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Getting together enough useful data to build and interface a real
, Mminimizing —

Jjournal articles and industry papers, and textbooks that are often highly

ical.

and-bolts microcomputer system can be a major task in itse

tion in writing this book has been to integrate
information necessary to conceptualize, select

b

Assembling a microcomputef system, including the task of interfacing the com-
This text covers a wide range of topics. Advanced interface devices and

methods are examined, of course; but in deference to the less techn
Before delving deeply into a comprehensive comparison of microproces-

sors and interface components, we look at the capabilities of microcompu

ponents for specific system applications, is a matter of defining the system,

selecting and matching the proper components, and ultimately build
system using acceptable design and construction techniques. The information

needed to carry out these phases of the overall project, however, is currently
-available only from diverse sources such as manufacturers’ specifications

sheets
through examples of some current systems and applications. The many forms

approach is intended to equalize the design starting point for all levels of

skilled readers, basic facts often taken for granted are covered as well. This
reader.

interface microcomputer systems to most applications, thereby elimina

or, at the very least

theoret
nuts-




Preface

of microcomputer — ranging from simple 4-bit, single-card controllers to com-
plete multibit data processing systems — are evaluated, which sets the stage for
your own conceptualization, without additional outside assistance, of the sys-
tem that is ‘‘right’’ for your planned applications.

Troublefree interfacing depends on a good knowledge of the principles of
microcomputer communications, or input/output. These principles are covered
in particular detail in this book, along with up-to-date specifications and per-
formance data on advanced interface devices such as CCD memories, one-chip
microcomputers, monolithic multipliers, and analog-to-digital converters. And
a section concerning the often ignored mechanical interface components such
as stepping motors and relays, servos, and mechanical transducers will help
you in real-world interfacing and control applications.

Interface design and construction techniques encompass a wide spectrum
of ““how to’’ data, from how to keep a transformer from vibrating loose in a
microcomputer chassis to how .to ‘‘design’’ noise problems out of high-
performance ECL microprocessor systems. These and other procedures are
presented with a strong emphasis on optimization, performance, and reliability.

A concluding section is devoted to the all-important software development
task; this information describes what is necessary to develop various software
entities for a range of microcomputer applications.

The discussions presented in this book are not simple comparisons of
specifications and model numbers; instead, components and interfacing
methods are examined and analyzed in terms of what these devices and tech-
niques can do for you the user and how to use and get the best results from the
components selected.

In addition to design and construction techniques, this book consolidates
many industry standards previously available only from scattered sources,
making this a valuable reference work as well as a hands-on design and con-
struction guide.

BRUCE A. ARTWICK




The early 1970s marked the beginning of a revolution in the world of elec-

. tronics: the microprocessor revolution. Although proponents heralded the de-

velopment of the microprocessor as a large leap in the state of the art, this was
more of an evolutionary development—a logical extension of the small-scale,
medium-scale, and (by today’s standards) the primitive, large-scale integration
which preceded it. The first 4-bit microprocessors were not designed to func-
tion specifically as central processing units but rather as complex controllers.

The original designers of microprocessors were, in fact, quite puzzled over
why anyone would want to use their FET-based microcontroller as a computer
when more advanced bipolar minicomputers were readily available. The an-
swer to this question was economics. For the first time, real computing power
was available to everyone at a reasonable cost.

Gradually, the usefulness of microprocessors as central processing units
was realized and more powerful 8-, 16-, and 32-bit units were developed. Today
microprocessors are making significant inroads into the field of traditional com-
puting. The distinctions between microcomputers and minicomputers are van-
ishing, and the coming years will witness the arrival of microprocessors with
performance and complexity levels so high that such devices would have been
inconceivable only a decade ago. Basically, better products will be available for
less as microelectronics evolve.

Processor performance, instructions per second, word widths of 4, 8, or 16
bits, and floating-point operations per second are only one facet, however. The
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science of using a microprocessor and efficiently integrating it into an overall
system, commonly referred to as interfacing, is equally important yet fre-
quently overlooked. The support circuitry and all the devices surrounding a
microprocessor cost more, take up more space, have more critical environmen-
tal constraints, and draw more power than the microprocessor in nearly every
case and should be given very high priority in the design of a system. Careful
consideration of a system’s interface requirements during the design phase and
adherence to defined design rules will result in a clean, highly reliable design
that makes use of all the advanced features microprocessors have to offer.

This chapter touches on some of the advantages of microcomputer-based
information and control systems and will aid you in determining whether a
microcomputer-based design is desirable in your application. The economic
advantages are stressed, and a few actual implementations are examined from a
performance and interface standpoint to give you an idea of what you have to
look forward to if you choose to go the micro route for your computing applica-
tion.

PREREQUISITE TERMINOLOGY

Any discussion in a technical field tends to lose some of its substance if the
terminology is not explicitly understood by all participants. The comparatively
recent phenomenon of a multiplicity of writers assigning a multiplicity of mean-
ings to a limited lexicon of terms only compounds the problem. Also, the
microcomputer field is notorious for its overabundance of acronyms and
buzzwords. These problems point to the need for a cleared-away starting point.
A glossary is provided at the end of the text to help make some sense out of
microcomputer jargon but it is important to define a few of the most basic terms
at the outset.

The terms microcomputer, minicomputer, microcontroller, microproces-
sor, and mainframe are but a few of those terms which are but loosely defined,
and their definitions seem to keep changing as people abuse them. In this text,
definitions derived from a composite of the accepted industry terminology are
used.

A mainframe is a very large computer system, typically for business-
related data processing or advanced scientific computations. A mainframe re-
quires a staff of support personnel and handles many peripheral devices such as
line printers, card readers, magnetic tape units, disks, and terminals. An IBM
3033 system or Control Data 6600 would be considered a mainframe; a personal
computer packed full of boards driving dual floppy disks and a terminal would
not be.

A microcomputer is a fully operational computer system built around a
microprocessor. Included in the microcomputer are memory, clocks, and inter-
faces. A personal computer with a CPU card, a few memory boards, a power
supply, and interfaces would constitute a microcomputer.
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A microprocessor consists of one or more large-scale integrated (LSI)
circuits designed to work as a sequential computational or control unit by
executing a predefined or user-defined set of instructions contained in a mem-
ory.

A minicomputer is a small computer with the central processing unit built
from small- or medium-scale integrated circuits (SST or MSI) or from discrete
parts. Included as part of a minicomputer are the associated memory and
interface modules. A minicomputer does not require a large support staff and
can even be turned off when you’re not usmg it. Digital Equipment
Corporation’s PDP-11/35 is a minicomputer.

A microcontroller is a module consisting of a microprocessor, memory,
and interfaces used for control applications. A card which controls the stop-
lights at a street corner, if built with a mlcrOprocessor, would be considered a
microcontroller.

MICROCOMPUTERS AND MICROCONTROLLERS

You may be able to reap big savings and increase a system’s performance and
reliability by replacing some logic with or by building a whole system around a
microprocessor; but you may also end up facing big problems. It’s therefore
wise to get familiar with the characteristics of microprocessors before you start
a project. The idea is to cash in on all the advantages and dodge all the pitfalls.

LS| Traits

Microprocessors, by their very LSI nature, tend to bring all the advantages and
disadvantages of large-scale integration to a system.

Overall system package count is decreased. Much of the data storage,
arithmetic, and interface logic previously constructed with discrete MSI or SSI
parts are incorporated into one central unit. Package count reductions translate
into system size and weight savings.

Logic complexity on a gate-for-gate basis typically increases. A micropro-
cessor is a multipurpose programmable device and has many features that
won’t get used in a given application. Since mncrOprocessors cannot ordinarily
be modified, they cannot be optimized to the user’s requirements as discrete
logic can. Nonoptimizability and programmability are the primary causes of the
increased logical complexity.

Despite the increase in logical complexity, the use of microprocessors and
other LSI devices decreases overall power consumption. Small driving cur-
rents and low parasitic capacitances on the LSI chip provide a dramatic power-
per-gate savings as well as increased speed—power products.

LSI devices also increase system reliability, mostly because of mechanical
factors. Highly reliable one-piece metallization layers and end-to-end transistor
and resistor junctions on the LSI chip replace mechanically connected and
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soldered discrete components. As a result, LSI components are less sensitive
to mechanical shock and fatigue and more tolerant of poor environmental con-
ditions. ‘ :

Finally, microprocessors and other LSI components can greatly reduce
system costs. One inexpensive microprocessor can replace a large number of
SSI, MSI, and discrete-component devices and thus save a sizable amount of
parts alone; but more often than not the greatest cost savings are realized from
indirect savings in other areas. Circuit board size and complexity reductions
save on materials and layout costs. Because most of a system’s large parallel
data buses can reside on the microprocessor chip, the expensive task of
parallel-bus circuit board layout is greatly reduced. More of a system’s func-
tions can be crammed into the space of a single circuit module, thereby reduc-
ing the module and connector count as well as the enclosure size and complex-
ity. All of these savings contribute to the reduction of overall system costs.

Computer Traits

Just as a microprocessor assumes the LSI advantages and disadvantages of its
LSI construction, it takes on the traits of a computer due to its processor-like
architecture. This statement may seem obvious, but it’s important to take a
close look at these computer traits. In many applications they can be more
harmful than helpful.

Microprocessors, like computers, are programmable devices and are versa-
tile in function. This feature tends to make microprocessor-based systems eas-
ily reconfigurable and able to perform complex tasks in a step-by-step manner.
Many of a system’s complex functions thus need not be implemented in
special-purpose system hardware. Complex hardware development effort is
considerably reduced as the burden is shifted to the system software.

Don’t think that the programming will be an inconsequential matter, how-
ever. Algorithm and program development are costly and time-consuming.
Depending on the situation, a program can cost as much as $200 per line of
debugged code. The true advantage lies in the fact that programming is usually
less costly than building the equivalent hardware.

Like most large computers, microprocessors are Von Neumann in charac-
ter: they execute one instruction after another in a predefined sequence to
implement a given task. This type of machine has demonstrated its usefulness
for problem solving, but the limitation that only one instruction can be exe-
cuted at one time may lead to some serious consequences when constructing a
control system. When multiple events must be examined or initiated at pre-
cisely the same time, a microprocessor falls short of the goal. An illustrative
example is the case of a microprocessor-based inertial navigation system.

Assume that an aircraft’s inertial navigation system outputs navigational
reference data at a rate of one sample per millisecond. Among the navigational
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data are three bytes of data containing degrees, minutes, and seconds of longi-
tude. The navigational processor (in this case the candidate for a microproces-
sor application) is required to sample these and other data and plot the
aircraft’s position on a display device. The three bytes of data must be sampled
simultaneously by the processor if accurate results are to be obtained. If they
are not, the microprocessor may take the degrees from one sample and the
minutes and seconds from the next, resulting in an erroneous input. A sampling
error occurring at the transition between 120°, 59’, 59'" and 121°, 0/, 0"’ could
result in an input of 120°, 0’, 0'’. This constitutes an error of 59’, 59", approxi-
mately 70 miles at the equator.

There are two possible solutions to this problem. The microcomputer could
sample a status line indicating that the navigational data will be stable for a
known period of time and proceed to sample data during the safe window, or
external registers could be used to simultaneously capture all three bytes of
data. In either case additional hardware would be required, turning the micro-
processor into just another part in a component system.

Microprocessor manufacturers have realized the need for simultaneous
event processing and have built interface chips to aid microprocessors in per-
forming simultaneous tasks.

Data Processing Ability

Microprocessors are appearing in more and more small-business and scientific
computers. How do microprocessors stack up against highly developed MSI-
and SSI-based CPUs?

In regards to computer architecture or processing power, microprocessors
are nothing new; in fact, in most cases their computer architecture is crude.
There’s not much being done on microcomputers which hasn’t or couldn’t have
been done 20 years ago on larger minicomputers or mainframes; however, it
now costs three orders of magnitude less to do it. Add to this the fact that a
microcomputer of similar complexity is extraordinarily reliable. The cost-and-
service element has therefore disappeared, allowing computers to find their
way into tasks where they were not economically feasible before.

There are three primary factors hindering even wider business and scienti-
fic microcomputing use: the high cost of software development, inherently low
processor speed, and the continuing high cost of peripherals.

As with any computer system, microcomputers need a software support
base for data processing, business, or scientific applications. Editors, as-
semblers, high-order languages, and application packages take time and money
to develop; and unlike microprocessor prices, software costs are constantly
rising. What makes matters worse is that new microprocessors are being intro-
duced constantly. Only a few ‘‘start-from-scratch’’ microprocessors currently
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have large software support bases (notably the 8080 and 6800 series). One
approach taken by manufacturers to alleviate the software support problem is
to simply not ‘‘start from scratch,’’ but rather pattern a microprocessor around
a current minicomputer’s instruction set, making that microcomputer totally
software compatible with an existing machine. Digital Equipment Cor-
poration’s LSI-11, Data General’s Micro Nova and Texas Instrument’s
9900 are notable examples of this approach. It’s quite ironic that much of the
software for these microcomputers was written in the 1960s, before micropro-
cessors were even invented, dispelling the ‘‘software follows hardware’’” myth
to some extent.

The software support base problem has actually hindered the introduction
of more efficient and architecturally more advanced microprocessors. Software
upward compatibility has become a matter of prime importance when introduc-
ing new processors. The Intel 8086 and Motorola 68000 are being called the
‘‘new generation of microprocessors,’”” yet many of the old inefficient instruc-
tions and architectural traits are still present.

The computer world seems to have a never-ending hunger for more com-
puting power. Mainframes and minicomputers have been increasing in per-
formance, and programming languages as well as programs themselves have
come to rely on brute-force processing power and large quantities of memory to
mask program complexity and inefficiency.

When comparing minicomputers and mainframes to microcomputers on a
processing-speed basis, micros will be seen to be about 20 years behind. Ad-
vanced technology is beginning to close this gap, however. Memory in micro-
computer systems is also very limited when compared to large machines.
Because of these factors, computer programmers have to take a large leap
backward in their programming methods when confronted with a micro system.
For most microcomputers, hand-optimized assembly language is still being
used extensively (and expensively).

Microcomputer system software is rapidly coming of age. High-order lan-
guages which compile very time- and memory-efficient codes such as Intel’s
PL/M and Zilog’s PL/Z are gaining wide acceptance in the field. But interface
and peripheral costs tend to detract from a microcomputer’s desirability in
business and scientific applications. Although a microcomputer-based central
processing unit is a relatively inexpensive investment, the peripherals it drives
are quite costly. A typical small-business processing system, for example,
requires a CPU ($1500 for a micro—three times that for mini); but it may also
require:

Console terminal —$1500

Printer —$4000

Two disks (floppy)—$2000

Appropriate mounting hardware —$1000
System and business software —$4000
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A microcomputer CPU only costs a third of what a minicomputer would cost. It
is also much less powerful; but if the less expensive machine can handle the
task, the savings initially seem worthwhile. Once all the peripherals have been
taken into account, however, the microcomputer-based system doesn’t appear
altogether advantageous. A minicomputer can give double or triple the per-
formance of the microcomputer and only costs about 15% more on the system
level. The peripheral cost remains the same whether you opt for a mini or a
micro.

This situation can be changed by the introduction of inexpensive periph-
erals. Reducing peripheral costs, however, is not an easy task because of the
expense of the mechanical components. Printers and disks are two examples of

; highly mechanical peripherals. Fortunately, microprocessors can replace much
of this mechanical hardware. Volume production will also bring mechanical
costs down.

New Product Applicability

The small size and low power requirements of microprocessors are creating a
few new forms of information processing systems. The long-dreamed-of
desktop computers are now available at very low cost. The whole personal
computing concept is based around these small computers.

Intelligent peripherals which are in most respects small, dedicated informa-
tion processing systems are coming into common use. Intelligent peripherals
usually contain a microprocessor to handle data formatting and communication
from the computer system to the peripheral device. Internal functions such as
offline editing and formatting in intelligent terminal are also performed.

Advanced microcomputer games are also small information processing sys-
tems made economically possible by the microprocessor.

All of the advantages and disadvantages of microcomputer-based informa-
tion and control systems just described are not only due to the microprocessor
chip itself; all the circuitry surrounding the processor, driving the peripherals,
sensing the inputs, and channeling the outputs play a part in making a micro-
computer a usable system.

INTERFACES

Interfacing is defined as the mating of one component in a system to another to
form a totally operational unit. Since a microprocessor standing alone is essen-
tially useless, extensive interfacing is required to build a usable product. In this
section we examine some of the typical interfaces found in a microcomputer
system.

Microcomputer systems vary in size and configuration. With the new one-
chip microcomputers it is possible to build a complete system from just one LSI
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Figure 1-1 A typical microcomputer system and its interfaces.

chip and a few discrete parts, but the most common microcomputer systems
consist of considerably more. A microprocessor chip, memory chips, and a few
/O interfaces are usually included. Figure 1-1 illustrates a typical microcompu-
ter system. The microprocessor executes programs out of read-only and
random-access memories (ROMs and RAMs) and takes user commands and
sensory inputs through the three interfaces.

The interfaces have been broken into four basic categories: operational
overhead, user-interaction, sensory, and control.

Operational Overhead Interfaces

Operational overhead interfaces are those interface components necessary to
make a processor function on the most basic level. This class includes data and
address bus drivers, bus receivers, and the clock circuit surrounding the micro-
processor. Larger interface items such as those for memory and data storage
devices would also fall into this category.

Figure 1-2 further defines the contents of the microprocessor block of Fig.
1-1. A clock circuit, bus drivers, and bus receivers have been used to connect
the microprocessor to the system bus. Bus drivers are amplifiers used to in-
crease the driving power of a microprocessor’s data and control lines. The very
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common MOS microprocessors available today are capable of supplying only a
few milliamperes of drive current on each of their many output lines (8 data
lines, 16 address lines, and 8 control lines on the 6800). The thermal dissipation
from all of these drivers would be too high if more powerful onboard drivers
were built into the chip. The internal driving capability of some microproces-
sors, however, is adequate to drive a small number of interface and memory
ICs directly without using external bus drivers. Complete little systems and
controllers can thus be built with few parts. This ability is one of the Motorola
6800’s big selling points. Even with the 6800, though, bus drivers are needed for
large systems that use a high amount of memory or interfaces; and nearly every
6800-based data-processing microcomputer system uses them just to be on the
safe side. ,

Bus receivers perform three functions: bus load reducing, bus filtering, and
impedance matching. Data, address, and control buses are relatively long and
are subject to noticeable transmission-line effects (signal attenuation, noise
pickup, waveform alteration, and so on). Interfaces on the buses act as stubs
and reflection points and can cause ringing and noise generation due to termina-
tion impedance mismatch. In mainframe systems the ‘‘backplane ringing”’ can
become so bad that active terminators and even ferrite beads must be placed on
the indiviudal bus lines to filter the noise. Bus receivers usually use hysteresis
to increase their noise immunity.

With the exception of the one-chip microcomputers that have built-in RAM
and ROM, microprocessors require external memory and associated interface
components. Figures 1-3 and 1-4 expand on the ROM and RAM blocks in
Figure 1-1. Bus receivers are used on the memory address lines to reduce
microcomputer bus loading. Bus drivers are used on the memory ICs because,
like the microprocessor, memory elements cannot be used to drive too many
loads.

At this point I must digress for one moment to discuss form. The lowercase
letter k is the symbol for kilo in the International System of Units (SI)—and
kilo means thousand. In microcomputer usage k more commonly stands for
1024; the value 2 raised to the 10th power. In this text, a capital letter K with no
space is used to represent this value. ,

Memory modules, especially those built with many small RAMs, have
large numbers of memory ICs with their address lines wired in parallel. A 16K X
8-bit RAM module would put 128 (16 x 8) loads on each address line if 1K X 1-bit
RAMs were used. An equivalent RAM module built with 16K X 1-bit RAMs
would only put eight loads on the processor address, data, and control lines. As
this example shows, larger-memory ICs help reduce interface circuitry by reduc-
ing the amount of bus loads. Wide-word-width memory ICs such as Motorola’s
6810 (128 x 8-bit organization) can reduce or eliminate the need for memory
interface circuits in very small systems in which small amounts of memory are
required. This IC features a full 128 bytes of data yet presents only one load to
each address and data line.
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Figure 1-4 A typical microcomputer’s ROM interfaces.

Memory control lines usually require interface circuitry also. Static RAMs
require just a read—write line and possibly a chip select line driver. Dynamic
RAMs require much more. Chip enable, row select, column select, and write
enable are often present, and the timings on these signals are not always
straightforward. In many cases, high-voltage MOS drivers are required to drive
the chip enable lines. Modern dynamic RAMs demand less critical timing and
voltage levels than earlier designs.

Read-only memory interfacing is very much like RAM interfacing. Re-
ceivers on the address lines and drivers on the data lines are used. No receivers
on the data lines are necessary, however, since by definition no data is ever
written into a ROM.

Field programmable ROMs, such as the ultraviolet-erasable programmable
ROMs (EPROMS) and electrically erasable ROMs, sometimes require write
interface circuitry if in-circuit programming is required. Since PROMs require
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unusual programming voltage levels to insure that normal signals don’t modify
the PROM’s contents, interfacing circuits become more complex. Again, high-
voltage drivers are required in the PROM interface.

Semiconductor RAMs and ROMs are the most common memories used in
microcomputers. In certain applications, however, magnetic core memory is
used to store data. Core memory is one of the most difficult storage media to
interface. ,

A core plane consists of thousands of small magnetic donuts strung into a
square grid with driving wires. By selectively applying current to the driving
wires, magnetic fields can be built up and collapsed. Ones and zeros are defined ,
by the magnetic fields. A very minute sense current is induced in a sense wire
(which strings through all the cores) when a field collapses. By monitoring the
collapsing fields, ones and zeros can be detected.

There are problems that make it difficult to interface core memory. High
currents (several amperes) for short periods (fractions of microseconds) are
required to drive the grid lines; thus necessitating the use of special drive
transistors. Very small-current sensing is required for the sense wire, so ampli-
fiers must be used. Finally, reading out of core is destructive; that is, the
memory contents are destroyed with the collapse of the magnetic fields. If
provisions for rewriting are not included in the CPU, special interface circuitry
must be provided to rewrite the data back into memory.

When interfacing core memory to a microcomputer system, one very rarely
has to deal with the core plane itself. Core is almost exclusively sold in modular
form with all the critical interface components (current drivers, sense ampli-
fiers, and write-after-read circuitry) included. These modules can be treated as
regular RAMs. Semiconductor RAMs also have a critical array of data storage
cells that require special interfacing, but the user never has to interface directly
to them because onchip interfaces (again, drivers and sense amplifiers) do the
job.

Interfaces that control external mass memory systems, such as magnetic
tapes, disks, and floppy disks, can also be grouped under the operational
overhead category. These devices usually have their own controllers built into
them to handle the mechanical sequencing required. Interfacing them to a
microprocessor bus is simply a matter of building a serial or parallel data
communication interface to send commands and data and retrieve status and
data. The specifics of parallel and serial data communications channels and
complex controllers are covered in detail later in this text.

User-Interaction Interfaces

User-interaction interfaces are those circuits required to send and receive user-
specified data to and from a processing system. This interface class includes
computer terminal interfaces, keyboard interfaces, graphic-device interfaces,
and voice recognition and synthesis interfaces.
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People and computers work with totally different languages; large and
complex devices are required to convert from one to another. Basically, two
things must be converted: representation and presentation speed. The repre-
sentation conversion task has traditionally been assigned to the computer pe-
ripheral, while presentation speed conversion has been assigned to the CPU.
The standard teletypewriter or computer terminal is a good example of this.
The user enters data through the keyboard (a mechanical-to-electrical inter-
face). The data is converted to the American Standard Code for Information
Interchange (ASCII) and is sent to the CPU in the computer’s form of represen-
tation: a string of ones and zeros. The processor and its associated interfaces
use either interrupts or software wait loops to synchronize the processing with
the user’s data entry rate, thus performing the presentation speed conversion.

Communication in the other direction is similar. The processor sends
characters to the printer at the fastest rate the unit can handle, using software
wait loops or interrupts. The ASCII is converted back into mechanical motion,
and the data is printed at the terminal.

Since people can only accept data at a very slow rate with relation to the
computer’s processing speed, serial interfaces are commonly used to drive
peripherals. Breaking the multibit ASCII down and sending it to the processor
a bit at a time cuts the communication line size down to three basic signals:
serial transmit data, serial receive data, and a common ground. The EIA RS-
232C interface standard is the most commonly used serial standard and is
specified to operate at up to 20,000 serial bits per second.

Many high-speed peripherals require a faster flow of data than a slow speed
serial interface will allow. When faster transfer rates are required, designers
usually resort to high-speed parallel interfaces. One example in which a parallel
interface would be useful is the case of the high-speed line printer. This device
is nonreal-time from the user’s standpoint because the user does not react with
the device while it is in operation. The computer listing is printed at a high rate
and the user looks at it later. A parallel interface is used to supply the line
printer with data at a rate which would exceed the RS-232C standard’s limit.

Because many lines must go to a peripheral when a parallel interface is
being used, the complete controller is not always built into the peripheral. An
interface card which plugs into the CPU often contains much of the control
circuitry for the peripheral. When parallel data transfers are used, the data
going across the parallel lines does not have to be in the ASCII format, so the
designer usually decides which lines he is going to use for communication with
the peripheral. Although this approach to parallel interfaces improves effi-
ciency and package size in some cases, it has one major drawback: nonstan-
dardization. There are a few parallel interface standards such as the NTDS
military standard, but no parallel standard has gained as wide an acceptance
as the RS-232C serial standard. The result, of course, is a unique interface card
for every processor with which the peripheral will be interfaced.

Graphic devices, such as raster-scan display terminals, will frequently be
interfaced to a system that uses a parallel interface. People seem capable of
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grasping large amounts of graphic information very quickly, therefore high data
transfer rates to the display device are necessary. Again, custom parallel inter-
faces are the most common type. Some microcomputer graphic display units
are simple enough so the whole display unit’s circuitry, as well as the interface
components, can fit on one plug-in module. The result is a single video output
line that goes from the display unit module in the computer to the video monitor
on which the generated images are displayed.

Figure 1-5 illustrates a simple serial RS-232C interface to an interactive
terminal (an interactive terminal is one usable by the operator for computer
intercommunication). Drivers and receivers are used to buffer the microcom-
puter bus. An asynchronous communication interface adapter (ACIA) con-
verts the microcomputer’s parallel bus data into a serial format, and RS-232C
drivers and receivers are used to generate the proper voltage levels. The rate at
which data is sent to and from the terminal is determined by the rate at which
serial data is shifted out of the ACIA. The baud-rate generator produces a clock
waveform to precisely control the serial shift rate. Typical serial data transfer
rates for serial communications range from 110 to 19,200 bits per second.

Some of the other user-interactive peripherals are joysticks, light pens,
keypads, and LED indicators (these are covered in detail in later chapters).

Sensory Interfaces

When dealing with strict scientific computing or business data processing, a
central processing unit, operational overhead interfaces (including memory and
disk interfaces), and a few user-interaction interfaces for computer terminals
and line printers are usually sufficient to accomplish the task. Control systems
are a different matter, however. Events in the real world must be monitored.

Sensory interfaces are those circuits required to monitor events in the real
world and send the results to a microprocessor system. Pressure sensor, ther-
mal sensor, flow-rate indicator, and tachometer interfaces are but a few of the
interfaces that fall into this class.

The real world is an analog world. Temperature, pressure, and speed can
assume an infinite range of values. The devices used to sense parameters like
these are usually based on the electrical or mechanical response characteristics
of a certain material to the given parameter. A thermistor, for example, ideally
changes its resistance in a linear manner with a change in temperature. For a
microcomputer to manipulate thermistor-sensed temperature information, an
interface that converts resistance to a byte or two of data in the microprocessor
is needed. The interface can be considered as two functional pieces: the
resistance-to-digital-value converter and the digital-value-to-microprocessor-
bus interface.

The process of changing the variable resistance to a variable digital value
begins by using the thermistor’s variable resistance characteristics to make a

~ variable-voltage source. A simple two-resistor voltage-divider network, with
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one of the resistors being the thermistor, serves this purpose. The resulting
temperature-dependent voltage can then be sent to an analog-to-digital (A/D)
converter. This device takes the variable-voltage signal applied to the analog
input and generates a word of data which represents this voltage. A/D con-
verters are relatively complex pieces of hardware that have gained wide accep-
tance in the interfacing field due to their ability to match the analog world to the
digital world. ‘

The word generated by the A/D converter must then be sent to the micro-
computer system. If the temperature sensor interface is far away from the
processor and extremely rapid samplings are not required, converting the data
word to a serial signal is desirable. The serial signal can then be sent to the
microcomputer, converted back to a parallel data word, and put onto the mi-
crocomputer bus when the microprocessor requests it.

It may be possible to save parts by mounting the entire temperature-
sensing interface including the A/D converter on one module at the microcom-
puter, thus avoiding long parallel lines or serial-to-parallel conversion. If the
thermistor is at a distant location, however, a long analog signal line would be
required. Analog lines are very susceptible to noise, especially when carrying
very low-level signals, making this arrangement undesirable. In general, when
analog sensors are being used, you should convert analog signals into digital
signals as soon as possible and keep all analog lines well shielded to reduce
noise levels.

Figure 1-6 shows the thermistor interface to a 6800-based typical micro-
computer system. Other interfaces are simpler than the A/D converter just
described. A mechanism that counts items as they pass on an assembly line and
a sensor that detects an intruder by the breaking of a light beam are two cases in
point. No analog-to-digital conversion is necessary as a simple one-bit sense
signal presents adequate information.

In the case of the photoelectric assembly-line counter, the counting pulses
may possess some noise due to the photoelectric circuit’s response characteris-
tics and uneven breaking of the beam. A filtering circuit may therefore be
needed to prevent false counts. It may also be necessary to translate the
circuit’s voltage level to a level compatible with the microcomputer’s logic
family. A simple resistor dividing network or a resistor and voltage-limiting
zener diode can be used if the photoelectric circuit puts out more voltage than
necessary. If greater voltage levels are required, an amplifier circuit consisting
of a few transistors or an operational amplifier is necessary. Once the pulse has
been translated to the proper voltage level, a driver can send the pulse to the
microcomputer where it can be sampled along with other single-bit signals.

Single-bit status lines can conveniently be sampled using one bit of a
parallel-input-port interface. A software loop can repetitively sample (poll) the
port and take appropriate action on the bit’s status.

Sensory interfaces are often used in industrial control, computerized secur-
ity systems, instrumentation, automotive electronics, and other fields. In these
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Figure 1-6 A typical microcomputer’s sensory interface.

environments a microcomputer controller may be required to sense the status
of many machines, each of which may be running on a different electrical
circuit.

Vastly different voltage levels may be present on different machines, so the
need for electrical isolation between sensors arises. The most common method
of electrically isolating interfaces is to send the data from each machine through
an optoisolator. This device consists of a light-emitting diode (LED) illuminat-
ing a phototransistor. Modulating the LED causes corresponding changes in
the phototransistor, but because the only medium physically connecting them
is the light beam, thousands of volts of electrical isolation is provided. Optoiso-
lators increase interface complexity, however. Low-current output sensors
require additional amplifiers to drive the LED, and amplifiers are sometimes
required on the phototransistor side as well.

Control Interfaces

Once the sensor provides the status and the microcomputer decides what ac-
tion is to be taken, a control interface is usually needed to carry out the action.
Control interfaces take a microcomputer’s milliampere-level data signals and
convert them to the proper voltage and current levels to control real-world
devices. The circuitry needed to drive a stepping motor on a machine tool, to
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activate a solenoid-controlled valve, or to illuminate a bank of stoplights falls
into this interface category.

Microelectronics has made great progress in reducing the amount of cur-
rent needed to perform logical functions. Internal currents in microprocessors
are continually dropping as smaller, more advanced device technologies be-
come available. These advances produce lower power, faster, and denser
devices but take microcomputers further away from real-world signal levels.
For example, a 1 pA (one microampere) signal within a MmiCcroprocessor may
have to be amplified by a factor of one hundred million to activate a large
industrial motor. For this reason, control interfaces use a large variety of parts.
Low-power parts like bus receivers and small transistors are used to take data
from the microcomputer bus and perform preliminary formatting and amplifica-
tion. Large transistors and solid-state relays (triacs, diacs, SCRs, and the like)
are used to perform larger-current switching functions.

When a variable-voltage analog signal is required in a control system,
digital-to-analog (D/A) converters are used. These devices mix and add cur-
rent, depending on the value of the word specified at the digital input. The
resulting analog voltage at the analog output is directly proportional to the
value of the data word.

PRACTICAL MICROCOMPUTER APPLICATIONS

The following four examples of microprocessors in real-world systems are
designed to give you more than a theoretical view of how microprocessors and
their interfaces are used. The examples illustrate the applicability of the four
interface classes and describe some of the problems encountered in accom-
plishing the interfacing task. Many new interface ideas and terms will be
mentioned. These topics are treated at a greater depth in following chapters.

The Personal Computer System

One of the first things that comes to mind when microcomputers are mentioned
is the personal or small-business computer system. Personal computers are
small computers built around popular microprocessors (usually having a wide

. software support base) that sell for a relatively low price. These small systems
usually include a CPU, 4K to 64K of memory, a console terminal, and a
magnetic storage device such as a floppy disk. The central processing unit,
console terminal, and magnetic data storage units sometimes come in separate
enclosures, but the trend is toward integrated units with built-in keyboards,
display generators, and floppy disks.

From an interface standpoint, personal computers are relatively simple
devices. A few user-interaction interfaces control the keyboard, display gener-
ator, printer, and other interactive peripherals. Operational overhead inter-
faces usually include bus drivers and receivers on the CPU card, memory
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interfaces, and interfaces for the magnetic storage devices. The micropro-
cessor’s address, data, and control lines are fully buffered because personal
computers are designed to be expandable, and each additional module adds
extra loads to the microcomputer bus.

A personal computer’s user-interaction interfaces are usually quite simple
p P

because data communication standards are often followed in the peripherals
associated with the system. RS-232C serial interfaces or 20 mA current-loop
interfaces with 110 to 9600 bit per second (bps) data transfer rates are used on
most terminals.

A personal computer’s memory is usually broken into memory blocks of
4K to 16K (4096 to 16384) bytes per block. Some blocks contain ROM for
permanent storage of important programs and the system monitor program,
and some blocks contain RAM for data and program read—write storage. Each
memory block must have an address recognizer to determine if it is being
addressed. Each memory module that plugs into the microcomputer bus must
have bus receivers for the address lines, bus drivers and receivers for the data
lines, and control components for the read—write and refresh logic.

The interfaces to nonstandard system peripherals are usually the most
complicated interfaces within the personal computer system. A highspeed line

printer and floppy disk controller are two cases in point. A floppy disk control-

ler controls the transfer of data from a microprocessor to a slowly rotating
flexible magnetic disk. The interface is actually a combination of an operational
overhead, sensory, and control interface. Commands and data must be taken
from the microcomputer bus. Sensors must determine the orientation of the
spinning disk and the position of the disk head. The interface must then posi-
tion the head to the proper disk track using a stepping motor or voice-coil
movement and provide proper write current through the head to write onto the
disk (or amplification to read from it).

Additional features such as ‘‘disk power-down” (automatic disk motor
shut-down when data is not being accessed) also must be built into disk control-

lers. Due to this complexity, disk controllers typically approach 50% of the cost .

of a disk drive—interface system; they may cost even more than the central
processing unit module in many personal computers. This situation is rapidly
changing. L.SI is currently doing to disk controllers what microprocessors did
to computers. A few manufacturers already supply single-chip floppy disk
controllers.

Figure 1-7 illustrates one of the first personal computer systems to gain
wide popularity —the Southwest Technical Products 6800 system. This system
is built around the 6800 microprocessor and follows Motorola’s suggested de-
signs very closely. A microcomputer bus features expandability of up to five
memory cards or large peripherals. A smaller subset of the microcomputer bus
can support up to eight interface cards in addition to the five full-size cards
(Figure 1-8 depicts the bus structure and Fig. 1-9 shows the processor card and
a small interface card).
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mieE 6800 =507 ’ !

Figure 1.7  Southwest Technical Products’ 6800-based personal computer system.

Figure 1-10 shows one of the most popular integrated personal computer
systems—the Apple II. This system contains a complete processor, memory,
and cassette interface all on one board. Eight small peripheral sockets are
provided for device expansion. This personal computer is built around the 6502 .
microprocessor.

Intelligent Computer Terminals

Microprocessors are placing computing power in peripherals that previously
needed complete host computer support. The ‘‘intelligent computer terminal’’
is a good example of this. Traditional ‘‘dumb’’ terminals accept serial data on
an RS-232C or 20 mA current-loop line and put the appropriate characters on
the display screen (assuming it is a video terminal). There may be a few crude
cursor control commands such as cursor up, line feed, and carriage return. The
terminal’s keyboard sends characters to the host computer over a standard
interface as they are typed by the user. Basically, this sort of terminal is the
video equivalent of a standard teletypewriter terminal, or as personal comput-
ing hobbyists say, ‘‘a TV typewriter.’’ File editing and simple calculations must
always be done by the host computer using this kind of terminal.
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Figure 1-9  Southwest Technical Products’ 6800 system processor and interface card.

By adding some intelligence (a small microcomputer, say) to the terminal,
simple tasks like offline editing and text formatting can be performed. In addi-
tion, the terminal becomes user-configurable. User-defined data communica-
tion formats can be programmed, and certain special characters sent by the
host computer can initiate very powerful processes within the terminal.

A graphic terminal’s capabilities can be greatly enhanced using a built-in
microcomputer. Complex graphic functions like zoom, line drawing, and shad-
ing can be performed totally by the terminal. An intelligent graphics terminal
can perform tasks that, until recently, required a dedicated minicomputer with
a video display terminal.

The Ramtek 6000 is an intelligent graphic terminal built around a Zilog Z80
8-bit microprocessor. It generates alphanumerics as well as graphics such as
vectors, conics, and color shading. Alphanumeric, special function, and cursor
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Figure 1-10  The Apple II personal computer system. (Courtesy Apple
Computer, Inc., Cupertino, Ca.)

control keyboards are provided. The graphics unit is a 256 X 512-bit dot matrix
raster-scan unit, with each dot corresponding to a bit in the built-in display
memory. Three 256 X 512 memory planes provide a 3-bit code for each screen
bit, allowing eight levels of shading or eight colors. Figure 1-11 shows the
Ramtek 6000.

Examination of the internal processor structure reveals that extensive in-
terfacing is used to give this terminal its many capabilities. A Z80 microproces-
sor is interfaced to a common bus. From 4K to 16K bytes of RAM are used for
program storage and 16K to 28K of PROM hold the commonly used graphic
generation routines (vector, conic, plot, bar chart, and so on).

Data communication emulation programs are also stored in PROM. When
the system is turned on, it must be bootstrap-loaded; that is, an initial user-
interaction and terminal communication program must be executed, just as
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. B,

Figure 1-11  One of Ramtek’s 6000-series intelligent graphics terminals.
(Courtesy Ramtek Corporation.)

with a full-scale computer. The Ramtek 6000 executes a teletypewriter emula-
tion program stored in PROM upon power-up, causing the terminal to act as a
normal communications terminal until other instructions are given.

Three graphic memory planes are also interfaced to the microcomputer
bus. Graphic memory planes are large banks of memory (256 X 512 bits in this
case) that are continuously being read onto the terminal’s display screen. Bits
that are in the logic 1 state represent white dots on the display screen while bits
in the logic 0 state represent black dots. By using three planes, bits on one
plane can represént blue data, bits on another green data, and bits on the third
plane red data. Complete color capability is the final result. Since the display
memory must be continually read onto the screen, the microcomputer must
insert data into the planes between rapidly occurring refresh read cycles. This
is called memory access interleaving. Adding this capability to a memory takes
a lot of extra interface components. To relieve the microprocessor of the bur-
den of critical timing, the memory interface on the R6000 makes the two-port
nature of the graphic memory planes transparent to the microcomputer system.

25
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Figure 1-12  The Ramtek 6000 internal microcomputer bus. (Courtesy Ramtek
Corporation.)

A separate display generator and video mixer are used in the R6000. Send-
ing video data to a display screen at 6 megabits per second is simply too much
of a job for a Z80 to handle; but it is simple enough for separate circuitry to
perform. The display generator, however, must be interfaced to the microcom-
puter data bus to be properly controlled. The R6000 has a 4K data area in
memory set aside as a text—cursor generator interface area. Simply writing into
memory at these locations controls the display generator. Figure 1-12 shows
the Ramtek 6000 bus structure.

Finally, communications interfaces are necessary to provide terminal com-
munication to the outside world. The R6000 has three RS-232C I/O ports to

perform this function. One port is used for terminal-to-host-computer com-

munication and is selectable for 50 to 9600 baud (bits per second in this case)
communication rates. Two additional ports allow for an optional cursor control
device, such as a joystick, and an auxiliary serial device, such as a printer or
graphic hard-copy unit.

Another interesting intelligent graphic terminal is Hewlett-Packard’s 2648A
shown in Fig. 1-13. This terminal features a 720 x 360-dot raster-scan bit map




The Microcomputer’'s Role in the Real World 27

Figure 1-13 = Hewlett-Packard’s 2648 A intelligent graphics terminal. (Courtesy
Hewlett-Packard, Palo Alto, Ca.)

and HP’s own microprocessor. The terminal has no color capabilities but its
black-and-white capabilities are astounding. Extensive software provided with
the terminal deserves most of the credit. Automatic plotting, rubberband line,
patterned shading, text writing in any direction (including upside-down), and
offline editing are just a few of its features. Additional hardware is interfaced to
the microcomputer to perform computationally difficult tasks such as zoom and
pan. '

The Automotive Computer

Microcomputers have great potential in the field of automotive electronics. An
automobile has so many functions to monitor and control that experts in the
microprocessor marketing field feel that most new cars by the mid-1980s will
have no less than three microprocessors, thus creating a market for some 100
million microprocessors per year. Not only will microcomputers be sold, how-
ever: sensors, controls, and interface parts will be in demand in even greater
numbers. ‘

The first application of automotive microcomputers will be in the engine
control and pollution control areas. Automotive manufacturers already have
experience in the areas of electronic carburetors, fuel injection, ignitions, and
transmission systems, mostly due to development efforts aimed at pollution
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control. In many cases the sensors and controls are already there and the
microprocessor and its interfaces are merely add-ons.

Automotive microprocessors are currently controlling carburetor and fuel
injection systems, ignition systems (spark advance), and pollution systems
(exhaust gas recirculation) on a trial basis. (The big three auto makers are
currently using Motorola, Toshiba, Texas Instruments, RCA, and Intel micro-
processors and interface components.)

The 1980s and *90s will see even greater acceptance of the microcomputer
in automobiles, and the applications will not be limited to engine control.
Everything from fuel economy measurements to navigation may be
incorporated.

An interesting example of a futuristic microcomputer-based automotive
system is the optional dashboard on the Cadillac Seville: the Trip Computer.
This unit may not be representative of the common dashboard of the future, yet
it presents possibilities for automotive applications of microprocessors.
Cadillac’s primary reason for introducing it is to gain engineering experience,
as future microcomputer decisions can be made on the sales and service record
of the Trip Computer.

The Trip Computer consists of five circuit modules: processor, sensory and
control interface, power supply, speedometer, and digital clock. The unit re-
places the conventional speedometer, fuel gages, and clock with two 2-digit
displays, one 4-digit display, and a 12-button keypad. The displays are 100-volt
gas-discharge displays whose brilliant orange is bright enough to overcome
ambient light levels and avoid the obvious pitfalls of having red lights on the
dashboard. )

Not only does the microcomputer measure speed, time of day, fuel flow,
and fuel levels; it also computes miles per gallon (average and instantaneous),
driving range on remaining fuel, estimated arrival time, and engine speed and
temperature.

The driver controls the Trip Computer by entering appropriate commands
on the dashboard-mounted keypad.

All of the stated measurements and calculations are quite trivial for the
Motorola M6800 microprocessor, once the data has reached the microcompu-
ter. But many interfaces must be crossed first.

The speedometer and engine tachometer drives have rotation sensors,
while the gas tank has a fuel-level sensor. The engine has a temperature sensor,
and fuel flow is accurately measured by counting the modulated fuel injector’s
pulses. The microcomputer contains two standard one-chip interface ICs and a
custom I/O and clock chip. Onchip high-voltage drivers are used to illuminate
the gas-discharge display.

There are still a few problems to be overcome in automotive microelec-
tronics. Dealer maintenance and production volume have to be considered.
Reliability is another big problem. The automotive world is an extremely se-
vere environment; shock and thermal resistance of parts must be high, and
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military-like specified parts are required. Microcomputers will find their way
into more critical automotive areas, but only after the problems encountered in
first-generation hardware are solved. Figure 1-14 illustrates the functions of a
future automotive microcomputer system.

Machine Tool Control

Personal computers, the latest graphic terminals, and computerized games are
widely talked about topics in the microcomputer field, but not much is said
about the ways in which microprocessors are revolutionizing industry. In re-
gard to interfaces, the industrial microelectronics field presents some of the
biggest challenges —especially in the way of sensory and control interfaces. As
the final example of microprocessor applications, let’s look at a micro-
computer-controlled machine tool and its interfaces.

Microcomputers are currently being used in heavy machine tools to per-
form control and sensory functions. The cost advantages offered by the micro-
processor allow extra precision and additional features to be added. A metal
forming press brake equipped with an M6800 microprocessor-based monitor
and control system is one of this new breed of machinery.

The machine operates as follows: A piece of sheet metal is inserted hor-
izontally into the machine and positioned accurately with a gage that deter-
mines the exact position. A hydraulic press then forces the sheet into a die,
where it is bent into the desired sheet-metal part.

This is a fairly unsophisticated machine operation. Two events must be
monitored and controlled: the positioning of the sheet metal and the movement
of the hydraulic press. The positioning of the sheet metal is monitored using
odometers. A rotary encoder is used to sense the hydraulic press movement.
Odometers and rotary encoders are electromechanical sensors that produce
bidirectional square waves indicating movement. Sensory interfaces must con-
vert the encoded pulses into a digital word the microprocessor system can use.
Pulse-encoder logic and a parallel-bus interface handle the task nicely. Figure
1-15 illustrates the microprocessor controller for this machine.

Once the microcomputer has the metal and press position information, it
computes the remaining distance to move the metal, the press velocity, and
acceleration. Because the microprocessor runs at a 1 MHz clock rate, the
computations can be done in real-time while the machine is in operation. Using
the sensed and computed values, the microprocessor decides how much farther
to move the metal and press and proceeds to control the metal-moving motors
and hydraulic press. Control interfaces are required in this case. A motor
switching circuit, a D/A converter, and an electrically controlled hydraulic
valve are used.

The user-interaction interface consists of a keyboard and 40-character al-
phanumeric display on which piece-part information can be entered. Program
parameters include metal positioning information, press speed, and stop data.
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Figure 1115 A microprocessor-based machine tool controller.

A keyboard interface for data entry and a display interface to drive the
40-character display are used.

The microcomputer and its associated interfaces have proved to be a good
economic tradeoff on this machine. More accurate control (eight times the
accuracy of a manually controlled machine) increases the machine’s produc-
tion efficiency and salability, while the elimination of manual controls and
gages cuts costs.




Microcomputers come in many shapes and sizes. On the low end are the

ters without

10n as microcompu

bare-bones microprocessors that can’t funct

icrocomputer sys-
ipherals are
ith moderate memory

try. At the other end, complete m

ircui
in memory,

extensive support ¢

, floppy disks, and other per

keyboards

ilt-i

ith bu
lable. In between are the one

tems w

ters w

-card m

avai
and

icrocompu

icard system con-

mult

’

it card

1rcu

ted c
icrocomputers that requ

m

try all on one pr

i

and one
A successful m
icrocomputer for the task

1ruc

interface ¢

support

ly no
ires the selection

re near

chip m

ion sets,
try at all
of the r

struct

ign requ

ter-based desi

icrocompu

circur

ight m
is chapter covers all of the above

but some bas

icrocomputers,

ioned forms of m

-ment
th first.

i

Th

ic concepts must be dealt w

HOW THE PROCESSOR
AFFECTS THE SYSTEM

based
itry and

1ICroprocessor

ter-

In a microcompu

Since the microprocessor is the central element

1rcu

system, its characteristics have a great effect on surrounding ¢
interface design. The complexity and design philosophy of the m

ip microcom-

ch
for example, re-

ill be required. A one-

1CE€S W1

determines how many support dev
puter with onboard RAM, ROM, clock, and serial interface,

32




Selecting the Right Microprocessor 33

duces the chip count to a much lower number than that of a similar simple
microprocessor with independent support chips. ,

Certain microcomputers are better suited to certain tasks. In an application
where extensive I/O interfacing but very little data processing is required, an
I/O oriented microprocessor such as the F8 can reduce the complexity of the
interfaces. In an application in which a large amount of computing is per-
formed, a computationally powerful microprocessor like the Zilog Z8000 can
eliminate the need for external processing elements such as multipliers and _
floating-point arithmetic units.

Microprocessor selection affects system power dissipation. A bipolar mi-
croprocessor is a high-speed bipolar device, so all of its system overhead
interfaces must also be high-speed bipolar devices. A whole system built with
bipolar devices (integrated NPN and PNP transistors) will have considerably
higher power dissipation than a CMOS system (integrated FETs) built around a
CMOS microprocessor. The watchword is speed—power product. As a general
rule, the faster and more complex the processor, the more power it draws.

The complexity and size of circuit boards and connectors are also affected
by the microprocessor choice. A 4-bit microprocessor requires half the data
lines of an 8-bit unit. The IC package is also smaller and has fewer pins. A
smaller circuit board with less connectors is thus possible using the smaller
processor.

The choice of mlcroprocessor affects system cost. An expensive micropro-
cessor may indeed replace enough external interface components, circuit
boards, and I/O pins to reduce the overall cost of a system.

There are many other system factors affected by microprocessor choice,
and it is up to you to determine which characteristics are desirable in your
system and which microprocessor will best fit the specifications.

WHAT TO STRIVE FOR
IN SYSTEM DESIGN

Anyone building a microcomputer system has certain specifications and spe-
cific goals which must be met; but there are certain universal characteristics
that are desirable in any system: high reliability, low power dissipation, small
size, easy serviceability, and low cost. System decisions should be based on all
of these characteristics —not just cost. In many cases, especially industrial and
military designs, reliability and serviceability are of paramount importance.

It is also desirable to ‘‘design in’” expandability. A system always seems to
grow or have higher demands placed on it from the time it leaves the drawing
board to the time it goes into production. Microcomputers offer an excellent
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opportunity for expandability. Additional interfaces can be added easily to a
microcomputer bus, and the software can be modified if provisions are made
for expansion.

EVALUATING SYSTEM REQUIREMENTS

The best starting point in determining the proper microprocessor for a system
application is the evaluation of the system requirements. There is no simple
step-by-step approach that will work under all circumstances; rather, the re-
quirements must be considered and weighed against each other to arrive at the
proper decision.

Consider the Task

You should consider what kind of task you are performing—a computational
data processing task or a control task. There are certain microprocessors that
are designed to be computer-like and others that are meant to be used as
controllers. The microprocessor characteristics section will point these out.
The use of a computing-oriented microprocessor in a control application is
likely to increase control interface complexity while providing computational
overkill. This sort of unbalanced system would definitely work, but it would be
more complex, take up more space and power, and be less reliable than a
system built around a control-oriented device.

A system’s function should be evaluated through an unbiased eye. There
are many fine discrete, SSI, MSI, and nonmicroprocessor LSI parts available
for general and special-purpose applications. These parts should be considered
with the system specifications in mind. Microprocessors are general-purpose
devices. A device designed for a specific task can usually perform the task
faster and with less power consumption and complexity than a microcomputer.
The universal asynchronous receiver/transmitter (UART) is a good example of
a very specialized LSI part. This device receives and sends a serial bit stream
and performs serial-to-parallel and parallel-to-serial conversion. Used for data
transmission, the UART is typically a 40-pin package that draws very little
power. A UART’s task could easily be handled by a microprocessor with
ROM, a small scratchpad RAM, a parallel interface, and -a clock circuit. A
clbse examination of this implementation, however, reveals that four times the
number of parts and nearly ten times the power is required to perform the same
task using the microprocessor. This is hardly a good application for a micro-
computer, although it would seem to be if you didn’t know of the existence of
the UART. When evaluating system requirements it is wise to search through
available literature for specialized devices to fill your specific applications.




Reliability

Reliability may be another reason to avoid microcomputer implementations of
logic in some situations. Microprocessors can be used to cost-effectively re-
place large discrete gating networks, but in critical applications, adherence to
discrete gating may be the wiser choice.

Microcomputers are computers and they can ‘“‘crash’ (get out of the con-
trol program). A glitch on the power supply could cause this to happen. It
would be nice if we could think of microcomputers as ideal devices, but in the
real world we must consider nonideal situations. A combinatorial gating net-
work has no states and is therefore self-recovering after a glitch (as long as the
inputs remain the same). A device with states (flip-flops or memory cells) has a
high probability of changing states when a glitch comes along, and micropro-
cessors are just full of flip-flops and memory cells.

Performance Requirements

Another factor to evaluate is system performance requirements. The micro-
computer must be able to perform the system’s task in a given length of time.
When choosing a microprocessor, an adequate processing power margin for
expansion should be allowed. Microprocessor-based systems are somewhat
less versatile in performance expandability than corresponding discrete-
component implementations. If a microprocessor is being pushed to its compu-
tational limits and the need for more computing power arises, there are two
alternatives: speed up the software if it isn’t already optimized, or switch to a
higher-performance microprocessor. A system built with discrete components
is much easier to add capability to incrementally.

There are, of course, exotic alternatives to a totally new processor if you
should wind up short on computing power. Add-on circuits and multiple pro-
cessors may be used; but unless these are ‘‘clean’’ additions and not “‘patch-
work fixes,”” they shouldn’t be used. An example of a clean addition is an
auxiliary multiplier added to a processor bus to help a microprocessor in a
heavily multiply-weighted task. An example of a patchwork fix is speeding up
at the processor clock to just beyond the microprocessor’s performance limits
and hoping for the best. ‘

Microprocessor Loading

Sizings should be performed before a system is built to estimate processing
needs. Once a candidate microprocessor is chosen, crude software that is very
similar to the real task’s software should be written. This initial sizing software
doesn’t have to be perfect and fully debugged because its purpose is to give a

35
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general idea of the processor’s loading and not to correctly accomplish the
task. You may use the interface software section of this text or appropriate
material from other books to aid you in writing the software. After all the sizing
programs have been written, the program’s execution time can be estimated.

A good processor loading at the preliminary system design is about 50%. In
other words, if a function must be executed in 10 ms, a microprocessor task
execution time of 5 ms is desirable. This leaves an adequate margin for errors in
initial task sizings and for some future expansion. If the loading approaches
75% or more, chances are that the microprocessor will be overloaded by the
time the design is actually built. A more powerful microprocessor or discrete
logic, which can handle some of the tasks, is definitely in order.

If the microprocessor is only 20% loaded, it might pay to consider a
smaller, less complex microprocessor that is more reliable and less power-
hungry. Or examine the possibility of the microprocessor taking over even
more of the system’s task, thereby eliminating discrete conponents.

The 50% loading criterion is just a general rule. Specific applications may
dictate alternative loadings. A widely expandable general-purpose data pro-
cessing system, for instance, will require greater expandability and thus lighter
loading. For general-purpose data processing systems you may not even know
what the system is going to be used for. In this case the processing capabilities
can be anything you choose.

Other Considerations

An overall system block diagram helps in the evaluation process. The proces-
sor, discrete logic, interfaces, and peripherals can be specified as black boxes
in the system block diagram as Fig. 2-1 illustrates.

.. All the system’s physical characteristics should enter into the system eval-
uation process. Power consumption, thermal dissipation, and second-sourcing
should all be considered if they have been specified.

Once the most likely microprocessor candidate has been chosen, pre-
liminary hardware designs, source programs, object programs, and a prototype
system can be built.

The proper evaluation of system requirements will be a somewhat difficult
iterative process but the result will be a well balanced and cost-effective sys-
tem.

IMPORTANT MICROPROCESSOR CHARACTERISTICS

~Microprocessor choice greatly affects overall system characteristics, so it is
important to understand the microprocessor you’re working with and to be able
to identify the important characteristics during the system evaluation stage.
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Figure 2-1 A sample block diagram for system evaluation. (Courtesy Signetics
Corporation, Sunnyvale, Ca.)

The microcomputer field is currently on the steep end of the learning curve;
things are changing so rapidly that any book attempting to give you a good
overall picture of the devices in the field is obsolete by the time it reaches the
press. This section is therefore designed to aid you in identifying important
microprocessor characteristics for yourself. Current manufacturer’s specifica-
tion sheets should be consulted for up-to-date specifics. A few examples of
microprocessors are presented and analyzed; these analysis techniques can
then be applied to products currently on the market.

Microprocessor Purpose

Microprocessor purpose is a nebulous ‘‘parameter’’ that can’t always be ad-
dressed in a specification sheet or data catalog; however, it is probably the
most important consideration in choosing a microprocessor for a system.
Microprocessors are general-purpose devices that can perform almost any-
task if given enough external support circuitry and processing time; but they

_have designed-in features that make them better suited to certain applications.

The two major purposes are electronic data processing (EDP) and control. In
this context, EDP refers to tasks requiring extensive arithmetic operations. But
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a control application may indeed require some EDP, making an EDP-type
microprocessor well suited to the task.

A microprocessor’s purpose can be judged by looking at such characteris-
tics as bit width, instruction set, and support hardware and software.

The very narrow word width of 4 bits is indicative of a controller.
Arithmetic and ASCII character manipulation are difficult to implement using
such a narrow word, and quadruple-precision arithmetic is necessary to repre-
sent even a comparatively small number like 23,754. On the other hand, a 4-bit
word width would prove adequate for many control applications. Up to 16
traffic lights can be represented by a 4-bit code, for example.

Microcomputers with broader word widths usually indicate an EDP orien-
tation. The LSI-11, MicroNova, and TMS 9900 are examples of microproces-
sors with 16-bit word widths. These processors are actually derived from mini-
computers and are used extensively in EDP applications.

A mlcroprocessors instruction set gives a clue to its purpose. An mstruc-
tion set that won’t allow arithmetic shifts and does not accommodate twos’
complement arithmetic is not well suited to EDP tasks. The 8-bit Intel 8080, for
example, only handles unsigned numbers, doesn’t perform arithmetic shifts,
and lacks complete arithmetic branch capabilities. This microprocessor was
initially intended to be an enhanced version of the 8008 microcontroller, and its
instruction set reveals the controller-like traits. Since so many people were
trying to use the 8080 as a data processor, Zilog capitalized on the situation and
included many arithmetic shifts and arithmetic overflow detection in the firm’s
730, an 8080 upgrade. The Z80 thus has more of an EDP character than the
8080, which is also reflected by the name Zilog has given the part—the Z80
CPU.

Support hardware and software lend more evidence to the purpose of a
microprocessor. A simple controller chip such as the TMS 1000 will not have a
broad range of support chips such as floppy disk controllers, memory mapping
units, and one-chip modems because a controller won’t require this kind of
support. The Intel 8086, an EDP-oriented microprocessor, has a broad base of
EDP-type hardware and software support, thus showing its purpose.

Microprocessor Bit Width

A microprocessor’s bit width is defined as the number of parallel lines con-
tained in the data bus. The bit width has a great effect on system capability and
complexity.

Data and instructions are usually stored in a memory as wide as the bit
width of the processor. The advantage of a microcomputer with a wide word-
width is that the microcomputer can handle 2 much wider range of arithmetic
values before resorting to inefficient multiple-precision arithmetic. It can also
have a much larger set of single-word instructions. The results of having these
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features are higher memory bit widths, wider data buses and connectors, and
usually wider bit widths on the interfaces tied to the bus.

A 4 K memory for a 16-bit microcomputer takes twice as many RAMs as
that of a 4 K memory for an 8-bit machine. Itis wise to keep the bit width as low
as is reasonably possible in an application because parts counts, especially in
the memory area, are much lower for narrow-bit-width machines.

As pointed out in the previous subsection, microprocessors with 4-bit word
widths are almost exclusively designed for control applications. The 8-bit mi-
croprocessor can be designed for either EDP or control, but in most cases it is
designed to be general-purpose enough for both. Double-precision arithmetic is
fairly efficient on these devices, and 16 bits of precision is adequate for most-
EDP work. Microprocessors with 16-bjt word widths are almost exclusively
used for data processing in which more than just control functions are required.

Bit-Slicing

Some microprocessors, notably the high-speed bipolar types, are bit-sliced.
Large-bit-width microcomputers can be built from a few 4- or 8-bit processor
“‘slices.”

Bit-slicing, especially ‘with 4-bit elements, is primarily used for thermal
reasons. Bipolar LSI circuits draw a lot of current and tend to run hot. A 16-bit
or even an 8-bit processor would generate too much heat for a single package to
dissipate. ‘

Bit-sliced processors are usually more like LSI building blocks than self-
contained processors with strictly defined I/O protocols and instruction sets.
You can choose the desired microcomputer bit width and even instruction
execution method by varying the number of bit slices and changing the control
ROM 'that contains a microprogram for the control sequence.

Bit-sliced microprocessors are used in custom, high-performance applica-
tions. Due to the bit-sliced microprocessor’s versatility, systems built with
them can be made to emulate more common computers efficiently. Bit-sliced
microprocessors are therefore being used extensively in the construction of
minicomputers.

Processing Speed

Processing speed is the rate at which a microprocessor executes the applica-
tion program, and this depends on three basic specifications: the clock rate of
the microprocessor, the number of cycles required to execute a given instruc-
tion, and the instruction repertoire itself. To see the significance of these fac-
tors and the manner in which they interrelate, we must have a common under-
standing of the terms and their functional contributions. '
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Processor Clock Rate. The clock rate is defined as the frequency of the
clock input to the microprocessor—the number of clock pulses produced per
second. Since the clock is the governor of all timed operations within a system,
it follows that a high-rate clock permits more operations to be performed within
a given period; but a high-rate clock coupled with low-rate peripherals trans-
lates to interface complexities.

Acquisition/Execution Rate. The acquisition and execution rate of a micro-
processor may be expressed in microcycles —the number of cycles or opera-
tional steps required to perform a given instruction. A microcycle consists of
one or more clock cycles. Most MOS microprocessors require many microcy-
cles to execute one instruction. Typically, one microcycle might be used to
fetch the instruction, one or two more might be used for data access, and
several more for the actual execution operation of the acquired instruction. The
number of microcycles required by an instruction is affected by the addressing
mode and the instruction complexity. A simple add, for example, may take 14
microcycles, while a multiply would take 52 on the TMS 9900 16-bit microcom-
puter.

Instruction Repertoire. The kinds of instructions a microprocessor can €X-
ecute determine its suitability to a task. Instructions should be evaluated on the
basis of what they can do, not how many there are.

The number of instructions a microprocessor can perform might be a very
misleading number, because every manufacturer has his own way of counting
instructions. Intel, for example, counts move immediate register and move
immediate memory as two instructions for the 8080 microprocessor, while
Motorola counts load accumulator immediate and load accumulator extended
as two addressing modes for the same instruction. Although the 8080 has more
instructions than the 6800, the 6800 has many more real instructions than the
8080 if all the addressing modes are counted.

A microprocessor’s instruction set should be oriented toward the kind of
processing you are performing. In a controller application, particular attention
should be paid to I/O instructions. In a data processing application, the data
manipulation instructions (arithmetic shifts, twos’ complement instructions,
and arithmetic branches) should weigh heavily in the choice.

Determining System Speed. A true measure of how fast a program will
perform a given task is how much time it takes to execute a total program. This
figure is the number of clock cycles needed to execute a program multiplied by
the microprocessor clock rate.

Microprocessors go about executing programs in different ways. Some
employ a high-speed clock and use many small operations (notably the TMS
9900, 8080 and Z80). Others employ a low-speed clock but use a small number
of powerful operations (the M6800 and 6500 microprocessors). The load high
and low direct instruction on the 8080 and the load index register extended
instruction on the 6800 serve exactly the same function; they each load a 16-bit
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register that serves as both a general-purpose register and an index register.
The 8080 requires 16 clock cycles versus 5 clock cycles for the 6800 to execute
this instruction. A 6800 with a 1 MHz clock rate executes the instruction in
two-thirds the time required by the 8080 wih its 2 MHz clock.

It is obvious from the above information that clock speed alone is not a
valid indicator of system performance. Clock speeds can be directly compared
only when dealing with the same processor. A 2 MHz 6502 has exactly twice
the performance speed of a 1 MHz 6502. In all other cases, performance esti-
mates and comparisons must be based on task sizings.

The applicability of an instruction set to a given form of processing also
determines performance. If a microcomputer’s task is to check parity on in-
coming signals, a branch-on-parity-even instruction can save a whole subrou-
tine of bit-manipulation instructions, and execution time will be greatly re-
duced. Once again, however, only a sizing will tell how well a MiCroprocessor
will perform.

Power Dissipation

In power-critical systems, a microprocessor’s power dissipation becomes a
major concern. Power dissipation is governed by device technology, device
complexity, and in many cases clock speed.

Wide-word-width MiCroprocessors require extra complexity to handle the
wide data paths, so they draw more power than narrow-word-width devices of
the same technology.

High-speed bipolar microprocessors draw the most power of all. Medium
power dissipation can be expected from NMOS and PMOS microprocessors,

- while CMOS microprocessors draw the least.

The clock rate itself affects the power dissipation of most microprocessors
(excluding microprocessors based on emitter-coupled logic technology). The
slower the clock rate, the less power the processor draws. The RCA 1802
microprocessor, which employs CMOS technology, is a good example of a
clock rate’s effect on power dissipation. If a very limited amount of processing
is required, a relatively slow clock rate of 10 kHz can be used, thereby cutting
power dissipation from 60 mW at 1 MHz to 5 mW at 10 kHz.

New device technologies such as silicon on sapphire (SOS) promise to
decrease microprocessor power consumption and at the same time improve
speed—power products. The latest manufacturer specification sheets should be
used to find the power dissipation of these parts.

Interrupt Capability

Temporarily diverting execution of a program to a small task that requires
immediate attention may be required in your application. A miCroprocessor
with good interrupt capabilities should be chosen if this requirement is to be
met.
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Priority interrupt systems let multiple devices interrupt a processor simul-
taneously, automatically determining which task should be executed first. A
separate LSI device is usually required to perform this task. The Intel 8259
priority interrupt control unit (PICU) is one such element.

DMA Capability

Direct memory access is the name applied to the operation when a device other
than the processor is capable of accessing (reading or writing) directly into
memory by temporarily taking over the microcomputer bus. This feature is
good for large block data transfers and relieves the microprocessor of the
burden of executing a data transfer program. ‘

DMA transfers are much faster than program-controlled data transfers. If
your system requires many high-speed data accesses by external devices, it is
imperative to select a processor with DMA capability.

Many microprocessor chip sets include a DMA controller support chip.
These chips can substantially reduce DMA interface complexity and simplify
the system design task. The Intel 8257 DMA controller is a common DMA
support IC. It supports up to four DMA channels simultaneously and contains
all the circuitry necessary to take control of the 8080 bus and perform the data
transfer.

Decimal Arithmetic

It is often desirable to store data in user-interactive systems as binary-coded-
decimal (BCD) digits rather than multiple-precision bytes. Time-wasting and
memory-consuming decimal-to-binary and binary-to-decimal conversions can
be avoided in these cases. ‘

Many microprocessors have instructions that perform BCD arithmetic on

" 4-bit BCD numbers packed two per 8-bit byte. The M6800’s decimal arithmetic

adjust (DAA) instruction is an example. If BCD arithmetic is required in your
application, the microprocessor you choose should have a DAA-type instruc-
tion.

Second-Sourcing

It is always more desirable to work with a microprocessor type that is manufac-
tured by two or more independent companies than with a part that is unique to
one company. The second source can back up the primary supplier when
back-order problems arise; and should one manufacturer decide to stop pro-
ducing the device, availability from the other maker cushions the impact.
Another advantage to second-sourced miCroprocessors is the obvious
benefit resulting from competition. Because more than one manufacturer is
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competing for the same market, the only way for a manufacturer to distinguish
his product is by supplying a broader line of support chips and higher perform-
ance than the competitor. In the end, the consumer wins and the prize is
threefold: a wide range of support chips, wide performance-range selection,
and lower prices.

Cost

The cost of a system is one of the highest-priority items, especially in the
consumer market; but when evaluating the cost of a microprocessor, the cost
estimate should include the whole system and not just the microprocessor.
Current price sheets from the microprocessor manufacturer should always be
used because prices change so rapidly (and drastically) in this field.

Software Support

Software generation is a costly proposition, and it is not uncommon for
software development costs to outrun hardware costs. For this reason, micro-
processors with a large software support base are very desirable. Editors,
assemblers, and high-order languages help speed development of a micropro-
cessor system. The level of software support is less critical for small controller-
type microprocessors intended only to run small control programs.

Load-Driving Capability

A microprocessor’s technology will largely determine what voltage levels and
drive currents are available at the microprocessors output pins. These charac-
teristics determine how much support circuitry will be needed to incorporate
the microprocessor into a system.

Many MOS microprocessors claim TTL compatibility. This statement is
misleading, because usually only one or two standard TTL loads can be driven.
In some cases only one low-power TTL load is drivable. To drive many TTL
loads, buffers must be incorporated on most MOS microprocessors.

Some microprocessor chip sets are designed to eliminate the need for
buffers in minimal system configurations by offering a wide range of memory
and support chips that present only a light load to the processor’s buses. The
M6800 chip set is a good example. Up to eight devices can be driven on a
nonbuffered bus. Well thought out schemes like this can save interface parts in
a minimal system.

Bipolar microprocessors can usually drive many loads that are themselves
based on the technology of which they are built. The Texas Instruments 745481
bipolar microprocessor supplies 10 mA of drive current to its address lines; this
is enough current to drive six standard TTL loads.




Architecture Philosophy

Microprocessors, like large computers, have many architectural forms. Two
types of machines that are currently popular are the register-oriented machines
like the 8086, Z8000, and RCA 1800 series and the memory-oriented machines
such as the 6800, 6500, and 9900 series.

Stack operating capability is another architectural feature found on many
microprocessors. Architectural features tend to simplify certain tasks. A stack
is useful when many subroutines are to be performed. ,

Memory-oriented processing is helpful when working with large data bases
in memory. Once again, the instruction set will describe what the processor
architecture is capable of and sizings will tell how efficiently it is performing
your task.

MICROPROCESSOR EVALUATION EXAMPLES

Up to this point, microprocessor characteristics have been described in general
terms. In this section we get down to some specific examples. Descriptions and
evaluations of a few common microprocessors are presented. No attempt has
been made to cover all microprocessors, since new and more advanced micro-
processors are constantly entering the market. By evaluating microprocessor
specification sheets and all the latest literature in a way similar to what is
presented here, you can pick the best device for your task at any time.

The TMS 1000 Family

With the proliferation of low-cost 8-, 12-, and 16-bit microprocessors, we might
be inclined to think that 4-bit microprocessors are obsolete and undesirable in
any application. This isn’t the case. It’s true that some 4-bit processors such as
the Intel 4040 have been pushed aside by technology, but in the midst of 8- and
16-bit microprocessor development, some very viable third-generation 4-bit
control-oriented microprocessors came into being. The TMS 1000 family is a
good example.

Purpose. The TMS 1000 series of one-chip microcomputers is made by
Texas Instruments and second-sourced by Motorola. It is a family of about 35
microprocessors aimed at the industrial and consumer control applications
market.

Features. The TMS 1000 chip’s complement of capabilities reflects its 4-bit
control nature. TMS 1000 series microprocessors have 2048 8-bit bytes of ROM
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and 124 4-bit ‘‘nybbles’” of RAM built onto the chip. Some of the earliest
versions have only 1024 bytes and 64 nybbles of ROM and RAM.

As with most 4-bit microprocessors, the instruction word size is 8 bits (the
Toshiba T3444 is an exception to the 8-bit instruction rule—it has 4-bit instruc-
tions) and the data word width is 4 bits. Program execution is performed strictly
out of ROM and no provisions for external ROM or RAM have been made. No
external address bus is needed, freeing valuable I/O pins to perform the chip’s
control functions. Figure 2-2 shows the TMS 1000.

The TMS 1000 has 54 basic instructions that are oriented toward control
applications. Because the processor has separate program and data-memories
that can’t interchange data, strange instructions like ASACC (add 9 to the
accumulator) are a large percentage of the 54. Obviously, this type of processor
could immediately be eliminated from further consideration in applications
requiring extensive data processing.

Interface Capabilities. The TMS 1000 series microprocessors come in 28-
and 40-pin packages (a 64-pin evaluation model also exists), and their interfac-
ing characteristics depend on the package size.

The 28-pin models have 4-bit data input buses, 8-bit data output buses, and
10 program-controlled control outputs. Data on the input lines (K lines) can be
read into the processor’s accumulator using the TKA (transfer K 1n‘putS\to
accumulator) instruction. Output can be performed by simply sending one
control output bit to the device being controlled and strobing it using the SETR
(set R output line) and RSTR (reset R output line) instructions. To send 8-bit
data to a device, the 8 output lines can be set to the proper 8-bit value using the
TDO (transfer data to output) instruction, and an R control line can be strobed
to latch the data into a register at the controlled device.

Support. The simple design, versatile I/O, and built-in RAM and ROM fea-
tures of the TMS 1000 family. of microprocessors make an extensive line of
support chips unnecessary. Because no direct external access to memory is
possible, a DMA chip doesn’t make any sense. Three helpful support chips are
available, however: 4 X 4 and 4 X 7 I/O expanders and a CPU-to-capacitive
keyboard interface.

The TMS 1000 family’s use in industry is constantly increasing and it has
thus acquired a good software support base. An assembler, simulator, utility
programs and even a high-level language are available. In addition, a few of the -
TMS 1000 series processors come preprogrammed to perform common func-
tions.

Physical Characteristics. Being a 4-bit economy model control processor,
the TMS 1000 performance specifications are not exceptional. The clock fre-
quency can range from 50 kHz to IMHz, and all instructions executein 6 us at 1
MHz.
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This microprocessor family is available in several technologies for various
applications. For relatively high-speed performance, NMOS and PMOS ver-
sions are available. A CMOS version from Motorola allows very low-power
controllers (1 mA) to be built.

Probably the most noteworthy feature of the TMS 1000 series is its econ-
omy. A minimal system can be built with one part (an internal clock is also
included in this processor chip), and at this writing it sells for less than $4.

The 8080 Family

The Intel 8080 was the first microprocessor to gain wide acceptance in the
microcomputer field and did, in fact, help create the field. It is currently the
most widely used microprocessor simply because it was first to reach the
marketplace. This situation is rapidly changing as superior products such as the
8085 and Z80 are gaining in popularity.

The 8080, from an architectural and feature standpoint, is quite primitive,
and improved processors are usually designed into new products; but due to its
wide acceptance, multiple sources, and large line of support chips, the 8080 is
here to stay.

Purpose. The 8080 instruction set reflects a control nature in this micropro-
cessor. It is heavily loaded with data transfer instructions and has IN and OUT
instructions for input and output control. Conditional jumps, subroutine calls,
and subroutine returns (with parity even or odd jump instructions) are meant to
be used to simplify data handling.

The 8080 has a few data processing characteristics, but some important
features are missing. Some of the EDP-type instructions include the add and
subtract instructions, the double-precision add instruction (although this fea-
ture is primarily intended for address manipulations), and the decimal
arithmetic adjust instruction. Lacking are the arithmetic shift instructions,
signed overflow detection, and the arithmetic conditional branch instructions
such as branch greater than or equal to. These shortcomings could not be
easily overcome because of a simple fact never mentioned in most manufac-
turers’ literature: the 8080 is not designed to do signed twos’ complement

rithmetic. The modularity of the twos’ complement numbering system makes
many twos’ complement operations work (adding —1 to 7 to get 6, for exam-
ple), but the 8080 has no way of telling if a result is negative or positive. A good
example of this is the comparison of two numbers to see which is larger. A
compare instruction followed by an examination of the overflow bit can be
performed to compare a pair of twos’ complement numbers. A set overflow bit
means that the register being compared to the accumulator was greater than the
accumulator value, but only if the values were of like sign. If the registers were
of different sign, the set overflow bit would have just the opposite meaning.
You must therefore manually keep track of the signs of numbers in the pro-
gram. This involves additional software and execution time.
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MCS-80 (8080 A) 8-bit Microprocessor

Manufacturer
Device Technology
Data word width
Addressing range.
Instruction width
Instruction count
Clock frequency
Package

Power requirements

Figure 2-3

Features.

Intel, AMD, and others

NMOS

8 bits

65,636 words, external

8 bits

78

0.5-4 MHz

40-pin.DIP or flatpack

12V at 40 mA, 5V at 60 mA,
-5V at 10 pA

Programmer’s Eye View

PSW

B

D

H

rlmo|>

SP

PC

Program status word

Primary accumulator

Secondary Accumulators/data counter
Secondary Accumulators/data counter
Secondary Accumulators/data counter
Stack pointer

Program counter

The Intel 8080 microprocessor. (Reprinted by permission of Intel
Corporation, Copyright 1978.)

The 8080 has a register-oriented architecture containing six 8-bit

registers that may be used individually or in pairs for 8- and 16-bit operations.
An accumulator is provided to act as a primary working register. Figure 2-3
-illustrates the 8080 microprocessor.

The 8080 is also capable of stack operations, as the instruction set of Fig.

2-4 indicates. A separate 16-bit stack pointer keeps track of the push-down
stack that resides in the combined program and data memory. The stack is
. useful for implementing subroutines. Because subroutine return addresses are
automatically pushed down onto the stack by the subroutine call, subroutine
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nesting is limited only by the amount of read—write memory a user has pro-
vided. This versatile feature makes more structured programs possible and
lends itself to very complex control tasks and data processing.

All the 8080 features mentioned so far indicate that the 8080 is well suited
for control tasks. The interrupt and DMA capabilities of this chip confirm the
suspicion. An asynchronous vectored interrupt capability allows external
devices operating through an 8080-series support chip (the 8259 priority inter-
rupt controller), to interrupt program execution and vector the program to an
appropriate service routine. Many devices can efficiently move data in and out
of memory using the 8080’s DMA capability and another support chip, the 8257
DMA controller.

It should be noted that the 8080 is really a 3-chip microprocessor—that is,
it takes at least three chips or corresponding discrete hardware to build a useful
microprocessor. In addition to the 8080, an 8224 clock generator—driver and an
8228 bidirectional bus driver are needed. Up-grades from the 8080 micropro-
cessor have the functions of the two additional chips built into a single package.

Instructions. The 8080 has about 100 instructions. The exact count varies
for each manufacturer due to the way instructions are counted, not because of
differences between the microprocessors. Instructions vary from 1 to 3 bytes in
length, depending on the addressing mode of the instruction. The instruction
set is broken into seven primary groups. Figure 2-4 lists the instruction set.

Data transfer instructions move 8-bit data from register to register and also
to memory. A few 16-bit data transfer instructions are provided as well. An
interesting XCHG instruction swaps two specific register pairs (the D,E regis-
ters with the H,L registers). Two 16-bit transfer instructions (the LHLLD and
SHLD instructions) move data from a register pair to memory or from memory
to a register pair, but these operations can only be performed on the H,L
register pair. The I/O transfer instructions (IN and OUT) are provided for
simple I/O handling.

Control instructions (there are six) are used. They are standard instructions
and include the NOP (no operation), HLT (halt), and interrupt enabling and
disabling instructions.

At first glance the 29 conditional and unconditional branch instructions
seem to contain more branch capability than you would ever need. This is
somewhat misleading for this instruction set because the 29 instructions only
allow conditional branching on four conditions: carry, zero, sign, and parity.
No combined conditional branches such as branch if carry exclusive-ORed
with sign (more commonly called branch less than) are provided. This makes
signed comparisons difficult.

Arithmetic instructions, like the transfer instructions, include 8- and 16-bit
operations. The basic adds and subtracts are present and a decimal arithmetic




Op Code No.of Clock Assembly Instruction Op Code No.of Clock Assembly Instruction
7651413121110 Bytes Cycles Mnemonic Description |716/51413[211]0 Bytes Cycles Mnemonic Description
DATA TRANSFER ARITHMETIC .
O01dddsss 1 5 MOvr, r Move register to register 10000sss 1 4 ADDr Add register to Acc
01110sss t 7 MOVm, r Move register to memory k3 1000tsss 1 4 ADCr Add with carry register to Acc
01ddd110 1 7 MOVr, m Move memory to register 10000110 1 7 ADDm Add memory to Acc
00ddd110 2 7 MV, ¢ Move to register, immediate 10001110 B 7 ADCm Add with carry memory to Acc
00110110 2 10 MVI, m Move to memory, immediate 11000110 2 7 ADI Add to Acc, immediate
00111010 3 13 LDA’ Load Acc, direct 1100t110 2 7 ACH Add with carry to Acc, immediate
00001010 1 7 LDAX B Load Acc, rectviaB & C 00001001 1 10 DADB Doubleadd B& CtoH & L
00011010 1 7 LDAX D Load Acc, indirect viaD & E 00011001 1 10 DADD Doubleadd D & Eto H & L
00101010 3 16 LHLD Load H & L, direct 00101001 1 10 DAD H Doubleadd H & LtoH & L
00100001 3 10 LXUH, Load H & L, immediate 00111001 1 10 DAD spP Double add stack pointer to H & L
00010001 3 10 LX1 D Load D & E, immediate 10010sss 1 4 SUBr Subtract register from Acc
00000001 3 10 LXI B Load B & C, immediate 10011sss 1 4 SBBr: Subtract with borrow register from Acc
00110001 3 10 LXI sP Load stack pointer, immediate 10010110 1 7 sSuBm Subtract memory from Acc
00100010 3 16 SHLD Store H & L, direct 10011110 1 7 SBBm ‘Subtract with borrow memory from Acc
00110010 3 13 STA Store Acc, direct 11010110 2 7 sul Subtract from Acc, immediate
00000010 1 7 STAXB Store Acc, indirect via B & C 11011110 2 7 sBI Subtract with borrow from Acc, immediate
00010010 1 7 STAX D Store Acc, indirect viaD & E 00100111 1 4 DAA Decimal adjust Acc
ti111001 1 5 SPHL Transfer H & L to stack pointer
11101011 1 4 XCHG Exchange D & E with H & L
11100011 1 18 XTHL Exchange top of stack with-H & L
11011011 2 10 IN Input to Acc
11010011 2 10 out Output from Acc
STACK OPERATIONS
11000101 1 1" PUSH B Push registers B & C'on stack
11010101 1 " PUSH D Push registers D & E on stack
11100101 1 11 PUSH H Push registers H & L on stack
11110101 1 1 PUSH PSW  Push Acc and flags on stack
11000001 1 10 POP B Pop registers B & C off stack
11010001 1 10 POP D Pop registers D & E off stack
CGONTROL 11100001 1 10 POP H Pop registers H & L off stack
01110110 1 7 HLT Halt and enter wait state 11110001 1 10 LPOPPSW  Pop Acc and flags off stack
00110111 1 4 sTC Set carry flag -
oo0t11111 1 4 cMC Compliment carry flag
11111011 1 4 El Enable interrupts
11110011t 1 4 DI Disable interrupts
00000000 1 4 NoP No operation
LOGICAL
10100sss 1 4 ANA r And register with Acc
10100110 1 7 ANA m And memory with Acc
11100110 2 7 ANI And with Acc, immediate
10101s'ss 1 4 XRA 1 Exclusive or register with Acc
10101110 1 7 XRA m Exclusive Or memory with Acc
11101110 2 7 XRI Exclusive Or with Acc, immediate
BRANCHING 10110sss 1 4 ORA ¢ inclusive Or register with Acc
11000011 3 10 JmpP Jump unconditionally 10110110 1 7 ORAm inclusive Or memory with Acc
11011010 3 10 Jc Jump on carry 11110110 2 7 ORI} Inclusive Or with Acc, immediate
11010010 3 10+ INC Jump on no carry 10111sss 1 4 CMP ¢ Compare register with Acc
11001010 3 10 Jz Ju;np on zero 101111130 1 7 CMP m Compare memory with Acc
1100001t0 3 10 INZ Jump on not zero 11111110 2 7 cPI Compare with Acc, immediate
11110010 3 10 JP Jump on positive 00101111 1 4 CMA Compliment Acc
11111010 3 10 M Jump on minus 00000111 1 4 RLC Rotate Acc left
11101010 3 10 JPE Jump on parity even 00001111 1 4 RRC Rotate Acc right
11100010 3 10 JPO Jump on parity odd 00010111 1 4 RAL Rotate ‘Acc left through carry
11001101 3 17 Call Call unconditionally 00011111 1 4 RAR Rotate Acc right througf\ carry
11011100 3 17-11 cc Call on carry
11010100 3 17-11 CNC Call on no carry
11001100 3 17-1% cz Call on zero
11000100 3 1711 CNz Call on not zero
11110100 3 1711 cP Call on positive
11111100 3 17-11 cM Call on minus
11101100 3 17-11 CPE Cali on parity even
11100100 3 17-11 cPO Calt on parity odd INCREMENT/DECREMENT
11001001 1 10 RET Return unconditionally 00ddd100 1 57 INR r Increment register
11011000 1 115 RC Return on carry 00110100 1 10 INR m Increment memory
11010000 1 11-5 RNC Return on no carry 00000011 1 5 INX B increment extended B & C
11001000 1 115 RZ Return on zero 00010011 1 5 INX D Increment extended D & E
11000000 1 115 RNZ " Return on not zero 00100011 1 5 INX H Increment extended H & L
11110000 1 115 RP Return on positive 00110011 1 5 INX SP increment stack pointer
11111030 1 11-5 RM Return on minus 00ddd101 1 5 DCR r Decrement register
11101300 1 115 RPE Return on parity even 00110101 1 10 DCRm Decrement memory
11100000 1 115 RPO Return on parity odd 00001011 1 5 DCX B Decrement extended 8 & C
11101001 1 5 PCHL Jump unconditionally, 00011011 1 5 DCX D Decrement extended D & E
indirect via H & L. 00101011 1 5 DCX H Decrement extended H & L
11vVvviig 1 " RST Restart 00111011 1 5 DCX sP Decrement stack pointer
Figure 2.4  The Advanced Micro Devices 9080 (8080) instruction set. (Copyright ©

1978 Advanced Micro Devices, Inc. Reproduced with the permission of copyright owner.)
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adjust instruction is included. Again, certain operations only apply to certain
registers: Any register can be added to the accumulator, and memory can be
added to the accumulator, but memory cannot be added to a register without
first going through the accumulator. Two arithmetic instructions particularly
suited to multiple-precision arlthmetlc are 1ncluded the add with carry and
subtract with borrow.

Stack instructions work with 16-bit register pairs rather than individual reg-
isters. Pushing two registers onto the stack at once makes fast machine status
saving possible.

Logical instructions are similar to the arithmetic operations except that only
8-bit logical operations are officially possible. One 16-bit logical operation,
however, is possible—although this is not immediately apparent from the in-
struction set. By using the 16-bit add instruction, the H,L register pair can be
added to itself, resulting in (H,L) X 2, or an arithmetic left shift. Many 8080
programmers use this trick, especially when working with double-precision
numbers.

Increment/decrement instructions are provided for 12 discrete operations.
Upon close examination we see that status flags are set for 8-bit register incre-
ments and decrements but no flags are set for 16-bit ones. This mode of opera-
tion was chosen so 8-bit data status would not be destroyed by address manipu-
lation. Increments and decrements of 16-bits are typically employed when
using indexed addressing through the H,L register pair. With the current
status-setting method, the 8-bit arithmetic operations status can be saved while
obtaining the next data byte through indexed addressing. This is particularly
useful for multiple-precision arithmetic in which the carry from a least-
significant add can be saved and added with the most-significant add through
incremented index addressing. The main problem with the conditional status-
setting arrangement is that it limits the double-precision capabilities of the
16-bit register pairs.

As you look at an instruction set, ask this question: How easy is program-
ming going to be with this instruction set? On an assembly-language level, the
8080 takes a lot of getting used to and is difficult to program efficiently. The
preponderance of registers, each with its own unique capabilities, creates this
situation. When a programmer first tries to program the 8080 efficiently, he
finds himself cornered into bad situations. He may want to store the B,C
register pair directly into memory, but he’ll find that only the H,L register pair
has that capability. He may want to swap the D,E and B,C register pairs, but
he’ll find that only the H,L and D,E registers can be swapped. An 8080 pro-
grammer must be alert to all the 8080 register idiosyncrasies before efficient
programming is possible. The use of a high-order language is one way of side-
stepping this difficult learning process.
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The 8080 has four basic addressing modes. Direct-mode addressing allows
direct loading or storing of the accumulator or H,L register pair from the
address specified in the two bytes following the instruction. The immediate
addressing mode allows the loading of any register or register pair with the data
following the instruction. Implied addressing is used in operations needing no
memory reference (such as register-to-register transfers). Indexed addressing
allows the contents of the D,E pair, the H,L pair, or the B,C register pair to be
used as 16-bit pointers to the data being loaded or stored into memory. Autoin-
crement and autodecrement addressing on the stack pointer are also provided
by the stack operations.

Interface Characteristics. Data can be sent to and taken from interfaces in a
few ways. The input and output instructions simply put an 8-bit device code on
the 16-bit address bus (repeated in the upper and lower address bytes). The
output instruction puts the present accumulator data on the data bus, and the
input instruction clocks whatever is on the data bus into the accumulator.
Status lines indicate when output and input operations are being performed.
Devices on the bus can use these lines to load device registers or drive the data
bus.

Because address lines and data lines are available outside the processor,
memory-mapped 1/0 is also possible. By building an interface device that acts
as a memory location at a certain address, data can be sent to that device
simply by writing into the device’s assigned memory location.

The 8080 control lines are configured for simple direct memory access
interfacing. The processor can go into a hold state when a DMA device applies
a signal to the 8080’s hold line. The 8080 promptly disconnects itself from the
bus, allowing the DMA device to take over address and data line controls and
access memory directly.

Support. The 8080 is currently one of the best supported microprocessors in
regard to interface chips. Because eight manufacturers second-source the part,
everything from DMA controllers to floppy disk controllers are available.
Software support is equally diversified. Editors, assemblers, and high-
order languages are available. Intel’s MDS software development system is the
most popular means of developing 8080 software in industrial applications.

Physical Characteristics. The 8080 is available in many clock speeds rang-
ing from 1 to 4 MHz. Due to the intense competition in the 8080 market, prices
are very low, but the fact that the 8224 and 8228 support chips are needed to
make the 8080 operational adds significantly to this cost.

The 8080 is an NMOS microprocessor, requires three dc voltages for
power, and dissipates about a watt. Again, clock speed and version make a big
difference.




The 8085

The 8085 is an upgraded version of the 8080 that incorporates a built-in clock
and system controller, thus eliminating the need for the two 8080 support chips
(the 8224 clock generator and 8228 system controller). It is software compatible
with the 8080 and contains two additional instructions.

A peripheral processor that is designed to operate as a slave to the 8080 or
8085 is a recent addition to the 8080 family. The 8041/8741 contains a processor,
1 K bytes of ROM, I/O ports, clock, and timer—counter. This part can be used
with the 8080 to increase processing power or as a stand-alone processor.

The Z80

The Zilog Z80 is a greatly enhanced upgrade of the 8080. Enough similarity is
maintained to allow 8080 programs to be used, and additional instructions
(which correct the 8080°s lack of arithmetic capability) are included in the
instruction set. More than twice the number of internal registers are used, and
two independent index registers enhance the addressing capabilities.

The hardware characteristics of the Z80 have also been improved. The
system control functions of the 8228 and the clock functions of the 8224 have
been built into the Z80, making it a one-package microprocessor. Only one
power supply is required as opposed to the three required for the 8080. An
additional nonmaskable interrupt line has also been added.

Purpose. The Z80 has enough features to qualify it as a true EDP-type mi-
croprocessor; but it has retained and even improved on the control characteris-
tics of the 8080, making it an excellent controller as well. The Z80 has gained
wide acceptance in both computing and control applications as a result of its
dual-purpose nature.

Features. The Z80 is a register-oriented processor containing eighteen 8-bit
registers and four 16-bit registers. Two accumulators and flag registers are also
provided. Figure 2-5 illustrates the Z80 structure. A close look at the registers,
however, reveal that only about half the registers can be used at any one time.
The accumulator, flag, and registers B, C, D, E, H, and L in the main register
set are mirrored as A’, F’, B’, and so on in the alternate register set. An
exchange instruction must be performed to select which set (main or alternate)
is going to be used. This feature is useful for interrupt processing in which only
one command is necessary to save the interrupted program’s status, but it also
means that the Z80’s register set, at any given time, is about the same as the
8080’s. Two totally new index registers have been added, however, and new
indexed instructions support them.
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Shaded registers represent the 8080A subset.
Figure 2-5  The Zilog Z80 microprocessor. (Courtesy Zilog, Cupertino, Ca.)

Many additional instructions have been added, eliminating most of the

8080’s arithmetic and data processing shortcomings. The first thing one notices
when comparing the 8080 and Z80 instruction sets is that all the instruction
names have been changed. This makes comparison difficult without a pre-
liminary learning effort.

The basic additions to the instruction set include: arithmetic shifts, block

transfer instructions, a loop control instruction, instructions specifying the new
addressing modes, extended arithmetic operations (including a negate), and
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extended I/O instructions. On the surface this instruction set appears to be
extremely powerful, but a few points should be noted. Many of the added
arithmetic instructions decrease the amount of memory needed to represent an
operation, since multiple instructions are no longer needed. But the single Z80
instruction execution time may actually be longer than the total of the 8080’s
multiple instructions. An arithmetic right shift is a good example of this. Using
an RLC followed by two RAA instructions, an 8080 can perform the shift in 12
clock cycles. The Z80 has a single SRA (shift right arithmetic), but it takes up
to 23 clock cycles to execute. In addition, most of the new Z80 instructions
require a 2-byte representation, the first of which indicates that it is not an 8080
instruction.

The Z80 parity flag bit has a dual purpose. On logical operations such as
AND it represents word parity, but on signed twos’ complement operations it
represents a twos’ complement overflow. This is yet another enhancement to
the Z80’s signed arithmetic ability.

Interface Characteristics. The IN and OUT instructions, memory-mapped
I/O, and DMA are all used for I/O. From a software viewpoint, I/O is a bit
simpler with the Z80 than 8080 since any register can be written to the output or
loaded through the input instruction. The need for passing all the data through
the accumulator has been eliminated. And block transfer I/O instructions sim-
plify block I/O routines.

One very unique Z80 feature is its simultaneous I/O capability. On an 8080
input instruction, the 8-bit input address is output on the 8 least significant and
the 8 most significant bits of the address; data is read into the accumulator over
the data lines. The Z80, however, outputs the I/O address on the 8 low-order
bits of the address bus, and reads the 8 data bus bits into the accumulator (or
register). This allows you to output and input data to a device all in one opera-
tion. It’s a very efficient and clever scheme. Figure 2-6 compares 8080 and Z80
/O formats.

8080 “IN INSTRUCTION data flow Z80 “IN INSTRUCTION" data flow
[ Out value | [ Accum ] [ Register B'] Out value | [ Accum ] [ Register B |
4’8
48 18 8
|{Address high] Address low J«=Bus=»| Data bus [Address high [ Address low J«=Bus +{ Data bus ]
Redundant 8-bit IN From peripheral 8-bit data 8-bit IN From peripheral
8-bit IN device to peripheral device code
device code code to to peripheral
peripheral

Figure 2-6 A comparison of 8080 and Z80 I/O methods.
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The Z80 CPU has a dynamic RAM refresh capability that is worth re-
viewing if your design calls for dynamic RAMs and few parts. A refresh regis-
ter and control circuitry interleave sequential memory read cycles between
processor memory access cycles. The refresh operation is thus totally transpar-
ent to the user—unlike some computer refresh schemes that interrupt process-
ing and execute a refresh routine (notably the LSI-11). This feature greatly
simplifies the interfacing of dynamic RAMs to a Z80 system, as memory refresh
logic is no longer needed on the interface.

Support. The Z80 is similar to the 8080 so most of the 8080 software and
many of the 8080 support ICs operate with-it. In addition, Zilog, Mostek, and
NEC all supply support chips and software designed for the Z80.

Physical Characteristics. The Z80 is an NMOS microprocessor. It is avail-
able with clock speeds up to 4.5 MHz. It requires a single-phase square-wave
clock and a single 5-volt power supply. It dissipates about 500 mW.

Other Z80 Family Members

Two additional processors are available in the Z80 family: a one-chip micro-
computer with 96 bytes of RAM (called the Z8) and the computationally power-
[ ful Z8000 with built-in multiply and divide instructions.
\,/

The 6800 Family

The M6800 is another one of the most widely used microprocessors. This
family of chips has design features that make it very desirable in control appli-
cations.

Purpose. The M6800 microprocessor was designed to be a general-purpose
central processing unit, featuring total twos’ complement arithmetic as well as
control capability. The 6800 therefore does very well in EDP-type applications.

The instruction set reflects the true computer-like design of the 6800. At
first glance it looks very similar to that of Digital Equipment Corporation’s
PDP-11 minicomputer, the instruction set after which it was patterned. Many
powerful arithmetic and comparison instructions are available. A wide variety
of addressing modes add to the 6800’s list of minicomputer traits.

Features. The 6800 can be considered an advanced second-generation mi-
croprocessor or a very early third-generation model. Advanced features, such
as a single 5-volt power supply, in addition to more primitive characteristics,
such as the need for a two-phase clock, are both present.

The 6800 series of parts was, from its very beginning, designed to act as a
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functionally balanced microcomputer building-block set. The goal was to en-
able the construction of small controllers and computers with four or five parts
plus a few discrete timing components—without the use of bus buffers.
Straightforward software development was another goal.

The 6800 is memory-oriented and its architecture follows the philosophy of
using a low-speed clock with many actions per clock cycle. Most 6800 instruc-
tions execute in 2, 3, or 4 clock cycles (versus 8 or 9 for the 8080). Data can be
manipulated with two 8-bit accumulators, and a 16-bit index register is avail-
able for address manipulations. A direct addressing mode allows the lowest 256
bytes of processor memory to be accessed without supplying a full 16-bit ad-
dress. This allows you to operate with a bank of 256 registers, which provides
enough working storage to free you from having to plan a register data handling
strategy.

A 16-bit stack pointer holds last-in—first-out data stored in external RAM
(thereby ‘‘pointing’” to the most recent push in the stack). Such external stor-
age of nested instruction addresses simplifies subroutine calls and makes inter-
rupt servicing a much easier proposition. '

Although register strategy doesn’t have to be planned, one thing that must
be carefully planned is branching. The 6800 incorporates memory- and time-
efficient relative conditional branching. An 8-bit offset is specified in the byte
following the conditional branching instruction. If a branch condition is met,
the offset will be added to the program counter and a branch will result. The
only limiting factor is that branch distance is restricted to 127 bytes in either
branch direction; no extended conditional jump instructions (specifying a
16-bit absolute jump address) exist. A single unconditional extended jump
instruction is provided. You must therefore remember to either limit branching
to a distance of 127 bytes or conditionally branch to an extended jump state-
ment.

Branch relative to subroutine and jump absolute to subroutine instructions
are included. The branch to subroutine, like the conditional branch statements,
is limited to a subroutine branch distance of 127 bytes.

The 6800 instruction set’s direct addressing mode and extensive condi-
tional branch capabilities allow the majority of the instructions being performed
to be one or two bytes long. This reduces memory requirements and decreases
memory access, thereby increasing processor performance. These factors
make the 6800 desirable in real-time application in which execution speed is
important. Figure 2-7 shows the 6800 structure.

Interface Capability. Like the PDP-11, the 6800 relies on memory-mapped
I/O. No independent I/O channel or I/O instructions are provided. Device
registers that act as memory locations must be provided. The advantage to this
approach is that fewer processor control lines are required, so I/O program-
ming is considerably simplified. With totally memory-mapped I/0, DMA pe-
ripherals can communicate directly with other devices as well as memory with
no additional control lines or logic.
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Figure 2-7  The Motorola M6800 microprocessor. (Courtesy Motorola Semiconductor
Products, Phoenix, Arizona.)

The disadvantage of memory-mapped 1/O is that every interface on the bus
must be able to recognize its address and go through the strict memory I/O
protocol. The 6800, however, avoids these pitfalls with a simple memory I/O
protocol and by suggesting that you allocate the top 32K of the 64K address
space to I/0 devices. The most significant bit of the address (A15) thereby acts
as an I/O bit and can be used along with a few other bits to distinguish between
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interfaces on the bus. This is a good solution for systems requiring less than
32K of memory. If more memory is required, you can use most of the 64K
memory space for memory and use more complex 16-bit address recognizers,
which wouldn’t be too detrimental (in terms of added parts) to a very large
system.

Support. The 6800 has a wide range of support chips. Since 6800 series parts
are designed to work as a functional building-block set, the interface parts have
compatible control lines. Few discrete parts are needed to get a system going.
As with the 8080 support chips, anything from simple serial interfaces to on-
chip CRT and floppy disk controllers are available.

In terms of software, the 6800 is one of the best supported microproces-
sors. For initial circuit designs there are evaluation boards, and for software
development there is the EXORciser system—a complete software develop-
ment tool consisting of a terminal, floppy disks, PROM programmer, as-
sembler, editor, and other development software.

Physical Characteristics. The 6800 is available from six manufacturers in
three basic speed ranges—1, 1.5, and 2 MHz. The 6800 requires only one 5-volt
power supply and dissipates about half a watt of power. Commercial, indus-
trial, and military versions are available.

The bus driving capabilities of the 6800 are adequate to support up to six
6800-series support devices without the need for a bus extender or additional
drivers.

Other 6800 Family Members

The 6802, a truly third-generation version of the 6800, features an onchip clock
plus 128 bytes of internal RAM that can be used as the stack. Just two chips
(the 6802 and 6848 ROM-I/O—-timer) can constitute a complete small system, as
Fig. 2-8 illustrates.

The 6809 is an enhanced upgrade of the 6800 and features 16-bit operations
and powerful data processing instructions like multiply and divide.

The 6500 Family

The 6500 series of microprocessors are direct descendants of Motorola 6800
technology. The MOS Technology people, however, took a somewhat different
approach than Zilog did with the Z80 in enhancing an existing processor. The
6500 and 6800 microprocessors have similar architectures and instruction sets,
but the 6502’s instruction set has no upward compatibility with the 6800 as does
the Z80 with the 8080. Although many identical-in-name-and-function instruc-
tions are used, the operation codes (or opcodes, as they’re commonly called)
are totally different. A 6800 program cannot run on a 6502 without major
revision.
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Purpose. Not surprisingly, the 6502 also shares a common purpose with the
6800. It’s a general-purpose CPU featuring twos’ complement arithmetic as
well as control capabilities and therefore performs very well in data processing.
One of the original design goals of the 6500 series was to reduce the cost of
microprocessors. At the time it was introduced, microprocessors of this type
were selling for about $100. Although the 6502 offered substantial savings then,
the costs of microprocessors on the whole has dropped enough to make the
cost benefit negligible.

Features. We focus here on the features of the most common microproces-
sor in the 6500 family —the 6502. Architecturally, the 6502 uses a slow clock
with many operations per clock cycle. Most operations execute in 2 or 3 clock
cycles. It is a memory-oriented machine with only one accumulator (as op-
posed to the 6800°s dual accumulators) and features two 8-bit index registers
whose values are used to form index offsets. Figure 2-9 shows the 6502.

Stack capabilities are provided, but stack size is limited to 256 words
because of the 8-bit stack pointer. The location of the 256-byte stack is always
assumed to be 010016 to 01FF16. For control applications—and indeed even in
general-purpose processing—a stack size of 256 is usually adequate unless
subroutines are nested very -deeply or you happen to be a stack-oriented pro-
grammer.

In the addressing department, the 6502 has one mode that neither the 8080
or 6800 series has—indirect addressing. An indirect instruction consists of
two bytes: one opcode byte and one offset byte that helps form a 16-bit address.
The value of the 16-bit address represents the storage location where the data
can be found.

Interface Methods. The 6500-series processors use an I/O philosophy that is
nearly identical to the 6800’s. Memory-mapped 1/O and DMA are the major
features of these microprocessors. The fact that the 6500’s most commonly
used interface chip, the 6520 PIA, is identical and interchangeable with the
6800-series peripheral interface adapter (the 6820 PIA) says a lot about the I/O
similarities of these processors.

One important thing should be noted about the DMA capabilities of the
6500 series. The address and data buses cannot be disabled separately, and
there is no halt state. DMA can be handled by interleaving CPU processing and
processing wait states. Since the 6500 series microprocessors are not well
suited to DMA operations, it would be wise to choose the 6800 instead of the
6502 in applications requiring extensive DMA.

Support. The 6502 is fairly well supported in both hardware and software
areas. A few dedicated 6502 support chips, including the 6520 PIA and 6522
PIA plus two timers, are available, and many of the 6800-series support chips
will work with the 6502 with little or no external matching circuitry.




@—————  REGISTER SECTION CONTROL SECTION ———% .

RES IRQ NMI
a B!
AB9 ﬂ ] INDEX (:J INTERRUPT
REGISTER LOGIC
Y
ABl -t ¢ ¢ ‘
AB2 - INDEX
REGISTER
X la————— RroY
AB3} -
2 = STACK
ABl - 2 ) 3@ POINT
= REGISTER
< (S) 1
ABS wt—| z
w INSTRUCTION
E 2 ODE
= ]
AB6 g <~§
ALU |
. S |
AB7 -] . 2 1
| < ‘
ADDRESS
BUS . E '
r— T =
ABY A E: accumuLaTor []Z : TIMING K
4 A CONTROL |
<_1 é ] |
A = (6501)
E 9| 9 (IN) E
AB10 =] = PeL - b K
C'—:) H 92 (IN)
N 6501)
ABI -] PCH
Y Pus(}(fwsggk CLOCK cLock %o M)
ABIz @] Z ﬁ | RecisTER GENERATOR INPUT  (6502.3.4.5)
: z b
- INPUT
Llf\ATT(?c K— [——> 9 our (6501)
ABI3 g (DL) ¢ our (6501)
L————» R/W
AB1Y -g— DBE
DATA BUS INSTRUCTION
BUFFER REGISTER H
ABIS g LJ - |
t I3 N
nBe
. - DB
LEGEND - DB2
ﬂ —= DB3 DATA
B BITLINE > DB4 BUS
— DBS
| = | BIT LINE = DB6
— DR7
NOTE: 1. CLOCK GENERATOR IS NOT INCLUDED ON MCS6501.
2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE MCS650X PRODUCTS.
MCS 6502 8-Bit Microprocessor )
, .
Manufacturer MOS Technology Programmer’s Eye View
Device Technology NMOS -
: - 8 bits | Accumulator A
Data word width 8 bits - )
Addressing range 65,5636 words 8 b_'ts Index register X
Instruction width 8 bits 8 bits | Index register Y
Instruction count 56 16 bits Program counter PC
gloﬁk frequency 42!8 kHz62'PMHZ 8 bits | Stack pointer SP
ackage -pin 2 bi .
; its | Status register
Power requirements 5V at 140 mA 9
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The 6502 has no software commonality with the 6800, but a good software
support base has been developed by 6502 manufacturers and users. Editors,
assemblers, cross assemblers, a math package, and even a FORTRAN com-
piler are available.

Hardware prototyping is supported by the KIM-1 and TIM microcomputer
cards. Software development is supported by MOS Technology’s MD2 650
development terminal and Rockwell’s System 65, which features dual floppy
disks.

Physical Characteristics. The 6502 is available from three manufacturers in
1 or 2 MHz clock versions. It requires a single 5-volt power supply and dissi-
pates about 750 mW of power. An onboard clock is included on many of the
6500-series microprocessors. The 6500 processors equipped with internal
clocks output both phase 1 and phase 2 clock signals for timing uses by memory
and interfaces. )

Other 6500 Family Members

MOS Technology has chosen to expand the 6500 series of microprocessors
horizontally instead of vertically. The 6500 is available in 10 versions, some
with 40 pins and some with only 28 pins. Various memory addressing and
control signal options are available.

SPECIAL-PURPOSE MICROPROCESSORS

So far we’ve discussed only the most popular microprocessors. The 8080, Z80,
6800, and 6502 clearly predominate in the microcomputer market. There are,
however, many specialized microprocessors currently being used in applica-
tions in which certain features peculiar to a specialized microprocessor are
desirable. In some cases this specialized feature may be power dissipation
while in others it might be I/O versatility, high processing throughput, or multi-
ply and divide capability.

The following paragraphs spotlight a few of the more common specialized
microprocessors and describe the key features that make these devices desir-
able in special-purpose applications.

An 1/O-Oriented Microprocessor: The F8

The Fairchild F8 microcomputer is well suited for use in I/O intensive applica-
tions. Unlike the single-chip 8085 and 6802, the F8 requires at least two chips to
make a minimal system. These ICs are not merely bit-slice chips; they are
separate operational pieces of the overall F8 architecture. This form of parti-
tioning allows you to build a microcomputer or microcontroller in a customized
1/O configuration.
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The main chip in the F8 family is the 3850 CPU. Like most CPUs, this
device contains an 8-bit arithmetic logic unit, control unit, and system bus
interfaces for input and output. The CPU even contains a 64-byte scratchpad
RAM and clock generator. These features were quite advanced and unique to
the F8 when it was first introduced, before the advent of one-chip microcompu-
ters. Figure 2-10 shows the 3850 CPU.

The main difference between the F8 and standard 8085- and 6800-type
microprocessors is that the 3850 CPU has no program counter, data counter, or
stack pointer on the CPU chip. These counters are instead placed on the
interface and memory chips and are therefore duplicated many times if many
memory and I/O chips are used. Six bytes of the scratchpad RAM are set aside
to store program-counter and data-pointer addresses. The addresses are sent
out to the memories over the I/O channels instead of the more common address
bus.

The distributed addressing characteristics of the F8 give this micro family

its good I/O capabilities. Because no 16-bit address bus is needed for a program
address, many pins are freed for I/O use. The 16 pins on the CPU chip are
divided into two 8-bit I/O ports.

Because all memory units have their own program counters and address
registers, which all clock simultaneously, it would seem that many memory
conflicts would arise. But this is avoided by assigning a unique addressing
space in memory to each device.

Other chips in the F8 family include the 3851 1K ROM and /O timer, the
3852 and 3853 dynamic and static memory interfaces, the 3854 DMA control
unit, the 3861 peripheral I/O and timer chip, and a few other ROMs.

Mostek, an F8 second-source manufacturer, has produced the 3870, which
is a complete single-chip microcomputer version of the F8. The 3870 not only
includes the standard 3850 CPU but features a 2K ROM, lower power con-
sumption (350 mW versus 700 mW for the 3850), a single 5-volt power supply
(the +12 V supply has been eliminated), and a per-chip cost of less than $10
(in ‘‘quantity’’ buys). _ ‘

The F8 has found wide use in the field of video games due to the large
number of input interfaces (joysticks, switches, and control paddles) and out-
put interfaces (video displays, score counters, and flashing lights) that seem to
be the hallmark of electronic games. In these applications, the F8's specialized
feature—its versatile I/O capability—has helped reduce interface complexity
and cost.

A Low-Power Microprocessor:
The 1802 COSMAC

Power dissipation is not usually a top-priority item in the design of a microcom-

puter. Most microprocessors only draw a watt or two of power; the power

consumption of the memories and interface components overshadows the mi-
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croprocessor power draw. In the microcomputer field there is, however, one

- route left open to people who need a system that consumes a very small amount

of power; that route is the COSMAC CMOS microprocessor supported by
CMOS RAMs and CMOS interface circuitry. The COSMAC’s low power dissi-
pation has made it one of the most popular of the available special-feature
microprocessors.

The COSMAC has a fairly primitive architecture, which is better suited to
low-end controller applications than data processing tasks. The architecture is
based on sixteen 16-bit general-purpose registers that are referenced by three
4-bit pointer registers. The registers can be designated as data pointers, pro-
gram counters, I/O, or general-purpose registers by the programmer. This ver-
satility allows you to set aside a few program counters for subroutine use.
Figure 2-11 shows the COSMAC’s architecture.

Three of the sixteen registers—RO0, R1, and R2—are allocated for special
functions. The RO register is used as a transfer address register during DMA
operations. When an external device references memory directly in the DMA
mode, it steals one machine cycle and stores or fetches data from the address
specified by R0O. The RO register is automatically incremented after a DMA
transfer, leaving RO pointing to the next data location. This unique built-in
transfer address register cuts down significantly on the amount of hardware
required to implement a DMA interface. No external 16-bit transfer address
register or address bus driving circuitry is required, as it would be in a standard
DMA interface.

More hardware savings can be realized in interrupt-driven 1/O application
when using the COSMAC. In most computers’ interrupt-driven I/O systems,
the interrupting peripheral’s interface requests that the processor interrupt its
current program and temporarily transfer control to an I/O program handling
that peripheral’s data communication. The interface then drives the
microprocessor’s data or address bus (depending on the microprocessor) with
the address of the I/O program so the processor knows where to jump to
execute the program and ‘‘service the peripheral.”” A set of bus drivers are
needed to put this jump address on the bus. The COSMAC eliminates the need
for this set of drivers by defining register R1 as the interrupt jump address.

The final dedicated register, R2, serves as a subroutine status-storing stack
pointer. The COSMAC stack feature is not very powerful, however, and can-
not be used to process data in general-purpose processing applications.

The actual power consumption of the COSMAC depends heavily on clock
rate, power supply voltage, and even on the instruction being performed. As
Fig. 2-12 illustrates, power consumption can be as low as 600 wW or as high as
S5mW.

The 1802 COSMAC is used extensively in battery-powered processors and
portable equipment in which low thermal dissipation is required. Being a
CMOS device, the COSMAC is very immune to electrical noise and input
voltage variations.
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|I' 8-bit primary Accumulator

The 1802 COSMA C’s power dissipation characteristics. (Courtesy RCA
Solid State, Somerville, N.J.)
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Software support for the 1802 includes a resident and cross assembler; a
simulator, a firmware debug package, and a floppy-disk-based development
system. A high-level interpretive language is also available.

COSMAC hardware support includes the 1852 8-bit I/O port, 1854 CMOS
UART and many other CMOS LSI parts that are part of RCA’s extensive
CMOS line.

The COSMAC microprocessor has been available in one form or another
(the older 1801 COSMAC was a two-chip set) for many years, and to this day
remains the only CMOS 8-bit microprocessor. For extremely low-power pro-
cessing applications, the COSMAC is the only choice.

HIGH-PERFORMANCE MICROPROCESSORS

Some applications have one general requirement: the need for vast amounts of
processing power. Data processing and scientific computing that require many
arithmetic operations (including multiplication and division) are cases in point.
A few years ago, only a minicomputer or mainframe could have efficiently
handled these large processing tasks, but today’s LSI technology allows the
fabrication of microprocessors that perform as fast or faster than the minicom-
puters of a few years back. These powerful processors are usually 16-bit
devices, many of which are built around minicomputer instruction sets in order
to maintain software compatibility with existing program libraries.

The first two 16-bit upward-compatible microcomputers to enter the mar-
ket were the Digital Equipment Corporation LSI-11 and the Texas Instruments
TMS 9900, patterned after the PDP-11 and TI 990 series minicomputers. Since
the introduction of these two microprocessors, other manufacturers have fol-
lowed suit in concept. Table 2-1 lists a few of the current microprocessors and
the minicomputers with which they maintain a compatibility with regard to
instruction sets.

While the minicomputer-like microcomputers bring near-mini performance
down to the micro level, a new generation of powerful 16-bit microcomputers

Table 2-1  Upward-Compatible Microcomputers

Microprocessor

Part Number Manufacturer Compatible Minicomputer

TMS9900 Texas Instruments TI's 990 series

IM6100 Intersil Digital Equipment Corporation PDP-8
LS1-11 Digital Equipment Digital Equipment Corporation PDP-11
9440 Fairchild Semicon Data General Nova

mN601 Data General Data General Nova

MCP-1600 Western Digital : Similar to DEC PDP-11
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has evolved from the common 8-bit microprocessors. Extended and enhanced
16-bit versions of existing 8-bit microprocessors are now being introduced. The
Motorola 6809 and 68000, Intel 8086, and Zilog Z8000, fall into this category.

A few representatives from both high-performance 16-bit categories will
now be examined. Many experts feel that these processors will replace simple
8-bit micros and even minicomputers in many areas in the near future, so you
should be familiar with these high-performance devices.

The TMS 9900 Family

One of the first 16-bit one-chip microprocessors was Texas Instruments’ TMS
9900. Unlike the Digital Equipment Corporation LSI-11, which comes as a
three-chip set, the TMS 9900 is one large chip in a 64-pin package. Figure 2-13
shows the primary physical characteristics.

Purpose. The TMS 9900 was initially intended to be a central processing unit
that could successfully compete with minicomputers in scientific applications.
It is definitely intended to be a ‘‘data processing’’ type of microprocessor and
would be considered overkill in all but the most complex controller applica-
tions.

Features. The TMS 9900 is a 16-bit NMOS microprocessor that runs with a
maximum clock rate of 3 MHz (four clock phases are required). The architec-
ture follows the philosophy of high-speed clock with many small operations per
cycle. A simple add operation takes 14 to 30 clock cycles, depending on the
addressing mode. The TMS 9900 isn’t very fast with simple character-
manipulating operations, and this is attributable to the number of cycles it takes
to perform simple operations. ‘

The TMS 9900 is a memory-oriented machine whose structure consists of a
program counter, status register, and workspace pointer. The work-space-
register concept employed in the TMS 9900 is quite interesting: Instead of
having a bank of general-purpose registers like the 8080 and COSMAC—or
even dual sets of registers like the Z80—the device uses 16 memory locations
for its working registers. The location of these registers in memory is deter-
mined by the workspace pointer. Once the workspace pointer is set to the
proper location in memory, the 16 memory locations beyond the pointer can be
referenced with simple 4-bit offsets that can be thought of as register labels
(016—F16). The workspace registers allow great flexibility in subroutine nesting
and interrupt processing, since saving the machine’s registers is simply a mat-
ter of changing and restoring the workspace pointer and using a fresh block of
16 registers in the interrupt service routine or subroutine.

The TMS 9900’s memory structure reflects its lineage from the world of
large computers. For its sophisticated minicomputer-like interrupt system,
many of the lowest and highest memory locations are reserved for initialization
trap vectors and interrupt service vectors.
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Although the TMS 9900 doesn’t transfer or add words very quickly, there
are two features that drastically increase its throughput in arithmetic applica-
tions: its 16-bit precision and its built-in multiply and divide capability. A 16-bit
multiply or divide takes about 400 microseconds using inline code (no loop
counting) on a 4 MHz Z80, and it takes only 18 to 42 microseconds on the TMS
9900.

Interface Characteristics. Three I/O methods are used in the TMS 9900:
memory-mapped I/O, DMA 1/0, and communication register unit or CRU reg-
ister transfer I/O. Memory-mapped I/O and DMA transfer operations are quite
standard and are similar in operation to the 6800’s I/O scheme, but the CRU
transfer, which is unique to the TMS 9900, deserves a closer examination.

Texas Instruments reasoned that board layout and parallel-data-bus com-
plexity could be reduced if some sort of serial data transfer capability was
incorporated into the microprocessor. In addition to being able to read or write
a bit-stream of data, TI wanted the TMS 9900 to be able to selectively control
the bits it was sending and receiving. The solution to these problems was the
CRU system.

A serial input line (CRUIN), a serial output line (CRUOUT) and a syn-
chronizing clock (CRUCLK) are provided, as shown in Fig. 2-14. Serially
shifting n bits of a word stored at memory location x is simply a matter of

_invoking the LDCR X, N instruction (load CRU register with n bits from

location x). As the specified bits are serially shifted out the CRUOUT output
line, the addresses on the address lines are constantly incremented. The first
address on the address lines in this transfer sequence is specified by workspace
register 12. The incrementing address lines can thus be used to multiplex the
serial bits out to different locations using an external multiplexer. Figure 2-14
gives an example of an address-driven multiplexing CRU application. '

The CRU I/O concept can indeed cut down on interface complexity in
some cases, but the CRU method of 1/O transfers hasn’t been accepted and
isn’t being incorporated in other microprocessors. A reason may be that it is a
difficult concept to grasp unless you’ve worked with CRU transfers before.

Interrupt-driven I/O is easily handled by the 16-level priority-interrupt sys-
tem. The TMS 9900 has fairly simple and straightforward electrical interface
characteristics. Address, data, and control information flow on a 16-bit address
bus, a 16-bit data:bus, and a 15-bit control bus. TMS 9900 inputs are high
impedance and reduce loading on the internal bus drivers. The need for bus
drivers and receiver chips is thereby eliminated in small systems, but larger
systems require many bus drivers due to the wide 16-bit data bus. With more
than 32 lines to buffer at each peripheral interface, interface ‘‘component
counts’’ rise rapidly.

A 4-phase clock must be generated for the TMS 9900. A TIM 9904 is
available to perform this task, but it means that another interface part is added
to the system.
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Figure 2-14  The TMS 9900’s CRU input and output system. (Courtesy Texas
Instruments, Inc., Dallas, Texas.)

Support. A 9901 programmable interface chip, a 9902 asynchronous inter-
face chip, and the 9904 clock driver help support the TMS 9900 on the hardware
level.

Software support for the microprocessor is no problem. Because it is pat-
terned after the TMS 990 minicomputer’s instruction set, assemblers, editors,
FORTRAN, BASIC and even a program library are available to all users. A
high-order language called P1./9900 eases real-time programming tasks.

Other 9900 Family Members. The 9900 comes in an I2L version called the
SBP-9900. A single-phase 4 MHz clock is required, and performance is in-

creased since I?2L is a bipolar device technology.
A down-sized 8-bit-data-bus version of the TMS 9900, called the TMS

9980, is also available. This part comes in a 40-pin package, is cheaper than the
TMS 9900, and is better suited to controller-type applications.



The MC6809

Motorola has taken the enhanced 8-bit microcomputer approach in entering the
mid-performance 16-bit microprocessor market. By extending the existing 6800
instruction set, increasing the number of memory addressing modes, adding
true 16-bit arithmetic capabilities, and providing an 8- by 8-bit multiply instruc-
tion, the 6809 has become a powerful processor that is well suited for complex
data processing tasks.

Features. The MC6809 is designed to operate in both 8-bit and 16-bit modes.
A complete set of 8-bit instructions with mnemonics identical to those for the
6800 is incorporated. Although object code cannot be transferred directly from
the 6800 due to the different opcodes, old 6800 source programs will run if
assembled with a 6809 assembler. And they will run more efficiently as a result
of architectural improvements.

Because the 6800-series microprocessors are memory-oriented, the 6809
has been designed to operate more efficiently in memory-intensive data pro-
cessing modes.

Figure 2-15 illustrates the MC6809’s architecture and enhanced instruc-
tions. When comparing the MC6809 to the 6800, the increase in the number of
registers becomes obvious. A user stack pointer, an additional index register,
and a direct page register have been added. It is interesting to note that Mo-
torola stuck to its dual-accumulator architecture philosophy. The new registers
are not data-manipulation or general-purpose in nature but are rather enhance-
ments to the processor control and addressing capabilities.

One of the biggest complaints programmers had about the 6800 was its total
absence of long conditional branches. Only short (127-byte) relative branches
were possible. This situation is totally remedied in the MC6809. A full comple-
ment of long branch instructions is now available. This improvement is in
keeping with Motorola’s philosophy: ‘‘make it easy to program.”’ Table 2-2
shows the new 16-bit instructions.

The 6800 microcomputer has always been looked on as an 8-bit PDP-11.
The instruction set is very similar, and extensive addressing capabilities are
present in both machines. The MC6809 moves one step closer to the full ad-
dressing capabilities of the PDP-11 with the introduction of autoincrement
addressing. This mode is very valuable when sequentially indexing through
data because no index updating commands are required. Table 2-3 presents the
new addressing modes; note that autoincrement by one and by two are avail-
able for both 8-bit and 16-bit operating modes.

One final feature that is new to the MC6809 is the SYNC instruction.
Executing this instruction stops processing and causes the processor to wait
until it receives an external interrupt before resuming its operation. This fea-
ture is said to be useful for synchronizing software to events in the real world,
but it will also find use in synchronizing many processors in a multiprocessor
system.
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Table 2-2 The Motorola 6809’s 16-bit Instructions

Instruction Description

ADDD Add memory to D accumulator
SUBD Subtract memory from D accumulator
LDD Load D accumulator from memory
STD Store D accumulator to memory
CMPD Compare D accumulator with memory

LDX, LDY, LDS, LDU

STX, STY, STS, STU

CMPX, CMPY, CMPU, CMPS
LEAX, LEAY, LEAU, LEAS

SEX

TFR register, register
EXG register, register
PSHS (register) H
PSHU (register) |
PULS (register) ]
PULU (register) Z

Load pointer register from memory
Store pointer register to memory
Compare pointer register with memory
Load effective address into index regis-
ter :

Sign Extend D accumulator

Transfer register to register

Exchange register to register

Push register(s) onto hardware stack
Push register(s) onto user stack

Pull register(s) from hardware stack
Pull register(s) from user stack

Table 2-3 The Motorola 6809 Indexed Addressing Modes

Effective

Mode Address (EA) Description

,R EA =R Indexed with zero offset

[0, R] EA = [R] Indexed with zero offset indirect

R+ EA=R;R+1—R Autoincrement by 1

JR++ EA=R;R+2—R Autoincrement by 2

LR++1 EA = [R];R+2—R Autoincrement by 2 indirect

,—R R—-1- R;EA =R Autodecrement by 1

,——R R-2—- R;EA =R Autodecrement by 2

[,L——R] R-2 — R;EA =[R] Autodecrement by 2 indirect

N,R EA = R+N Indexed with signed N as offset
(N = 5,.8, or 16 bits)

[N,R] EA = [R+N] Indexed with signed N as offset indirect
(N = 5, 8, or 16 bits)

AR EA = R+A Indexed with signed accumulator A as offset

[A,R] EA = [R+A] Indexed with signed accumulator A as offset indi-
rect

B,R EA = R+B Indexed with signed accumulator B as offset

[B,R] EA = [R+B] Indexed with signed accumulator B as offset indi-
rect

D,R EA =R+D Indexed with accumulator D as offset

[D,R] EA = [R+D] Indexed with accumulator D as offset indirect

R = X, Y, U, or S register
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Interface Characteristics. The MC6809 uses the same memory-mapped I/O
methods employed on the 6800, 6801, and 6802 microprocessors. The external
pinout of the 40-pin device is in fact nearly identical to the 6802; two pins are
assigned as crystal inputs, since the 6809 has a built-in clock to which an
outboard quartz crystal can be connected.

Support. The wide selection of 6800 peripheral chips will all work with the
MC6809. A unique assembler that handles 6800 assembler source code as well
as all the new MC6809 instructions is also available. The EXORciser develop-
ment system is also compatible with the new MC6809.

The 8086

Intel took the same approach as Motorola when it entered the market with its
16-bit high-performance microcomputer. By enhancing and upgrading an exist-
ing processor, the 8080, Intel managed to create one of the highest performance
microprocessors available today. The objectives of the 8086 design were to
provide up to ten times the performance of the 8080A while maintaining
software compatibility at the assembly-language level. These goals were met by
improving and expanding the 8080 architecture and by employing a new device
technology.

The 8086 is the first microprocessor on the market to use the new silicon-
gate short channel HMOS process. This process makes the 8086 faster as well
as more reliable than a similar product fabricated from regular NMOS.

Features. The 8080 was primarily a controller. Signed arithmetic, arithmetic-
conditional branching, and arithmetic shifts were not possible. All of these
problems have been eliminated on the 8086. A complete set of 8- by 16-bit
signed or unsigned arithmetic operations including both 8-bit and 16-bit multi-
plies are available (remember, the 6809 only had an 8-bit multiply).

The 8086 has an expanded register set, also. Figure 2-16 illustrates the new
registers. The general-purpose working registers of the 8080 (H, L, B, C, D) are
retained but are now the A, B, C, and D 16-bit registers. Base pointer, source
index, and destination index registers add to the indexed addressing capabili-
ties of the 8086, and a whole block of relocation registers has been provided to
support the 8086’s automatic software relocation feature. The 8086 can address
up to 1 million bytes as 64K pieces with a 20-bit address generated using the
relocation feature.

The 8080 is much less sophisticated than the 6800 and 6502 in the way it
handles instruction fetching and execution. The 8080 waits until it needs in-
structions before fetching them and finally executing them, while the 6800 and
6502 fetch instructions ahead of time and have them ready when the processor
needs them. This form of instruction lookahead overlaps computations with
memory operations (the next instruction is fetched while the current instruction
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Specifications
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Intel’s 8086 16-bit microprocessor. (Reprinted by permission of Intel

is being executed). Instruction lookahead has been successfully used on large
computers for many years. The 8086 does incorporate an instruction lookahead
feature, which helps increase its operating speed.

The 8086 is actually two processors in one package. The bus interface unit
(BIU) handles instruction fetching and maintains a queue of six instructions. In
other words, the 8086 looks ahead by six instructions and uses nonmemory
access cycles to keep the instruction queue full. The instructions are actually
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executed by the instruction execution unit (IEU), which performs the typical
microprocessor instruction tasks; but instead of fetching instructions from
memory, it fetches them from the instruction queue.

The six-instruction queue has a few big advantages other than the inherent
speedup of processing due to instruction fetch—-execution overlap. Since in-
structions are stored in the queue, the processor is not slowed down by DMA
operations (at least not by light DMA transfers). A direct memory access by
another device on the bus won’t delay the fetching of an instruction by the
IEU, because the EIU gets its instructions from the instruction queue rather
than from memory. When the DMA operation is finished, the BIU “‘hurries’’ to
fill the instruction queue, which has been depleted by the lack of memory-to-
queue fetches. By optimizing memory use in this way, the 8086 makes the most
out of the memory’s maximum throughput rate (memory bandwidth).

Intel has gone to great lengths to make the 8086 easy to program and easier
for a compiler to generate code for. A complete set of string-manipulation
instructions result in simplified text and list processing in business data pro-
cessing apphcatlons and the dual index registers and stack pointer make modu-
lar and stack-orlenbed compiled programs easy to implement. Relative address-
ing is also included for software simplicity and for object-code reduction.

Interface Characteristics. The 8086 comes in a 40-pin ceramic dual-inline
package (40-pin cerDIP) and interfaces to I/O devices in the same way as the
8080. Intel has again reverted to the three-package-microprocessor concept. As
in the case of the 8080, a clock generator chip (8284 in this case) and a bipolar
bus controller (8288) are needed to make the 8086 into a reasonable system.
(The 8288 can be omitted in minimal configurations, however.)

Support. Support software for the 8086 is well thought out, and anyone
owning Intel’s MDS 8080-based development system will have no trouble de-
veloping 8086 programs. By using a new assembler, old 8080 source code can
be compiled into new 8086 object code, and all the new instructions can be used
on new programs.

The new ASMB86 8086 assembler is one of the finest assemblers available in
the microprocessor field and offers a comprehensive macro facility, piece-by-
piece modular assembly, and absolute or relocatable object-code generation.

Physical Characteristics. The HMOS device technology has given the 8086
state-of-the-art specifications. The 8086 contains 29,000 transistors, runs on a
single 5-volt power supply, and has a clock rate of 5 to 8 MHz (depending on
the part version). Memory cycle time is 500 ns for the 8 MHz part, which makes
the use of a high-performance RAM (such as Intel’s matching HMOS 2147 4K
RAM) imperative.




The Z8000

Zilog took a unique approach in the development of a high-performance 16-bit
microprocessor. Unlike most manufacturers, who took either a minicomputer
and scaled it down or a simple 8-bit microprocessor and enhanced it, Zilog
started from scratch and took a no-holds-barred approach to processing power.
By taking all the advanced design features of large minicomputers and main-
frames, (notably the DEC PDP-11 and IBM 370) the company produced a
very powerful microprocessor: the Z8000. The Z8000 is, in fact, the first micro-
processor aimed at the high-end minicomputer market rather than the low-
end market of micros that ‘‘approach minicomputer performance.”” A Z8000
microprocessor running at a mere 4 MHz provides twice to five times the
performance of a Digital Equipment Corporation PDP-11/35 and even outper-
forms the PDP-11/45 in many applications.

Features. The Z8000 is in no way compatible at the assembly or compiler
language level with the Z80; the advanced architecture ruled out any similari-
ties. Instead, the Z8000 has a repertoire of 110 unique instructions that include
powerful macroinstructions such as block searches and string manipulations.

"The Z8000 has an interesting memory addressing scheme. Zilog realized
that many users would be perfectly satisfied with a 16-bit address field, while
some specialized applications would require a much larger addressing space.
Therefore, the Z8000 comes in two configurations: a 40-pin version is available
for 16-bit addressing, and a 48-pin version can be used when up to 48 mega-
bytes of memory are required (a segmented 24-bit address is used to accom-
plish the task). Even the fastest-moving memory technologies will have trouble
surpassing this memory addressing range.

Support. Zilog supplies unique support and application software for the
Z8000. Compilers for BASIC, COBAL and FORTRAN are planned. A lower-
level programming language called PL/Z is also available foxj the Z8000.

BIT-SLICED MICROPROCESSORS

Over the years, large computers and other large digital devices have advanced
from one technology to another. The original mechanical and vacuum-tube
logic designs were replaced by transistor equivalents. Small-scale integrated
circuits then entered the picture.

The first generation of SSI was introduced in 1965, when three to six gates
were available on chips costing from $10 to $20 each. The 7400 series of logic
elements made its debut a short time later, with gates and dual flip-flops being
the most advanced element in the 7400 line.
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In the late sixties and early seventies, device technology matured to the
extent that counters, shift registers, and complete arithmetic units could be put
onto a single chip. This second generation of integration, called medium-scale
integration or MSI, caused packages to increase in size from 14 pins to 16 and
24 pins. The problem was no longer squeezing a few hundred gates onto a chip,
but rather finding enough pins to bring the terminals of these gates out to the
real world.

Up until the early seventies, bipolar logic (TTL, DTL, and ECL) domi-
nated the picture. The early seventies marked a turning point in logic design.
Metal-oxide semiconductor (MOS) technology developed to the point at which
complete control units could be built on one large-scale integrated (I.SI) circuit,
and many slow-speed logic designs started using MOS microprocessors to
replace the unnecessarily fast, power-consuming bipolar MSI logic. High-
performance applications, however, were still being implemented with bipolar
MSI.

While the MOS microprocessor advanced through approximately four gen-
erations of refinements, bipolar logic also advanced. More and more devices
were put onto single chips, and more complex functional building blocks were
used due to the limited number of input and output pins on a single package.
These LSI bipolar functions finally became so complex that they began to
resemble microprocessors. Microprogram sequencers began to be called con-
trol units and powerful register file/ALUs began to be called bit-sliced CPUs.
In reality, the new bit-sliced microprocessors are just logical extensions of
standard bipolar logic families. Two cases in point are the Texas Instruments
74481 series, which is an extension of the 7400 TTL line, and the Motorola
10800, which is an extension of the MECL 10000 series.

For high-performance applications, such'as mainframes, high-level mini-
computers, high-frequency instrumentation, and high-speed dedicated logic,
bipolar logic is still the best in terms of pure performance. Bipolar MSI and the
new bipolar bit-sliced microprocessors are currently being used in these appli-
cations.

One of the most popular bipolar bit-sliced microprocessors is the 2900,
which we’ll examine now. We’ll look at what appears to be the most powerful
microprocessor in existence, the ECL 10800, in the following section.

The 2900 Family

The Advanced Micro Devices (AMD) low-power Schottky TTL 2900 series is a
family of LSI logical building blocks designed for use in high-performance
applications. Instead of having a one-chip structure and a fixed instruction set
like most 8-bit and 16-bit MOS microprocessors, the 2900 is totally user-

configurable to implement any instruction set or logical design the user
chooses.
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The key word for the 2900 series is microprogramming. Advanced Micro
Devices recommends that you use one to four 4-bit microprocessor data slices
(2901s), a few microprogram sequencers (2909 or 2911s), and a microprogram
memory in implementing a logic design. The resulting processor executes a
user’s program by fetching a user’s instruction out of the real microcomputer
memory and sequencing through a small microprogram in microprogram mem-
ory to move data around and toggle control lines. Instructions in the micropro-
gram memory are called microinstructions. These instructions are not the typi-
cal instructions that you would find in a MOS microprocessor’s instruction set,
but rather are wide-word-width (20 to 70 bits wide) instructions with each bit in
the word controlling a unique multiplexer, ALU, or register. By defining the
words in the microprogram memory properly, a 2900 system can be made to
execute instructions in the same way an 8080 or 6800, or for that matter a
PDP-11 or IBM 370 does. With this sort of flexibility it is obvious why many
manufacturers are using 2900 series parts to build their minicomputers: less
parts and identical performance.

In regard to chip counts, the 2900 series microprocessors in no way com-
pare to MOS microprocessors. It typically takes 30 to 40 parts to implement a
simple 2900 series design. The reason is twofold: In order to retain flexibility,
lower-level building blocks are used in the design. Secondly, 16-bit or even
8-bit arithmetic elements are not possible due to the amount of heat generated
by the bipolar circuitry.

Features. Due to the design-it-yourself nature of the 2900 series, it is hard to
talk about instruction sets, branch capabilities, and the like. Figure 2-17 illus-
trates a 2901 microprocessor slice. The best way to examine its characteristics
is to look at its function and clock rate.

The 2901 is built around a 16-word, 4-bit two-port RAM, a high-speed 4-bit
ALU, and associated shifting, decoding, and multiplexing circuitry. Nine con-
trol lines (which are intended to be driven by a microinstruction word) control
the RAM and ALU. Full lookahead inputs and outputs are provided on the
built-in ALU, and a 2902 high-speed carry lookahead generator can be used to
cascade up to four of the 4-bit slices together to make a 16-bit ALU. Banks of
16-bit ALUs can also be cascaded to make machines with even wider word
widths of 32, 48, and 64 bits.

Basically, processing is performed by moving data around within the mi-
croprocessor slice using RAM and the Q register as temporary storage loca-
tions. Data can be processed by the ALU and sent back to the RAM, or it can
be output through the DATA OUT port. It’s often desirable to bring data in
from the outside as well, so a direct DATA IN port has been provided.

The 2901’s performance varies, depending on how many bit slices are
cascaded together. A 64-bit (word width) machine will run slower than a 16-bit
machine due to the added ALU propagation delay, but as a general rule the
2901 can be expected to clock at 7 to 10 MHz. To get an idea of what this
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means, performance-wise, compare the 2900’s 110 ns add time to the 4 MHz
Z80’s 1 ps time. Bear in mind that 1us is the equivalent of 1000 ns. Obviously,
there’s really no comparison.

Interface Characteristics. Again, there is really no general well-defined
way to interface to a 2900 microprocessor; you define your own interfaces. As
with other bipolar designs, plenty of driving current (enough to drive about 10
other equivalent microprocessor loads) is available and little buffering is re-
quired. Figure 2-18 illustrates a 2900-based microcomputer. Notice how the /O
structure was set up. Independent bus interface registers are used to drive the
data bus, and a 16-bit address bus is set up using four 2930 program control
units. In this case the I/O protocol is determined by the microprogram memory
contents. A similar I/O protocol and structure can be used for easy bus interfac-
ing if you choose the 2900 for your high-performance design.

Support. Assemblers, editors, and compilers are not available for the 2900,
as no firm instruction set exists. Rather, an extensive hardware development
system called System 29 is available from AMD. Based on a 9080 (AMD’s
equivalent to the 8080), System 29 lets you develop and test your own designs
on a software simulation and hardware breadboard basis. A universal
assembler —which allows you to define the mnemonics and opcodes—is pro-
vided to accommodate almost any configuration we might come up with.

A hardware development kit called the Am2900K1 is also available as a
learning and breadboarding aid.

Ancillary Devices. In addition to the 2901 CPU, 2909-2911 microprogram
sequencers, and 2902 lookahead units, the 2900 family features an interrupt
expander (2913), vectored-interrupt controller (2914), and a one-by-two port
register (2918). Other simpler interface components such as buffers and gates
are given 2900-series designations also. All of the chips in AMD’s extensive
low-powered Schottky line are also compatible with 2900-series parts.

The latest addition to the 2900 family is the 2903. This unit does everything
the 2901 does, but it also performs » X »n multiplies in n clock cycles, divides,
normalizes, and does double as well as single incrementing.

The 10800 Family

Ever since Motorola introduced its MECL 1 family of emitter-coupled logic
(ECL) in the mid-sixties, competitive logic families such as TTL, MOS, and
I?L have had trouble keeping up. On a pure performance basis there is still
nothing that can touch the latest versions of ECL (Fairchild F100K subnanose-
cond logic). Large mainframes and scientific computers use ECL circuitry
almost exclusively, and minicomputer makers are resorting to ECL designs to
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keep their CPUs competitive with the ever-threatening microprocessor. With
this in mind, it is not surprising that the microprocessor with the highest pro-
cessing performance is the ECL 10800 4-bit bit-sliced processor, and that Mo-
torola, the leader in ECL technology (IBM may argue with this), introduced it.

The MC10800 is a 4-bit processor slice similar in function to the 2901
processor slice, except that it contains no register files. The user must provide
an external register file. This allows the user to decide on how large a register
file is necessary and doesn’t limit him to 16 registers (as the 2901 does). Note
that the register file is expandable in the improved 2903.

Features. After considering the microprogram control and timing chips for
the 10800 series (the 10800 uses microprogramming, too), it can be seen that the
10800 is better organized than the 2900. On the 2900 many discrete interface
components were required to perform interface functions and generate an ex-
ternal bus (see Fig. 2-18). The 10800’s support chips, however, work together
in a ““smoother’” way and require fewer interface components. A small control
memory, an MC10801 microprogram control unit, and a 10802 timing unit
perform all the necessary control functions, while a dedicated memory inter-
face chip, the MC10803, generates an external address and data bus. Figure
2-19 shows the 10800 and Fig. 2-20 illustrates a small system built out of these
bit-sliced parts.

The basic ALU instruction execution time of the 10800 is 30 to 50 ns, which
corresponds to a clock rate of 20 to 30 MHz. In wide-word applications, how-
ever, the clock must be run at 10 to 15 MHz to allow for ALU propagation
delays. Like the 2901, the 10800 has a full carry—lookahead system.

The 10800 has one feature that no other bit-sliced processor has: it can
work directly with BCD numbers. It uses a nines’ complement adder circuit to
simplify BCD calculations in the BCD mode.

Interface Characteristics. As with the 2900 series, the user defines the
interfaces to the 10800 microcomputer. All interface levels are ECL. Care must
be taken in 10800 interfacing due to the frequencies of the signals involved. All
lines must be treated as transmission lines and ECL-to-TTL level converters
must be used to interface to any external TTL circuitry.

Physical Characteristics. The 10800 parts come in 48-pin quad-inline pack-
ages (QUIL) for tight mounting configurations.

The 10800 runs on the standard -5.2 ECL power supply voltage and dissi-
pates about 1.5 watts per 4-bit processor slice. Higher power consumption is
the price we pay for speed.

Ancillary Devices. In addition to the processor slice and its interface sup-
port chips, the 10800 series features a 5-bit ECL/TTL level translator (10804), a
32-X 9-bit register (10806) for building the register file, and a 16-bit programma-
ble shifter (10808).
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BUY OR BUILD?

We’ve been looking over a small sampling of current microprocessors, ranging
from the small 4-bit TMS 1000 to the high-performance Z8000 and 10800. When
choosing a microprocessor for your application, consult the up-to-date
manufacturer’s specification sheets, the latest electronics journals, and the IC
Update Master for current parts and specifications, evaluatmg the parts in the
manner used in the examples just given.

The microprocessor world is constantly changing, and more powerful, new
devices will enter the scene in the next few years. What is on the market now is
Just a beginning. When very large-scale integration (VLSI) is mature enough to
produce high-yield parts, some major breakthroughs in processing power and
onboard memory will result. We can look forward to microprocessors with the
processing power of a large mainframe along with 65K bytes of onboard mem-
ory. :

When you are evaluating a microcomputer system, one question will inevi-
tably arise: What form of microcomputer is best suited to my application?
Starting from scratch with a logically selected microprocessor and a handful of
interface parts is one way to set up a system, but it may not always be the most
practical. Manufacturers have realized that many users have neither the time,
desire, or resources to build a system from scratch, and they therefore offer
completely assembled microcomputer boards and full-blown microcomputer
systems to meet many user requirements. It’s well worth considering these
boards and full-sized systems before starting from scratch.

Table 2-4 lists the advantages and disadvantages of the various do-it-
yourself approaches to a microcomputer system. Which method is best for
your application depends primarily on the interface requirements, units to be
produced, and your own (or your organization’s) design and fabrication capa-
bilities. By reading the upcoming descriptions of what is available in the
three listed categories, and by using this table, you should be able to determine
what you need.

Let’s take an illustrative example of a design calling for a microcomputer.
Assume that you want to build a word-processing electric typewriter for your-
self, and you also intend to sell 40 or 50 of the units to local computer stores.
The unit must be quite small (either built into the typewriter or contained in a
small box that can sit beside the typewriter), and it must perform simple text-
editing functions and a final dump function to type out the perfectly edited
copy.

This is basically a simple data processing task. A typist can only type a few
characters per second, so even the slowest of the data processing type of
microprocessors would suffice in this application.

Table 2-4 reveals that the full-size system can immediately be eliminated
from further consideration. The requirement states that the unit must fit inside
the typewriter or in a small box beside it. Full-size systems come in fairly
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large-sized boxes with card slots for expansion. The size constraint rules out
the large system.

The start-from-scratch approach and the microcomputer single-board ap-
proach are left. Both methods seem to fif the design constraints. Interfacing the
typewriter to the microcomputer will require a small user-interaction interface
that will have to be designed and built in either case. There are two important
factors which now enter into the decision. First, you have to get this product
onto the computer store shelves before the competition saturates your market,
and you have to be cost-competitive to avoid being aced out by others eyeing
your market. If you are designing and building the units yourself, you have an
enormous task to accomplish if you opt for the start-from-scratch approach.
The microcomputer unit as well as the interface must be designed, built, de-
bugged, and integrated. Software must be written for the word-processing task,
and support software for your new microcomputer system design would be
needed. The time constraint makes this approach generally unattractive.

If your company is building a limited-quantity project such as this, the
profits gained on the sale of 50 units would not be large enough to finance a
complete microcomputer and system software development program. In this
case, the microcomputer board seems to be the best alternative. It offers a
balance between development cost and getting your product completed in a
reasonable length of time.

It is objective analysis like this that helps you to determine which micro-
computer form is best suited to any given application. Consideration of the
factors in Table 2-4 can help save you time and money in the production of your
microcomputer product.

Starting From Scratch

If it turns out that designing and building a system from scratch is the best
approach for meeting the system requirements, a large design and construction
task lies ahead. The complexity of the task depends on the system require-
ments and the ease of interfacing to the chosen microprocessor.

Because the start-from-scratch method allows the greatest versatility in
microcomputer function, the first step in the design is to determine exactly
which functions will be performed by the microcomputer. Hardware that would
normally come standard with a microcomputer board or full-sized system can
be eliminated in the early design stages if it isn’t needed. The expandability
factor should be considered, however. A system will typically be asked to do
more by the time it reaches actual production.

After you’ve determined the functional characteristics and drawn a block
diagram of the system, you should decide on the actual interface methods to be
implemented. The microcomputer input and output descriptions in this book




Selecting the Right Microprocessor 93

explain the advantages of serial I/O, parallel /O, DMA, and other interface
methods. The devices being interfaced must be analyzed for their I/O transfer
rates, handshaking requirements, and I/O data format. The proper interface
parts for the job must be chosen.

One of the best ways to optimize the interface and processor design is to
obtain all the manufacturers’ (including the second-source manufacturer’s) lit-
erature on the given microprocessor and see what form of 1/0 is typically used
in the example implementations. In most cases these designs are generated by
the microprocessor desigpers and their staffs, and the best designed-in I/O
features of the processors are utilized.

While the microcomputer is being designed, a parallel software task should
be taking place. The methods by which software will be developed, loaded into
the microcomputer, and executed should be strictly defined. Software consid-
erations should definitely influence the interface and microcomputer design.
Certain types of interfaces, for example, may demand too much software over-
head; as a consequence, a more autonomous interface may be in order.

The location of the interface and memory block in the memory map could
decide whether you run existing support software on your design or write or
rewrite all the support software yourself. Be sure to consider these facts.

Anyone developing a microcomputer from scratch should seriously con-
sider buying or renting a development system for the chosen miCroprocessor.
The initial cost or rental fee can easily be paid for with the savings of engi-
neering time and money on the hardware and software development. Probably
the biggest savings will be in the software development area.

A good development system comes with disk-based software, which
usually includes an assembler and editor, a higher-order programming language
such as PL/M or PL/Z, and a good operating system to keep all the programs
neatly organized. The Motorola EXORciser system and the Intel MDS system
are the two most often used development systems, but nearly every manufac-
turer offers one for its own chip.

One word of caution is in order concerning development systems. Some
people believe that they can get by with a ‘‘hobbyist-type’’ microcomputer,
such as one of the proliferating S-100 bus machines, as a development system.
As the S-100 description in this book shows, compatibility between cards,
unprofessional system design, and poor documentation can cause you to waste
more time and money trying to keep the system operative than developing your
product. If you are serious about developing a product, especially in the indus-
trial or commercial market, use the professional equipment.

If you start from scratch, you will also be getting deeply 1nvolved in the
physical design of the system. Circuit boards, power bus and clock distribu-
tion, thermal considerations, and backplane design will all have to be consid-
ered. Sections of this book will point out good physical and electrical design
procedures. Manufacturers’ literature should be consulted for device electrical
and physical requirements.




The One-Board Microcomputer Approach

The past few years have seen the development of single-board microcomputers
for original-equipment-manufacturer (OEM) applications. The big micropro-
cessor companies take one of their microprocessors, 256 bytes to 16 K bytes of
RAM (their RAM of course), a few kilobytes of ROM, some interface compo-
nents, and put them all on a small ready-to-use card. Many of the low-end cards
are intended for microcontroller applications (such as Intel’s SBC 80/40), and
many of the cards are meant to be the CPU section of a large microcomputer
system (such as the 16-bit TMS 990/100M and DEC’s KDI11-F unit). Let’s
examine a low-end and a high-end one-board microcomputer.

The ISP-8C/100 SC/MP. One of the first of the low-end microcomputer
controller boards was the ISP-8C/100 by National Semiconductor. This board
is better known as the SC/MP CPU application module. The ISP-8C is based
on National’s SC/MP chip. It is intended for end applications and prototyping,
and comes on a circuit card thatis 11 by 12.25 cm (4.37 X 4.825in.).

1t is therefore small enough to fit into tight quarters.

Figure 2-21 shows the SC/MP CPU application module. This module con-
tains 512 bytes of user-programmable PROM, 256 bytes of RAM, and a handful
of interface buffers and latches. The interface signals are brought out to a
72-pin edge connector that features a 16-bit address and data bus as well as
discrete control lines. Like most one-board microcomputers, the ISP-8C can be
expanded using its external bus.

National supplies separate RAM application modules and PROM applica-
tion modules for memory expansion.

The CPU module runs on two power supplies (+5 and —12 V) and is self-
initializing upon application of primary power.

Because the SC/MP is such a simple microprocessor, not much support
software is available for it. In the kind of applications for which the SC/MP is
intended (control functions), programming on the assembly-language level can
easily be accomplished without extensive support.

The M6SMMO1A. A good example of a one-board microcomputer that pro-
vides all of the processing and control functions required for a microcomputer-
based system is the Motorola M68MMO1A. As Fig. 2-22 shows, this unit con-
tains:

RS-232C serial input/output interface
Two parallel I/O interfaces
MC6800 microprocessor
1K of static RAM
4K of EAROM (electrically alterable PROM) of 8K of ROM
Complete clock and bus interface circuitry
94
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This module can be used to perform all the processing and I/O functions of
a small system through the connectors at the top of the card; or it can be put
into a card cage and expanded to a full 65K system through the well defined
EXORCciser bus at.the bottom of the card.

The M68MMO1A requires three supply Voltages (+5, +12, and —12V), is
25 x 15.25 cm (9.75 x 6 in.), and has TTL-compatible signal levels at all I/O
pins (except for the EIA RS-232C communication output).

This card enjoys all the hardware and software support of the 6800 family
of microprocessors. The complete Motorola EXORciser development system,
which includes all the programs and hardware needed to program the PROMs,
can be used in the development effort.

Many of the one-card microcomputers have associated cards that may
further reduce the design and construction effort. Analog I/O boards are avail-
able for most one-card microcomputers, and specialized boards such as CRT
controllers, fast multipliers, and high-speed DMA interface boards are avail-
able for the more popular units.

If the one-card microcomputer seems to be the best approach for the task,
the first step is to define the processing and memory requirements of the
desired system. Microprocessor manufacturers should then be contacted to get
the latest information on which kind of one-card microcomputers is available to
match your specifications.

Finally, a prototyping package, which usually consists of a one-board mi-
crocomputer, prototyping board, card cage, programmable memory chips (if
the unit uses PROMs), associated cabling, and documentation, should be pur-
chased. Since most prototyping packages come with a system monitor program
on a PROM, you can have the board operating within hours after receiving the
prototyping kit. You can then get familiar with the system and begin the inter-
face design and construction on the prototyping board.

Full-Size Microcomputer Systems

If a complete microcomputer system that fills all of your requirements already
exists, it makes sense to use that system in your application. One area in which
this is especially true is in the business data processing field. Complete systems
with full complements of disk drives, terminals, and customized software are
available from many microprocessor manufacturers as well as large computer
companies such as IBM, DEC, and Computer Automation.

Full-size systems come with many options. Any given company will have a
minimal-configuration system that is required to run the simplest software
packages and optional peripherals and software to fit the customer’s specific
needs. Many of these options are specialized in nature. Array processors, A/D
data acquisition units, and powerful graphics display devices can be obtained
from the primary manufacturer or other companies that have built their busi-
nesses by supplying the specialized peripherals in many machine-compatible
formats.
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The Digital Equipment Corporation PDP-11 series of minicomputers has
been a very successful product line. The PDP-11 minicomputer is available in a
wide range of performances and memory configurations. At the low end of the
PDP-11 series there is the PDP-11/04, which is a bare-bones processor that isn’t
much more powerful than an 8-bit microcomputer. At the high end there is the
PDP-11/70, which is so large and powerful that it borders on mainframe per-
formance.

Digital Equipment Corporation has successfully sold tens of thousands of
PDP-11 full-size minicomputer systems and has built a large product line of
peripherals, so it comes as no surprise that the microprocessor version of the
PDP-11, the LSI-11, can also be bought in a nice packaged system form.

A complete business system can be pieced together from DEC’s standard
modules and peripherals. First, a CPU must be chosen. The PDP-11/03 is the
natural choice. It is a combination of L.SI-11 modules and accessories, includ-
ing an H9270 backplane and card guides, an H780-H power supply, and 4K of
RAM. The system comes packaged in a standard width enclosure and has room
in the enclosure for up to six double-height interface modules. Optionally, the
PDP-11/03-KA can be used as the CPU. This is basically the same as the CPU
just described but includes a total of 16K of RAM instead of just 4K.

Secondly, the peripherals and appropriate interface modules for the system
must be chosen. A console terminal and hard-copy device (in this case a slow-
speed printer will do) are required, and the 1LA36 DEC Writer 11 seems to meet
this requirement. , ‘

A magnetic data storage unit is required to store programs and records. The
RXV11 dual floppy disk drives seem appropriate for this task. It is important to
have two of any magnetic storage device since files will have to be copied and
transferred from one disk or tape to another.

The peripheral interfaces must now be chosen. The console terminal/
printer requires a serial interface. The DLV11 module is the standard LSI-11
serial interface card and fills this requirement. The floppy disk drive already
comes with a plug-in controller card, so additional interfacing is not needed. .

This completes the hardware selection, but a software package remains to
be chosen. An operating system for the disk is required. The RT-11 operating
system seems like a good choice, because the system is not going to be a
multiuser, timesharing one.

The RT-11 operating system comes with an editor, assembler, system utili-
ties, librarian, linker, and many other useful programs. Optional software such
as FORTRAN, BASIC, and COBAL can be purchased for use under this
system from DEC or independent software houses.

Finally, miscellaneous items can be selected. A mounting rack (to house
the processor and disk) and communication cables (for the terminal) can be
selected.

If the packaged system is the approach for you, a good starting point is to

get a copy of the Digital Direct Sales Catalog, The Microcomputer Handbook,
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and The Peripheral Handbook —all from DEC. It would be wise to obtain
literature from other microcomputer companies specializing in packaged sys-
tems as well. Once you have an idea of what you want, contact the
manufacturer’s representative. He will help you set up a system, and he will
very probably give you a good ‘‘package deal.”’ All the rules in dealing with
salesmen should be followed in dealing with the representative. Buying a pack-
aged system is like buying a car with many options; the price is negotiable.




The very concept of sequential computing machines assumes that commands
and data are being stored somewhere in the computing machine. Computer
evolution has resulted in processors that can be divided into three functional
pieces: the processor, the input/output unit, and the storage unit or memory.
Because memory is such an integral part of computer systems, it has developed
into a science in itself. Whole companies have been founded around computer
memory devices, and memory technology is at least as complex as processor
technology.

The microcomputer is basically no different from the large computer at the
functional level. Data must be stored somewhere, and thus we have storage
devices.

Most of today’s microcomputers can be classified as cell-addressable
single-memory machines. A cell-addressable memory is one that accepts a
processor-issued address and returns a program or data word from the location
in memory corresponding to that address. Most RAMs, ROMs, and other
memory devices are cell-addressable.

The term single-memory machine refers to the way in which a processor
accesses memory. A processor requires a sequence of commands or program,
and it also requires data with which to operate. In the early days of computers
two approaches were taken to this problem. The dual-memory approach pro-
vided a memory for the program and a separate memory for the data. The
single-memory approach uses only one large memory containing both the pro-
gram and the data. The advantage of the single-memory approach is that less

100
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hardware is required. Two separate memories and two memory addressing
units are not required on a single-memory machine. ,

There is no universal form of memory that is suited to every data storage
application. High-speed semiconductor memories store data reliably and allow
fast data access times, but they also lose data at power-down, draw a lot of
power, and are prohibitively expensive for storing huge blocks of data.

Magnetic tape, on the other hand, can store millions of bytes of data per
dollar and doesn’t lose its contents unless it is intentionally erased; but it is also
extremely slow, must be sequentially accessed since it is one long strip of data,
and requires a large piece of mechanical equipment—the transport mech-
anism—to be useful.

All this boils down to the fact that engineering tradeoffs must be made in a
system and the proper memory and mass storage device must be used for the
task at hand. : :

Many exotic memory devices have been designed, and many of them have
been scrapped. The early days of memory technology produced mercury tank
delay-line storage units, phase storage units or paramatrons, drum memories,
and even a memory cathode-ray tube that could store millions of bytes of data
on its face (the only problem was, you couldn’t read it back!). These devices
are interesting, but memory technology has finally stabilized to the point at
which fast, reliable semiconductor memories and mechanical memories such as
tape, disk, and core dominate the market. These common memories are the
ones with which you will most likely be associated; these are the memories we
will examine in this chapter.

MEMORY HIERARCHIES

Computer designers solve the problem of memory storage capacity versus
memory speed and accessibility with memory hierarchies. The CPU section of
a computer system typically uses a high-speed memory to temporarily store
programs and data while it is being processed. This is a system’s short-term
memory or working store. Working stores usually range in size from a few
bytes to a few tens of thousands of bytes in most microcomputer systems. This
amount of working storage is enough to store the programs and data for most
micro applications.

A few hundred thousand bytes of programs and data are accessed often
enough in most applications to require a fairly quick storage unit to hold this
data. Medium-term storage units serve this purpose. Disk drives, charge-
coupled devices, and bubble memories work well as medium-term storage
media.

Finally, huge blocks of data that will be referenced periodically require a
bulk storage media. Magnetic tape and large disk packs are ideal for this long-
term storage requirement. Long-term storage units are capable of storing hun-
dreds of millions of bytes of data quite slowly but at a very low cost. ’
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The three types of storage have been briefly outlined: short-term, medium-
term and long-term storage. With today’s diversified memory technology,
ultrahigh-speed memories are available for use as fast working stores or short-
term memories, but the price and power consumption of these memories make
even a reasonable size working store out of the question. In high-performance
processors, a fourth level is therefore added to the memory hierarchy: the
cache memory.

A cache memory consists of a few hundred to a few thousand bytes of
ultrahigh-performance memory that acts as a buffer between the processor and
the large, fast, working store. Studies have shown that a few thousand words of
high-performance memory, if operated properly, can make an entire low-
performance working store look as though it’s made from ultrahigh-
performance memory (or at least about 80% as fast as the fast memory). Figure
3-1 illustrates a memory hierarchy and shows what devices are currently being
used at what hierarchical level in the microcomputer field.

Memory hierarchies seem to be a simple answer to all data storage prob-
lems ‘until you look at the software required to control a memory hierarchy.
Data must be searched for and read-in from the long-term storage devices, put
into the medium-term devices, and paged into the short-term memory as
needed. After the data processing is complete, all the data has to be sent back
down the hierarchy to the long-term storage devices.

Many large mainframe manufacturers have solved the hierarchy control
software problem by using hardware to control hierarchical data transfers. The
programmer pretends that the memory is nearly infinite in size and lets the
hardware worry about paging and long-term storage control. This type of stor-
age is called virtual memory, because it gives the appearance of one huge
short-term memory.

Approximate speed

Typical devices
Mainframe Micro

Processor

Ultrahigh-
speed
cache memory

High-speed ECL, 12L, STTL

RAM. New HMOS RAM 5-100ns | not used

MOS RAM, magnetic 100 ns-

permanent storage.

Medium-term mass storage
{medium speed, medium capacity)

Drum memory, floppy 10 us-
disks, bubble memory, 5 us-5 ms u

CCD disk. 10ms .

"Short-term memory [::,‘> -
(high-speed working store) core, MOS ROM for 4 us 250 ns-2 pis

(low speed, high capacity)

Magnetic tape, paper 50 us- 2 ms-

tape, cgrds, laser 100 ms 100 ms
memories.

L.ong-term mass store

Figure 3-1  The components of memory hierarchies.




Memory

103

Microcomputers don’t have hierarchy control problems to the same extent
as mainframes. Because microprocessors are relatively slow, they cannot uti-
lize a high-speed cache memory. And most microcomputers are not asked to
handle hundreds of millions of bytes of data, so the long-term storage device is
usually not necessary. Ordinarily, a medium-term storage device such as a
floppy disk will do. This reduces the memory hierarchy down to two levels—
the working store and the medium-term mass store. Because a two-level mem-
ory hierarchy does not require much control, virtual memory hasn’t yet been
needed or incorporated into any microprocessor; but, if the performance of
processors keeps increasing, virtual memory may make its appearance on the
microcomputer scene.

WORKING STORE

Of all the short-term working store media available today, semiconductor
RAMs, ROMs, and magnetic core memories are the most common. Importapt
characteristics of these storage units include fast access time and random-
access capability.

Semiconductor RAM

A decade ago computers were totally dependent on magnetic core memory for
their short-term memory needs. As semiconductor technology advanced, small
256-bit bipolar memory ICs became available for use in.central processor units.
As device technology improved, MOS entered the memory. picture and 1K
MOS RAMs were built. For the first time, semiconductor memory had the
potential to surpass core memory on a cost and performance basis. Things have
not been the same since. Today nearly every computer’s main memory consists
of semiconductor RAM, which comes in packages as large as 64K bits with
access times as fast as a few nano-seconds.

The availability of RAM has also made the microcomputer possible.
Without a low-cost, short-term memory, microprocessors have very little cost
advantage over any other CPU.

A RAM consists of two functional blocks: the memory cell array and the
peripheral interface circuitry. As Fig. 3-2 illustrates, a RAM must take in an
address through a set of address lines and select the appropriate row and
column corresponding to the addressed cell. The cell must be examined by the
1/0 circuitry and sent to the data output. This constitutes a read operation.

If data is being written into the cell array, the input data control unit must
turn the addressed memory cell on or off to indicate a 0 or 1.

The memory cell array is the heart of the memory unit. It is usually a
square matrix of individual one-bit memory elements arranged in rows and
columns. Because the memory cell arrays are for the most part square, the
capacity will tend to be an even power of 2. There are many 256, 1K, 4K, 16K,
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Figure 3-2  Memory peripheral circuitry and cells.

and now 64K RAMs — but very few 512, 2K, and 8K RAMs. Some companies
make memories that are not integrally an ‘‘even power of 2,”” but many of these
just contain two small even-power-of-2 arrays inside.

There are many approaches to the design of the individual memory cells.
The most common are static flip-flop cells, transistor-base-charge dynamic
cells, and pseudostatic charge-pumped cells.

The static memory cell is a two-transistor flip-flop, or bistable multivibra-
tor. By activating either the right or left transistor, a 0 or a 1 can be repre-
sented. This data can be retained until an external current changes the flip-
flop’s state or until power is lost. The cell is called static because it can hold
information indefinitely as long as it has power—there is no apparent change
! in the cell once it has been set.
| The dynamic semiconductor memory cell consists of a single transistor. A
! current into the base of the transistor turns the stage on by building up a charge
in the transistor base region. An on transistor represents a 1 while an off
transistor represents a 0.

It may seem that the single-transistor dynamic cell is better than the static
two-transistor cell in every way because it uses less parts, space, and power;
| but the dynamic cell has one big drawback: it must be refreshed. The term
dynamic refers to the gradual change of state—a transistor can only hold a
base charge for a few milliseconds before it leaks away. If the charge leaks
away without being replenished, the stored data is lost.

To accomplish the replenishing or refreshing, refresh circuitry must be
built into every dynamic RAM. The most common method used to refresh
dynamic cells is to recharge every memory cell in a given row of a cell array
whenever any element in that row is read. Most dynamic RAMs therefore
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require a read operation at least once every 2 ms. If this comes naturally in a
processing task, great; if not, a time interval must be set aside to have the
processor sequentially read through memory to refresh it every few milli-
seconds. :

A pseudostatic memory cell is a memory cell that combines the advantages
of the static and dynamic memory cells. Pseudostatic RAMs are basically
dynamic RAMs with additional peripheral circuitry to periodically place an
additional charge on all the transistors that are at a logic 1 level. These RAMs
are called charge-pumped devices in reference to this additional charging cir-
cuitry. Pseudostatic RAMs have had some success in large mainframe com-
puter memories, but the need for additional charge-interval clocks and strange
voltage levels has kept these devices from becoming popular in the microcom-
puter field. .

A RAMs peripheral circuitry consists of an address decoder that takes half
of the memory address field and divides it into many single row-select lines,
and a decoder that divides the other half of the field into many column-select
lines. The current level used by the memory cells is very small, so low-current
buffers and sense amplifiers must be incorporated to set, reset, and read mem-
ory cells. An output driver is also needed to drive the data output lines.

Dynamic RAMs often have an output latch as well as a driving buffer.
Dynamic RAM timing can be very tricky on the memory-cell level, and a latch
is used to catch the data as it becomes available in the read sequence.

Modern RAMs confine the complex timing to the chip level and provide
circuitry to handle it. Onboard peripheral circuitry in many of today’s RAMs is
so complicated that it is almost a little processor in itself.

Because static RAMs require nearly twice as many transistors as dynamic
RAMs, static RAMs always lag a step behind dynamic RAMs in memory size.
Today’s technology is bringing us 64K dynamic RAMs and 16K statics. By the
time enough parts can be squeezed onto a chip to form a 64K static RAM, 256K
dynamic RAMs should be making their appearance.

Important RAM Features. Like niicroprocessors, RAMs have important

features to watch for. The following paragraphs spotlight the more salient of
these. :

Memory type is the first characteristic to be considered. The static and
dynamic memory types have already been discussed. It is important to deter-
mine which of these memory types is best suited for your application. Static
memories are easier to interface because they don’t have as many control lines
associated with them. For small memory applications, static memory is usually
the best choice. For large data stores (greater than 4K bytes) dynamic memory
may save enough ICs and power to make its use worthwhile.

In some applications, such as display memory for a graphics terminal,
dynamic memory is an ideal choice. In this and many other applications, the
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memory is constantly being read onto the screen, so special refresh intervals
and additional circuitry are not required. Some microprocessors (the Z80 is a
typical example) have built-in transparent refreéh capabilities. Dynamic RAM
use should be strongly considered for these: kinds of microprocessors.

Memory size for a system must be determined by program sizing and
through an analysis of data requirements. In systems requiring a large short-
term memory, the large 16K and 64K RAMs should be used. In less complex
systems, smaller and less costly (in terms of power and price) RAM:s should be
investigated.

Memory configuration (the way in which memories are organized) can play
an important role in reducing the parts count in a memory system. The majority
of the memories sold have one data input line and one data output line. A 16K
memory with this sort of output is known as a 16K- by 1-bit (16K x 1) memory.
To make an 8-bit word, eight of these memory packages must be used.

RAMs can also be bought in 1K- by 4-bit, 128- by 8-bit, and other multiple-
[/O-bit configurations.These ‘‘wide’” RAMs are particularly useful when a
small amount of memory is required and the package count must be kept to a
minimum. The only problem with multiple-1/O-bit RAMs are that they draw
more power and take more 1/O pins than standard RAMs of 1-bit width.

The power problem is caused by the need for more peripheral circuitry for
the extra I/O lines (a RAM’s peripheral circuitry usually draws much more
power than the memory cell array) and cannot easily be solved.

The 1/O pin problem has been solved to some extent by eliminating the
dedicated data input and output lines found on a standard 1-bit-wide RAM. By
bussing the memory’s data lines, half the memory’s data I/O pins are elimi-
nated. The RAM becomes easily interfaceable to microprocessor buses using
this method as well. Extra I/O pins are also freed simply because there are less
address lines in a multiple-I/O-bit RAM.

Memory speed is another important consideration. Memory access time and.
memory cycle time are the two most common methods of measuring a
memory’s speed.

Access time is the period required for a memory to present valid data at the
memory output pins after it receives a valid memory address. This figure tells
you how fast one word can be read from memory. On many memories (most
dynamic memories), byte after byte of data cannot be read at the single-byte
access rate. Dynamic memories require a minimum amount of time for the
internal sequencing circuitry to recover and reenter another read access cycle.
Read time plus the read recovery time is collectively called the memory cycle
time.

The importance of read access and read cycle time depends on the applica-
tion. In a general processing system such as a business microcomputer, mem-
ory isn’t accessed in a rapid byte-after-byte sequence. Access time is the most




Memory

< 107

important consideration in this case. However, if a memory is going to be used
as a fast operational store or input/output buffer, fast bursts of data may be
required. In this case, cycle time will be the memory’s limiting factor.

In applications in which memory cycle time is important, static RAMs offer
some advantage over dynamic RAMs. A static RAM usually has no internal
sequencing circuitry, so its access time is the same as its cycle time. The extra
peripheral circuitry surrounding a dynamic cell array can slow memory cycle
time down to twice the memory access time.

One word of caution is in order concerning memory speed. Memory speed
is usually measured as a typical figure at the RAM’s pins. The best perform-
ance that can be expected from a RAM is the maximum worst-case figure listed
in the tables inside the manufacturer’s specification sheet. The additional
buffers and control circuitry on a microcomputer’s memory cards must also be
taken into consideration when determining memory speed. These delays can
amount to a few hundred nanoseconds in some cases.

Device technology plays an important role in a RAM’s characteristics. The
standard TTL, NMOS, and RAMs are being rapidly replaced by I?L., HMOS,
VMOS, CMOS, and MNOS RAMs that offer higher performance, higher circuit
densities, and lower prices than older RAMs. Table 3-1 lists most of the com-
mon memory device technologies on the market today and shows their advan-
tages and disadvantages. Notice that many of the technologies have special
features that are very desirable in a limited number of applications. The low-
drain CMOS RAM, like the CMOS microprocessor (RCA 1802 COSMAC), is
good in battery-powered applications, while the MNOS RAM has the property
of nonvolatility—the retention of data even when power is switched off. The
table gives a good idea of what to expect in the way of performance and
features from today’s RAMs.

Selecting a RAM

Manufacturer’s literature should be consulted for the most recent memory
specifications. The factors just discussed and the device characteristics should
be kept in mind when looking at RAMs.

Let’s look now at a few popular RAMs and see how to interface them to a
microprocessor bus. The RAMs you select for your system can be interfaced in
a similar manner.

A Simple Static RAM: the 2102. The 2102 is a somewhat obsolete 1K- by
1-bit (1K x 1) static RAM that helped build the microcomputer market in its
earliest stages. Small 1K X 1 RAMs are rapidly being replaced by more effi-
cient 4K and 16K devices, but the 2102 is a good example of a general-purpose
static RAM.
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The 2102 is a TTL-compatible 1K NMOS memory with a data input line
and a three-state (logic 0, logic 1, and a high-impedance floating state) data
output line. The RAM comes in a 16-pin package.

Figure 3-3 shows the block diagram and timing relationships of the 2102
along with its important characteristics. Notice that there are 10 address lines
to address a 1K memory space, a data input line, and a data output line. In
addition, there are two control lines that are very typical of static RAMs: the
read—write line and the chip enable line. The chip enable line is optional and is
only used to turn the three-state output on or off (to the active or float states);
therefore, the only real control line on the 2102 is the read—write line.

The timing diagram shows the simplicity of the static RAM timing. In the
read cycle, data becomes valid at a time 7, after the address is submitted. This
time, in nanoseconds, is the RAM’s access and cycle time.

Writing is accomplished by submitting the write pulse (wp) on the read—
write line for a minimum of #,, ns. The address must be valid during the whole
write pulse and even a little before and after it. These slight timing margins on
both ends of the write pulse are called the address setup and hold times. All
setup and hold times for the address as well as data must be strictly observed. If
the address changes while the memory is being written into, all the memory
locations that the address passes through while it is changing could be wiped
out.

Interfacing the 2102 to a microprocessor is quite simple. The address lines
are connected to the least significant ten bits of the microprocessor’s address
bus, as shown in Fig. 3-4. Because the microprocessor has 16 address lines, 6 of
the lines are left over to address the total 64K memory space or the other 63 1K
blocks of memory. A decoder is used to determine to which combination of 6
bits this 1K memory block will respond. In this case, it is block zero. The
decoder simply ANDS the decoded memory select signal with the memory
read signal (the phase 1 or f1 signal on the 6800) and enables the memory chips
when they are properly addressed and a read is requested.

The read—write line is connected to the microprocessor’s read—write out-
put line so the processor can read or write at its discretion. Since so many
address lines have to be driven (a total of 8 on each address line), buffers have
to be used on the address lines.

A 256- by 4-Bit Static RAM: The 2101. In a very small system requiring
only 256 bytes of memory, there is no reason to use the 2102 1IK RAM. It is too
large (1K x 1) and it requires buffers to drive the address lines as described in
the 2102 section.

The 256- by 8-bit memory requirement can be met using the 256- by 4-bit
version of the 2102: the 2101. As Fig. 3-5 illustrates, this RAM has two fewer
address lines than the 2102, because only 256 bytes are addressed. To accom-
modate the additional data I/O pins, a 22-pin package is used.
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Figure 3-4  How the 2102 is interfaced to a microcomputer bus.

Using just two of these parts, a 256 X 8 memory may be built that places
only two loads on the processor address lines. This memory is very well suited
for such applications.

One interesting feature about the 2101 demands some discussion. Notice
that two chip enable lines (actually a chip enable and an inverted chip enable)
have been provided. In many RAMs and microcomputer interface components,
multiple chip enable and inverted enables are added to a part if extra pins are
left on the package. These multiple chip enable lines are useful when interfac-
ing the part to an address bus, because they can be wired to act as decoders.
For example, if you had a 9-bit address (capable of addressing 512 bytes), and
you wanted to use two 2101s to fill the memory space, you could simply wire
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Figure3-5  The 2101: a 256- by 4-bit equivalent of the 2102 RAM. (Reprinted by permis-
sion of Intel Corporation, Copyright 1976.)

the ninth address bit to the chip enable input on one RAM (CE2) and to the
inverted chip enable input on the other (CEl). The data inputs and outputs
could then be tied to the processor bus. When the ninth bit was high (logic 1),
one RAM would respond, and when it was low the other RAM would be
enabled. This precludes the requirement for an address decoder in the memory
interface circuitry. By using chip enables wisely, decoder and miscellaneous
gate counts can be significantly reduced in a memory design.

A Simple Dynamic RAM: The 4K 2107. The 2107 is a good example of a
dynamic RAM with a standard 4K- by 1-bit configuration. The timing and
addressing on this RAM is typical for most dynamic RAMs, at least on a
functional level.

Figure 3-6 illustrates the block diagram and timing relationships of the
2107. Notice that the logic signals on the dynamic RAM are similar to those of
the static RAM’s, with one exception: a chip enable (CE) signal has been
added. This signal initiates the internal memory accessing sequence required of
the dynamic memory cells.

In dynamic memories, most of the timing signals are measured with rela-
tion to the CE signal or its equivalent. In the 2107 timing diagram, notice that
the address must be stable during the rising edge of the CE signal. This edge
causes data to be strobed into the row and column buffer registers. After the
CE leading edge has occurred, and after a short stabilization period, the ad-
dress can change because the access address is captured in the buffer registers.

After a short period (the read access time), read data becomes valid at the
memory output pin. The data stays valid until the CE signal is dropped. The
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Figure3-6  The 2107 4K- by 1-bit dynamic RAM. (Reprinted by permission of Intel
Corporation, Copyright 1976.)

RAM'’s internal timing and control generator circuitry doesn’t give the user
much leeway in holding the CE signal high, however. The CE must be high for
at least 280 ns but no more than 3000 ns. Unlike the static memory, with which
you could hold an address and read the same byte of data for as long as you
wanted, the 2107°s memory requirements require that you catch the data in a
small data-valid window of time.
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The memory write cycle timing is very similar to the read cycle except that
the write enable pulse must be generated. Again, this signal is timed relative to
the CE signal that initiates the write sequence.

The 2107 was one of the first 4K dynamic RAMs and, like the first micro-
processors, it lacks the sophisticated features of today’s devices. Many of
today’s RAMs have holding latches at the data output so you don’t have to time
your system circuitry around the narrow read-access window.

Another primitive feature that is disappearing in today’s RAMs is the
highly capacitive, high-voltage (12 V) chip enable drive requirement. Intel spec-
ifies that the CE signal shall rise to 12 V in a maximum of 50 ns. The high
voltage and fast rise-time problem is compounded by the fact that most mem-
ory systems will be using banks of 8 or 16 RAMs to form bytes of data.
High-power MOS drivers must be used to parallel-drive the CE lines in order to
meet the timing requirements.

An Advanced Dynamic RAM: The 4K 4027. The Mostek 4027 is represen-
tative of a state-of-the-art dynamic RAM. Very fast access and cycle times,
data output buffering, and multiplexed address lines are featured. .

To cut down on memory package size, the 4027 and other modern RAMs
use multiplexed addressing. Instead of having a common chip enable line for
the row and column address buffers, the row and column address lines are tied
together and separate row and column address lines are provided. Only half the
address pins are required, which allows for a 16-pin package. Figure 3-7 depicts
the 4027. The row address select (RAS) and column address select (CAS)
signals perform the multiplexing function.

Memory is read from the 4027 by first supplying a valid row address to the
common address inputs and activating the RAS line. A valid column address is
then supplied and CAS is activated to strobe-in the column address. After
about 100 ns have elapsed, the read data is available in the output buffer and
will stay there until the end of the next read cycle, when the most recently read
data will take its place.

There are two features that aren’t immediately apparent that allow you to
build very fast memory systems out of 4027s. The first is the fact that the data
stays valid in the output buffer well into the next read cycle. This allows the
user’s circuitry to take its time getting the data out of the memory and allows
for wider timing margins. The second feature is that the memory’s cycle time is
longer than the sum of all the timing delays. This requires some explanation.
On most dynamic memories the cycle time is simply the sum of all the smaller
delays in the memory cycle (address setup, memory access, CE off time, and
so on). For fast memory applications, the timing margins on all the critical
memory timing signals have to be cut down to their absolute minimums to
attain the maximum cycle throughput.

Mostek has arranged the timing and control circuitry on the 4027 so that all
the critical timing signals can be above their specified minimums by a 20% or
greater margin and still meet the minimum cycle time. This additional timing
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allowance makes the advertised minimum cycle time a realistic figure, because
all the address, data, and control drivers’ *‘timing slop’’ can be taken up by the
20% margins.

One final 4027 feature is the read and write cycles of the page mode. Most
RAMs with multiplexed address lines allow you to operate in a page mode by
submitting a row address and repeatedly submitting a long string of column
addresses. Data can be taken from every column in a given row in a much
shorter period of time using this mode.

The page feature is useful for fast sequential transfers, but it is even more
valuable as a fast DMA cycle timing mode.

In order to speed refresh time, an exclusive row address select refresh
mode has been provided. In this mode, the whole RAM can be refreshed by
sequentially going through all the row addresses but not submitting any column
address or CAS signal. Refreshing must be performed once every 2 ms.

The 16K Mostek 4116. The 4116 16K dynamic RAM has been cleverly
designed to be an almost pin-for-pin replacement for the 4K 4027, By simply
turning the 4027’s chip select (CS) line into another address line, two additional
multiplexed address bits were made available to access four times as much
memory. Figure 3-8 illustrates the 4116.

RAM Implementation. A single RAM chip is fairly simple to work with. By
following all the timing restrictions and physical parameters, we can getaRAM
to work just as the specification sheet says it will. When we have to integrate
hundreds of RAMs into a large memory module, however, problems arise.
Address and control decoding and distribution networks are needed. Crosstalk
between parallel memory data lines become a problem. Large current spikes
caused by high-current chip enable lines start producing interference.

Before undertaking a large memory system design project, it is wise to
study the memory interfacing requirements of the specific technology of
choice. The memory manufacturers can supply such information in the form of
notes and data sheets. A section in this book has also been set aside to go over
memory system interfacing methods. This will also be helpful.

Content-Addressable Memory

A content-addressable memory (CAM) works like a cell-addressable memory
in reverse. Data is supplied to the CAM and the address at which that data is
stored is returned to the processor. At first glance, this sort of memory seems
like a novelty item that could serve no useful purpose, but in certain kinds of
processing, CAMs offer much higher performance than regular memories.

One of these applications is in programs requiring a lot of data sorting or
searching. Instead of sequentially going through a cell-addressable memory,
interrogating each location, you simply specify what you want to find and the

o 1 i e et = T A e e



Functional Diagram

WRITE d \ Write <+—Vpp
/ cl‘ocks Ve
— : K
RAS Cloc +—Vgg
generator
nci. 1 ’ Enable| < Ves
Multiplexed Data in
clock D'ata (D)
generator b ‘fr}
utrer
‘ Row
Clock enable
cAs 9 >‘“" generator ?Data OL;t
no. 2 out
l T Reset l
¥ Data
- t ~N Enabl out
Chip select nape buffer
cs input Column
buffer Chip sel enable
\
Multiplexed — Dummy cells
decoder T
Memory array
A Address |
5 input =T |
A, ————| buffers (6) } (1 of 64 row) : 64 Row
h 10f2
Aj s Ro;v | I me's 64 Sense refresh amplifiers [ Data
an | | | data in/data out gating bus
Ay ———  column I 32 Column
{10f32  |colact |ines| J Data |select
A} ——— | column) ' | in/out
A (multiplexed) F—t ' !
( |
1 Memory array
Dummy cells
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memory tells you where it is. Content-addressable memories are also being
used in cell-addressable memory control units. Memory paging (the act of
bringing in pieces of a program due to too small a processor memory) requires.
that the processor look to see if the page that the next instruction is on is
already in memory. Checking each page takes a long time and uses up valuable
processing time, so a CAM is used to store memory pages currently in memory.
By simply asking the CAM if a given page is in memory, the processor can
immediately determine if the page is there and where it is. This scheme is used
in the associative lookaside buffers that control the cache memories on the
Amdahl 470 v7.

Semiconductor ROM

It is sometimes desirable to have a nonvolatile memory store within a computer
to hold often-run programs. If a program can be present at the moment a
microcomputer is turned on, the need for program loading and the associated
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load delay times are eliminated. A permanent, nonvolatile program memory is
also useful for storing a small program that has common system utility pro-
grams and an initialization program or a bootstrap program. Not many years
back, full computer modules containing diode matrixes were used to store
small permanent programs, but semiconductor memory technology now domi-
nates the nonvolatile working storage field. Read-only memories (ROMs) and
programmable read-only memories (PROMs) are the most popular nonvolatile
storage devices. Many other names are given to nonvolatile semiconductor
memories (EROMS, EPROMs, VROMS), but all of these devices fit into one of
these two categories.

A ROM is similar in design to a RAM. A central array of memory cells is
surrounded by peripheral circuitry that accesses the data stored in the array.
The primary difference lies in the type of memory cells used in the cell array.

A ROM’s data storage cells are designed to permanently store a 1 or a 0
even if power is turned off. This is accomplished by either selectively building
1- and O-generating cells into the array at pre-defined memory locations or by
building many identical 1-generating cells and burning out the cells that must be
set to zero.

When the programming (setting of the 1 and 0 states) is done at the factory
by altering the metallization mask on the memory chip itself, the end product is
referred to as a mask-programmed ROM. When all the cells in a memory are
originally one value and the user is given a means of programming the bits in
the device to the values of his choosing (usually by using a high-voltage ‘pro-
grammer’’ that selectively blows small programming fuses on the chip), the
memory is called a PROM.

Either device will permanently hold a program, but each device has its own
unique advantages. A ROM requires only internal read circuitry to read the
preprogrammed bits, and a PROM requires additional programming circuitry.
Due to this extra circuitry and more complex fusible-PROM cell design,
PROMs are not as dense as ROMs. The current-technology storage capacity of
PROMs is about 50% that of ROMs.

Expense is the ROM’s biggest drawback. A one-time mask setup charge of
a few thousand dollars is required, and if a different program is ever needed, a
new mask must be made. For large-volume applications, however, ROMs are a
much less expensive proposition than PROMs because a ROM (excluding the
one-time mask charge) is cheaper than a PROM.

The PROM’s big advantage is, of course, its programmability. The one-
time mask charge and the factory lead time can be avoided with PROMs.

Aside from the lack of write circuitry, the peripheral circuitry of the ROM
or PROM is similar to that of the RAM. Decoders take an address and appropri-
ately pick a memory cell to be examined. Sense amplifiers amplify the memory
cell’s small current and send the resulting data to the data outputs.

There are dynamic as well as static ROMs, but most designs today are of
the static type. A dynamic ROM that must be periodically refreshed initially
seems quite ridiculous. A ROM that essentially loses its data if not refreshed
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seems to violate the nonvolatility criterion that makes a ROM a ROM. The fact
is, however, a dynamic ROM doesn’t really lose its data if the cells aren’t
refreshed; it just starts reading them wrong until refreshing is resumed. A
dynamic ROM is much like a dynamic RAM, except that the l-generating
transistors are permanently wired to stay in the conducting state. Charge must
still be kept on the base region of the conducting transistors, so refreshing is
necessary.

Dynamic ROMs were primarily used in applications in which refreshing
came naturally, such as in a character generator of a display system. It is true
that most of the dynamic ROMs have passed along the wayside, but they might
return.

A Representative Bipolar Programmable ROM. The first ROMs and
PROMs to come into common use were small 64- and 256-bit high-speed bipo-
lar devices. These chips found applications as large computer bootstrap storage
units as well as combinatorial gating and other discrete logic replacements (in
which the addresses act as gating inputs and the data acts as the desired result-
ing output). The DM 745287 (made by National Semiconductor) is an example
of an advanced version of these early bipolar PROMs.

The DM 745287 is a 256 X 4 PROM built with Schottky-clamped TTL
technology. It is quite fast (typically 35 ns from the time it receives an address
to valid data output) and runs on a single supply voltage (+5 V).

Figure 3-9 illustrates the 74S287. Notice that the only controls on the
PROM are the two lines that enable the tristate data output lines. Reading a
location from memory is simply a matter of submitting the desired address at
the address inputs and waiting for the data output.

Programming the PROM is not as simple a matter. The 74S287’s memory
cells consist of a four-transistor cell structure with a titanium-tungsten (Ti-W)
fuse on the collector of the selecting transistor. By selecting the byte to be
programmed with the address lines and properly sequencing the chip power,
output, and enable lines to the high-voltage values shown in the programming
waveforms, the fuse can be blown and the bit programmed to a logic 1 (hlgh)
Notice that the PROM contains all zeros before it is programmed.

The DM 748287 was chosen for this example because of its advanced
programming circuitry. On most fuse-programmable PROMs, the programming
timing is very critical. Strange, slowly rising waveforms must be followed
closely to program the PROM properly. Too fast a rise time will cause the
programming fuse to blast apart and splatter beads of metal over adjacent
circuitry, causing failures years after the programming. Too slow a rise time
causes heating, with the result that the fuse will melt very slowly. Heat buildup
from the slow melt causes thermal damage to the surrounding transistors.

National developed the Tri-Safe method to prevent poor programming
caused by slow and fast rise times. By assigning the programming timing con-
trol function to an onboard programmer circuit, the PROM essentially pro-
grams itself at the optimum fuse blow rate.
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Once a satisfactory PROM software program has been developed, an
equivalent plug-in replaceable mask-programmed ROM, the DM 745187, may
be substituted in large-quantity applications.

A Representative Erasable PROM. Like MOS RAMs, both MOS ROMs
and PROMs have a higher number of bits per chip and a lower power dissipa-
tion per bit than bipolar devices; but unlike MOS RAMSs, there is little similar-
ity between the way most MOS and bipolar PROMs store their data. Instead of
using fusible links to program MOS PROMs, charges are trapped in memory
cells by applying a high-voltage programming pulse to the memory cell. These
charges remain trapped, representing a logic 0, until an external high-energy
source, such as ultraviolet light, is applied to the charged region (thus allowing
the charge to leak away). This characteristic has been utilized in ultraviolet-
erasable PROMs (EPROMS) and offers good PROM economy, because a pro-
gram can be changed without purchasing a whole new PROM.

The 2708 family of EPROMs, which includes the 512 x 82704, the 1K X 8
2708 and the 2K X 8 2716, is a good example of erasable, programmable, read-
only memories. As Fig. 3-10 illustrates, the organization of the memory cells is
very similar to that of the bipolar PROM. The 9-, 10-, or 11-bit address, depend-
ing on the PROM version, is submitted to the decoding circuitry, and a data
word from the cell array is delivered on the data output pins.

The 2708’s programming procedures are less critical than those of the
bipolar PROM. Because no onchip fuse destruction takes place, there is little
risk of damaging the silicon by applying bad programming signals. When unpro-
grammed, and after each erasure, all 4K, 8K, or 16K bits in the memory are in
the logic 1 state. Zeros can be programmed into the PROM by raising the
CS/WE input to +12 V, setting up valid address and data to be programmed,
and applying a 0.1 to 1 ms 26 V programming pulse to the programming pin. A
single pulse only partially programs the PROM, however. The whole program
must be charged into the memory cells gradually and evenly over the whole
surface of the silicon chip, so a programming loop that goes through and pro-
grams each byte about 100 times must be set up. Repeatedly programming the
same memory byte is ineffective, because it violates the evenly distributed
programming rule.

The-only real caution to be observed in programming the 2708 is that of
address changes while the programming pin is high. If an address changes
before the falling edge of the CS/WE signal when it leaves the programming
mode, random bits throughout the memory may be unintentionally pro-
grammed.

Interfacing the 2708 to a microcomputer system is very simple because it is
designed to work with microcomputer buses. The address lines are connected
to the microprocessor address bus and the data lines are connected to the data
bus. The 1K x 8 configuration allows a 1-kilobyte memory to be implemented
with just one chip. The chip select line can be controlled by circuitry that
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Figure 3-10  The Intel 2708 ultraviolet erasable PROM. (Reprinted by permission of Intel
Corporation, Copyright 1976.)

decodes the specific 1K memory block in the microprocessor’s address space
this memory will be assigned to.

In production applications in which many of the same ROMs will be used,
the 2708 can be substituted with the pin-equivalent 68308 or 2308 mask-
programmed ROM.

Electrically Alterable ROMs. Electrically alterable ROMs are similar to
EPROMs, but instead of requiring an ultraviolet source to erase them, an
erasing voltage on the proper pin on the package can be used. A EAROM offers
a price advantage, because an expensive quartz lid package (necessary for
ultraviolet erasing on an EPROM) is not needed, and stray sunlight or X rays
can’t wipe out a program.
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VMOS ROM. New V-groove MOS ROMs, such as the American Microsys-
tems (AMI) S4262, use new device technology to boost memory cell density as
well as decrease access time. Current 64K MOS ROMSs are bordering on the
limit of practical silicon chip size. Because VMOS memory cells take up only
half the space of standard MOS cells, this technology will be the most practical
approach in upcoming 128K and 256K ROMs.

RAM/ROM. A very interesting RAM/ROM is currently being developed
and promises to be useful in many applications. The RAM/ROM acts as a
regular RAM when power is stabilized. The difference is the way it ‘‘comes
up.”” Most RAMs initially have a random pattern of logic 1s and 0s scattered
throughout the memory array when power is first applied. This initial informa-
tion is useless. The RAM/ROM can be programmed to initially have a program
in it when power is first applied. After power-up, the device acts like a normal
RAM that has just been loaded with a valid program. This chip has the potential
for eliminating small dedicated bootstrap and utility ROMs from many micro-
computer applications. The RAM/ROM can be used either as ROM or as an
extension of normal RAM, thereby cutting down RAM and addressing require-
ments.

MEDIUM-TERM MASS STORE

Medium-term storage devices are used for temporarily storing blocks of data
that are used often enough to require fast random access but are too big to fit
into a short-term working store—at least all at once. In microcomputer appli-
cations, these devices are often used as long-term storage as well, because
microcomputer programs and data are typically short enough to fit into a few
hundred thousand bytes of storage.

Devices included in the medium-term mass-store category are non-volatile
media such as floppy disks, magnetic-bubble memories, and solid-state disks
built from charge-coupled-device technology.

The Floppy Disk

Like the Xerox machine and Wankel engine, the so-called floppy disk is a
device that did not initially seem feasible from the standpoint of practicality. A
flexible, paper-thin disk spinning at 360 rpm while still inside its ‘‘record
jacket” doesn’t seem like it could possibly be a reliable high-density storage
device; but through engineering development by IBM and other firms, this
product became not only practical, but quite competitive with other storage
media.

Figure 3-11 illustrates a typical drive with a floppy disk inserted into the
drive mechanism. The floppy disk spins in its jacket at 360 rpm with the disk
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Figure 3-11  Details of a floppy disk drive.

drive’s read and write heads contacting the disk through a long narrow slot in
the jacket.

The floppy disk contains a number of concentric tracks (77 tracks for a
full-size floppy and 35 tracks for a minifloppy) that are accessed by radially
moving the read-write heads onto the proper track using a stepping motor or
magnetic ‘‘voice coil’’ linear motor. The process of mechanically moving the
heads is called seeking.

The disk drive has two indications that it is on the proper track. Because
stepping motors are used to move the heads, the step movements are counted
and the step count indicates the proper track. Secondly, a track identifier code
is written at the beginning of the first sector on any given track.

A floppy disk’s tracks are each divided into 10 to 26 pie-wedge sectors.
Small blocks of data (typically 128 bytes by 8 bits) are stored serially on each
sector along with a few bytes of preamble data and empty data gaps to keep
sectors well isolated from one another.

Sectors are assigned in two ways, depending on the mechanics of the disk
drive. Hard-sectored disks have coding holes at the beginning of every sector
on the disk; photoelectric sensors recognize the holes and thus the beginnings
of sectors. Soft-sectored disks have only one coding hole, which marks the
beginning of the first sector; it is up to the read head and system software to
determine which sector is currently being passed as the disk spins.

The advantage of a hard-sectored disk is reliability. Since the disk drive
doesn’t have to continuously read track data to ‘‘know’’ its location, the error
rates are reduced significantly.
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As Fig. 3-11 illustrates, the drive control circuitry for a floppy disk is not as
complicated as some people make it out to be. A few simple lines such as drive
select and motor on are self-explanatory. This leaves the head-moving (step-
ping) controls; direction select, step, track 00 indicator; the read and write data
lines; and the write enable or write gate control. A few additional indicators
such as index sector and write protect are also available.

Floppy disk interfaces can range in complexity from a few simple
microprocessor-driven latches (which monitor the drive status and submit the
proper controls) to a completely automated controller that takes a block trans-
fer command from the microprocessor and performs all the sequencing in-
volved in reading the proper tracks and sectors.

Currently available disk controllers have many advanced features that re-
duce the disk-controlling software requirements, but most of these are just
fancy extras; the basics of the disk drive control are very simple. '

One function that is typically done by the disk controller (but which can be
done by microprocessor software just as easily) is error detection and correc-
tion. Data write-checking is performed by reading the written data the next
time it comes around after the write is performed. If it is incorrectly written, the
disk drive will try to write it again. After a preset number of tries (usually about
10), the disk drive will give up and declare a write error. This usually indicates a
faulty disk or a dirty disk head.

Read errors are constantly being monitored using a checksum-type error
code. If a sector’s checksum is wrong after a block read, the disk will again try
to read it correctly. Ifit succeeds, the disk is said to have recovered from a soft
error. If after 10 tries the data is still unreadable, a hard error is declared, and
the data is assumed to be lost.

Under rare circumstances a seek error may occur. In this case, the step-
ping motor or voice-coil movement has inadvertently moved the head to the
wrong disk track. The fact that it is on the wrong track is detected by reading
the track identifier at the beginning of the track. Recovering from a seek error
involves setting the heads back to the first track (track 00) and stepping to the
proper track.

A few interface chips that perform disk control and error checking are
currently available, and their use is described in the interface components
section of this text.

Floppy disks come in two general sizes. Full floppies (203mm in diameter)
have the following characteristics:

Disk capacity: 250K x 8 (single density)
Data transfer rate: 30K bytes per second
Number of tracks: 80

Rotational speed: 360 rpm
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The smaller minifloppies usually found in inexpensive microcomputers
generally have the following characteristics:

® Disk capacity: 110K x 8 (single density)
220K x 8 (double density)

Data transfer rate: 15K bytes per second
Number of tracks: 35
Rotational speed: 300 rpm

In summation, minifloppies have about half the performance of full-size
floppies and cost much less. As to the question of whether to buy two miniflop-
pies or one full-sized floppy disk for a large-capacity micro, it is generally wiser
to opt for two minifloppies. It is always a good idea to have two of any magnetic
storage device. With only one, you can’t easily copy files onto other diskettes.
This capability is almost essential in a well balanced system. ‘

Magnetic Bubble Memory

In its early development stages, the floppy-disk seemed to be far-fetched and
infeasible; but compared to the magnetic bubble memory, the floppy disk in its
infancy looked like a sure thing. Bubble memories are magnetic devices that
store data as magnetically oriented domains in a sheet of magnetic material; but
unlike most magnetic media, such as disk or tape, the magnetic material stays
stationary and magnetic domains or bubbles move around within the magnetic
material under the influence of a rotating magnetic field. By forming a long loop
of magnetic bubbles using a bubble generator/eater and a magnetic field, a large
“‘shift register’” memory is set up. .

Bubble memories combine some of the best features of both magnetic and
semiconductor memory storage. They are large-capacity nonvolatile storage
devices like disk or tape, and the area in which the actual data is being stored
requires no power to hold the data. At the same time, a bubble memory can fit
into the space of a dual-inline package and be mounted directly on the CPU or
memory card of a microcomputer.

The Texas Instruments TBM0103 module is an example of a commercially
available bubble memory. This 92,304-bit (not a power of 2) module comes in a
14-pin dual-inline package that includes two built-in magnetic coils, a
gadolinium—gallium-garnet magnetic substrate material, and special shields to
protect the device from stray external magnetic fields. A data transfer rate of
up to 100 kilobits per second is possible with this device, but random access is
not possible, since it is in essence a large shift register. Table 3-2 gives some
specifications of the TBM0103.

e S BT i e e S
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Table 3-2 TBM 0103 Bubble Memory Characteristics
Useful capacity (bits) 92,304 bits
Register organization 641 x 144
Drive field rate (maximum) 100 kHz
Input/output data rate (maximum) 50 kb/s
Minor-loop data rate (maximum) 100 kb/s
Average access time (first bit) 4.0 ms
Average cycle time (144-bit block) 12.8 ms
Power (100% duty cycle) 0.6 W
Maximum operating tempurature range 0to 70 °C
Nonvolatile storage temperature range —40 to 85 °C
Size 2.5 x 2.6 x 10.1 mm
Pin count 14
Pin spacing 2.54 mm
Pin centers 27.94 mm
Weight 20g
Maximum permissible external 40 oersteds

magnetic field in any direction

The Charge-Coupled Device

The charge-coupled device falls into the same medium-term storage class as the
bubble memory because it too is a serial shift register. Charge-coupled devices
store data as charges on a row of either T-shaped or chevron-shaped charge
storage cells. By applying the proper voltage levels to these cells, charges can
be moved around; a circulating shift register is thus formed.

Charge-coupled devices are unlike bubbles in that they are volatile in
character. They are also much faster than bubble memories, because they
move charges rather than magnetic domains; but CCDs don’t pack the same
density of storage into a given area, because the actual storage structures (the
special shapes) must be fabricated. To make memory access time quicker,
many short shift registers and decoding logic are often incorporated into a CCD
chip. If sixteen 4096-bit shift registers are used instead of one long 65,536-bit
shift register, the maximum access time or latency to read any given bit is
reduced by a factor of 16. The overall throughput is also increased by a factor
of 16.

A good example of a CCD having precisely the configuration just described
is the Fairchild F464 65,536 x 1 dynamic serial memory. This device has 16
randomly accessible shift registers that are multiplexed down to a single data
input and data output bit. As Fig. 3-12 shows, the rows are selected by the four
address lines (AO—A3). External logic is required to clock data through the shift
register using the four clock phases (1, 2, T1, and T2), and the user must keep
track of where he is in the shift register.

The F464’s performance characteristics are typical of what can be expected
of modern CCDs. Data can be clocked through at a data rate of 1 to 5 MHz.




WE

Ag —

Ay —]

Ay —

Az —]

1-0F-16
DECODER

LATCH

Din

I

4096-BIT
BLOCK
=15

. e ————————
— ]
— L]
[ | 4096.BIT
— BLOCK
[ -0
[— e o
[~ o . . .
PO . .
F— . . . .
= r———————

- 9q
-« 92
- 079
-——— 972

OUTPUT
LATCH
AND
BUFFER

—» Pout

Ccs
LATCH

-— CS

Figure 3-12

Vop Vee Vss Ves
7 2 5 4
01 @2 0T1 mTZ
12— A
11— A,
10— A,
3—CS
15— WE
14 —— D
IN
Dout
13
, Vpp =PIN 1
Ve =PIN 16
VSS =PIN8
Vgg =PIN9

The Fairchild F464 65K-bit charge-coupled device. (Courtesy Fairchild
Camera and Instrument Corporation, Mountain View, Calif.)

129




130

Memory

Clocking can be halted for up to 15 microseconds once each interval of 64 or
more clock cycles. This half capability is useful for letting logic perform ad-
dress computations or as a timing margin for other devices.

One of the best applications of the CCD in a microcomputer system is in
the implementation of a solid-state disk for medium-term volatile storage. Us-
ing just 16 of the F464s, for example, a 131-kilobyte shift register memory with
a data transfer rate of S MHz could be set up. This solid-state disk could be
loaded from an inexpensive tape drive at the beginning of the day and provide
minifloppy disk storage functions all day long without any of the wear or noise
problems associated with a mechanical device. The file access time would of
course be almost instantaneous with the S MHz data transfer rate.

LONG-TERM MASS STORE

Long-term storage devices reside at the lowest levels of memory hierarchies
and are capable of storing vast amounts of data in a somewhat permanent,
nonvolatile form at a very low cost. Access speed and random-access capabili-
ties are of secondary importance for long-term storage devices; memory stor-
age size is the primary goal.

Since the early days of computers, magnetic media have dominated the
long-term storage field, followed by paper media. Magnetic tape units and disks
are two currently popular magnetic media, but at one time magnetic drum
memories were an important part of most computer systems. Paper tape and
the familiar ‘‘IBM card’’ are two popular paper media.

In regard to long-term storage for microcomputers, long- and medium-term
storage devices are usually one and the same. This situation is brought about by
two factors: Microcomputers are slow enough that a tall memory hierarchy (a
many-leveled hierarchy with ever-increasing storage device speed) is not
needed to get the most out of the microcomputer’s microprocessor. Secondly,
microcomputers are not typically put to use in extremely large data-base or
program applications.

The three most common forms of long-term storage in microcomputer
systems are floppy disks, magnetic tape (usually cassette), and paper tape.
Floppy disks, which were discussed in the medium-term storage section, are
currently dominating the field, while the more cumbersome cassette and paper
tape are being phased out. Floppy disks have the advantages of high data
transfer rate, convenient storage form (thin, square packet), and semirandom-
access capability.

This section discusses the basic principles of magnetic recordings and
shows how they are used in a few microcomputer long-term storage devices.
Paper tape is also covered.




Magnetic Data Recording

Magnetic materials exhibit many characteristics that are desirable in a memory
cell. They can be magnetized in two or more directions to represent ones or
zeros; they will hold a magnetic state until changed, thus exhibiting a natural
memory characteristic; and they are plentiful and cheap.

Disks, drums, tape, and floppy disks basically use the same magnetic re-
cording principles. A magnetic oxide containing magnetic dipoles is deposited
in a thin layer on a plastic or metal surface. The resulting magnetic tape, disk,
or drum is then drawn past magnetic heads (electromagnets with a very sharply
aimed magnetic field), aligning the dipoles in one direction or the other. This
process is defined as recording.

The process known as data retrieving involves passing the recorded tape or
disk surface past another electromagnetic or Hall-effect (a semiconductor that
is sensitive to magnetic field changes) head. The aligned dipoles generate a
current corresponding to the recorded data.

- Magnetic Properties. The idea of a magnetic dipole being aligned in one
direction or another to represent a 1 or a 0 is somewhat simplistic. There are
hundreds of thousands of magnetic dipoles for every few centimeters of mag-
netic tape, and many sorts of dipoles are used in a magnetic coating formula-
tion. The dipoles tend to align to a greater extent as the magnetic field strength
increases. When the magnetic field gets so strong that the dipoles are well
aligned, the tape reaches saturation. A tape in saturation is analogous to an
amplifier in the same state.

For music and voice recording, a linear, nonsaturating tape response is
very desirable. By recording below the saturation level of the tape, analog
waveforms can be recorded. Digital data recording, however, is a different
story. Data can be more effectively recorded by quickly driving the tape into
saturation using a strong magnetic field.

Saturated data recording has a number of advantages over nonsaturated
recording. It is a faster recording method because the magnetic dipoles are
aligned extremely quickly using powerful magnetic fields. Saturated recordings
are also less prone to noise because all the tape’s amplitude response has been
“‘used up’’ in recording the saturated data.

Certain tape formulations are better suited to saturated data recording than
others, and these are used on disks, drums, and data cassettes. Nonsaturating
tapes such as audio recording tapes are not well-suited to saturated recording
equipment, just as saturating tapes are poor audio tapes. The fact that a tape is
a computer data tape doesn’t mean that it is an extremely high quality tape; it
just means it is different, and probably of the saturating variety.

Magnetic tape and disk coatings must be very uniform to avoid dropouts in
the data recording. Dropping out a few cycles of a musical passage on an audio
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tape would hardly be noticeable, but dropping a few bits on a data tape could
ruin a whole program or data base. Magnetic coating uniformity is therefore of
prime importance on magnetic tapes and disks.

Recording Methods. As a tape or disk is moved past a magnetic head, logic
levels (representing the 1s and 0s) can be recorded one after the other in a serial
manner. Upon retrieving the bits off the tape or disk, however, a lot more
information than a rapidly changing serial stream of 1s and Os is needed to make
sense out of the data rccording. Most importantly, the points at which each bit
starts and stops must be determined. The difference between three 1s in a row
and one or two 1s must be distinguished. Secondly, since most computers deal
with words and bytes, byte boundaries must be distinguishable. Finally, elec-
tromagnetic read heads only generate current at the state-transition boundaries
where the dipole alignment changes. Logic levels must be determined from
these changes.

The solutions to the above-mentioned problems lie in data formats (Fig.

3-13).

Nonreturn-to-zero (NRZ) recording is a logical extension of the simple posi-
tive and negative saturation representation of logic states just discussed. The
only differences are that (1) a clock track is recorded next to the data on the
tape to help determine where bits start and stop, and (2) changes from positive
to negative saturation are used to determine the recorded signal, because elec-
tromagnetic record heads can only sense tape saturation or flux changes and
not levels.

Recording in the NRZ format is simple; data is sent directly to the record
head with a 1 representing negative tape saturation and a 0 representing posi-
tive tape saturation, as shown in Fig. 3-14. '

Retrieving NRZ data is a matter of using a flip-flop to toggle between 1 and
0 every time a saturation direction change is detected. This flip-flop essentially
synthesizes the input data that was originally recorded. The clock track is used
to clock the data into an input register at the appropriate times.

The problem with NRZ recording is its error propagation characteristic.
Because flux changes (rather than absolute levels) are used to determine the
original recorded data, reliable reading is dependent on the toggling flip-flop’s
ability to track the data perfectly and not miss a single saturation transition. If
the flip-flop happens to miss a flux change (perhaps caused by a tape dropout),
the flip-flop will be set in the wrong direction for that particular bit. Not only
will that bit be affected, however; all the following bits will be read ‘‘upside
down’’ since the flip-flop is out of phase with the recorded data.

Nonreturn-to-zero inverted (NRZI) recording solves the error propagation
problem and is therefore more commonly used in commercial tape equipment.
Instead of allowing saturation directions to change from positive to negative on

i
|
|
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Figure 3-13  Common data recording and transmitting formats.

all 0-to-1 transitions and back again on 1-t0-0, the saturation is simply allowed
to change, whether it be from negative to positive or vice versa, whenever
input data of one is encountered. Zero data causes no saturation change.

Retrieving the data is a matter of determining if a saturation change has
occurred. If it has, the data is 1; if not, it is 0. If a saturation change happens to
be missed by the read head, a 1 will be misread as a 0, but subsequent data will
still be read correctly, since a saturation change still equals 1 and no change still
equals 0

As W1th NRZ, a separate clock track must be recorded beside the data
track on the tape. When a separate clock track is available to tell where bits
stop and start, almost any distinguishable 1- and O-representing signal can be
used as the data track.
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Figure 3-14  Tape and communications format generation.
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Frequency-shift keyed (FSK) recording is a case in point. Using this method,
a high-frequency sine wave represents a 1, while a low-frequency sine wave
represents 0.

Continuous-wave (CW) recording uses a tone burst to generate a 1 and no
tone burst to represent a 0.

Both FSK and CW are seldom used in modern magnetic data recordlng
applications, and both are nonsaturated recording methods; but FSK is still the
most commonly used data communication format for remote computer ter-
minals relying on modems.

So far, all the recording methods discussed require two recorded tracks —
one for data and one for clocking. Methods that require clock tracks are known
as clocked data formats. Their disadvantages include the need for a two-track
recorder, their sensitivity to tape skew between the two tracks, and their sparse
data packing.

It’s true that games can be played to eliminate the need for a separate clock
track by going to asynchronous timing methods. A slower-speed clock can also
be recorded and multiplied into an in-phase normal- -frequency clock using a
phase-locked loop, but a more realistic approach to the problem is the use of a
self-clocking recording method. Self-clocking recording methods produce a
serial stream of 1s and Os on a tape in such a way that both clock and data can
be derived from the single serial stream.

Pulse-width modulation (PWM) recording is a good example of a self-
clocking format. Notice in Figure 3-13 that the waveform has a rising edge at
the beginning of every bit boundary. By triggering a ‘‘pulse-width Watchlng”
circuit on the rising edges or by simply examining the waveform in the middle
of the third quarter of the waveform, a 1 or 0 can be accurately detected.
Basically, a short pulse equals a 0 and a long pulse equals a 1.

Double-frequency recording (DFR) is similar to PWM except that two quick
pulses represent a 1 instead of one long pulse. Many floppy disk drives use this
recording method. The DFR waveform is identical to the PWM except that the
second quarter of the waveform on each cycle is always 0.

It is fairly easy to generate PWM and DFR, because a variable-pulse-width
generator is all that is required. The two most common types of self-clocking
recording schemes, however, are even easier to generate waveforms for, but

~ the waveforms are quite cryptic and hard to follow in the timing diagram

(although the hardware has no problem keeping track of the data).

Biphase-M encoding, or Manchester code, is a self-clocking scheme that
changes from 0 to 1 or 1 to 0 on every bit boundary, but an additional change
only occurs in the middle of bits representing 1. This is basically a form of
frequency modulation using only single cycles of each frequency.
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Biphase-L encoding is similar to biphase-M; but instead of a transition oc-
curring on the edge of every clock pulse, it always occurs in the middle of every
clock pulse. The direction of the transition in the middle of the bit determines
whether itisa 1 or 0. v

Biphase-L’s advantage is that it is slightly easier to generate than Manches-
ter code, but it has the disadvantage of being susceptible to phase inversion. If
the playback tape deck has its magnetic head polarity-reversed from the re-
cording deck, or if the playback deck has an extra inverting amplifier stage, the
data will be read ‘‘upside down.”’

Figure 3-14 illustrates how biphase is generated. The generation of biphase
seems to be a difficult task to accomplish, until you realize the trick: in this
case, an exclusive-OR gate. ‘

Microcomputer Magnetic Recording Devices. Floppy disks are becoming
the dominant magnetic recording device in the microcomputer field. Floppy
disks typically use saturated recording techniques and NRZI or DFR methods.

Before the widespread use of floppy disks, cassettes were very popular as a
data storage medium. Professional companies developed cassette decks that
record in NRZ, PWM, and biphase using saturating recording methods.

A number of popular cassette and tape recording methods were introduced
by microcomputer hobbyists as well. Hobbyist magnetic cassette recording
usually consists of biphase-L recorded data on nonsaturating tape such as
audio cassettes (the popular Tarbell cassette format falls into this category),
and a self-clocking form of FSK on nonsaturating tape (commonly known as
the Kansas City Standard).

The saturated cassette formats offer higher performance than the nonsa-
turating audio tape formats, but, at this point, upgrading to a floppy disk is a
wiser choice for most hobbyists than upgrading to saturated cassette record-
ings.

Using Magnetic Tape in a Micro System. While a hobbyist’s or small
businessman’s single-track, low-speed, microcomputer-controlled cassette re-
corder hardly seems comparable to the multimegabit-rate 9-track high-density
“‘mag tape drives’’ used in large business and scientific computers, many prob-
lems and their solutions are shared by both devices.

The first problem is that of accurately locating and reading the desired byte
of data. Unlike random-access memory, tape must be sequentially read. Fur-
ther, it is not possible to start and stop the magnetic tape drive fast enough or
accurately enough to permit reading just one byte at a time. With a tape ‘‘den-
sity’” of 32 bits per millimeter (800 bits per inch), for example, each bit occupies

only 31.25 micrometers. (microns). .
The solutions to the data identifying and reading problems lie in ‘‘file

management.”’ Information is written onto the magnetic tape in “records’’ or
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“‘blocks” that usually consist of a few hundred bytes of data. Between the
records, blank spots or interrecord gaps are left to allow the tape drive to bring
the tape up to speed before reading the tape and to stop it after reading the
single record. The few hundred bytes of data read from the record are stored in
a ‘‘tape read buffer’’ area in memory and the program is free to use the bytes
one by one. Finally, when the buffer is empty, the tape is restarted and another
record is read, filling the tape read buffer again.

The simplest form of program tape storage is the storing of a whole pro-
gram in one large record. Most microcomputer tape systems designed for use
with manual motor control recorders use this method. A more advanced way to
store programs and data is in a series of equal-sized records. A series of records
is usually called a file and is ended with an end-of-file mark on the tape. Figure
3-15 illustrates the typical file structure used on most advanced microcomputer
tape units. Figure 3-16 shows a common single-record tape format.

The complexity of a cassette tape interface is dependent on the number of
features incorporated. Read and write circuitry is essential in any tape inter-
face. With just read and write circuitry, it is possible to dump and load memory
by manually turning the cassette recorder on and off at the beginnings and ends
of records. Multiple-record files are not practical with manual motor control
systems.

Motor start and stop control is an option that essentially comes for free in
most cassette recorders, and many inexpensive cassette interface units take
advantage of this feature. A computer-controlled magnetic reed switch is typi-
cally used to start and stop the tape.

Simple motor start—stop control is a vast improvement over manual control
because it offers a crude file management capability. Blocks of data can be read
sequentially in a start-and-stop manner, allowing the processor to perform
processing on single blocks of data. Two cassette recorders and a cassette
interface with motor control make up a single file management system. One
cassette is designated as the reading or input unit and the other is the write or
output device. Blocks of data or pages of text can be read in through the read
cassette, modified or added to by the user, and written out in standard file
format on the output cassette.

Assembler programs also benefit from motor control. Assembling a source
file of a program takes a relatively long time. Storing a whole source file in
memory is not possible with large programs due to the limits in memory size,
and taking in data from a large single record without motor control is not
possible because there is not enough time to assemble the program between the
bytes on the tape. With motor control, the computer can have tape input on
demand by using a read buffer and multiple-record file system.

The next step up from motor start—stop control is full motor control. Pro-
fessiongl cassette decks usually feature fast forward and rewind as well as
motor start and stop control. These features allow for hands-off operation of
the cassette unit, which is very convenient.




138 | Memory

Serial data (cassette)

Data bytes ~ 256 Checksum byte
Start byte A ~ 7 A,

< [10010101 | 01011010 | 11110000 | 01011110 | 01101100

Serial data Interrecord gaps

Interfile gap
I Record 1

e

‘

—— ——
Tape Record 2 Record3 Record4 Record5 Record6 Record?7 Record8
J File start
File start mark End of file mark
‘ , File 1 " File2
Data bytes ~ 256 < Tape movement_
it:t': \ I o Checksum
( 1]of1]o]o0 {
{ o[ [ P4
( o[of1]o]1 \
{ 1[1]1]1]o0 |
) of[1]of1]1 )
U 1]o]o]1]1 3
( ol1]{of1]o )
{ 1{olojo]o \
Y ARREE {
P = parity bit

Parallel data (9-track mag tape)

Figure 3-15  Tape file structure for single- and multiple-track tape.

Another feature often found on professional cassette decks is the ability to
fast-forward or rewind the tape and search for a certain record in the process of
rewinding. Because tape rewinds 10-20 times as fast as it reads or writes, it is
not possible to use identifying words written at normal read and write speeds to
find a file. Instead, special series of code words—which the cassette elec-
tronics can read if passed over at high speeds—are written at the beginning of
each record. It is easy to find the desired file using these high-speed-readable
file markers.

Typical data transfer rates for magnetic cassette tapes used in microcompu-
ter systems range from 300 to 2400 baud, or 30 to 240 bytes per second, using
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Figure 3-16  Typical direct memory load tape formats. (a) Synchronous record format.
(b) Direct memory load format (often used to load programs in microcomputer systems.)

standard audio cassettes at a 17 inch-per-second (4.7625 cm/s) speed, and up
to 32,000 bits per second or 3200 bytes per second using 1600 bits per inch (630
bits/cm) saturating data tape at 20 ips (50.8 cm/s). These transfer rates are
relatively slow, so serial interfaces are commonly used with cassette tape units.

Paper Media

The earliest forms of computer data storage were paper cards and tapes. Even
before the development of the electronic computer, an inventor named Bab-
bage envisioned using gears, mechanical counters, and punched cards to form a
‘‘difference engine”” or mechanical computer. Difference engines were not suc-
cessful due to friction problems, but paper media have had very large success
in the computer field and remain popular to this day.

Paper media have gained wide support in the microcomputer field because
many inexpensive devices are available to handle them and because they have
some very desirable characteristics. Paper tape, for example, is cheap, rugged,
very reliable, and insensitive to magnetic fields.

The most common paper medium in the microcomputer field is punched
paper tape. Not only is it used extensively for long-term data storage; it is used
as a program exchange medium as well. The widespread use of paper tape can
be directly attributed to the ASR-33 Teletype unit. This teleprinter consists of a
keyboard, a 10-character-per-second printer, and a paper tape reader—punch.
Many microcomputer users found that this unit met their hard-copy as well as
long-term storage needs for a very low price.

Paper tape has characteristics similar in some respects to magnetic tape. It
is a serial storage medium and can only be read in one direction. Paper tape is
very slow, with read rates ranging from 10 to a few thousand characters per
second.
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Figure 3-17  Paper tape formats. (a) 5-level code (29-code). (b) ASR-33 8-level code.

One very important difference between paper tape and magnetic tape is
paper tape’s character-on-demand capability. Magnetic tape requires multibyte
records because individual bytes cannot be accurately or selectively read. Be-
cause paper tape readers usually pull the paper tape across the reader head with
a ratcheting action, it is possible to read just one byte. Due to this capability,
file management methods are not used in systems based on paper tape.

Paper tape is a byte-oriented medium. The most common kind of paper
tape is the 8-level kind that is compatible with the ASR-33 Teletype’s paper
tape reader and punch. Level refers to the number of bits of data represented in
each data byte on the tape. The format for 5-level paper tape (which was
popular on earlier non-ASCII teleprinters) is a hole string with five parallel hole
positions across it; 8-level tapes have eight parallel hole positions. Figure 3-17

illustrates these two paper tape formats.

Paper tape punching is always done with some sort of mechanical die, but
there are three distinct approaches to paper tape reading: mechanical, electro-
mechanical, and optical.
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Mechanical paper tape reading is the crudest of the three, but it is very
reliable. ‘‘Feelers” are poked up through the holes in the tape to read each
byte. The feelers thereby sense which holes are punched, mechanically register
the holes, and read the byte. The principal drawbacks of mechanical tape
reading is the speed limitation and device complexity.

Electromechanical tape reading is a simpler tape reading method that relies
on metal contacts or brushes to conduct through the paper tape holes. Again,
tape speed is limited due to the mechanical nature of the making and breaking
contacts.

Finally, the most popular method of reading paper tape on modern readers
is the optical method. Light shines through the holes as the tape passes by the
optical read head. Reading speed on an optical reader is limited strictly by how
fast the paper tape can be pulled through the reading mechanism.

Paper tape has developed around the mechanical reader, and some of the
characteristics of the paper tape itself hurt the electromechanical and optical
tape reading methods.

The most common type of paper tape comes on a large roll, is oiled to
reduce mechanical punch friction, and has a dull yellow translucence. While
this tape works well on the mechanical teletypewriter, it plays havoc with other
types of readers. Electromechanical readers are affected by the oil, which fouls
the electrical contacts; and on optical readers, light often is registered through
the oiled translucent tape where no holes have been punched. Nonoiled, black
or gray paper tape has therefore become very popular for high-speed electro-
mechanical and optical readers. '

Because paper tape is a byte-oriented medium, most paper tape readers
and punches, with the exception of the ASR-33 Teletype, are driven through
parallel interfaces. An 8-bit parallel interface is enough to send the full ASCII
character set to a reader or punch. Eight bits are sufficient for alphanumeric
data because the ASCII character set includes four control characters that are
set aside to control a paper tape reader and paper tape punch. These characters
are DC1, DC2, DC3, and DC4 (DC stands for device control), which have
hexadecimal values of 11, 12, 13, and 14 and the control codes of control-Q, -R
-S, and -T (reader on, punch on, reader off, and punch off).

If an application requires that a full complement of 8-bit codes be punched
or read, the device control codes that turn the reader and punch on and off
cannot be used. Whenever these characters are punched or read, the reader or
punch stops or starts. In applications requiring complete character-set punch-
ing capabilities, a separate 8-bit data and 8-bit control port are incorporated in
the device’s interface. :

Much software is written around the four control characters. Therefore,
many microcomputer cassette interfaces as well as paper tape interfaces use
the control characters to start and stop the reading and recording devices. This
software then becomes useful with both paper tape and cassette.




SELECTING MEMORY
FOR A MICROCOMPUTER SYSTEM

Once short-, medium-, and long-term storage devices and their interfaces are
understood, individually interfacing any one of them to a microcomputer sys-
tem becomes a fairly straightforward task. Deciding which memory units to
use, however, isn’t quite as easy.

Evaluating a system’s memory requirements is avgood place to start. A
simple microcomputer-based controller usually requires permanent storage for
a control program and a small amount of random-access memory for temporary
working storage. In simple cases like these, the requirements make the memory
choices quite easy.

In the initial design of a microcomputer-based controller, it is wise to
allocate about twice as much memory (PROM and RAM) as initial memory
estimates call for. Controllers typically take on more tasks as they proceed
through the design process, so expandability can be quite important.

The specific PROMs, ROMs, and RAM:s should be selected on the bases of
price, power, performance, and microprocessor compatibility. Memory
devices from the microprocessor’s logic family simplify design complexity and
eliminate the need for level translator circuits. Memory devices and a micro-
processor from the same device family are usually well matched in terms of
speed also. NMOS microprocessors, for example, have clock rates ranging
from 1 to 4 MHz, while NMOS memory cycle times range from about 0.25to 1
microsecond (corresponding to a 1 to 4 MHz clock rate). The advantages of
individual PROMs and RAMs should be weighed as described in the short-term
memory section.

For processing-oriented microcomputer applications, the memory deci-
sions get tougher. Not only does short-term memory have to be considered, but
a medium- or long-term storage device must be selected.

First, enough RAM to run all the desired programs must be provided. Text
editor programs typically use from 2K to 5K of memory, assemblers 4K to
12K, and BASIC interpreters and compilers 2K to 16K. With today’s low
memory cost, a good starting point for RAM is 32K. This much RAM allows
enough working storage for the above-mentioned programs plus some data and
system utility programs.

Programs and data can be stored on cassette or floppy disk, but before
deciding on an expensive dual or quad cassette system or dual floppy disks, it is
wise to consider the large memory approach. Memory is quite inexpensive
compared to floppy disks and cassette drives, and can reduce or eliminate the
need for long-term storage devices if enough of it is used.

If a microcomputer’s prime purpose is to run user-interactive BASIC and
assembly language support software (text editors and assemblers), a system
| consisting of 24K of PROM for BASIC, editor, and assembler programs, and
32K-48K of RAM may be adequate. Not only will a system like this cost less
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than a floppy disk system, it will perform more reliably and have quicker
program access and response time as well. A single, manually operated cas-
sette deck for storing user programs and data may be desirable in a system like

- this as well.

If a floppy disk or cassette system is chosen over the memory approach,
more memory should be allowed to contain the disk operating or cassette
control software or ‘‘operating system.”’ Putting this software in PROM is
nearly essential, especially on a microprocessor that has no front-panel data
entry method, because upon power-up the first programs to be run will usually
come off the disk or cassette. An alternative to putting the whole operating
system in PROM is to put a small initial loader or bootstrap loader in PROM .
and have that initialize the operating system by doing an initial program load
(IPL).

Two or more of the same magnetic long-term storage devices have many
advantages over just one. The advantages include file copying capability, the
ability to sequentially read one tape while writing onto another (if cassettes
were chosen), and increased storage.

If cassettes are chosen, motor control is imperative for any serious applica-
tion that involves more than just dumping or loading programs manually at the
beginning and end of a session with the computer. Some cassettes with motor
control offer nearly the flexibility, random-access capability, and hands-off
operational characteristics of floppy disks; but the latency time (file access
time) is always longer.

One factor to consider before buying a floppy disk is the amount of data
that can be stored. Minifloppy drives of the single-density type can store only
about 100K bytes of data, which is barely enough for a couple of large programs
and data bases. Working with minifloppies can become a cumbersome hands-
on operation (constantly removing and inserting disks) if you require large
storage capacities. A full-size floppy disk or one of the high-performance,
double-sided, dual-density minifloppies may be more appropriate for your ap-
plication. '

VT T T e T - e



New microprocessors, memory devices, interface chips, and other exotic mi-
crocomputer components enter the market every year, and it is popular to talk
about these fad items. Magazine article after magazine article and even whole
books are devoted to the popular devices.

Two important areas of microcomputer systems that are usually over-
looked are the control structure of microprocessors and the input and output
methods used to get data in and out of the closed microcomputer—memory
system. A new microprocessor, such as the Intel 8086, is usually described as a
revolutionary processor with so many index registers, so many data registers,
and a ‘‘pipelined’’ architecture. Little, if anything, is ever said about a
microprocessor’s microprogrammed control unit, sequential control point
instruction-execution logic, or the internal workings of the priority arbitration
logic. Most manufacturers’ and authors’ block diagrams of microprocessors, in
fact, pass off the most sophisticated part of the processor—the timing and
control unit—as a simple box with the words *‘timing and control logic™’ writ-
ten inside.

Two factors contribute to this situation: First, a microprocessor’s effi-
ciency and overall performance are greatly affected by the control logic, and
most manufacturers prefer to keep their unique designs proprietary. Dull sub-
ject matter is the second reason for the scarcity of control information. Micro-
computer users are more interested in the available registers and the instruction
sets of a processor than in the way a processor internally carries out an instruc-
tion. Control logic is somewhat invisible to a computer programmer.
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The dull subject matter argument also applies to I/O methods. It is much
more interesting to read about a microprocessor’s potential than about all the
little details that allow it to live up to that potential. This subject matter can
become very interesting, however, when you try to use a microprocessor in an
actual application.

A microprocessor’s control logic and its I/0 protocols play the largest role
in a microcomputer’s communication with the outside world, and this chapter
is devoted to digging into the basics of computer I/O methods. A few basic
concepts concerning the low-level logic elements commonly used in I/O are
described, followed by explanations of various I/O schemes, from simple to the
most complex.

BASICS OF LOW-LEVEL I/O COMPONENTS

It is important to precisely define the functions of various common logic ele-
ments before discussing how these elements are used to transfer data in I/O
systems. Flip-flops, registers, latches, and memory cells, for example, are all
capable of storing bits of information; but the distinctions between these
devices are very important, because data I/O is essentially the process of
capturing and transferring data to and from these devices.

The Edge-Triggered Register

Data transfers rely on the ability to ‘‘catch’’ a byte of data in a temporary data
storage unit at a precise instant in time. If the unit sending the byte is a
microprocessor and the temporary data storage register is located in a periph-
eral device, the act of catching the byte of data would amount to a
microprocessor-to-peripheral output cycle. One such data-capturing device is
the edge-triggered register.

Figure 4-1 presents the standard notation used to depict a register. A
register’s input and output signals are well standardized in notation. The D
input to the register is the data input, CK is the clock input, and Q and Q
(commonly called Q-bar) are the data output and inverted data output.

Data at the D input is transferred to the Q output on the positive-going edge
of the clock input’s signal. The data that is transferred at the positive-going
edge of the clock pulse is stored or captured at the Q output until the next

ositive-going clock signal occurs (when new data at the D input replaces it).

he important concept here is that the data is only ‘‘looked at’’ by the register’s
input during the very short time in which the clock rises from logic 0 to logic 1.
In other words, data need only be “‘valid’’ on the rising edge.

In reality, the data at the data input must be valid a slight bit before the
rising edge (called the data setup time) and a slight bit after the clock’s rising
edge (called the data hold time) to allow the register’s circuitry to respond to
the data properly.
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Edge-triggered register characteristics. (a) Rising-edge-triggered register.

(b) Falling-edge-triggered register. (c) Setup and hold times.

Rising- and falling-edge-triggered registers are available. Falling-edge-
triggered registers capture data on the falling edge of the clock pulse and are
really just rising-edge-triggered registers with inverted clock inputs.

To describe the capturing of data in a register, we use the word clocked.
When data is clocked into a register, it is assumed to be captured on the rising
edge of the clock cycle. ' '

The safest way to use a register to capture data is to allow as much setup
and hold time as possible on the D input. The input data should be valid for a
safe amount of time on both sides of the clock’s rising edge. A good way to
make sure this criterion is met is to allow data to be presented and removed
from the data input at the trailing edge of the clock, and to clock data into the
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register on the rising edge. As Fig. 4-1 illustrates, valid data is symmetrically
sandwiched around the clock pulse, thus allowing very wide setup and hold
time margins.

A register’s output takes a certain length of time to change to the new input
data following the clock’s leading edge. This delay is known as the clock-to-Q
propagation delay. This lag in register output must be considered when using
registers.

The Bistable Latch

A latch is capable of storing a single bit of data; but unlike the register, it is not
a clock edge that directly causes data to appear on the latch’s outputs.

Figure 4-2 illustrates a latch and its timing. A latch has a data input (D),
data output and inverted output (Q and Q), and an enable input (E or sometimes
G). A latch is “‘transparent’ in that it allows data to freely pass from the D
input to the Q output when the enable is high; but it immediately freezes
whatever was at the data input when the enable line is dropped to a logic 0.

At first glance this may seem like a falling-edge-triggered register because
data is captured on the falling edge, but it has the transparent property not
available on the register when the clock is high.

In some applications the transparent feature of the latch is actually used,
but in most cases designers treat latches as registers that capture data on the
falling clock edge. The danger in using a latch in this way is that for the whole
time the clock is high, whatever data is on the data input is allowed to slip
through the latch and appear at the output. This problem is solved by narrowing
the positive clock portion down to a narrow pulse. Data can be thought of as
being captured by the pulse when this sort of arrangement is used. Capturing
data in this manner is referred to as ‘‘strobing’’ data into a latch.

Unless erratic output is acceptable during the time the strobe pulse is high,
data must be valid during the whole strobe time and even a little before and
after the pulse (setup and hold times again).

Data passing/freezing operation Register-like strobed operation
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Figure 4-2  Bistable latch characteristics.
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If a narrow pulse is generated by counters or if a multiphase clock with
narrow pulses is available, the latched I/O method is a reasonable alternative
because latches, are cheaper and draw less power than registers; but all too
often, bad design practice is used to generate the required narrow pulse. An
edge-triggered monostable multivibrator (one-shot) is often misused in this
application, and system timing becomes dependent on the one-shot’s timing
components as well as the processor’s master clock crystal. Because one-shots
are susceptible to electrical noise, a noise burst entering the device containing
the one-shot-driven latches could cause false data to be strobed into the
latches. It is wise to avoid using one-shot-driven latches.

The Multiplexer

Whether you are inputting, outputting, or processing data, it must be channeled
between various processing elements and I/O devices. The logic element used
to steer data is the multiplexer.

Figure 4-3 illustrates a multiplexer and its equivalent gate- constructed lo-
gic. Basically, A data is passed to Y if the select line is low, and B data is
passed to Y if the select line is high.

A multiplexer or a series of multiplexers connected in a treelike fashion can
be used to select between many data inputs, but more often than not, virtual
multiplexers are used in I/O systems. A tristate data bus that can only be driven
by one tristate buffer at a time is an example of a virtual multiplexer. The buffer
driving the bus acts as the selected input on a real multiplexer, and multiplexing
action takes place even though there is no actual multiplexer part.

The Decoder

A decoder is a gating network that takes a few input bits (usually three or four
in the case of single-chip MSI decoders) and generates a unique output for each
3-bit input combination of 1s and 0s (Figure 4-3 illustrates a decoder).

Decoders come in two distinct types: those that raise only one output at a
time to logic 1 for each input code, and those that lower only one output to logic
0 for each input code. In TTL, the AND gate is the dominant building block, and
the one-line-lowered type is the most common. The NOR-gate-dominated ECL
uses the one-line-high approach in most cases due to ECL.’s wired-OR capabili-
ties.

Decoders play an important role in interfaces in the capacity of device
selectors. Because only one output line on the decoder goes high for each input
code, device selection codes can be fed to decoders and the individual outputs
can electrically enable the specified device.
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BASICS OF DATA TRANSFER

The true definition of an input or output operation is the act of selectively
transferring data to or from a selected peripheral device. A good place to start
in the explanation of how I/O cycles are typically implemented is to take the
simple case of sending a single bit of data to a peripheral.

Figure 4-4 illustrates a single-bit data transfer. The output device consists
of a rising-edge-triggered register and an LED (light-emitting diode) to indicate
the state of the register. Referring to the timing diagram, the microprocessor
presents valid data and an output cycle clock line to the register. The
microprocessor’s control unit raises the output cycle clock line to alogic 1 level
at the midpoint of the data-valid interval on the data line, at which time the data
is transferred from the microprocessor to the output device’s register. A simple
one-bit output cycle is thus performed. The LED acts as the peripheral output
device in this case. )

Most microprocessors have output cycles that are just embellishments of
this simple scheme. The data on the line usually reflects a bit in the accumula-
tor while the output cycle clock is generated by an output instruction.

Figure 4-4(b) shows the logical extension of the single-bit data transfer: the
parallel data transfer. In this case, eight bits of data are sent to the output
device, which clocks the data into an 8-bit register where it is used to drive a
7-segment readout instead of a simple LED. Again, the timing diagram of
Figure 4-4(a) applies.

Figure 4-4(c) depicts a single-bit input cycle. In this case, the input clock
signal issued by the microprocessor is used to sample the data at the input
register’s D input. A short time after the rising edge of the input clock, the data
becomes stable at the register’s output and is sampled by the microprocessor.
Again, the microprocessor’s control unit provides all the proper timing signals
for the data transfer and usually transfers the valid data on the line to one of the
microprocessor’s registers where it can be accessed by the user’s program.

Extending this data input principle to 8 bits yields the keyboard input
transfer logic of Figure 4-4(d). An 8-bit key code is generated by pressing a key
on the keyboard. The microprocessor proceeds to examine the 8-bit code by
clocking it into the register and sending it to the microprocessor’s accumulator
or one of its registers.

What has been described so far is fine as long as there is only one I/O
device or peripheral on the microprocessor bus. If two or more devices are
used, the question of which is supposed to receive the data is raised. This issue
is resolved with selection logic.

Figure 4-5(a) illustrates three output devices driven by the same data and
control lines. The microprocessor specifies for which device the output is
destined by supplying a device code. The decoder in the peripheral devices
either enables or disables data transfers to a particular device, depending on the
device code.
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Figure 4-5  The selection of three output devices on a Z80 bus. (a) Logic.
(b) Output timing.

Most microprocessor 1/O schemes use a few of the address bits as the
device code bits. Because a memory cannot be accessed while an I/O cycle is
being performed (due to I/O data tying up the data bus), there is no sense in
adding additional lin€s for I/O device code selection.

From the standpoint of microcomputer software, the I/O device code that
appears on the address lines is specified in the input or output instruction. An
OUT 5 instruction on an 8080, for example, puts the value 5 on the address
lines and the contents of the accumulator-on the data lines.

The Zilog Z80’s input and output cycles are good illustrative examples of
the I/O principles just described. Figure 4-5(b) illustrates the Z80 output cycle.
Notice that instead of one output clock line, there are two lines that must be
combined (ANDed) to create an output clock line: the IORQ (I/O request) line
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and the WR (write) line. Notice that the port address or device selection code
that appears on the 8 least significant bits of the address lines becomes valid
before the output clock lines are activated. This timing margin is provided to
allow the device selection decoders to stabilize and properly select the output
device before outputting data to it.

THE 1/0 DIRECTION STANDARD

When working with simple systems, the terms input and output are quite clear.
The simple data transfer examples just presented require no detailed explana-
tion of which devices perform the input and output functions. In complex
systems, however, the terms input and output must be explicitly defined to
avoid any confusion about which direction data is flowing. When an output
transfer between an intelligent graphics terminal and a central processing unit
takes place, is the data output from the processor to the terminal or vice versa?

A standard convention was adopted to handle such terminology conflicts.
Data transfers are always spoken of with relation to the central processing unit
of a computer system. Keyboards, digitizers, light pens, card readers, and
paper tape readers are input devices, while graphics displays, line printers,
paper tape punches, and the recording sections of cassette interfaces are output
devices. An output transfer between a graphics terminal and a CPU means that
data flows from the CPU to the graphics terminal.

SERIAL 1/0

Presenting a full byte of data to an output register and supplying an input clock
to clock the data is a fast and simple way of sending data to a peripheral device.
It is not always practical, however, to have eight or more data lines plus a clock
line extending out to all the peripherals in a system. In these situations it is
advantageous to replace parallel data transfer with serial data transmission.

Serial data transmission is the process of breaking bytes of data down into
single bits and shipping them out to the peripheral devices one at a time.

Some problems arise in the implementation of serial communication. First,
an effective method of converting parallel to serial data is needed. A micropro-
cessor under software control or a ‘‘broadside-loadable shift register’’ can
easily perform this task. A string of eight edge-triggered registers are loaded
with the 8-bit byte on the first clock pulse of the serial transmission operation,
and the bits are sequentially moved through the register string at the rate of one
bit per clock pulse. The bits that ‘‘fall off the end’’ of the register string make
up the serial output.

In a similar manner, bits coming into the receiving end are serially shifted
into a shift register until 8 bits are accumulated. This full byte of data can then
be used by the peripheral device.
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As Fig. 4-6 illustrates, an input line, output line, and a clock line are all that
is needed for bidirectional serial communication between two devices. If the
two devices are in separate cabinets and run on different power supplies, a
common or ground line between the devices must also be provided.

Synchronous Communications

With parallel communication it is clear that the rising edge of the clock indi-
cates the transfer of a whole byte, but in serial communication the rising edge
of the clock indicates the transfer of a single bit, and a scheme to determine
which bit of the byte was transferred is needed. One common approach to this
problem is to initially synchronize the transmit and receive shift registers and
from that point on assume that the transmit circuitry and receive circuitry, by
simultaneously counting to 8 (in the 8-bit shift register case), will keep track of
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Figure 4-6  Serial data communication clocking schemes. (a) Synchronous serial data

transmission. (b) Asynchronous serial data transmission.
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the byte boundaries in the bit stream This type of serial transfer is called
synchronous communication.

The practicality of synchronous communication depends on the
transmitter’s and receiver’s ability to stay synchronized after initialization. If
the receiver for some reason gets just one bit off (perhaps through the introduc-
tion of a noise spike in the clock line), all the following bytes will be received
incorrectly. The transmit and receive shift registers must be run off the same
clock in synchronous communication modes.

Initialization of the transmit and receive registers is usually accomplished
through a character matching process. When a synchronous serial transfer
begins, the receiver is put into a bit-stream *‘watching’’ mode. The first charac-
ter sent by the transmit \register, known as a match character, consists of a
predefined bit pattern known to the receiver. The receiver recognizes the
match character on the clock cycle that it is fully shifted into the shift register
and starts counting out 8-bit bytes from this point on.

Synchronous serial data transmission requires a clock signal in addition to
the input and output data transfer lines.

Asynchronous Communications

A common form of data transmission that eliminates the need for a synchroniz-
ing clock is asynchronous communication. Asynchronous serial communica-
tion relies on the fact that two clocks of approximately the same frequency stay
fairly well synchronized over a short period of time.

An asynchronous data transmitter sends out an initial tlmmg bit called a
start bit, followed by eight bits of serial data and one or two ‘‘stop bits.”” The
asynchronous receiver syncs up its clock (of approximately the transmitter
frequency) upon receipt of the start bit and clocks in 8 bits of data using the

- just-synchronized receiver clock as a guide. By the time the eighth bit is

reached, the receive clock is slightly skewed from where the transmit clock
would be if it had been used, but the skew is not great enough to affect the
proper capture of the short 8-bit serial stream.

The stop bits at the end of the serial data stream are usually used by the
receiving equipment to determine if the clock is too skewed to provide accurate
read data. If it is, a *‘bit-misalignment’’ or framing error is declared. Figure
4-6(b) illustrates the asynchronous communication method.

Serial ‘communication requires much ‘more control circuitry than parallel
communication. In addition to the standard parallel interfacing to the micropro-
cessor bus, we must use serial-to-parallel conversion, clock synchronizing, and
bit-counting logic. The common use of serial communication has therefore
resulted in single-device serial communication chips to handle the complex
interface and conversion task. Among these chips are UART (universal
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asynchronous receiver/transmitter), USRT (universal synchronous receiver/
transmitter), and ACIA (asynchronous communication interface adapter)
devices, all of which we discuss in detail in the interface components section.

OPEN- AND CLOSED-LOOP COMMUNICATION

When you send a byte of data to a peripheral device, it is good to know if that
byte ever reached its destination. The simple parallel and serial I/O schemes
just presented do not have any provisions that allow for checking. Data is sent
from the processor to the peripheral and it is assumed that the data correctly
reached its destination. This sort of I/O is referred to as open-loop.

There are a number of ways to send data-received status information back
to the sending device. After a word has been received it can be sent back to the
sending device or echoed, thereby ‘‘closing the loop.”” This method is very
common in computer-to-terminal communication. In most cases, the data en-
tered through a compiiter terminal’s keyboard is sent to the processor,
checked, and sent back to the terminal’s display screen or printing mechanism.

Closed-loop operation is provided on the microprocessor bus level with a
method almost universally known as handshaking. With this method, individ-
ual status signals are sent back to the processor acknowledging that the word
has been received properly. Handshaking logic adds considerable complexity
to a microprocessor’s bus, but it also adds reliability and flexibility. Reliability
is improved because the processor can determine when data hasn’t been re-
ceived and take corrective action. Versatility is increased because the returned
status information can be used to perform powerful timing functions in addition
to closing the communication loop. Asynchronous memory operation is one
example. '

In the discussion of memory interfacing (Chapter 3) it was assumed that the
memory address signals, read and write control lines, and data inputs were
strictly under the control of the microprocessor. The microprocessor would
submit an address and read in the memory’s data 250 ns later, for example.
With handshaking, a memory can have internal circuitry to tell the processor
when its data is valid on a read cycle or when it is finished with bus data on a
write cycle. Not only does the processor have an indication that the data was
sent or received properly, but it knows the precise instant to terminate the data
transfer and move on to the next memory access. If memory access and I/O
handshaking are incorporated in a microcomputer system, memory devices
(RAMs, PROMs, and CCDs) and peripherals with widely differing speed
ranges can be used effectively on the same bus without the addition of any
speed matching circuitry.

Handshaking is used extensively on DEC’s LSI-11 microcomputer. The
data output (DATO) cycle shown in Fig. 4-7 illustrates the sequence.
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Figure 4-7  Microcomputer I/O and memory handshaking. (a) Logic signals invoived in
a data output (DATO) cycle on the LSI 11. (b) Sequence of events in a DATO cycle.

One feature that must be incorporated in any handshaking system is a
timeout mechanism. When a processor depends on a returned handshaking
signal to resume operation, there must be some provision for error recovery if
that signal doesn’t come back. The LSI-11 handles this situation by trapping
(diverting program execution) to a device timeout routine if the accessed mem-
ory or device doesn’t respond with a returned handshaking signal within 2 ms.

COMMON MICROCOMPUTER I/O METHODS

Every microcomputer has its own way of applying data transfer principles. The
specifics of a microprocessor’s I/O system as well as the general data transfer
concepts must be well understood before successful designs and interfaces can
be built. This section deals with the more specific areas of input and output.

O,
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With the exception of a few exotic microprocessors, the majority of micro-

_processors either use data channel or memory-mapped I/O. Most have some

sort of interrupt capability and many are capable of direct memory access
(DMA).

The Data Channel

In the early days of computers, when circuit and logic optimization were not
well understood, computers were thought of as machines consisting of a pro-
cessor, a memory, and an I/O unit. The memory interfaced with the processor
through one interface and to the peripherals through a different interface. Sepa-
rate processor instructions were set aside for memory reference and I/O opera-
tions. This kind of an I/O scheme is called data channel input/output.
Microprocessors must have optimized I/O schemes in order to fit a whole
computer into a 40-pin integrated circuit, and pure data channels are not used in

microprocessors due to I/O pin constraints. The distinct instruction character-.

istics of I/O channels, however, is carried over from older designs. The 8080
and Z80 are examples of the I/O channel-oriented microprocessors.

Instead of having a separate I/O bus and device selection bus (common in
data channel I/O), the Z80 uses the data bus as the I/O bus and the eight least
significant bits of the address bus as the device selection lines. I/O devices
therefore reside on the same bus as memory. The thing that distinguishes the
I/O interfaces from memory is the microprocessor-generated 1/O request line
(IORQ). If this line is low, it indicates that the data and address bus are acting
as a data channel; if it is high, it indicates a memory reference. Figure 4-5(b)
illustrates the I/O channel’s timing.

The Z80 has a whole set of I/O-oriented instructions that turn the data and
address bus into an I/O channel upon execution. The basic input instruction is
IN A, where A represents the device selection or port address. (The term 1/O
port is commonly used to describe an interface on an I/O channel.) Because the
value of A can be 8 bits long, 256 read ports and 256 write ports are available on
the data channel. This number of I/O ports is sufficient for nearly every micro-
processor application and is convenient because the port number can be stored
in a single 8-bit byte of memory. Because there are 16 address lines, and only
the 8 least significant lines are used in an I/O cycle, there are 8 lines left over for
other functions. The 8080 simply repeats the 8-bit port address on the most
significant bits, which serves no useful purpose. The Z80, on the other hand,
makes good use of these bits by displaying the contents of the accumulator on
these lines. During output instructions, a register can be output to the data lines
and the accumulator to the high address lines, allowing a 16-bit transfer. On
input cycles, the accumulator can be read by the peripheral interface, resulting
in a simultaneous input/output cycle.




Memory-Mapped 1/O

As computer science advanced, hardware optimization and simple-to-use in-

struction sets became sought-after features in computer systems. Processor

hardware was optimized and instruction sets were simplified by approaching

the I/0 and memory interface processor logic simultaneously rather than inde-

pendently. By treating every device’s data transfer register as a location in

memory and assigning it its-own address, no separate output channel hardware

or dedicated I/O instructions are needed. The PDP-11 was a big step forward in -
small computer design when it was introduced in the late 1960s, and totally

memory-mapped I/O was one of its main selling points.

A memory-mapped I/O interface is nearly identical to a memory interface,
but instead of using RAMs or ROMs, input and output registers are incorpo-
rated. Like a memory interface, the peripheral interface must contain a com-
plete 16-bit (for microprocessors with 16-bit address lines) address recognizer,
and any buffers and handshaking logic associated with the microprocessor bus.

Memory-mapped I/O lends itself to program organization. A certain section
of a processor’s memory addressing space (usually a 4K or 8K block) is allo-
cated for I/O devices. These locations in memory are referred to as device
registers (as opposed to ports for data channels). In programs, data is transferred
to and from these locations just as data is transferred to and from memory. If a
processor has direct memory-to-memory transfer capabilities, such as the
LSI-11, data can even be transferred between devices with single memory-to-
memory move instructions.

The 6800 and 6502 microprocessors are two examples of memory-mapped
I/O machines. In both cases, no I/O instructions are available.

I/O Transfer Type Advantages

Like every drastic logic difference in microprocessors, data channel versus
- memory-mapped I/O data transfers are cause for hours of debate on which is
superior. Both sides have their advocates and opponents.
The data-channel advocates argue that interfaces on a data channel require
less hardware because a short port address instead of a full memory address is
-used to select the device. This argument is true for most memory-mapped I/O
systems; but Digital Equipment Corporation, realizing the problem, has its
LSI-11 generate a separate signal indicating that the top 8K of memory is being
accessed. This signal can be used by I/O devices instead of the top 8 bits of
address to distinguish the I/O area of memory.
Another argument against memory-mapped I/O is that it clutters the mem-
ory. This argument is not valid because the I/O devices are usually grouped in
one confined area of memory, and the useful space taken from the processor’s
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memory size is usually so small that it doesn’t make any difference. The large
addressing space of the memory-mapped I/O has one advantage in special
applications. Occasionally in large control or data communication systems,
more than 256 output or input devices are needed. With memory-mapped /O,
thousands of peripherals can be accommodated.

The arguments about the advantages of the two I/O methods go on and on,
but it is interesting to note that most modern microprocessors are using
memory-mapped I/O methods.

I/O TRANSFER INITIATION

We have been assuming that the microprocessor knows which peripheral it
wants to send data to and at what time to send it. But in real life it isn’t that
simple. Peripheral devices can only accept data at a certain rate, and new data
may be input at any time. Two methods of determining when to start a data
transfer are in common use: the examination of device status under program
control or polling, and peripheral-initiated program interruption or interrupt
driven I/0. Let’s look at these two methods.

Polling

Submitting only 8 bits of data to a processor and expecting the processor to
input the data properly is somewhat analogous to telling a moving company to
pick up some goods but not mentioning when or where to pick them up. More
information must be submitted to the processor. One of the most common and
simplest ways to convey enough information is to have a separate input register
built into the interface, which the processor can use to obtain status informa-
tion about new data submitted to the interface.

The keyboard interface shown in Fig. 4-4(d) is a good example of a proces-
sor in need of more information. It is true that the processor can repeatedly
read the keyboard’s register, but there is no way to tell when a new key has
been pressed or if a key has been pressed twice in a row. A separate register
with one bit representing keypress (logic 1 if the key is pressed, logic 0 if it is
released) can improve this situation. The updated keyboard interface is shown
in Fig. 4-8. 3 o - ‘

By getting into a programmed loop that repeatedly examines or polls the
status register waiting for the key to be pressed, the microprocessor can be
made to jump to a keyboard-data-examining instruction immediately after the
key is pressed, thereby reading the new data. The microprocessor can then
jump to a routine that waits for the key to be released, and again resume its
keypress loop waiting for the next character.
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There is no reason to limit the polling loop to one peripheral. Figure 4-8(b)
illustrates a keyboard, switch, and terminal all being polled by a software
polling loop. When the data of any device becomes valid, the processor jumps
to a quick-executing data input or output routine and returns to the polling
loop. The chance of missing data in the short period of time that the data for
another device is being input is very small because the data service routine
executes so quickly and the peripherals are so slow by comparison.

The major advantage to polled I/O initialization is its hardware simplicity.
The major disadvantage is the amount of processing time it takes. Constantly
watching the device status flags is time-consuming, and leaving the polling loop
for even a short period to perform some other processing may cause data to be
missed. The amount of time spent in polling loops may be reduced by having
the status bits for many devices packed into a single status word with either one
bit representing each device or a code indicating which port is requesting an /O
cycle; but the need for continuous polling remains.

Interrupt-Driven 1/O

Because it is the action of a peripheral (the receipt of a new character, for
example) that marks the beginning of a data transfer, it seems more reasonable
to have the peripheral device ‘‘tell”” the processor when it is ready with new
data than to have the processor continuously ask if anything new has come in
yet. This is precisely the idea behind interrupt-driven I/O: when a peripheral
device has data to transfer, it lets the processor know.

An interrupt system must be incorporated in the control structure of a
microprocessor if this I/O initialization method is used. An interrupt typically
causes a program (usually normal data processing) to suddenly halt, and diverts
execution to a separate program which inputs or outputs the new data. This
form of operation is inconsistent with the idea that programs flow nicely in
exactly the sequence you specify, and a change in the basic control rules of the
processor are required.

The simplest form is the single-line interrupt system. In this system, an
interface on the microprocessor bus simply puts a logic 1 on the interrupt line
that leads to the processor’s control logic. At the end of the currently executing
instruction, the program will be diverted to a fixed interrupt address. A pro-
gram located at this address then inputs data or “‘services the interrupt.”

With the simple one-line interrupt system, it is also possible to have many
devices issuing interrupts; but when execution is diverted to the fixed interrupt
address, a polling routine must be used for a peripheral to place its service
program’s start address on the address or data bus when the device interrupts,
the processor can take this address and vector execution to the proper service
routine. '
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This sort of interrupt system works well with many peripherals but in-
volves greater interface complexity than the simple scheme of using multiple
interrupt lines. Address-generating circuitry and more complex timing circuitry
are needed on each interrupt-driven interface.

Interrupt Priorities

In interrupt systems in which many devices can make interrupt requests, even-
tually two or more interrupts will occur at precisely the same time. In this case,
priority arbitration logic must decide which request is more important.

A daisy-chain priority system is one of the methods available for deciding
priority. With this method, all the devices issuing interrupts activate a single
interrupt line leading to the processor, as illustrated in Fig. 4-9. The processor,
at this point, realizes that an interrupt is requested and starts to process the
interrupt after completing execution of the instruction in progress. The proces-
sor begins the interrupt sequence by issuing an interrupt grant signal that is
sent to the first device in the daisy-chained peripheral string. If this device
caused the interrupt, it prevents the grant signal from being passed on to the
next device in the string and performs interrupt action by putting its interrupt
service address on the bus.

With this method, the first device in the string naturally has the highest
interrupt priority, because it will be the one to take the grant signal first if
multiple interrupts are issued by different devices.

A second priority-arbitration scheme involves multilevel priority lines. Dis-
crete hardware or an LSI chip called a priority interrupt controller works with
the microprocessor to form many (usually 8) interrupt lines. Each line repre-
sents an interrupt level. Interrupt lines with low-level numbers have higher
priority than interrupt lines with high-level numbers. Interrupt level zero is
usually the interrupt level that gets serviced first. By simply placing devices on
different interrupt levels, a priority interrupt servicing order is established.
Figure 4-9(b) shows a multilevel interrupt system.

Assigning priorities to peripherals takes careful thought. Usually, fast
devices that cannot wait with their data are assigned the highest priorities. A
disk, for example, has a relatively fast data flow rate (for a peripheral, that is),
and should be assigned a high priority. If a disk is assigned a low priority, there
is a chance that a byte of data could be missed when the processor is processing
interrupts isstied by slow teletypewriters that could wait to be serviced.

Special consideration must be given to the console terminal in an interrupt
system, however. Even though it is a slow peripheral, the computer operator
should be able to interrupt any process and take control of the computer.
Priority level zero is therefore often assigned to the console terminal.

Two methods are used to start a particular peripheral’s interrupt transfer in
multilevel schemes. In sophisticated large systems such as the PDP-11, grant
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signals at various levels corresponding to the interrupt lines at those levels are
sent to the interrupting peripheral. It is then up to the peripheral to generate the
branch address. Many microcomputers use a simpler and somewhat more
hardware-efficient system, however. The logic performing the priority arbitra-
tion generates a vector address that reflects which interrupt level is requested.
This method eliminates the need for vector address generating logic on each
peripheral interface.

One advantage the peripheral-generated address priority system has over
the priority logic-generated address system is the number of devices it can
effectively handle. Daisy-chain priority on each of the interrupt levels is possi-
ble with the former but not with the latter.

Interrupt Masks

Interrupts can take over program execution in the middle of almost any pro-

‘gram. In some cases, such as real-time control or within a timing loop, program
interruption ruins the results of the processing. In most interrupt systems a
software-controlled switch is provided to turn the interrupt system on and off.
On a machine with only a simple single-level interrupt system, simple ‘‘inter-
rupt on’’ and ‘‘interrupt off”’ instructions are provided. In more complex multi-
level interrupt systems, interrupt mask words are used.

In a multilevel interrupt system, a mask word sent to the mask register
allows only the interrupt levels whose bit in the mask word is set to 1 to cause
interrupts. Bits in the mask word are usually assigned so bit 0 enables interrupt
level zero, bit 1 enables level one, and so on. The fact that there are usually 8
interrupt levels on popular interrupt controller chips is due to the 8-bit interrupt
mask’s correspondence to a standard byte.

Allowing a computer system’s interrupt system to be masked out totally
under software control is unwise. If a program error causes an infinite loop in
the software to occur when the whole interrupt system is masked, there is no
way for even the highest priority device (usually the console terminal and
computer operator) to regain control of the system. Many microprocessors
therefore include a separate line on the microprocessor called the nonmasked
interrupt line. There is no way to turn this interrupt line off under software
control, and if a program accidentally gets into a ‘‘fatal loop,’’ the operator can
pull the system out of it with his console terminal, which uses this line.

Interrupt Processing

Once an interrupt is accepted and program execution is diverted to the service
routine, steps must be taken to insure that the interrupted program can be
safely resumed later. First, the location where processing was interrupted in
the program must be saved so a return to that point can be made. The logic in
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Figure4-10 A complete interrupt-driven I/O system based on the 8080. (Copyright ©
1977 Advanced Micro Devices, Inc. Reproduced with permission of copyright owner.)

the microprocessor’s control unit usually performs this function automatically
when an interrupt occurs. The saved ‘‘reentry address’’ is usually saved on the
top of the microprocessor’s stack. The saving of other registers and machine
status information is sometimes performed by the hardware itself, but it is often
left up to the programmer to perform in the service routine software.

A quick way to tell exactly what is automatically saved on the stack when
an interrupt is initiated is to look at the operation of the return-from-interrupt
instruction, which should be executed at the end of every interrupt service
routine. As an example, let’s look at the 6800’s return-from-interrupt (RTI)
instruction.

The 6800’s RT1 is a series.of seven stack pops. The condition code register
and then the two accumulators are popped off the stack, restoring them to their
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time-of-interrupt values. The index register is popped, and finally the program
counter data is popped off the stack. The program counter value is the restart
address of the interrupted program, so the program execution is effectlvely
diverted back to the original program.

One hardware-initiated event that takes place when an interrupt is accepted
is the setting of the interrupt mask. If more than one interrupt was issued at one
time and the interrupt mask bits were not set, the processor would immediately
be interrupted again when it entered the service routine. This would keep
happening until the final interrupt (usually at the lowest priority level) was
serviced. Low-priority devices would therefore be serviced first in a strange
nested-interrupt manner. Figure 4-10 puts all the ideas about interrupts together
into an operating interrupt system.
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Interrupt Software Consequences

Software running in an interrupt environment can be fairly standard if masks
are properly set within timing loops and the interrupt routines are independent
of main program software; but as soon as interrupt routines and the main
program start sharing utility routines, some very strange events can occur.

A multiply subroutine is a fairly often-used utility subroutine in many
programs, and a user may be tempted to call the same multiply subroutine from
an interrupt program and the main program. The danger here lies in the way
data is stored in the multiply subroutine’s intermediate calculations. If data is
stored in absolute-addressed memory locations, a multiply routine may give
wrong results if interrupted in the middle of a calculation. The multiply subrou-
tine may have been used in the interrupt routine, thereby destroying the partial
results stored in the absolute memory locations. The program was ‘‘reentered’’
and produced a bad result.

There are three solutions to the reentrancy problem. First, the use of the
same multiply subroutine in interrupts can be avoided, and another separate
multiply subroutine can be used; but this is a memory-wasteful solution, be-
cause two copies of the same program are needed. The multiply routine can set
interrupt masks at the start of the subroutine and remove them at the end,
prohibiting any interrupts while the multiply is in progress. This is a fairly good
solution if long delays in interrupt response time are acceptable. A more elo-
quent solution to the problem, however, is the use of a reentrant multiply
subroutine.

A subroutine is said to be reentrant if it can be interrupted at any time and
be called again without affecting the interrupted calculation. Reentrancy is
typically written into a program by limiting data storage to registers that are
saved when interrupted, and to the stack that also isn’t affected. i

The problem with reentrant code is that it tends to be slow-executing,
especially on a memory-oriented machine that relies heavily on time-
consuming stack operations. For high-performance applications, it is wise to
trade off interrupt response time or memory size for speed and go with one of
the first two reentrancy solutions. _

Interrupt-oriented programs should be carefully checked for possible reen-
trancy problems before they are run. Interrupt-generated errors are the hardest
kind to find because interrupts act differently on every run of the program.

DIRECT MEMORY ACCESS

It’s often said that the quickest way to get a job done is to do it yourself.
Instead of going to the bother of asking someone to do the job, explaining how
to do it, and waiting for it to be finished, you can do it yourself and it’s done.
This is precisely the idea behind direct memory access (DMA). Some periph-
erals with high transfer rates and lots of data to transmit really can’t wait
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around for the processor to take their data and place it in memory; so their
interfaces are designed to go off on their own, take control of the microcompu-
ter bus, and directly place data in and take data out of memory with no proces-
sor involvement. Direct memory access provides the highest possible memory
transfer rates and reduces processor I/O processing time.

The DMA concept is quite simple, but some hardware ingenuity is required
to implement it. The main problem is that the processor is in control of the
microcomputer bus, and bus control must temporarily be diverted to the DMA
peripheral. Microprocessors are usually designed with some sort of DMA pro-
visions in their control units that allow them to be electrically removed from the
bus during a DMA cycle. The following paragraphs describe a few DMA
methods using these features.

Processor-Halt DMA

Probably the crudest way to take control of the processor bus for a DMA cycle
is to shut down the microprocessor and electrically remove it from the bus by
floating its tristate address, data, and control lines. This is the most commonly
used method of performing DMA in microcomputer systems.

The Z80 is a good example of a device that is designed to,use processor-halt
DMA. A bus request line (BUSRQ) is available to DMA devices. Raising this
line causes the processor to ‘‘get off the bus’’ and go into an idle state as soon
as it has completed execution of its current instruction. When the Z80 is finally
off the bus, the bus acknowledge (BUSAK) signal is sent back to all the periph-
erals to indicate that the bus is free for DMA use. While DMA is bemg per-
formed, the processor is internally performing NOPs (no-operation instruc-
tions) to keep the dynamic registers in the processor refreshed.

The interface complexity of the DMA peripheral interface is quite high due
to the logic needed to take control of the bus and generate processor-like
signals. A DMA interface typically consists of a transfer addréss register
(which indicates the memory address to transfer data to or from) and a transfer
length register (that indicates how many bytes of data are to be transferred).
The transfer address register typically counts as bytes are transferred, thereby
placing data in sequentially increasing memory addresses. The transfer length
register counts down by one for each byte transferred. When the transfer length
count is decremented to zero, the transfer is complete and bus ¢ontrol is re-
turned to the processor.

The transfer address and transfer length registers are usually loaded by the
processor, so a DMA device isn’t totally on its own. The microprocessor
initiates all transfers.

Simple processor-halt DMA works on a principle known as cycle stealing:
“clock cycles that the processor could have used to do useful work are *‘stolen’’
by the DMA device for its own purposes. Other DMA methods that require no
cycle stealing do exist, but they are not often incorporated in microcomputer
DMA interfaces due to their complexity.
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Interleaved DMA

Interleaved DMA is the process of taking control of the system bus when the
processor is not using it. Because the bus is not going to be used by the
processor, no time is wasted in the DMA transfer.

The Intel 8086 allows this sort of DMA. By making optimal use of the bus
accesses employing its 6-byte instruction queue, the processor can run for a

few cycles and not miss a single clock cycle if a DMA access is initiated. The

8086°s philosophy is essentially this: The bus is free at any time as long as you
don’t use it for too many clock cycles in a row (the instruction queue must
eventually receive its data).

DMA Interface Components

Because DMA is a fairly tough function to implement with discrete logic, LSI
DMA chips have been introduced. These chips usually contain transfer address
and length counters for one or more DMA devices. The cost of DMA chips is
usually high compared to other I/O chips, because (1) DMA is not used as often
as simpler interfaces and (2) production quantity of the parts isn’t nearly as
great. Figure 4-11 illustrates a typical DMA interface and an LSI chip that
performs the same function. These chips are discussed further in the interface

device sectlon

DATA COMMUNICATiON BUSES

. The 31gnals coming out of and going into a microprocessor chip are adequate to
_ communicate with any peripheral or memory device controlled by the micro-

processor, but the signals rarely are sent directly to interfaces and memory.
Instead, additional logic is used to form a standardized communication bus or

~ the microcomputer bus to which memory and peripherals may be interfaced.

The LSI-11 Q-bus, IEEE 488 bus and S-100 bus are all examples of microcom-

. puter buses.

vM\icrocompu'ter buses offer many advantages over haphazard connection
of microcomputer interfaces. The advantages include modularity, standardiza-
tion, high fan-out, and circuit protection. These characteristics will be ex-

- amined more closely, but first let’s be sure we agree on what a microcomputer

bus is.

A mlcrocomputer bus is a set of address, data, control and power lines
arranged in a standardized manner and operating under a strict set of data
communication rules. Physically, a bus is typically a row of standardized paral-
lel connectors, with each pin on every connector assigned a specific signal. The
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standards for the most common microcomputer bus are presented in Chapter 7,
but a typical bus has approximately the complements described in the following
paragraphs.

Power Lines

Every interface circuit on a bus needs power to drive its interface logic (and
sometimes to drive the peripherals themselves). Microcomputer buses, there-
fore, usually have a few different power lines of diffe