the sensor may all
have to be taken into account. Each component must be fast enough
to support the required throughput.

When scanning multiple channels, throughput can sometimes be
maximized by changing the multiplexer channel as soon as the S/H
circuit is switched into hold mode. This allows analogue-to-digital
conversion to proceed while the multiplexer’s output settles to the

Sensors and interfacing 127

level of the next input channel. This technique, known as overlap
multiplexing, requires well-designed DA&C hardware to avoid feed-
through between the two channels. Compare this with the usual
(slower) technique of serial multiplexing, where each channel is
selected, sampled and digitized in sequence.

Throughput is, of course, also limited by the software used. Unless
special software and hardware techniques, such as Direct Memory
Access (DMA), are employed, each read operation will involve the
processor executing a sequence of v and our instructions. These
are needed in order to operate the multiplexer (and possibly S/H),
to initiate the conversion, check for the EOC signal, read one or
two bytes of data and then to store that data in memory. The
time required will vary between different types of PC, but on a
moderately powered system, these operations will generally intro-
duce delays of several tens of microseconds per channel. Provided
that no other software processing is required, a fast (e.g. successive
approximation) ADC is used, and that the bandwidth of the signal-
conditioning circuitry does not limit throughput, a well-designed
80486-based data-acquisition system might be capable of reading
several thousand channels per second. Systems optimized for high
speed sampling of single channels can achieve throughput rates in
excess of 10 000-20 000 samples per second.

Most systems, however, require a degree of additional real-time
processing. The overheads involved in scaling or linearizing the
acquired data or in executing control algorithms will generally
reduce the maximum attainable throughput by an order of magni-
tude or more. Certain operations, such as updating graphical displays
or writing data to disk can take a long (and possibly indeterminate)
time. The time needed to update a screen display, for example,
ranges from a few milliseconds up to several hundred milliseconds
(or even several seconds), depending upon the complexity of the
output. Speed can sometimes be improved by coding the time-critical
routines in assembly language rather than in C, Pascal or other high
level languages.

In assessing the speed limitations which are likely to be imposed
by software, it is wise to perform thorough timing tests on each
routine that you intend to use during the data-acquisition period.
In many cases, raw data can be temporarily buftfered in memory
for subsequent processing during a less time-critical portion of
the program. By carrying out a detailed assessment of the timing
penalties associated with each software operation you should be able
to achieve an optimum distribution of functionality between the
real-time and post-acquisition portions of the program.

128 PC interfacing and data acquisition

3.7 Timers and pacing

Most real-time applications require sensor readings to be taken
at precise times in the data-acquisition cycle. In some cases, the
time at which an event occurs, or the time between successive
events, can be of greater importance than the attributes of the
event itself. The ability to pace a data-acquisition sequence is clearly
important for accurately maintaining sampling rates and for correct
operation of digital filters, PID algorithms and time-dependent
(e.g. chart recorder) displays. A precise timebase is also necessary
for measurement of frequency, for differentiating and integrating
sensor inputs, and for driving stepper motors and other external
equipment.

Timing tasks can be carried out by using counters on an adaptor
card inserted into one of the PC’s expansion slots. Indeed many
analogue I/0O cards have dedicated timing and counting circuitry,
which can be used to trigger samples, to interrupt the PC, to control
the acquisition of a preprogrammed number of readings or to
generate waveforms.

Another approach to measuring elapsed time is to use the timing
facilities provided by the PC. This is a relatively easy task when
programming in a real-mode environment (e.g. DOS). It becomes
more complex, however, under multitasking operating systems such
as Windows NT or OS/2, where one has limited access to, and less
control over, the PC’s timing hardware. The PC is equipped with a
programmable system clock based on the Intel 8254 timer counter,
as well as a Motorola MC146818A Real Time Clock (RTC) IC. These,
together with a number of BIOS services provide real-mode programs
with a wealth of timing and calendrical features.

Whatever timing technique is adopted, it is important to consider
the granularity of the timing hardware ~i.e. the smallest increment
in time that it can measure. This should be apparent from the
specification of the timing device used. The PC’s system timer
normally has a granularity of about 55 ms and so (unless it is
reprogrammed accordingly) it is not suitable for measuring very
short time intervals. The RTC provides a periodic timing signal with
a finer granularity: approximately 976 ps. There are various software
techniques that can yield granularities down to less than 1 ps using
the PC’s hardware, although such precise timing is limited in practice
by variations in execution time of the code used to read the timer.
The texts by van Gilluwe (1994) and Sanchez and Canton (1994)
provide useful information for those readers wishing to exploit the
timing capabilities of the PC.

Sensors and interfacing 129

When devising and using any timing system that interacts with
data-acquisition software (as opposed to a hardware-only system),
it must be borne in mind that the accuracy of time measurements
will be determined, to a great extent, by how the timing code
is implemented. As in many other situations, assembly language
provides greater potential for precision than a high level language.
A compiled language such as C or Pascal is often adequate for
situations where timing accuracies of the order of 1 ms are required.

Most programming languages and development environments
include a variety of time-related library functions. For example,
National Instruments’ LabWindows/CVI (an environment and
library designed for creating data-acquisition programs) when
running on Windows NT supplies the application program with a
timing signal every 1 ms or 10 ms (depending upon configuration).
A range of elapsed-time, time-delay, and time-of-day functions is also
provided.

Watchdog timers

In many data-acquisition applications the PC must communicate
with some external entity such as an intelligent data-logging module
or a programmable logic controller. In these cases it can be useful
for both components of the system to be ‘aware’ of whether the
other is functioning correctly. There are a number of ways in which
the state of one subsystem can be determined by another. A program
running on a PC can close a normally open contact to indicate
that it has booted successfully and is currently monitoring some
process or other. If the PC and relay subsequently lose power, the
contact will open and alert external equipment or the operator to
the situation. However, suppose that power to the PC remained
uninterrupted, but the software failed due to a coding error or
memory corruption. The contact would remain closed even though
the PCwas no longer functional. The system could not then make any
attempt to automatically recover from the situation. Problems like
this are potentially expensive, especially in long-term data-logging
applications where the computer may be left unattended and any
system crash could result in the loss of many days’ worth of data.

A watchdog timer can help to overcome these problems. This is a
simple analogue or digital device which is used to monitor the state
of one of the component parts of a data-acquisition or computer
system. The subsystem being monitored is required to refresh the
watchdog timer periodically. This is usually done by regularly pulsing
or changing the state of a digital input to the watchdog timer. In
some implementations the watchdog generates a periodic timing

130 PCinterfacing and data acquisition

signal and the subsystem being monitored must then refresh the
watchdog within a predetermined interval after receipt of this signal.
If the watchdog is not refreshed within a specified time period it
will generate a time-out signal. This signal can be used to reset
the subsystem or it can be used for communicating the timeout
condition to other subsystems.

The IBM PS/2 range of computers is equipped with a watchdog
timer which monitors the computer’s system timer interrupt (IRQO).
If the software fails to service the interrupt, the watchdog generates
an NMI (see Chapter 5).

It is worth mentioning at this point that you should avoid placing
watchdog-refresh routines within a hardware-gencrated periodic
interrupt handler (e.g. the system timer interrupt). In the event
of a software failure, it is possible that the interrupt will continue to
be generated at the normal rate!

It is sometimes necessary to interface a watchdog timer to a PC-
based data-acquisition system in order to detect program crashes
or loss of power to the PC. The timeout signal might be fed to
a programmable logic controller, for example, to notify it (or the
operator) of the error condition. It is also possible to reboot the
PC by connecting the timeout signal to the reset switch (present
on most PC-compatible machines) via a suitable relay and/or logic
circuits. Occasionally, software crashes can (depending upon the
operating system) leave the PC’s support circuits in such a state of
disarray that even a hardware reset cannot reboot the computer. The
only solution in this case is to temporarily turn off the computer’s
power. Although rebooting via the reset switch might be possible,
the process can take up to two or three minutes on some PCs. It
is not always easy for the software to completely recover from this
type of failure, especially if the program crash or loss of power
occurred at some critical time such as during a disk-write operation.
It is preferable for the software to attempt to return to a default
operating mode and not to rely on any settings or other information
recorded on disk. The extent to which this is feasible will depend
upon the nature and complexity of the application.

4 Sampling, noise and filtering

Virtually all data-acquisition and control systems are required to
sample analogue waveforms. The timing of these samples is often
critical and has a direct bearing on the system’s ability to accurately
reconstruct and process analogue signals. This chapter introduces
elements of sampling theory and discusses how measurement ac-
curacy is related to signal frequency and to the temporal precision
of the sampling hardware. The associated topic of digital filtering is
also discussed.

4.1 Sampling and aliasing

Analogue signals from sensors or transducers are continuous func-
tions, possessing definite values at every instant of time. We have
already seen that the PC can read only digitized representations of
a signal and that the digitization process takes a finite time. Implicit
in our discussion has been the fact that the measuring system is able
to obtain only discrete samples of the continuous signal. It remains
unaware of the variation of the signal between samples.

The importance of sampling rate

We can consider each sample to be a digital representation of the
signal at some fixed point in time. In fact, the readings are not truly
instantaneous but, if suitable sample-and-hold circuits are used, each
reading is normally representative of a very well-defined instant in
time (typically accurate to a few nanoseconds).

In general, the sampling process must be undertaken in such a way
as to minimize the loss of time-varying information. It is important
to take samples at a sufficiently high rate in order to be able to
accurately reconstruct and process the signal. It should be obvious
that a system which employs too low a sampling rate will be incapable

132 PCinterfacing and data acquisition

Signal Original
S5 signal
e Reconstructed
/ N N waveform
P N
X —

Time
Figure 4.1 Degradation of a reconstructed signal as the sampling rate is reduced

of responding to rapid changes in the measurand. Such a situation
is illustrated in Figure 4.1. At low sampling rates, the signal is poorly
reconstructed. High frequency components such as those predomin-
ating between sample times t4 and t¢ are most badly represented by
the sampled points. This can have serious consequences, particularly
in systems that have to control some process. The inability to respond
to transient disturbances in the measurand may compromise the
system’s ability to maintain the process within required tolerances.

Clearly, the relationship between the sampling rate and the
maximum frequency component of the signal is of prime import-
ance. There are normally a number of practical limitations on the
maximum sampling frequency that can be achieved: for example,
the ADC conversion speed, the execution time of interface software
and the time required for processing the acquired data. The total
storage space available may also impose a limit on the number of
samples that can be obtained within a specified period.

Nyquist’s sampling theorem

We need to understand clearly how the accuracy of the sampled data
depends upon the sampling frequency, and what effects will result
from sampling at too low a rate. To quantify this we will examine the
Fourier transforms (i.e. the frequency spectra) of the signal and the
sampled waveform.

Typical waveforms from sensors or transducers consist of a range
of different frequency components as illustrated in Figure 4.2(a)
and (b). If a waveform such as this is sampled at a frequency v, where
v = 1/t and t represents the time interval between samples, we obtain
the sampled waveform shown in Figure 4.2(c). In the time domain,

suiewiop Aousnba.l) pue sLil 8yl U Wojerem pajdues e Jo uoliejuassiday Z'y aanbiyg

winizoads pajdwes (p) wiojanem pajdwes (o)
Aouanbal4
AZ A 0 A— AZ— swlt
T T T T 1 1 I [l
1 Pro ! I 1
| 11 | i] | i
| [T I T TR
I {2 T RO S B
| ’ vy,)
I ! L vl
| 1 1 1 v >
| 1 Vg 11 3
! ! __ 1y LN =3
! ! Iy Vg g
) 1 \
: 7 L\ L\. W
wnoads jeubts (q) wiojenem feubis (e)
Aouanbal4 0 awi]
T
1
)
I
/
/
{ >
! 2
! =
1 c
n &

134 PC interfacing and data acquisition

the sampled waveform consists of a series of impulses (one for each
sample) modulated by the actual signal. In the frequency domain
(Figure 4.2(d)) the effect of sampling is to cause the spectrum of the
signal to be reproduced at a series of frequencies centred at integer
multiples of the sampling frequency.

The original frequency spectrum can be easily reconstructed in
the example shown in Figure 4.2. It should, however, be clear that
as the maximum signal frequency, fnax, increases, the individual
spectra will widen and begin to overlap. Under these conditions,
it becomes impossible to separate the contributions from the indi-
vidual portions of the spectra, and the original signal cannot then
be accurately reproduced. Overlapping occurs when f .« reaches
half the sampling frequency. Thus, for accurate reproduction of a
continuous signal containing frequencies up to fax, the sampling
rate, v, must be greater than or equal to 2f .. This condition is
known as Nyquist’s sampling theorem and applies to sampling at a
constant frequency. Obviously, sampling using unequal time inter-
vals complicates the detail of the discussion, but the same general

principles apply.
Aliasing

Figure 4.2(d) shows that if any component of the signal exceeds év,
the effect of sampling will be to reproduce those signal components
at a lower frequency. This phenomenon, known as aliasing, may
be visualized by considering an extreme case where a signal of
frequency fg is sampled at a rate equal to f; (i.e. v= fgq).
Clearly, each sample will be obtained at the same point within each
signal cycle and, consequently, the sampled waveform will have a
frequency of zero as illustrated in Figure 4.3(a). Consider next the
case where f g is only very slightly greater than v. Each successive
sample will advance by a small amount along the signal cycle as
shown in Figure 4.3(b). The resulting train of samples will appear
to vary with a new (lower) frequency: one which did not exist in the
original waveform! These so-called alias, or beat, frequencies can
cause severe problems in systems which perform any type of signal
reconstruction or processing — i.e. virtually all DA&C applications.

As a digression, it is interesting to note that some systems
(although not usually PC-based DA&C systems) exploit the aliasing
phenomenon in order to extract information from high frequency
signals. This technique is used in dynamic testing of ADCs and in
various types of instrumentation.

In normal sampling applications, however, aliasing is not desirable.
It can be avoided by ensuring, first, that the signal is band limited

Sampling, noise and filtering 135

v = fig Signal Reconstructed waveform
\/ \/ \/ \/ V“’“
(a)
v < fiig Reconstructed waveform
Signal ﬁ

A A AN AN A
AVAAVAVAVAVA

(b}

Figure 4.3 Generation of alias frequencies

(i.e. has a well-defined maximum frequency, fmnax) and, second, that
the sampling rate, v, is at least twice fax. It is usual to employ an
analogue anti-aliasing low-pass filter in order to truncate the signal
spectrum to the desired value of f .« prior to sampling. This results
in the loss of some information from the signal, but by judicious
selection of the filter characteristics it is usually possible to ensure
that this does not have a significant effect on the performance of
the system as a whole. Anti-aliasing filters are often an integral part
of signal-conditioning units. Strain-gauge-bridge signal conditioners,
for example, may incorporate filters with a bandwidth of typically
100 to 200 Hz.

Itshould be borne in mind that no filter possesses an ideal response
(i.e. 100 per cent attenuation above the cut-off frequency, fo, and
0 per cent attenuation at lower frequencies), although good anti-
aliasing filters often possess a steep cut-off rate. Because real filters
exhibit a gradual drop in response, it is usually necessary to ensure
that v is somewhat greater than 2f. The sampling rate used will
depend upon the form of the signal and upon the degree of precision
required. The following figures are provided as a rough guide. Simple
one- or two-pole passive anti-aliasing filters may necessitate sampling
rates of b fo to 10 f¢. The steeper cut-off rate attainable with active
anti-aliasing filters normally allows sampling at around 3 f .

136 PC interfacing and data acquisition

Sampling accuracy

Nyquist’s sampling theorem imposes an upper limit on the signal
frequencies that can be sampled. However, a number of practical
constraints must also be borne in mind. In many applications, the
speed of the software (cycling time, interrupt latencies, transfer
rate etc.) restricts the sampling rate and hence f .. Some systems
perform high speed data capture completely in hardware, thereby
circumventing some of the software speed limitations. In these cases,
periodic sampling is usually triggered by an external clock signal and
the acquired data is channelled directly to a hardware bufter.

The performance of the hardware itself also has a bearing on
the maximum frequency that can be sampled with a given degree
of accuracy. There is an inherent timing error associated with the
sampling and digitization process. This inaccuracy may be a result
of the ADC’s conversion time or, if a sample-and-hold (S/11) circuit
is employed, it may be caused by the circuit’s finite aperture time
or aperture jitter (see Chapter 3). The amount by which the signal
might vary in this time limits the accuracy of the sample and is known
as the aperture error.

Consider a time-varying measurand, R. For a given timing uncer-
tainty, 8¢, the accuracy with which the measurand can be sampled
will depend upon the maximum rate of change of the signal. To
achieve a given measurement accuracy we must place an upper limit
on the signal frequency which the system will be able to sample.

We can express a single frequency (f) component as

R = Rysin(2n ft) 4.1)
The aperture error, A, is defined as

dR
A=—6 4.
dt (4.2)

and our sampling requirement is that the aperture error must always
be less than some maximum permissible change, §Ry,.x, in R, i.e.

dR SRpax
—_—<<
dr — &t

4.3)

We must decide on a suitable value for §R,.«. It is usually convenient
to employ the criterion: Ry, = 1 LSB (i.e. that A must not exceed
1 LSB). It might be more appropriate in some applications to use
different values, however. Applying this criterion, and assuming that
the full ADC conversion range exactly encompasses the entire signal

Sampling, noise and filtering 137

range (i.e. 2Ry), Equation 4.3 becomes
dR 2Ry
- =
dr = 278t
Here, n represents the ADC resolution (number of bits). Differ-
entiating Equation 4.1, we see that the maximum rate of change
R is given by 27 f Rg. Substituting this into Equation 4.4, we obtain

the maximum frequency, f4, that can be sampled with the desired
degree of accuracy.

1
T 728t

Let us consider a moderately fast, 12-bit ADC with a conversion time
of 10 ps. Such a device should be able to accommodate sampling
rates approaching 100 kHz. Applying the Nyquist criterion gives
a maximum signal frequency of half this (i.e. 50 kHz). However,
this criterion only guarantees that, given sufficiently accurate measuring
equipment, it will be possible to detect this maximum signal frequency.
It takes no account of the sampling precision of real ADCs. To
assess the effect of finite sampling times we must use Equation 4.5.
Substituting the 10 us conversion time for §t shows that we would
be able to sample signal components up to only 7.7 Hz with the
desired 1 LSB accuracy! This illustrates the importance of the greater
temporal precision achievable with S/H circuits. If we were to employ
an S/H circuit, ¢ could be reduced to the S/H’s aperture jitter time.
Substituting a typical value of 2 ns for &t shows that, with the benefit
of an S/H circuit, the maximum frequency that could be sampled to
a 1 LSB accuracy increases to around 39 kHz.

It is often more useful to calculate the actual aperture error
resulting from a particular combination of aperture time and signal
frequency. Equation 4.2 defines the aperture error. This has its
maximum value when R is subject to its maxitnum rate of change.
We have already seen that this occurs when R is zero and that the
maximum rate of change of R is 27 fRyg. The maximum possible
aperture error, Anpay, is therefore:

Apax = 27l'f6tR0 (4.6)

4.4)

fa (4.5)

Figure 4.4 depicts values of the ratio Anax/2Ro as a function of
aperture time and signal frequency.

Reconstruction of sampled signals

The accuracy with which a signal can be sampled is by no means
the only consideration. The ability of the DA&C system to precisely

138 PC interfacing and data acquisition

100.0

] | e
Ll p 1 1 M f
10.0
6=ms/ 5¢=10 gs/ St= y t= us/5t=00 S
f ol g H1 H
1.0 "4/ atl el pal
. 11 %
Fractional error L1 / L] |~ 81=10ns
(Arai/2R0) i f iR
e d i e d
M H 11 H
0.01 ¢ ¢ « af
1 1
0.001 /’// Pe ///
1 10 100 1000 10 000 100 000

Signal frequency (Hz)

Figure 4.4 Fractional aperture error as a function of aperture time and signal
frequency

reconstruct the signal (either physically via a DAC or mathematically
inside the PC) is often of equal importance. The accuracy with which
the sampled signal can be reconstructed depends upon the recon-
struction method adopted ~i.e. upon the physical or mathematical
technique used to interpolate between sampled points.

A linear interpolation (known as first order reconstruction)
approximates the signal by a series of straight lines joining each
successive sampled data point (see Figure 4.5). This gives a wave-
form with the correct fundamental frequency together with many
additional higher frequency components.

Alternatively, we may interpolate by holding the signal at a fixed
value between consecutive points. This is known as zero order
reconstruction and is, in effect, the method employed when samples
are passed directly to a DAC. In this case, the resulting reconstructed
signal will contain a number of harmonics at vt f,2v+ f, 3v £ f
etc. An electronic low-pass filter would be required at the DAC’s
output in order to remove the harmonics and thereby smoothly
interpolate between samples. Note that these harmonics are artefacts
of the reconstruction process, not of the sampling process per se.

The accuracy of the reconstruction will, of course, depend upon
the ratio of the signal and sampling frequencies (v/f). There is
clearly an error associated with each reconstructed point. Ignoring
any errors introduced by the sampling mechanism, the reconstruc-
tion error will simply be the difference between the reconstructed
value and the actual signal value at any chosen instant. In those parts

Sampling, noise and filtering 139

Signal
yd Y
V4 \
\
/| \
/ \
/
! N _
] \ =
! \ // \\ = __z
I’ N\ A
N /
Time
(a
Signal
Lty
N S
/ - -
Time
{b)

Figure 4.5 Reconstruction of sampled signals: (a) zero order and (b) first order
interpolation

of Figure 4.5 where high frequency signal components predominate
(i.e. where the signal is changing most rapidly), there is a potential
for a large difference between the original and reconstructed wave-
forms. The reconstructed waveform will model the original sampled
waveform more accurately if there are many samples per signal cycle.

The values of the average and maximum errors associated with the
reconstruction are generally of interest to DA&C system designers. It
is a trivial matter to derive an analytical equation for the maximum
error associated with a zero order reconstruction, but the calculations
necessary to determine the average errors can be somewhat more

140 PC interfacing and data acquisition

Table 4.1 Coefficients of Equation 4.7

Order Desired calculation p q
Zero Maximum error 3.1 -1
Zero Average error 2.0 -1
First Maximum error 4.7 -2
First Average error 2.0 -2

involved. For this reason we will simply quote an empirical relation.
The following formula can be used to estimate the magnitudes of the
maximum and the average fractional errors (E,) involved in both
zero and first order reconstruction.

v q
E ~p <?> x 100% (4.7)

The coefficients of the equation, p and ¢, depend upon the order of
reconstruction and whether the average or maximum reconstruction
error is being calculated. These coefficients are listed in Table 4.1.
Do bear in mind that Equation 4.7 is not a precise analytical formula.
It should only be used as a rough guide for values of v/f greater
than about 10.

Note that the sampling rate required to achieve a desired degree
of accuracy with zero order reconstruction may be several orders of
magnitude greater than that necessary with first order interpolation.
For this reason, first order techniques are to be preferred in general.
Appropriate filtering should also be applied to DAC outputs to
minimize zero order reconstruction errors.

In summary, the accuracy of the sampled waveform and the pres-
ence of any sampling artefacts will depend upon how the sampled
data is processed. Also, the extent to which any such artefacts are
acceptable will vary between different applications. All of these points
will have a direct bearing on the sampling rate used and must be
considered when designing a DA&C system.

Selecting the optimum sampling rate

In designing a DA&C system, we must assess the effect of ADC
resolution, conversion time and S/H aperture jitter, as well as the
selected sampling rate on the system’s ability to achieve some desired
level of precision. For the purposes of the present discussion, we
will ignore any inaccuracies in the sensor and signal-conditioning
circuits, but we must bear in mind that, in reality, they may affect

Sampling, noise and filtering 141

the accuracy of the system as a whole. We will concentrate here
upon sampling rate and its relationship to frequency content and
filtering of the signal. In this context, the following list outlines
the steps required to ensure that a DA&C system meets specified
sampling-precision criteria.

1. First, assess the static precision of the ADC (i.e. its linearity,
resolution etc.) using Equations 3.5 and 3.10 to ensure that it
is capable of providing the required degree of precision when
digitizing an unchanging signal.

2. Assess the effect of sampling rate on the accuracy of signal
reconstruction using Equation 4.7. By this means, determine the
minimum practicable sampling rate, v, needed to reproduce
the highest frequency component in the signal with the required
degree of accuracy. Also bear in mind Nyquist’s sampling theorem
and the need to avoid aliasing. From v, you should be able to
define upper limits for the ADC conversion time and software
cycle times (interrupt rates or loop-repeat rates etc.). Ensure
that the combination of software routines and DA&C/computer
hardware are actually capable of achieving this sampling rate.
Also ensure that appropriate anti-aliasing filters are employed to
remove potentially troublesome high frequencies.

3. Given the sample rate, the degree of sampling accuracy required
and the ADC resolution, n, use Equations 4.3 to 4.5 to define an
upper limit on 6t and thereby ensure that the digitization and
S/H components are capable of providing the necessary degree
of sampling precision.

4.2 Noise and filtering

Noise can be problematic in analogue measuring systems. It may be
defined as any unwanted signal component that tends to obscure the
information of interest. There are a variety of possible noise sources,
such as electronic noise or electromagnetic interference from mains
or high frequency digital circuits. These sources tend to be most
troublesome with low level signals such as those generated by strain
gauges and thermocouples. Additionally, noise may also arise from
real variations in some physical variable — e.g. unwanted vibrations
in a displacement measuring system or temperature fluctuations
due to convection and turbulence in a furnace. As we have seen in
Chapter 3, the approximations involved in the digitization process
are also a source of noise. The presence of noise can be very prob-
lematic in some applications. It can make displays appear unsteady,

142 PC interfacing and data acquisition

obscure underlying signal trends, erroneously trigger comparators
and seriously disrupt control systems.

It is always good practice to attempt to exclude noise at its source
rather than having to remove it at a later stage. Steps can often
be taken, particularly with cables and shielding, to minimize noise
amplitudes. This topic is discussed briefly in Chapter 3 and further
guidance may be found in the text by Tompkins and Webster (1988)
or in various manufacturers’ application notes and data books, such
as Burr Brown’s PCI Handbook (1988). However, even in the best
designed systems, a certain degree of noise pickup is often inevitable.
If residual noise amplitudes are likely to have a significant effect on
the accuracy of the system, the signal-to-noise ratio must be improved
before the underlying signal can be adequately processed. This can
be accomplished by using simple passive or active analogue filter
circuits. Filtering can also be performed digitally by using suitable
software routines.

Software techniques have a number of advantages over hardware
filters. Foremost amongst these is flexibility. It is very simple to
adjust the characteristics of a digital filter by modifying one or
two parameters of the filtering algorithm. Another benefit is that
digital filters are more stable and do not exhibit any dependence on
environmental factors such as temperature. They are also particularly
suited to use at very low frequencies, where hardware filters may be
impracticable due to their size, weight or cost. In addition, they are
the only way of removing noise introduced by the ADC circuitry
during digitization.

Filtering of acquired data can be performed after the data-
acquisition cycle has been completed. In some ways this approach is
the simplest, as the complete data set is available and the filtering
algorithm can be easily adjusted to optimize noise suppression. There
are many techniques for post-acquisition filtering and smoothing of
data. Most are based on Fourier methods and are somewhat math-
ematical. They are classed as data-analysis techniques and, as such,
fall beyond the scope of this book. Press et al. (1992) describe a
number of post-acquisition filtering and smoothing techniques in
some detail.

Post-acquisition filtering is of little use if we need to base real-
time decisions or control signals on a filtered, noise-free signal.
In this case we must employ real-timme filtering algorithms, which
are the topic of this section. The design of real-time digital filters
can also be quite involved and requires some moderately complex
mathematics. However, this section refrains from discussing the
mathematical basis of digital filters and, instead, concentrates on the
practical implementation of some simple filtering algorithms. While

Sampling, noise and filtering 143

the techniques presented will not be suitable for every eventuality,
they will probably cover a majority of DA&C applications. Digital
filters can generally be tuned or optimized at the development stage
or even by the end user and, for this purpose, a number of empirical
guidelines are presented to aid in filter design.

Designing simple digital filters

It is impossible for DA&C software to determine the relative magni-
tudes of the signal and noise encapsulated in a single isolated reading.
Within one instantaneous sample of the total signal-plus-noise voltage,
the contribution due to noise is indistinguishable from that due to
the signal. Fortunately, when we have a series of samples, noise and
signal can often be distinguished on the basis of their frequencies.
They usually have different frequency characteristics, each existing
predominantly within well-defined frequency bands. By comparing
and combining a series of readings it is possible to ascertain what
frequencies are present and then to suppress those frequencies at
which there is only noise (i.e. no signal component). The process of
removing unwanted frequencies is known as filtering.

Signal and noise characteristics

Many signals vary only slowly. We have already seen in Chapter 3
that some types of sensor and signal-conditioning circuits have
appreciable time constants. Noise, on the other hand, may occur at
predominantly one frequency (e.g. the mains 50/60 Hz frequency)
or, more often, in a broad band as shown in Figure 4.6. The signal
frequencies obtained with most types of sensor will generally be

log {amplitude)

Signal

Mains 50/60 Hz
pickup
Noise

£

log {frequency)

Figure 4.6 Typical noise and signal spectra

144 PC interfacing and data acquisition

quite low. On the other hand, noise due to radiated electromag-
netic pickup or from electronic sources often has a broad spectrum
extending to very high frequencies. This high frequency noise can
be attenuated by using an appropriate low-pass filter (i.e. one
which suppresses high frequencies while letting low frequencies
pass through unaffected). Noise might also exist at low frequen-
cies, overlapping the signal spectrum. Because it occupies the same
frequencies as the signal itself, this portion of the noise spectrum
cannot be filtered out without also attenuating the signal.

When designing a digital filter, it is advisable to first determine
the principal sources of noise in the system and to carefully assess
the noise and signal spectra present. Such an exercise provides an
essential starting point for determining which frequency bands you
wish to suppress and which bands you will need to retain.

Filter characteristics

Low-pass filters attenuate all frequencies above a certain cut-off
frequency, fo, while leaving lower frequencies (virtually) unaffected.
Ideally, such filters would have a frequency characteristic similar to
curve (a) shown in Figure 4.7. In practice, this is impossible to
achieve, and filter characteristics such as that indicated by curve (b)
are more usually obtained with either electronic or digital (software)
filters. Other filter characteristics are sometimes useful. High-pass
filters (curve (c)), for example, suppress frequencies lower than
some cut-off frequency while permitting higher frequencies to pass.
Band-pass filters (curve (d)) allow only those frequencies within a
well-defined band to pass, as shown in Figure 4.7. Although it is
possible to construct digital high-pass and band-pass filters, these

(a) Ideal low-pass filter characteristic
(b} Real low-pass filter

{c) High-pass filter

Attenuation (dB) (d) Band-pass filter

0

{d) {c)

log (frequency)

Figure 4.7 Typical filter characteristics

Sampling, noise and filtering 145

are rarely needed for real-time filtration and we will, therefore,
concentrate on low-pass filters.

The filter characteristic generally has a rounded shoulder, so the
cut-off point is not sharp. The attributes of the filter may be defined
by reference to several different points. Sometimes, the frequency at
which the signal is attenuated to —3 dB is quoted. In other instances,
the curve is characterized by extrapolating the linear, sloping portion
of the curve back to the 0 dB level in order to define the cut-off
frequency, fo.

In most situations, the noise suppression properties of a filter are
only weakly dependent upon fo. Small differences in f from some
ideal value generally have only a small effect on noise attenuation.
This is fortunate as it can sometimes allow a rough approxima-
tion to the desired filter characteristic to be used. However, it is
always important to carefully assess the dynamic behaviour of digital
filter designs to ensure that they operate as expected and within
specified tolerances. In particular, when applying a digital filter to
an acquired data stream, you should be aware of the effect of the
filter’s bandwidth on the dynamic performance of the system. It is
not only frequencies greater than f that are affected by low-pass
filters. The filter characteristic may also significantly attenuate signals
whose frequencies are up to an order of magnitude less than the
cut-off frequency. A signal frequency of fo/8, for example, may be
attenuated by typically 0.25 per cent.

Software considerations

When assessing the performance of a digital filter design, the
programmer should bear in mind that whatever formulae and algo-
rithms the filter is based on, the actual coded implementation will
be subject to a number of potential errors. The ADC quantization
and linearity errors will, of course, ultimately limit the accuracy
of the system. However, there is another possible source of error
which should be considered: the accuracy of the floating-point
arithmetic used.

Some filter algorithms are recursive, using the results of previous
calculations in each successive iteration. This provides the poten-
tial for floating-point rounding errors to accumulate over time. If
rounding errors are significant, the filter may become unstable. This
can cause oscillations or an uncontrolled rise in output. It may also
prevent the filter’s output from decaying to zero when the input
signal is removed (i.e. set to zero). Filter routines should normally
be implemented using high precision arithmetic. Using C’s double
Or long double types, rather than the fiocat data type, will usually be
sufficient to avoid significant rounding errors.

146 PC interfacing and data acquisition

Although floating-point software libraries can be employed to
perform the necessary calculations, a numeric coprocessor will
greatly enhance throughput. The speed of the filter routines may
be improved by coding them so as to minimize the number of
multiplication and division operations required for each iteration.
Where you have to divide a variable by a constant value, multiplying
by the inverse of the constant instead will generally provide a slight
improvement in execution speed.

Testing digital filters

It is essential that you thoroughly check the performance of all
filter routines before you use them in your application. This can be
accomplished by creating a test routine or program which generates
a series of cosinusoidal signals over a range of different frequencies.
At each frequency, f, the signal is given by:

s = cos(2m ft) (4.8)

where t represents elapsed time. In practice, the signal, s, can
be determined at each sample time without recourse to real-tile
calculations by expressing ¢ as the ratio of the ordinal index, k, of
each sample to the sampling frequency, v, giving

s = Ccos (27tk€) 4.9)

So, we can generate the signal for a range of different relative
frequencies (f/v). Starting from a maximum value ofé (the Nyquist
limit), the ratio f/v should be gradually reduced until the desired
frequency range has been covered.

For each frequency used, s should be evaluated repeatedly in a
loop (with k being incremented on each pass through the loop)
and each value of s should be passed to the digital filter routine.
The filtered cosinusoidal signal can then be reconstructed and its
amplitude and phase determined and plotted against f/v. Note that
the filter’s output will generally be based on a history of samples.
Because of this the filter will require a certain number of sampled
data points before reaching a steady state. You should, therefore,
allow sufficient iterations of the loop before assessing the amplitude
and phase of the filtered signal.

Simple averaging techniques

The most obvious way of reducing the effects of random noise is to
calculate the average of several readings taken in quick succession.

Sampling, noise and filtering 147

If the noise is truly random and equally distributed about the actual
signal level it should tend to average out to zero. This approach is
very simple to implement and can be used in applications with fixed
signals (e.g. dimensional gauging of cast steel components) or with
very slowly varying signals (e.g. temperature measurements within
a furnace). If the signal changes significantly during the sampling
period, the averaging process will, of course, also tend blur the signal.
The period between samples must be short enough to prevent this
but also long enough to allow true averaging of low frequency noise
components.

The main drawback with the simple averaging process — particu-
larly in continuous monitoring or control systems — is that the filter’s
output is updated at only 1/Nth of the sampling rate (where N is
the number of samples over which the average is calculated). If the
filtered signal is then used to generate an analogue control signal,
the delay between successive outputs will increase the magnitude of
the reconstruction error.

The simple averaging method is useful in a number of situa-
tions. However, if it is necessary to measure changing signals in the
presence of noise, a more precise analysis of the filter’s frequency
characteristics are required and it is usually preferable to employ one
of the simple low-pass filtering techniques described in the following
section.

Low-pass filtering techniques

Ideally a software filter routine should be invoked once for each new
sample of data. It should return a filtered value each time it is called,
so that the filtered output is updated at the sampling frequency.

There are two distinct classes of filter: recursive and non-recursive.
In a non-recursive filter, the output will depend on the current input
as well as on previous inputs. The output from recursive filters, on
the other hand, is based on previous output values and the current
input value. The ways in which the various input and output values
are combined varies between different filter implementations, but
in general each value is multiplied by some constant weight and the
results are then summed to obtain the filtered output.

If we denote the sequence of filter outputs by y; and the inputs
(samples) by x;, where k represents the ordinal index of the iteration,
a non-recursive filter is described by the equation:

i=k

Y= @ (4.10)

i=0

148 PC interfacing and data acquisition

Here, the constants g; represent the weight allotted to each element
in the summation. In general the series of a; values is defined so
that the most recent data is allocated the greatest weight. The q;
constants often follow an exponential form which allows the filter to
model an electronic low-pass filter based on a simple RC network.

The non-recursive filter described by Equation 4.10 is termed an
Infinite Impulse Response (IIR) filter because the summation takes
place over an unbounded history of filter inputs (i.e.xx + x¢—1 +--- +
X9 + x1 + x0). In practice, most non-recursive filter implementations
truncate the summation after a finite number of terms, n, and
are termed Finite Impulse Response (FIR) filters. In this case, the
non-recursive filter equation becomes:

i=n—1

Ye= Y i (4.11)

i=0

Recursive filters are obtained by adding a recursive (or auto-
regressive) term to the equation as follows:

=k i=k
Ve = Z biyr-i + Zaixk—i (4.12)
im1 i—0

The constants b; in the new term represent weights that are applied
to the sequence of previous filter outputs. Equation 4.12 is, in fact,
a general form of the filter equation known as an Auto Regressive
Moving Average (ARMA) filter. As we shall see later, this equation can
be simplified to form the basis of an effective low-pass recursive filter.

In addition, the following sections cover two implementations of
the non-recursive type of filter (the unweighted moving average and
the exponentially weighted FIFO). Other filters can be constructed
from Equations 4.11 or 4.12, but for most applications one of the
three simple filters described below will usually suffice.

Each weight in Equations 4.11 and 4.12 may take either positive
or negative values, but the sum of all of the weights must be equal to
1. In a non-recursive filter, the output signal is effectively multiplied
by the sum of the weights and if this is not unity the output will
be scaled up or down by a fixed factor. The result of using weights
which sum to a value greater than 1 in a recursive filter is more
problematic. The filter becomes unstable and the output, effectively
multiplied by an ever increasing gain, rises continuously.

Equations 4.10 to 4.12 indicate that the time at which each sample,
X, is obtained is not needed in order to calculate the filter output.
It is, therefore, unnecessary to pass time data to the filter routines
themselves. However, the rate at which the signal is sampled does,

Sampling, noise and filtering 149

of course, have a direct bearing on the performance of the filter.
For any given set of filter parameters (i.e. a;, b; and n), the filter’s
frequency response curve is determined solely by the sampling rate,
v. For example, a filter routine which has a cut-off frequency, fg, of
10 Hzatv = 100 Hz will possess an f of 5 Hzif vis reduced to 50 Hz.
For this reason we will refer to the filter’s frequency characteristics
in terms of the frequency ratio, f /v (or fo/v when referring to the
cut-off frequency).

Unweighted moving average filter

The unweighted moving average filter (also sometimes known simply
as a moving average filter) is a simple enhancement of the block
average technique. It is actually a type of non-recursive filter based
on Equation 4.11. The weights a; are each set equal to 1/n so that
they sum to unity. The filter is described by the following equation:

1 i=n-1

Ve=— 3 X (4.13)

j=

A FIFO buffer (see Chapter 6) is used to hold the series of x values.
The output of the filter is simply the average of all entries held in
the FIFO buffer. Because the weights are all equal, this type of filter
is also known as an unweighted FIFO filter.

Filters with large FIFO buffers (i.e. large values of n) provide
good high-frequency attenuation. They are useful for suppressing
noise and unwanted transient signal variations that possess wide-
tailed distributions, such as might be present when monitoring the
thickness of a rolled sheet product such as rubber or metal sheet.

Listing 4.1 illustrates how the moving average filter can be imple-
mented. The size of the FIFO buffer is determined by the value
defined for n. The 1itriiter() function should be called before
filtering commences in order to initialize the various FIFO buffer
variables. Each subsequent reading (x) should be passed to the
Filter() function which will then return the present value of the
moving average.

The filter is, of course, least effective during its start-up phase
when part of the FIFO buffer is still empty. In this phase, the filter’s
output is calculated by averaging over only those samples which have
so far been acquired, as illustrated in the listing. v calls to the Filter ()
function are required before the FIFO buffer fills with data.

The unweighted moving average filter possesses the frequency
characteristic shown in Figure 4.8. It is clear from the figure that
larger FIFO buffers provide better attenuation of high frequencies.

150 PC interfacing and data acquisition

Listing 4.1 An unweighted moving average filter
#define N 100 /* Size of FIFQ Buffer */

double FIFO[N];

int FIFOPtr;
double FIFOEntries;
double FIFOTotal;

void InitFilter()
{

FIFOPtY = -1;
FIFOEntries = 0;
FIFQTotal = 0;

}

double Filter{double X)
{
if (FIFOPtr < (N-1))
FIFOPtY++;
else FIFOPtr = 0;

if (FIFOEntries < N)
{

FIFOTotal = FIFOTotal + X;
FIFO[FIFOPtr] = X;
FIFOEntries = FIFOEntries + 1;
}
else {
FIFOTotal = FIFOTotal - FIFO[FIFOPtr] + X;

FIFO[FIFOPtr] = X;
}

return FIFOTotal / FIFOEntries;
}

However, because of resonances occurring at even values of v/ f
and where the FIFO buffer contains an integer number of signal
cycles (i.e. when nf/v is an integer), oscillations are present in
the characteristic curve at frequencies higher than fo. As a rough
rule-of-thumb, the cut-off frequency is given by v/ fo ~ 2.5n to 3.0n.

As with all types of filter, a phase lag is introduced between the
inputand outputsignals. This tends to increase at higher frequencies.
Because of the discrete nature of the sampling process and the
resonances described above, the phase vs. frequency relationship
also becomes irregular above the cut-off frequency.

This type of filter is very simple, but is ideal in applications where
high speed filtration is required. If there is a linear relationship

Sampling, noise and filtering 151

10 \ Y \ ‘\
~ AN .
AN N\ \
AT\ Ty
v \ | vn=3
La T
L
p=toH—= || 1
i “ 1
i
n=30 41> | V1
1 N\ i
5 t H
= n=100 1 1!
S \]
c “ | !
[5) ‘l
£ AR
o 01 Vi [M
2 }
2
g i\
< N
n’ \
(P
/
0.01
107 1075 1074 1073 1072 107! i

flv

Figure 4.8 Attenuation vs. frequency relationship for the unweighted moving
average filter

between the measurand and the corresponding digitized reading,
the unscaled ADC readings can be processed directly using a moving
average filter based on simple integer (rather than floating-point)
arithmetic.

Exponentially weighted FIFO filter

The unweighted moving average filter gives equal weight to all entries
in the FIFO buffer. Consequently, a particularly large reading will not
only affect the filter output when it is supplied as a new input, it will
also cause a large change in output when the reading passes through
the FIFO buffer and is removed from the summation. To minimize
the latter effect, we may apply a decreasing weight to the readings
as they pass through the buffer so that less attention is paid to older
entries. One such scheme employs an exponentially decreasing series

162 PC interfacing and data acquisition

of weights. In this case the weights g; in Equation 4.11 are given by:
a;=e "0 (4.14)

Here, t represents the time interval between successive samples
(equal to 1/v) and t is the time constant of the exponential
filter-response function. In an ideal filter, with a sufficiently large
FIFO buffer, the series of exponential weights will not be truncated
until the weights become insignificantly small. In this case the time
constant, 7, will be related to the desired cut-off frequency by:

fo=§; (4.15)

Obviously, in areal filter, the finite size of the FIFO buffer will modify
the frequency response, but this effect will be small provided that
nt>t.

For the purpose of calculating the weights, it is convenient to make
use of a constant, r, which represents the number of characteristic
exponential time periods (of length t) that are encompassed by the
FIFO buffer:

nt

r=— (4.16)
T

The weights are then calculated from:
a; = e—(ir/") (417)

Substituting Equation 4.16 into Equation 4.15 (and remembering
that 1 = 1/v) we see that the expected cut-off frequency of the filter
is given by:

fo = 1.z (4.18)

v 27 n

This applies only for large values of r (i.e. greater than about 3
in practice) which allow the exponential series of weights to fall
from unity — for the most recent sample — to a reasonably low level
(typically <0.05) for the oldest sample. Smaller values of r give more
weight to older data and result in the finite size of the FIFO buffer
becoming the dominant factor affecting the filter’s response.

Listing 4.1 may be easily adapted to include a series of exponen-
tial weights as illustrated in Listing 4.2. The 1nitrilter() function,
which must be called before filtering commences, first calculates a
weightstep value equivalent to the ratio of any two adjacent weights:
a;/ai—;. It also determines the sum of all of the weights. This is

Sampling, noise and filtering 153

Listing 4.2 An exponentially weighted FIFO filter

#define N 100 /* Size of the FIFO buffer */
#define R 3 /* No. of characteristic time periods within buffer */

double WeightStep;
double SumWeights;
double LowWeight;
double FIFOIN];

int FIFOPtY;
double FIFCEntries;
double FIFOTotal;

void InitFilter()
{

double T;

double Weight;
int I;

T = R;
WeightStep = exp(-1 * T / N);
SumWeights = 0;
Weight =1;
for (I = 0; I < N; I++)
{
Weight = Weight * WeightStep;
SumWeights = SumWeights + Weight;
}

LowWeight = Weight;

FIFOPtY = -1;
FIFOEntries = 0;
FIFOTotal = 0;
}

double Filter{double S)
{

if (FIFOPtr < {(N-1}}
FIFOPtY++;
else FIFOPtr = O;

if (FIFOEntries < N)

{

FIFOTotal = (FIFOTotal + S) * WeightStep;
FIFO[FIFOPtr] = S;
FIFQEntries = FIFOEntries + 1;
}
else |
FIFOTotal = (FIFOTotal - (FIFO(FIFOPtr] * LowWeight) + S) * WeightStep;
FIFO(FIFOPtr] = S;

}

return FIFOTotal / SumWeights;

}

154 PC interfacing and data acquisition

required for normalizing the filter output. Lowweight is the weight
applied to the oldest entry in the FIFO buffer and is needed in order
to calculate the affect of removing the oldest term from the weighted
total.

The rilter () function should be called for each successive sample.
This function records the n most recent samples (i.e. x values) in a
FIFO buffer. It also maintains a weighted running total of the FIFO
contents in rrrorotal. The weights applied to each entry in the buffer
are effectively reduced by the appropriate amount (by multiplying
by weightstep) as each new sample is added to the buffer.

Good high frequency attenuation is obtained with r > 1, partic-
ularly with the larger FIFO buffers. Phase shifts similar to those
described for the moving average filter also occur with the expo-
nentially weighted FIFO filter. Again the effects of resonances and
discrete sampling introduce irregularities in the attenuation and
phase vs. frequency relationships. As would be expected, this effect
is more prominent with values of r less than about 1 to 3. The cut-off
frequencies obtained with various combinations of r and n are shown
in Figure 4.9.

When r is greater than about 3, the fo/v data agrees closely
with the expected relationship (Equation 4.18). Slight deviations
from the ideal response curve are due to the discrete nature of the
sampling. Values of r less than about 3 result in a somewhat higher
cut-off frequency for a given value of r/n. Conversely, increasing n
will reduce fy.

0.15
0.14
0.13
0.12
0.11
0.10
0.09 /
0.08 /
0.07 /
0.06
0.05
0.04 —
0.03
0.02\——

0.01 ﬁs&l -
0.00 E=

0.001 0.01 0.1 1.0
rin

i N

fo/V

\
\

Figure 4.9 Cut-off frequencies vs. r/n for exponentially weighted FIFO filters

Sampling, noise and filtering 155

The data in Figure 4.9 is replotted in Figure 4.10 which may be
used as a basis for choosing values of r and n in practical applications.
To determine the values of n and r that are necessary to obtain a
given fo:

1. Determine v (remembering that it should be high enough to
avoid aliasing) and then calculate the desired fo/v.

1.0
\
ot N\
AN
NI
N\
\
A\ 4
\\\ N
2 \\\ \\\
= \\\ I
\\\ I~ r=10
0.01 \\\
AN
NN r=5
Q\\\ i
N N -
\§\ r='1
r=0.3

0.001

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
n

Figure 4.10 Cut-off frequencies vs. n for exponentially weighted FIFO filters

156 PC interfacing and data acquisition

2. Refer to Figure 4.10 to choose a suitable combination of r and n.
The optimum value of r is generally about 3, but values between
about 1 and 10 can give adequate results (depending upon n).

3. Consider whether the FIFO buffer size (n) indicated is practicable
in terms of memory requirements and filter start-up time. If
necessary use a smaller FIFO buffer (i.e. smaller n) and lower
value of r to achieve the desired fy.

A number of points should be borne in mind when selecting r and
n. With small r values, a greater weight is allocated to older data and
this lowers the cut-off frequency.

When r < 1 the filter behaves very much like an unweighted
moving average filter because all elements of the FIFO buffer have
very similar weights. The cut-off frequency is then dependent only
on n (i.e. it is only weakly dependent on r) and is determined by the
approximate relationship fo/v ~ (2.5n yLto (3n)~ L. Only when r is
greater than about 2 to 3 is there any strong dependence of fg on r.

When r is greater than about n/3, the performance of the filter
depends only on the ratio r/n because the exponential weights fall
to an insignificantly small level well within the bounds of the FIFO
buffer. There is usually no advantage to be gained from operating
the filter in this condition as only a small portion of the FIFO buffer
will make any significant contribution to the filter’s output. If you
need to achieve a high fy it is far better to increase v or, if this is
not possible, to reduce #n, rather than increasing r beyond n/3. Best
results are often obtained with an r value of about 3. This tends
to generate a smoothly falling frequency response curve with a well
defined fo and good high frequency attenuation.

Recursive low-pass filter

A very effective low-pass filter can be implemented using the general
recursive filter Equation (4.12). The equation may be simplified by
using only the most recent sample x; (by setting a; = 0 for i > 0)
and the previous filter output y,_; (by setting b; = 0 for i # 1). The
filter equation then reduces to

Ve = axg + by_y (4.19)
where a+b=1 (4.20)

In Equation 4.19 the 0 and 1 subscripts have been dropped from the
weights a and b respectively. As discussed previously, the condition
4.20 is required for stability. It should be clear that the filter output
will respond more readily to changes in x when a is relatively large.
Thus the cut-off frequency, fy, will increase with a. Knowing the

Sampling, noise and filtering 157

Listing 4.3 A recursive low-pass filter

#define A 0.1 /* Modify this value as necessary */
double Y;
double B;

void InitFilter ()
{

0;

1.0 - A;

Y
B
}
double Filter (double X)

{
Y=X*RA4+Y*B;

return Y;
}
1.0 B N E—
N N\ AN
N\ \ \
\ \ \
AN
g a=o.oo1\ a=0.01\ a=0‘1\\
S 01 \\ \\ at
= \ \ \
2 \ _\ \
g \ \ \
< \ \ "~
Y
T\
0.01
10°° 107 10 1073 1072 107! 1
flv

{a) Attenuation characteristic

Figure 4.11 Attenuation and phase characteristics of the recursive low-pass filter

158 PC interfacing and data acquisition

sampling frequency, v, the constant a can be calculated from the
required value of f¢ as follows:

2nfo

a= v 4.21)
28f0 | ~Gxfam

When v > fo, the denominator tends to unity and Equation 4.21
becomes

a%Q”fO
v

(4.22)

Ideally, the cut-off frequency should be somewhat less than v/20 in
order to achieve reasonable attenuation at high frequencies. In this
case, the approximation given in Equation 4.22 introduces only a

RN
NAA

Phase (degrees)
&
(]
/
/
.—"';)/
I}

a=0.0\
a=0.00

-80 N
-90 -
1076 1078 1074 1078 1072 107 1
fiv

{b) Phase characteristic

Figure 4.11 (continued)

Sampling, noise and filtering 159

small error in the cut-off frequency and this generally has a negligible
effect on the performance of the filter.

Listing 4.3 shows how this simple recursive filter can be imple-
mented in practice. The filter coefficient, a, is defined in the listing
as the constant a. In this case it is set to 0.1, but other values may be
used as required. The 1nitrilter() function must be called before
the sampling sequence starts. It initializes a record of the previous
filter output, v, and calculates the other filter coefficient, b, which
is represented by the variable B in the listing. This function may
be modified if required to calculate coefficients a and b (i.e. the
program variables a and B) from values of fy and v supplied in the
argument list. The rilter () function itself simply calculates a new
filter output (using Equation 4.19) each time that it is called.

Figure 4.11 illustrates the attenuation and phase lag vs. frequency
characteristics obtained with a number of different values of a.
The relationship between f(and a follows the form expressed
in Equation 4.22 very closely. For a given value of fo/v, there is
little difference between the characteristics of the recursive low-pass
filter and the optimum (r = 3) exponentially weighted non-recursive
(FIFO) filter. In general, however, the recursive filter exhibits a
smoother fall-off of response and there are no resonances at high
frequencies. The phase vs. frequency curve is also more regular than
that obtained with the exponentially weighted FIFO filter. Note that
at the cut-off frequency the phase lag is 45°.

5 The interrupt system

The PC’s interrupt system provides a means of temporarily
suspending (or interrupting) the normal execution of a program
in order to allow the processor to respond to specific events. These
events may occur either as a result of executing certain instruction
sequences or when a peripheral device wishes to request service (e.g.
when the keyboard signals thata key has been pressed). The interrupt
system is particularly useful in DA&C applications. Interrupts permit
the system to react quickly to a variety of control and status inputs.
They also allow a degree of synchronism to be maintained between
external events and the software routines that are needed to respond
to them.

When an interrupt event occurs, the processor usually responds,
at the earliest opportunity, by saving its flags register and the address
of the next instruction it would otherwise have executed, and then
jumping to an interrupt handler routine located at a predefined
address in memory. In the case of a multitasking operating system,
additional, task-related context information is also stored before
the interrupt handler is invoked. The interrupt handler performs
whatever action is necessary (e.g. reading a key code from the
keyboard or digitized data from an ADC) and then returns control of
the system to the original process at the point that it was interrupted.
In this way, the code contained within an interrupt handler can be
executed on demand, providing timely software service for a variety
of events or error conditions.

This chapter describes the PC’s interrupt system in some detail
and illustrates software techniques for creating interrupt handlers
for use in data acquisition. It also discusses some important interrupt-
related considerations which you should bear in mind when writing
data-acquisition software for the PC.

If you are an application developer, rather than an system-level
programmer, it is likely that you will need to write interrupt-handling

164 PC interfacing and data acquisition

code only if programming in real mode, for example under MS-DOS
or a real-time version of DOS. In 32-bit protected-mode operating
systems, such as Windows NT, interrupt handling can be performed
only by highly privileged code —i.e. by operating-system code or
kernel-mode device drivers. Often, DA&C card manufacturers will
provide suitable Windows NT drivers, obviating the need to write
your own interrupt code. For this reason, and in order to convey
the principles of the topic without unnecessary complication, most
of the material in this chapter is presented in the context of a
real-mode application. Some examples will require adaptation in
order to operate under Windows NT and other protected operating
systems. Unfortunately a full discussion of protected-mode interrupts
and kernel-mode (Ring 0) drivers is beyond the scope of this book.
However, a large proportion of this chapter also applies to protected-
mode environments, and important differences, such as interrupt
response times (latency), are discussed. For further information on
Windows device drivers and interrupt handling, refer to the text by
Solomon (1998). Buchanan (1999) also provides useful examples of
interrupt processing.

The PC supports four different types of control-transfer mech-
anisms that are all loosely referred to as interrupts: the Non-
Maskable Interrupt (NMI), external interrupts, software interrupts
and processor exceptions. The nature of the various interrupt mech-
anisms and the ways in which the interrupts are initiated differ
considerably. Software interrupts and external hardware interrupts
are usually of most relevance to DA&C applications programs, but
you should also be aware of the NMI and processor exception mech-
anisms, particularly if you are involved in producing time-critical
applications or systems software. These topics are discussed in more
detail later in this chapter, but first, we will consider the mechanism
by which control is transferred to the interrupt handler.

5.1 Interrupt vectors

Whenever any type of interrupt occurs, the processor must transfer
control of the system to a suitable interrupt handler. In order for the
processor to determine where to jump, it must retrieve the address
of the interrupt handler from a table located at a known position in
memory. Each address in this table is known as an interrupt vector
and consists of 4 bytes which hold the offset (IP) and segment (CS)
portions of the address in the standard Intel low-high format. In
real mode, the interrupt vector table (IVT) is located at the bottom
of addressable memory (i.e. at location 0000:0000h). It is 1024 bytes

The interrupt system 165

long and may contain up to 256 separate interrupt vectors. The PC
system can, therefore, accommodate up to 256 different types of
interrupt. Some of these are assigned for use by the NMI, external
hardware interrupts and exceptions, but the majority are used for
software interrupts.

Not all interrupt vectors point to (i.e. contain the address of)
executable code. Depending upon the configuration of the system
and the software installed, certain interrupt vectors may be config-
ured to point to tables of data etc. Table 5.1 lists the standard
interrupt vector usage on the PC.

The BIOS possesses an Unexpected Interrupt Handler routine.
All unused hardware interrupts, user interrupts (int 1Ch and 4Ah)
and most processor exceptions with Interrupt Type Codes less than
8 are directed to this handler by the BIOS POST routines. If one
of these interrupts occur before the operating system or an appli-
cation has installed a suitable handler, the Unexpected Interrupt
Handler is invoked. This immediately sets the Carry Flag and returns
control to the interrupted process, preserving all other registers. The
Unexpected Interrupt Handler also maintains a record of the last
unexpected external hardware interrupt at offset 6Bh in the BIOS data
area. A single bit in this location is set to denote the IRQ level of the
interrupt. For example, an unexpected IRQ5 (interrupt type code
13) would cause the BIOS to store the value 00100000b. Similarly,
for an unexpected IRQ7 (type code 15), the value 1000000b would
be stored. On the IBM AT and subsequent systems, the IRQ2 bit
is set when an unexpected interrupt is detected on IRQ8-IRQ15.
External hardware interrupts and IRQ levels are discussed in the
following section.

Table 5.1 is by no means a comprehensive list of interrupt usage
on the PC. Although most BIOS and DOS interrupts are used
consistently throughout the range of PC ‘compatible’ computers
on the market, some of the interrupt vectors may be allocated
differently in specific PC systems. The applications and systems
software as well as add-in hardware (e.g. network adaptors) present
on individual machines will also determine which interrupts are
in use. In particular, some of the interrupts in the ranges b0h to
5Fh, 68h to 6Fh, 78h to 7Fh, 88h to B8h and F8h to FFh may be set
aside for specific purposes (e.g. relocating hardware interrupts when
operating systems software such as Windows, OS/2 or DESQview are
installed). Networked systems may also make use of several of the
interrupts listed in Table 5.1.

There are already many thousands of software products on the
market, all of which need to take advantage of the PC’s interrupt
system. New products continually come onto the market and these

166 PC interfacing and data acquisition

Table 5.1 Standard interrupt vector assignments on the IBM PC and
compatible machines

Type Description

00h Divide-by-zero exception.

01h Single-step trap (generated after each instruction if TF = 1).

02h NMI.

03h Breakpoint (generated by breakpoint opcode CCh).

04h Overflow (generated by INTO instruction if OF has been previously set).

05h Print screen.

06h Reserved.

07h Reserved.

08h IRQO: System timer tick.

0%h IRQ1: Keyboard data available.

OAh IRQ2: LPT2 on PC. Reserved on XT. Cascade to slave PIC on AT
& PS/2.

0Bh IRQ3: COM2 or COM4.

0Ch IRQ4: COM1 or COM3.

0Dh IRQb: Fixed disk on PC, XT. LPT2 on AT. Reserved on PS/2.

OEh IRQ86: Diskette controller.

OFh IRQ7: LPT1.

10h BIOS video services.

11h BIOS equipment-check service.

12h BIOS memory size service.

13h BIOS diskette I/O service.

14h BIOS communications service.

156h BIOS miscellaneous services.

16h BIOS keyboard services.

17h BIOS printer services.

18h BIOS ROM BASIC entry point.

19h BIOS bootstrap loader.

1Ah BIOS time-of-day services.

1Bh Ctrl-Break handler.

1Ch Timer tick user interrupt {invoked from int 08h).

1Dh Pointer to BIOS's video parameter table. Not an interrupt vector.

1Eh Pointer to BIOS's diskette parameter table. Not an interrupt vector.

1Fh Pointer to BIOS's 8 x 8 graphics font. Not an interrupt vector.

20h DOS program termination. Now obsolete, but retained for compatibility.

21h DOS services.

22h DOS program termination routine. Not an interrupt vector.

23h DOS Ctrl-C/Break handler. Invoked when DOS detects Ctrl-C or
Ctrl-Break.

24h DQOS critical error handler.

The interrupt system 167

Table 5.1 (continued)
Type Description

2bh DOS absolute disk read service.

26h DOS absolute disk write service.

27h DOS terminate and stay resident service.

28h DOS idle interrupt.

2%h DOS fast console character output.

2Ah-2Dh Reserved.

2Eh DOS command interpreter interface.

2Fh DOS multiplex interrupt.

30h Reserved.

31h DPMI programming interface.

32h Reserved. Infrequently used.

33h Mouse driver services.

34h-3Eh Floating-point emulation in Microsoft and Borland programming
languages.

3Fh Overlay and DLL management in Microsoft and Borland languages.

40h BIOS diskette I/O (interrupt 13h revectored by hard disk BIOS).

41h Pointer to BIOS's hard disk #0 parameter table. Not an interrupt vector.

42h BIOS default video services {revectored from int 10h by EGA/VGA
BIOS).

43h Pointer to BIOS's graphics character table. Not an interrupt vector.

44h Pointer to PCjr BIOS's graphics character table. Not an interrupt vector.

45h Reserved. Infrequently used.

46h Pointer to BIOS's hard disk #1 parameter table. Not an interrupt vector.

47h Reserved. Infrequently used.

48h Keyboard on PCjr. Reserved on all other systems.

49h Keyboard on PCjr. Reserved on all other systems.

4Ah BiOS real-time clock user alarm interrupt.

4Bh SCS! device interface. Virtual DMA services.

4Ch Reserved. Infrequently used.

4Dh Reserved. Infrequently used.

4Eh Reserved. Infrequently used.

4Fh SCSI device interface.

B80h-5Fh Reserved. Some vectors used by DESQview, 0S/2, Windows 95 and
networks.

60h-66h User interrupts.

67h LIM EMS and VCPL

68h-6Fh Reserved. Some vectors used by network products.

70h IRQ8: Real-time clock periodic/alarm interrupt. AT and PS/2.

71n IRQ9: Reserved. Invoked via IRQ2 bus line. AT and PS/2.

continued overleaf

168 PC interfacing and data acquisition

Table 5.1 (continued)

Type Description
72h IRQ10: Reserved.
73h IRQ11: Reserved.
74h IRQ12: Pointing device interrupt {e.g. PS/2 mouse). PS/2 and AT
compatibles.
75h IRQ13: Numeric coprocessor. AT and PS/2.
76h IRQ14: Hard disk controller. AT and PS/2.
77h IRQ15: Reserved.

78h—7Fh Reserved. Some vectors used for network products.

80h-8bh Reserved for BASIC.

86h—-EEh |BM ROM BASIC interpreter. Some vectors also used by network
products.

EFh-FOh 1BM ROM BASIC interpreter. Compiled BASIC.

F1h—-FDh User interrupt on AT and PS/2. Reserved on PC and XT.

FEh Reserved.

FFh Reserved.

also require new interrupts to be assigned. As there are only 256 avail-
able interrupt vectors, a degree of overlap is sometimes inevitable.
Fortunately, many software packages and hardware products (e.g.
data-acquisition cards) help to avoid interrupt conflicts by allowing
the user some latitude in selecting which interrupts are to be used.

For these reasons, published interrupt tables tend to differ slightly,
often listing many of the interrupts simply as ‘Reserved’ and, in
general, it is wise to avoid using any of these in your own software.

One must also bear in mind that there can in some circumstances
be ambiguity over the usage of a specific interrupt vector. Several
of the first 32 vectors are used on the PC for processor exceptions
as well as for external hardware interrupts or BIOS services. This
overlap arises from the design of the original PC and has become
more problematic as new processor features and exceptions have
been introduced. Contentions tend not to arise when the processor
is running in real mode, but protected mode software must ensure
that it can identify the source of an interrupt unambiguously. The full
implications of interrupt conflicts and techniques to resolve them
are beyond the scope of this book. However, such considerations are
usually handled by protected-mode operating systems. Windows 95
and DESQview, for example, avoid such problems by remapping
hardware interrupts to different vectors. Further details of interrupt
conflicts and the interrupt relocation technique may be found in
the text by van Gilluwe (1994).

The interrupt system 169

Brown and Kyle (1991) provide a thorough and detailed account
of interrupt usage on the PC. This publication includes a great
deal of information on the interrupts used by specific software and
hardware products, and it is recommended that this text should be
consulted whenever you need to select interrupts to be used in a
data-acquisition system. This should help to achieve compatibility
with other products by avoiding any interrupts which they might use.
However, if you are concerned only with picking a suitable external
hardware interrupt (IRQ) for interfacing to a data-acquisition card,
for example, the choice is usually much simpler and the tables
provided in Appendix A should assist in these circumstances.

5.2 Hardware interrupts

The NMI and external interrupts are, in fact, both types of hardware
interrupt. The processor is equipped with two pins known as NMI
and INTR. Signals present on either of these pins can interrupt
the processor. The INTR line carries external hardware interrupt
requests, while the NMI line carries non-maskable interrupt requests.
In the PC, a number of different subsystems and peripheral compo-
nents are able to assert the NMI or INTR lines whenever they require
attention from the processor.

External hardware interrupts

External interrupt requests may occur at any time during execution
of a program. Because they are asynchronous with the operation of
the processor, the programmer should make no assumptions about
when an interrupt might be generated. As an interrupt handler may
take control of the system for perhaps a few hundred microseconds
at a time (or more in some cases), the possibility of an interrupt
occurring can clearly affect the ability of non-interrupt code to
operate in accordance with the tight timing constraints that are
often required of DA&C systems. It is sometimes preferable to place
time-critical code inside interrupt handlers, as this can help to ensure
that the system responds to external stimuli within predefined time
limits. However, as we shall see, it is not always easy to achieve a
guaranteed response time, even with interrupts.

There are other problems inherent in using an asynchronous
interrupt system. The interrupt handler may have to read or modify
global data structures or to access hardware resources. It is clearly
important to prevent interrupt routines and non-interrupt code
from accessing shared resources (such as global data and hardware)

170 PC interfacing and data acquisition

at the same time. Suppose that the non-interrupt portion of your
program begins to execute a sequence of instructions which reads
16 bytes from a global array. If an interrupt occurs before the
reading sequence is completed and the interrupt handler changes
the contents of the array, the non-interrupt code will, when it regains
control, read the modified data from the remainder of the array.
There will consequently be a mismatch between the first and last
bytes read from the array. Similar and sometimes more catastrophic
consequences may result if the shared resource in question is a
critical item of hardware.

It is possible to circumvent these problems to some extent by
temporarily disabling the external interrupt system. The processor
can be programmed to mask external hardware interrupts by means
of the cu1 (Clear Interrupt Flag) assembly language instruction. This
resets the processor’s Interrupt Flag (IF) causing the processor to
ignore any external hardware interrupt requests that it receives on
the INTR line. By this means it is possible to prevent interrupts from
occurring and thereby to protect critical portions of the code. At the
end of the critical section, interrupts may be enabled again by issuing
the st1 instruction which sets IF back to 1. If you disable external
interrupts in this way, do not keep them disabled for too long as
this will affect the speed at which other interrupt driven processes
can respond. Try to confine the critical code to just a few machine
instructions if possible. This helps to ensure that all interrupts are
serviced in a timely manner.

Note that none of the other interrupts (i.e. NMI, processor excep-
tions or software interrupts) can be masked in this way although, as
we shall see later in this chapter, the design of the PC does provide a
mechanism for controlling whether NMI signals reach the processor.

introduction to the 8259A PIC

The external hardware interrupt system was managed on the original
IBM PCand XT machines by an Intel 8259A Programmable Interrupt
Controller (PIC) as shown in Figure 5.1. The INTR line can be
asserted by the PIC whenever it receives an interrupt request signal
from one of eight peripheral devices. A similar systemn was adopted
for the IBM AT, but in this machine a second 8259A PIC was added
to provide seven further interrupt request (IRQ) lines. Most modern
ISA and EISA PCs provide the same dual-PIC functionality using
compatible custom circuitry. As this arrangement is functionally
equivalent, we will refer only to the 8259A PICs in the remainder of
this chapter.

All but two IRQ lines are made available to expansion cards on
the ISA/EISA bus. The PCI bus present in most modern PCs carries

The interrupt system 171

8259A PIC 8088 CPU
Systemn timer IRQO
Keyboard IRQ1
Systembus iRz INT >| INTR
System bus

—IRQ3

System bus {COM}) — -

IRQ4 INTAT* INTA
System bus (fixed disk) IRQS5
System bus (diskette) IRQ6
System bus {LPT1) RQ7

Figure 5.1 The IBM XT's external hardware interrupt system

four separate interrupt request lines, and these are automatically
mapped by the PCI-ISA bridge hardware to one of the PIC’s IRQ
lines (i.e. IRQ3-IRQ7, IRQY-IRQ12, IRQ14 or IRQI5).

As its name suggests, the PIC is a programmable device which
may be made to operate in a variety of different modes. It is
preprogrammed to a default operating mode by the BIOS’s start-up
code. Most applications make use of this default configuration, but
a few more specialized systems reprogram the PIC. Unless stated
otherwise, the remainder of this section will discuss how the PIC
functions in its default operating mode.

When two or more interrupt conditions occur at the same time,
the system must decide which interrupt request it will respond to
first. The processor prioritizes the various types of interrupt and, in
normal operation, gives all INTR requests (i.e. external hardware
interrupts) the lowest priority. The principal function of the PIC
is to prioritize these external hardware interrupt requests (IRQ)
signals and to issue a corresponding sequence of INTR signals to
the processor. The default operating mode assigns highest priority
to IRQO and the lowest priority to IRQ7. A similar sequence applies
to the secondary PIC present on the AT and compatible machines
although the highest and lowest priority interrupt lines are in this
case referred to as IRQ8 and IRQ15 respectively. This priority scheme
means that an interrupt handler may itself be interrupted by a higher
priority interrupt request (provided that the processor’s Interrupt
Flag is set), but lower priority requests must wait until the present
interrupt level has been cleared.

The PIC incorporates several 8-bit registers which are used for
manipulating the interrupt request signals as shown in Figure 5.2.
The interrupt request signals are latched in the Interrupt Request

172 PCinterfacing and data acquisition

INT INTA
»! Control
Interrupt Request Interrupt Mask I In Service
Register (IRR) Register (IMR) Y Register (ISR)
IRQO — >
IRQ1 — > 1
IRQ2 —» >
IRQ3 ——>1 > :’\ Priority
IRQ4 —> > ‘ resolver
IRQ5 — >
1RQ6 —> >
1RQ7 —» >
Y Internal bus (accessible via system bus) [¢

Figure 5.2 Schematic diagram of the main elements of the 8259A PIC

Register (IRR). The IRR may be programmed to record either edge-
triggered or level-triggered interrupt signals. The trigger method
used is dependent upon the type of machine and should not normally
be changed by the programmer. The latched IRR signals are then
passed to the Interrupt Mask Register (IMR) which contains a
user-programmable bit pattern that selectively enables or disables
interrupt requests on certain IRQ lines. A low bit placed in this
register will enable the associated interrupt. Next, the interrupt
signals are then passed collectively to the priority resolver which
prioritizes all pending (and enabled) requests. The result of this
operation is that the INT line (which is connected to the processor’s
INTR line) is asserted and this initiates the interrupt sequence. In
addition, 1 bit of the In Service Register (ISR) is set to indicate which
of the pending interrupts is currently being serviced.

The IRR, IMR and ISR may be read by software in order to
determine the current state of the interrupt system. As already
mentioned, the software can also write to the IMR to selectively
enable or disable certain IRQ lines. Each bit in the IMR corresponds
to one IRQ) line and has no effect on any higher or lower priority
lines. The PIC also incorporates a number of other registers which
allow the operating mode of the device to be programmed.

Many plug-in adaptor cards provide jumpers or DIP switches for
the purpose of selecting which IRQ line (if any) the card is to use. It
is, of course, important to ensure that no two devices are assigned to

The interrupt system 173

the same IRQ line unless you are able to make use of the interrupt
sharing facilities that exist on MCA and EISA machines. Table A.2
(in Appendix A) lists the standard IRQ assignments used on the PC.
Remember that the actual assignments may vary between individual
computers, so it is wise to keep a record of which IRQ lines are
utilized by each adaptor card in the system.

The interrupt sequence

When an adaptor card asserts one of the IRQ lines, it sets in motion
the following series of events which ends in the execution of an
associated interrupt handler routine.

1. When the peripheral device requires the processor’s attention,
it drives its allotted IRQ line high (on the PCI bus the interrupt
request signal is steered by bridge hardware to the appropriate
IRQ line).

2. The IRQ signal is latched into the PIC’s IRR (this is either edge
or level triggered, depending upon the class of PC in use) and if
the corresponding bit of the IMR is clear, the interrupt request is
passed (with any other pending requests) to the priority resolver.

3. If no higher priority interrupts are pending, the PIC initiates
the interrupt by asserting the processor’s INTR line. If a higher
priority interrupt is pending or currently in service, the PIC will
wait until all higher priority interrupts have been serviced before
proceeding with the new interrupt request.

4. When the processor receives the INTR signal from the PIC it
asserts the PIC’s Interrupt Acknowledge (INTA) line twice in
succession. The processor waits until it has completed the current
instruction before acknowledging the interrupt. If external inter-
rupts have been disabled (IF = 0), the processor will not acknowl-
edge the interrupt and the INTA line is not asserted. The PIC
responds to the first INTA cycle by setting the appropriate bit of
the ISR and clearing the corresponding IRR bit. The second INTA
cycle causes the PIC to transfer an 8-bit Interrupt Type Code (the
zero-based ordinal index of the interrupt vector to be used) to
the processor via the data bus. The value of this code depends
upon the IRQ line which generated the interrupt and also upon
how the PIC has been initialized (see Remapping interrupts later in
this chapter).

5. The processor retrieves the Interrupt Type Code from the data
bus and multiplies it by four to calculate the offset into the IVT
of the interrupt vector that it will use.

6. The processor saves its Flags register on the stack and then
clears its Interrupt and Trap flags. At this point, the segment

174 PC interfacing and data acquisition

and offset addresses of the next instruction that the processor
would otherwise have executed are also pushed onto the stack
(these are used to resume execution of the interrupted code
when the interrupt handler terminates). The processor retrieves
the address of the interrupt handler from the interrupt vector
and, by placing this address into its CS:IP registers, effectively
transfers control to the beginning of the interrupt handler.

7. The interrupt handler performs whatever actions are necessary
in order to respond to the peripheral device’s interrupt request.
These actions will vary, but should always result in the device
removing its request by pulling the appropriate IRQ line low
again. Before returning control to the interrupted process, the
handler should then issue an End Of Interrupt (EOI) command
(usually a value of 20h) to the PIC. The EOI command causes the
ISR to be reset, allowing further interrupt requests of an equal or
lower priority to proceed. The interrupt handler should ensure
that it saves the contents of all of the processor’s registers and
that it restores them before returning. The return itself should be
implemented with the rrer (Interrupt Return) instruction rather
than the normal subroutine return, rer. The 1rRET instruction auto-
matically restores the Flags register (and therefore the Interrupt
Flag) which had originally been saved by the processor on the
stack. It also loads the return address from the stack into the
CS:IP registers to effect the return.

Figure 5.3 illustrates this sequence diagrammatically. The circled
numbers refer to the stages in the foregoing list. Bear in mind that
this figure is not a precise timing diagram — indeed the timing of
certain elements can vary considerably — nor does itinclude all of the
control signals that are passed between the PIC and the processor.

The interrupt sequence in protected mode (e.g. under Microsoft
Windows) is similar in many respects, although there are a number of
important differences. See Hummel (1992) for more on protected-
mode interrupts.

Interrupt triggering

There are two ways in which signals present on the various IRQ
lines may become latched into the PIC’s IRR and thereby generate
an interrupt request: edge-triggered or level-triggered detection.
The former method uses the rising edge of the IRQ line to latch
the corresponding IRR bit, while the latter method relies on level-
sensing circuitry. The trigger method employed varies between
different types of computer system. It should not be changed by
the user. ISA and XT bus machines program the PIC to respond to

The interrupt system 175

1
IRQN J \
(PERIPHERAL) ¢
®
®

HIGHER
PRIORITY

ISRs 0 @L‘}@D

INTR ! ’ ‘
(PIC INT) 0 1

1"
W

INTA ! \ / \ '
(PROCESSOR} 0
o]

e | L
IS

®

DATA ! X INTERRUPT \ /
BUS 0 TYPE CODE
\ \ \ EO!
EXECUTING — l
PROCESS ORIGINAL PROCESS lINTERRUPT n HANDLER! ORIGINAL
IRET

Figure 5.3 The interrupt sequence

edge-triggered interrupts while MCA machines (i.e. most PS/2s) use
level-triggered interrupts. EISA machines default to edge triggering
for compatibility with AT systems, but may also be programmed for
level-triggered interrupts.

In an edge-triggered system, an interrupt is generated only when
the IRQ line first undergoes a low-to-high transition. The line may
remain high without further interrupts being triggered. However,
if the IRQ stays high in a level-triggered system, a second interrupt
will be generated as soon as the software issues an EOI command to
acknowledge the firstinterrupt. It is, therefore, essential to deactivate
the IRQ line before issuing an EOI to a level-triggered PIC.

One consequence of level-triggered interrupts is that they facilitate
sharing of IRQ) lines between different devices. MCA machines
incorporate hardware that allows more than one peripheral device
to drive the same IRQ line. The IRQ remains asserted as long as
one or more peripherals are requesting service. To accommodate
this mode of operation, each peripheral must provide a software-
readable flag to indicate when it requires service. The interrupt

176 PC interfacing and data acquisition

handler routines associated with each device on the shared IRQ
line are installed in a chain-like structure. The first handler to gain
control when an interrupt occurs should check whether its own
associated device requires attention. If it does not, the handler must
immediately call the previous interrupt handler in the chain (i.e.
the one associated with the next device attached to the shared IRQ).
This process repeats until all devices that require attention have
been serviced.

Although this method provides additional scope for system expan-
sion, it does increase the overall time taken to respond to interrupts.
In some DA&C applications this additional delay might unacceptably
compromise the real-time performance of the system. In general, it is
wise to avoid using shared interrupts for any subsystem that requires
a fast interrupt response. Interrupt response times and latencies are
discussed in the section Interrupt response times at the end of this
chapter.

Cascaded PICs on ISA and MCA machines

In order to expand their interrupt processing capability from 8 to
15 IRQ lines, ISA- and PCl-based PCs (i.e. AT compatibles) and
MCA machines (i.e. IBM PS/2s) are equipped with two 8259A PICs,
connected together in a cascaded configuration. This requires the
BIOS’s Power-On Self Test (POST) routines to initialize the PICs
in a slightly different manner so that they will operate as a master
and slave. The primary (master) PIC is used in much the same
way as on PC and XT machines and is mapped to the same I/0
addresses (ports 20h and 21h). The secondary (slave) PIC appears
at ports AOh and Alh. The eight interrupt request lines provided
by the additional PIC are referred to as IRQ8-IRQ15. The slave’s
INT output line is fed to the IRQ2 input of the master PIC. In this
way any interrupt requests occurring on IRQ8-IRQI15 result in an
interrupt being signalled on the master PIC’s level 2 input. This has
obvious consequences for the interrupt priority scheme described
previously. Figure 5.4 illustrates how the two PICs are connected.
When the slave receives an interrupt request, it prioritizes it in
the same way as previously described and asserts its INT line. This
is detected by the master PIC on its IRQ2 line. The master then
prioritizes this interrupt request and asserts the processor’s INTR
pin. When the processor responds with two INTA pulses, the master
PIC effectively passes control to the slave by means of the CASO
to CAS2 lines. These enable the slave and cause it (rather than
the master PIC) to place an Interrupt Type Code (usually in the
range 70h to 77h) on the data bus during the second INTA cycle.

The interrupt system

177

System
timer

Keyboard
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6

IRQ7

IRQ8

fRQ10
IRQ11
IRQ12
IRQ13
1IRQ14
IRQ15

PIC1 {MASTER)

Y

Y

Y

Y

IRQO
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

INT eeeer————

INTA fe——

CASO to CAS2

IRQ8

IRQ9

IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
IRQ15

INT

INTA [

PIC2 (SLAVE)}

Figure 5.4 Cascaded master and slave PICs on the IBM AT and P5/2

If an interrupt originates from the slave PIC the interrupt handler
routine must issue EOI commands to both PICs before exiting: the
slave should be acknowledged first and the master second. Note
that further interrupt requests made via the slave PIC will not be
recognized by the master until after the master has received an EOI

command.

Because the master PIC’s level 2 input is connected to the INT
output from the slave PIC, the IRQ2 line is no longer available

178 PC interfacing and data acquisition

to accept interrupt requests. The modern AT-compatible PCs are
designed to maintain compatibility with the IBM PC and XT (which
were able to make use of IRQ2) by connecting the IRQ2 line on
the expansion bus to the slave’s IRQ9 input. IRQ9 is mapped to
the interrupt 71h vector. The BIOS incorporates an interrupt 71h
handler which simply makes a software call to the interrupt 0Ah
(IRQ2) handler. In this way, if an adaptor card issues an interrupt
request on the IRQ2 expansion bus line, the correct interrupt
handler is still invoked (although the interrupt request is routed
through IRQ9 and the slave PIC instead of going directly to the
master). This allows software and hardware designed for earlier
systems to work without modification on AT-compatible PCs.

It is interesting to note that it is possible to expand the PC’s
interrupt system by interfacing additional PICs. Because some of
the interface lines required for cascading the additional PICs are
not available on the expansion bus, full cascading is not possible.
Software interrupt handlers must, in this case, poll the various PICs in
order to determine which device requested service. This technique
is described in detail by Eggebrecht (1990).

Remapping interrupts

During the second INTA cycle, the PIC passes an 8-bit Interrupt
Type Code to the processor. This code is actually the ordinal index
of the interrupt vector which is to be used to transfer control to the
interrupt handler. Bits 0 to 2 of the Interrupt Type Code contain a
binary-coded representation of the number (in the range 0 to 7) of
the IRQ line which generated the interrupt. The b highest order bits
determine which of the available 256 interrupt vectors are mapped
to the IRQ lines. These bits are programmed into the PIC during
initialization (i.e. usually by the BIOS’s POST routines). This allows
the system initialization code to map the block of eight interrupt
lines associated with each PIC to a specific region of the IVT. For
the master PIC present on all PC-compatible machines, the high
order 5 bits of the Interrupt Type Code are such that IRQ0O-IRQ7
are mapped to interrupts 08h-0Fh. The value programmed into
the secondary PIC (on ISA, PCI, EISA and MCA machines only)
routes IRQ9-IRQI5 to interrupts 70h—77h. The interrupts may be
remapped simply by reinitializing the PIC(s) with a suitable value
for the 5 high order bits of the Interrupt Type Code. Remapping
hardware interrupts in this way might introduce incompatibilities
with software which expects the IRQs to invoke the usual interrupts.
If you do remap the interrupts be sure to account for any such
incompatibilities and remember to redirect the new interrupts to
the appropriate interrupt handlers.

The interrupt system 179

Programming the PIC and reading its registers

The 8259A PIC is a very flexible device and may be programmed
to operate in a variety of modes. Some of these modes are not
compatible with the PC’s architecture, or even with the 80x86 family
of processors, so you will need to exercise great care if you wish to
reprogram this device.

As explained previously, the system BIOS’s POST routines
configure the PIC to a standard operating mode, and there is
usually no need for the programmer to subsequently reprogram the
device. Indeed to do so may affect the ability of the P1C to function
correctly in conjunction with BIOS and other system components.
Nevertheless, there are rare instances when it is necessary to change
the PIC’s operating mode and so the relevant commands are
discussed briefly below. We will, however, discuss only those modes
and commands that are useful on the PC. You should refer to Intel’s
8259A Programmable Interrupt Controller Data Sheet for additional
programming details.

Mode selection and other commands may be issued to the PIC
either as an initialization sequence of 2 to 4 bytes ~ known as Initial-
ization Command Words (ICWs) — or subsequently as individual
Operational Command Words (OCWs). The PIC has two 8-bit ports,
each of which accepts certain command words: these are detailed
below. We will refer to these ports as port 0 and port1. On the
master PIC, ports 0 and 1 are mapped to 1/0 addresses 20h and
21h respectively. The slave PIC present on ISA, PCI, EISA and MCA
systems uses ports AOh and Alh.

Initialization command sequence

An application program may reinitialize the PIC if it wishes to
modify certain modes of operation. Initialization involves the soft-
ware writing from two to four Initialization Command Words to
ports 0 and 1. The first ICW, known as ICWI, is written to port 0.
Bit 4 of ICW1 is always set and this allows the PIC to distinguish it
from Operational Command Words which all have bit 4 reset (i.e. 0).
The values of bits 0 and 1 of ICW1 determine whether the third and
fourth ICWs are needed. Note that the format of ICW3, if needed,
depends upon whether the PIC has been configured as a master or
as a slave.

It is not usually necessary to reinitialize the PIC because the BIOS
POST routines will normally have set the device to the correct
operating mode. Consequently initialization will not be discussed
in detail here and the bit assignments listed in Tables 5.2 to 5.6
will be presented without further comment. If you need additional

180 PC interfacing and data acquisition

Table 5.2 ICW1T, for output to port 0

Bit Name Description

0 IC4 1 = Use ICWA4. If this bit is 0, ICW4 would not be required and the
functions controlled by ICW4 would be treated as though all
ICW4 bits were 0.
1 SNGL 1 = No cascade {used on PC and XT). ICW3 is omitted.
0 = Cascade mode (used on AT and PS/2). ICW3 is required.
2 ADI Always 0. Unused on PC and compatibles.
3 LTIM 1= Leveltriggered IRQs (MCA machines).
0 = Edge-triggered IRQs (PC, XT, AT systems).
4 Always 1. Identifies the command as being ICW1.
5-7 AB-A7 Always 0. Unused on PC and compatibles.

Table 5.3 ICW2, for output to port 1

Bit Name Description
0-2 A8-A10 Always 0. Unused on PC and compatibles.
3-7 T3-T7 High order 5 bits of the Interrupt Type Code that is

transferred to the processor during the second INTA cycle.
Master PIC uses 00001b and slave PIC uses 01110b.

Table 5.4 |CW3, for output to port 1 of the master PIC

Bit Name Description

0-7 S0-S7 Each bit represents an interrupt level used to cascade to a
slave PIC. Each bit set to 1 indicates that a slave PIC is
attached to the corresponding IRQ level. On the AT, IRQ2
is used for cascading the slave PIC so ICW3 is 00000100b.

Table 5.5 [CW3, for output to port 1 of the slave PIC

Bit Name Description

0-2 IDO-1D2 ID code of slave device (same as master's IRQ level to
which the slave is attached): 010b on AT.
3-7 Always 0. Unused on PC and compatibles.

The interrupt system 181

Table 6.6 /CW4, for output to port 1

Bit Name Description

0 uwPM Always 1. Indicates 80x86 compatibility mode.

1 AEOQI Always 0. Indicates no automatic EOI.

2 M/S Always 0.

3 BUF Always 1 on PC and XT. Indicates buffered mode.

Always 0 on AT. Indicates non-buffered mode.

4 SFNM Always 0. Indicates not special fully nested mode.

5-7 Always 0. Unused on PC and compatibles.

Table 5.7 Summary of useful 8259A PIC operational commands

Port
Command code Master PIC Slave PIC Description
O0Ah 20h ACh Map IRR to port 20h/AOh for reading.
0Bh 20h ACh Map ISR to port 20h/A0h for reading.
20h 20h ADh Non-specific end of interrupt (EO1).
C0h-C7h 20h ACh Set priority.
Mask 21h Alh Set interrupt mask {load IMR).

information, you should consult the Intel 8259A Programmable
Interrupt Controller Data Sheet.

Operational commands

After the PIC has been initialized by the BIOS POST routines, various
operational commands may be issued to the PIC in order to perform
actions such as reading the ISR or acknowledging an interrupt.
We have already introduced some of the operational commands:
accessing the IMR and issuing a non-specific end-of-interrupt (EOI),
for example. A number of other useful commands are available to
the programmer. These allow the software to read the PICs’ status
registers (i.e. the IRR and ISR) and to select various operating modes.
A selection of Operational Commands are listed in Table 5.7. Unlike
the Initialization Commands, the Operational Command Words do
not need to be issued in sequence. Note that any interruptible
command sequence (e.g. reading the IRR) should be carried out
with processor interrupts disabled.

Map IRR to Port 0 command (write 0Ah to port 0 (20h/A0h))

This command maps the IRR to port 0 so that subsequent reads from
1/0 port 20h (or AOh for the slave PIC) will return the contents of

182 PC interfacing and data acquisition

the IRR. Each of the eight IRQ inputs is represented by 1 bit of
the IRR: bit 0 indicates whether an IRQO request is pending; bit 1
indicates whether an IRQI request is pending and so on. All pending
interrupt requests are denoted by a 1 bit. It is sometimes useful to
read the IRR in order for an interrupt handler to check whether
any lower priority interrupts are pending. Other software routines
can also use this facility to determine whether an interrupt request
has occurred while external hardware interrupts may have been
masked.

Map ISR to Port 0 command (write 0Bh to port 0 (20h/A0h))

This command maps the ISR to port 0 to that subsequent reads from
1/0 port 20h (or AOh for the slave PIC) will return the contents of
the ISR. The ISR contains 1 bit for each possible IRQ level in much
the same way as the IRR. However, a high ISR bit indicates that
the corresponding interrupt level is currently being serviced (i.e. the
interrupt has been invoked, but the handler has not yet issued an
EOI). All interrupts which are currently in service will be represented
by high ISR bits. Only one bit of the ISR will usually be set during
execution of an interrupt handler, but if one or more higher priority
requests have interrupted a lower priority handler before the latter
has issued an EOI (and thus cleared its associated ISR bit), more
than one ISR bit will be set. Reading the ISR also provides a means
for a shared interrupt handler (e.g. one written to handle input
from two or more serial ports) to determine which device issued the
interrupt.

Non-specific End-of-Interrupt command (write 20h to port 0 (20h/A0h))

The non-specific EOI command should be issued by each inter-
rupt handler before returning control to the interrupted process.
This command clears the ISR bit corresponding to the highest
priority interrupt currently in service. This will normally be the
interrupt which issued the EOI command. By clearing the ISR bit,
the command allows further interrupts of equal or lower priority to
occur. On dual-PIC systems (e.g. ISA, PCI or MCA), any interrupt
handlers which are invoked via the slave PIC (i.e. via IRQ8-IRQ15)
must issue EOI commands to both PIGCs. The slave PIC should be
acknowledged first and then the master.

Set Priority command {write COh-C7h to port 0 (20h/A0h))

This set of commands allows different priorities to be assigned
to each IRQ input. Normally, the PIC is programmed to allocate
IRQO requests the highest priority and IRQ7 the lowest. Table 5.8

The interrupt system 183

Table 5.8 Interrupt priorities defined by the set priority command

IRQ priority order

Priority Coh Cth C2h C3h C4h C5h C6h C7h

1 (highest)

. ONOOT A~ WN
N = ONO O W
WN - OO D
BWN-—-ONOO
T WN =2 O N
DO R WN - O~
~NO R WN SO

1
2 2
3 3
4 4
5 5
6 6
7 7
8 0

{lowest)

illustrates the priorities assigned to each IRQ input by the Set
Priority commands. Note that, in the case of the slave 8259A PIC, the
interrupt request levels listed as 0—7 actually refer to IRQ8-IRQ15.

Suppose that it is necessary to incorporate a section of time-critical
code within a DA&C program. It may be desirable in some situa-
tions to install the code within a high priority interrupt handler.
This prevents other external hardware interrupts from taking prece-
dence and thereby delaying execution of the code. The hardware
which is to generate the interrupt requests might, for example,
be connected to IRQ7. In the case, the C6h command would be
issued. This would allocate the highest priority to the new IRQ7
process: higher than even the system clock interrupt on IRQ0. You
should exercise great care when reassigning interrupt priorities and
should be aware of all possible consequences of doing so. You should
also confine any high priority processes to as short a time span as
possible in order to avoid adversely affecting other interrupt-based
subsystems.

Define Interrupt Mask command (write mask byte to port 1 (21h/A1h))

It is possible to modify the Interrupt Mask Register (IMR) by writing
to this port. The IMR may also be read by reading from port 1.
Each bit masks or unmasks the corresponding interrupt level. Bit 0
is associated with TRQO, bit 1 with JRQI1 etc. Each low bit in the IMR
enables the corresponding IRQ level and a high bit disables the IRQ.

The Non-Maskable Interrupt

The processor’s Non-Maskable Interrupt (NMI) facility provides a
means for the various PC subsystems to notify the processor when

184 PC interfacing and data acquisition

some critical event, such as a hardware failure, has been detected. On
ISA and XT-bus machines, there are three possible sources of NMIs:
RAM parity failure, I/O channel error or a numeric coprocessor
error. On MCA systems, channel 3 of the system timer (i.e. the
watchdog timer) can also initiate an NMI. There are a number of
additional sources of NMIs on EISA machines.

One important difference between NMIs and external hardware
(INTR) interrupts is that the processor does not attempt to retrieve
an Interrupt Type Code from the data bus. Instead, it always uses
interrupt type 2 to service the NMI. This is a fixed feature of the
processor and cannot be changed by the programmer.

NMI handler routines are normally implemented by the system
BIOS. In situations such as a memory parity error, the BIOS’s NMI
handler will usually display a message to indicate the nature of the
fault. In such cases there is generally no way to recover reliably from
the problem and so the BIOS closes down the system.

NMIs have the highest priority of all hardware interrupts and
this guarantees a more or less immediate response to a pending
error condition. The only conditions that can delay execution of an
NMI are:

e The NMI has been disabled by software (e.g. by code that reads
the CMOS RAM or Real Time Clock).

e The processor is responding to a higher priority interrupt (such
as an exception).

e The processor has begun execution of an instruction that changes
the SS (stack segment) register. In this case the NMI will not be
recognized until after the following instruction has been executed.

Enabling and disabling the NMI

Asits name suggests, and unlike external interrupts on the INTR line,
the NMI cannot be masked (disabled) within the processor itself.
However, the AT and compatible machines incorporate circuitry for
gating off the NMI signal before it reaches the processor. The BIOS
POST routines ensure that the NMI is enabled during start-up, so
that any subsequent memory or 1/0O errors will generate an NML
An application program may disable the NMI by setting bit 7 of 1/O
port 70h to 1. The NMI may be re-enabled by clearing the same bit.
Port 70h is also used to access the AT’s Real Time Clock and CMOS
RAM. The NMI should normally be disabled in this way whenever
you attempt to read from, or write to, the CMOS RAM. It is generally
inadvisable to disable the NMI for an appreciable length of time.

The interrupt system 185

Signalling a system failure

In most DA&C applications it is unnecessary to install your own NMI
handling routines. If a RAM parity or other critical error occurs,
there is little that the programmer can do to recover. However, there
are situations where you might wish to inform an external device
of the fault by, for example, closing a relay or otherwise asserting a
digital I/0 line. This might be facilitated by intercepting the NMI,
but this technique will not normally be foolproof. There are likely
to be many other possible (and more probable) failure modes in a
typical data-acquisition system: obvious examples are loss of power
or a software crash due a coding error. If it is necessary to inform
external equipment of a general system failure, it will usually be more
reliable to make use of a watchdog timer as described in Chapter 3.
If you need to write your own NMI handlers you may wish to consult
the text by van Gilluwe (1994) which provides further information
on this topic.

It should be noted at this point that you should not rely on the PC,
its software or peripheral devices to control or monitor a potentially
hazardous system. Reliable as most modern PCs are, they are very
complex machines and, as a general rule, the more complex a system
is, the more scope there is for it to fail! Any PC-based DA&C system
should always be supplemented by whatever fail-safe mechanisms
might be necessary to ensure total safety. This point may (indeed,
should) be obvious to the reader, but it is of such importance that it
cannot be overemphasized.

5.3 Software interrupts and processor exceptions

Software interrupts and processor exceptions are both generated by
events which occur within the confines of the processor itself. They
arise as a result of the processor executing a specific instruction
or sequence of instructions. Software interrupts may be initiated by
special interrupt instructions placed in the program. They are gener-
ally used to provide a means of communicating with other software
processes such as DOS or the PC’s BIOS. Processor exceptions, on
the other hand, generally arise from some form of error condition,
such as an attempt to divide a number by zero.

Software interrupts

Software interrupts are used on the PC as a way of implementing
address-independent interprocess software calls. Many PC programs

186 PC interfacing and data acquisition

use the software interrupt mechanism for accessing the BIOS and
operating-system services.

The interrupt sequence

Because software interrupts are generated by interrupt instructions
placed within a program sequence they always operate synchronously
with the processor. Consequently the precautions outlined previously
in regard to accessing global data structures and other shared
resources do not apply. In other respects, however, the operation
of the two types of interrupt are very similar. On encountering
a software interrupt instruction, the processor pushes the Flags
register, clears the Interrupt Flag (IF) and the Trap Flag (TF)
and then pushes the CS and IP registers onto the stack. During
this process the processor also retrieves the address (CS:IP) of the
interrupt handler from the IVT and then transfers control to the
handler. After all necessary processing has been completed, the
interrupt handler should return control to the calling process by
issuing an 1Rrer instruction. Because the interrupt was generated
within the processor, there is, of course, no need to acknowledge
the PIC with an EOI command.

The Interrupt Type Code (i.e. the index into the IVT) is usually
obtained from the interrupt (int) instruction itself. A few instruc-
tions (such as the 1nto and Bousp instructions or the Breakpoint
opcode) will only generate an interrupt under specific conditions.
The Interrupt Type Code used in these cases is not received from the
instruction sequence, but is instead generated by the processor. We
will not discuss these instructions here. See Hummel (1992) or your
assembly language programming manuals for further information
on these interrupts.

When a software interrupt occurs, the processor always clears the
Interrupt Flag immediately after pushing the original Flags register
onto the stack. This means that all maskable (i.e. external hardware)
interrupts will be disabled until the interrupt handler either issues
an st1 instruction or returns with an 1rer (which restores the original
contents of the Flags register). Unless there is a good reason to do
otherwise, it is sensible for a software interrupt handler to unmask
the external hardware interrupts (i.e. issue an st1 instruction) as
soon as it gains control. Software interrupts have a higher priority
than either of the hardware (INTR or NMI) interrupts. Note that
software interrupts are not maskable and so are not affected by the
state of the Interrupt Flag.

The interrupt sequence in protected mode is similar in many
respects, although there are some important differences. See
Hummel (1992) for more on protected-mode interrupts.

The interrupt system 187

Issuing a software interrupt in assembly language

A software interrupt may be invoked from an assembly language
program by means of the 2-byte int instruction. The first byte is
always the CDh opcode and the second byte may be any number from
0 to 255: this is actually the Interrupt Type Code which the processor
uses to retrieve the associated interrupt vector. The 1nT instruction is
capable of invoking any available interrupt, even one reserved for a
processor exception or hardware interrupt. The following real-mode
code fragment illustrates how interrupt 21h (the DOS Function
interrupt) may be called from an assembly language program. This
particular example calls the Get DOS Version function, as denoted
by the value of 30h placed into the AH register, and then checks to
see whether it is version 3.0 or later.

mov ah, 30h ;1Get DOS Version function number
int 21h ;Call DOS using software interrupt
cmp al,3 ;Is it version 3.0 or later ?

jge DOSVersionOK ; - Yes, proceed

jmp DOSVersionError ; - No, Jjump to error routine.

The details of calls to other functions (i.e. the register usage) will
differ, but the same interrupt call mechanism applies.

Note that the actual value of the Interrupt Type Code (in this
case 21h) is coded into the instruction sequence. It is not possible
to code an interrupt call using a variable Interrupt Type Code. If
you wish to do this you will need to build a table of int instructions
and then use the Interrupt Type Code as an index for jumping
into the table. A more efficient, but in some ways a less satisfactory,
alternative is to use self-modifying code —i.e. software that writes
the Interrupt Type Code directly into the instruction sequence in
memory prior to executing the int instruction. It is often inadvisable
to use this technique, however. One has to account for the operation
of caches and prefetch queues within the processor and circumvent
problems with writing to the code segment in protected mode. Self-
modifying code can also be difficult to debug and cannot be run
from ROM - e.g. in embedded applications.

For further information on the prefetch queue and protected
mode programming refer to Hummel (1992). A discussion of
interrupts under Microsoft Windows can be found in the text by
Solomon (1998),

Issuing a software interrupt from a high level language

Many compiled high level languages such as C and Pascal include
functions or procedures for issuing software interrupts. A jump

188 PC interfacing and data acquisition

table, or self-modifying code similar to that described above allows
the function to receive the Interrupt Type Code as a variable param-
eter. Although not defined by the ANSI C standard, compilers
such as Borland C provide the intss() and intssx() functions for
invoking software interrupts (refer to your programming language
technical manual for further information on these functions). Other
languages provide similar functions: Borland Pascal, for example,
has a procedure known as 1ntr(). In all cases these functions or
procedures allow the calling process to pass data to the interrupt
handler via the processor’s registers and to receive any results back
in the same way. The registers are encoded in a data structure such
as a union in C or a variant record in Pascal.

The following code fragment illustrates how the C language’s
intss () function may be used to call a BIOS service. In this example,
we invoke the service which moves the cursor to position X,Y on the
display screen.

void SetCursorPos(unsigned char X, unsigned char Y)
/* Changes the text screen cursor position on page 0.%*/

{
union REGS In, Out;

In.h.ah = 0x02;

In.h.bh = 0x00;

In.h.dl = X - 1;
In.h.dh = Y - 1;

int86 (0x10, &In, &Out);
}

The n qualifier in the 1n.n.41 = x - 1 line, for example, provides
access to byte-sized registers. To access a word register, such as
DX, it would be necessary to use In.x.dx = ... etc. Hexadecimal
constants are denoted by the ox prefix in G, so in this example the
int86(0x10...) instruction actually calls interrupt 10h: the BIOS video
services. Note that the addresses of the 1n and out register structures
are passed to the intse () function as denoted by the & prefixes.

A number of other interrupt functions and procedures are avail-
able for making calls direct to DOS using interrupt 21h. Borland
C provides the intdos() and intdosx() functions for this purpose.
Similar functions are available in other high level languages.

Processor exceptions

Processor exceptions are generated internally by the processor as
a result of executing a specific sequence of instructions. They are
generally used to signal some form of error condition. As they

The interrupt system 189

are not generated independently of the processor, exceptions are
always synchronous. Like software interrupts, processor exceptions
cannot be masked. They have the highest priority of all types of
interrupt: higher even than the NMI. Most types of exception are
only generated in protected mode or V86 mode. A full discussion of
processor modes and exceptions is beyond the scope of this book.
Interested readers are referred to the text by Hummel (1992) which
provides a very detailed account of this topic.

5.4 Interrupt priorities

The priorities which the processor and PIC assign to the various
types of interrupt have already been mentioned. A high priority
interrupt request will, if it occurs simultaneously with one of a lower
priority, be recognized first. Lower priority interrupts are generally
inhibited until the interrupt handler acknowledges the source of
the interrupt, issues an EOI command to the PIC and, if necessary,
sets the processor’s Interrupt Flag. Table 5.9 illustrates the default
prioritization applied by the 8259A PIC(s) to the various external
hardware interrupts.

Note that although this prioritization is implemented by the PC’s
hardware, it is possible for software to modify the effective priorities

Table 5.9 Normal external hardware interrupt priorities of the 8259A PIC

Priority PC and XT AT, PS/2 and EISA
1 {highest) 1RQO: System timer IRQO: System timer
2 IRQ1: Keyboard IRQ1: Keyboard
3 IRQ2: LPT2/Reserved* IRQ8: Real-time clock
4 IRQ3: COM2* IRQY (labelled IRQ2 on bus): Reserved*
5 IRQ4: COM1* IRQ10: Spare*
6 IRQ5: Hard disk controller* IRQ11: Spare*
7 IRQ86: Diskette controller 1RQ12: Spare (AT); Pointing device (PS/2)*
8 IRQ7: LPT1* IRQ13: Coprocessor*
9 IRQ14: Hard disk controller*
10 IRQ15: Spare*
1 IRQ3: COM2*
12 IRQ4: COM1*
13 IRQ5: LPT2 (AT): Reserved (PS/2)*
14 IRQB6: Diskette controller*
15 (lowest) IRQ7: LPT1*

*Available on expansion bus.

190 PC interfacing and data acquisition

of the interrupts by reprogramming the PIC(s) as described in
Programming the PIC and reading is registers earlier in this chapter.

The processor itself must prioritize all interrupts that it
receives —i.e. hardware interrupts occurring on the INTR line
together with the NMI, processor exceptions, traps and software
interrupts. The processor’s prioritization scheme varies with the
type of processor and with the state of its flags, and in some cases
also depends upon which combination of interrupt requests are
pending. In general though, certain processor faults (e.g. divide-by-
zero errors) and traps (e.g. debug trap) have the highest priority, and
external hardware interrupts have the lowest (although the 80486
and later processors assign even lower priorities to some faults and
exceptions). Unmaskable interrupts, including the NMI, software
interrupts and processor exceptions have intermediate priorities.
The details of the various processors’ prioritization schemes are
beyond the scope of this book. Interested readers are referred to
Hummel (1992) for further information.

The point of this discussion is that the NMI, some types of trap
and software interrupts can take precedence over external hardware
interrupts. This has obvious implications for developers of real-
time systems where the presence of higher priority interrupts might
adversely affect interrupt latencies.

5.5 Writing interrupt handlers

Interrupt handlers have a multitude of applications within DA&C
software. They can, for example, be used to enable the processor to
read an ADC or the serial port whenever new data becomes available.
They are also commonly used for timekeeping and pacing. Periodic
interrupts from the system timer or from an external device allow the
software to perform actions at regular intervals. These actions might
include tasks such as checking the status of a limit switch or relay (via
an I/0 port) or controlling an actuator. Various PC subsystems can
be manipulated by hooking interrupts. For example, it is possible to
detect or filter out specific key combinations (such as Ctrl-Alt-Del)
by intercepting the keyboard interrupt.

Finally, and perhaps most importantly, the interrupt system allows
the programmer to trap specific error conditions (e.g. a divide
by zero) and events such as a Ctrl-C or Ctrl-Break interrupt. The
application software can install routines to handle the error and
to provide a suitable recovery mechanism. This consideration is
generally of most importance to assembly language programmers
since most high level languages (HLLs) incorporate mechanisms

The interrupt system 191

for automatically trapping these interrupts. Nevertheless, all users
of HLLs should be familiar with the error trapping facilities of
their compiler. This topic is covered adequately in many books on
DOS programming (e.g. Duncan (1988) and Dettmann and Johnson
(1992)) and so will not be discussed here.

The following subsections describe how interrupt handlers can be
installed in a real-mode data-acquisition program. They also illustrate
how the functionality of existing interrupt handlers may be preserved
by adding new handlers in a chain-like structure. Similar principles
will apply to interrupts in protected mode, but you should be aware
that the structure of the interrupt handler may be governed by
the operating system in use. Indeed the operating system may even
hide the mechanics of the interrupt process from the application.
Windows NT, for example, allows only privileged operating-system
code or device drivers to directly handle interrupts, although there
are callback facilities that allow less privileged user-mode code to be
invoked indirectly as a result of an interrupt.

Additional information on using the PC’s interrupt system in
real-mode is provided in the texts by Swan (1989) and Holzner
and Norton (1991). Solomon (1998) describes interrupt processing
under Windows NT in some detail.

Installing an interrupt handler

In order to install an interrupt handler, the corresponding interrupt
vector must be modified so that it points to the new routine. Before
doing this, however, the original value of the interrupt vector should
be recorded so that it can be restored before the program terminates.
A record of the original interrupt vector is also essential in cases
where control must be passed to the old interrupt handler. There are
two ways in which the individual interrupt vectors may be modified:
via operating system functions or by directly accessing the IVT in
low memory. For reasons of simplicity and portability, the former
method is normally to be preferred. In fact, a number of high
level languages provide library functions which are based on these
services. Borland’s implementations of C provide the getvect () and
setvect () functions for reading and modifying interrupt vectors.
However, there are circumstances, in a real-mode program, where
it is preferable to read from, or write to, the IVT directly. This is
often perfectly acceptable provided that there is no possibility of an
interrupt occurring while the IVT is being accessed. It is usually safest
to disable all hardware interrupts during IVT accesses. The IVT is
1024 bytes long and, in real mode, is located at the very bottom of
the PC’s memory (i.e. at 0000:0000h). Each vector occupies 4 bytes

192 PC interfacing and data acquisition

and so the offset of the vector with type code n is at 4n. Vector 0 is
at offset 0000h, vector 1 is at offset 0004h, vector 2 is at offset 0008h
and so on.

Masking and unmasking the interrupt

If you are installing a handler for an external hardware interrupt it
may be necessary to unmask the associated IRQ by modifying the
contents of the PIC’s IMR. This action will, of course, be required
only if the interrupt was previously unused. If the new handler is
intended to replace, or link into, an existing interrupt handler, the
IRQ) level will already be unmasked and it will not be necessary to
modify the IMR.

Each bit of the IMR corresponds to one IRQ line: bit 0 is associated
with the level 0 interrupt, bit 1 with the level 1 interrupt and so
on. Each zero IMR bit causes the corresponding IRQ level to be
unmasked (enabled). Note that you can read the IMR from 1/0O
port 21h (or Alh in the case of the secondary PIC) in order to
determine which interrupts are presently enabled. Only the bit
corresponding to the desired interrupt should be modified. Because
many of the remaining IRQ levels are used by other subsystems,
masking or unmasking these interrupts may have undesired effects.
It is wise to take the precaution of disabling interrupts (with a
CLI instruction) while accessing the PIC’s IMR. The example in
Listing 5.2 illustrates how to modify the IMR.

The structure of the interrupt handler

The basic structure of software and hardware-interrupt handler
routines is quite simple. In both cases, the handler must first save
the contents of all of the processor’s registers so that they can be
restored before exiting. If the registers are not preserved in this way,
it is likely that the interrupt handler will corrupt data belonging to
the interrupted process. The usual technique is to save the registers
on to the stack as shown in Listing 5.1. Obviously, only those registers
which are actually modified by the interrupt handler need to be saved
and restored.

After saving the registers, the handler may service the interrupt
and carry out whatever processing is necessary. In the case of a
hardware interrupt handler, the code should usually acknowledge
the device which caused the interrupt so that it deactivates its
interrupt request line.

The interrupt system 193

Listing 5.1 Basic interrupt handler shell
PROC IntHandler FAR

; General purpose interrupt handler shell.

push ax ; Save registers on stack
push bx H
push [e54 i
push dx ;
push di H
push si i
push bp B
push es ;
push ds H

; Perform interrupt processing here

pop ds ; Restore regs. from stack
pop es ;

pop bp ;

pop si ;

pop di ;

pop dx ;

pop cx ;

pop bx i

pop ax H

iret ; Return from interrupt

ENDP IntHandler

Returning from the interrupt and restoring the interrupt flag

When the interruptis invoked, the processor pushes the Flags register
and the CS and IP registers on to the stack before transferring
control to the interrupt handler. The handler can easily read the
return address by accessing the appropriate location in the stack
segment. This technique is useful for handling some processor
exceptions and for creating profiling routines. Note that if you are
writing interrupt handlers in a language such as C or Pascal using
high level interrupt-type functions or procedures, the compiler will
automatically save and restore the registers for you. The order in
which they are pushed onto the stack may, however, differ from that
shown in Listing 5.1.

When a software or hardware interrupt handler first gains control,
the processor’s Interrupt Flag (IF) will be clear so no further external
hardware interrupts will be recognized until after the handler termi-
nates with the 1rer instruction. Depending upon the nature of the

194 PC interfacing and data acquisition

application, you may wish to unmask the interrupts by issuing an stz
instruction at an earlier point within the handler.

When external hardware interrupts are unmasked by means of
the st instruction or by restoration of the Flags register during
an 1ret, any pending INTR requests will remain unrecognized until
after the instruction which follows the st1 or 1ret! This facility allows
the programmer to prevent multiple interrupt handlers from being
called in a nested fashion. It therefore helps to eliminate excessive
stack usage, by keeping further interrupts disabled until after the
final 1reT instruction has been executed.

When writing a software interrupt handler, you may need to return
status information or other data in the Flags register. In this case
you should not use an 1rer because this instruction would over-
write the new Flags status with the original contents of the Flags
register! The handler should, instead, unmask interrupts and exit
with an reTF 2 instruction which will leave the new contents of the
Flags register intact. Some system interrupts, such as DOS interrupt
21h, use this technique to return information in the Flags register.
Remember, however, that this technique only applies to software
interrupt handlers. You should, of course, always use 1rer to return
from any interrupt handler that is entered asynchronously (i.e. a
hardware interrupt handler).

Hardware interrupt handlers

Unmasking the processor’s Interrupt Flag will allow only interrupts of
a higher priority than the one currently executing to be recognized.
To allow lower priority interrupts to execute it is necessary to issue
a non-specific EOl command to each of the PICs involved in the
interrupt request:

; Send EOI commands to PICs

mov al,20h ; Non-specific EOI command
out OACh, al ; Send EOI to slave PIC
out 20h,al ; Send EOI to master PIC

If the interrupt request is not routed through the slave PIC (i.e. on
XT-bus systems or on ISA systems if the interrupt is on IRQ0-IRQ7),
the out oaoh,al line is not required and should be omitted.

The EOI command clears the ISR bit that corresponds to the
current interrupt, which allows lower priority interrupt requests
to be serviced. Even if you are content with keeping low priority
interrupts disabled, the EOI command should always be issued at
some point within the interrupt handler. It is possible to determine
whether other interrupt requests are pending or currently in service

The interrupt system 195

by reading the PIC’s IRR and ISR as described in the section
Programming the PIC and reading its registers earlier in this chapter.

Listing 5.2 illustrates how a handler routine may be implemented
in C for an external hardware interrupt. This example installs a
handler for interrupt 0Dh (IRQ5), but can easily be adapted for
other interrupts.

The interrupt keyword available in Borland and Microsoft imple-
mentations of C informs the compiler that the associated function
is an interrupt handler. This causes the compiler to generate special
entry and exit code for the function which preserves the contents
of the processor’s registers and terminates the routine using an 1rer
instruction. The entry and exit code is similar, although notidentical,
to that shown in Listing 5.1. When an interrupt function is called,
the DS register is initialized to point to the program’s data segment
(in medium memory models), and this allows the interrupt handler

Listing 5.2 Installing an interrupt handler for interrupt ODh (IRQ5)

#include <dos.h>

unsigned char OrigIMR;
void interrupt {(*OrigIntDVector) (veoid);

/* Original PIC int mask register */
/* Storage for orig int 0Dh vector */

/* Function Prototypes */
void InstallIntDHandler (void);
void RestoreIntDHandler {void);

void interrupt IntDHandler ()

{

/* Do any required processing here */
outportb (0x20, 0x20)} ;

)

/* Issue non-specific EOI

void InstallIntDHandler ()
{
OrigIntDVector
disable();

getvect (0x0D) ; */

*/

/* Get original interrupt vector
/* Disable interrupts

setvect (0x0D, IntDHandler) ;
OrigIMR inportb(0x21);
outportb(0x21, (OrigIMR | OxDF));
enable();

}

void RestorelIntDHandler ()

{

disable(};
outportb{0x21,0rigIMR) ;
setvect (0x0D,OriglntDVector) ;
enable () ;

}

/* Point int ODh vector to IntDHandler
/* Get original IMR

/* Load new IMR value to enable int ODh
/* Enable interrupts

/* Disable interrupts

/* Restore original IMR

/* Resore original int ODh vector
/* Enable interrupts

*/
*/
*/
*/

*/
*/
*/
*/

196 PC interfacing and data acquisition

to access global variables. Other compiled languages, such as Pascal,
support similar interrupt-type functions or procedures. Depending
upon your compiler it may be necessary to disable stack-overflow
checking when using interrupt functions.

The 1nstallintbHandler() function installs the new interrupt
handler by changing the interrupt ODh vector. It then modifies
the PIC’s IMR in order to enable the corresponding IRQ level.
The restoreIntpHandler() function effectively removes the handler
by restoring the IMR and interrupt vector to their original states.
The interrupt handler itself, intpHandler (), is very simple. After any
necessary processing has been completed, it just issues a non-specific
EOI command and terminates.

Chained interrupts

So far we have seen how an independent interrupt handler can be
installed on its own dedicated interrupt vector. In this scenario, the
new handler completely replaces any previous interrupt handler.
However, there are some cases where, although a new interrupt
handler is required, the functionality of an existing handler must
also be retained. It is then necessary to call the original interrupt
routine whenever the new handler is invoked. In fact, it is possible
to install a series of handlers on the same interrupt vector. The
newest handler gets control first, performs whatever processing may
be necessary and then calls the previous handler. This handler then
calls the next one in the chain and so on until all handlers have been
executed.

The chaining technique is widely used on the PC and is extremely
useful in a variety of circumstances. You will need to chain interrupt
handlers if you wish to add extra functionality to the system’s timer or
keyboard interrupts, for example. These are both external hardware
interrupts, but software interrupts can also be chained in order to
provide a means of communicating between applications programs
and memory-resident driver software. The C language provides
two methods of interrupt chaining: the _chain_intr() function and
direct calls.

The _chain.intr() C function

This function is supported by Microsoft C and later versions of
Borland’s Turbo C. It takes, as a parameter, a far pointer to the
previous interrupt handler (i.e. the one which is to be chained
to). The _chain_intr() function may be called only from within an
interrupt-type function. When _chain_intr() is invoked, it restores
all of the processor’s registers from the values previously saved on

The interrupt system 197

the stack (removing them from the stack in the process) and passes
control directly to the old interrupt handler. The old handler then
executes as though it had been invoked directly. When the old
handler has completed its processing, it returns with an 1rer directly
to the interrupted code —i.e. it does not return control to the new
handler. The following code fragment illustrates this technique.

void interrupt (*OldintHandler) (): /* Storage for original int vector */

void interrupt NewIntHandler({)

{

/* Do interrupt processing here */

~chain_intr (OldintHandler) ; /* This function does not return */
/* Code here will never be executed! */

}

Some languages such as Pascal (and some early C compilers) do not
include a _chain_intr() or similar function. In these cases it will be
necessary to resort to assembly language programming or at least
to use inline opcodes. For the benefit of Pascal programmers, the
following inline macro performs a similar service to C’s _chain_intr()
function. It assumes that, on entry to the new interrupt handler,
the registers are pushed in the order AX, BX, CX, DX, SI, DI, DS,
ES, BP and that a stack frame is then set up by copying SP to BP
(as is the case with Borland/Turbo Pascal compilers). Readers using
C compilers that do not support _chain_intr() may wish to adopt
a similar technique. If you try this, remember to account for the
different order in which your compiler might save the registers on
entry to the interrupt handler.

Procedure Chainintr(OldIntHandler: pointer);

Inline($5B/ { pop BX ; Get OldIntHandler pointer }
$58/ { pop AX : from top of stack }
$87/$5E/50E/ { XCHG BX, [BP+OE] ; Insert OldIntHandler in stack }
$87/%46/810/ { XCHG AX, [BP+10] : at "return address" posn. }
$89/8EC/ { Mov SP,BP ; Simulate Pascal exit code by }
35D/ { pop BP ; restoring all registers }
307/ { poP ES ; from the stack. When this }
S1F/ { pop DS ; has been completed, the }
$5F/ { POP DI ; next two words on the top }
$5E/ { pOP S1 ; of the stack are the new }
$5a/ { popP DX : “"return addr®: OldIntHandler }
859/ { pOP X ; }
$SCB) ¢ { RETF ; "Return® to OldIntHandler }

Chaining with a direct call

If you need to carry out interrupt processing after the old interrupt
handler has been executed, your new interrupt handler will have to

198 PC interfacing and data acquisition

call the old handler directly. The interrupt call to the old handler
can be simulated by pushing the Flags register and then issuing a far
call. Note that this does not simulate an interrupt exactly (i.e. it does
not clear the processor’s Interrupt or Trap flags), so appropriate
allowances must be made. This technique can be implemented in C
as follows.

void interrupt (*OldIntHandler) (); /* Storage for original int vector */

void interrupt NewlIntHandler ()

{

/* Do interrupt processing here */

(*0ldIntHandler) () ; /* SAME AS: pushf */
/* call DWORD PTR OldIntHandler */

/* Do further processing here */

}

Note that the direct call technique does not restore the registers
or stack to their original state before passing control to the old
interrupt handler. This is an important consideration when dealing
with chained software interrupts, as most software interrupt handlers
expect to receive certain values in the registers. In this case you must
ensure that the new handler restores the original register contents
before calling the old interrupt handler. When the old handler
exits via its IRET instruction, control is returned directly to the new
interrupt handler, allowing the latter to perform further processing
before finally returning to the interrupted code.

Chaining hardware interrupt handlers

Because data cannot be passed via registers to an interrupt handler
that is entered asynchronously, it is generally unnecessary to pass the
original register contents down along a chain of hardware interrupt
handlers. In this case the direct call chaining technique may be used.
Listing 5.3 illustrates how an additional handler can be chained onto
interrupt 8 (the system timer interrupt) using this technique. Itis very
similar to Listing 5.2, but there are three important differences. First,
the new interrupt handler invokes the previous interrupt handler
when it has completed its own processing. Second, because the old
interrupt handler will issue the required EOI command, the new
handler does not need to do this (you will need to issue an EOI if
your routine does not pass control to the previous interrupt handler,
however). Finally, the installation and deinstallation routines do not
modify the PIC’s IMR because the required interrupt level would
already have been enabled by the BIOS.

The interrupt system 199

Listing 5.3 Chaining an interrupt handler on to interrupt 08h
#include <dos.h>

void interrupt (*Origlnt8Vector)(}; /* Storage for original int 8 vector */

/* Function Prototypes */
void InstallInt8Handler (void);
void RestorelInt8Handler (void);

void interrupt Int8Handler()

{
/* Do interrupt processing here */
(*OrigInt8Vector) {}; /* Call original int 8 handler */

}

void InstallInt8Handler ()

{

OrigInt8Vector = getvect (0x08); /* Get original interupt vector */
setvect {0x08, Int8Handler) ; /* Point vector to Int8Handler */

}

void RestoreInt8Handler ()

{

setvect {0x08,0rigInt8Vector); /* Restore original interrupt vector */

}

5.6 Re-entrancy and accessing shared resources

We have already noted some of the problems inherent in sharing
resources between interrupt routines and non-interrupt code. If an
interrupt occurs while a program is accessing a shared hardware
device, and the interrupt handler then attempts to manipulate the
same hardware, it is likely that this will affect the status of the device
and so disturb the operation of the interrupted code. A similar
consideration applies when two or more asynchronous processes
need to call shared operating system services.

Any software routine that can be interrupted and then safely
called again from within an interrupt handler is known as a re-
entrant routine. Most DOS services are non-re-entrant and for this
reason they should not normally be called from within an interrupt
handler. Some BIOS services are also non-re-entrant. Fortunately
there are techniques which allow access to certain DOS services
from within an interrupt handler. These work by checking DOS to
discover whether one of its services was being executed at the time
that the interrupt occurred. Only if DOS had not been interrupted
is it safe to access a DOS service from within the interrupt handler.

200 PC interfacing and data acquisition

Further information may be found in the texts by Dettmann and
Johnson (1992) and Schulman et al. (1990).

It should be noted at this point that the re-entrancy issue is less
problematic in multitasking operating systems and real-time versions
of DOS that are used in embedded PC applications. These support
a number of re-entrant services which can be called from within
interrupt handlers.

It is not just operating system calls that can present re-entrancy
problems. You should be careful to avoid calling any non-re-entrant
code from within an interrupt handler. This includes some driver
services and routines contained within your own program. Suppose
that an interrupt handler issues a call to a non-re-entrant subroutine.
If your program (or another interrupt handler or task) happened
to be executing that subroutine at the time of the interrupt, it is
likely that the subroutine’s internal data structures will have been
corrupted by the time that control returns to the interrupted process.

To make a routine re-entrant it is necessary to ensure that all data
structures used within the routine are dynamically allocated from a
pool of free memory whenever the routine is entered. This prevents
corruption of any data that might have been in use when the routine
was interrupted. The most common way to accomplish this is to
allocate space for new local variables on the stack each time that
the routine is called. Global variables must, of course, be avoided as
there can only ever be a single copy of each global variable. Care
must also be exercised when accessing any other global resources,
such as an item of hardware which is shared with other software
subsystems. If it is necessary for an interrupt handler to access any
shared device or data structure, steps must be taken to ensure that
the handler can never be invoked (e.g. by disabling interrupts) while
other sections of code (i.e. critical sections) are also accessing the
same resource.

Re-entrancy is an issue not just for interrupt handling, but also
in the design of multitasking systems. Windows NT, for example,
employs a pre-emptive task scheduler that can switch between tasks
or threads more or less independently of the state of the current
thread. Resource conflicts are avoided by the use of re-entrant code,
mutexes, semaphores and other sophisticated mechanisms built into
the operating system.

5.7 Interrupt response times

The presence of asynchronous interrupts disturbs the continuous
flow of a program. Hardware interrupt handlers can often cause

The interrupt system 201

execution of the underlying process to be suspended for several
hundred microseconds at a time. As most DA&C applications include
portions of time-critical code, this disturbance can be problematic.
If you use time-critical code in the non-interrupt portion of your
software, you will have to either disable interrupts during execution
of the code (which is practicable over only short time intervals) or be
prepared for the code to be interrupted at unpredictable intervals.

A more satisfactory alternative is to place the important code
within an interrupt handler. This has two advantages. First, the
routine will only be executed when it is needed: the software will
not have to perform continual checks to determine when the code
should be activated. Second, if priorities are carefully assigned, the
interrupt handler will also be less likely to be interrupted itself.

A certain amount of overhead is always involved in responding
to an interrupt and transferring control to and from the associated
interrupt handler. This can often result in a lower throughput than
if a non-interrupt polling loop is used. As well as limiting the rate
at which 1/0 and other operations can be performed, the interrupt
overhead also delays the response of the system to individual interrupt
requests.

At this point it should be noted that interrupt sharing, which
is possible on MCA systems, can introduce a small but potentially
significant additional overhead because the interrupt handler has to
determine which of the attached devices requires service. Sharing an
interrupt line between two (or more) subsystems should be avoided
in situations where the fastest possible interrupt response is required.

The time taken to respond to an interrupt request (i.e. to perform
some useful action) is determined by two components: the interrupt
latency time and the speed at which the interrupt handler itself
performs its allotted task. The latter is dependent upon the nature
of the application and is often relatively easy to optimize by adopting
efficient coding practices. The interrupt latency time, on the other
hand, is much more difficult to quantify or control. It represents
the worst-case time taken for the system to respond to an interrupt
request. It is defined as the maximum interval between the point in
time where the interrupt request is asserted and the instant that the
processor cominences execution of the associated interrupt handler.
The interrupt latency time is composed of three elements:

1. The interrupt recognition time (Tg).
2. The time required to complete the current instruction (7).
3. The interrupt processing time (7'p).

Tk is the time taken by the processor to recognize that the interrupt
request is pending. If interrupts have been masked by means of

202 PC interfacing and data acquisition

a crnI instruction, or temporarily disabled at the PIC, Tx can be
quite considerable. Unfortunately, it is not always easy to determine
how long the system keeps interrupts disabled. Device drivers and
operating system services, which the program might have cause to
invoke, may disable interrupts for an indeterminate length of time.
The time during which an interrupt may be blocked by a higher
priority routine can contribute significantly to its latency time. All
possible combinations of interrupts occurring at the same time (or
nearly the same time) must be taken into account when assessing the
worst-case value of T. Certain instructions can also temporarily mask
interrupts. We have already mentioned the st1 and 1rer instructions
which do not allow interrupts to be enabled until after the next
instruction has been executed.

In addition, the processor disables interrupts between rock and
segment-override prefixes and the instructions to which they relate.
Instructions which modify the contents of the segment registers on
the 8086 and 8088 processors also cause interrupts to be disabled
until after the following instruction has been completed. However,
this only applies to instructions which modify the SS register on 80286
and later processors. The occurrence of higher priority interrupts
can also increase Ty by preventing lower priority handlers from
executing for perhaps several hundred microseconds, or more.

The second component of the interrupt latency time, T, depends
on the nature of the instruction that is being executed at the time
the processor detects the interrupt. Most instructions take a few
microseconds to execute on an 8088 processor (often much less
than 1 us on more modern systems). However, some operations such
as multiply or divide may take approximately five or ten times longer
to execute.

The interrupt processing time (7p) is usually of less significance
than Tg, although it is an important factor in determining the
minimum possible interrupt latency. It represents the time taken
by the processor, after it has recognized the interrupt request, to
acknowledge the interrupt (i.e. to issue the necessary INTA cycles),
save the Flags, CS and IP registers, retrieve the interrupt vector and
transfer control to the interrupt handler. For external hardware
interrupts on a 4.77 MHz 8088-based machine, this procedure takes
approximately 12.7 ps. A slightly shorter processing timne is required
for an NMI: typically 10 to 11 ps on an 8088 processor. Later
processors running at higher clock speeds are, of course, able to
perform the same operations in considerably less time.

In order to calculate the interrupt latency time, the worst-case
values for Tg, T; and Tp must be added together. In most applica-
tions Tg is by far the most important contributor to the interrupt

The interrupt system 203

latency time. Nevertheless, it can be a difficult task to determine the
maximum value of just this one quantity, particularly on systems
running DOS or Microsoft Windows, which were not designed
specifically to meet the stringent timing requirements of real-time
applications.

Chaining of interrupt handlers can further complicate the
problem, making interrupt latencies more difficult to predict. This
is especially so if you have no control of what other software the end
user may install on the same interrupt.

The programmer must always ensure that the interrupt response
of the system is adequate regardless of what portion of the software
is being executed. Consideration should be given to the effect on
interrupt latency of all sections of code in the system. This includes
critical code sections (i.e. code executed with interrupts disabled),
calls to operating-system (and BIOS) services and execution of other
interrupt handlers.

In DOS and Windows-based systems, one largely unknown quantity
(and one over which the programmer has little control) is the
interrupt latency introduced as a result of operating-system code.
Often, there is little information available on interrupt masking
within the various system services. In addition, task and mode switches
under Windows can make interrupt latencies much more difficult to
predict.

Details such as this tend to be precisely quantified in specialist
real-time operating systems. These include ROMable versions of
DOS and the BIOS which are widely used in embedded PC systems.
They are designed for use in multitasking real-time environments,
offering well-defined interrupt latencies, and are essential if the PC
is to be used for high speed real-time applications. They are also
often (at least partially) re-entrant and this allows operating-system
services to be called from within interrupt handlers.

Interrupt latencies are, generally speaking, greatest for systems
running under Microsoft Windows and those executing in protected
mode under a DPMI server. In these systems, calls to operating-systemn
services may involve switching the processor from protected mode to
real (or V86) mode and then back again. Mode switches as well as task
switches are frequently necessary in order to service hardware inter-
rupts. Whether a mode switch occurs depends upon the mode of the
processor at the time of the interrupt and whether a suitable inter-
rupt handler exists for that mode. In normal operation, Windows 3.1
might perform, perhaps, 20 or more mode switches every second.
Mode switches can be quite time consuming (a few microseconds
up to a few hundred microseconds on an 80286 processor) and
unless great care is taken they can severely degrade the system’s

204 PC interfacing and data acquisition

real-time performance. When Windows is running several processes
concurrently, interrupt requests have to be routed to the appropriate
thread or task in order for them to be handled properly. The time
required for this routing and consequent context switches is variable
and depends upon many factors. This can make it very difficult to
predict interrupt response times under Windows. Whatever oper-
ating system is used, careful design and a detailed knowledge of the
peculiarities of the operating system are of paramount importance
in assessing the interrupt performance and real-time characteristics
of the system.

In many applications the real response to an event does not occur
until after the interrupt handler has terminated. The handler may,
for example, only transfer data to a buffer or set flags: the data or
flags are then acted upon by another portion of the software (e.g.
a loop within the interrupted process or, in the case of a real-time
multitasking system, by a related task). The response of the software
as a whole (e.g. the loop cycle time or the time required to invoke
the task) will then determine the actual performance of the system.

Often the only feasible course of action is to determine the overall
response of the system by thorough and exhaustive testing. Bear
in mind that the actual latency time measured empirically for any
one interrupt may not be representative of the worst-case interrupt
latency. This figure is often difficult to measure because hardware
interrupt processes are, by their nature, asynchronous. This means
that interrupt requests can occur while the system is in almost any
state and it may, therefore, be impracticable to reproduce all possible
combinations of interrupts and system conditions during testing.

6 Data transfer

We will now turn our attention to a topic of central importance in
data acquisition and control: transferring data between the PC and
a peripheral DA&C device. The data transfer techniques that can be
adopted in a DA&C program will depend, to a great extent, upon the
nature of the DA&C hardware to be used. This chapter introduces the
types of device that are available for interfacing to DA&C systems and
discusses a number of issues and software techniques related to data
transfer. The following two chapters continue this theme, covering
parallel and serial buses and associated devices in more detail.

6.1 Data-acquisition interface devices

By a DA&C interface device, I mean a device that facilitates connec-
tion of sensors and actuators to the PC. These take many different
forms. It is convenient to classify them according to their processing
capability and the way in which they transfer data to and from the
PC. These considerations govern how the software communicates
with the DA&C device and determine, to a great extent, the internal
structure and capabilities of the software.

In the following discussion 1 will use the terms ‘intelligent’ and
‘dumb’ to refer, respectively, to programmable devices that are able
to autonomously process and manipulate acquired data, and to
devices that possess no such processing capability. These informal
terms are used only for convenience. This usage is somewhat impre-
cise and does not, of course, indicate the presence, or otherwise, of
any form of artificial intelligence.

Connection to the PC

The simplest DA&C interface devices consist of circuit boards that are
plugged directly into the PC’s system-bus (e.g. ISA or PCI) expansion

206 PC interfacing and data acquisition

sockets. These devices each provide one or more hardware registers
that are mapped into the PC’s memory or I/0 space. Because such
devices connect directly to the system bus, data can be transferred
between the device and software in one operation. For example, a
simple assembly language out instruction might be all that is required
to change the state of a group of eight digital output lines or relays.

Communication with intelligent devices involves an intermediate
step. They buffer and translate command codes sent via the registers
and then act on the command, transmitting the appropriate digital
bit patterns to the ADC, relays or to other interface components.

Although plug-in interface cards are the cheapest and, perhaps,
the most widely used interfacing solution, they are not practicable
if, for example, sensors are to be located at a remote site. Where
signal losses preclude the use of long sensor leads, the PC and
digitizing device may have to be positioned some distance apart. In
these situations an external serial link or parallel bus (e.g. RS-232,
RS-485 or IEEE-488) will usually be required to carry commands
and digitized signals between the PC and a remote DA&C unit.
Interfacing techniques for serial and parallel buses are discussed in
Chapters 7 and 8.

Intelligent DA&C devices

Devices that possess a degree of on-board intelligence may assume a
number of data collection, storage and processing tasks which would
otherwise have to be undertaken by the PC. These devices are usually
designed to facilitate deterministic operation and provide guaran-
teed response times and data-acquisition rates. Such capabilities can
obviate the need for complex deterministic and/or multitasking PC
operating systems and can often help to simplify the DA&C software.
A dedicated on-board processor may, for example, be programmed
to execute a deterministic control algorithm while leaving the PC
free to perform other tasks (e.g. to manage the user interface or to
provide disk storage).

It is often somewhat simpler to communicate with intelligent
DA&C devices than to directly manipulate the control lines and
registers of dumb I/O cards. The PC programmer does not have to be
aware of how the various DA&C subsystems (e.g. ADC, multiplexer,
sample and hold) function; all that needs to be understood are the
end results of issuing particular high level commands to the device’s
microcontroller. These commands may be used to configure the
device or to initiate simple tasks such as reading an analogue input
channel. They may also perform more complex operations such

Data transfer 207

as programmed scanning of multiple input channels, buffering
acquired data or even scaling and linearizing each reading.

High level command sets offered by most devices are both
simple and flexible, but they do introduce an additional layer
of complexity between the PC and the low level data-acquisition
hardware. Depending upon the nature of the device, the PC
software may have to accommodate a more complex communi-
cation protocol - particularly in the case of serial bus devices (see
Chapter 8). The extra processing required to formulate, issue and
interpret commands may in some applications limit the speed
and efficiency of the system as a whole.

An important characteristic of some intelligent DA&C units is the
ability to transmit data to the host PC in the form of ASCII encoded
character strings. This permits both scaled and unscaled data to
be transferred. Many devices take advantage of such a capability
by providing facilities for on-board scaling or linearization of data.
The capacity to scale acquired data allows the device to support a
number of more advanced features, such as the ability to operate as
an autonomous controller, to respond to trigger events or to record
only data that falls outside predefined limits. The penalty paid for
these facilities is, in many cases, significantly reduced throughput.

Plug-in coprocessor and DSP cards

One of the simplest solutions for DA&C applications that require
intelligent 1/O is to employ a plug-in coprocessor card. These are
simply single-board computers that are designed specifically for
data acquisition, analysis and control. The DA&C coprocessor can
be programmed to perform all of the time-critical operations. As
the host PC is normally used only in a supervisory role and/or to
supply mass storage, user 1/O and peripheral interfacing facilities,
its performance is normally not critical. This type of system is
particularly suited to computationally intensive tasks where acquired
data must be mathematically processed in real time. Typical examples
include audio signal and vibration analysis and a variety of real-time
process-control applications. Although most coprocessor cards do
not incorporate analogue signal conditioning (to minimize wide-
band noise pickup from the digital circuitry), many possess a number
of ADC channels, DAGs, digital I/O ports and timers.

80x86 coprocessor cards

A small number of coprocessor cards are based upon the 80x86
family of microprocessors and have an architecture similar to that
of the PC. They are suited to a wide range of real-time DA&C appli-
cations and usually permit high speed operation, with maximum

208 PC interfacing and data acquisition

sampling rates ranging from about 50 to 300 000 samples/s. With
suitable buffering, some cards can stream data directly to the host
PC’s hard disk at rates up to about 100 KB/s. These devices are
often equipped with a moderate amount of system RAM. Some also
include dedicated FIFO memory buffers to facilitate high speed data
capture. A few models will operate in PC and XT class machines, but
most require an AT compatible (ISA) bus slot.

The I/0 facilities offered usually include high speed analogue
inputs, analogue outputs and digital I/O lines. Some manufacturers
supply modular boards which can be tailored to specific applications
byadding additional ADCs, DAGCs or digital I/ O ports. Direct memory
access (as described later in this chapter) is often supported, together
with flexible interrupt and timing systems.

Some cards have their own ROM-based real-time operating systems
(RTOSs). These provide dedicated DA&C functions and facilitate
communication with the host PC. Special drivers and develop-
ment utilities are usually supplied with these systems, allowing
data-acquisition, data-processing and control algorithms to be down-
loaded to the target processor. Depending upon the type of processor
and operating system used, these programs may be in executable
form or may be written in a specialized script language that is
interpreted by the RTOS.

Digital signal processors

80x86-based cards are suitable for a variety of DA&C tasks, but
for high speed signal-processing applications a specialized Digital
Signal Processor (DSP) is generally a more satisfactory alternative.
A DSP is essentially a microprocessor that is optimized for running
numerically intensive signal-processing algorithms. Key features of
such systems are high accuracy and, in most cases, very high rates of
throughput. A number of manufacturers supply ISA cards equipped
with one or more DSP chips. At least one presently provides a DSP
card for the PCI bus. A number of DSP-equipped PCMCIA cards are
also now becoming available for notebook computers.

As well as allowing the PC’s processor to execute concurrently with
the DSP, a plug-in DSP card can itself form the basis of an inherently
parallel architecture. Some implementations permit multiple DSPs
to be connected together in a variety of powerful parallel-processing
topologies. Each DSP can be programmed to execute different
signal-processing functions or to perform the same processing on
different sets of data. This inherent parallelism means that DSP cards
are ideal platforms for real-time applications or when large arrays of
data have to be processed.

Data transfer 209

DSPs can be programmed to execute a variety of high speed data-
processing and control algorithms. Some of the most common are
signal comparison, fast Fourier transforms, convolution, frequency
measurement, scaling, linearization, statistical functions, waveform
synthesis, PID control and digital filtering. Many of these can also
be performed by the PC itself (albeit somewhat less efficiently)
and these are discussed at various points throughout this book.
Typical DSP applications include vibration analysis, machine condi-
tion monitoring, spectral analysis, audio frequency applications,
engine analysis, digital image processing and high speed real-time
control. DSPs are also often used in embedded systems. In these
cases, the PC is used only as a convenient platform for development
of DSP code and takes no part in the actual data acquisition.

The 1/0 facilities provided by DSP coprocessor cards tend to
vary between different models, but most are equipped with between
one and 16 high speed analogue input channels and a number of
analogue outputs, digital I/O ports and timers. FIFO memory buffers
are often used to decouple the digitization and DSP circuitry. They
usually possess flexible interrupt and DMA (Direct Memory Access)
systems, which support high speed transfer of data to the host PC.
Data transfer is facilitated on some cards via a block of dual-ported
RAM mapped into the PC’s memory space.

DSP cards are normally controlled via on-board firmware. This
includes DSP libraries that contain commonly used algorithms.
Many manufacturers also provide complete software development
environments (including an assembler, compiler and debugging
software). Source files are edited and compiled on the PC and the
executable software is then downloaded to the DSP card. Library
functions may also be included to allow access to the host PC’s
console and I/0 facilities.

Remote DA&C units

Most remote DA&C units are capable of some degree of independent
processing. These devices generally incorporate dedicated microcon-
trollers and possess their own ROM-based operating systems. Many
allow moderately high speed operation, although the degree of
determinism that they offer does tend to vary between different
models. Because of their autonomous processing and data-storage
capabilities they are often used for stand-alone data logging and
control. Facilities for analogue and digital output may be supple-
mented by software comparators or control algorithms. These can
help to relieve the less deterministic PC of the burden of real-time
control: a considerable benefit to the DA&C programmer. There

210 PC interfacing and data acquisition

are three main classes of remote DA&C unit (as well as many hybrid
devices):

1. Single-channel 1/O units are usually connected to the PC via a
multi-drop network such as RS-485. These devices are commonly
used where many sensors have to be widely distributed over a large
structure such as a bridge or dam. In these cases there are usually
numerous devices attached to a single network. Each unitor I/O
channel is usually addressed by means of a unique identification
code. This type of device frequently has only a limited capacity
for on-board buffering or data processing.

2. Multi-channel data loggers are normally connected to the PC on
a one-to-one basis via a serial or parallel interface. Most devices
possesses at least eight or 16 analogue input channels. This may
be expandable up to several hundred channels on some systems.
A numeric code is assigned to each I/O channel and the software
must use this code in order to configure that channel or to
read data from it. Many of these devices have quite sophisticated
processing abilities. Some are able to buffer large quantities of
data, to store data on disk drives or to interface to modems,
printers or plotters. For this reason they are often used for stand-
alone data logging and may only need to be connected to the PC
for programming or to download acquired data.

3. Stand-alone laboratory instruments and test equipment can also,
in many cases, be interfaced to the PC for data acquisition. Most of
these instruments have a degree of intelligence and are capable
of periods of independent operation. Many are designed for
specialized test and measurement work and the facilities which
they provide are often tailored to specific applications such as
spectrometry, pH sensing, chromatography or audio frequency
analysis. The RS-232 or IEEE-488 buses (see Chapters 7 and 8)
are normally used for interfacing to this type of device.

Most remote DA&C devices possess the signal-conditioning circuitry
necessary to interface to sensors and/or actuators. They often have
a modular construction, which allows the end user to select the
appropriate type of analogue signal-conditioning unitand/or digital-
I/0 interface. In this way the system is able to accommodate various
types of sensor (e.g. thermocouples, strain gauges, or LVDTs) as
well as relays and opto-isolated digital I/O devices. The PC software
may have to support all possible configurations and may need
to interrogate the DA&C unit to determine which modules are
installed.

Data transfer 211

Dumb interface devices

Many simple analogue or digital I/O cards that connect directly to
the ISA bus, PCI bus or PCMCIA slot have little or no on-board
processing capability. Instead, virtually all aspects of the inter-
face device’s operation are controlled by the PC via 1/O-mapped
or memory-mapped registers. The PC initiates data transfer and
manages the flow of data across the interface. These duties can be
quite processor intensive, particularly where many 1/0 channels and
high sampling rates are involved.

Although directly manipulating the registers and control lines of
plug-in cards can be somewhat more involved than communicating
with an intelligent DA&C unit, such an arrangement often provides a
greater degree of control over the data-acquisition process. Because
the PC is usually responsible for managing each component of the
device, there is generally much more scope for varying the timing
and order of channel selection, sample-and-hold triggering, gain
selection and ADC reading operations. For this reason the data-
acquisition process can, in some circumstances, be carried out more
efficiently than would be possible using an intelligent DA&C unit.

The fact that the PC’s software is responsible for all aspects of
the data collection and control operations can also be a serious
disadvantage. If you are working to a tight timing specification, it
may be necessary to adopt a specialized real-time operating system
and to dispense with any non-deterministic, but otherwise desirable,
features of the software. You should also bear in mind that when
directly manipulating registers and control lines there is a greater
potential for software errors to find their way into your DA&C
program. These can be quite subtle and time dependent. They may
not become apparent during static testing, only showing themselves
at high rates of throughput, on certain high speed models of PC or
when a specific sequence of events occurs. Time-dependent software
errors can be very difficult to reproduce and trace during testing.

6.2 Data transfer techniques and protocols

There is usually no inherent synchronization between DA&C hard-
ware and the software running on the PC. Components such as
ADGs and multiplexers are said to operate asynchronously with the
PC. In such a system, it is not possible to predict the state of the
DA&C hardware at any particular time and the PC must, therefore,
have some way of determining whether a peripheral device is busy
or whether it is safe to access it. In order to ensure that data is not

212 PC interfacing and data acquisition

presented to the PC at too fast a rate (and, conversely, to prevent the
PC from demanding data at too fast a rate) it is essential to establish
a set of rules, or protocol, for data transfer.

Handshaking

In the case of a simple plug-in ADC card, it is usually necessary
to initiate analogue-to-digital conversion and then wait until the
conversion is complete in order that valid data can be read from
the ADC. We have seen in Chapter 3 that this requirement can
be implemented by a handshaking protocol that uses the ADC’s
Start Conversion (SC) and End of Conversion (EOC) control lines.
Intelligent DA&C devices, which often communicate with the PC
via a serial link (e.g. RS-232, RS485 etc.), must also operate in
accordance with a strict communication protocol.

Protocols are usually effected by means of handshaking or control
signals that indicate the state of readiness (or otherwise) of some
element of a device. These signals are usually transmitted via digital
I/0 lines (e.g. an ADC’s SC and EOC lines). Other types of 1/O
interface employ slightly more complex handshaking techniques, but
the basic principle is the same: to facilitate an orderly, synchronized
transfer of data.

Many serial communications systems provide for an alternative
protocol known as software handshaking or character flow control.
Installations that do not use the serial port’s handshaking lines
can transmit special control characters to regulate the flow of data
along the serial bus. This technique is described in more detail in
Chapter 8.

Data I/0 strategies

The protocols involved in communicating with any DA&C device
will, of course, depend upon the nature of the communications
interface employed (e.g. serial or parallel bus or direct connection
to the PC’s expansion bus) and upon the degree of synchronization
inherent between the PC and the device. Because communications
mechanisms and protocols vary considerably, it is not appropriate
to discuss details of specific devices here (although certain standard
protocols and handshaking techniques for use with parallel and
serial bus-based systems are discussed in Chapters 7 and 8). Of more
general interest are the strategies that you can adopt within your
data-acquisition programs for requesting and receiving data from
DA&C devices. What follows applies, in general, to both intelligent

Data transfer 213

and dumb DA&C devices, although the details of the mechanisms
involved will, of course, be somewhat different in each case.

Input

The simplest technique for inputting data from a device is to
configure it so that it operates in a free-running mode, providing
data at its fastest possible rate. The software can then periodically
poll the device to detect whether it has new data. An example of
this is the free-running ADC technique in which the ADC’s End of
Conversion (EOC) output is connected (if necessary, via suitable
logic) to its own Start Conversion (SC) input. This results in contin-
uous analogue-to-digital conversion. The PC software monitors the
EOC signal to detect when the ADC has completed each conversion
and then reads the new digitized value from the ADC’s output buffer.

Alternatively the DA&C device (i.e. ADC or intelligent data logger)
may be configured to take readings at regular intervals under the
control of a hardware timer. This technique is useful where readings
are to be taken at precise intervals. From the software’s point
of view, it is similar, in principle, to the free-running technique.
Both approaches free the software from having to decide when to
initiate analogue-to-digital conversions. They do, however, require
the DA&C program to be ready to respond at any time that new data
is made available.

Other techniques give the software more control over the timing
of the data-input process. The PC software may be designed to
request data either by issuing a suitable high level command or by
outputting an SC signal to an ADC. The timing of a data-request
command may be controlled in several ways. The software might
request a new reading as soon as previous data has been processed;
when it detects user input (e.g. a key press or mouse click); on
receipt of digital handshaking signals from other components of the
DA&C system; or by reference to an elapsed time timer. In the latter
three cases it is possible (and often preferable) to issue data request
commands from within a hardware interrupt handler.

Data may not always be immediately available after the PC has
requested a new reading. The software will generally have to wait
(or continue with some other task) while the DA&C interface device
interprets the command, selects the appropriate input channel, or
digitizes and processes (e.g. scales or linearizes) the data. The DA&C
program must incorporate some mechanism for determining when
valid data is available. The software may poll a designated I/O portin
order to determine the state of a ‘data available’ flag. Alternatively, a
handshaking signal could be fed to an IRQ) line in order to generate
an interrupt whenever the DA&C device wishes to transmit new data.

214 PC interfacing and data acquisition

The interrupt handler may then read the acquired data or it may
Jjust set a flag to cause the main data-acquisition routine to read the
data when interrupt processing has been completed.

Summary

The following strategies are available for determining when to
request data or for initiating ADC conversions:

1. Polling. Software or hardware flags may be periodically checked
from within a software loop in order to determine when the
system is ready to supply and/or process more data. The state of
these flags may be controlled via user input, digital control inputs
or software timers.

2. Hardware interrupts. Interrupt handlers for system timers, user-
input devices, serial/parallel ports or other peripheral devices are
often convenient locations for code which initiates or manages
I/0O operations. The software is free to perform other tasks when
not processing interrupts.

3. Direct hardware control. Hardware devices such as simple
counter/timer circuits can be configured to periodically initiate
actions such as analogue-to-digital conversion or to control the
timing of handshaking signals.

The software may subsequently detect and read new data, either
by polling the DA&C device or by installing interrupt handlers
that respond whenever new data becomes available. DA&C devices
that continuously transmit a stream of data without any form of
handshaking (e.g. some RS-232 systems) will generally require the
software to employ an interrupt-driven input mechanism in order to
ensure that no data is lost.

Output

Outputting analogue data often involves only a single write operation
to an I/O port. For this reason it is usually more straightforward
than inputting analogue data which normally requires a two-stage
‘request and read’ operation. However, the system must regulate the
flow of output data, which is normally accomplished by means of
handshaking signals (in addition to any high level communications
protocols that may be required). These may be used to strobe data
out to a peripheral device, thus allowing outputs to be updated
only when it is safe to do so. Handshaking may be implemented
using digital I/O control lines or via high level commands or status
polling facilities (depending upon the nature of the DA&C device).
Both polling and interrupt-based techniques can be used for sensing
handshaking signals and for managing data output.

Data transfer 2156

Comparison of interrupt and polled I/0

We have seen that there are two techniques at the programmer’s
disposal that can be used for sensing the state of handshaking signals:
polling or interrupts. Each method has its own particular advantages
and disadvantages. Which is most appropriate will depend upon the
nature and structure of your application. This section provides some
general guidance.

Polling is the most straightforward technique. It simply involves
reading the state of a digital I/O line via either an I/O-mapped
or memory-mapped register. This is done by means of an v or
Mov instruction or high level language counterpart. Polling can be
performed in a data-acquisition software loop together with any
other operations that may be necessary. Alternatively, a dedicated
polling loop can be used. In this case, the handshaking line or flag is
repeatedly checked until it changes state, at which point the loop is
terminated and control is passed to an appropriate routine. Efficient
polling loops written in assembly language — such as that illustrated
in the following code fragment — can provide a very rapid response
to changes in the state of handshaking lines or other digital inputs.

mov dx, 300h ;1I/0 Port address to read

mov bl, 80h ;Mask to select bit 7 of input byte
LoopStart: in al,dx ;Read port

test al,bl ;Select status bit (i.e. bit 7)

jz LoopStart ;Loop if status bit = 0

;Status bit = 1 so perform
;any necessary processing here

Interrupts can also provide a rapid response, but because of the over-
head involved in recognizing an interrupt, invoking the interrupt
handler, acknowledging the 8259 PIC and then transferring control
back to the interrupted process (see Chapter 5) the maximum
throughput achievable is often lower than if a well-written polling
loop were to be used.

As well as limiting the rate at which I/O operations can be
performed, the interrupt overhead also delays the response of the
system to individual interrupt requests. The overheads inherent in
managing interrupts can mean that timing precision is often much
worse (by a factor of at least 5 to 10) than if using a polling loop.
For reasons outlined in Chapter 5, interrupt response times are
variable and often relatively long. Depending upon the operating
system used, they may also be indeterminate. This is an important

216 PC interfacing and data acquisition

consideration when writing software that must respond quickly to
time-critical events.

In spite of their less efficient response times, interrupts provide a
number of very important advantages over polling. First, they allow
the software to continue with other tasks instead of simply waiting
for input. The more efficient use of available processor cycles can
often compensate for the inefficiencies inherent in responding
to individual interrupts, improving the overall throughput. An
interrupt-based event-driven I/O system also permits a more modular
software structure to be employed, and this can go some way to
improving the reliability of the DA&C program.

Memory- and I/0-mapped transfers

Whether data acquisition is performed via a serial link, external
parallel bus or via a DA&C card connected directly to the PC’s
expansion bus, all I/O operations are ultimately performed via
registers mapped to either the PC’s memory or I/0 space.

In the memory-mapping scheme, control registers and I/O latches
are assigned to one or more (usually contiguous) memory locations.
These are often within the PC’s 1 MB real-mode addressable region:
particularly in the upper memory region between 640 KB and 1 MB.
Hardware designed for use with 32-bit processors and operating
systems may use other physical memory addresses up to 4 GB. Data is
transferred to and from memory-mapped registers by simply reading
or writing the appropriate memory address. Memory-mapped 1/0 is
not widely used on PC adaptor cards.

‘The majority of data-acquisition interface products possess a group
of (typically 4, 8 or 16) control and data registers, and these are
mapped to a configurable address range within the PC’s I/O space.
The registers may be accessed using assembly language 1~ or our
instructions or their high level language counterparts. Although a
detailed discussion of programming languages is outside the scope
of this book, 1/0 instructions and functions are of such central
importance to the subject of data acquisition that we shall briefly
consider this topic below. Only three implementations are covered,
but most PC programming languages provide similar facilities. There
may, however, be slight differences between dialects of the same
language. You should consult your programming language manual
for more precise information.

Accessing I/0-mapped registers in assembly language

Assembly language provides a wealth of instructions for performing
8-, 16- and 32-bit 1/O operations. All members of the 80x86

Data transfer 217

family of processors support the basic v and our instructions. Newer
members (i.e. 80386 and later) also support a number of string
I/0 instructions (i.e. 1nNsB, INSW, INSD, OUTSB, oUTsw and oursp) which
are very useful for transferring large quantities of data between a
memory buffer and a peripheral device. The various I/O instructions
are listed in Table 6.1.

IN and OUT instructions

The 1xv and our instructions have already been introduced in
Chapter 1. These instructions always transfer data to or from the
accumulator; no other registers can be used. 1-, 2- or (on 80386 and
later systems) 4-byte transfers are allowed, depending upon whether
the AL, AX or EAX register is specified. If the I/O port number is
less than 100h, it can be coded as an immediate byte constant. If it
is greater than or equal to 100h, the port number must be specified
in the DX register. The various forms of the v and our instructions
are summarized in Table 6.2.

Table 6.1 Assembly language I/O instructions

Instruction Processor Description

N *8086+ Reads 8-, 16- or 32-bit values from the IO
ports to the accumulator.

ouT *8086+ Writes 8-, 16- or 32-bit values to the I/O ports
from the accumulator.

INSB *80186+ Byte-by-byte string input to ES:[DI/EDI].

QUTSB *80186+ Byte-by-byte string output from DS:{SI/ESI].

INSW *80186-+ Word-by-word string input to ES:[DI/EDI].

OUTSW *80186+ Word-by-word string output from DS:[SI/ES!].

INSD 80386+ Dword-by-dword string input to ES:[DI/EDI].

OUTSD 80386+ Dword-by-dword string output from
DS:ISIWESI].

*80386+ required for 32-bit transfers/addressing.

Table 6.2 The assembly language 1IN and ouUT instructions

Direction Port Byte /O Word I/O Double word I/O
In <100h IN AL, port IN AX, port IN EAX, port
In Any IN AL, DX IN AX, DX IN EAX, DX
Out <100h OUT port, AL OUT port, BX OUT port, EAX

Out Any OUT DX, AL OUT DX, AX OUT DX, EAX

218 PC interfacing and data acquisition

String I/O instructions

The string 1/0 instructions work in much the same way as the
equivalent string move (movs, Movse, Movsw and movsp) instructions.
The former allow 8-bit, 16-bit or (on 80386 and later processors)
32-bit data to be transferred directly between memory and an I/O
location specified in the DX register. This is a very efficient way of
transferring large amounts of data between a peripheral device and
a memory buffer. It is a useful alternative to Direct Memory Access
(DMA) for block data transfers, although DMA can provide better
throughput under some circumstances.

The 1nsB, 18sw and 1nsp instructions all read data from the I/0 port
address specified in DX directly into the memory location addressed
by ES:[DI] (or ES:[EDI] in 32-bit address mode). The DI (or EDI)
register is automatically incremented or decremented, depending
upon the state of the direction flag, by an amount equal to the
number of bytes (i.e. 1, 2 or 4) transferred.

The ourse, oursw and oursp instructions complement the string
input instructions. Data is written from the 1-, 2- or 4-byte memory
location specified by DS:[SI] (or DS:[ESI] in 32-bit address mode).
The SI (or ESI) register is automatically incremented or decre-
mented, depending upon the state of the direction flag, by an
amount equal to the number of bytes (i.e. 1, 2 or 4) transferred.

The string I/0O instructions can be used in conjunction with the
rep prefix to transfer a string of bytes, words or double words. The
number of elements in the string is specified in the CX register (or
optionally the ECX register on 80386 and later processors) as follows:

mov es, SEG InputBuf ;ES:DI --»> Start of InputBuf

mov di,OFFSET InputBuf ;

mov dx, PortNum ;DX containg I/0 port number

mov cx,40h iCX = Number of times to repeat

cld ;Clear Direction Flag so DI increments
rep insw ;Read string

The generic form, 1xs or ours, can be used instead of specifying the
data size explicitly in the instruction mnemonic. If this form is used,
you will have to specify the size of data to be transferred by including
a BYTE PTR, WORD PTR OF DWORD PTR operator in the source or destination
memory reference. For example, a 16-bit string output instruction
(in 16-bit address mode) could be specified either as:

outs WORD PTR ds:[si],dx
or simply as:

outsw

Data transfer 219

Both instructions have the same effect. Similar constructs may be
used in the case of the other string I/O instructions. If you use the
generic s or outrs form, you should bear in mind one important
peculiarity. As with the string manipulation (movs etc.) instructions,
the effective address of the destination/source operand specified
in the instruction is actually ignored. This operand is only used to
specify the size of the data transfer; the actual address contained in
the instruction operand does not matter. Inputs are always directed
to the memory address specified by the current ES:[DI/EDI] regis-
ters, while output values are always sourced from the memory
address specified by DS:[SI/ESI]. You could, for example, specify
the following instruction in place of either of the preceding forms:

outs WORD PTR [bx],dx

where the BX register contains some undefined value. The operand
address governed by the contents of the BX register actually has no
effect. All three of the above forms would have the same end result.

According to Hummel (1992), some versions of the 80286, 80386
and 80486 processors do not execute the string input instructions
correctly under certain circumstances, particularly in protected
mode. In addition to these problems, the 1/O protection mech-
anisms used in protected and virtual-8086 modes add a number
of additional complications which tend to negate the advantages
offered by the string I/0 instructions. It is often simplest to avoid
using the string 1/0 instructions unless your software will run
only in real mode. If you do wish to use these instructions in a
protected-mode environment such as Windows, OS/2 or under a
DOS extender, you should consult a text such as that referenced
above for additional information.

Back-to-back I/O

Perhaps the most important potential sources of error are related
to the timing of I/O operations. Many I/O registers require a short
amount of recovery time after an I/O operaticn is performed. If, for
example, two I/O operations are performed on the same 1/O portin
quick succession, data transferred during the second I/O portaccess
may become corrupted. This can be particularly problematic if the
string 1/0 instructions are used with the rep prefix, as successive
repetitions of the I/0 instruction occur immediately after the last
operation has been performed. Some ISA systems employ hardware
solutions such as inserting wait states in all /O operations. EISA
systems are designed to avoid these difficulties.

220 PC interfacing and data acquisition

The software solution is, however, very simple and easy to imple-
ment. To make your software as immune as possible to /0O timing
problems it is prudent to include a short delay immediately after
each 1v or out instruction. A safe delay period is typically of the order
of 1 us (although this figure can be variable). On slow 80486 and
earlier computer systems, a few short jumps will normally suffice. For
example:

out dx, ax
jmp SHORT $ +2
jmp SHORT $+2
jmp SHORT $+2
in ax,dx

Because the timing of gup instructions varies between different
systems, this method will result in a variable delay time. On faster
machines, many Jwp instructions may be needed to provide the
required delay. A more robust alternative is to create a calibrated
software delay loop.

Delays are not included in the examples in this book unless back-
to-back 1/0 is performed. These examples will work satisfactorily on
many systems, but you may need to add an 1/O delay when accessing
slow peripherals or when using a fast PC.

Timing of multiple-byte transfers

Under certain circumstances multiple-byte data transfers using 1/0
instructions require more than one bus cycle. The timing of data
transfers is governed by the processor and type of expansion bus
in use. You should be aware that more than one bus cycle may be
required to transfer 2- or 4-byte data to unaligned port addresses. An
unaligned address is either a group of two ports that is not aligned
on a word boundary (i.e. an even address) or a group of four ports
that is not aligned on an address divisible by four. The fact that more
than one bus cycle is required for unaligned I/O means that data
may be transferred in two or three discrete steps. The precise order
with which the component ports are accessed is undefined and may
vary between different systems. For this reason, it is inadvisable to
use such transfers within your program if you need to retain control
over the order in which the individual ports are accessed. In such
cases you should code the individual port accesses explicitly, or at
least use a data size small enough to ensure that only aligned 1I/0
operations are performed.

Data transfer 221

Accessing I/0-mapped registers using a high level language

The C and C++ programming languages provide several functions
and macros for reading and writing both byte- and word-sized
I/0O ports. There are slight differences between the Microsoft and
Borland implementations as shown in Table 6.3. Note, however, that
Borland C also supports the Microsoft I/O functions. In both cases,
I/0 is performed by calling the function whose declaration is shown
in the table. Examples illustrating how Borland C can be used for
accessing 1/O-mapped peripheral devices are given in Chapters 7
and 8. BASIC programs also use a similar method, providing an e
function and ourp statement. Some dialects of BASIC will support
only 8-bit I/O operations.

Borland Pascal (including versions of Turbo Pascal) adopts a
different, and arguably more intuitive, approach. I/O functions and
macros are not used. Instead the 1/O port addresses are declared
as one-dimensional arrays called port and portw. The ports are read
or written in the same way as any normal array element would be
accessed, as shown in Table 6.3. The elements of the port array are
of type byte and those of the portw array are of type word.

The delays inherent in calling high level I/O functions are usually
sufficient to avoid the recovery problems that occur when performing
back-to-back 1/0O. However, some hardware may take an unusually
long time to process data and in these cases you may have to include

Table 6.3 /O port access from high level languages

Language Direction Bytes Declaration/usage
Microsoft C In 1 int inp(unsigned port)
Out 1 int outp(unsigned port, int data)
In 2 unsigned inpw{unsigned port}
Out 2 unsigned outpw{unsigned port, unsigned data)
Borland C In 1 unsigned char inportb(int port)
Qut 1 void outportb(int port, unsigned char data)
In 2 int inport({int port)
Out 2 void outport{int port, int data)
Bortand In 1 Data8 := Port [PortNum];
Pascal Out 1 Port [PortNum] := Data8;
In 2 Datalé := PortW[PortNum];
Out 2 PortW([PortNum] := Datals;

222 PC interfacing and data acquisition

appropriate delay loops or other synchronization mechanisms within
your code.

Direct memory access (DMA)

The processor’s v and out instructions are often capable of providing
more than adequate rates of throughput. However, some high speed
systems demand faster I/O techniques. Input instructions require
data to be transferred in two stages: from the peripheral device
to the accumulator (AL, AX or EAX registers) and then from the
accumulator to memory. The alternative technique of Direct Memory
Access (or DMA) allows data to be channelled directly from an 1/0
device to memory, or vice versa, without any processor intervention.
For this reason, DMA is one of the fastest means of passing blocks of
data between a peripheral device and memory. Data transfer rates
of up to 800 to 900 KB/s are possible on the ISA bus using this
technique.

DMA is ideal where large blocks (many kilobytes) of word- or byte-
sized data are to be transferred. It is commonly used to implement
disk I/O on the PC, but is equally suited to high volume data-
acquisition applications.

During a DMA operation, the processor relinquishes control of
the system bus to a dedicated DMA controller. Before the data
transfer can take place, the DMA controller is programmed with the
address of a source or target memory buffer, the number of bytes
to be transferred and a number of other parameters. DMA then
proceeds under hardware control. The DMA controller manipulates
the system bus control lines in order to effect the transfer without
involving the processor.

Direct memory access can take place over the ISA bus only in
conjunction with a peripheral device that possesses the special
circuitry needed to interface to the DMA controller. As we shall see
later, all DA&C cards for the PCI bus possess their own bus-control
circuitry which lets them initiate bus transfers without the need for
a general-purpose DMA controller. A few ISA DA&C adaptor cards
provide driver software and/or ROM-based firmware which takes
care of programming the DMA controller. In other cases, however,
this software may have to be built into the DA&C application itself.
The following sections discuss how to program the DMA controller
on the PC’s ISA bus and give a brief overview of PCI bus mastering.

The DMA controller

All XT bus PCs possess a single Intel 8237A-5 DMA controller.
ISA, EISA and MCA machines have either two such controllers

Data transfer 223

or functionally equivalent custom circuitry. The EISA and MCA
controllers provide a high degree of backward compatibility together
with a number of useful enhancements, but because these machine-
specific features are used in relatively few systems they will not
be covered in this section. Readers interested in the enhanced
features of the MCA’s DMA controller should consult, for example,
Eggebrecht (1990), Sanchez and Canton (1994) or van Gilluwe
(1994). The latter also describes EISA-specific DMA features. The
techniques described in this section can be used for data acquisition
on all members of the PC family that possess an ISA, EISA or
MCA bus.

DMA channels

DMA controllers provide a number of separate channels for
data transfer. The controllers used on the original IBM PC and
XT possessed four DMA channels. The additional or enhanced
controllers present on ISA, EISA and MCA machines provide a
total of eight DMA channels, although some of these channels
are dedicated to specific functions and are unavailable for data
acquisition.

Table A.1 in Appendix A illustrates the standard DMA channel
assignments used in the various classes of PC. In all cases, channels
0 to 3 permit only 8-bit transfers. Channels 5 to 7 (where available)
allow data to be transferred 16 bits at a time. These channels do not
support 8-bit transfers. Each channel can be programmed to transfer
a maximum of 64 K data units. This means that channels 0 to 3 are
able to transfer blocks up to 64 KB in length. Because channels 5 to
7 carry words, rather than bytes, data blocks of up to 128 KB can be
transferred without having to reprogram the DMA controller.

The dual 8237A arrangement provides a total of seven, rather
than eight, usable DMA channels. The first channel of controller 2
(i.e. channel 4) is used for cascading to controller number 1 and is
unavailable to application programs.

Channel 0 was used for refreshing the system DRAM on the
original IBM PC and so cannot be used for data acquisition. Modern
PCs possess dedicated memory refresh circuits, freeing channel 0 for
other use. However, the control lines necessary to initiate DMA on
channel 0 are not present on the system bus so this channel is also
unsuitable for data acquisition. Any of the remaining channels (i.e.
1 to 3 or 5 to 7) can be used for interfacing to DA&C cards provided,
of course, that the card supports that channel and that the DMA
channel is not already in use.

It is difficult for an application program to determine whether
a DMA channel is currently allocated to another device simply by

224 PC interfacing and data acquisition

reading the DMA controller’s registers. Although it is possible to
discover if a channel is currently in use (i.e. actively transferring
data) by monitoring the Status, Address and Count registers (see
the section DMA controller registers later in this chapter), there is no
guarantee that an apparently unused channel will remain so. The
responsibility for selecting DMA channels must ultimately rest with
the end user.

Types of data transfer

Three types of DMA data transfer operations are possible. The
transfer type is programmed by means of bits 2 and 3 of the DMA
controller’s Mode register. The three transfer types are:

1. Verify
2. Memory to I/O port (also known as DMA read)
3. 1/0 port to memory (also known as DMA write)

The purpose of the DMA read and DMA write operations should be
self-explanatory. The Verify feature performs pseudo-data transfers.
It generates DMA cycles with programmed memory addresses, but
does not actually read or write data. This mode is not generally used
in the PC.

In addition to these transfer modes, it is possible to program the
8237A for memory-to-memory transfers, This type of DMA transfer
is also of limited usefulness for a number of reasons. First, it requires
channels 0 and 1 to cooperate in the transfer. On the original
IBM PC, channel 0 was dedicated to refreshing the system DRAM,
making it difficult to use this channel without losing the contents
of memory. DRAM refresh is performed by custom circuitry on
later PCs. Second, 80386 and subsequent processors can generally
perform memory-to-memory transfers more quickly than the DMA
controller, by means of their string move (mMovs etc.) instructions.
Consequently, memory-to-memory DMA is rarely used.

These disadvantages do not apply to DMA read and DMA write
operations. Direct memory access is one of the fastest methods of
transferring large blocks of data between memory and an 1/0 port,
or vice versa. The remainder of this section will deal only with DMA
read and write operations, which are of most relevance to PC-based
data acquisition and control.

Overview of the DMA transfer mechanism

Before a DMA transfer can take place, the DMA controller must
be programmed with the address of the target (or source) memory
buffer, the number of bytes to be transferred, the direction of data

Data transfer 225

flow and several other parameters which we will discuss later in
this section. The software must then enable DMA on the selected
channel. After the controller has been properly configured, the
adaptor card initiates the transfer process (possibly in response to a
hardware event or as a result of a command issued by the software).
The transfer proceeds as follows.

1.

Whenever an adaptor card wishes to perform DMA it asserts the
appropriate DMA Request line. The DMA controller possesses one
DMA Request line for each channel. The XT bus makes three
of these request lines, DREQ1, DREQ2 and DREQ3, available
to adaptor cards. The ISA bus provides an additional three
DMA Request lines: DREQ5, DREQ6 and DREQ?7. The remaining
request lines, DREQO and DREQ4, are used internally and are
not available on the expansion bus.

When the DMA controller senses the DREQn signal it first checks
to ensure that DMA is enabled for that channel (i.e. the channel
denoted by n). DMA channels can be individually enabled and
disabled by software. The controller also prioritizes DMA requests
with any that may be pending on other channels.

. If DMA is enabled, the DMA controller asserts its Hold Request

(HRQ) line. The processor responds to this signal when the
bus becomes idle by freeing the system bus and issuing a Hold
Acknowledge (HLDA) signal to the 8237A DMA controller. This,
in turn, asserts the Address Enable (AEN) line and places the
address of the source or target memory location onto the address
bus. This is shortly followed by activation of the appropriate DMA
Acknowledge (DACKn) line (each DMA channel has its own
DACK line).

The adaptor card detects the DACKn signal which informs it that
the data transfer is now in progress.

The DMA controller, having taken over the system bus, asserts
the appropriate I/O or memory read/write lines. In the case of
a DMA Write operation, the IOR and MEMW lines are asserted.
For a DMA Read, the MEMR and IOW lines are asserted. This
causes data to be transferred directly between the I/0O device
and memory. The DMA controller adjusts the target (or source)
memory address after each transfer has been completed so that
subsequent transfers access the next byte or word in the memory
buffer.

Depending upon the transfer mode selected, the adaptor card
may release the DREQn line after each byte or word has been
transferred or at other times necessary to regulate the flow of
data. In response, the DMA controller releases the HRQ line
enabling the processor to take control of the bus. The whole

226 PC interfacing and data acquisition

process repeats until the specified number of bytes or words have
been transferred.

7. When the programmed number of bytes or words have been
transferred, the DMA controller asserts the Terminal Count (TC)
line of the system bus. This informs the adaptor card that the
transfer operation is complete. The DMA controller may then
either automatically disable DMA on the current channel or, if
autoinitialization has been selected (see the following section),
prepare itself for another DMA sequence.

You may be wondering how the adaptor card’s I/0 port is selected,
if the address bus holds only a memory address. It is, in fact, the
receipt of the DACKn signal, rather than decoding ofan 1/0O address,
that enables the contents of the I/O port onto the data bus. Other
I/0 ports, which may otherwise decode the memory address, are
prevented from doing so by the AEN signal issued by the DMA
controller. The AEN line is asserted only when a DMA bus cycle is in
progress. This signal is used on the system bus to disable normal I/O
port address decodes. The DMA process is summarized in Figure 6.1.
The circled letters denote the order in which the various operations
take place.

A more detailed account of the transfer procedure is provided
by Eggebrecht (1990). Most of the handshaking that occurs during
DMA is transparent to the programmer. It is only necessary to under-
stand that the adaptor card initiates, and in some cases regulates,

8237A DMA CONTROLLER
Hra © -
| HLoA ©
Mask register]{ Control logic e—— AEN_® 80x86 PROCESSOR
0x8
Enable
A @J’address @*
Current address Page
register register
l
DREQn | DACKn CPU removed % @ fl
from bus
® © X ©
{ Address bus $
[1
{ Data bus 3
%\} Control bus
y @ ‘\/'@ X r@ N/ @
iOR/IOW MEMW
MEMR
DA&C ADAPTOR CARD SYSTEM MEMORY

Figure 6.1 Schematic illustration of the DMA process

Data transfer 227

data transfer by means of a selected DREQn line. The DREQn line is
used in a variety of ways, depending upon the programmed transfer
mode (see DMA transfer modes later in this chapter) to control the
flow of data and interweaving of DMA and processor bus cycles.

Autoinitialization

The 8237A DMA controller possesses a number of 16-bit registers
for each channel. Two of these hold the current memory address for
the transfer and the current word count (i.e. the number of bytes or
words transferred). These values are incremented or decremented,
as appropriate, on each transfer cycle. When the 8237A is first
programmed, the initial memory address and word count are loaded
into these registers. The initial values are also recorded in two
other registers, the Base Address and Base Word Count registers.
The values held in these registers do not change during the DMA
process.

The 8237A can be programmed (via the Mode register) to auto-
matically reinitialize the Current Address and Current Word Count
registers at the end of a programmed DMA sequence. During this
autoinitialization, the contents of the Base Address and Base Word
Count registers are copied to the associated Current Address and
Current Word Count registers, thereby preparing the 8237A for
another DMA sequence. The DMA channel remains enabled so that
the DMA sequence can be repeated as soon as the next DREQ signal
is detected. If the autoinitialization facility is not enabled, the DMA
channel disables itself (by setting the appropriate Mask bit) after the
programmed quantity of data has been transferred.

DMA priorities

Although the 8237A can be programmed to operate according to
one of two priority schemes - fixed or rotating - the PC should
generally only operate the 8237A in the fixed priority mode. In
this mode, channel 0 (memory refresh) always has the highest
priority, channel 1 the next highest and so on. The dual-controller
arrangement employed on ISA, EISA and MCA systems extends the
priority scheme to the second controller. Thus the priority order
is channel 0, 1, 2, 3, 5, 6 and 7 (remember that channel 4 is used
for cascading the two controllers and is not available for interfacing
to peripheral devices). If one or more devices request DMA service
while a transfer is in progress on another channel, they must wait
until the current transfer is complete. The device with the highest
priority will then be serviced first.

228 PC interfacing and data acquisition

DMA transfer modes

Apart from a special Cascade mode which is used for connecting
dual DMA controllers, the 8237A provides three data transfer modes.
These can be selected via the controller’s Mode register (see DMA
controller registers later in this chapter). Note that the adaptor card
hardware must be specifically designed to operate in each mode. You
should use only those modes that are supported by your hardware.

Single Transfer mode

In this mode only one byte or word is transferred at a time and
when each transfer is complete, the 8237A releases the system bus to
the processor. If the adaptor card holds DREQn active throughout
the transfer, the processor will be allowed only one bus cycle before
the 8237A reasserts the HRQ line and takes control once more. In
this way ordinary processor bus cycles can be interwoven with DMA
cycles.

Demand Transfer mode

This mode allows the adaptor card to regulate the DMA transfer by
temporarily deactivating DREQn. While DREQn is active the transfer
proceeds in much the same way as the Single Transfer mode except
that no processor bus cycles are interwoven with the DMA cycles.
The controller will continue with the transfers (provided DREQn
remains active) until the programmed number of bytes or words has
been transferred.

Block Transfer mode

In Block Transfer mode, the device issues one DREQn pulse to
initiate the transfer of a whole data block (i.e. the number or bytes
or words specified in the Base Word Count register). Processor bus
cycles are not interwoven with the DMA cycles. The DREQn signal
need not be asserted throughout the transfer; it may go inactive as
soon as the DACKn signal becomes active.

DMA controller registers

Each DMA controller is programmed via a number of internal
registers. These are listed in Table 6.4. The first controller (which
supplies DMA channels 0 to 3) is located at I/O port base address
0000h. The second 8237A in dual-controller systems has a base
address of 000Ch. Note that writes to addresses O0Ch, ODh, 0Eh,
D8h, DAh and DCh do not directly access any registers. The actual
value of the data written to these addresses is unimportant, however.

Data transfer 229

Table 6.4 8237A DMA controller register map

Port Direction Controller Description

00h R/W 1 Channel 0: Current/Base Address.

01h R/W 1 Channel 0: Current/Base Word Count.

02h R/W 1 Channel 1: Current/Base Address.

03h R/W 1 Channel 1: Current/Base Word Count.

04h R/W 1 Channel 2: Current/Base Address.

05h R/W 1 Channel 2: Current/Base Word Count.

06h R/W 1 Channel 3: Current/Base Address.

07h R/W 1 Channel 3: Current/Base Word Count.

08h R 1 Status register.

08h W 1 Command register.

0%h W 1 Request register.

OAh W 1 Mask register.

0Bh W 1 Mode register.

0Ch W 1 Not a register. Writing to this address clears the
byte pointer flip-flop.

0Dh R 1 Temporary register.

0Dh W 1 Not a register. Writing to this address resets the
controller.

OEh W 1 Not a register. Writing to this address clears the
Mask register.

OFh W 1 Write-all-mask register.

COh R/W 2 Channel 4: Current/Base Address.

C2h RW 2 Channel 4: Current/Base Word Count.

Cah R/IW 2 Channel 5: Current/Base Address.

Céh RW 2 Channel b: Current/Base Word Count.

C8h R/W 2 Channel 6: Current/Base Address.

CAh R/W 2 Channel 6: Current/Base Word Count.

CCh R/W 2 Channel 7: Current/Base Address.

CEh R/W 2 Channel 7: Current/Base Word Count.

DOh R 2 Status register.

DOh W 2 Command register.

D2h W 2 Request register.

D4h w 2 Mask register.

D6h W 2 Mode register.

D8h W 2 Not a register. Writing to this address clears the
byte pointer flip-flop.

DAh R 2 Temporary register.

DAh W 2 Not a register. Writing to this address resets the
controller.

DCh W 2 Not a register. Writing to this address clears the
Mask register.

DEh W 2 Wirite-all-mask register.

230 PC interfacing and data acquisition

Simply performing an our instruction to these addresses (with any
data) initiates the actions listed in the table.

In addition to the registers present within the 8237A itself, all
members of the PC family possess a set of page registers that are used
in DMA memory addressing. These are not contained in the 8237A
itself. Instead 741.S612 Memory Mapper ICs, or equivalent devices,
supply the necessary registers. Page registers are required because
the 8237A’s internal address registers are 16 bits wide and so can
address only 65536 different memory locations. In order to access
any region of the PC’s memory, the page registers are programmed
with the most significant bits of the physical memory address for
each transfer, as indicated in Table 6.5. On XT-bus systems, only
the lower 4 bits of the page register are required for accessing any
part of available memory (i.e. up to 1 MB). The low order nibble of
the page register contains address bits Ajg to Ajg. Bits Ag to A5 are
programmed into the 8237A itself.

ISA, EISA and MCA systems use either 7 or 8 bits of each page
register in order to access physical addresses within the first 16 MB.
In the case of channels 0 to 3, the 8237A is programmed with
address bits Ag to A5 and the page register contains bits Ajs to Ags as
shown in Figure 6.2. In order to access 16-bit words at even memory
addresses, address bit Ay is ignored on channels 5, 6 and 7. For these
channels, the 8237A is programmed with address bits Aj to Ajs while
the page register holds bits A7 to Ags.

Because of the need to use page registers, the location and size
of memory buffers is restricted. Transfers on channels 0 to 3 must
not cross an absolute 64 KB address boundary and consequently may
not exceed 64 KB in total. Similarly, 16-bit transfers on channels
5 to 7 must not cross a 128 KB boundary and so cannot exceed
128 KB. Transfers that cross these address boundaries require the

Table 6.5 Page register map

PC and XT AT, MCA and EISA
/0 port DMA channel Address lines DMA channel Address lines

81h 2 A16-A19 2 A16-A23
82h 3 A16-A19 3 A16-A23
83h 1 A16-A19 1 A16-A23
87h 0 A16-A23
89h 6 A17-A23
8Ah 7 A17-A23
8Bh 5 A17-A23

Data transfer 231

Page register 8237A address registers

ArjAse {Am AMIAm[Am AelAslAdlAglAz

Channels

A.
0to3 |2

5]
>

22|A21{A20{A19|Arg AnjAolAg| Agt Ay

]

S

Channels
5t07 | =

>

AgatAz1|Agg|ArglAig|Arr| X | [Avs}Ars{Ara|AajAra{An[An] Ag | Ag| A7 | As| As 1 Ag] Ag| A | Ay

X =Not used
{a} AT, MCA and EISA systems

Page register 8237A address registers
XX X T X [AralArelArr|Are| [As]Au|Ai|Ar|An|Ax] A As A7 | As| As | Al Azl Ar [Ar[Ay

Channels
0to3

X =Not used
{b) PC and XT systems

Figure 6.2 Address mapping using page registers

controller’s address register and associated page register to be reini-
tialized by software. Some embedded systems avoid these problems
by employing DMA controllers with a larger addressing capability.
These are, unfortunately, unavailable on standard ISA PCs.

A note on channel numbers

The following sections describe the registers present in a single
8237A DMA controller. Because ISA, EISA and MCA systems possess
two such controllers (or compatible custom circuits), the same infor-
mation also applies to the DMA channels of the second controller.
Channel numbers 0, 1, 2 or 3 referred to in the following discussion
represent either channels 0 to 3 in the case of the first controller, or
channels 4 to 7 in the case of the second controller.

Current Address and Base Address registers

Each channel hasa Current Address and Base Address register. These
16-bit registers are initialized together in one operation by software.
The address is written in two 8-bit bytes. The low byte is written first
and this must always be followed by the high byte. The contents of
the Current Address register are either incremented or decremented
when each byte or word is transferred (increment/decrement is
software selectable). Reading {rom these register addresses returns
the value of the Current Address register. The Base Address register,
which is used to implement the autoinitialization function, always
retains the last value written.

The 2-byte read and write operations are controlled by an internal
Byte Pointer flip-flop. This is toggled each time a byte is read
or written. When the flip-flop is clear, the controller receives or

232 PC interfacing and data acquisition

supplies the low order byte of the address. When it is set, the
controller processes the high order byte. It is wise to clear the flip-
flop before commencing any read or write operations. This may be
accomplished by writing any value to I/O port OCh (or D8h in the
case of the second controller).

Current Word Count and Base Word Count registers

Each channel also has a Current Word Count and Base Word Count
register. The word count is written in two 8-bit bytes. The low order
byte is written first and this must always be followed by the high byte.
The contents of the Current Word Count register are decremented
after each byte or word is transferred. When the count reaches
zero the next transfer causes the count to roll over to FFFFh which
signifies the end of the transfer. The Current Word Count register
always holds the number of transfers to be performed, minus 1. If,
for example, 0800h bytes are to be transferred, you should initialize
the Current Word Count register with the value 07FFh.

Reading from these I/O addresses returns the value of the Current
Word Count register. The Base Word Count register, which is used
to implement the autoinitialization function, always retains the last
value written.

The two-byte read and write operations are controlled by an
internal Byte Pointer flip-flop. This is toggled each time a byte is
read or written. When the flip-flop is clear, the controller receives
or supplies the low order byte of the word count. When it is set,
the controller processes the high order byte. It is wise to clear the
flip-flop before commencing any read or write operations. This may
be accomplished by writing any value to I/O port 0Ch (or D8h in
the case of the second controller in AT systems).

Status register

The Status register is a read-only port that provides the application
program with information about the current state of the DMA
controller. Bits 0 to 3 are set when the corresponding channel has
reached its terminal count (i.e. when the programmed number of
bytes or words has been transferred). These bits are automatically
cleared after the Status register has been read. Bits 4 to 7 are set
high whenever a DREQ is active on DMA channels 0 to 3. This is
summarized in Table 6.6.

Command register

To maintain hardware compatibility, most of the bits in this write-only
register should be zero on the PC. Only bit 2 is normally manipulated

Data transfer

233

Table 6.6 The Status register (read only)

Bit Controller 1 Controller 2

0 1 = Channel 0 terminal count Used for channel 4 cascade

1 1 = Channel 1 terminal count 1 = Channel 5 terminal count
2 1 = Channel 2 terminal count 1 = Channel 6 terminal count
3 1 = Channel 3 terminal count 1 = Channel 7 terminal count
4 1 = DREQO pending Used for channel 4 cascade
5 1 = DREQ1 pending 1 = DREQS5 pending

6 1 = DREQ2 pending 1 = DREQS6 pending

7 1 = DREQS pending 1 = DREQ7 pending

by PC software. This bit enables or disables the controller and is used
to prevent the controller from responding to DREQ signals while
it is being programmed. Setting bit 2 disables the controller, and
clearing the bit enables the controller. Note that, in order to avoid
disrupting the memory refresh subsystem, you should not disable
the DMA controller in XT-bus machines. For information on the
remaining bits in this register you should consult the Intel 8237A-5
data sheet.

Request register

The Request register allows DMA requests to be initiated by software
rather than by a hardware DREQ) signal. The binary-coded channel
number is loaded into bits 0 and 1 (channels 4 to 7 on the second
DMA controller should be coded as 00b to 11b respectively). Bit 2
controls the setting of the controller’s internal DREQ signal. This
bit should be set in order to perform a software DMA request. So, to
initiate a DMA request on channel 1, for example, you should write
the value 00000101b to the request register. Table 6.7 summarizes
the operation of the Request register.

Table 6.7 The Request register {write only}

Bit Description

1,0 Channel number to which the request applies {channels 4-7 of
controller 2 are represented by bit patterns 00b to 11b).

2 0 = Clear request.

1 = Initiate DMA request.
7-3 Not used.

234 PC interfacing and data acquisition

Table 6.8 The Mask register (write only)

Bit Description
1,0 Channel number to which the mask bit applies {channels 4-7 of
controller 2 are represented by bit patterns 00b to 11b).
2 0 = Enable DMA channel.
1 = Disable DMA channel.
7-3 Not used.

Mask register

This is a write-only register. It is used for selectively enabling or
disabling DMA channels according to the scheme shown in Table 6.8.
A hardware or software reset will set all mask bits, disabling all DMA
channels. Only those channels actually used should be enabled. You
should not disable channel 0 on systems that use it for refreshing
memory.

Mode register

The Mode register determines how the 8237A operates. It controls
the type of transfer, autoinitialization, address increment/decrement
selection and the transfer mode to be used. The bit assignments in
this write-only register are listed in Table 6.9.

Temporary register

This read-only register holds data between read and write cycles
during memory-to-memory transfers. It is of little interest for data
acquisition.

Write-All-Mask register

This allows DMA channels to be enabled or disabled in one oper-
ation. The normal Mask register permits control only of individual
channels. The bit assignments for the Write-All-Mask register are
shown in Table 6.10. This is a write-only register. Alternatively, if
it is necessary to enable all four DMA channels, your software can
simply write any value to address OEh (for controller 1) or DCh (for
controller 2). Only those channels actually used should be enabled.
You should not disable channel 0 on systems that use it for refreshing
memory.

DMA in protected and V86 modes

During DMA transfers the address contained in the 8237A’s Current
Address and Page registers refers to physical memory. This causes

Data transfer 235

Table 6.9 The Mode register {write only)

Bit Description

1.0 Channel number to which the mode settings apply {channels 4-7 of
controller 2 are represented by bit patterns 00b to 11b).

3.2 Transfer type ({ignored in cascade mode):
00b = Verify

01b = DMA write {I/O to memory)
10b = DMA read {memory to {/O)

11b = lllegal.
4 0 = Disable autoinitialization.
1 = Enable autoinitialization.
5 0 = Increment address during DMA.
1 = Decrement address during DMA.
7.6 Transfer mode:

00b = Demand mode
01b = Single mode
10b = Block mode
11b = Cascade mode.

Table 6.10 The Write-All-Mask register (write only}

Bit Controller 1 Controller 2

0 Channe! 0 mask. 0 = Enabled Channel 4 mask. Should be 1 on PC
1 Channel 1 mask. 0 = Enabled Channel 5 mask. 0 = Enabled

2 Channel 2 mask. 0 = Enabled Channel 6 mask. 0 = Enabled

3 Channel 3 mask. 0 = Enabled Channel 7 mask. 0 = Enabled

7-4 Not used Not used

problems with software running in the protected and virtual 8086
modes offered by 80386 and later processors. Because of the selector
addressing and page translation mechanisms used in these modes,
the application software that is responsible for programming the
DMA controller has no knowledge of the physical memory address
of its DMA buffer.

Some memory managers address this problem by using the
processor’s 1/O protection mechanisms (see Chapter 1) to trap
accesses to the DMA controller. The memory manager can then
translate the address of the application program’s virtual buffer
into a physical address. A temporary miérror buffer may be allocated
by the memory manager if the physical address falls outside the

236 PC interfacing and data acquisition

16 MB addressable range of the DMA controller. This interme-
diate buffering stage may significantly affect the throughput of
DA&C application. However, provided that DMA buffers are allo-
cated within the 16 MB range, this technique should not affect the
real-time performance of the system.

Microsoft Windows virtualizes DMA by providing a set of Virtual
DMA software services. These services are essential in the ’386
Enhanced Mode of Windows 3.1 and in later versions of Windows
or when independent bus master DMA controllers are used. Bus
masters are additional DMA controllers that may be provided as an
integral part of an I/0 device. Because the I/O addresses of the bus
master’s registers are not fixed (as they are with the PC’s standard
DMA controllers) it is more difficult for the operating system or
memory manager to trap 1/O accesses to their registers. For this
reason, the DA&C application should not attempt to access the DMA
controller directly. Instead, all DMA requests must be routed via
the operating system’s Virtual DMA services. These include function
calls for allocating DMA buffers, for copying data to and from
the DMA buffers, and for locking memory addresses in order to
prevent remapping or conflicts with other DMA operations. As with
the virtual I/0 system used under Microsoft Windows, the overhead
incurred with virtual DMA can seriously affect overall data-acquisition
rates, especially in high speed applications. Further information on
virtual DMA may be found in the texts by Brown and Kyle (1991)
and van Gilluwe (1994).

DMA programming

Programming a system for DMA involves configuring two compo-
nents: the peripheral DA&C device which supplies or receives data,
and the DMA controller itself. The DA&C device is usually config-
ured via one or more control registers. Because of the wide variety
of data-acquisition cards available, we will not discuss the DMA facil-
ities offered by individual devices. You should consult your DA&C
interface card manual for programming details.

Instead, this section illustrates how the PC’s DMA controller can
be programmed to manage the 1/O transfer. After programming
the 8237A controller, data transfer is usually initiated in one of
three ways:

1. Software commands issued direct to the DA&C device, causing it
to activate DREQ.

2. Software commands issued to the 8237A’s Request register.

3. Hardware signals such as event triggers or periodic clock pulses.

Data transfer 237

Programming the DMA controller is quite straightforward provided
that you take a few fairly simple precautions. Most of these are just
common sense, but are listed here as they can be easily overlooked.

e Your software should ensure that DMA requests are disabled
on the channel that is being programmed. This will prevent
the controller from attempting to service a DMA request until
the buffer addresses and word counts etc. have been properly
configured. Only enable the DMA channel after programming is
complete.

¢ It is also a sensible precaution to disable interrupts in order to
prevent other processes from accessing the 8237A until it has been
fully programmed.

e Only enable those channels that you actually use, and do not alter
the mask bits of any other channels.

e Before terminating your program or disposing of a memory buffer,
always ensure that the DMA channel is left disabled.

o Before writing address and word count values, clear the Byte
Pointer flip-flop by outputting any value to I/O port 0Ch (for
channels 0 to 3) or D8h (for channels 5 to 7).

e When loading the Address and Page registers (particularly for
channels 5 to 7), be sure to preserve the bit pattern indicated in
Figure 6.2.

¢ Load the Count registers with a value one less than the number of
bytes (or words in the case of channels 5 to 7) to be transferred.

o Avoid using Block Transfer mode, particularly on XT class
machines, where this mode might interfere with the memory
refresh subsystem.

e Use the smallest memory buffers consistent with your application.

Listing 6.1 illustrates how a DMA channel can be configured. For the
sake of clarity, the various DMA parameters and register addresses
are passed to the setuppma procedure in the form of global variables.
In a real program, all of these variables would have to be initialized
before calling setuppma. Separate code and data segments are not
shown in the listing. However, the code assumes that DS has been
initialized to point to the data segment. The setuppma routine itself
should be self explanatory.

Data acquisition using DMA

DMA is an essential technique for high speed data acquisition. It
is suitable for collecting ADC data as it is digitized; for reading the
contents of on-board memory buffers or for transferring data to and
from a communications interface card such as an IEEE-488 adaptor.
It is also an ideal mechanism for signal generation. Data can be

238 PC interfacing and data acquisition

Listing 6.1 Configuring 8237A channel 7 for a DMA write operation

;Register addresses

PageRegAddr
AddrRegAddr
CountRegAddr
MaskAddr
ModeAddr
FlipFlopAddr

dw
dw
dw
dw
daw
dw

;Address of
;Address of
;Address of
;Address of
;Address of
:Address of

;Variables for SetupDMA

Controller
Channel
BufOfs
BufSeg
Count
Direction
Mode

SetupDMA

Multiplylé:

Ctrl2:

db ;Controller
db ;82377 chann
dw ;Pointer to
dw ; absolute
dw ;Number of b
db ;0 = Output
db ;0 = Demand;

I I

I I
PROC FAR

page register
address register
count register

Mask register

Mode register

Clear Flip Flop port

number (1 or 2}

el number (0 to 3)

buffer (buffer must not cross an
64K / 128K boundary) .

ytes/words to be transferred
(DMA read); 1 = Input (DMA Write)
1 = Single; 2 = Block

;8ets up a DMA channel according to the parameters listed above.
;Address increment (rather than decrement) is always selected and
;autoinitialization is always turned off.

;Entry: Controller, Channel, BufOfs, BufSeg, Count, Direction

and Mode variables, as well as the various register

H
H
i
i

;Exit:

addresses,
DS must poin
Other regist
AX, BX, CX,

must all be defined.

t to the segment containing these variables.
ers may contain any values.

DX and Flags registers are corrupted.

;Convert BufSeg:BufOfs into 24-bit physical address in BL,CX.

mov
xor
mov
cle
rcl
rcl
loop
add
adc
mov

;1 Check
mov
cmp

je
push
jmp

ax,BufSeg
bx, bx
cx, 4

ax,1

bx,1
Multiplyle
ax,BufOfs
bx, 0

cx, ax

controller
al,Controller
al,2

Ctrl2

Count
LoadRegs

;Controller 2, so ad

rer
rer
recl
mov
shr
push

bl,1
ox,1
bl,1

ax, Count
ax,1

ax

;AX = Segment of buffer

;BX = 0

;Loop counter

;Clear Carry Flag

;Rotate BX,AX left via Carry Flag

;Repeat 4 times to multiply BX,AX by 16
;Add buffer offset

;Add Carry Flag in case of carry from ADD
;BX,CX now holds the physical adddress

;Get DMA controller number

;Is it controller 2 ?

; Yes, adjust count and address
; No, no need to adjust

;

just count and address for word transfer
;CF = Al6; MSB of BL is undefined
;Alé --> MSB of CX; CF = A0
;Restore page reg bit pattern; LSB = AQ
;Get number of bytes
;AX is now number of words
;Save on stack

Data transfer

239

Listing 6.1

LoadRegs:

SetupDMA

(continued)

cli

;Mask (disable)
mov dx, MaskAddr
mov al, Channel
or al, 04h

out dx,al

;1Load page register

mov
mov
out

;Clear
mov
out

iWrite
mov
mov
out
mov
out

;Write
mov
pop
dec
out
mov
out

;Write
mov
mov
mov
mov
shl
or
mov
mov
shl
or
out

;Unmask

mov

mov

out

sti

retf

ENDP

dx, PageReghAddr
al,bl
dx,al

Byte Pointer flip

dx, FlipFlopAddr
dx,al

;Disable interrupts

DMA channel

:Address Mask register
;Channel number

;Set mask bit

;Load Mask register

;Address Page register
;Get high order address bits
;Load Page register

flop
;Address Flip Flop Control
;Clear flip flop

8237A address register

dx, AddrRegAddr
al,cl
dx,al
al,ch
dx,al

Count register
dx, CountRegAddr
ax

ax

dx,al

al,ah

dx,al

Mode register
dx, ModeAddr
al, Channel
ah,Direction
Ccx,2

ah,cl

al,ah

ah, Mode

cx, 6

ah,cl

al,ah

dx,al

(enable)
dx,MaskAddr
al, Channel
dx,al

;Address 8237A’'s Address register
;Load low byte
;Load high byte

i

;Address Count register
;Get byte/word count from stack

;Count is one less than no. of transfers

;Output low byte
; followed by
; high byte.

;Address Mode register
;Channel number
;Include Direction bits
H

H

H

;Include Mode bits

H

;Load Mode register

DMA channel

;Address Mask register
;Define channel. Mask bit is left
;Load Mask register

;Enable interrupts

;Return to caller

clear

240 PC interfacing and data acquisition

easily clocked out from the PC’s memory to a device controlled by
a hardware pacer clock. Both DMA read and write operations can
be performed in the background with minimal disturbance to the
foreground DA&C program.

DMA transfer rate

The maximum theoretical DMA transfer rate, which would be achiev-
able only in Block Transfer mode, can be calculated by multiplying
the number of bus clocks required to transfer each byte by the length
of each clock period.

On the XT-bus systems, each DMA read/write transfer takes at
least six bus clocks. A higher number of clock intervals are required
if bus wait states are used. Bus frequencies of 4.77, 8 and 10 MHz
are commonly used on XT compatible systems, although in 8 and
10 MHz systems the DMA controller may operate at one half of the
bus clock frequency. A 4.77 MHz XT system will take approximately
1260 ns to transfer 1 byte.

ISA systems require at least five bus clocks to transfer each byte
or word. A 10 MHz ISA PC may therefore take 500 ns to perform
a single transfer, so the maximum theoretical transfer rate is about
2 MB/s. These figures will, of course, vary with bus clock speed.

The maximum transfer rate is rarely achieved, however. Delays
due, for example, to the finite ADC conversion time and multi-
plexer settling time may restrict throughput. The DMA controller
is also usually programmed to operate in Single Transfer (or occa-
sionally Demand Transfer) mode. This allows normal processor
bus cycles to be interwoven with DMA cycles and consequently
limits the maximum achievable transfer rate. Fast ADC cards that
provide DMA facilities will typically provide sustained throughputs of
the order of 50 000-250 000 samples/s (i.e. about 100-500 KB/s).
However, some high speed cards are claimed to allow burst DMA
rates approaching 2 MB/s over a 10 MHz ISA bus.

Dual-channel DMA

The limited DMA butffer size of 64 KB (or 128 KB for channels 5 to
7) can be a serious drawback. In order to stream a larger quantity of
data to the PC’s memory, it is necessary to suspend data acquisition
whenever the terminal count is reached so that the DMA controller
can be reprogrammed with the address of a new buffer. The DA&C
system may be unable to sample data during this time and there is
a danger that important readings will be lost. Average throughput
rates can be significantly reduced if more than 64 KB (or 128 KB for
channels 5 to 7) are to be transferred. This is a particularly severe
problem in high speed applications.

Data transfer 241

One solution is to employ dual-channel DMA. This requires special
hardware support, butis relatively straightforward to implement. Two
DMA buffers are allocated and a separate DMA channel is set up
for each buffer. The digitized readings are transferred via one DMA
channel and when this reaches its terminal count the DA&C adaptor
card switches to the second channel. The terminal count signal also
causes the card to issue a hardware interrupt. The software can
respond to the interrupt either by reading and processing the first
buffer or by reconfiguring the first DMA channel so that it addresses
a third buffer. The procedure is repeated when the second channel
reaches its terminal count, allowing data to be transferred alternately
via the two DMA channels.

Dual-channel DMA is most useful when data is transferred in short
isolated bursts. This allows the processor sufficient time between
bursts to respond to the terminal countinterrupt and to perform any
other processing that may be necessary. DA&C cards which support
dual-channel DMA also often incorporate FIFO memory buffers.
These are usually large enough to hold 1-2 KB of data (sometimes
considerably more). When sufficient data has been recorded in the
buffer, it is transferred in small blocks (typically 256 or 512 bytes)
using the dual-channel DMA technique.

DMA latency

It is not only the data transfer rate which may be important in
a DA&C application. The time between assertion of the DREQ
line and transferring the first data byte is often an equally crucial
consideration. This latency time depends upon the priority of the
DMA channel and whether other DMA requests are pending. The
minimum time for completion of a single-byte transfer (i.e. a full
DMA write or read cycle) is at least six bus clocks on the XT bus or
five clocks on ISA and MCA machines. Additional clock cycles will
be required if the system is configured to include bus wait states.
The latency time will typically be longer than this minimum transfer
time. If a DMA channel is programmed for multiple-byte transfers
this can increase the latency of other channels.

When should you use DMA?

Although DMA is one of the fastest methods for transferring large
quantities of data, it is not always the most appropriate technique.
You should consider the following points when deciding whether to
use DMA.

e Would programmed I/O be fast enough? For relatively low
acquisition rates, you may prefer the simplicity of polled or

242 PC interfacing and data acquisition

interrupt-driven I/0. The throughput obtainable with these tech-
niques will be highly dependent upon the speed of the DA&C
hardware as well as on the amount of processing to be performed
by the software. Assembly language routines may achieve rates
of up to about 20000-30000 samples/s without the benefit of
hardware buffering (i.e. direct from an ADC). Higher acquisition
rates may be possible by using a tight polling loop.

e Will DMA provide an adequate throughput? Most DA&C hardware
manufacturers provide typical DMA throughput figures. If you
require a higher throughput than is possible using DMA, or if the
DMA latency is unacceptable, it may be necessary to use a DA&C
card that provides high speed buffered input. Burst acquisition
rates of up to a few MHz are supported by some devices of this
type. At the end of a data-acquisition run, the contents of the
card’s memory buffer can be transferred to the PC’s memory
(albeit somewhat more slowly) by using either programmed input
or DMA techniques. The rate at which this transfer is performed
is usually also an important consideration.

e Would programmed 1/0 be faster than DMA? Single or Demand
Transfer DMA can be used for reading data from hardware buffers.
These techniques provide transfer rates from several hundred
KB/s up to approximately 1 MB/s. On 80286 and later processors
the rep 1nsw instruction allows data to be transferred from a
hardware buffer at up to about 1 to 2 MB/s, depending upon
processor type. This is significantly faster than DMA. The 32-bit rep
1Nsp instruction may provide an additional increase in throughput,
but because of delays inherent in the DA&C hardware, 32-bit I/O
will not generally provide twice the throughput of 16-bit transfers.
Whether 16-bit or 32-bit transfers are employed, the hardware
registers must, of course, be capable of responding to back-to-
back I/O instructions. Rep 1Nsw and rRep INSD are only suitable for
reading buffered data. ADCs cannot generally supply a sequence
of digitized readings quickly enough to satisfy the repeated input
requests.

e Will DMA programming overheads be significant? You should
consider whether the overhead involved in reprogramming the
DMA controller will exceed the time saved by using DMA. This
will, of course, depend upon the DMA rate achievable and the
speed of the processor. It will be relatively more efficient to use
programmed I/O with faster processors. This consideration is only
relevant if the 8237A programming is carried out in a time-critical
portion of the program.

e How will DMA bus cycles affect the software? Interweaving of bus
cycles in Single Transfer mode will reduce the average execution

Data transfer 243

speed of the DA&C program by approximately one half. Because
the DMA controller takes over the system bus whenever it needs
to service a DREQ, DMA cycles take precedence over even high
priority interrupt handlers and tasks. Systems that use Demand
Transfer mode will also periodically suspend processing while
blocks of data are transferred.

o [s the data stream suitable for DMA? DMA is intended for trans-
ferring a regular stream of data to or from the PC’s memory. If
individual readings, or blocks of varying size, are to be input at
irregular intervals, it might be more appropriate to use polled or
interrupt-driven 1/0.

e Will background operation be important? DMA is particularly
suited to background data acquisition. Once the DA&C hardware
and DMA controller are configured, data acquisition can proceed
with very little software intervention.

e Are there other reasons to avoid polled or interrupt-driven 1/0?
Data-acquisition programs running under non-deterministic oper-
ating systems and/or those with high interrupt latencies, such
as Microsoft Windows, may benefit from the more predictable
response of DMA-based hardware techniques.

PCI bus mastering

The preceding discussion relates to the DMA system available on
the ISA, EISA and MCA buses. Transfers analogous to DMA can
also take place on the PCI bus, although a somewhat different
and more flexible approach is adopted. The PC’s motherboard
does not provide a general-purpose DMA controller for the PCI
bus. Instead the system allows for bus mastering. Each PCI device
(e.g. adaptor card) possesses its own special DMA-type circuitry
for initiating control of the PCI bus. This allows any PCI device
to communicate with another without involving the processor. A
DA&C card could, for example, continuously acquire data at a high
rate into an on-board FIFO buffer and periodically transfer the
buftfer contents over the PCI bus into system memory. The whole
process can be carried out without processor intervention, other
than that required to initially program the DA&C card and, perhaps,
trigger the acquisition sequence. This capability provides a means
for high speed data transfers that have a minimal effect on software
execution times. 32-bit implementations of the PCI bus, clocked at
33 MHz, can transfer data to or from a contiguous block of memory
at up to 132 MB/s. This requires that a special addressing mode
(burst mode) is used. The maximum data rate drops to 44 MB/s for
normally addressed data (multiplexed mode).

244 PC interfacing and data acquisition

The PCI bus arbitrates between different devices wishing to take
control of the bus. To request control of the bus, a bus master (on,

for example, a DA&C card) will activate the REQ bus line. The PCI

arbitration logic then asserts the GNT line, passing control of the
bus to the requesting device (which is known as the initiator).

The transfer is similar in principle to ISA-based DMA, although
there are some important differences. The initiator provides the
32-bit (or 64-bit) address of the target device, placing it on the
bus’s Address/Data lines. Addressing is performed in one of two
ways. In burst mode the target address for the first transfer is
transmitted over the bus and then the target device calculates the
address for each subsequent transfer by incrementing the address
by the data size (4 or 8 bytes). As the bus undergoes only an initial
addressing phase, transfer speed is maximized, but it is possible to
access only contiguous blocks of memory in this way. In multiplexed
mode, however, each transfer is explicitly addressed. It is these
additional addressing phases that reduce bus throughput. The type
of data transfer — e.g. memory read, memory write, I/O read or
I/0O write — is specified by sending a command (i.e. a bit pattern on
special bus lines) to the PCI bus logic.

The initiator indicates the start of a transfer by asserting
the FRAME bus line. The initiator and target then control the
transfer sequence via the IRDY and TRDY lines. When the transfer
is complete, the initiator deactivates the FRAME signal (see
Buchanan (1999)).

An important feature of the PCI bus mastering system is that it
allows DA&C cards with a degree of on-board intelligence to indepen-
dently initiate and control the transfer of large quantities of digitized
data into system RAM. Some DA&C hardware manufacturers, such
as National Instruments, have developed optimized PCI bus master
circuits which employ techniques analogous to dual-<channel DMA.
These facilitate continuous high speed transmission of acquired data
into multiple buffers or non-contiguous memory blocks.

6.3 Buffers and buffered I/0

As we have seen in the previous section, buffering is a useful
technique for decoupling DA&C hardware interfaces from the super-
vising software. By providing temporary storage for acquired data
it is possible to average out the irregularities in software timing
that are introduced by interrupt latencies, task switching or DMA
operations. This allows data acquisition to proceed at a regular and
guaranteed rate. Memory buffers are normally used in conjunction

Data transfer 245

with DMA and interrupt-driven data-acquisition systems to facilitate
asynchronous I1/0O. Choosing the correct type of buffering system can
greatly simplify subsequent management of data. We will consider
two classes of buffer: hardware memory buffers, which are managed
by the data-acquisition device, and software buffers maintained by
the DA&C application program itself.

Hardware buffering techniques

Many DA&C devices have a limited capacity for on-board buffering
of acquired data. FIFO buffers ranging from typically 1 to 64 KB are
used on some of the more sophisticated durnb data-acquisition cards.
Intelligent devices are often equipped with considerably larger data
buffers.

Acquired data can be channelled to a hardware buffer at very high
speed (often up to several MB/s). This type of facility can allow
data acquisition to proceed at much higher rates than would be
possible if each reading had to be individually recorded by the PC.
The relatively time-consuming task of transferring data to the PC’s
memory can then be performed at the end of the data-acquisition
sequence. Many DA&C devices allow access to their memory buffers
at the same time as new readings are being stored. When sufficient
data has been recorded in the hardware buffer, the device’s interface
circuits generate an interrupt or DMA request in order to initiate
transfer to the PC’s memory.

The principal benefit offered by hardware buffering is that the
DA&C system is not impaired by the variable response times inherent
in most PC software. Hardware FIFOs are often essential where a non-
deterministic operating system such as Microsoft Windows is used.
Because of task switching and associated high interrupt latencies,
I/O requests are not always serviced promptly under Windows.
Hardware buffers can help to overcome this problem by storing data
until the PC is ready to receive it.

Software buffers

The DA&C program itself may also possess its own memory buffers.
Such buffers not only supply the decoupling necessary for asyn-
chronous 1/0, they can, if carefully implemented, also provide a
convenient framework for subsequent data processing. They are
usually used for receiving or supplying data during DMA transfers
or in interrupt-driven 1/0.

Systems employing drivers, or many interacting interrupt handlers,
tasks or threads might also make extensive use of temporary buffers.

246 PC interfacing and data acquisition

In an analogue input system, for example, an interrupt handler
may place each successive reading in a buffer, from where it can be
subsequently retrieved and processed by the main (non-interrupt)
portion of the program. This minimizes the processing required
within the interrupt handler, allowing it to return quickly and
be ready to respond should more data become available. Rapid
completion of the interrupt also ensures that lower priority code has
the opportunity to run.

Memory buffers can take many forms. We will consider only
two basic structures, of which there are a large number of imple-
mentations: LIFO buffers and FIFO buffers. All programmers will
be familiar with arrays in which each constituent element can be
accessed via a numeric index. In high level languages, arrays are
used as the basis of various types of buffer. The characteristics of a
buffer are determined by the locations in which data is stored and
by the order in which it is transferred to and from the buffer.

LIFO buffers

As the name implies, the last item of data to be recorded in a
Last-In-First-Out (LIFO) buffer is the first one to be made available
when the buffer is read. You should already be familiar with one
implementation of LIFO buffers: the 80x86 processor’s stack. The
usual analogy is that LIFO buffers operate like a pile of books. Just
as it is possible to gain access to only the last book placed on the
pile (i.e. the one on the top), items of data stored in a LIFO buffer
can be retrieved only in the reverse of the order in which they were
stored. This property is of limited use in most DA&C systems, but
it is occasionally useful if it is necessary to process a sequence of
measurements in reverse time order.

Listing 6.2 illustrates two simple C functions that can be used to
implement a LIFO buffer. Each element of the buffer is a single
16-bit word, but the example can be readily adapted to handle other
data types. The Bufcount variable should be initialized to zero before
storing data in the buffer. If your program reads from or writes to the
LIFO buffer from within an interrupt handler, you should disable
interrupts whenever non-interrupt code accesses the buffer.

FIFO buffers

Also known as a circular buffer or a ring buffer, the First-In-First-
Out (FIFO) buffer is perhaps the most useful buffer structure in
DA&C systems. FIFO buffers have many uses in DA&C applications
and are essential to facilitate communication between asynchronous
processes. They are used as the basis of event-driven systems, for

Data transfer 247

Listing 6.2 Accessing a LIFO buffer

unsigned int Buffer([256];
unsigned int BufCount;

void WriteLIFO(unsigned int Data, unsigned char *Full)

{
if (BufCount < 256)

{
Buffer [BufCount] = Data;
BufCount++;
*Full = 0;
}
else *Full = 1;
}

void ReadLIFO(unsigned int *Data, unsigned char *Empty)

{

if (BufCount > 0)

{

BufCount--;
*Data = Buffer[BufCount];
*Empty = 0;

}
else *Empty = 1;
}

storing keyboard scan codes and for implementing message queues.
They also have many applications in DA&C software: for driver-client
interprocess communication, DMA-based 1/0 and in filtering algo-
rithms. As we shall see in Chapter 8, FIFO buffers are also important
features of interrupt-driven serial communications software.

The first item of data recorded in the FIFO buffer is the first one
retrieved when the buffer is read. Thus the order in which data is
read from the buffer is the same as that in which it was originally
stored. FIFO buffers can be visualized as a ring structure such as
that shown in Figure 6.3. This example shows only 16 entries in the
buffer, but much larger buffers are often used in practice. As the
bufter fills, new readings are placed in successive locations around
the ring, defined by an index labelled Bufln in the figure. When the
buffer is read, the oldest item of data is taken from the tail of the
buffer. This is addressed by a second index, BufOut.

Listing 6.3 shows C functions which can be used for reading
from and writing to a FIFO buffer. In this example, the buffer is
implemented as an array named Buffer and has 256 entries. The
buffer is managed by means of the two indices Bufin and sufout.
sufIn addresses the next free location in the buffer and sufout points

248 PC interfacing and data acquisition

16

15

13

12

10

9

Figure 6.3 The structure of a FIFO buffer

to the oldest item of data. Although not shown in the listing, these
indices should both be initialized to 0 before accessing the buffer.
Likewise, the Bufcount variable, which is simply a count of the number
of readings held within the buffer, should be initialized to 0. Notice
that the Bufin and Bufout indices are incremented until they reach
255 (the end of the Buffer array). Subsequent accesses cause the
indices to wrap around to the first element in the buffer in order to
emulate the structure shown in Figure 6.3.

If the buffer is accessed by two or more asynchronous processes
(e.g. from within a hardware interrupt handler and by a non-
interrupt routine), calls to the writeFIFo() or readriro() functions
will constitute a critical section and must be appropriately protected.
You should, for example, disable interrupts when accessing the buffer
from non-interrupt code. See Chapter 2 for more on critical sections.

Because memory buffers have a finite (and often quite limited)
size it can be easy to run out of space if data is stored at too high
a rate, or if the routine that reads the buffer is delayed for some

Data transfer 249

Listing 6.3 Accessing a FIFO buffer

unsigned int Buffer[256];
unsigned int BuflIn;
unsigned int BufoOut;
unsigned int BufCount;

void WriteFIFO(unsigned int Data, unsigned char *Full)

{
if (BufCount < 256)

{
Buffer [BuflIn] = Data;
if (BufIn < 255)
BufIn++;
else Bufln = 0;
BufCount++;
*Full = 0;

}
else *Full = 1;

}

void ReadFIFO(unsigned int *Data, unsigned char *Empty)

{
if (BufCount > 0)

{
*Data = Buffer|[Buflutl];
if (BufOut < 255)
BufOut++;
else Bufout = 0;
BufCount--;
*Empty = 0;

}
else *Empty = 1;

]

reason. The programmer has several options when this happens. One
possible course of action is to pass an error flag back to the caller,
as in Listing 6.3. However, to preserve the relationship between the
data stream and the point at which the error occurred, it is often
preferable to record the error in the buffer itself. The routine that
reads the buffer can then detect the discontinuity in the data stream
and take appropriate action.

A third option is simply to record the new data, overwriting the
oldest data in the buffer. This may be desirable in certain sitnations.
Some statistical process control applications require the software
to maintain a process history of predefined depth (i.e. the N most
recentsets of readings). This can be easilyaccommodated by allowing
a FIFO buffer to continuously overwrite the oldest data as each new
item of data is received.

250 PC interfacing and data acquisition

Another situation where automatic overwriting of data is advanta-
geous is in pre-trigger logging — i.e. where a number of readings must
be recorded immediately prior to some unpredictable trigger event.
An example would be destructive proof testing of steel member.
An increasing load may be applied until the member buckles or
fractures. The applied load and deformation of the component are
measured continuously, but only those readings taken immediately
prior to failure may be of interest. The readings can simply be
recorded in a FIFO bulffer, such that at any given time during the test
the buffer holds only the N most recent readings. If data acquisition
is halted when the component fails, the final contents of the buffer
will represent the period leading up to the point of failure.

7 Parallel buses

As far as interfacing to the PC is concerned, it is convenient to divide
bus systems into two categories: the PC’s internal buses (such as ISA
and PCI) and external buses. Although internal buses are an integral
part of the PC and a necessary element of all DA&C systems, their
operation is largely transparent to the programmer. For this reason,
and because they are adequately covered in several books on PC
architecture, they will not be described in further detail here. Instead,
the present chapter (together with Chapter 8) concentrates on the
various external buses that can be used for communicating with
devices such as data-logging modules and programmable controllers.

Chapter 8 will deal with serial bus systems, in which data is trans-
ferred one bit at a time along a single conductor (or pair of
conductors). Parallel buses, which we shall consider in this chapter,
possess a separate signal line for each bit. This enables a whole byte,
word or double word to be transmitted in one operation, allowing
potentially higher data transfer rates.

We will deal with two widely used parallel interfaces: the Centronics
parallel port and the IEEE-488 bus (or GPIB). These are of particular
interest in PC-based data-acquisition systems. The former is a stan-
dard component of virtually all PCs, and there are now a number of
parallel-port DA&C devices on the market. The well-known IEEE-488
bus is popular in test and instrumentation applications and is often
used for PC-based laboratory interfacing.

This chapter by no means constitutes a comprehensive coverage
of parallel bus systems. The popular Small Computer Systems Inter-
face (SCSI) bus, and a number of more specialized backplane buses
such as STE and VME, have been excluded. As we have seen in
Chapter 1, the latter are used principally for interfacing in industrial
DA&C applications. From the PC programmer’s perspective they
often appear as an extension of the PC’s ISA bus. Tooley (1995)
provides a useful introduction to these systems. Other bus systems

252 PC interfacing and data acquisition

(such as Metrabyte’s MetraBus and the DT-Connect system avail-
able from Data Translation Inc.), which are designed specifically
for interconnecting components of DA&C systems, have also been
excluded because of their proprietary nature.

7.1 Introduction

External parallel buses are usually somewhat simpler in their design
than the PC’s internal expansion buses. They do not, for example,
possess most of the address or control lines that are present on the
ISA bus. However, many parallel bus systems do incorporate some
form of handshaking in order to strobe data into the receiving device
and to control the flow of data across the bus. Handshaking signals
used with specific buses are discussed in more detail in the following
sections. In contrast to the ISA and PCI buses, some external buses
support only 8-bit data transfers.

Most parallel buses operate synchronously — i.e. a common timing
or strobe signal is used to synchronize transmission and reception
of data. Often, the handshaking signals are automatically generated
and sensed by the interface hardware. This relieves the software of
the time-consuming burden of having to poll the handshaking lines.
An interrupt channel may also be available on the bus, and this
allows the interface circuitry to request processor service whenever
it is ready to transmit a new byte or whenever new data is received.

Some parallel interfaces operate without the benefit of hand-
shaking or synchronization, and are said to be asynchronous. Because
data may arrive at any time, the software must sample the state of
the interface frequently enough to accommodate the highest trans-
mission rate. Sampling at too low a rate may result in data bytes
being missed. This obviously imposes a considerable overhead on
the software. Asynchronous parallel interfaces are employed most
often in situations in which the ‘data’ lines are used, not to carry a
byte of data, but instead to sense the state of one or more external
devices, such as a limit switch or relay. Interfaces of this nature are
more accurately described as a collection of digital control lines
rather than a parallel bus. There are now, on the market, a number
of parallel digital I/O cards designed for this type of operation.
These cards, which are often equipped with isolating circuitry (e.g.
relays or opto-isolators), have numerous uses and form an important
part of many DA&C systems.

Some parallel interface devices may be suitable for both
synchronous and asynchronous communication, depending upon
the nature of the software that drives them. For example, the 8255A

Parallel buses 253

Programmable Peripheral Interface, which is used to implement
digital /0O on a number of commercial DA&C cards, can be
configured for several different operating modes. The Basic
I/0O mode is suitable for asynchronous digital 1I/O while more
sophisticated modes implement the hardware handshaking features
that are necessary to connect to synchronous parallel buses.

7.2 Data acquisition using a parallel bus

The principal benefit of using parallel, rather than serial, buses
for data acquisition is that they usually offer significantly higher
throughput. As a general rule, most serial buses provide transfer
rates of up to about 10 KB/s, whereas a data rate of a few hundred
KB/s is achievable with typical external parallel buses (i.e. IEEE-
488 and Centronics systems). This speed advantage does not always
apply, however. As we will see in Chapter 8, some newer serial bus
designs offer the potential for extremely high speed data transfers:
up to several tens of MB/s!

One of the most serious restrictions imposed by parallel buses is
that they are mostly designed for use with relatively short cables.
Unless fibre optic links are employed, this precludes their use for
communicating with remote data loggers and similar systems. It is
not usually advisable to employ cables longer than about 1 metre
with buses driven directly from TTL devices such as an 8255A
Programmable Peripheral Interface (PPI). Up to about 2 to 3 metres
of good quality shielded cable may normally be used in conjunction
with the Centronics parallel port, while the IEEE-488 bus supports
a total cable length of not more than 20 m. This compares with
distances of up to several thousand metres that are permissible
with some serial interfaces. The maximum practicable transmission
distance with any parallel bus does of course depend upon the
impedance of the cable and the rate at which data is to be transmitted.
The degree of coupling between the bus lines may also be an
important consideration. Slow transmission rates can, in sonie cases,
permit slightly longer cables to be used.

Most parallel systems employ a ‘multi-drop’ bus topology —i.e.
several devices connected in parallel to the same data and control
lines. A good example of this is the IEEE-488 (GPIB) bus which we
will discuss later in this chapter. Point-to-point topologies are also
sometimes used. This configuration is often employed with devices
connected to the PC’s parallel (Centronics) port.

Parallel buses are used in a great variety of data-acquisition systems.
Their principal role is for high speed communication with laboratory

254 PC interfacing and data acquisition

test equipment and instruments such as digital voltmeters, frequency
counters or logic analysers. A number of products are available which
make use of, for example, the PC’s Centronics port to interface
directly to an ADC. When used in conjunction with suitable line
drivers, relays, or opto-isolators, parallel interfaces can also be used
in industrial systems to interface to Programmable Logic Controllers
(PLGCs), control panels, indicators, motor drives and a multitude of
other devices.

7.3 The PC’s parallel port

Almost all PCs are equipped with at least one parallel port, but
most machines will accommodate up to three separate ports. The
parallel port was designed specifically for interfacing to printers. The
terminology used to describe the various connector pins and signals
reflects this. On some systems the parallel port may be used for other
purposes, such as connecting to external disk drives, tape devices
or to copy-protection keys (dongles). It also provides a convenient
means of interfacing to data-acquisition and/or control systems. We
will not discuss in detail how to drive a printer via the parallel port ~ it
is normally preferable to use the operating system or BIOS services
that are provided for this purpose (see, for example, the texts by
Norton and Wilton (1988), Phoenix Technologies Ltd (1989) or
Dettmann and Johnson (1992)). Instead, this section will concen-
trate on the operation of the parallel port’s hardware and will discuss
how it can be programmed for use in DA&C applications.

Parallel port standards

Modern PCs are equipped with parallel ports conforming to a variety
of standards. There are four basic classes of parallel port:

1. The standard unidirectional port: present on IBM PC, XT and
AT machines.

2. The bidirectional port which was introduced in the IBM PS/2
range.

3. Theg Enhanced Parallel Port (EPP) developed by Xircom Inc.,
Intel and Zenith Data Systems.

4. The Enhanced Capabilities Port (ECP) developed by Hewlett
Packard and Microsoft.

The standard parallel port was designed primarily for unidirectional
output. As such, it possesses only one 8-bit output portand a group of
five digital input lines. The latter usually carry control information,

Parallel buses 255

but in some applications they provide a means of inputting data
from external devices. Data is usually read one nibble (4 bits) at a
time: the fifth input line carries control or interrupt signals.

The bidirectional parallel port is present on the IBM PS/2 range
and on some older AT ‘clone’ machines. For compatibility with
earlier systems, this port emulates the standard unidirectional port
by default. However, it can be switched, by software, to an input
mode, allowing its 8-bit data port to receive a byte of information
from a peripheral device.

More modern ISA/PCI machines are equipped with an Enhanced
Parallel Port (EPP) which is a further extension of the standard
parallel port. This type of system employs a bidirectional data bus,
butalso carries out the data transfer handshake automatically as soon
as the software writes data to the port. This removes the burden of
handshaking from the software and allows a byte to be transferred in
only one I/0 cycle. At least four out or outportb () /outp () instructions
would be required for a software-controlled handshaking sequence
using a standard parallel port. The EPP can, of course, emulate a
standard parallel port if the high speed data transfer capability is
not required. To maintain compatibility with the standard port, the
EPP defaults to this emulation mode when power is first applied.
The enhanced high speed mode may subsequently be activated by
software. A number of the parallel port’s connector pins (STROBE,
AUTOFEED, and SELECT-IN: see Connector pin assignment later
in this chapter) are used for different purposes when the EPP’s
enhanced mode is activated, although they revert to their normal
function in the default standard mode. The EPP is used on some
portable computers to circumvent their limited expansion capability
and to provide a means of interfacing them to peripherals other
than printers.

The ECP provides similar facilities to those of the EPP, but, in
addition, implements data compression and error detection facilities
as well as an addressing scheme that allows a single port to address
one of up to 128 separate 1/0O devices.

The IEEE-1284 (1994) standard encompasses all four classes of
parallel port and defines every aspect of the parallel port interface. It
reclassifies the previous port designs as separate modes of a new type
of port. This standard is becoming widely adopted for interfacing
to peripherals and to some DA&C devices, but there are still a very
large number of the older port designs in use.

Most data-acquisition applications do not require the very high
rates of throughput possible with the EPP, ECP and IEEE-1284 ports.
In the remainder of this chapter, we will concentrate on the basic
features offered by the unidirectional and bidirectional parallel

256 PC interfacing and data acquisition

ports or modes. Unless specified to the contrary, the following
text excludes any discussion of the more advanced features of
EPP, ECP and IEEE-1284. Remember, however, that these standards
maintain backward compatibility with the earlier devices and so
the information provided will also be of use on modern IEEE-1284
compliant machines. Further information on the EPP may be found
in the texts by van Gilluwe (1994) and Buchanan (1999). Rosch
(1996) also provides a detailed account of the various parallel port
standards.

Data acquisition via the parallel port

The parallel port offers several advantages for DA&C. First, it is
cheap to use — it is a standard component of all PCs — and it is often
only necessary to purchase or construct a suitable connector and
cable. Also, the computer can be easily unplugged from the external
device: there is no need to insert special adaptor cards in the PC’s
expansion slots. This is a particularly relevant consideration when
the number of expansion slots is limited (e.g. when using a portable
PC). Finally, and often most importantly, the parallel port offers the
potential for quite high speed data transfer.

Speeds of up to about 150 KB/s are possible on a standard unidi-
rectional parallel port, although the actual maximum data transfer
rate will, of course, depend upon the speed of the controlling soft-
ware and upon the response time of the device attached to the
port. Most printer interfaces, for example, are driven at a fraction
of the maximum rate: perhaps 10 KB/s or less. Some new versions
of the parallel port, conforming to the EPP standard or the more
recent IEEE-1284 standard, are capable of transmitting data at up
to 2 MB/s, although it is difficult in practice to sustain data rates of
more than about 800 KB/s.

A number of manufacturers now produce DA&C modules which
connect directly to the PC’s parallel port. Some devices are very
simple and inexpensive, incorporating, for example, a single channel
8-bit ADC. Others provide a more comprehensive set of features:
multiplexed analogue input, multi-channel analogue output, digital
I/O or complex counter/timer devices for digital pulse and
frequency measurement.

The main disadvantage with using a parallel port for data acqui-
sition is that cable lengths must be limited to less than about 1.5 to
3 m, depending upon port design and cable quality. Transmission
distance can be extended by using fibre optic adaptors.

Afurther limitation is that the port provides only a small number of
I/0 lines. There are five input lines on the standard unidirectional

Parallel buses 257

parallel ports and this may be inadequate in some applications.
The parallel ports present on a few older clone machines do not
even conform to the basic unidirectional port standard and have
an even smaller number of active input lines! Some peripheral
devices (most notably copy protection ‘dongles’) circumvent this
limitation by transferring data bits in a serial manner, using just
one of the available 1/0 lines. This does negate the parallel port’s
speed advantage and complicates programming somewhat. In the
absence of bidirectional, EPP or ECP ports, the most satisfactory
means of increasing the number of 1/0 lines and of implementing
bidirectional data transfers is to interface the port to a device such
as an 8255A PPI via non-inverting octal buffers and suitable logic.

Parallel port addresses

Each parallel port appears to the programmer as a set of three
registers in the PC’s I/O space. The starting (or base) address of
each register group is recorded by the BIOS’s POST routines in a
four-word table at address 0040:0008h in the BIOS Data Area. This
is shown in Table 7.1. The total number of parallel ports present in
the system is stored as a binary-coded number in bits 14 and 15 of
the word at 0040:0010h in the BIOS Data Area.

The IBM PC and XT, and compatible machines, will accommodate
up to four separate parallel ports. All four of the above locations
may be occupied on these systems. However, on the IBM AT and
modern PCs, the location previously used to hold the fourth parallel
port address (i.e. 0040:000Eh) is reserved. On the PS/2 range of
machines (and some AT compatibles) this location contains the
segment address of the Extended BIOS Data Area. The parallel port
base addresses that are normally used on the various models of PC
and PS/2 are listed in Table 7.2. As there can be some variation

Table 7.1 Parallel port address table in the BIOS Data Area

Address Contents

0040:0008h 1/O address of first parallel port.
0040:000Ah /O address of second parallel port {or O if less than 2 ports present).
0040:000Ch /O address of third parallel port {or O if less than 3 ports present).
0040:000Eh I1BM PC, XT: /O address of fourth parallel port (or 0 if not present).
IBM AT: Reserved.
IBM PS/2: Segment address of extended BIOS Data Area.
0040:0010h Bits 14 and 15 hold the number of parallel ports detected by the
BIOS.

258 PC interfacing and data acquisition

Table 7.2 Usual parallel port addresses

Base address on Base address on Base address on
Parallel port PC, XT AT MCA systems
1 3BCh or 378h 378h 3BCh
2 378h or 278h 278h 378h
3 Undefined Undefined 278h

between the various ‘compatible’ machines, it is prudent to obtain
the port’s base address from the BIOS Data Area rather than to code
the address into your program.

Note that the BIOS printer services obtain the parallel port
addresses from the BIOS Data Area and, if all parallel-port driver
software is designed to do likewise, it is then very simple to redirect
1/0O operations to a different port by simply rearranging the contents
of the address table.

The structure of the parallel port

Although the parallel port s a fairly simple device, there are anumber
of difficulties associated with using it for two-way data interchange.
Before considering the topic of communication we will first discuss
the parallel port’s structure and method of operation.

Overview

Figure 7.1 is a schematic representation of the structure of the
parallel port. Each parallel port contains three registers which occupy
contiguous addresses in the PC’s I/O space. Actually, read and write
operations performed on two of these 1/O addresses (i.e. the Data
and Control Register addresses) cause different internal registers to
be accessed. However, most of the bits within each pair of registers
are mapped to the same signal lines and, for this reason, it is more
convenient to think of reading and writing operations as accessing
the same register.

The majority of the bits that can be addressed via these registers
are used to directly control or sense the state of the various signal
pins present on the connector (see the following section for a list of
pin connections). In most cases, a logical 1 bit corresponds to a high

voltage (45 V) at the associated connector pin, but the SELECT-IN,
AUTOFEED, STROBE and BUSY lines are inverted as shown in

Figure 7.1. Other bits present in the various registers are used to
enable or disable interrupts and, on bidirectional ports, for selecting

Parallel buses 259

25-way connector

~
Bit 0 o [>o © STROBE
Bit 1 —> > © AUTOFEED
Bit 2 {—> © INIT
CONTROL Bit 3 F—> o © SELECTIN
PORT Bit4 |—> o
Bit 5 (@ Direction
control
Interrupt
enable
To 8259A PIC ‘/1
b I
‘3 Interrupt
(i(g Bit 2 pending
= . —_—
S PORT Bit 4 1= © SELECT
E Bit 5 | © PE
% Bit 6 = © ACK
Bit 7 | o} © BUSY
Read enable
v®
Bit O - @ > © DO
Bit 1 1 »— O D1
Bit 2 [« > O D2
<——__—_> DATA Bit 3 f«—> D3
PORT Bit4 fe— © D4
Bit 5 [——> © D5
Bit 6 [> © D6
Bit 7 < > © D7
/\‘

NOTE® Present only on PS/z extended (bidirectional) ports, EPP and ECP ports.
NOTE @ Qutput only on standard PC/XT/AT parallel ports.

Figure 7.1 Schematic representation of the parallel port

260 PC interfacing and data acquisition

the direction of data transfer. Note that the overstrike (e.g. in

STROBE) indicates only that the signal is active, or asserted, when at
a logic-low level: it is not meant to indicate that the signal is inverted
between the Status or Control Register and the connector pin.

The standard unidirectional parallel port, does not allow data to
be input via the Data Register. However, the bidirectional type of
parallel port can be programmed (via bit 5 of the Control Register)
to permit both input and output via the Data Register. Listing 7.1,
shown later in this chapter, includes a function which illustrates
how to determine whether the parallel port hardware supports this
‘extended’ mode.

The ACK input line may be sensed via bit 6 of the Status register. As
shown in Figure 7.1, this line can also be used to generate interrupts.
The falling edge of a pulse on ACK will cause an interrupt to occur,
but onlyif bit 4 of the Control Register is set. The 8259 PIC’s interrupt
mask must also have been modified in order to enable interrupts on
the appropriate IRQ line. The first parallel port is usually assigned
to IRQ7 and the second to IRQ5. No specific interrupt levels are
reserved for other parallel ports which might be present in the
system. In these cases it is usual to configure the port to use any free
interrupt channel. The IRQ) level may usually be selected by means
of a jumper or DIP switch. Once an interrupt signal has occurred on
the ACK line, bit 2 of the Status Register indicates that an interrupt
is pending. Note that the BIOS’s printer services do not make use of
the parallel port’s interrupt facilities, although some Windows EPP
or ECP drivers do.

Connector pin assignment

The PC’s parallel port employs a female 25-way D-type connector.
This usually connects to a printer via a cable terminated with a
male 36-way Amphenol connector. The pin assignments for both
connector types are listed in Table 7.3.

Registers and programming details

The Standard parallel port has three registers: the Data Register, the
Status Register and the Control Register. These are also supported
by the more advanced implementations of the parallel port (e.g.
IEEE-1284 compliant ports).

The Data Register (offset 0, R/W)

This is normally used for sending 8-bit characters to a printer, but in
DA&C applications it may also be used for sending out commands,
data or other signals to data-logging or control units.

Parallel buses 261

Table 7.3 Parallel port connector pin assignments

Pin number
25-way D-type 36-way Amphenol Signal
1 1 STROBE
2 2 DO
3 3 D1
4 4 D2
5 5 D3
6 6 D4
7 7 D5
8 8 D6
9 9 D7
10 10 ACK
11 11 BUSY
12 12 PE
13 13 SELECT
14 14 AUTOFEED
15 32 ERROR
16 31 INIT
17 36 SELECT-IN
18-25 19-30, 33 Signal ground
- 15 Not connected
- 16 0 V liogic ground)
- 17 Chassis ground
- 18 Not connected
- 34 Not connected
- 35 Logic 1

On the standard parallel port, or on the bidirectional port when
read mode is disabled (Control Register, bit 5 = 0), all bytes written
to the Data Register are latched so that the data remains on the
corresponding connector pins. Any subsequent read operations will
return the last byte written to the register. Note that reading the
Data Register will return the data previously latched: it is not possible
to read the state of the connector’s DO-D7 pins on the standard
unidirectional parallel port.

When data reads have been enabled (Control Register, bit 5 = 1),
the data output latch is isolated from the connector pins so that any
bytes written to the Data Register are prevented from reaching the
parallel port connector. In this mode, it is possible to sense the state
of the DO-D7 connector pins by reading the Data Register.

262 PCinterfacing and data acquisition

Table 7.4 The Status Register

Bit Description

0 Unused/reserved.

1 Unused/reserved.

2 Interrupt request (IRQ) pending on MCA systems. Unused on

non-MCA systems.
ERROR line status (1 = +5 V nominal).
SELECT line status (1 = +5 V nominal).
PE line status {1 = +5 V nominal).
ACK line status (1 = +5 V nominal).
BUSY line status — inverted {0 = +5 V nominal).

~NOoO s W

The Status Register (offset 1, R/O)

This register is normally used for reading the status of an attached
printer. Bits 3 to 7 of the Status register reflect the state of the five
input lines listed in Table 7.4. Note that the BUSY line is inverted
so that a high voltage (+5 V) on the connector pin will result in a
zero BUSY bit. As mentioned previously, a low pulse on the ACK line
can be made to generate an interrupt if required. On a bidirectional
parallel port, bit 2 indicates whether an interrupt is pending.

The Control Register (offset 2, R/W)

When a printer is connected to the parallel port, the Control
Register is normally used to control data transfers to the printer.
This is accomplished by means of four digital output lines which
can be manipulated via the four low order bits of the Control
Register. When interfacing to equipment other than a printer, these
lines can be used for a variety of different purposes. The STROBE,

AUTOFEED and SELECT-IN lines are inverted so that each bit
must be set to 0 in order to generate a high (45 V) voltage at the
corresponding connector pin. However, the INIT output line is not
inverted. The four output lines are all latched so that, once written,
the same bit pattern will normally remain on the connector pins.
Reading from this register will return the values previously written
to these lines.

Two other bits are also present in the Control Register. These are
used for enabling the parallel port interrupt and, on a bidirectional
parallel port, for controlling the direction of data flow through the
Data Register. Table 7.5 lists the bits present in this register.

Parallel buses 263

Table 7.5 The Control Register

Bit Write Read
0 STROBE pin (0 = 45 V nominal). STROBE pin status (0= +5V
nominat).
1 AUTOFEED pin (0 = +5 V nominal). AUTOFEED pin status (0 = +5V
nominal).
2 INIT pin {1 = 45 V nominal). TNIT pin status (1 = +5 V nominal).
3 SELECT-IN pin (0 = 45 V nominal). SELECT-IN pin status (0 = +5 V
nominal).
4 0 = Disable parallel port interrupt. Current interrupt-enable status.
1 = Enable paraliel port interrupt.
5 0 = Write via Data register enabled Unused/reserved.
(standard/compatibility mode).
1 = Read via Data register enabled
{write via Data register
disabled).
6 Unused/reserved. Unused/reserved.
7 Unused/reserved. Unused/reserved.

Driving a printer via the parallel port

So far we have seen how each control and status line present in the
parallel port is mapped to the various registers, but we have refrained
from discussing the mechanisms used to transfer data to a printer.
This information is, of course, superfluous if the parallel port is to
be used for interfacing to devices such as relays, stepping motors or
data-logging equipment. However, if it is necessary to interface to
a printer, or to a DA&C device which operates in a similar way, it
is important to understand the basic principles of the data transfer
sequence involved.

Table 7.6 indicates how the various control and status signals are
used to control a printer. Normally, the printer-driving software will
force the SELECT-IN line low to select the printer. This may occur
once only, perhaps at the beginning of a program. The printer will
subsequently set the SELECT line high. To transfer each character,
the following sequence of events occurs:

1. The software waits until the printer’s BUSY signal goes low, which
indicates that the printer is ready to receive a character.

2. The software places a character code on the DO-D7 lines and,
after a short delay pulses the STROBE line low. The falling edge

264 PC interfacing and data acquisition

Table 7.6 Printer control and status signals

Pin/signal Direction Description

BUSY Input High when the printer is busy and unable to accept any
further data. Goes low when ready to receive more data.

ACK input Pulses low to acknowledge receipt of data.

STROBE Output Pulses low to indicate that valid data is present on DO-D7.
The printer must read DO-D7 when it detects the

STROBE pulse.
PE Input High when the printer has run out of paper.
SELECT Input High when the printer is selected and active.
ERROR Input Low when the printer detects a paper out (PE) error

condition, when the printer is off line, or when some
other error is detected.

SELECT-IN Output Low selects the printer. This signal is ignored on some
printers.

INIT Output Low pulse, lasting at least 50 us, initializes the printer.

AUTOFEED Output Low causes the printer to automatically generate a Line
Feed character immediately after receiving each Carriage
Return character. This signal is ignored by some printers.
The auto-line feed facility is often selectable via the
printer's DIP switches or front panel.

of the STROBE pulse causes the printer to immediately set the
BUSY line high and then to read the data from the DO-D7 lines.

3. When the printer has read and stored the data, it pulses the ACK
line low in order to acknowledge receipt of the data. As ACK
returns to a high state, the printer pulls the BUSY line low again
to signal that it is ready to receive the next character.

The ACK pulse can be made to generate an interrupt. Using this
facility, you can install an interrupt handler to transfer a series of
characters from a memory buffer to the printer.

The PC may pulse the INIT line at any time to reset the printer.
The driving software should monitor the PE and ERROR lines in
order to detect error conditions such as the printer running out of
paper or being switched off line. Many different types and models
of printer can be connected to the parallel port. Most have stable
and noise-free interfaces, but in some cases electrical noise, caused
by badly shielded or grounded cables, may be problematic. When
writing interface software to sense the condition of the ACK, BUSY,
PE, SELECT and ERROR lines it is advisable to sample the relevant
bits in the Status Register at least two or three times. This reduces

Parallel buses 265

BUSY q
0

1
DO-D7)&
0

1
STROBE
0

— 1
ACK
0

3
N\
o

Printer stores
data

Figure 7.2 Handshake sequence for data transfer via the parallel port to a printer

the likelihood that spurious noise spikes will disturb the handshake
sequence. The data transfer handshake is illustrated in Figure 7.2.

The timing specification for the transfer is only loosely defined,
particularly in the case of older hardware designs. The minimum
delay times required to transfer data to a fast printer are A=B =
C =D = 0.5 ps. Some printers may require the various signals to
be held for a greater length of time. Sanchez and Canton (1994)
recommend that the STROBE pulse should last for 5 us or more.
Buchanan (1999) gives similar figures while the IEEE monographs by
Maine (1986) and Marnham (1994) specify the following minimum
timings:

A. STROBE pulse delay 50 ps

B. STROBE pulse period 1 ps

C. ACK pulse period 100 ns

D. Delay after ACK before removing data 10 ps

The variation in the quoted timing figures reflects the loosely
defined standards adopted by early parallel port implementations.
According to Rosch (1996), the more rigorous IEEE-1284 standard’s
Compatibility mode (which emulates a unidirectional port) speci-
fies a STROBE pulse period (B) of 0.5-500 ps and an ACK pulse
period (C) of 0.5-10 ps.

266 PC interfacing and data acquisition

A simple parallel port driver

Listing 7.1 is an example of a basic parallel port driver which provides
access to the various I/0 lines present at the connector. The listing
consists simply of a library of (almost) independent C routines that
can be called to perform specific tasks. Functions are included to
determine the address of each parallel port in the system and to
check whether the ports are of the bidirectional type.

To use this driver, the caller must first invoke the
searchForLpTports() function. This will initialize the array of ver
structures according to the number, type and location of LPT (i.e.
parallel) ports found. The caller may then examine the Baseaadr and
ExtMode fields of each element in the array to determine whether
the corresponding parallel port is available and, if so, whether it
supports the so-called ‘extended’ (read) mode of the bidirectional
port. Thereafter, the remaining functions contained within the
listing can be called as and when needed to read or write data via
the parallel port. Each function is individually documented and its
purpose should be self-explanatory.

The driver automatically inverts the states of the SELECT-IN,
AUTOFEED, STROBE and BUSY signals so that a high bit passed
between the calling routine and the driver functions always corre-
sponds to a high voltage (+5 V) at the corresponding connector pin.
When using this driver, the programmer need not be concerned
with the locations of each bit within the various registers: all I/O

Listing 7.1 A parallel port software driver

/* Bidirectional Parallel Port Driver

This driver allows access to the three parallel port registers. The connector
pins corresponding to the various bits in the bit patterns passed to/from
these driver procedures are mapped as follows:

Port Bit pattern passed to or from driver procedures
7 6 5 4 3 2 1 0
Data port D7 D6 D5 D4 D3 D2 D1 DO
Status port --- --- --- BUSY ACK PE SLCT ERROR
Control port - - --- --- SL-IN INIT AFD STROBE

All high bits passed as arguments to the driver procedures correspond to
logical high signals at the corresponding connector ping - i.e. the software
compensates for the logical inversion of some of the LPT port lines (BUSY,
-SL-IN, -AFD and -STROBE are all inverted in hardware and this is compensated
for by the software).

Parallel buses 267

Listing 7.1

(continued}

The driver allows individual bits in the data port or control port to be set

without disturbing any other bits in the port.

It also allows the bit pattern

of the whole port to be changed in one operation. The five status lines may
also be read in one operation.

Extended read mode can be enabled (if supported)
be performed via the data port.

to allow read operations to

The -ACK line can be used to generate an interrupt whenever it pulses low.
The interrupt can be enabled or disabled as required using this driver
(although code for manipulating the 8259 PIC and for intercepting the
interrupt is not included).

*/

#include <dos.h>

#define MaxNumLPTPorts 3

#define True 1
#define False o
/* ====—====s=ssc=ss==========

struct LPTPortRec

{

unsigned int

BaseAddr;

unsigned char ExtMode;
unsigned char LastData;
unsigned char LastCtrl;

b

struct LPTPortRec LPT[MaxNumLPTPorts];

unsigned int LPTPortBaseAddress(unsigned char Port);
unsigned char ExtendedModeSupported{unsigned char Port);

void

void WriteData(unsigned char Port, unsigned char Data);

SearchForLPTPorts (void) ;

/* Base address of parallel port hardware */

/* >0 if extended mode supported */

/* Last data output via the Data register */

/* Last data output via the Control register */

unsigned char ReadData(unsigned char Port) ;
unsigned char ReadStatus(unsigned char Port};

void
void
void
void
void
void

/=

unsigned int LPTPortBaseAddress(unsigned char Port)

WriteCtrl(unsigned char Port, unsigned char Data);

BitNum, unsigned char High);
BitNum, unsigned char High);
char Enable);

char Enable);

SetDataBit (unsigned char
SetCtrlBit (unsigned char
SetExtendedMode (unsigned
SetACKInterrupt (unsigned

Port, unsigned char
Port, unsigned char
char Port, unsigned
char Port, unsigned

InitializeLPTPort (unsigned char Port);

== Function Implementations

/* One structure for each port */

268 PC interfacing and data acquisition

Listing 7.1 (continued)

/* Returns the base address of the specified LPT port. The Port parameter is
zero based. */

{

return peek (0x40, (0x08 + (2 * Port)});

I

unsigned char ExtendedModeSupported{unsigned char Port)

/* Determines whether the specified LPT port supports extended read mode. */
{

unsigned char CtrlPort;

unsigned char BitPtn;

unsigned char Supported;

CtrlPort = inportb(LPT([Port] .BaseAddr+2); /* Get control port status */
outportb (LPT[Port] .BaseAddr+2, (CtrlPort | 0x20)); /* Try to activate the */
/* Extended mode */

/* Check whether we can still read back data */
Supported = False;
BitPtn = 0x00;
do

{

outportb(LPT [Port] .BaseAddr,BitPtn);

if {(inportb(LPT[Port] .BaseAddr) != BitPtn) Supported = True;
BitPtn++;
}
while (BitPtn = OXFF);
outportb (LPT [Port] .BaseAddr+2,CtrlPort) ; /* Restore original control port */

return Supported;

}

void SearchForLPTPorts ()

/* Searches through the BIOS data area locations at offsets 08h, 0Ah and 0Ch
to determine the addresses of LPT1, LPT2 and LPT3 ports. A value of zero in
any one of these locations indicates that no corresponding parallel port is
available. This function checks whether each port supports extended mode
(i.e. bidirectional data transfer). */

{

unsigned char Port;

for {(Port = 0; Port < MaxNumLPTPorts; Port++)
{
LPT{Port] .BaseAddr = LPTPortBaseAddress (Port);
if (LPT{Port] .BaseAddr != 0)
LPT[Port] .ExtMode = ExtendedModeSupported(Port) ;
else LPT{Port].ExtMode = False;

void WriteData(unsigned char Port, unsigned char Data)

/* This function writes the specified Data byte to the data register of the
LPT port specified by Port. A low bit corresponds to a logical low signal
on the corresponding connector pin. */

Parallel buses 269

Listing 7.1 (continued)

{
LPT[Port} .LastData = Data;
outportb (LPT [Port] .BaseAddr,Data) ;

}

unsigned char ReadData{unsigned char Port)

/* This reads the data port if extended mode is supported and data reads are
enabled (via the Direction Control bit in the control port). If reads are
not possible, this function returns the last data written to the control
port. A low bit in Data corresponds to a logical low signal at the
corresponding connector pin. */

{

if ({LPT({Port] .ExtMode) && {({LPT[Port].LastCtrl & 0x20) == 0x20)

return inportb{(LPT[Port}.BaseAddr);
else return LPT{Port].LastData;

unsigned char ReadStatus(unsigned char Port)

/* Reads the Status port lines and returns them, coded as follows (MSB first):
BUSY, -ACK, PE, SLCT and -ERROR. A low bit corresponds to a logical low
signal on the corresponding comnector pin. */

t

return (({inportb(LPT[Port] .BaseAddr+1} ~ 0x80) »>> 3) & Ox1F);

}

void WriteCtrl(unsigned char Port, unsigned char Data)

/* This function writes the low order four bits of Data to the Control register
leaving the Interrupt Enable and Direction Control bits unchanged. The four
bitg are, in order from MSB to LSB: -SL-IN, -INIT, -AFD and -STROBE. A low
bit corresponds to a logical low signal on the corresponding connector
pin. */

{

LPT[Port] .LastCtrl = ((Data 0x0B) & OxOF) | (LPT[Port].LastCtrl & O0xFO);

outportb (LPT [Port] .BaseAddr+2, LPT [Port] .LastCtrl);

}

~

void SetDataBit (unsigned char Port, unsigned char BitNum, unsigned char High)

/* Sets the state of a single bit (BitNum = 0 to 7) in the specified LPT port’s
data port. If High is True, the corresponding connector pin is set to a
logical high state. */

{

unsigned char Mask;

Mask = 0x01 << (BitNum % 8);
if (High)
LPT[Port] .LastData = LPT[Port].LastData | Mask;
else LPT[Port].LastData = LPT[Port].LastData & ~Mask;
outportb (LPT[Port] .BaseAddr,LPT[Port] .LastData) ;
}

void SetCtrlBit (unsigned char Port, unsigned char BitNum, unsigned char High)

/* Sets the state of a single bit (BitNum = 0 to 3) in the specified LPT port’s
control port. If High is true, the corresponding connector pin is set to a
logical high state. */

270 PC interfacing and data acquisition

Listing 7.1 (continued)

{

unsigned char Mask;

Mask = 0x01 << (BitNum % 4);
LPT{Port]}.LastCtrl = LPT[Port].LastCtrl * 0x0B; /* Uninvert bits in LastCtrl */
if (High)
LPT[Port] .LastCtrl = LPT{Port].LastCtrl | Mask;

else LPT{Port].LastCtrl = LPT[Port].LastCtrl & "Mask;
LPT[Port] .LastCtrl = LPT[Port].LastCtrl * Ox0B; /* Reinvert bits in LastCtrl */
outportb (LPT[Port] .BaseAddr+2,LPT{Port] .LastCtrl);
}

void SetExtendedMode (unsigned char Port, unsigned char Enable)
/* Enables or disables the parallel port’s extended mode (if available). This
procedure has no effect if the port does not support extended mode. */
{
if (LPT{Port].ExtMode)
{
if (Enable)
LPT[Port] .LastCtrl = LPT[Port].LastCtrl | 0x20;
else LPT{Port].LastCtrl = LPT[Port].LastCtrl & OxDF;
outportb (LPT [Port] .BaseAddr+2,LPT [Port] .LastCtrl) ;
}

void SetACKInterrupt (unsigned char Port, unsigned char Enable}
/* Enables or disables the parallel port’'s interrupt. */
{
if {(Enable)
LPT[Port] .LastCtrl = LPT[Port]) .LastCtrl | 0x10;
else LPT[Port].LastCtrl = LPT{Port].LastCtrl & OxEF;
outportb (LPT [Port] .BaseAddr+2,LPT[Port] .LastCtrl) ;

}

void InitializeLPTPort {(unsigned char Port)

/* Sets all outputs to logical low levels and disables the parallel port
interrupt and extended mode (if available). */

{

WriteData (Port, 0x00) ;

WriteCtrl (Port, 0x00) ;

SetExtendedMode (Port , False) ;

SetACKInterrupt (Port, False);

l

lines are mapped to the low order bits of each register as noted in
the listing.

7.4 The IEEE-488 (GPIB) bus

The IEEE-488 bus standard is also known as the General Purpose
Interface (or Instrument) Bus or GPIB. It originates from the HP-IB
bus originally developed by Hewlett Packard in the mid-1960s. It

Parallel buses 271

was adopted by the Institute of Electrical and Electronics Engineers
(IEEE) as the basis of a new standard for parallel communica-
tions designated IEEE-488. This was revised in 1978 and updated
again in 1987. These two revised standards are often referred to
as IEEE-488.1 and IEEE-488.2 respectively, the latter maintaining
backward compatibility with the earlier standard. The original IEEE-
488 specification relates mainly to the hardware elements of the
bus. IEEE-488.2, however, is concerned more with command proto-
cols, defining such things as the order of multiple bus commands
and transaction timeouts. Error handling and status reporting were
also standardized along with some commonly used commands and
data structures. In the remainder of this chapter we will refer to
both standards simply as ‘IEEE-488’ except where discussing specific
differences between them.

The IEEE-488 bus was originally used for interfacing to laboratory
test equipment (e.g. frequency meters, spectrum analysers, calorime-
ters, logic analysers etc.) and to printers or plotters. Today the bus
has become very popular in both manufacturing and research envi-
ronments, and a great diversity of instruments are equipped with
IEEE-488 interfaces. It is now possible to connect many common and
relatively inexpensive measuring instruments - digital voltmeters, for
example — to the IEEE-488 bus.

Overview of the IEEE-488 bus

The IEEE-488 standard allows up to 15 devices (including the PC)
to be connected together on the same party-line bus as illustrated in
Figure 7.3. The total length of the interconnecting cables must not
exceed 20 m and the distance between any two bus devices must be
no more than 2 m.

Each of the 15 possible devices is assigned a unique address
in the range 0 to 30. This is known as the primary address and

Controfler IEEE-488 BUS ™
Device 1 Device 2 Device 3
{listener) {tatker) {listener)

Figure 7.3 /|EEE-488 bus topology

272 PC interfacing and data acquisition

is usually configured by means of a DIP switch or an analogous
programmable facility. Each bus device may also incorporate up
to 32 sub-units which are capable of operating independently of
each other. These sub-units may be individually addressed using
secondary addresses in the range 0 to 31. The sub-units within each
bus device consist of logically independent (although not necessarily
physically separate) units. Secondary address allocation is generally
device specific. In some cases, the secondary addresses are used to
select specific features or data processing modes of a single unit.
One secondary address may, for example, be reserved for receipt
of configuration commands, while another is reserved for receiving
operational commands. Alternatively, a device connected to multiple
sensors might use different secondary addresses to configure and
access each sensor.

As indicated in Figure 7.3, three classes of device may exist at each
primary address on the bus. These are referred to as listeners, talkers
and controllers.

Listeners

A listener can only receive data and commands from the bus; it
cannot transmit them. A typical example of a listener is a printer
which only receives data and control characters from other devices
on the bus. There may be up to 14 active listeners present on the
bus at the same time.

Talkers

Talkers are capable of transmitting data to other devices on the bus,
but are incapable of receiving data or commands. Only one talker is
allowed to be active at any one time.

Controllers

The controller supervises the transfer of data along the bus. This
role is usually (but not always) performed by a PC equipped with
a suitable IEEE-488 adaptor card. The controller can assign any
device on the bus to act as a talker or listener. Many instruments
are capable of acting as both a talker and a listener (and sometimes
also as a controller). These devices are often dynamically switched
(via commands sent from the current controller) between listener
and talker modes. There may be more than one controller in the
system but only one controller can be active at any time. The active
controller can pass control to any other suitable device by issuing
a Take Control (TCT) command. Before any data or messages can

Parallel buses 273

be transferred over the bus, it is the responsibility of the active
controller to initialize all other devices as either talkers or listeners.

Throughput

The IEEE-488 standard specifies that the maximum bit rate present
on any one line of the bus must not exceed 1 Mbit/s. Some propri-
etary systems will allow significantly higher transfer rates. In practice,
throughput will depend upon the performance of the IEEE-488
adaptor used, the PC’s host bus (ISA, EISA, PCI, parallel port or RS-
232 port) and driver software. In many cases, however, it is possible
to attain data transfer rates of no more than about 250 KB/s using
a standard IEEE-488 system. Transfer rates of a few hundred bytes
per second are more typical when very slow devices are present on
the bus.

The IEEE-488 handshake protocol guarantees that the overall
speed of data transfer is determined by the slowest active listener
present. This prevents data from being transferred too quickly for
the listener to handle.

The handshaking protocol (discussed in more detail in the
Data transfer handshake section later in this chapter) is fairly time
consuming and can restrict throughput in some cases. National
Instruments Corporation have developed a faster protocol, known
as HS488. This is compatible with the standard IEEE-488.1 protocol,
in so far as HS488 devices will employ the normal protocol to com-
municate with standard IEEE-488 devices. If all talkers and listeners
on the bus are HS488 compliant, the faster protocol is automatically
adopted. HS488 is implemented using special hardware and is soft-
ware compatible with standard IEEE-488 systems. Slightly different
cable-length restrictions apply, however. Throughput is dependent
upon the host PC’s bus and driver software, but 7.7 MB/s have been
claimed for HS488 using a PCI bus-based adaptor under Windows
NT. As HS488 is less widely used than the standard IEEE-488 protocol
it will not be discussed further here.

The structure of the IEEE-488 bus

The bus consists of 16 signal lines together with a number of ground
and shield wires. The IEEE-488 cable is usually terminated with a
24-pin Amphenol connector. The connector pin assignments are
shown in Table 7.7.

Eight bidirectional data lines (DIO1-DIO8) are used for carrying
data and command messages. The messages are transferred in ac-
cordance with a handshaking protocol implemented with the DAV,

274 PC interfacing and data acquisition

Table 7.7 |EEE-488 bus lines and connector pin assignment

Pin Mnemonic Name Function

1 DIO1 Bidirectional data Transfer data or command codes.

2 DIO2 bus lines

3 DIO3

4 DI04

13 DIO5

14 DIO6

15 DIO7

16 DIO8

6 DAV Data valid Asserted by talker to indicate bus
holds valid data.

7 NRFD Not ready for data Asserted by listener to indicate that it
cannot receive data.

8 NDAC Not data accepted Asserted by listener while reading
data.

5 EQI End or identify Asserted by talker to identify the last
byte of data in a block or message.
Also used in parallel poll.

9 IFC Interface clear Asserted by controller to initialize all
bus devices.

10 SRQ Service request Asserted by any device to request
the attention of the controller.

11 ATN Attention Asserted by the controller to indicate
that the data bus holds a
command/address rather than
data.

17 REN Remote enable Asserted by controller to disable any
front panel controls.

18 DAV gnd Ground.

19 NRFD gnd Ground.

20 NDAC gnd Ground.

21 tFC gnd Ground.

22 SRQ gnd Ground.

23 ATN gnd Ground.

24 Logic gnd Ground.

12 Shield Shield.

NRFD and NDAC lines. In addition, five interface management lines
(ATN, IFC, SRQ, REN and EOI) are used for carrying control and
status information. All signals on the bus are active low - i.e. the lines
are considered to be asserted (or active) when at a low logic level

Parallel buses 275

(<0.4 V). All signal lines use TTL logic levels, although DAV, NRFD
and NDAC employ open collector outputs. This allows them to be
used in a wired-OR configuration so that any one of the bus devices
can independently assert these lines. When unasserted, these lines lie
at the logical high level of about 3.3 V.

Data transfer handshake

All message bytes are transferred from the talker to one or more
listeners by means of a sequence of handshake signals. As mentioned
previously, this process is designed to allow the slowest device on the
bus to control the rate of data transfer. The handshaking sequence
is illustrated in Figure 7.4 and is described below.

1. Each listener asserts the NRFD line while it is busy, only releasing
itwhen it is ready to receive a message byte on the DIO lines from
another device. Consequently, NRFD will go high (inactive) only
when all active listeners are ready and have released NRFD. Each
listener should also normally hold the NDAC line in an active
state when ready for the next message byte.

2. Upon detecting that NRFD is inactive and NDAC is asserted, the
talker places a message byte on the DIO lines.

3. The talker waits for 2 ms to allow the DIO lines to settle. It
then asserts the DAV line to indicate that a valid message byte is
present.

All devices ready

/ for data
NRFD
DIO1-8)g / New data byte

DAV Data valid /

NDAC / f{/
AN

All devices have
accepted data

Figure 7.4 /EEE-488 handshaking sequence

276 PC interfacing and data acquisition

4. The listeners, detecting that the DAV line has been asserted,
begin to read the DIO lines. While performing this action, they
each assert NRFD to indicate that they are busy.

. Each listener acknowledges receipt of the message byte by
releasing NDAC.

6. When all listeners have released NDAG, it goes high. This indicates
to the talker that all of the listeners have accepted the message.
The talker then completes the handshaking sequence by releasing
the DAV line. At this point NRFD is still asserted, NDAC has been
released, and the whole sequence may then be repeated in order
to transfer the next byte.

Note that both NDAC and NRFD must be released by all listeners
before they will go high. Each active listener releases these lines at
its own rate and in this way the handshaking sequence is controlled
by the slowest listener present on the bus. This prevents data from
being transferred too quickly for the slowest listener to handle.

(&1

Interface management lines

The IEEE-488 bus possesses a number of lines for controlling devices
on the bus, for issuing commands and for requesting service.

The IFC (Interface Clear) line may be asserted by the active
controller to reset and initialize all bus devices. On receipt of this
signal, the actions performed by each instrument connected to the
bus will be device dependent. The IFC line is normally used by the
controller at the beginning of a communications session to ensure
that all devices are in a known default state. The controller asserts
the ATN (Attention) line whenever it transmits a message that must
be interpreted as a bus-management command, as opposed to a
device-specific message or data (the differences between message
types are described later in this chapter). When ATN is asserted, all
devices on the bus will read any transmitted message byte, regardless
of whether they have been configured as active listeners.

REN (Remote Enable) must be asserted to enable an instrument
to be controlled by commands received over the bus. When REN is
unasserted, the device can be controlled only via its front panel (if
such facilities are available).

When a device on the bus requires attention from the
controller — for example, if it has valid data available or if an error
has occurred — it may assert the SRQ (Service Request) line. Upon
detecting the SRQ signal, the controller will finish whatever task
it is currently engaged in and then determine which device issued
the request for service. Remember that the same SRQ line is shared
between all bus devices, so when it is asserted, the controller only

Parallel buses 277

knows that one (or possibly more than one) device requires attention.
In order to detect which device issued the SRQ the controller initiates
either a serial or parallel poll (see the following section). Each device
responds to the poll command by issuing status information which
informs the controller whether it requires service. The controller
then services the appropriate device(s) by, for example, reading any
available data.

Finally, the EOI (End or Interrupt) line is asserted by the active
talker during transmission of the last byte of a multi-byte message.
This provides a convenient means of identifying the end of a message
or block of data. The EOI line also has an alternative use. It may be
asserted by the active controller in conjunction with ATN in order
to initiate a parallel poll as described in the following section.

Polling

The IEEE-488 interface implements a polling facility that allows the
active controller to determine the status of each device on the bus.
This is used, after the controller has received a Service Request
(SRQ) signal, to determine which device needs attention. Two types
of polling may be performed: serial or parallel.

A serial poll is enabled by issuing a universal SPE command
(see the following section). This enables all devices on the bus in
preparation for a serial poll. The controller then addresses each
device, in turn, to talk by transmitting a TAG command. The device
responds by transmitting a single status byte on the data bus. Bit 7 of
the status byte is set if the addressed device is requesting service. The
remaining bits carry device-dependent status information. When
the serial poll has been completed, the controller usually issues the
universal SPD (Serial Poll Disable) command so that normal bus
operation can be resumed.

A parallel poll provides a faster alternative to the serial poll. This
allows the controller to poll up to eight separate devices in one simple
bus transaction. The devices participating in a parallel poll each
transmit a status bit on one of the eight data lines. The bit allocations
used by each device must previously have been programmed by
means of the PPC (Parallel Poll Configure) command. The PPC
command is first transmitted by the controller to a specific device.
This is followed by a supplementary command byte, which assigns
one of the eight data lines to the device for use in the subsequent
parallel poll. The three low order bits of the supplementary byte
contain the binary-coded ordinal index of the data line to be used.
Note that the index runs from 0 (000b) for DIO1 to 7 (111b) for
DIOB8. Bit 3 of the supplementary byte indicates the polarity of the

278 PC interfacing and data acquisition

device’s status bit that is needed to request service: if bit 3 is high,
the status bit must also be high during the poll in order to request
service.

After all devices have been suitably configured, the controller is
able to initiate a parallel poll at any appropriate time by simulta-
neously asserting the EOI and ATN lines. The devices on the bus
respond by asserting (or unasserting) the approprlate data lines, indi-
cating to the controller which devices require service. The universal
PPU (Parallel Poll Unconfigure) command may be issued by the
controller to disable the parallel poll facility.

Messages

So far we have referred only to messages being transmitted over the
IEEE-488 bus. In fact, these messages can each be one of two types:
data messages or bus-management commands.

Data messages

Data messages can represent just about anything that makes sense
to a specific device. They can be pure data (e.g. the result of a
measurement) or they may be device-specific commands. The form
of a data message is purely device specific and is not defined by
IEEE-488.1. Although some aspects of data messages are standard-
ized in IEEE-488.2, many instruments employ completely different
command sets. In an attempt to overcome some of the difficulties
inherent in developing multi-instrument applications, a consortium
of prominent IEEE-488 equipment manufacturers proposed a stan-
dard command set for IEEE-instruments in the early 1990s. This
is known as Standard Commands for Programmable Instruments
or SCPIL. It visualizes every instrument as a hierarchical group of
functional blocks and provides standard commands to control each
block. This additional degree of standardization has the potential
to greatly simplify programming and interchanging of instruments.
A description of SCPI is beyond the scope of this book. For details,
the reader is referred to programming guides supplied with SCPI
compliant instruments.

Bus-management commands

Bus-management commands are not device specific. They are an
essential part of the IEEE-488 standard and all devices on the bus
must respond to them. The active controller can transmit bus-
management commands to any or all devices on the bus. During
transmission, the normal handshake protocol is used, except that

Parallel buses 279

Table 7.8 The IEEE-488 bus-management command byte

Bit Description

4-0 If bits 8,5 = 00: bits 0-4 hold the code of the Universal or Addressed
Command.
If bits 6,5 £ 00: bits 0-4 hold a primary or secondary address.
6,5 Command type:
00 = Bus command (for sending both Universal and Addressed
Commands).
01 = Listen Address Group (for commanding a specific device to listen).
10 = Talk Address Group {for commanding a specific device to talk).
11 = Secondary Command Group (for accessing sub-units in a device).
7 Unused.

the controller first asserts the ATN line. This causes the active talker
to relinquish control of the DAV line. The controller then becomes
the active talker and is able to transmit command bytes.

When ATN is asserted, all devices read the commands that are
transmitted by the controller, and participate in the handshake
sequence regardless of whether they are configured as listeners.
When the ATN line is unasserted, only the devices previously config-
ured as talkers and listeners take partin subsequent communications.

The bus-management commands transmitted by the controller
each take the form of a single byte, as shown in Table 7.8. Bit 7
(i.e. DIO8) is unused and should be zero. Bits b and 6 indicate the
command group (i.e. the type of command that is being sent) and
the remaining bits are interpreted either as a command code or as a
primary or secondary address.

Addressed Command Group {ACG)

The commands in this group affect only those devices that have
previously been addressed to listen. Bits 0 to 4 of the command byte
specify the type of Addressed Command as shown in Table 7.9.

Universal Command Group (UCG)

The Universal Commands affect all devices connected to the bus.
Bits 0 to 4 of the command byte specify the type of Universal
Command as shown in Table 7.10.

Listen Address Group (LAG)

This group contains two commands which may be used to activate or
deactivate a device’s listen mode. In both cases bit 5 of the command

280 PC interfacing and data acquisition

Table 7.8 Addressed command group

Command
byte Name Description
01h GTL Gotolocal. Causes the device to be programmed locally

{i.e. via its front panel). The device must be addressed to
listen using the LAG command (see Table 7.8) in order for
it to exit local mode. This command cancels the Universal
LLO command for the listening device.

04h SDC Selected Device Clear. Initializes the listening device and
resets it to its default state. The action performed is
device dependent.

05h PPC Parallel Poli Configure. Configures the device to respond to
a paraliel poll signal {EOl 4+ ATN asserted).
08h GET Group Execute Trigger. Simultaneously configures all

devices configured to listen. Used to synchronize a group
of devices to perform some pre-programmed task.

09h TCT Take Control. Issued by the active controller to cause the
recipient of the command to take control of the bus. The
new controller then becomes the active controller.

Table 7.10 Universal command group

Command
byte Name Description
11h LLO Local Lockout. Disables the local {front panel) controls of all
bus devices.
14h DCL Device Clear. Resets all devices. The action performed will
be device dependent.
15h PPU Parallel Poll Unconfigure. Removes the parallel poll

configuration of each bus device and prevents the
devices from participating in a parallel poll.

18h SPE Serial Poll Enable. Sets all devices to serial poll mode. in this
mode, each device will return one status byte when it is
addressed to talk.

19h SPD Serial Poll Disable. Disables serial poll mode.

byte is set to 1 and bits 0-4 contain a primary address. The LAG
command configures a specific device as a listener. The primary
address of the device that is to listen (coded in bits 0—4) may fall in
the range 0 to 30. The address value of 31 (i.e. bits 0~4 all set to 1)
is invalid in the LAG command. Address 31 is known as the ‘unlisten

Paralle! buses 281

address” and a Listen Address Group command byte containing
the unlisten address (i.e. 00111111b) defines the UNL (unlisten)
command. This is used to globally disable all listeners on the bus.

When a device detects a LAG command in which bits 0 to 4 match
its own primary address, it becomes an active listener. Thereafter,
it reads all data bytes transmitted on the bus until it detects a UNL
command.

Talk Address Group (TAG)

The talk address group contains two commands, TAG and UNT
(untalk), which are analogous to the LAG and UNL commands
described above, except that the TAG and UNT commands control
which bus device is configured to talk. Commands in this group are
distinguished from other command groups by the states of bits 5 and
6, as indicated in Table 7.8.

Secondary Command Group (SCG)

The Secondary Commands work in a similar way to the LAG and TAG
commands in so far as they control which sub-unit in a previously
defined talker or listener is active (i.e. transmits or receives data).
Bits 5 and 6 identify the command as belonging to the Secondary
Command Group.

Typical command and data transfer sequences

A simple example follows which will illustrate the sequence of
commands and bus signals required to configure the talker and
listener devices on the bus. The current controller must issue the
following commands:

1. Assert the ATN line to identify the following as commands.

2. Issue an UNL command to unlisten all devices.

3. Issue a TAG command (including the appropriate talk address)
to specify one talker.

4. Issue one or more LAG commands to specify one or more
listeners.

5. Unassert ATN.

Suppose we subsequently wish to select the measurement range of a
digital voltmeter on the IEEE-488 bus. The appropriate message to
select measuring range 2 may, for example, be ‘R2’. Note that this
message will be device specific and may vary between different volt-
meters. In the case of a SCPI compliant instrument, an appropriate
SCPI command sequence would be used instead. If the message has

282 PC interfacing and data acquisition

to be sent to primary address 10, secondary address 5, the following
sequence would then be used.

1. Assert the ATN line to identify the following as commands.

2. Issue a UNL command to unlisten all devices.

3. Issue a LAG 10 command to cause the voltmeter (primary
address 10) to listen.

Issue a SCG 5 command to access secondary address 5.
Unassert ATN.

Transmit an ‘R’ character.

Transmit a ‘2’ character. This may be followed by a CR, LF pair.
The EOl line is asserted during transmission of the last character
in the sequence.

Assert ATN.

Issue an UNL command to unlisten the voltmeter.

. Unassert ATN.

N o

S ©®

1

It is not practicable to attempt to cover device-specific command
sequences here. Please refer to manufacturer’s manuals for detailed
information on configuring and operating specific equipment.

Interfacing IEEE-488 devices to the PC

The PC is usually interfaced to the IEEE-488 bus by means of an
ISA, EISA or PCI adaptor card, although parallel port and serial
port adaptors are also available. Most of these devices are software
compatible with the ‘industry standard’ National Instruments GPIB-
PCII and GPIB-PCIIA cards. The latter is functionally identical to
IBM’s GPIB adaptor. These cards conform to the IEEE-488.1 stand-
ard, but enhanced cards, which support the additional functions
specified by IEEE-488.2, are also available. Adaptor cards usually
allow the PC to act as a talker, listener or controller and allow up to
14 bus devices to be interfaced to the PC. The throughput offered by
these cards varies, but most permit data transfer rates of up to about
300 KB/s.

Some adaptor cards include firmware drivers contained in ROM.
The services provided by these drivers can be accessed via an inter-
rupt interface in much the same way as BIOS services are invoked.
Most cards, however, are accompanied by disk-based software which
can be used by an applications program to communicate with the
various instruments on the bus. Software drivers tend to take two
forms: object files which can be linked to user written programs; or
operating system device drivers (e.g. installable DOS device drivers
or kernel-mode drivers under Windows NT) which are usually loaded
into memory when the PCis booted. Operating system device drivers

Parallel buses 283

are usually accessed from an application program via a special HLL
library file supplied by the driver’s manufacturer. Some manu-
facturers also supply configuration, diagnostics and development
utilities, often as an integral part of the driver’s API.

Software drivers are controlled with a variety of commands. Some
commands are roughly equivalent to the single-byte bus commands,
while others initiate lengthy sequences of bus transactions. Higher
level commands are usually also available. These facilitate, for
example, on-board buffering of data, control of multiple devices,
and sophisticated bus management. Such a command mix provides
the optimum combination of power and flexibility and means that
there is usually no need for the programmer to be concerned
with manipulating the interface hardware directly. The form and
syntax of the commands tends to vary between the drivers offered
by different manufacturers, but most provide a broadly similar set
of functions. Note, however, that IEEE-488.2 drivers will include an
extended API in order to accommodate the additional functionality
encompassed by this standard. It is advisable to carefully study the
manuals accompanying your IEEE-488 driver for full programming
details.

8 Serial communications

As we have seen in the previous chapter, parallel buses provide
a simple means of transferring data rapidly between the PC and
external test instrumentation. They do, however, suffer from a
number of limitations. Foremost amongst these are the expense
associated with using long runs of multi-core cable and indeed the
inability of many parallel buses to transmit over distances of more
than a few metres. Each parallel interface also requires at least eight
line drivers for the data bus and often several more to accommodate
the various control lines, further increasing the cost of parallel bus
interfaces.

Serial buses, on the other hand, provide a relatively cheap method
of communicating over long distances. In serial systems, the data
is broken down into a series of bit patterns and transmitted one
bit at a time over a single wire (or pair of wires). This not only
reduces the number of bus drivers needed and minimizes cable
costs, it also allows data to be transmitted over very much greater
distances. The RS-422 serial interface standard, for example, permits
communication over distances of 1200 m using relatively inexpensive
twisted-pair cable.

Serial transmission is normally slower than parallel I/O (although
some serial systems allow for very high bit rates). With one or
two exceptions, typical maximum serial transmission rates are about
10 KB/s with the PC. This is often quite adequate in data-acquisition,
automation and industrial control applications where a throughput
of 1-2 KB/s is more typical.

This chapter discusses the basic principles of serial communication
and describes common standards and techniques that can be used
for linking PCs and data-acquisition equipment.

8.1 Some common terms

Before proceeding with a description of serial communication
systems, it is useful to define a few common terms.

Serial communications 285

Simplex and duplex communications

The terminology used to describe communication traffic can be
confusing, primarily because different definitions of the terms
simplex and duplex are used in the USA and in Europe. Because
a majority of DA&C hardware, software and related literature orig-
inates from the USA, we will use the American National Standards
Institute (ANSI) definitions throughout this book. The European
alternatives are noted in the following paragraph.

The simplest form of serial communication involves transmission
in a single direction, such as from a PC to some form of actuator
or remote display unit. Unidirectional communication is termed
simplex communication. Systems which allow data to be transmitted
in two directions (i.e. to be transmitted and received by the same
device) may be full duplex or half duplex. Half duplex interfaces
(also known as simplex interfaces in Europe) accommodate trans-
mission and reception, but not both at the same time, while a full
duplex (duplex in Europe) device may transmit and receive data
simultaneously.

Synchronous transmission

Synchronous serial transmission is the most efficient method of
transmitting large quantities of data along a serial communications
link. In a synchronous system, the link carries timing information
which is used to synchronize the operation of the transmitting and
receiving elements. The widely used RS-232 standard includes a
number of control lines for this purpose, although these are not
normally used in PC-based RS-232 implementations.

Data is generally transmitted in blocks which also contain various
flags and header information. The advantage of this technique is
that separate serial frames and the associated start and stop bits
(see the following section) are not required for each transmitted
character. This minimizes the overall time taken to transmit each
byte. Synchronous transmission is used mainly in telecommunication
and mainframe computer systems. As it is rarely used for data
acquisition, it will not be discussed further in this book.

Asynchronous transmission

Asynchronous serial transmission is of more relevance to PC-based
data acquisition. In an asynchronous