

Microcomputer
Interfacing

Prentice-Hall Series in Personal Computing

Portia Isaacson, Editor

ARTWICK Microcomputer Interfacing

HIGGINS Program Design and Construction

BRUCE A. ARTWICK

President
Sublogic Company
Urbana, 1//inois

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Artwick, Bruce A.
Microcomputer interfacing.

Includes index.
1. Microcomputers. 2. Microprocessors.

3. Computer interfaces. I. Title.
TK7888.3.A86 621.3819'58'3 79-16747

ISBN 0-13-580902-9

Editorial/production supervision and interior design by Gary Sarnartino
Cover design by Edsal Enterprises
Manufacturing buyer: Gordon Osbourne

© 1980 by Pr~ntice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be reproduced
in any form on by any means without
permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4

PRENTICE-HALL INTERNATIONAL, INC., London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

PRENTICE-HALL OF CANADA, LTD:, Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore

WHITEHALL BOOKS LIMITED, Wellington, New Zealand

1

2

PREF.~CE ix

THE MICROCOMPUTER'S ROLE
IN THE REAL WORLD

Prerequisite Terminology 2
Microcomputers and Microcontrollers 3
Interfaces 7
Practical Microcomputer Applications 19

SELECTING
THE RIGHT MICROPROCESSOR

How the Processor Affects the System 32
What to Strive for in System Design 33
Evaluating System Requirements 34

v

1

32

vi

3

4

Important Microprocessor Characteristics 36

Microprocessor Evaluation Examples 44

Special-Purpose Microprocessors 63

High-Performance Microprocessors 69

Bit-Sliced Microprocessors 81

Buy or Build? 90

MEMORY

Memory Hierarchies 1 01

Working Store 1 03

Medium· Term Mass Store 124

Long-Term Mass Store 130

100

Selecting Memory for a Microcomputer System 142

MICROCOMPUTER INPUT
AND OUTPUT METHODS

Basics of Low-Level I/O Components 145

Basics of Data Transfer 151

The I /0 Direction Standard 153

Serial I /0 , 1 53

Open- and Closed-Loop Communication 156

Common Microcomputer I /0 Methods 157

I /0 Transfer Initiation 160

Direct Memory Access 167

Data Communication Buses 170

Long-Distance Data Communications 174

Error Detection and Correction 175

144

Contents

Contents

5

6

7

INTERFACE COMPONENTS
AND THEIR CHARACTERISTICS

Driver Circuits 183
Receiver Circuits 189
Input/Output Integrated Circuits' 195
One-Chip Controllers 208
Monolithic Arithmetic Processing Units 215
Analog-to-Digital Converters, 220
Digital-to-Analog Converters 226
High-Power Interface Devices 228
Transducers 236
Optical Displays and Sensors 239
First-in::..First-out Memories (FIFOs) 249

182

DESIGNING
INTERFACE CIRCUITS 250

The Many-Parts Problem 250
Defining Design Rules 251
Logic Design Guidelines 254
Physical Design Guidelines 263

INTERFACING TO STANDARD BUSES
AND PERIPHERALS

The Formation of Standards 277
Microcomputer Bus Standards 277
Serial Data Communication Standards 290
Parallel Data Communication Standards 294
Matching Nonstandard to Standard Interfaces 294

276

vii

viii

8

9

INTERFACE lAYOUT
AND CONSTRUCTION

Choosing an Enclosure 300

Choosing a Connector System 305

Circuit Card Layout and Construction 306

Purchasing the Parts 311

Circuit and System Testing 312

INTERFACE SOFTWARE DESIGN
AND IMPLEMENTATION

The Elements of Software Development 315

The Programming Language 316

Software Tools 317
Hardware Aids 320

Time-Sharing and Minicomputer-Based

Software Development 322

Obtaining Software Design Information 323

Conclusion 3_23

GLOSSARY
OF MICROCOMPUTER TERMINOLOGY 324

INDEX 335

Contents

299

314

Assembling a microcomputer system, including the task of interfacing the com­
ponents for specific system applications, is a matter of defining the system,
selecting and matching the proper components, and ultimately building the
system using acceptable design and construction techniques. The information
needed to carry out these phases of the overall project, however, is currently
available only from diverse sources such as manufacturers' specifications
sheets, journal articles and industry papers, and textbooks that are often highly
theoretical. Getting together enough useful data to build and interface a real
nuts-and-bolts microcomputer system can be a major task in itself. My inten­
tion in writing this book has been to. integrate into a single volume all the
information necessary to conceptualize, select, mate and match, build, and
interface microcomputer systems to most applications, thereby eliminating -
or, at the very least, minimizing - the sometimes costly, usually erratic, and
always time-consuming task of information gathering.

This text covers a wide range of topics. Advanced interface devices and
methods are examined, of course; but in deference to the less technically
skilled readers, basic facts often taken for granted are covered as well. This
approach is intended to equalize the design starting point for all levels of
reader.

Before delving deeply into a comprehensive comparison of microproces­
sors and interface components, we look at the capabilities of microcomputers
through examples of some current systems and applications. The many forms

X Preface

of microcomputer- ranging from simple 4-bit, single-card controllers to com­
plete multibit data processing systems- are evaluated, which sets the stage for
your own conceptualization, without additional outside assistance, of the sys­
tem that is "right" for your planned applications.

Troublefree interfacing depends on a good knowledge of the principles of
microcomputer communications, or input/output. These principles are covered
in particular detail in this book, along with up-to-date specifications and per­
formance data on advanced interface devices such as CCD memories, one-chip
microcomputers, monolithic multipliers, and analog-to-digital converters. And
a section concerning the often ignored mechanical interface components such
as stepping motors and relays, servos, and mechanical transducers will help
you in real-world interfacing and control applications.

Interface design and construction techniques encompass a wide spectrum
of "how to" data, from how to keep a transformer from vibrating loose in a
microcomputer chassis to how . to ''design'' noise problems out of high­
performance ECL microprocessor systems. These and other procedures are
presented with a strong emphasis on optimization, performance, and reliability.

A concluding section is devoted to the all-important software development
task; this information describes what is necessary to develop various software
entities for a range of microcomputer applications.

The discussions presented in this book are not simple comparisons of
specifications and model numbers; instead, components and interfacing
methods are examined and analyzed in terms of what these devices and tech­
niques can do for you the user and how to use and get the best results from the
components selected.

In addition to design and construction techniques, this book consolidates
many industry standards previously available only from scattered sources,
making this a valuable reference work as well as a hands-on design and con­
struction guide.

BRUCE A. ARTWICK

The early 1970s marked the beginning of a revolution in the world of elec­
tronics: the microprocessor revolution. Although proponents heralded the de­
velopment of the microprocessor as a large leap in the state of the art, this was
more of an evolutionary development-a logical extension of the small-scale,
medium-scale, and (by today's standards) the primitive, large-scale integration
which preceded it. The first 4-bit microprocessors were not designed to func­
tion specifically as central processing units but rather as complex controllers.

The original designers of microprocessors were, in fact, quite puzzled over
why anyone would want to use their PET -based microcontroller as a computer
when more advanced bipolar minicomputers were readily available. The an­
swer to this question was economics. For the first time, real computing power
was available to everyone at a reasonable cost.

Gradually, the usefulness of microprocessors as central processing units
was realized and more powerful8-, 16-, and 32-bit units were developed. Today
microprocessors are making significant inroads into the field of traditional com­
puting. The distinctions between microcomputers and minicomputers are van­
ishing, and the coming years will witness the arrival of microprocessors with
performance and complexity levels so high that such devices would have been
inconceivable only a decade ago. Basically, better products will be available for
less as microelectronics evolve.

Processor performance, instructions per second, word widths of 4, 8, or 16
bits, and floating-point operations per second are only one facet, however. The

1

2 The Microcomputer's Role in the Real World

science of using a microprocessor and efficiently integrating it into an overall
system, commonly referred to as interfacing, is equally important yet fre­
quently overlooked. The support circuitry and all the devices surrounding a
microprocessor cost more, take up more space, have more critical environmen­
tal constraints, and draw more power than the microprocessor in nearly every
case and should be given very high priority in the design of a system. Careful
consideration of a system's interface requirements during the design phase and
adherence to defined design rules will result in a clean, highly reliable design
that makes use of all the advanced features microprocessors have to offer.

This chapter touches on some of the advantages of microcomputer-based
information and control systems and will aid you in determining whether a
microcomputer-based design is desirable in your application. The economic
advantages are stressed, and a few actual implementations are examined from a
performance and interface standpoint to give you an idea of what you have to
look forward to if you choose to go the micro route for your computing applica­
tion.

PREREQUISITE TERMINOLOGY

Any discussion in a technical field tends to lose some of its substance if the
terminology is not explicitly understood by all participants. The comparatively
recent phenomenon of a multiplicity of writers assigning a multiplicity of mean­
ings to a limited lexicon of terms only compounds the problem. Also, the
microcomputer field is notorious for its overabundance of acronyms and
buzzwords. These problems point to the need for a cleared-away starting point.
A glossary is provided at the end of the text to help make some sense out of
microcomputer jargon but it is important to define a few of the most basic terms
at the outset.

The terms microcomputer, minicomputer, microcontroller, microproces­
sor, and mainframe are but a few of those terms which are but loosely defined,
and their definitions seem to keep changing as people abuse them. In this text,
definitions derived from a composite of the accepted industry terminology are
used.

A mainframe is a very large computer system, typically for business­
related data processing or advanced scientific computations. A mainframe re­
quires a staff of support personnel and handles many peripheral devices such as
line printers, card readers, magnetic tape units, disks, and terminals. An IBM
3033 system or Control Data 6600 would be considered a mainframe; a personal
computer packed full of boards driving dual floppy disks and a terminal woufd
not be.

A microcomputer is a fully operational computer system built around a
microprocessor. Included in the microcomputer are memory, clocks, and inter­
faces. A personal computer with a CPU card, a few memory boards, a power
supply, and interfaces would constitute a microcomputer.

~·----~------------------------------------~--

The Microcomputer's Role in the Real World 3

A microprocessor consists of one or more large-scale integrated (LSI)
circuits designed to work as a sequential computational or control unit by
executing a predefined or user-defined set of instructions contained in a mem­
ory.

A minicomputer is a small computer with the central processing unit built
from small- or medium-scale integrated circuits (SSI or MSI) orfrom discrete
parts. Included as part of a minicomputer are the associated memory and
interface modules. A minicomputer does not require a large support staff and
can even be turned off when you're not using it. Digital Equipment
Corporation's PDP-11/35 is a minicomputer.

A microcontroller is a module consisting of a microprocessor, memory,
and interfaces used for control applications. A card which controls the stop­
lights at a street corner, if built with a microprocessor, would be considered a
microcontroller.

MICROCOMPUTERS AND MICROCONTROLLERS

You may be able to reap big savings and increase a system's performance and
reliability by replacing some logic with or by building a whole system around a
microprocessor; but you may also end up facing big problems. It's therefore
wise to get familiar with the characteristics of microprocessors before you start
a project. The idea is to cash in on all the advantages and dodge.all the pitfalls.

LSI Traits

Microprocessors, by their very LSI nature, tend to bring all the advantages and
disadvantages of large-scale integration to a system.

Overall system package count is decreased. Much of the data storage,
arithmetic, and interface logiC previously constructed with discrete MSI or SSI
parts are incorporated into one central unit. Package count reductions translate
into system size andweight savings.

Logic complexity on a gate-for-gate basis typically increases. A micropro­
cessor is a multipurpose programmable device and has many features that
won't get used in a given application. Since microprocessors cannot ordinarily
be modified, they cannot be optimized to the user's requirements as discrete
logic can. N onoptimizability and programmability are the primary causes of the
increased logical complexity.

Despite the increase in logical complexity, the use of microprocessors and
other LSI devices decreases overall power consumption. Small driving cur­
rents and low parasitic capacitances on the LSI chip provide a dramatic power­
per-gate savings as well as increased speed-power products.

LSI devices also increase system reliability, mostly because of mechanical
factors. Highly reliable one-piece metallization layers and end-to-end transistor
and resistor junctions on the LSI chip replace mechanically connected and

4 The Microcomputer's Role in the Real World

soldered discrete components. As a result, LSI components are less sensitive
to mechanical shock and fatigue and more tolerant of poor environmental con­
ditions.

Finally, microprocessors and other LSI components can greatly reduce
system costs. One inexpensive microprocessor can replace a large number of
SSI, MSI, and discrete-component devices and thus save a sizable amount of
parts alone; but more often than not the greatest cost savings are realized from
indirect savings in other areas. Circuit board size and complexity reductions
save on materials and layout costs. Because most of a system's large parallel
data buses can reside on the microprocessor chip, the expensive task of
parallel-bus circuit board layout is greatly reduced. More of a system's func­
tions can be crammed into the space of a single circuit module, thereby reduc­
ing the module and connector count as well as the enclosure size and complex­
ity. All of these savings contribute to the reduction of overall system costs.

Computer Traits

Just as a microprocessor assumes the LSI advantages and disadvantages of its
LSI construction, it takes on the traits of a computer due to its processor-like
architecture. This statement may seem obvious, but it's important to take a
close look at these computer traits. In many applications they can be more
harmful than helpful.

Microprocessors, like computers, are programmable devices and are versa­
tile in function. This feature tends to make microprocessor-based systems eas­
ily reconfigurable and able to perform complex tasks in a step-by-step manner.
Many of a system's complex functions thus need not be implemented in
special-purpose system hardware. Complex hardware development effort is
considerably reduced as the burden is shifted to the system software.

Don't think that the programming will be an inconsequential matter, how­
ever. Algorithm and program development are costly and time-consuming.
Depending on the situation, a program can cost as much as $200 per line of
debugged code. The true advantage lies in the fact that programming is usually
less costly than building the equivalent hardware.

Like most large computers, microprocessors are Von Neumann in charac­
ter: ·they execute one instruction after another in a predefined sequence to
implement a given task. This type of machine has demonstrated its usefulness
for problem solving, but the limitation that only one instruction can be exe­
cuted at one time may lead to some serious consequences when constructing a
control system. When multiple events must be examined or initiated at pre­
cisely the same time, a microprocessor falls short of the goal. An illustrative
example is the case of a microprocessor-based inertial navigation system.

Assume that an aircraft's inertial navigation system outputs navigational
reference data at a rate of one sample per millisecond. Among the navigational

The Microcomputer's Role in the Real World 5

data are three bytes of data containing degrees, minutes, and seconds of longi­
tude. The navigational processor (in this case the candidate for a microproces­
sor application) is required to sample these and other data and plot the
aircraft's position on a display device. The three bytes of data must be sampled
simultaneously by the processor if accurate results are to be obtained. If they
are not, the microprocessor may take the degrees from one sample and the
minutes and seconds from the next, resulting in an erroneous input. A sampling
error occurring at the transition between 1200, 59', 59" and 121°, 0', 0" could
result in an input of 1200, 0', 0". This constitutes an error of 59', 59", approxi­
mately 70 miles at the equator.

There are two possible solutions to this problem. The microcomputer could
sample a status line indicating that the navigational data will be stable for a
known period of time and proceed to sample data during the safe window, or
external registers could be used to simultaneously capture all three bytes of
data. In either case additional hardware would be required, turning the micro­
processor into just another part in a component system.

Microprocessor manufacturers have realized the need for simultaneous
event processing and have built interface chips to aid microprocessors in per­
forming simultaneous tasks.

Data Processing Ability

Microprocessors are appearing in more and more small-business and scientific
computers. How do microprocessors stack up against highly developed MSI­
and SSI-based CPUs?

In regards to computer architecture or processing power, microprocessors
are nothing new; in fact, in most cases their computer architecture is crude.
There's not much being done on microcomputers which hasn't or couldn't have
been done 20 years ago on larger minicomputers or mainframes; however, it
now cqsts three orders of magnitude less to do it. Add to this the fact that a
microcomputer of similar complexity is extraordinarily reliable. The cost-and­
service element has therefore disappeared, allowing computers to find their
way into tasks where they were not economically feasible before.

There are three primary factors hindering even wider business and scienti­
fic microcomputing use: the high cost of software development, inherently low
processor speed, and the continuing high cost of peripherals.

As with any computer system, microcomputers need a software support
base for data processing, business, or scientific applications. Editors, as­
semblers, high-order languages, and application packages take time and money
to develop; and unlike microprocessor prices, software costs are constantly
rising. What makes matters worse is that new microprocessors are being intro­
duced constantly. Only a few "start-from-scratch" microprocessors currently

6 The Microcomputer's Role in the Real World

have large software support bases (notably the 8080 and 6800 series). One
approach taken by manufacturers to alleviate the software support problem is
to simply not ''start from scratch,'' but rather pattern a microprocessor around
a current minicomputer's instruction set, making that microcomputer totally
software compatible with an existing machine. Digital Equip·ment Cor­
poration's LSI-11, Data General's Micro Nova and Texas Instrument's
9900 are notable examples of this approach. It's quite ironic that much of the
software for these microcomputers was written in the 1960s, before micropro­
cessors were even invented, dispelling the "software follows hardware" myth
to some extent.

The software support base problem has actually hindered the introduction
of more efficient and architecturally more advanced microprocessors. Software
upward compatibility has become a matter of prime importance when introduc­
ing new processors. The Intel 8086 and Motorola 68000 are being called the
''new generation of microprocessors,'' yet many of the old inefficient instruc­
tions and architectural traits are still present.

The computer world seems to have a never-ending hunger for more com­
puting power. Mainframes and minicomputers have been increasing in per­
formance, and programming languages as well as programs themselves have
come to rely on brute-force processing power and large quantities of memory to
mask program complexity and inefficiency.

When comparing minicomputers and mainframes to microcomputers on a
processing-speed basis, micros will be seen to be about 20 years behind. Ad­
vanced technology is beginning to close this gap, p.owever. Memory in micro­
computer systems is also very limited when compared to large machines.
Because of these factors, computer programmers have to take a large leap
backward in their programming methods when confronted with a micro system.
For most microcomputers, hand-optimized assembly language is still being
used extensively (and expensively).

Microcomputer system software is rapidly coming of age. High-order lan­
guages which compile very time- and memory-efficient codes such as Intel's
PL/M and Zilog's PL/Z are gaining wide acceptance in the field. But interface
and peripheral costs tend to detract from a microcomputer's desirability in
business and scientific applications. Although a microcomputer-based central
processing unit is a relatively inexpensive investment, the peripherals it drives
are quite costly. A typical small-business processing system, for example,
requires a CPU ($1500 for a micro-three times that for mini); but it may also
require:

• Console terminal-$1500
• Printer-$4000
• Two disks (floppy)-$2000
• Appropriate mounting hardware-$1000
• System and business software-$4000

The Microcomputer's Role in the Real World 7

A microcomputer CPU only costs a third of what a minicomputer would cost. It
is also much less powerful; but if the less expensive machine can handle the
task, the savings initially seem worthwhile. Once all the peripherals have been
taken into account, however, the microcomputer-based system doesn't appear
altogether advantageous. A minicomputer can give double or triple the per­
formance of the microcomputer and only costs about 15% more on the system
level. The peripheral cost remains the same whether you opt for a mini or a
micro.

This situation can be changed by the introduction of inexpensive· periph­
erals. Reducing peripheral costs, however, is not an easy task because of the
expense of the mechanical components. Printers and disks are two examples of
highly mechanical peripherals. Fortunately, microprocessors can replace much
of this mechanical hardware. Volume production will also bring mechanical
costs down.

New Product Applicability

The small size and low power requirements of microprocessors are creating a
few new forms of information processing systems. The long-dreamed-of
desktop computers are now available at very low cost. The whole personal
computing concept is based around these small computers.

Intelligent peripherals which are in most respects small, dedicated informa­
tion processing systems are coming into common use. Intelligent peripherals
usually contain a microprocessor to handle data formatting and communication
from the computer system to the peripheral device. Internal functions such as
offline editing and formatting in intelligent terminal are also performed.

Advanced microcomputer games are also small information processing sys­
tems made economically possible by the microprocessor.

All of the advantages and disadvantages of microcomputer-based informa­
tion and control systems just described are not only due to the microprocessor
chip itself; all the circuitry surrounding the processor, driving the peripherals,
sensing the inputs, and channeling the outputs play a part in making a micro­
computer a usable system.

INTERFACES

Interfacing is defined as the mating of one component in a system to another to
form a totally operational unit. Since a microprocessor standing alone is essen­
tially useless, extensive interfacing is required to build a usable product. In this
section we examine some of the typical interfaces found in a microcomputer
system.

Microcomputer systems vary in size and configuration. With the new one­
chip microcomputers it is possible to build a complete system from just one LSI

8 The Microcomputer's Role in the Real World

Printer

Microprocessor
Random access

memory
(RAM)

Read-only
memory
(ROM)

Figure 1-1

User
interaction
interfaces

Operational
overhead
interfaces

Floppy
disk

drives

Sensory and
control

interfaces

Temperature
sensor

A typical microcomputer system and its interfaces.

Power
supply

Fuel
valve

chip and a few discrete parts, but the most common microcomputer systems
consist of considerably more. A microprocessor chip, memory chips, and a few
1/0 interfaces are usually included. Figure 1-1 illustrates a typical microcompu­
ter system. The microprocessor executes programs out of read-only and
random-access memories (ROMs and RAMs) and takes user commands and
sensory inputs through the three interfaces.

The interfaces have been broken into four basic categories: operational
overhead, user-interaction, sensory, and control.

Operational Overhead Interfaces

Operational overhead interfaces are those interface components necessary to
make a processor function on the most basic level. This class includes data and
address bus drivers, bus receivers, and the clock circuit surrounding the micro­
processor. Larger interface items such as those for memory and data storage
devices would also fall into this category.

Figure 1-2 further defines the contents of the microprocessor block of Fig.
1-1. A clock circuit, bus drivers, and bus receivers have been used to connect
the microprocessor to the system bus. Bus drivers are amplifiers used to in­
crease the driving power of a microprocessor's data and control lines. The very

·
~

M
ic

ro
p

ro
ce

ss
o

r

CD

C
lo

ck

ti
m

in
g

C
lo

ck

g
e

n
e

ra
to

r
ch

ip

O
p

e
ra

ti
o

n
a

l
m

t<
>r

he
ad

fa

ce

1o
ne

nt
s

I

1n
en

ts

01
 c

lo
ck

02
 c

lo
ck

D
B

E

D
at

a
bu

s
en

ab
le

T
ri

st
a

te
 c

o
n

tr
o

l
M

ic
ro

p
ro

ce
ss

o
r

T
S

C

H
a

lt

H
A

L
T

(M

6
8

0
0

)
In

te
rr

u
p

t
R

eg
.

01

IR
Q

R

es
et

02

R

E
S

A
,5

-A
o

D

7
-D

o

R
/W

B

A

I
1

B
us

 a
va

ila
bl

e

1 I
 D

at
a

R
e

a
d

/w
ri

te

bu
s

01
 c

lo
ck

A
dd

re
ss

bu

s
02

 c
lo

ck

~

B
us

 d
ri

ve
rs

 I
[B

us
 t

ra
ns

ce
iv

er
s S

r D
ri

ve
rs

 I
I R

ec
ei

ve
rs

 I
~

t 1
\

E
n

a
b

le

0
/':

-.

m

l
"

o
l..

..
ro

-t

-t

~

-o

....
.

r:::

r:::

-o

Ct
l

0
0

<

0
u

u
v

v
v

F
ig

u
re

 1
-2

A

 t
yp

ic
al

 m
ic

ro
co

m
pu

te
r

sy
st

em
's

 m
ic

ro
pr

oc
es

so
r

in
te

rf
ac

es
.

10 The Microcomputer's Role in the Real World

common MOS microprocessors available today are capable of supplying only a
few milliamperes of drive current on each of their many output lines (8 data
lines, 16 address lines, and 8 control lines on the 6800). The thermal dissipation
from all of these drivers would be too high if more powerful onboard drivers
were built into the chip. The internal driving capability of some microproces­
sors, however, is adequate to drive a small number of interface and memory
ICs directly without using external bus drivers. Complete little systems and
controllers can thus be built with few parts. This ability is one of the Motorola
6800's big selling points. Even with the 6800, though, bus drivers are needed for
large systems that use a high amount of memory or interfaces; and nearly every
6800-based data-processing microcomputer system uses them just to be on the
safe side.

Bus receivers perform three functions: bus load reducing, bus filtering, and
impedance matching. Data, address, and control buses are relatively long. and
are subject to noticeable transmission-line effects (signal attenuation, noise
pickup, waveform alteration, and so on). Interfaces on the buses act as stubs
and reflection points and can cause ringing and noise generation due to termina­
tion impedance mismatch. In mainframe systems the "backplane ringing" can
become so bad that active terminators and even ferrite beads must be placed on
the indiviudal bus lines to filter the noise. Bus receivers usually use hysteresis
to increase their noise immunity.

With the exception of the one-chip microcomputers that have built-in RAM
and ROM, microprocessors require external memory and associated interface
components. Figures l-3 and 1-4 expand on the ROM and RAM blocks in
Figure 1-1. Bus receivers are used on the memory address lines to reduce
microcomputer bus loading. Bus drivers are used on the memory ICs because,
like the microprocessor, memory elements cannot be used to drive too many
loads.

At this point I must digress for one moment to discuss form. The lowercase
letter k is the symbol for kilo in the International System of Units (SI)-and
kilo means thousand. In microcomputer usage k more commonly stands for
1024; the value 2 raised to the lOth pow~r. In this text, a capital letter K with no
space is used to represent this value.

Memory modules, especially those built with many small RAMs, have
large numbers of memory ICs with their address lines wired in parallel. A 16K x
8-bit RAM module would put 128 (16 x 8) loads on each address line if 1K x 1-bit
RAMs were used. An equivalent RAM module built with 16K x 1-bit RAMs
would only put eight loads on the processor address, data, and control lines. As
this example shows, larger-memory ICs help reduce interface circuitry by reduc­
ing the amount of bus loads. Wide-word-width memory ICs such as Motorola's
6810 (128 x 8-bit organization) can reduce or eliminate the need for memory
interface circuits in very small systems in which small amounts of memory are
required. This IC features a full 128 bytes of data yet presents only one load to
each address and data line.

.....
.

.....
.

~

(!
) -o "0

ca

+
-'

:0

N

4
K

 X
 1

 R
A

M

~

(!
) -o "0

<
(

W
ri

te
 i

n
to

 R
A

M
s M

ic
ro

co
m

p
u

te
r

bu
s

F
ig

ur
e

1-
3

A
 t

yp
ic

al
 m

ic
ro

co
m

pu
te

r's
 R

A
M

 in
te

rf
ac

es
.

1
=

w
ri

te

12

Read-only

The Microcomputer's Role in the Real World

4K X 1 ROMs
ROM

data output

Bank

1---f-f+....._.J.+-1-s-e l_ec t C I ock 02

ro
+"'
ro

0

Microcomputer bus

Figure 1-4 A typical microcomputer's ROM interfaces.

]
c:
0
u

Memory control lines usually require interface circuitry also. Static RAMs
require just a read-write line and possibly a chip select line driyer. Dynamic
RAMs require much more. Chip enable, row select, column select, and write
enable are often present, and the timings on these signals are not always
straightforward. In many cases, high-voltage MOS drivers are required to drive
the chip enable lines. Modern dynamic RAMs demand less critical timing and
voltage levels than earlier designs.

Read-only memory interfacing is very much like RAM interfacing. Re­
ceivers on the address lines and drivers on the data lines are used. No receivers
on the data lines are necessary, however, since by definition no data is ever
written into a ROM.

Field programmable ROMs, such as the ultraviolet-erasable programmable
ROMs (EPROMS) and electrically erasable ROMs, sometimes require write
interface circuitry if in-circuit programming is required. Since PROMs require

The Microcomputer's Role in the Real World 13

unusual programming voltage levels to insure that normal signals don't modify
the PROM's contents, interfacing circuits become more complex. Again, high­
voltage drivers are required in the PROM interface.

Semiconductor RAMs and ROMs are the most common memories used in
microcomputers. In certain applications, however, magnetic core memory is
used to store data. Core memory is one of the most difficult storage media to
interface.

A core plane consists of thousands of small magnetic donuts strung into a
square grid with driving wires. By selectively applying current to the driving
wires, magnetic fields can be built up and collapsed. Ones and zeros are defined
by the magnetic fields. A very minute sense current is induced in a sense wire
(which strings through all the cores) when a field collapses. By monitoring the
collapsing fields, ones and zeros can be detected.

There are problems that make it difficult to interface core memory. High
currents (several amperes) for short periods (fractions of microseconds) are
required to drive the grid lines; thus necessitating the use of special drive
transistors. Very small-current sensing is required for the sense wire, so ampli­
fiers must be used. Finally, reading out of core is destructive; that is, the
memory contents are destroyed with the collapse of the magnetic fields. If
provisions for rewriting are not included in the CPU, special interface circuitry
must be provided to rewrite the data back into memory.

When interfacing core memory to a microcomputer system, one very rarely
has to deal with the core plane itself. Core is almost exclusively sold in modular
form with all the critical interface components (current drivers, sense ampli­
fiers, and write-after-read circuitry) included. These modules can be treated as
regular RAMs. Semiconductor RAMs also have a critical array of data storage
cells that require special interfacing, but the user never has to interface directly
to them because onchip interfaces (again, drivers and sense amplifiers) do the
job.

Interfaces that control external mass memory systems, such as magnetic
tapes, disks, and floppy disks, can also be grouped under the operational
overhead category. These devices usually have their own controllers built into
them ·to handle the mechanical sequencing required. Interfacing them to a
microprocessor bus is simply a matter of building a serial or parallel data
communication interface to send commands and data and retrieve status and
data. The specifics of parallel and serial data communications channels and
complex controllers are covered in detail later in this text.

User-Interaction Interfaces

User-interaction interfaces are those circuits required to send and receive user­
specified data to and from a processing system. This interface class includes
computer terminal interfaces, keyboard interfaces, graphic-device interfaces,
and voice recognition and synthesis interfaces.

14 The Microcomputer's Role in the Real World

People and computers work with totally different languages; large and

complex devices are required to convert from one to another. Basically, two

things must be converted: representation and presentation speed. The repre­

sentation conversion task has traditionally been assigned to the computer pe­

ripheral, while presentation speed conversion has been assigned to the CPU.

The standard teletypewriter or computer terminal is a good example of this.

The user enters data through the keyboard (a mechanical-to-electrical inter­

face). The data is converted to the American Standard Code for Information

Interchange (ASCII) and is sent to the CPU in the computer's form of represen­

tation: a string of ones and zeros. The processor and its associated interfaces

use either interrupts or software wait loops to synchronize the processing with

the user's data entry rate, thus performing the presentation speed conversion.

Communication in the other direction is similar. The processor sends

characters to the printer at the fastest rate the unit can handle, using software

wait loops or interrupts. The ASCII is converted back into mechanical motion,

and the data is printed at the terminal.
Since people can only accept data at a very slow rate with relation to the

computer's processing speed, serial interfaces are commonly used to drive

peripherals. Breaking the multibit ASCII down and sending it to the processor

a bit at a time cuts the communication line size down to three basic signals:

serial transmit data, serial receive data, and a common ground. The EIA RS-

232C interface standard is the most commonly used serial standard and is

specified to operate at up to 20,000 serial bits per second.
Many high-speed peripherals require a faster flow of data than a slow speed

serial interface will allow. When faster transfer rates are required, designers

usually resort to high-speed parallel interfaces. One example in which a parallel

interface would be useful is the case of the high-speed line printer. This device

is nonreal-time from the user's standpoint because the user does not react with

the device while it is in operation. The computer listing is printed at a high rate

and the user looks at it later. A parallel interface is used to supply the line

printer with data at a rate which would exceed the RS-232C standard's limit.
Because many lines must go to a peripheral when a parallel interface is

being used, the complete controller is not always built into the peripheral. An

interface card which plugs into the CPU often contains much of the control

circuitry for the peripheral. When parallel data transfers are used, the data
going across the parallel lines does not have to be in the ASCII format, so the

designer usually decides which lines he is going to use for communication with

the peripheral. Although this approach to parallel interfaces improves effi­

ciency and package size in some cases, it has one major drawback: nonstan­

dardization. There are a few parallel interface standards such as the NTDS

military standard, but no parallel standard has gained as wide an acceptance

as the RS-232C serial standard. The result, of course, is a unique interface card

for every processor with which the peripheral will be interfaced.
Graphic devices, such as raster-scan display terminals, will frequently be

interfaced to a system that uses a parallel interface. People seem capable of·

The Microcomputer's Role in the Real World 15

grasping large amounts of graphic information very quickly, therefore high data
transfer rates to the display device are necessary. Again, custom parallel inter­
faces are the most common type. Some microcomputer graphic display units
are simple enough so the whole display unit's circuitry, as well as the interface
components, can fit on one plug-in module. The result is a single video output
line that goes from the display unit module in the computer to the video monitor
on which the generated images are displayed.

Figure 1-5 illustrates a simple serial RS-232C interface to an interactive
terminal (an interactive terminal is one usable by the operator for computer
intercommunication). Drivers and receivers are used to buffer the microcom­
puter bus. An asynchronous communication interface adapter (ACIA) con­
verts the microcomputer's parallel bus data into a serial format, and RS-232C
drivers and receivers are used to generate the proper voltage levels. The rate at
which data is sent to and from the terminal is determined by the rate at which
serial data is shifted out of the ACIA. The baud-rate generator produces a clock
waveform to precisely control the serial shift rate. Typical serial data transfer
rates for serial communications range from 110 to 19,200 bits per second.

Some of the other user-interactive peripherals are joysticks, light pens,
keypads, and LED indicators (these are covered in detail in later chapters).

Sensory Interfaces

When dealing with strict scientific computing or business data processing, a
central processing unit, operational overhead interfaces (including memory and
disk interfaces), and a few user-interaction interfaces for computer terminals
and line printers are usually sufficient to accomplish the task. Control systems
are a different matter, however. Events in the real world must be monitored.

Sensory interfaces are those circuits required to monitor events in the real
world and send the results to a microprocessor system. Pressure sensor, ther­
mal sensor, flow-rate indicator, and tachometer interfaces are but a few of the
interfaces that fall into this class.

The real world is an analog world. Temperature, pressure, and speed can
assume an infinite range of values. The devices used to sense parameters like
these are usually based on the electrical or mechanical response characteristics
of a certain material to the given parameter. A thermistor, for example, ideally
changes its resistance in a linear manner with a change in temperature. For a
microcomputer to manipulate thermistor-sensed temperature information, an
interface that converts resistance to a byte or two of data in the microprocessor
is needed. The interface can be considered as two functional pieces: the
resistance-to-digital-value converter and the digital-value-to-microprocessor­
bus interface.

The process of changing the variable resistance to a variable digital value
begins by using the thermistor's variable resistance characteristics to make a
variable-voltage source. A simple two-resistor voltage-divider network, with

.... en

L

M
ic

ro
co

m
p

u
te

r
bu

s

pa
ra

lle
l

da
ta

8
-b

it

pa
ra

lle
l

da
ta

A
sy

n
ch

ro
n

o
u

s
co

m
-

R
/W

C

lo
ck

02

A
dd

re
ss

re

co
gn

iz
er

m

u
n

ic
a

ti
o

n
 i

n
te

rf
a

ce
 1

•
::;:

j
a

d
a

p
te

r
(A

C
IA

)
A

C
IA

C
o

n
tr

o
l

lo
gi

c

T
ra

n
sm

it
/

'-
r
-
-
-
-
-
-
-
w

-
'
re

ce
iv

e

1
-b

it

se
ria

l
da

ta

cl
o

ck

1
-b

it
 s

er
ia

l
I § -g

R

S
-2

32
C

E

 ::
::J

E
o

da

ta
 o

u
tp

u
t

8
a,

 D

T
e

rm
in

a
l

1
-b

it

se
ria

l
da

ta

R
S

-2
32

C

d
ri

ve
r _

_
_

_
_

_
_

_
_

_
 _

j

1
-b

it
 s

er
ia

l
R

S
-2

32
C

da

ta
 i

n
p

u
t

F
ig

u
re

 1
-5

A

 t
yp

ic
al

 m
ic

ro
co

m
pu

te
r

us
er

-i
nt

er
ac

ti
on

 i
nt

er
fa

ce
.

The Microcomputer's Role in the Real World 17

one of the resistors being the thermistor, serves this purpose. The resulting
temperature-dependent voltage can then be sent to an analog-to-digital (A/D)
converter. This device takes the variable-voltage signal applied to the analog
input and generates a word of data which represents this voltage. AID con­
verters are relatively complex pieces of hardware that have gained wide accep­
tance in the interfacing field due to their ability to match the analog world to the
digital world.

The word generated by the AID converter must then be sent to the micro­
computer system. If the temperature sensor interface is far away from the
processor and extremely rapid samplings are not required, converting the data
word to a serial signal is desirable. The serial signal can then be sent to the
microcomputer, converted back to a parallel data word, and put onto the mi­
crocomputer bus when the microprocessor requests it.

It may be possible to save parts by mounting the entire temperature­
sensing interface including the AID converter on one module at the tnicrocom­
puter, thus avoiding long parallel lines or serial-to-parallel conversion. If the
thermistor is at a distant location, however, a long analog signal line would be
required. Analog lines are very susceptible to noise, especially when carrying
very low-level signals, making this arrangement undesirable. In general, when
analog sensors are being used, you should convert analog signals into digital
signals as soon as possible and keep all analog lines well shielded to reduce
noise levels.

Figure 1-6 shows the thermistor interface to a 6800-based typical micro­
computer system. Other interfaces are simpler than the AID converter just
described. A mechanism that counts items as they pass on an assembly line and
a sensor that detects an intruder by the breaking of a light beam are two cases in
point. No analog-to-digital conversion is necessary as a simple one-bit sense
signal presents adequate information.

In the case of the photoelectric assembly-line counter, the counting pulses
may possess some noise due to the photoelectric circuit's response characteris­
tics and uneven breaking of the beam. A filtering circuit may therefore be
needed to prevent false counts. It may also be necessary to translate the
circuit's voltage level to a level compatible with the microcomputer's logic
family. A simple resistor dividing network or a resistor and voltage-limiting
zener diode can be used if the photoelectric circuit puts out more voltage than
necessary. If greater voltage levels are required, an amplifier circuit consisting
of a few transistors or an operational amplifier is necessary. Once the pulse has
been translated to the proper voltage level, a driver can send the pulse to the
microcomputer where it can be sampled along with other single-bit signals.

Single-bit status lines can conveniently be sampled using one bit of a
parallel-input-port interface. A software loop can repetitively sample (poll) the
port and take appropriate action on the bit's status.

Sensory interfaces are often used in industrial control, computerized secur­
ity systems, instrumentation, automotive electronics, and other fields. In these

18

Temperature
sensor

Address
recognizer

+V

The Microcomputer's Role in the Real World

Microcomputer bus

02

Thermistor
(variable

- resistance)

Figure 1-6 A typical microcomputer's sensory interface.

environments a microcomputer controller may be required to sense the status

of many machines, each of which may be running on a different electrical
circuit.

Vastly different voltage levels may be present on different machines, so the

need for electrical isolation between sensors arises. The most common method

of electrically isolating interfaces is to send the data from each machine through

an optoisolator. This device consists of a light-emitting diode (LED) illuminat­

ing a phototransistor. Modulating the LED causes corresponding changes in

the phototransistor, but because the only medium physically connecting them
is the light beam, thousands of volts of electrical isolation is provided. Optoiso­

lators increase interface complexity, however. Low-current output sensors

require additional amplifiers to drive the LED, and amplifiers are sometimes
required on the phototransistor side as well.

Control Interfaces

Once the sensor provides the status and the microcomputer decides what ac­

tion is to be taken, a control interface is usually needed to carry out the action.

Control interfaces take a microcomputer's milliampere-level data signals and

convert them to the proper voltage and current levels to control real-world

devices. The circuitry needed to drive a stepping motor on a machine tool, to

The Microcomputer's Role in the Real World 19

activate a solenoid-controlled valve, or to illuminate a bank of stoplights falls
into this interface category.

Microelectronics has made great progress in reducing the amount of cur­
rent needed to perform logical functions. Internal currents in microprocessors
are continually dropping as smaller, more advanced device technologies be­
come available. These advances produce lower power, faster, and denser
devices but take microcomputers further away from real-world signal levels.
For example, a 1 f.LA (one microampere) signal within a microprocessor may
have to be amplified by a factor of one hundred million to activate a large
industrial motor. For this reason, control interfaces use a large variety of parts.
Low-power parts like bus receivers and small transistors are used to take data
from the microcomputer bus and perform preliminary formatting and amplifica­
tion. Large transistors and solid-state relays (triacs, diacs, SCRs, and the like)
are used to perform larger-current switching functions.

When a variable-voltage analog signal is required in a control system,
digital-to-analog (D/ A) converters are used. These devices mix and add cur­
rent, depending on the value of the word ·specified at the digital input. The
resulting analog voltage at the analog output is directly proportional to the
value of the data word.

PRACTICAL MICROCOMPUTER APPLICATIONS

The following four examples of microprocessors in real-world systems are
designed to give you more than a theoretical view of how microprocessors and
their interfaces are used. The examples illustrate the applicability of the four
interface classes and describe some of the problems encountered in accom­
plishing the interfacing task. Many new interface ideas and terms will be
mentioned. These topics are treated at a greater depth in following chapters.

The Personal Computer System

One of the first things that comes to mind when microcomputers are mentioned
is the personal or small-business computer system. Personal computers are
small computers built around popular microprocessors (usually having a wide
software support base) that sell for a relatively low price. These small systems
usually include a CPU, 4K to 64K of memory, a console terminal, and a
magnetic storage device such as a floppy disk. The central processing unit,
console terminal, and magnetic data storage units sometimes come in separate
enclosures, but the trend is toward integrated units with built-in keyboards,
display generators, and floppy disks.

From an interface standpoint, personal computers are relatively simple
devices. A few user-interaction interfaces control the keyboard, display gener­
ator, printer, and other interactive peripherals. Operational overhead inter­
faces usually include bus drivers and receivers on the CPU card, memory

20 The Microcomputer's Role in the Real World

interfaces, and interfaces for the magnetic storage devices. The micropro­
cessor's address, data, and control lines are fully buffered because personal
computers are designed to be expandable, and each additional module adds
extra loads to the microcomputer bus.

A personal computer's user-interaction interfaces are usually quite simple
because data communication standards are often followed in the peripherals
associated with the system. RS-232C serial interfaces or 20 rnA current-loop
interfaces with 110 to 9600 bit per second (bps) data transfer rates are used on
most terminals.

A personal computer's memory is usually broken into memory blocks of
4K to 16K (4096 to 16384) bytes per block. Some blocks contain ROM for
permanent storage of important programs and the system monitor program,
and some blocks contain RAM for data and program read-write storage. Each
memory block must have an address recognizer to determine if it is being
addressed. Each memory module that plugs into the microcomputer bus must
have bus receivers for the address lines, bus drivers and receivers for the data
lines, and control components for the read-write and refresh logic.

The interfaces to nonstandard system peripherals are usually the most
complicated interfaces within the personal computer system. A highspeed line
printer and floppy disk controller are two cases in point. A floppy disk control­
ler controls the transfer of data from a microprocessor to a slowly rotating
flexible magnetic disk. The interface is actually a combination of an operational
overhead, sensory, and control interface. Commands and data must be taken
from the microcomputer bus. Sensors must determine the orientation of the
spinning disk and the position of the disk head. The interface must then posi­
tion the head to the proper disk track using a stepping motor or voice-coil
movement and provide proper write current through the head to write onto the
disk (or amplification to read from it).

Additional features such as "disk power-down" (automatic disk motor
shut-down when data is not being accessed) also must be built into disk control­
lers. Due to this complexity, disk controllers typically approach 50% of the cost .
of a disk drive-interface system;··they may cost even more than the central
processing unit module in many personal computers. This situation is rapidly
changing. LSI is currently doing to disk controllers what microprocessors did
to computers. A few manufacturers already supply single-chip floppy disk
controllers.

Figure 1-7 illustrates one of the first personal computer systems to gain
wide popularity-the Southwest Technical Products 6800 system. This system
is built around the 6800 microprocessor and follows Motorola's suggested de­
signs very closely. A microcomputer bus features expandability of up to five
memory cards or large peripherals. A smaller subset of the microcomputer bus
can support up to eight interface cards in addition to the five full-size cards
(Figure 1-8 depicts the bus structure and Fig. 1-9 shows the processor card and
a small interface card).

The Microcomputer's Role in the Real World

COIVIPUTER
SVST lVI

Figure 1-7 Southwest Technical Products' 6800-based personal computer system.

21

Figure 1-10 shows one of the most popular integrated personal computer
systems-the Apple II. This system contains a complete processor, memory,
and cassette interface all on one board. Eight small peripheral sockets are
provided for device expansion. This personal computer is built around the 6502 .
microprocessor.

Intelligent Computer Terminals

Microprocessors are placing computing power in peripherals that previously
needed complete host computer support. The "intelligent computer terminal"
is a good example of this. Traditional "dumb" terminals accept serial data on
an RS-232C or 20 rnA current-loop line and put the appropriate characters on

the display screen (assuming it is a video terminal). There may be a few crude
cursor control commands such as cursor up, line feed, and carriage return. The
terminal's keyboard sends characters to the host computer over a standard
interface as they are typed by the user. Basically, this sort of terminal is the
video equivalent of a standard teletypewriter terminal, or as personal comput­
ing hobbyists say, ''a TV typewriter.'' File editing and simple calculations must
always be done by the host computer using this kind of terminal.

\

N

N

M
6

8
0

0
 M

ic
ro

pr
oc

es
so

r
M

e
m

o
ry

 M
o

d
u

le

ca
rd

.
In

cl
ud

es
 c

lo
ck

(4

K
,

8
K

 o
r

1
6

K

ge
ne

ra
to

r,
 R

O
M

R

A
M

)
an

d
R

A
M

.

D
at

a,
 a

dd
re

ss

A
dd

re
ss

,
da

ta
,

an
d

co
n

tr
o

l
co

n
tr

o
l

5
0

-l
in

e
 m

ai
n

m
ic

ro
co

m
p

u
te

r
bu

s

~R
es

et
 lin

e
3

p
o

w
e

r
fo

rm
s:

R

es
et

A

dd
re

ss
 l

in
es

+

8
,

+
12

,
-1

2
 V

,
G

N
D

P
ow

er
 s

u
p

p
ly

M
ai

n
bu

s

8
da

ta
 l

in
es

3

gr
ou

nd
s

3
+

8
p

o
w

e
r

1
-1

2
 p

o
w

e
r

1
+

12
 p

o
w

e
r

5
ba

ud
 c

lo
ck

s
16

 a
dd

re
ss

13

 c
o

n
tr

o
l

I I

R
J
P

o
w

e
r

sw
itc

h

P
er

ip
he

ra
l

bu
s

8
da

ta
 l

in
es

2

gr
ou

nd
s

2
+

8
 p

o
w

e
r

1
-1

2
 p

o
w

e
r

1
+

12
 p

o
w

e
r

5
ba

ud
 C

lo
ck

s
1

ca
rd

 s
el

ec
t

10
 c

o
n

tr
o

l

sw
itc

h

S
el

ec
t

0

P
er

ip
he

ra
l

S
el

ec
t

1
ad

dr
es

s
de

co
de

r
S

el
ec

t
7

T
e

rm
in

a
l

J
S

er
ia

l
in

te
rf

a
ce

~

(s
lo

t
0)

J C
o

n
tr

o
l

in
te

rf
a

ce
 J

(s
lo

t
1)

-
•

"' ::J ..
0

-
"§

•

Q
)

..c
 a.

·;;::
::

Q
)

-
a.

•

Q
)

.!:

6
-

M

•

J Pa
ra

lle
l

in
te

rf
a

ce
 J

(s
lo

t
7)

F
ig

ur
e

1-
8

S
ou

th
w

es
t

T
ec

hn
ic

al
 P

ro
du

ct
s'

 6
80

0
m

ic
ro

co
m

pu
te

r
bu

s
st

ru
ct

ur
e.

--·.---------------------------~~,~~~~--~----'

The Microcomputer's Role in the Real World 23

Figure 1-9 Southwest Technical Products' 6800 system processor and interface card.

By adding some intelligence (a small microcomputer, say) to the terminal,
simple tasks like offline editing and text formatting can be performed. In addi­
tion, the terminal becomes user-configurable. User-defined data communica­
tion formats can be programmed, and certain special characters sent by the
host computer can initiate very powerful processes within the terminal.

A graphic terminal's capabilities can be greatly enhanced using a built-in
microcomputer. Complex graphic functions like zoom, line drawing, and shad­
ing can be performed totally by the terminal. An intelligent graphics terminal
can perform tasks that, until recently, required a dedicated minicomputer with
a video display terminal.

The Ramtek 6000 is an intelligent graphic terminal built around a Zilog Z80
8-bit microprocessor. It generates alphanumerics as well as graphics such as
vectors, conics, and color shading. Alphanumeric, special function, and cursor

24 The Microcomputer's Role in the Real World

c llllllllllllllll: J ~
IS" (45.7 em)

width= 15.25" (38.7 em)

Figure 1-10 The Apple II personal computer system. (Courtesy Apple
Computer, Inc., Cupertino, Ca.)

control keyboards are provided. The graphics unit is a 256 x 512-bit dot matrix
raster-scan unit, with each dot corresponding to a bit in the built-in display
memory. Three 256 x 512 memory planes provide a 3-bit code for each screen
bit, allowing eight levels of shading or eight colors. Figure 1-11 shows the
Ramtek 6000.

Examination of the internal processor structure reveals that extensive in­
terfacing is used to give this terminal its many capabilities. A Z80 microproces­
sor is interfaced to a common bus. From 4K to 16K bytes ofRA~I are used for
program storage and 16K to 28K of PROM hold the commonly used graphic
generation routines (vector, conic, plot, bar chart, and so on).

Data communication emulation programs are also stored in PROM. When
the system is turned on, it must be bootstrap-loaded; that is, an initial user­
interaction and terminal communication program must be executed, just as

The Microcomputer's Role in the Real World

Figure 1-11 One of Ramtek 's 6000-series intelligent graphics terminals.
(Courtesy Ramtek Corporation.)

with a full-scale computer. The Ramtek 6000 executes a teletypewriter emula­
tion program stored in PROM upon power-up, causing the terminal to act as a
normal communications terminal until other instructions are given.

Three graphic memory planes are also interfaced to the microcomputer
bus. Graphic memory planes are large banks of memory (256 x 512 bits in this
case) that are continuously being read onto the terminal's display screen. Bits
that are in the logic 1 state represent white dots on the display screen while bits
in the logic 0 state represent black dots. By using three planes, bits on one
plane can represent blue data, bits on another green data, and bits on the third
plane red data. Complete color capability is the final result. Since the display
memory must be continually read onto the screen, the microcomputer must
insert data into the planes between rapidly occurring refresh read cycles. This
is called memory access interleaving. Adding this capability to a memory takes
a lot of extra interface components. To relieve the microprocessor of the bur­
den of critical timing, the memory interface on the R6000 makes the two-port
nature of the graphic memory planes transparent to the microcomputer system.

25

26

Z80
microprocessor

The Microcomputer's Role in the Real World

...-------.,Text cursor

Text red 4k
text!
cursor

generator

Text green

Text blue

16k green
graphics memory

16k blue

Video
mixing

Text 8/W
Video
hardcopy

Figure 1-12 The Ramtek 6000 internal microcomputer bus. (Courtesy Ramtek
Corporation.)

A separate display generator and video mixer are used in the R6000. Send­
ing video data to a display screen at 6 megabits per second is simply too much
of a job for a Z80 to handle; but it is simple enough for separate circuitry to
perform. The display generator, however, must be interfaced to the microcom­
puter data bus to be properly controlled. The R6000 has a 4K data area in
memory set aside as a text-cursor generator interface area. Simply writing into
memory at these locations controls the display generator. Figure 1-12 shows
the Ramtek 6000 bus structure.

Finally, communications interfaces are necessary to provide terminal com­
munication to the outside world. The R6000 has three RS-232C 1/0 ports to
perform this function. One port is used for terminal-tQ-host-computer com­
munication and is selectable for 50 to 9600 baud (bits per second in this case)
communication rates. Two additional ports allow for an optional cursor control
device, such as a joystick, and an auxiliary serial device, such as a printer or
graphic hard-copy unit.

Another interesting intelligent graphic terminal is Hewlett-Packard's 2648A
shown in Fig. 1-13. This terminal features a 720 x 360-dot raster-scan bit map

The Microcomputer's Role in the Real World 27

Figure 1-13 Hewlett-Packard's 2648A intelligent graphics terminal. (Courtesy
Hewlett-Packard, Palo Alto, Ca.)

and HP' s own microprocessor. The terminal has no color capabilities but its
black-and-white capabilities are astounding. Extensive software provided with
the terminal deserves most of the credit. Automatic plotting, rubberband line,
patterned shading, text writing in any direction (including upside-down), and
offline editing are just a few of its features. Additional hardware is interfaced to
the microcomputer to perform computationally difficult tasks such as zoom and
pan.

The Automotive Computer

Microcomputers have great potential in the field of automotive electronics. An
automobile has so many functions to monitor and control that experts in the
microprocessor marketing field feel that most new cars by the mid-1980s will
have no less than three microprocessors, thus creating a market for some 100
million microprocessors per year. Not only will microcomputers be sold, how­
ever: sensors, controls, and interface parts will be in demand in even greater
numbers.

The first application of automotive microcomputers will be in the engine
control and pollution control areas. Automotive manufacturers already have
experience in the areas of electronic carburetors, fuel injection, ignitions, and
transmission systems, mostly due to development efforts aimed at pollution

28 The Microcomputer's Role in the Real World

control. In many cases the sensors and controls are already there and the
microprocessor and its interfaces are merely add-ons.

Automotive microprocessors are currently controlling carburetor and fuel
injection systems, ignition systems (spark advance), and pollution systems
(exhaust gas recirculation) on a trial basis. (The big three auto makers are
currently using Motorola, Toshiba, Texas Instruments, RCA, and Intel micro­
processors and interface components.)

The 1980s and '90s will see even greater acceptance of the microcomputer
in automobiles, and the applications will not be limited to engine control.
Everything from fuel economy measurements to navigation may be
incorporated.

An interesting example of a futuristic microcomputer-based automotive
system is the optional dashboard on the Cadillac Seville: the Trip Computer.
This unit may not be representative of the common dashboard of the future, yet
it presents possibilities for automotive applications of microprocessors:
Cadillac's primary reason for introducing it is to gain engineering experience,
as future microcomputer decisions can be made on the sales and service record
of the Trip Computer.

The Trip Computer consists of five circuit modules: processor, sensory and
control interface, power supply, speedometer, and digital clock. The unit re­
places the conventional speedometer, fuel gages, and clock with two 2-digit
displays, one 4-digit display, and a 12-button keypad. The displays are 100-volt
gas-discharge displays whose brilliant orange is bright enough to overcome
ambient light levels and avoid the obvious pitfalls of having red lights on the
dashboard.

Not only does the microcomputer measure speed, time of day, fuel flow,
and fuel levels; it also computes miles per gallon (average and instantaneous),
driving range on remaining fuel, estimated arrival time, and engine speed and
temperature.

The driver controls the Trip Computer by entering appropriate commands
on the dashboard-mounted keypad.

All of the stated measurements and calculations are quite trivial for the
Motorola M6800 microprocessor, once the data has reached the microcompu­
ter. But many interfaces must be crossed first.

The speedometer and engine tachometer drives have rotation sensors,
while the gas tank has a fuel-level sensor. The engine has a temperature sensor,
and fuel flow is accurately measured by counting the modulated fuel injector's
pulses. The microcomputer contains two standard one-chip interface ICs and a
custom 1/0 and clock chip. Onchip high-voltage drivers are used to illuminate
the gas-discharge display.

There are still a few problems to be overcome in automotive microelec­
tronics. Dealer maintenance and production volume have to be considered.
Reliability is another big problem. The automotive world is an extremely se­
vere environment; shock and thermal resistance of parts must be high, and

___ ,. __________________________________ ,, __

The Microcomputer's Role in the Real World 29

military-like specified parts are required. Microcomputers will find their way
into more critical automotive areas, but only after the problems encountered in
first-generation hardware are solved. Figure 1-14 illustrates the functions of a
future automotive microcomputer system.

Machine Tool Control

Personal computers, the latest graphic terminals, and computerized games are
widely talked about topics in the microcomputer field, but not much is said
about the ways in which microprocessors are revolutionizing industry. In re­
gard to interfaces, the industrial microelectronics field presents some of the
biggest challenges-especially in the way of sensory and control interfaces. As
the final example of microprocessor applications, let's look at a micro­
computer-controlled machine tool and its interfaces.

Microcomputers are currently being used in heavy machine tools to per­
form control and sensory functions. The cost advantages offered by the micro­
processor allow extra precision and additional features to be added. A metal
forming press brake equipped with an M6800 microprocessor-based monitor
and control system is one of this new breed of machinery.

The machine operates as follows: A piece of sheet metal is inserted hor­
izontally into the machine and positioned accurately with a gage that deter­
mines the exact position. A hydraulic press then forces the sheet into a die,
where it is bent into the desired sheet-metal part.

This is a fairly unsophisticated machine operation. Two events must be
monitored and controlled: the positioning of the sheet metal and the movement
of the hydraulic press. The positioning of the sheet metal is monitored using
odometers. A rotary encoder is used to sense the hydraulic press movement.
Odometers and rotary encoders are electromechanical sensors that produce
bidirectional square waves indicating movement. Sensory interfaces must con­
vert the encoded pulses into a digital word the microprocessor system can use.
Pulse-encoder logic and a parallel-bus interface handle the task nicely. Figure
1-15 illustrates the microprocessor controller for this machine.

Once the microcomputer has the metal and press position information, it
computes the remaining distance to move the metal, the press velocity, and
acceleration. Because the microprocessor runs at a 1 MHz clock rate, the
computations can be done in real-time while the machine is in operation. Using
the sensed and computed values, the microprocessor decides how much farther
to move the metal and press and proceeds to control the metal-moving motors
and hydraulic press. Control interfaces are required in this case. A motor
switching circuit, a D/ A converter, and an electrically controlled hydraulic
valve are used.

The user-interaction interface consists of a keyboard and 40-character al­
phanumeric display on which piece-part information can be entered. Program
parameters include metal positioning information, press speed, and stop data.

w

0

S
ea

t
be

lts

O
p

e
n

e
d

-d
o

o
r

se
ns

or
s

Ig
n

it
io

n
 t

a
m

p
e

ri
n

g

H
o

rn
 o

r
al

ar
m

co

n
tr

o
l

E
ng

in
e

ti
m

in
g

 a
nd

 R
PM

F

ue
l

in
je

ct
io

n

S
pa

rk
 s

e
tt

in
g

F
ue

l
le

ve
l

E
xh

au
st

 g
as

 r
e

ci
rc

u
la

tio
n

E

xh
a

u
st

 g
as

 t
e

m
p

e
ra

tu
re

S

pa
rk

 a
dv

an
ce

S
ta

rt
u

p
,

ch
o

ke

S
pe

ed
om

et
er

 r
e

a
d

-o
u

t
F

ue
l,

cl
o

ck
,

ta
ch

 r
e

a
d

o
u

t

F
ig

ur
e

1-
14

P

os
si

bl
e

fu
nc

ti
on

s
o

f
a

fu
tu

re
 a

ut
om

ot
iv

e
m

ic
ro

co
m

pu
te

r
sy

st
em

.

The Microcomputer's Role in the Real World

VI
::::1
.0

Control
~ Q.)

interface """' ::::1
c.
E
0
(.J e
(.J

~
~ Sensory

ROM and RAM ~ interfaces

Microprocessor User-interaction
interface

Positioning
0 motors

Press hydraul ics
controller

Metal positio n
odometer
Press positio n

er rotary encod

I Keypad-~
I switches

40 char. display I

Figure 1-15 A microprocessor-based machine tool controller.

31

A keyboard interface for data entry and a display interface to drive the
40-character display are used.

The microcomputer and its associated interfaces have proved to be a good
economic tradeoff on this machine. More accurate control (eight times the
accuracy of a manually controlled machine) increases the machine's produc­
tion efficiency and salability, while the elimination of manual controls and
gages cuts costs.

Microcomputers come in many shapes and sizes. On the low end are the
bare-bones microprocessors that can't function as microcomputers without
extensive support circuitry. At the other end, complete microcomputer sys­
tems with built-in memory, keyboards, floppy disks, and other peripherals are
available. In between are the one-card microcomputers with moderate memory
and interface cirucitry all on one printed circuit card, multicard system con­
struction sets, and one-chip microcomputers that require nearly no support
circuitry at all. A successful microcomputer-based design requires the selection
of the right microcomputer for the task.

This chapter covers all of the above-mentioned forms of microcomputers,
but some basic concepts must be dealt with first.

HOW THE PROCESSOR
AFFECTS THE SYSTEM

Since the microprocessor is the central element in a microcomputer-based
system, its characteristics have a great effect on surrounding circuitry and
interface design. The complexity and design philosophy of the microprocessor
determines how many support devices will be required. A one-chip microcom­
puter with onboard RAM, ROM, clock, and serial interface, for example, re-

32

---~IN~-.~.w-------~-.·-·---~-.-·

Selecting the Right Microprocessor 33

duces the chip count to a much lower number than that of· a similar simple
microprocessor with independent support chips.

Certain microcomputers are better suited to certain tasks. In an application
where extensive 1/0 interfacing but very little data processing is required, an
1/0 oriented microprocessor such as the F8 can reduce the complexity of the
interfaces. In an application in which a large amount of computing is per­
formed, a computationally powerful microprocessor like the Zilog Z8000 ca:n
eliminate the need for external processing elements such as multipliers and
floating-point arithmetic units.

Microprocessor selection affects system power dissipation. A bipolar mi­
croprocessor is a high-speed bipolar device, so all of its system overhead
interfaces must also be high-speed bipolar devices. A whole system built with
bipolar devices (integrated NPN and PNP transistors) will have considerably
higher power dissipation than a CMOS system (integrated FETs) built around a
CMOS microprocessor. The watchword is speed-power product. As a general
rule, the faster and more complex the processor, the more power it draws.

The complexity and size of circuit boards and .connectors are also affected
by the microprocessor choice. A 4-bit microprocessor requires half the data
lines of an 8-bit unit. The IC package is also smaller and has fewer pins. A
smaller circuit board with less connectors is thus possible using the smaller
processor.

The choice of microprocessor affects system cost. An expensive micropro­
cessor may indeed replace enough external interface components, circuit
boards, and 1/0 pins to reduce the overall cost of a system.

There are many other system factors affected by microprocessor choice,
and it· is up to you to determine which characteristics are desirable in your
system and which micr0processor will best fit the specifications.

WHAT TO STRIVE FOR
IN SYSTEM DESIGN

Anyone building a microcomputer system has certain specifications and spe­
cific goals which must be met; but there are certain universal characteristics
that are desirable in any system: high reliability, low power dissipation, small
size, easy serviceability, and low cost. System decisions should be based on all
of these characteristics- not just cost. In many cases, especially industrial and
military designs, reliability and serviceability are of paramount importance.

It is also desirable to ''design in'' expandability. A system always seems to
grow or have higher demands placed on it from the time it leaves the drawing
board to the time it goes into production. Microcomputers offer an excellent

34 Selecting the Right Microprocessor

opportunity for expandability. Additional interfaces can be added easily to a
microcomputer bus, and the software can be modified if provisions are made
for expansion.

EVALUATING SYSTEM REQUIREMENTS

The best starting point in determining the proper microprocessor for a system
application is the evaluation of the system requirements. There is no simple
step-by-step approach that will work under all circumstances; rather, there­
quirements must be considered and weighed against each other to arrive at the
proper decision.

Consider the Task

You should consider what kind of task you are performing-a computational
data processing task or a control task. There are certain microprocessors that
are designed to be computer-like and others that are meant to be used as
controllers. The microprocessor characteristics section will point these out.
The use. of a computing-oriented microprocessor in a control application is
likely to increase control interface complexity while providing computational
overkill. This sort of unbalanced system would definitely work, but it would be
more C<?mplex, take up more space and power, and be less reliable than a
system buiit around a control-oriented device.

A system's function should be evaluated through an unbiased eye. There
are many fine discrete, SSI, MSI, and nonmicroprocessor LSI parts available
for general and special-purpose applications. These parts should be considered
with the system specifications in mind. Microprocessors are general-purpose
devices. A device designed for a specific task can usually perform the task
faster and with less power consumption and complexity than a microcomputer.
The universal asynchronous receiver/transmitter (DART) is a good example of
a very specialized LSI part. This device receives and sends a serial bit stream
and performs serial-to-parallel and parallel-to-serial conversion. Used for data
transmission, the DART is typically a 40-pin package that draws very little
power. A DART's task could easily be handled by a microprocessor with
ROM, a small scratchpad RAM, a parallel interface, and -a clock circuit. A
close examination of this implementation, however, reveals that four times the
number of parts and nearly ten times the power is required to perform the same
task using the microprocessor. This is hardly a good appliCation for a micro­
computer, although it would seem to be if you didn't know of the existence of
the U ART. When evaluating system requirements it is wise to search through
available literature for specialized devices to fill your specific applications.

Reliability

Reliability may be another reason to avoid microcomputer implementations of
logic in some situations. Microprocessors can be used to cost-effectively re­
place large discrete gating networks, but in critical applications, adherence to
discrete gating may be the wiser choice.

Microcomputers are computers and they can "crash" (get out of the con­
trol program). A glitch on the power supply could cause this to happen. It
would be nice if we could think of microcomputers as ideal devic~s, but in the
real world we must consider nonideal situations. A combinatorial gating net­
work has no states and is therefore self-recovering after a glitch (as long as the
inputs remain the same). A device with states (flip-flops or memory cells) has a
high probability of changing states when a glitch comes along, and micropro­
cessors are just full of flip-flops and memory cells.

Performance Requirements

Another factor to evaluate is system performance requirements. The micro­
computer must be able to perform the system's task in a given length of time.
When choosing a microprocessor, an adequate processing power margin for
expansion should be allowed. Microprocessor-based systems are somewhat
less versatile in performance expandability than corresponding discrete­
component implementations. If a microprocessor is being pushed to its compu­
tational limits and the need for more computing power arises, there are two
alternatives: speed up the software if it isn't already optimized, or switch to a
higher-performance microprocessor. A system built with discrete components
is much easier to add capability to incrementally.

There are, of course, exotic alternatives to a totally new processor if you
should wind up short on computing power. Add-on circuits and multiple pro­
cessors may be used; but unless these are "clean" additions and not "patch­
work fixes," they shouldn't be used. An example of a clean addition is an
auxiliary multiplier added to a processor bus to help a microprocessor in a
heavily multiply-weighted task. An example of a patchwork fix is speeding up
at the processor clock to just beyond the microprocessor's performance limits
and hoping for the best.

Microprocessor Loading

Sizings should be performed before a system is built to estimate processing
needs. Once a candidate microprocessor is chosen, crude software that is very
similar to the real task's software should be written. This initial sizing software
doesn't have to be perfect and fully debugged because its purpose is to give a

35

36 Selecting the Right Microprocessor

general idea of the processor's loading and not to correctly accomplish the
task. You may use the interface software section of this text or appropriate
material from other books to aid you in writing the software. After all the sizing
programs have been written, the program's execution time can be estimated.

A good processor loading at the preliminary system design is about 50%. In
other words, if a function must be executed in 10 ms, a microprocessor task
execution time of 5 ms is desirable. This leaves an adequate margin for errors in
initial task sizings and for some future expansion. If the loading approaches
75% or more, chances are that the microprocessor will be overloaded by the
time the design is actually built. A more powerful microprocessor or discrete
logic, which can handle some of the tasks, is definitely in order.

If the microprocessor is only 20% loaded, it might pay to consider a
smaller, less .complex microprocessor that is more reliable and less power­
hungry. Or examine the possibility of the microprocessor taking over even
more of the system's task, thereby eliminating discrete conponents.

The 50% loading criterion is just a general rule. Specific applications may
dictate alternative loadings. A widely expandable general-purpose data pro­
cessing system, for instance, will require greater expandability and thus lighter
loading. For general-purpose data processing systems you may 'not even know
what the system is going to be used for. In this case the processing capabilities
can be anything you choose.

Other Considerations

An overall system block diagram helps in the evaluation process. The proces­
sor, discrete logic, interfaces, and peripherals can be specified as black boxes
in the system block diagram as Fig. 2-1 illustrates.

All the system's physical characteristics should enter into the system eval­
uation process. Power consumption, thermal dissipation, and second-sourcing
should all be considered if they have been specified.

Once the most likely microprocessor candidate has been chosen, pre­
liminary hardware designs, source programs, object programs, and a prototype
system can be built.

The proper evaluation of system requirements will be a somewhat difficult
iterative process but the result will be a well balanced and cost-effective sys­
tem.

IMPORTANT MICROPROCESSOR CHARACTERISTICS

Microprocessor choice greatly affects overall system characteristics, so it is
important to understand the microprocessor you're working with and to be able
to identify the important characteristics during the system evaluation stage.

Selecting the Right Microprocessor

KEYBOARD

••• ••• ••• •

45.75-MHz PICTURE CARRIER

41.25-MHz SOUND CARRIER

VERTICAL SYNC

VIDEO

AUTOMATIC FINE TUNE

vhf OSCILLATOR

uhf OSCILLATOR

MANUAL
FINE TUNE

FILTER/
TUNING

37

3.581055 MHz

- -R;;E-;;~----,
/CRYSTAL

,r OSCILLATOR

PROGRAMMABLE
DIVIDER

PHASE-LOCKED LOOP CHIP

PROGRAMMABLE
DIVIDER

TUNING VOLTAGE
~g ~t ~g ~ ...-----.---<

130 v
~------------------------~~--------~33V

I
I L ___________ _j

Figure 2-1 A sample block diagram for system evaluation. (Courtesy Signetics
Corporation, Sunnyvale, Ca.)

The microcomputer field is currently on the steep end of the learning curve;
things are changing so rapidly that any book attempting to give you a good
overall picture of the devices in the field is obsolete by the time it reaches the
press. This section is therefore designed to aid you in identifying important
microprocessor characteristics for yourself. Current manufacturer's specifica­
tion sheets should be consulted for up-to-date specifics. A few examples of
microprocessors are presented and analyzed; these analysis techniques can
then be applied to products currently on the market.

Microprocessor Purpose

Microprocessor purpose is a nebulous "parameter" that can't always be ad­
dressed in a specification sheet or data catalog; however, it is probably the
most important consideration in choosing a microprocessor for a system.

Microprocessors are general-purpose devices that can perform almost any
task if given enough external support circuitry and processing time; but they
have designed-in features that make them better suited to certain applications.
The two major purposes are electronic data processing (EDP) and control. In
this context, EDP refers to tasks requiring extensive arithmetic operations. But

38 Selecting the Right Microprocessor

a control application may indeed require some EDP, making an EDP-type
microprocessor well suited to the task.

A microprocessor's purpose can be judged by looking at such characteris­
tics as bit width, instruction set, and support hardware and software.

The very narrow word width of 4 bits is indicative of a controller.
Arithmetic and ASCII character manipulation are difficult to implement using
such a narrow word, and quadruple-precision arithmetic is necessary to repre­
sent even a comparatively small number like 23,754. On the other hand, a 4-bit
word width would prove adequate for many control applications. Up to 16
traffic lights can be represented by a 4-bit code, for example.

Microcomputers with broader word widths usually indicate an EDP orien­
tation. The LSI-11, MicroN ova, and TMS 9900 are examples of microproces­
sors with 16-bit word widths. These processors are actually derived from mini­
computers and are used extensively in EDP applications.

A microprocessors instruction set gives a clue to its purpose. An instruc­
tion set that won't allow arithmetic shifts and does not accommodate twos'
complement arithmetic is not well suited to EDP tasks. The 8-bit Intel8080, for
example, only handles unsigned numbers, doesn't perform arithmetic shifts,
and lacks complete arithmetic branch capabilities. This microprocessor was
initially intended to be an enhanced version of the 8008 microcontroller, and its
instruction set reveals the controller-like traits. Since so many people were
trying to use the 8080 as a data processor, Zilog capitalized on the situation and
included many arithmetic shifts and arithmetic overflow detection in the firm's
Z80, an 8080 upgrade. The Z80 thus has more of an EDP character than the
8080, which is also reflected by the name Zilog has given the part-the Z80
CPU.

Support hardware and software lend more evidence to the purpose of a
microprocessor. A simple controller chip such as the TMS 1000 will not have a
broad range of support chips such as floppy disk controllers, memory mapping
units, and one-chip modems because a controller won't require this kind of
support. The Intel8086, an EDP-oriented microprocessor, has a broad base of
EDP-type hardware and software support, thus showing its purpose.

Microprocessor Bit Width

A microprocessor's bit width is defined as the number of parallel lines con­
tained in the data bus. The bit width has a great effect on system capability and
complexity.

Data and instructions are usually stored in a memory as wide as the bit
width of the processor. The advantage of a microcomputer with a wide word­
width is that the microcomputer can handle a much wider range of arithmetic
values before resorting to inefficient multiple-precision arithmetic. It can also
have a much larger set of single-word instructions. The results of having these

Selecting the Right Microprocessor
39

features are higher memory bit widths, wider data buses and connectors, and usually wider bit widths on the interfaces tied to the bus.
A 4 K memory for a 16-bit microcomputer takes twice as many RAMs as that of a 4 K memory for an 8-bit machine. It is wise to keep the bit width as low as is reasonably possible in an application because parts counts, especially in the memory area, are much lower for narrow-bit-width machines.
As pointed out in the previous subsection, microprocessors with 4-bit word widths are almost exclusively designed for control applications. The 8-bit mi­croprocessor can be designed for either EDP or control, but in most cases it is designed to be general-purpose enough for both. Double-precision arithmetic is fairly efficient on these devices, and 16 bits of precision is adequate for most· EDP work. Microprocessors with 16-bit word widths are almost exclusively used for data processing in which more than just control functions are required.

Bit-Slicing

Some microprocessors, notably the high-speed bipolar types, are bit-sliced. Large-bit-width microcomputers can be built from a few 4- or 8-bit processor "slices."
Bit-slicing, especially with 4-bit elements, is primarily used for thermal reasons. Bipolar LSI circuits draw a lot of current and tend to run hot. A 16-bit or even an 8-bit processor would generate too much heat for a single package to dissipate.
Bit-sliced processors are usually more like LSI building blocks than self­contained processors with strictly defined I/0 protocols and instruction sets. You can choose the desired microcomputer bit width and even instruction execution method by varying the number of bit slices and changing the control ROM that contains a microprogram for the control sequence.
Bit-sliced microprocessors are used in custom, high-performance applica­tions. Due to the bit-sliced microprocessor's versatility, systems built with them can be made to emulate more common computers efficiently. Bit-sliced microprocessors are therefore being used extensively in the construction of minicomputers.

Processing Speed

Processing speed is the rate at which a microprocessor executes the applica­tion program, and this depends on three basic specifications: the clock rate of the microprocessor, the number of cycles required to execute a given instruc­tion, and the instruction repertoire itself. To see the significance of these fac­tors and the manner in which they interrelate, we must have a common under­standing of the terms and their functional contributions.

40 Selecting the Right Microprocessor

Processor Clock Rate. The clock rate is defined as the frequency of the

clock input to the microprocessor-the number of clock pulses produced per

second. Since the clock is the governor of all timed operations within a system,

it follows that a high-rate clock permits more operations to be performed within

a given period; but a high-rate clock coupled with low-rate peripherals trans­

lates to interface complexities.

Acquisition/Execution Rate. The acquisition and execution rate of a micro­

processor may be expressed in microcycles-the number of cycles or opera­

tional steps required to perform a given instruction. A microcycle consists of

one or more clock cycles. Most MOS microprocessors require many microcy­

cles to execute one instruction. Typically, one microcycle might be used to

fetch the instruction, one or two more might be used for data access, and

several more for the actual execution 0peration of the acquired instruction. The

number of microcycles required by an instruction is affected by the addressing

mode and the instruction complexity. A simple add, for example, may take 14

microcycles, while a multiply would take 52 on the TMS 9900 16-bit microcom­

puter.

Instruction Repertoire. The kinds of instructions a microprocessor can ex­

ecute determine its suitability to a task. Instructions should be evaluated on the

basis of what they can do, not how many there are.

The number of instructions a microprocessor can perform might be a very

misleading number, because every manufacturer has his own way of counting

instructions. Intel, for example, counts move immediate register and move

immediate memory as two instructions for the 8080 microprocessor, while

Motorola counts load accumulator immediate and load accumulator extended

as two addressing modes for the same instruction. Although the 8080 has more

instructions than the 6800, the 6800 has many more real instructions than the

8080 if all the addressing modes are counted.

A microprocessor's instruction set should be oriented toward the kind of

processing you are performing. In a controller application, particular attention

should be paid to 1/0 instructions. In a data processing application, the data

manipulation instructions (arithmetic shifts, twos' complement instructions,

and arithmetic branches) should weigh heavily in the choice.

Determining System Speed. A true measure of how fast a program will

perform a given task is how much time it takes to execute a total program. This

figure is the number of clock cycles needed to execute a program multiplied by

the microprocessor clock .rate.
Microprocessors go about executing programs in different ways. Some

employ a high-speed clock and use many small operations (notably the TMS

9900, 8080 and Z80). Others employ a low-speed clock but use a small number

of powerful operations (the M6800 and 6500 microprocessors). The load high

and low direct instruction on the 8080 and the load index register extended

instruction on the 6800 serve exactly the same function; they each load a 16-bit

Selecting the Right Microprocessor 41

register that serves as both a general-purpose register and an index register. The 8080 requires 16 clock cycles versus 5 clock cycles for the 6800 to execute this instruction. A 6800 with a 1 MHz clock rate executes the instruction in two-thirds the time required by the 8080 wih its 2 MHz clock.
It is obvious f~om the above information that clock speed alone is not a valid indicator of system performance. Clock speeds can be directly compared only when dealing with the same processor. A 2 MHz 6502 has exactly twice the performance speed of a 1 MHz 6502. In all other cases, performance esti­mates and comparisons must be based on task sizings.
The applicability of an instruction set to a given form of processing also determines performance. If a microcomputer's task is to check parity on in­coming signals, a branch-on-parity-even instruction can save a whole subrou­tine of bit-manipulation instructions, and execution time will be greatly re­duced. Once again, however, only a sizing will tell how well a microprocessor will perform.

Power Dissipation

In power-critical systems, a microprocessor's power dissipation becomes a major concern. Power dissipation is governed by device technology, device complexity, and in many cases clock speed.
Wide-word-width microprocessors require extra complexity to handle the wide data paths, so they draw more power than narrow-word-width devices of the same technology.
High-speed bipolar microprocessors draw the most power of all. Medium power dissipation' can be expected from NMOS and PMOS microprocessors, while CMOS microprocessors draw the least.
The clock rate itself affects the power dissipation of most microprocessors (excluding microprocessors based on emitter-coupled logic technology). The slower the clock rate, the less power the processor draws. The RCA 1802 microprocessor, which employs CMOS technology, is a good example of a clock tate's effect on power dissipation. If a very limited amount of processing is required, a relatively slow clock rate of 10kHz can be used, thereby cutting power dissipation from 60 mW at 1 MHz to 5 mW at 10kHz.
New device technologies such as silicon on sapphire (SOS) promise to decrease microprocessor power consumption and at the same time improve speed-power products. The latest manufact,urer specification sheets should be used to find the power dissipation of these parts.

Interrupt Capability

Temporarily diverting execution of a program to a small task that requires immediate attention may be required in your application. A microprocessor with good interrupt capabilities should be chosen if this requirement is to be met.

42 Selecting the Right Microprocessor

Priority interrupt systems let multiple devices interrupt a processor simul­

taneously, automatically determining which task should be executed first. A

separate LSI device is usually required to perform this task. The Intel 8259

priority interrupt control unit (PICU) is one such element. ·

DMA Capability

Direct memory access is the name applied to the operation when a device other

than the processor is capable of accessing (reading or writing) directly into

memory by temporarily taking over the microcomputer bus. This feature is

good for large block data transfers and relieves the microprocessor of the

burden of executing a data transfer program.

DMA transfers are much faster than program-controlled data transfers. If

your system requires many high-speed data accesses by external devices, it is

imperative to select a processor with DMA capability.

Many microprocessor chip sets include a DMA controller support chip.

These chips can substantially reduce DMA interface complexity and simplify

the system design task. The Intel 8257 DMA controller is a common DMA

support IC. It supports up to four DMA channels simultaneously and contains

all the circuitry necessary to take control of the 8080 bus and perform the data

transfer.

Decimal Arithmetic

It is often desirable to store data in user-interactive systems as binary-coded­

decimal (BCD) digits rather than multiple-precision bytes. Time-wasting and

memory-consuming decimal-to-binary and binary-to-decimal conversions can

be avoided in these cases.
Many microprocessors have instructions that perform BCD arithmetic on

4-bit BCD numbers packed two per 8-bit byte. The M6800's decimat arithmetic

adjust (DAA) instruction is an example. If BCD arithmetic is required in your

application, the microprocessor you choose should have a DAA-type instruc­

tion.

Second-Sourcing

It is always more desirable to work with a microprocessor type that is manufac­

tured by two or more independent companies than with a part that is unique to

one company. The second source can back up the primary supplier when

back-order problems arise; and should one manufacturer decide to stop pro­

ducing the device, availability from the other maker cushions the impact.

Another advantage to second-sourced microprocessors is the obvious

benefit resulting from competition. Because more than one manufacturer is

Selecting the Right Microprocessor 43

competing for the same market, the only way for a manufacturer to distinguish
his product is by supplying a broader line of support chips and higher perform­
ance than the competitor. In the end, the consumer wins and the prize is
threefold: a wide range of support chips, wide performance-range selection,
and lower prices.

Cost

The cost of a system is one of the highest-priority items, especially in the
consumer market; but when evaluating the cost of a microprocessor, the cost
estimate should include the whole system and not just the microprocessor.
Current price sheets from the microprocessor manufacturer should always be
used because prices change so rapidly (and drastically) in this field.

Software Support

Software generation is a costly proposition, and it is not uncommon for
software development costs to outrun hardware costs. For this reason, micro­
processors with a large software support base are very desirable. Editors,
assemblers, and high-order languages help speed development of a micropro­
cessor system. The level of software support is less critical for small controller­
type microprocessors intended only to run small control programs.

Load-Driving Capability

A microprocessor's technology will largely determine what voltage levels and
drive currents are available at the microprocessors output pins. These charac­
teristics determine how much support circuitry will be needed to incorporate
the microprocessor into a system.

Many MOS microprocessors claim TTL compatibility. This statement is
misleading, because usually only one or two standard TTL loads can be driven.
In some cases only one low-power TTL load is drivable. To drive many TTL
loads, buffers must be incorporated on most MOS microprocessors.

Some microprocessor chip sets are designed to eliminate the need for
buffers in minimal system configurations by offering a wide range of memory
and support chips that present only a light load to the processor's buses. The
M6800 chip set is a good example. Up to eight devices can be driven on a
nonbuffered bus. Well thought out schemes like this can save interface parts in
a minimal system.

Bipolar microprocessors can usually drive many loads that are themselves
based on the technology of which they are built. The Texas Instruments 74S481
bipolar microprocessor supplies 10 rnA of drive current to its address lines; this
is enough current to drive six standard TTL loads.

Architecture Philosophy

Microprocessors, like large computers, have many architectural forms. Two

types of machines that are currently popular are the register-oriented machines

like the 8086, Z8000, and RCA 1800 series and the memory-oriented machines

such as the 6800, 6500, and 9900 series.
Stack operating capability is another architectural feature found on many

microprocessors. Architectural features tend to simplify certain tasks. A stack

is useful when many subroutines are to be performed.

Memory-oriented processing is helpful when working with large data bases

in memory. Once again, the instruction set will describe what the processor

architecture is capable of and sizings will tell how efficiently it is performing

your task.

MICROPROCESSOR EVALUATION EXAMPLES

Up to this point, microprocessor characteristics have been described in general

terms. In this section we get down to some specific examples. Descriptions and

evaluations of a few common microprocessors are presented. No attempt has

been made to cover all microprocessors, since new and more advanced micro­

processors are constantly entering the market. By evaluating microprocessor

specification sheets and all the latest literature in a way similar to what is

presented here, you can pick the best device for your task at any time.

The TMS 1000 Family

With the proliferation of low-cost 8-, 12-; and 16-bit microprocessors, we might

be inclined to think that 4-bit microprocessors are obsolete and undesirable in

any application. This isn't the case. It's true that some 4-bit processors such as

th_e Intel 4040 have been pushed aside by technology, but in the midst of 8- and

~6-bit microprocessor development, some very viable third-generation 4-bit

control-oriented microprocessors came into being. The TMS 1000 family is a

good example.

Purpose. The TMS 1000 series of one-chip microcomputers is made by

Texas Instruments and second-sourced by Motorola. It is a family of about 35

microprocessors aimed at the industrial and consumer control applications

market.

Features. The TMS 1000 chip's complement of capabilities reflects its 4-bit

control nature. TMS 1000 series microprocessors have 2048 8-bit bytes of ROM

44

Selecting the Right Microprocessor 45

and 124 4-bit "nybbles" of RAM built onto the chip. Some of the earliest
versions have only 1024 bytes and 64 nybbles of ROM and RAM.

As with most 4-bit microprocessors, the instruction word size is 8 bits (the
Toshiba T3444 is an exception to the 8-bit instruction rule-it has 4-bit instruc­
tions) and the data word width is 4 bits. Program execution is performed strictly
out of ROM and no provisions for external ROM or RAM have been made. No
external address bus is needed, freeing valuable 1/0 pins to perform the chip's
control functions. Figure 2-2 shows the TMS 1000.

The TMS 1000 has 54 basic instructions that are oriented toward control
applications. Because the processor has separate program and data memories
that can't interchange data, strange instructions like A9ACC (add 9 to the
accumulator) are a large percentage of the 54. Obviously, this type of processor
could immediately be eliminated from further consideration in applications
requiring extensive data processing.

Interface Capabilities. The TMS 1000 series microprocessors come in 28-
and 40-pin packages (a 64-pin evaluation model also exists), and their interfac­
ing characteristics depend on the package size.

The 28-pin models have 4-bit data input buses, 8-bit data output buses, and
10 program-controlled control outputs. Data on the input lines (K lines) can be
read into the processor's accumulator using the TKA (transfer K inputs ,to
accumulator) instruction. Output can be performed by simply sending one
control output bit to the device being controlled and strobing it using the SETR
(set R output line) and RSTR (reset R output line) instructions. To send 8-bit
data to a device, the 8 output lines can be set to the proper 8-bit value using the
TDO (transfer data to output) instruction, and an R control line can be strobed
to latch the data into a register at the controlled device.

Support. The simple design, versatile 1/0, and built-in RAM and ROM fea­
tures of the TMS 1000 family of microprocessors make an extensive line of
support chips unnecessary. Because no direct external access to memory is
possible, a DMA chip doesn't make any sense. Three helpful support chips are
available, however: 4 x 4 and 4 x 7 1/0 expanders and a CPU-to-capacitive
keyboard interface.

The TMS 1000 family's use in industry is constantly increasing and it has
thus acquired a good software support base. An assembler, simulator, utility
programs and even a high-level language are available. In addition, a few of the
TMS 1000 series processors come preprogrammed to perform common func­
tions.

Physical Characteristics. Being a4-bit economy model control processor,
the TMS 1000 performance specifications are not exceptional. The clock fre­
quency can range from 50 kHz to 1MHz, and all instructions execute in 6 IJ-S at 1
MHz.

.r::
.

0
)

I I I I I I I I I I 1 I L
_

_
_

_
_

 _

F
ig

ur
e

2-
2

~
6
6
6
6

E
U
~
 J
JU

~l

T
M

S
 1

3
0

0
 o

n
ly

-
4

0
 P

D
IP

l

I
'

T
M

S
 1

0
0

0
 4

-b
it

 m
ic

ro
p

ro
ce

ss
o

r

M
a

n
u

fa
ct

u
re

r
D

ev
ic

e
T

e
ch

n
o

lo
g

y
D

at
a

w
o

rd
 w

id
th

A

dd
re

ss
in

g
ra

ng
e

In
st

ru
ct

io
n

 w
id

th

In
st

ru
ct

io
n

 c
o

u
n

t
C

lo
ck

 f
re

q
u

e
n

cy

P
ac

ka
ge

T
ex

as
 I

n
st

ru
m

e
n

ts
,

M
o

to
ro

la

N
M

O
S

,
P

M
O

S
,

C
M

O
S

4

b
its

2

0
4

8
 w

o
rd

s,
 i

n
te

rn
a

l
8

b
it

s
54

P
ow

er
 r

e
q

u
ir

e
m

e
n

ts

5
0

 k
H

z-
1

 M
H

z
28

-
o

r
4

0
-p

in
 D

IP

3
-3

5
V

,
1

-1
0

 r
n

A

P
ro

gr
am

m
er

's
 E

ye
 V

ie
w

D

4
-b

it
 a

cc
u

m
u

la
to

r

_
0

 2
-

o
r

3
-b

it
 X

 r
eg

is
te

r

D

4
-b

it
 Y

 r
eg

is
te

r

~
 6

-b
it

 p
ro

g
ra

m
 c

o
u

n
te

r

4
-b

it
 p

ag
e

re
gi

st
er

1
-b

it
 c

h
a

p
te

r
fla

g
(o

p
ti

o
n

a
l)

I
J
 6-b

it
 s

u
b

ro
u

ti
n

e
 r

e
tu

rn
 r

eg
is

te
r

-c
=

J
4

-b
it

 p
ag

e
b

u
ff

e
r

re
gi

st
er

}
6-

o
r

7
-b

it
 d

at
a

co
u

n
te

r

}

10
-

o
r

1
1

-b
it

pr

og
ra

m
 c

o
u

n
te

r

T
he

 T
M

S
 1

00
0

m
ic

ro
pr

oc
es

so
r.

 (
C

ou
rt

es
y

T
ex

as
 I

ns
tr

um
en

ts
,

In
c.

,
D

al
la

s,
 T

ex
as

.)

Selecting the Right Microprocessor 47

This microprocessor family is available in several technologies for various
applications. For relatively high-speed performance, NMOS and PMOS ver­
sions are available. A CMOS version from Motorola allows very low-power
controllers (1 rnA) to be built.

Probably the most noteworthy feature of the TMS 1000 series is its econ­
omy. A minimal system can be built with one part (an internal clock is also
included in this processor chip), and at this writing it sells for less than $4.

The 8080 Family

The Intel 8080 was the first microprocessor to gain wide acceptance in the
microcomputer field and did, in fact, help create the field. It is currently the
most widely used microprocessor simply because it was first to reach the
marketplace. This situation is rapidly changing as superior products such as the
8085 and" Z80 are gaining in popularity.

The 8080, from an architectural and feature standpoint, is quite primitive,
and improved processors are u~ually designed into new products; but due to its
wide acceptance, multiple sources, and large line of support chips, the 8080 is
here to stay.

Purpose. The 8080 instruction set reflects a control nature in this micropro­
cessor. It is heavily loaded with data transfer instructions and has IN and OUT
instructions for input and output control. Conditional jumps, subroutine calls,
and subroutine returns (with parity even or odd jump instructions) are meant to
be used to simplify data handling.

The 8080 has a few data processing characteristics, but some important
features are missing. Some of the EDP-type instructions include the add and
subtract instructions, the double-precision add instruction (although this fea­
ture is primarily intended for address manipulations), and the decimal
arithmetic adjust instruction. Lacking are the arithmetic .shift instructions,
signed overflow detection, and the arithmetic conditional branch instructions
such as branch greater than or equal to. These shortcomings could not be
easily overcome because of a simple fact never mentioned in most manufac-

~urers' literature: the 8080 is not designed to do signed twos' complement
arithmetic. The modularity of the twos' complement numbering system makes
mil.~y twos' complement operations work (adding -1 to 7 to get 6, for exam­
ple)\ but the 8080 has no way of telling if a result is negative or positive. A good
example of this is the comparison of two numbers to see which is larger. A
compare instruction followed by an examination of the overflow bit can be
performed to compare a pair of twos' complement numbers. A set overflow bit
means that the register being compared to the accumulator was greater than the
accumulator value, but only if the values were of like sign. If the registers were
of different sign, the set overflow bit would have just the opposite meaning.
You must therefore manually keep track of the signs of numbers in the pro­
gram. This involves additional software and execution time.

48

8080A CPU FUNCTIONAL

BLOCK DIAGRAM

POWER 1- +12V
SUPPLIES - +SV

--sv
- GNO

(8 BIT)
INTERNAL DATA BUS

MCS-80 (8080 A) 8-bit Microprocessor

Manufacturer
Device Technology
Data word width
Addressing range
Instruction width
Instruction count
Clock frequency
Package
Power requirements

Intel, AMD, and others
NMOS
8 bits
65,536 words, external
8 bits
78
0.5-4 MHz
40-pinDIP or flatpack
12 V at 40 rnA, 5 V at 60 rnA,
-5 Vat 10 J,J.A

07. Do

Bl- DIRECTIONAL
DATA BUS

TIMING
AND

CONTROL

Selecting the Right Microprocessor

B 181 'C 181

REG. REG.

D 181 E 181

REG. REG.

H 181 L 181 REGISTER

REG. REG. ARRAY

(161
STACK POINTER

1161
PROGRAM COUNTER

1161

Programmer's Eye View

-
PSW -

A

B c
D E

H L

SP

PC

Program status word

Primary accumulator

Secondary Accumulators/data counter

Secondary Accumulators/data counter

Secondary Accumulators/data counter

Stack pointer

Program counter

Figure 2-3 The Intel 8080 microprocessor. (Reprinted by permission of Intel

Corporation, Copyright 1978.)

Features. The 8080 has a register-oriented architecture containing six 8-bit

registers that may be used individually or in pairs for 8- and 16-bit operations.

An accumulator is provided to act as a primary working register. Figure 2-3

illustrates the 8080 microprocessor.
The 8080 is also capable of stack operations, as the instruction set of Fig.

2-4 indicates. A separate 16-bit stack pointer keeps track of the push-down

stack that resides in the combined program and data memory. The stack is

useful for implementing subroutines. Because subroutine return addresses are

automatically pushed down onto the- stack by the subroutine call, subroutine

Selecting the Right Microprocessor 49

nesting is limited only by the amount of read-write memory a user has pro­
vided. This versatile feature makes more structured programs possible and
lends itself to very complex control tasks and data processing.

All the 8080 features mentioned so far indicate that the 8080 is well suited
for control tasks. The· interrupt and DMA capabilities of this chip confirm the
suspicion. An asynchronous vectored interrupt capability allows external
devices operating through an 8080-series support chip (the 8259 priority inter­
rupt controller), to interrupt program execution and vector the program to an
appropriate service routine. Many devices can efficiently move data in and out
of memory using the 8080's DMA capability and another support chip, the 8257
DMA controller.

It should be noted that the 8080 is really a 3-chip microprocessor-that is,
it takes at least three chips or corresponding discrete hardware to build a useful
microprocessor. In addition to the 8080, an 8224 clock generator-driver and an
8228 bidirectional bus driver are needed. Up-grades from the 8080 micropro­
cessor have the functions of the two additional chips built into a single package.

Instructions. The 8080 has about 100 instructions. The exact count varies
for each manufacturer due to the way instructions are counted, not because of
differences between the microprocessors. Instructions vary from 1 to 3 bytes in
length, depending on the addressing mode of the instruction. The instruction
set is broken into seven primary groups. Figure 2-4 lists the instruction set.

Data transfer instructions move 8-bit data from register to register and also
to memory. A few 16-bit data transfer instructions are provided as well. An
interesting XCHG instruction swaps two specific register pairs (the D,E regis­
ters with the H,L registers). Two 16-bit transfer instructions (the LHLD and
SHLD instructions) move data from a ;register pair to memory or from memory
to a register pair, but these operations can only be performed on the H,L
register pair. The 1/0 transfer instructions (IN and OUT) are provided for
simple 1/0 handling.

Control instructions (there are six) are used. They are standard instructions
and include the NOP (no operation), HLT (halt), and interrupt enabling and
disabling instructions.

At first glance the 29 conditional and unconditional branch instructions
seem to contain more branch capability than you would ever need. This is
somewhat misleading for this instruction set because the 29 instructions only
allow conditional branching on four conditions: carry, zero, sign, and parity.
No combined conditional branches such as branch if carry exclusive-ORed
with sign (more commonly called branch less than) are provided. This makes
signed comparisons difficult.

Arithmetic instructions, like the transfer instructions, include 8- and 16-bit
operations. The basic adds and subtracts are present and a decimal arithmetic

OpCodt
1716151413121110

No. of Clock Assembly Instruction
Bytes Cycles Mnemonic Description

OpCode
1716151413121110

No. of Clock Assembly Instruction
Bytes Cycles Mnemonic Description

DATA TRANSFER ARITHMETIC

01 d d d s s s
01 11 0 s s s
01ddd110
00ddd110
00110110
0011 1 01 0
00001010
00011010
00101010
00100001
00010001
00000001
00110001
00100010
00110010
00000010
00010010
11 1 1 1 0 01
11101011
111 0001 1
11011011
11010011

CONTROL

01110110
0011 01 11
00111111
111 11 011
1111 0 011
00000000

BRANCHING

1 1 00 0 011
1 1 01 1 01 0
1 1 01 001 0
1 1 001 01 0
11000010
1 1 1 1 0 01 0
1 11 1 1 01 0
1 11 01 01 0
1 1 1 0 0 01 0
1 1 001 1 01
11 011 1 0 0
11 01 01 0 0
11 001 1 00
11000100
1 11 1 01 0 0
1 1 1 1 1 1 0 0
11101100
1 1 1 001 0 0
1 1 0 01 0 01
11 01 1 00 0
11010000
11001000
11000000
1 1·1 1 0 00 0
1 11 1 1 D ~0
11101 <100
11100000
1 1 1 01 0 01

11VVV111

7
10
13

7
16
10
10
10
10
16
13

18
10
10

MOVr,r
MOVm,r
MOVr,m
MVI,r
MVI,m
LOA'
LDAX B
LDAX D
LHLD
LXI H
LXI o'
LXI B
LXI SP
SHLD
STA
STAX B
STAX D
SPHL
XCHG
XTHL
IN
OUT

HLT
STC
CMC
El
Dl
NOP

10 JMP
10 JC
10 JNC
10' JZ

10 JNZ
10
10
10
10
17

17-11
17-11
17-11
17-11
1'7-11
17-11
17-11
17-11

10
11-5
11-5
11-5
11-5
11-5
11-5
11-5
11-5

5

11

JP
JM
JPE
JPO
Call
cc
CNC
cz
CNZ
CP
CM
CPE
CPO
RET
RC
RNC
RZ

RNZ
RP
RM
RPE
RPO
PCHL

RST

Move register to register 1 0 0 0 0 s s s
Move r:egister to memory 1 0 0 0 1 s s s
Move memory to register 1 0 0 0 0 1 1 0
Move to register, i'mmediate 1 0 0 0 1 1 1 0
Move to memory, immediate 1 1 0 0 0 1 1 0

Load Ace, direct 1 1 0 0 1 1 1 0
Load Ace, indirect via B & C 0 0 0 0 1 0 0 1
Load Ace, indirect via D & E 0 0 0 1 1 0 0 1
Load H & L, direct 0 0 1 0 1 0 0 1
Load H & L, immediate 0 0 1 1 1 0 0 1
Load D & E, immediate 1 0 0 1 0 s s s
Load B & C, immediate 1 0 0 1 1 s s s
Load stack pointer, immediate 1 0 0 1 0 1 1 0
Store H & L, direct 1 0 0 1 1 1 1 0
Store Ace, direct 1 1 0 1 0 1 1 0
Store Ace, indirect via B & C 1 1 0 1 1 1 1 0
Store Ace, indirect via D & E 0 0 1 0 0 t 1 1
Transfer H & L to stack pointer

Exchimge D & E with H & L
Exchange top of stack withH & L
Input to Ace
Output from Ace

Halt and enter wait state
Set carry flag
Compliment carry flag
Enable interrupts
Disable interrupts
No operation

Jump unconditionally
Jump on carry
JUPJP on no carry
Jump on zero
Jump on not zero
Jump on positive
Jump on minus
Jump on parity even
Jump on parity odd
Call unconditionally
Call on carry
Call on no carry
Call on zero
Call on not zero
Call on positive
Call on minus
Call on parity even
Call on parity odd
Return unconditionally
Return on carry
Return on no carrY
Return on zero
Return on not zero
Return on positive
Return on minus
Return on parity even
Return on parity odd
Jump unconditionally,

indirect via H & L
Restart

STACK OPERATIONS

1 1 00 01 01
11 01 01 01
11 1 001 01
11 110101
11000001
11 01 00 01
1 1 1 0 00 01
1 1 1 1 0 0 01

LOGICAL

1 01 0 Os s s
1 01 001 1 0
1 1 1 0 01 1 0
1 01 01 •. , s
1 01 01 1 1 0
1 1 1 01 1 1 0
1 01 1 0 s s s
1 01 1 01 1 0
1 1 1 1 01 1 0
1 0 1 1 1 s s s
1 01 1 1 1 1 0
1 1 1 1 1 1 1 0
0 0 1 01 1 1 1
00000111
0 0 0 01 1 1 1
0 0 0 1 01 1 1
0 0 0 1 1 1 1 1

INCREMENT/DECREMENT

00ddd100
00110100
00000011
0001001.1
00100011
0 0 1 1 0 01 1
00ddd101
0 01 1 01 0 1
00001011
0 0 01 1 01 1
00 1 01 0 1 1
0 01 1 1 01 1

7
10
10
10
10

11
11
11
11
10
10
10
10

AD Dr
ADCr
ADDm
ADCm
ADI
ACI
DAD B
DAD D
DAD H
DAD SP

SUBr
SBBr
SUBm
SBBm
SUI
SBI
DAA

PUSH B
PUSH D
PUSH H
PUSH PSW
POP B
POP D
POP H
POP PSW

ANA r
ANAm
ANI
XRAr
XRAm
XRI
ORA r
DRAm
ORI
CMPr
CMPm
CPI
CMA
RLC
RRC
RAL
RAR

5 ~I INR r

10 INR m
INX B
INX D
INX H
INX SP
OCR r

10
5
5

OCR m
DCX B
DCX D
DCX H
DCX SP

Add register to Ace
Add with carry register to Ace

Add memory to Ace
Add with carry memory to Ace
Add to Ace, immediate
Add with carry to Ace, immediate
Double add B & C to H & L
Double add D & E to H & L
Double add H & L to H & L
Double add stack pointer to H & L
Subtract register from Ace
Subtract with borrow register from Ace
Subtract memory from Ace
Subtract with borrow memory from Ace
Subtract from Ace, immediate
Subtract With borrow from Ace, immediate
Decimal adjust Ace

Push registers 8 & Con stack
Push registers 0 & E on stack
Push registers H & L on stack
Push Ace and flags on stack
Pop registers 8 & C off stack
Pop registers D & E off stack
Pop registers H & L off stack
Pop Ace and flags off stack

And register with Ace
And memory with Ace
And with Ace, immediate
Exclusive or register with Ace
Exclusive ·or memory with Ace
Exclusive Or With Ace, immediate
Inclusive Or register with Ace
Inclusive Or memory with Ace
Inclusive Or with Ace, immediate
Compare register with Ace
Compare memory with Ace
Compare with Ace, immediate
Compliment Ace
Rotate Ace left
Rotate Ace right
Rotate 'Ace left through carry
Rotate Ace right through carry

Increment register
Increment memory
Increment extended B & C
lncremen't extended D & E
Increment extended H & L
Increment stack pointer
Decrement register
Decrement memory
Decrement extended 8 & C
Decrement extended 0 & E
Decrement extended H & L
Decrement stack pointer

Figure 2-4 The Advanced Micro Devices 9080 (8080) instruction set. (Copyright©
1978 Advanced Micro Devices, Inc. Reproduced with the permission of copyright owner.)

50

--~----------·~11-d ---------------

Selecting the Right Microprocessor 51

adjust instruction is included. Again, certain operations only apply to certain
registers: Any register can be added to the accumulator, and memory can be
added to the accumulator, but memory cannot be added to a register without
first going through the accumulator. Two arithmetic instructions particularly
suited to multiple-precision arithmetic are included: the add with carry and
subtract with borrow.

Stack instructions work with 16-bit register pairs rather than individual reg­
isters. Pushing two registers onto the stack at once makes fast machine status
saving possible.

Logical instructions are similar to the arithmetic operations except that only
8-bit logical operations are officially possible. One 16-bit logical operation,
however, is possible- although this is not immediately apparent from the in­
struction set. By using the 16-bit add instruction, the H,L register pair can be
added to itself, resulting in (H,L) x 2, or an arithmetic left shift. Many 8080
programmers use this trick, especially when working with double-precision
numbers.

Increment/decrement instructions are provided for 12 discrete operations.
Upon close examination we see that status flags are set for 8-bit register incre­
ments and decrements but no flags are set for 16-bit ones. This mode of opera­
tion was chosen so 8-bit data status would not be destroyed by address manipu­
lation. Increments and decrements of 16-bits are typically employed when
using indexed addressing through the H,L register pair. With the current
status-setting method, the 8-bit arithmetic operations status can be saved while
obtaining the next data byte through indexed addressing. This is particularly
useful for multiple-precision arithmetic in which the carry from a least­
significant add can· be saved and added with the most-significant add through
incremented index addressing. The main problem with the conditional status­
setting arrangement is that it limits the double-precision capabilities of the
16-bit register pairs.

As you look at an instruction set, ask this question: How easy is program­
ming going to be with this instruction set? On an assembly-language level, the
8080 takes a lot of getting . used to and is difficult to program efficiently. The
preponderance of registers, each with its own unique capabilities, creates this
situation. When a programmer first tries to program the 8080 efficiently, he
finds himself cornered into bad situations. He may want to store the B,C
register pair directly into memory, but he'll find that only the H,L register pair
has that capability. He may want to swap the D,E and B,C register pairs, but
he'll find that only the H,L and D,E registers can be swapped. An 8080 pro­
grammer must be alert to all the 8080 register idiosyncrasies before efficient
programming is possible. The use of a high-order language is one way of side­
stepping this difficult learning process.

52 Selecting the Right Microprocessor

The 8080 has four basic addressing modes. Direct-mode addressing allows
direct loading or storing of the accumulator or H,L register pair from the
address specified in the two bytes following the instruction. The immediate
addressing mode allows the loading of any register or register pair with the data
following the instruction. Implied addressing is used in operations needing no
memory reference (such as register-to-register transfers). Indexed addressing
allows the contents of the D,E pair, the H,L pair, or the B,C register pair to be
used as 16-bit pointers to the data being loaded or stored into memory. Autoin­
crement and autodecrement addressing on the stack pointer are also provided
by the stack operations.

Interface Characteristics. Data can be sent to and taken from interfaces in a
few ways. The input and output instructions simply put an 8-bit device code on
the 16-bit address bus (repeated in the upper and lower address bytes). The
output instruction puts the present accumulator data on the data bus, and the
input instruction clocks whatever is on the data bus into the accumulator.
Status lines indicate when output and input operations are being performed.
Devices on the bus can use these lines to load device registers or drive the data
bus.

Because address lines and data lines are available outside the processor,
memory-mapped 1/0 is also possible. By building an interface device that acts
as a memory location at a certain address, data can be sent to that device
simply by writing into the device's assigned memory location.

The 8080 control lines are configured for simple direct memory access
interfacing. The processor can go into a hold state when a DMA device applies
a signal to the 8080's hold line. The 8080 promptly disconnects itself from the
bus, allowing the DMA device to take over address and data line controls and
access memory directly.

Support. The 8080 is currently one of the best supported microprocessors in
regard to interface chips. Because eight manufacturers second-source the part,
everything from DMA controllers to floppy disk controllers are available.

Software support is equally diversified. Editors, assemblers, and high­
order languages are available. Intel's MDS software development system is the
most popular means of developing 8080 software in industrial applications.

Physical Characteristics. The 8080 is available in many clock speeds rang­
ing from 1 to 4 MHz. Due to the intense competition in the 8080 market, prices
are very low, but the fact that the 8224 and 8228 support chips are needed to
make the 8080 operational adds significantly to this cost.

The 8080 is an NMOS microprocessor, requires three de voltages for
power, and dissipates about a watt. Again, clock speed and version make a big
difference.

The 8085

The 8085 is an upgraded version of the 8080 that incorporates a built-in clock
and system controller, thus eliminating the need for the two 8080 support chips
(the 8224 clock generator and 8228 system controller). It is software compatible
with the 8080 and contains two additional instructions.

A peripheral processor that is designed to operate as a slave to the 8080 or
8085 is a recent addition to the 8080 family. The 8041/87 41 contains a processor,
1 K bytes of ROM, 1/0 ports, clock, and timer-counter. This part can be used
with the 8080 to increase processing power or as a stand-alone processor.

The Z80

The Zilog Z80 is a greatly enhanced upgrade of the 8080. Enough similarity is
maintained to allow 8080 programs to be used, and additional instructions
(which correct the 8080's lack of arithmetic capability) are included in the
instruction set. More than twice the number of internal registers are used, and
two independent index registers enhancethe addressing capabilities.

The hardware characteristics of the Z80 have also been improved. The
system control functions of the 8228 and the clock functions of the 8224 have
been built into the Z80, making it a one-package microprocessor. Only one
power supply is required as opposed to the three required for the 8080. An
additional nonmaskable interrupt line has also been added.

Purpose. The Z80 has enough features to qualify it as a true EDP-type mi­
croprocessor; but it has retained and even improved on the control characteris­
tics of the 8080, making it an excellent controller as well. The Z80 has gained
wide acceptance in both computing and control applications as a result of its
dual-purpose nature.

Features. The Z80 is a register-oriented processor containing eighteen 8-bit
registers and four 16-bit registers. Two accumulators and flag registers are also
provided. Figure 2-5 illustrates the Z80 structure. A close look at the registers,
however, reveal that only about half the registers can be used at any one time.
The accumulator, flag, and registers B, C, D, E, H, and Lin the main register
set are mirrored as A', F', B', and so on in the alternate register set. An
exchange instruction must be performed to select which set (main or alternate)
is going to be used. This feature is useful for interrupt processing in which only
one commandis necessary to save the interrupted program's status, but it also
means that the Z80's register set, at any given time, is about the same as the
8080's. Two totally new index registers have been added, however, and new
indexed instructions support them.

53

54

13

INSTRUCTION
DECODE
&
CPU
CONTROL

Selecting the Right Microprocessor

CPU AND
SYSTEM
CONTROL
SIGNALS

iii
+5V GND <I>

Programmer's Eye View

Z80-CPU 8-Bit Microprocessor Program status words

Manufacturer
Device Technology
Data word width
Addressing range
Instruction width
Instruction count
Clock frequency
Package

Zilog, Mostek
NMOS
8 bits
65,536 words external
8 bits
158
5 kHz-4 MHz
40-pin DIP

r-7"7".......,...,.-w,...,.,.,~ Primary Accumulators

w.~~<,<,4o~Secondary Accumulators/data counter

..w~~iAA'JtS!Secondary Accumulators/data counter

~~A.;.<;~~Secondary Accumulators/data counter

~.w.....,.,.~~Stack pointer

f'oLL<..L.t...O'--""'-LL.I.""~ Program counter

A'
B' C'

D' E'
H' L'

5 Vat 90 rnA
r----'c.:....:_--1 Index register X

'---.,.---1 Index register Y Power requirements

Interrupt vector

Memory refresh counter

Shaded registers represent the 8080A subset.

Figure 2-5 The Zilog Z80 microprocessor. (Courtesy Zilog, Cupertino, Ca.)

Many additional instructions have been added, eliminating most of the
8080's arithmetic and data processing shortcomings. The' first thing one notices
when comparing the 8080 and Z80 instruction sets is that all the instruction
names have been changed. This makes comparison difficult without a pre­
liminary learning effort.

The basic additions to the instruction set include: arithmetic shifts, block
transfer instructions, a loop control instruction, instructions specifying the new
addressing modes, extended arithmetic operations (including a negate), and

Selecting the Right Microprocessor 55

extended I/0 instructions. On the surface this instruction set appears to be
extremely powerful, but a few points should be noted. Many of the added
arithmetic instructions decrease the amount of memory needed to represent an
operation, since multiple instructions are no longer needed. But the single Z80
instruction execution time may actually be longer than the total of the 8080' s
multiple instructions. An arithmetic right shift is a good example of this. Using
an RLC followed by two RAA instructions, an 8080 can perform the shift in 12
clock cycles. The Z80 has a single SRA (shift right arithmetic), but it takes up
to 23 clock cycles to execute. In addition, most of the new Z80 instructions
require a 2-byte representation, the first of which indicates that it is not an 8080
instruction.

The Z80 parity flag bit has a dual purpose. On logical operations such as
AND it represents word parity, but on signed twos' complement operations it
represents a twos' complement overflow. This is yet another enhancement to
the Z80' s signed arithmetic ability.

Interface Characteristics. The IN and OUT instructions, memory-mapped
I/0, and DMA are all used for I/0. From a software viewpoint, I/0 is a bit
simpler with the Z80 than 8080 since any register can be written to the output or
loaded through the input instruction. The need for passing all the data through
the accumulator has been eliminated. And block transfer I/0 instructions sim­
plify block I/0 routines.

One very unique Z80 feature is its simultaneous I/0 capability. On an 8080
input instruction, the 8-bit input address is output on the 8 least significant and
the 8 most significant bits of the address; data is read into the accumulator over
the data lines. The Z80, however, outputs the I/0 address on the Slow-order
bits of the address bus, and reads the 8 data bus bits into the accumulator (or
register). This allows you to output and input data to a device all in one opera­
tion. It's a very efficient and clever scheme. Figure 2-6 compares 8080 and Z80
I/0 formats.

8080 "IN INSTRUCTION" data flow

Redundant 8-bit IN
8-bit IN device
device code code to

peripheral

I Register B I

From peripheral

Z80 "IN INSTRUCTION" data flow

8-bit data 8-bit IN
to peripheral device code

to peripheral

Bus

From peripheral

Figure 2-6 A comparison of 8080 and Z80 II 0 methods.

56 Selecting the Right Microprocessor

The Z80 CPU has a dynamic RAM refresh capability that is worth re­
viewing if your design calls for dynamic RAMs and few parts. A refresh regis­
ter and control circuitry interleave sequential memory read cycles between
processor memory access cycles. The refresh operation is thus totally transpar­
ent to the user-unlike some computer refresh schemes that interrupt process­
ing and execute a refresh routine (notably the LSI-11). This feature greatly
simplifies the interfacing of dynamic RAMs to a Z80 system, as memory refresh
logic is no longer needed on the interface.

Support. The Z80 is similar to the 8080 so most of the 8080 software and
many of the 8080 support ICs operate with· it. In addition, Zilog, Mostek, and
NEC all supply support chips and software designed for the Z80.

Physical Characteristics. The Z80 is an NMOS microprocessor. It is avail­
able with clock speeds up to 4.5 MHz. It requires a single-phase square-wave
clock and a single 5-Volt power supply. It dissipates about 500 m W.

Other ZBO Family Members

Two additional processors are available in the Z80 family: a one-chip micro­
computer with 96 bytes of RAM (called the Z8) and the computationally power­
ful Z8000 with built-in multiply and divide instructions.

The 6800 Family

The M6800 is another one of the most widely used microprocessors. This
family of chips has design features that make it very desirable in control appli­
cations.

Purpose. The M6800 microprocessor was designed to be a general-purpose
central processing unit, featuring total twos' complement arithmetic as well as
control capability. The 6800 therefore does very well in EDP-type applications.

The instruction set reflects the true computer-like design of the 6800. At
first glance it looks very similar to that of Digital Equipment Corporation's
PDP-:- 11 minicomputer, the instruction set after which it was patterned. Many
powerful arithmetic and comparison instructions are available. A wide variety
of addressing modes add to the 6800' s list of minicomputer traits.

Features. The 6800 can be considered an advanced second-generation mi­
croprocessor or a very early third-generation model. Advanced features, such
as a single 5-volt power supply, in addition to more primitive characteristics,
such as the need for a two-phase clock, are both present.

The 6800 series of parts was, from its very beginning, designed to act as a

Selecting the Right Microprocessor 57

functionally balanced microcomputer building-block set. The goal was to en­
able the construction of small controllers and computers with four or five parts
plus a few discrete timing components-without the use of bus buffers.
Straightforward software development was another goal.

The 6800 is memory-oriented and its architecture follows the philosophy of
using a low-speed clock with many actions per clock cycle. Most 6800 instruc­
tions execute in 2, 3, or 4 clock cycles (versus 8 or 9 for the 8080). Data can be
manipulated with two 8-bit accumulators, and a 16-bit index register is avail­
able for address manipulations. A direct addressing mode allows the lowest 256
bytes of processor memory to be accessed without supplying a full 16-bit ad­
dress. This allows you to operate with a bank of 256 registers, which provides
enough working storage to free you from having to plan a register data handling
strategy.

A 16-bit stack pointer holds last-in-first-out data stored in external RAM
(thereby "pointing" to the most recent push in the stack). Such external stor­
age of nested instruction addresses simplifies subroutine calls and makes inter­
rupt servicing a much easier proposition.

Although register strategy doesn't have to be planned, one thing that must
be carefully planned is branching. The 6800 incorporates memory- and time­
efficient relative conditional branching. An 8-bit offset is specified in the byte
following the conditional branching instruction. If a branch condition is met,
the offset will be added to the program counter and a branch will result. The
only limiting factor is that branch distance is restricted to 127 bytes in either
branch direction; no extended conditional jump instructions (specifying a
16-bit absolute jump address) exist. A single unconditional extended jump
instruction is provided. You must therefore remember to either limit branching
to a distance of 127 bytes or conditionally branch to an extended jump state­
ment.

Branch relative to subroutine and jump absolute to subroutine instructions
are included. The branch to subroutine, like the conditional branch statements,
is limited to a subroutine branch distance of 127 bytes.

The 6800 instruction set's direct addressing mode and extensive condi­
tional branch capabilities allow the majority of the instructions being performed
to be one or two bytes long. This reduces memory requirements and decreases
memory access, thereby increasing processor performance. These factors
make the 6800 desirable in real-time application in which execution speed is
important. Figure 2-7 shows the 6800 structure.

Interface Capability. Like the PDP-11, the 6800 relies on memory-mapped
1/0. No independent 1/0 channel or 1/0 instructions are provided. Device
registers that act as memory locations must be provided. The advantage to this
approach is that fewer processor control lines are required, so 1/0 program­
ming is considerably simplified. With totally memory-mapped 1/0, DMA pe­
ripherals can communicate directly with other devices as well as memory with
no additional control lines or logic.

58

A15 A14 A13 A12 A11 A10 A9 AS
25 24 23 22 20 19 18 1 7

Clock, q)1 3

Clock, q)2 37

Reset 40

Non-Maskable Interrupt 6

2 Halt
Instruction

Interrupt Request 4 Decode
and

Three-State Control 39 Control

Data Bus Enable 36

Bus Available

Valid Memory Address 5

Read/Write 34

Vee= Pin a
v55 =Pins 1,21

26 27 28 29 30 31 32 33
07 06 05 04 03 02 01 DO

MC6800 8-Bit Microprocessor

Manufacturer
Device Technology
Data word width
Addressing range
Instruction width
Instruction count
Clock frequency
Package
Power requirements

Motorola, AM I
NMOS
8 bits
65,536 words external
8 bits
72
Dc-2 MHz
40-pin DIP
5 Vat 100 mA

Selecting the Right Microprocessor

A7 A6 A5 A4 A3 A2 A1 AO
16 15 14 13 12 11 10 9

Programmer's Eye View

Accumulator A

.----~_;_~Accumulator 8
1-------1 Index register X

1-___:~:.:...:..:-=------l Program counter PC
L-__:.-=....::;:.:_:.:--1 Stack pointer SP

Status register

Figure 2-7 The Motorola M6800 microprocessor. (Courtesy Motorol~ Semiconductor
Products, Phoenix, Arizona.)

The disadvantage of memory-mapped 1/0 is that every interface on the bus
must be able to recognize its address and go through the strict memory 1/0
protocol. The 6800, however, avoids these pitfalls with a simple memory 1/0
protocol and by suggesting that you allocate the top 32K of the 64K address
space to I/0 devices. The most significant bit of the address (Al5) thereby acts
as an I/0 bit and can be used along with a few other bits to distinguish between

Selecting the Right Microprocessor 59

interfaces on the bus. This is a good solution for systems requiring less than
32K of memory. If more memory is required, you can use most of the 64K
memory space for memory and use more complex 16-bit address recognizers,
which wouldn't be too detrimental (in terms of added parts) to a very large
system.

Support. The 6800 has a wide range of support chips. Since 6800 series parts
are designed to work as a functional building-block set, the interface parts have
compatible'controllines. Few discrete parts are needed to get a system going.
As with the 8080 support chips, anything from simple serial interfaces to on­
chip CRT and floppy disk controllers are available.

In terms of software, the 6800 is one of the best supported microproces­
sors. For initial circuit designs there are evaluation boards, and for software
development there is the EXORciser system-a complete software develop­
ment tool consisting of a terminal, floppy disks, PROM programmer, as­
sembler, editor, and other development software.

Physical Characteristics. The 6800 is available from six manufacturers in
three basic speed ranges -1, 1. 5, and 2 MHz. The 6800 requires only one 5-volt
power supply and dissipates about half a watt of power. Commercial, indus­
trial, and military versions are available.

The bus driving capabilities of the 6800 are adequate to support up to six
6800-series support devices without the need for a bus extender or additional
drivers.

Other 6800 Family Members

The 6802, a truly third-generation version of the 6800, features an onchip clock
plus 128 bytes of internal RAM that can be used as the stack. Just two chips
(the 6802 and 6848 ROM-I/O-timer) can constitute a complete small system, as
Fig. 2-8 illustrates.

The 6809 is an enhanced upgrade of the 6800and features 16-bit operations
and powerful data processing instructions like multiply and divide.

The 6500 Family

The 6500 series of microprocessors are direct descendants of Motorola 6800
technology. The MOS Technology people, however, took a somewhat different
approach than Zilog did with the Z80 in enhancing an existing processor. The
6500 and 6800 microprocessors have similar architectures and instruction sets,
but the 6502' s instruction set has no upward compatibility with the 6800 as does
the Z80 with the 8080. Although many identical-in-name-and-function instruc­
tions are used, the operation codes (or opcodes, as they're commonly called)
are totally different. A 6800 program cannot run on a 6502 without major
revision.

0
)

0

A
 1

 5
A

 1
4

A
 1

3
A

 1
2

A
 1

1
A

 1
 0

A
9

 A
8

25

24

23

22

2

0

19

18

17

M
e

m
o

ry
 r

ea
dy

E
na

bl
e

R
es

et

N
on

-m
as

ka
bl

e
in

te
rr

u
p

t

H
a

lt
In

te
rr

u
p

t
re

qu
es

t

X
 ta

l

E
X

 ta
l

B
us

 a
va

ila
bl

e

V
a

lid
 m

e
m

o
ry

 a
dd

re
ss

R
e

a
d

/w
ri

te

A
7

A

6

A
5

A

4

A
3

A

2

A
1

A
O

16

15

14

13

12

11

10

9

V
e

e
 s

ta
n

d
b

y

36

R
A

M
 e

na
bl

e

O
J

-
(.

) ·;;

O
J

"0

~

O
J

P
ar

al
le

l
.!

::

0
.

1/
0

·;::
:: O
J

V
e

e

V
e

e

V
e

e

IR
Q

R

E
S

M
R

H

A
L

T

V
M

A

R
E

cs

o
V

M
A

N

M
I

C
lo

ck

2
K

 X
 8

 R
O

M

E
 M

C
6

8
0

2

B
A

10
 1

/0
 l

in
es

R

/W

M
P

U
X

T
A

L

3-
lin

e
ti

m
e

r
R

/W

0
.

D
a

-0
7

 K

)
:

D
a

-0
7

0

26

27

28

29

3
0

31

32

33

0

7

0
6

0

5

0
4

0

3

0
2

01

D

O

(a
)

1
-

C
P

2
A

n
-A

1
n

-

F
ig

ur
e

2-
8

T
he

 6
80

2
an

d
its

 a
pp

li
ca

ti
on

 in
 a

 c
om

pl
et

e
tw

o-
ch

ip
 s

ys
te

m
.

(a
)

68
02

D
a

-0
7

~
-
~
-

A
a

-A
1

5
-.

(b
)

m
ic

ro
pr

oc
es

so
r.

 (
b)

 C
om

pl
et

e
m

ic
ro

co
m

pu
te

r b
ui

lt
 w

ith
 ju

st
 tw

o
pa

rt
s.

 (
C

ou
rt

es
y

M
ot

or
ol

a

S
em

ic
on

du
ct

or
 P

ro
du

ct
s,

 P
ho

en
ix

,
A

ri
zo

na
.)

A
a

-A
1

5

~

V
e

e

--' ~-·--%------·------

Selecting the Right Microprocessor 61

Purpose. Not surprisingly, the 6502 also shares a common purpose with the
6800. It's a general-purpose CPU featuring twos' complement arithmetic as
well as control capabilities and therefore performs very well in data processing.
One of the original design goals of the 6500 series was to reduce the cost of
microprocessors. At the time it was introduced, microprocessors of this type
were selling for about $100. Although the 6502 offered substantial savings then,
the costs of microprocessors on the whole has dropped enough to make the
cost benefit negligible.

Features. We focus here on the features of the most common microproces­
sor in the 6500 family-the 6502. Architecturally, the 6502 uses a slow clock
with many operations per clock cycle. Most operations execute in 2 or 3 clock
cycles. It is a memory-oriented machine with only one accumulator (as op­
posed to the 6800's dual accumulators) and features two 8-bit index registers
whose values are used to form index offsets. Figure 2-9 shows the 6502.

Stack capabilities are provided, but stack size is limited to 256 words
because of the 8-bit stack pointer. The location of the 256-byte stack is always
assumed to be 0100t6 to 01FFt6. For control applications-and indeed even in
general-purpose processing-a stack size of 256 is usually adequate unless
subroutines are nested very ·deeply or you happen to be a stack-oriented pro­
grammer.

In the addressing department, the 6502 has one mode that neither the 8080
or 6800 series has-indirect addressing. An indirect instruction consists of
two bytes: one opcode byte and one offset byte that helps form a 16-bit address.
The value of the 16-bit address represents the storage location where the data
can be found.

Interface M~thods. The 6500-series processors use an 1/0 philosophy that is
nearly identical to the 6800's. Memory-mapped 1/0 and DMA are the major
features of these microprocessors. The fact that the 6500's most commonly
used interface chip, the 6520 PIA, is identical and interchangeable with the
6800-series peripheral interface adapter (the 6820 PIA) says a lot about the 1/0
similarities of these processors.

One important thing should be noted about the DMA capabilities of the
6500 series. The address and data buses cannot be disabled separately, and
there is no halt state. DMA can be handled by interleaving CPU processing and
processing wait states. Since the 6500 series microprocessors are not well
suited to DMA operations, it would be wise to choose the 6800 instead of the
6502 in applications requiring extensive DMA.

Support. The 6502 is fairly well supported in both hardware and software
areas. A few dedicated 6502 support chips, including the 6520 PIA and 6522
PIA plus two timers, are available, and many of the 6800-series support chips
will work with the 6502 with little or no external matching circuitry.

- REGISTER SECTION CONTROL SECTION ____..

ABe

ABI

AB2

AB3
.. -----ROY

AB4

AB5

AB6

AB7

ADDRESS
BUS

ABM

AB9

ABIO

ABII

ABI2

ABI.l

A814

ABI5

lEG~NU
UBI
1>82

fi ~ S BIT li"E
UB3

DB4

UB'
1>86

1>87
I ~ I BIT ll:'o.~

(6501)
e JIINJ

-.-+--- 9 2 liN I

UHA

Bt;S

165011

CLOCK eo (IN)
INPUT (6502.3.4.5)

ill OUT (6501)

112 OUT (6501)

NOTE: I. CLOCK GENERATOR IS NOT INCLUDED ON MCS6SOI.

2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE MCS6SOX PRODUCTS

MCS 6502 8-Bit Microprocessor

Manufacturer
Device Technology
Data word width
Addressing range
Instruction width
Instruction count
Clock frequency
Package
Power requirements

MOS Technology
NMOS
8 bits
65,536 words
8 bits
56
20 kHz-2 MHz
40-pin DIP
5 Vat 140 mA

Programmer's Eye View

Accumulator A

Index register X

.----'-------t Index register Y

'-----r-----1
Program counter PC

Stack pointer SP
Status register

Figure 2-9 The MOS Technology 6502 microprocessor. (Courtesy MOS
Technology, Norristown, Pa.)

62

Selecting the Right Microprocessor 63

The 6502 has no software commonality with the 6800, but a good software
support base has been developed by 6502 manufacturers and users. Editors,
assemblers, cross assemblers, a math package, and even a FORTRAN com­
piler are available.

Hardware prototyping is supported by the KIM-1 and TIM microcomputer
cards. Software development is supported by MOS Technology's MD2 ~50
development terminal and Rockwell's System 65, which features dual floppy
disks.

Physical Characteristics. The 6502 is available from three manufacturers in
1 or 2 MHz clock versions. It requires a single 5-volt power supply and dissi­
pates about 750 mW of power. An onboard clock is included on many of the
6500-series microprocessors. The 6500 processors equipped with internal
clocks output both phase 1 and phase 2 clock signals for timing uses by memory
and interfaces.

Other 6500 Family Members

MOS Technology has chosen to expand the 6500 series of microprocessors
horizontally instead of vertically. The 6500 is available in 10 versions, some
with 40 pins and some with only 28 pins. Various memory addressing and
control signal options are available.

SPECIAL-PURPOSE MICROPROCESSORS

So far we've discussed only the most popular microprocessors. The 8080, Z80,
6800, and 6502 clearly predominate in the microcomputer market. There are,
however, many specialized microprocessors currently being used in applica­
tions in which certain features peculiar to a specialized microprocessor are
desirable. In some cases this specialized feature may be power dissipation
while in others it might be I/0 versatility, high processing throughput, or multi­
ply and divide capability.

The following paragraphs spotlight a few of the more common specialized
microprocessors and describe the key features that make these devices desir­
able in special-purpose applications.

An I/O-Oriented Microprocessor: The FB

The Fairchild F8 microcomputer is well suited for use in I/0 intensive applica­
tions. Unlike the single-chip 8085 and 6802, the F8 requires at least two chips to
make a minimal system. These ICs are not merely bit-slice chips; they are
separate operational pieces of the overall F8 architecture. This form of parti­
tioning allows you to build a microcomputer or microcontroller in a customized
I/0 configuration.

64 Selecting the Right Microprocessor

The main chip in the F8 family is the 3850 CPU. Like most CPUs, this
device contains an 8-bit arithmetic logic unit, control unit, and system bus
interfaces for input and output. The CPU even contains a 64-byte scratchpad
RAM and clock generator. These features were quite advanced and unique to
the F8 when it was first introduced, before tlie advent of one-chip microcompu­
ters. Figure 2-10 shows the 3850 CPU.

The main difference between the F8 and standard 8085- and 6800-type
microprocessors is that the 3850 CPU has no program counter, data counter, or
stack pointer on the CPU chip. These counters are instead placed on the
interface and memory chips and are therefore duplicated many times if many
memory and I/0 chips are used. Six bytes of the scratch pad RAM are set aside
to store program-counter and data-pointer addresses. The addresses are sent
out to the memories over the I/0 channels instead of the more common address
bus.

The distributed addressing characteristics of the F8 give this micro family
its good I/0 capabilities. Because no 16-bit address bus is needed for a program
address, many pins are freed for I/0 use. The 16 pins on the CPU chip are
divided into two 8-bit I/0 ports.

Because all memory units have their own program counters and address
registers, which all clock simultaneously, it would seem that many memory
conflicts would arise. But this is avoided by assigning a unique addressing
space in memory to each device.

Other chips in the F8 family include the 3851 1K ROM and I/0 timer, the
3852 and 3853 dynamic and static memory interfaces, the 3854. DMA control
unit, the 3861 peripheral I/0 and timer chip, and a few other ROMs.

Mostek, an F8 second-source manufacturer, has produced the 3870, which
is a complete single-chip microcomputer version of the F8. The 3870 not only
includes the standard 3850 CPU but features a 2K ROM, lower power con­
sumption (350 mW versus 700 mW for the 3850), a single 5-volt power supply
(the + 12 V supply has been eliminated), and a per-chip cost of less than $10
(in "quantity" buys).

The F8 has found wide use in the field of video games due to the large
number of input interfaces (joysticks, switches, and control paddles) and out­
put interfaces (video displays, score counters, and flashing lights) that seem to
be the hallmark of electronic games. In these applications, the F8's specialized
feature-its versatile I/0 capability-has helped reduce interface complexity
and cost.

A Low-Power Microprocessor:
The 1802 COSMAC

Power dissipation is not usually a top-priority item in the design of a microcom­
puter. Most microprocessors only draw a watt or two of power; the power
consumption of the memories and interface components overshadows the mi-

0
)

U
l

16
 b

id
ir

e
ct

io
n

a
l

1
/0

 b
its

11~
l~o

I I

1
/0

1
0

7

.....
,._.

.
~

1
/0

1
1

0

I I

II
?
I ,_7

C
lo

ck

{
X

T
L

-X

re
fe

re
nc

e
X

T
L

-Y
 =

:::

R
C

_

_
_

..
.

2-
ph

as
e

{
0

cl
o

ck
 s

ig
na

ls

W
ri

te

::

:=

_
_

,.
-

}
5

-c
o

n
tr

o
l

:
lin

es

~

..
.-

.
E

X
T

 R
E

S

:
8

-b
it

~}

1

da
ta

 b
us

-.
1

.
G

N
D

:::

::8
 +5

 v

-
-
o

 +
1

2
 v

..

,_
_

 I
N

T
 R

E
O

~

-
-
..

 c
o

n
tr

o
l

b
it

S
p

e
ci

fic
a

tio
n

s

D
at

a
w

o
rd

 s
iz

e
M

e
m

o
ry

 a
dd

re
ss

 r
an

ge

C
lo

ck
 s

pe
ed

P

ac
ka

ge

P
ow

er
 r

eq
ui

re
m

en
ts

8
b

its

6
5

,5
3

6
 b

yt
e

s
.1

to
 2

 M
H

z
4

0
-p

in
 D

IP

5
V

/8
0

 r
n

A

12
 V

/2
5

 r
n

A

P
ro

gr
am

m
er

's
 E

ye
 V

ie
w

8
-b

it

A
cc

u
m

u
la

to
r

5
-b

it

st
at

us

re
gi

st
er

 (
W

)

S
cr

at
ch

 p
ad

D

D

6
-b

it
 i

n
d

ir
e

ct
 s

cr
at

ch
pa

d
ad

dr
es

s
re

gi
st

er
 (

IS
A

R
)

D

<

H
 =

 d
at

a
co

u
n

te
r

*
K

 =
st

a
ck

 r
eg

0

=
p

ro
g

ra
m

 c
o

u
n

te
r

2
1

0
B

it
 n

o
 .

--
-.

--
-.

-
S

ta
tu

s
re

gi
st

er
 (

W
)

S
ig

n
C

ar
ry

'-

-
-
-
-
Z

e
r
o

'-
-
-
-
-
-

O
ve

rf
lo

w

'-
-
-
-
-
-
-
In

te
r
r
u

p
t

co
n

tr
o

l
b

it

*A
ct

u
a

l
re

gi
st

er
s

on
 p

er
ip

he
ra

l
ch

ip
s

§j

I
I

_
_

,.
.J

{
H

U

H
L

{
K

U

K
L

{
au

Q

L

F
ig

u
re

 2
-1

0
T

he
 F

ai
rc

hi
ld

 3
85

0
F8

 C
P

U
.

(C
ou

rt
es

y
F

ai
rc

hi
ld

 C
am

er
a

an
d

In
st

ru
m

en
t

C
or

po
ra

ti
on

,
M

ou
nt

ai
n

V
ie

w
,

C
a.

)

66 Selecting the Right Microprocessor

croprocessor power draw. In the microcomputer field there is, however, one
route left open to people who need a system that consumes a very small amount
of power; that route is the COSMAC CMOS microprocessor supported by
CMOS RAMs and CMOS interface circuitry. The COSMAC's low power dissi­
pation has made it one of the most popular of the available special-feature
microprocessors.

The COSMAC has a fairly primitive architecture, which is better suited to
low-end controller applications than data processing tasks. The architecture is
based on sixteen 16-bit general-purpose registers that are referenced by three
4-bit pointer registers. The registers can be designated as data pointers, pro­
gram counters, 1/0, or general-purpose registers by the programmer. This ver­
satility allows you to set aside a few program counters for subroutine use.
Figure 2-11 shows the COSMAC's architecture.

Three of the sixteen registers-RO, R1, and R2-are allocated for special
functions. The RO register is used as a transfer address register during DMA
operations. When an external device references memory directly in the DMA
mode, it steals one machine cycle and stores or fetches data from the address
specified _by RO. The RO register is automatically incremented after a DMA
transfer, leaving RO pointing to the next data location. This unique built-in
transfer address register cuts down significantly on the amount of hardware
required to implement a DMA interface. No external 16-bit transfer address
register or address bus driving circuitry is required, as it would be in a standard
DMA interface.

More hardware savings can be realized in interrupt-driven 1/0 application
when using the COSMAC. In most computers' interrupt-driven 1/0 systems,
the interrupting peripheral's interface requests that the processor interrupt its
current program and temporarily transfer control to an 1/0 program handling
that peripheral's data communication. The interface then drives the
microprocessor's data or address bus (depending on the microprocessor) with
the address of the 1/0 program so the processor knows where to jump to
execute the program and "service the peripheral.'' A set of bus drivers are
needed to put this jump address on the bus. The COSMAC eliminates the need
for this set of drivers by defining register R1 as the interrupt jump address.

The final dedicated register, R2, serves as a subroutine status-storing stack
pointer. The COSMAC stack feature is not very powerful, however, and can­
not be used to process data in general-purpose processing applications.

The actual power consumption of the COSMAC depends heavily on clock
rate, power supply voltage, and even on the instruction being performed. As
Fig. 2-12 illustrates, power consumption can be as low as 600 p., W or as high as
5mW.

The 1802 COSMAC is used extensively in battery-powered processors and
portable equipment in which low thermal dissipation is required. Being a
CMOS device, the COSMAC is very immune to electrical noise and input
voltage variations.

,---~----~~ -M:O~ -l~
SYSTEM

L ___ j

I
REGISTER
MATRIX

(16 X 161
R

R.l R.O

,------,

L

l/0
INTERFACE

N (4)

J

TIMING
AND

CONTROL

a-BIT BIDIRECTIONAL DATA BUS

Specifications

4-bit, program counter pointer ~
4-bit, data counter pointer X

8-bit buffer for P and X T

Data word size 8 bits
Memory addressing range 65,536 bytes
Clock speed .1 to 2 MHz
Package 40-pin DIP
Power requirements 5 V /.5 rnA

Programmer's Eye View

16-bits

8-bits 8-bits

R(0).1 R(O).O
R(1).1 R(1).0
R(2).1 R(2).0
R(3).1 R(3).0

R(4).1 R(4).0
R(5).1 R(5).0
R(6).1 R(6).0

R(7).1 R(7).0
R(8).1 R(8).1 >

R(9).1 R(9).1
R(A).1 R(A).O
R(B).1 R(B).O
R(C).1 R(C).O
R(D).1 R(D).O
R(E).1 R(E).O
R(F).1 R(F).O

16, 16-bit address registers
or 32, 8-bit data registers.
No permanently assigned
data counters or program
counters

D 8-bit primary Accumulator

Figure 2-11 The 1802 COS MAC's power dissipation characteristics. (Courtesy RCA
Solid State, Somerville, N.J.)

67

10008
AMBIENT TEMPERATURE (TA) = 25°C 6

0 4
C\1
0 2 co
a:

~
s 1()()8 ,o'-',= a:: 3: 6

~ r 4 1--f---

z-o 2
c.

2a. /vvrf J L ~-,0

·~
ll. 8
en 6 t>-~c..Y..? L7 .. -.~oo .. / (/) 4
0 ,,~p -.~c..c.. .. --y
a:: 2 1-"' :;... c..C..
1.1.1

./yt[~c..-i.' 3:

'a 0
ll.

/_, ~/NOTES:
...J 6
~ 4 ~'---- IDLE="OO"AT M(OOOO) u V BRANCH= "3707'AT M (8107) n: 2 >- v CL =50 pF
1- 0.1

2 4 6 8 I 2 4 6 8 I 2
0.01 0.1 I

CLOCK INPUT FREQUENCY (fctl-MHz

I Load Capacitance (CL) =50 pF
~
I 7
_J

~
>
u
c:
Q)

:::::1
0"
~

u..
~
u
0
u
E
:::::1

E

4 6 8
10

Ji :.f~----~~----~1 __ __JIL---~1----~~----~~----LI ____ LI ----L---~
25 35 45 55 65 75 85 95 105 115 125

+
Spec

Ambient Temperature (T A)- °C

Value
at 50 pF

Typical power dissipation as a function of clock
frequency for 8 RANCH instruction and IDLE
instruction for CDP1802D.

Typical maximum clock frequency as a function of temperature.

Figure 2-12 The RCA 1802 COS MAC CMOS microprocessor. (Courtesy RCA Solid

State, Somerville, N.J.)

68

Selecting the Right Microprocessor 69

Software support for the 1802 includes a resident and cross assembler; a
stmulator, a firmware debug package, and a floppy-disk-based development
system. A high-level interpretive language is also available.

COSMAC hardware support includes the 1852 8-bit I/0 port, 1854 CMOS
DART and many other CMOS LSI parts that are part of RCA's extensive
CMOS line.

The COSMAC microprocessor has been available in one form or another
(the older 1801 COSMAC was a two-chip set) for many years, and to this day
remains the only CMOS 8-bit microprocessor. For extremely low-power pro­
cessing applications, the COSMAC is the only choice.

HIGH-PERFORMANCE MICROPROCESSORS

Some applications have one general requirement: the need for vast amounts of
processing power. Data processing and scientific computing that require many
arithmetic operations (including multiplication and division) are cases in point.
A few years ago, only a minicomputer or mainframe could have efficiently
handled these large processing tasks, but today's LSI technology allows the
fabrication of microprocessors that perform as fast or faster than the minicom­
puters of a few years back. These powerful processors are usually 16-bit
devices, many of which are built around minicomputer instruction sets in order
to maintain software compatibility with existing program libraries.

The first two 16-bit upward-compatible microcomputers to enter the mar­
ket were the Digital Equipment Corporation LSI-11 and the Texas Instruments
TMS 9900, patterned after the PDP-11 and TI 990 series minicomputers. Since
the introduction of these two microprocessors, other manufacturers have fol­
lowed suit in concept. Table 2-1 lists a few of the current microprocessors and
the minicomputers with which they maintain a compatibility with regard to
instruction sets.

While the minicomputer-like microcomputers bring near-mini performance
down to the micro level, a new generation of powerful 16-bit microcomputers

Microprocessor
Part Number

TMS9900
IM6100
LS1-11
9440
mN601
MCP-1600

Table 2-1 Upward-Compatible Microcomputers

Manufacturer

Texas Instruments
Intersil
Digital Equipment
Fairchild Semicon
Data General
Western Digital

Compatible Minicomputer

TI' s 990 series
Digital Equipment Corporation PDP-8
Digital Equipment Corporation PDP-11
Data General Nova
Data General Nova
Similar to DEC PDP-11

70 Selecting the Right Microprocessor

has evolved from the common 8-bit microprocessors. Extended and enhanced
16-bit versions of existing 8-bit microprocessors are now being introduced. The
Motorola 6809 and 68000, Intel 8086, anq Zilog Z8000, fall into this category.

A few representatives from both high-performance 16-bit categories will
now be examined. Many experts feel that these processors will replace simple
8-bit micros and even minicomputers in many areas in the near future, so you
should be familiar with these high-performance devices.

The TMS 9900 Family

One of the first 16-bit one-chip microprocessors was Texas Instruments' TMS
9900. Unlike the Digital Equipment Corporation LSI-11, which comes as a
three-chip set, the TMS 9900 is one large chip in a 64-pin package. Figure 1-13
shows the primary physical characteristics.

Purpose. The TMS 9900 was initially intended to be a central processing unit
that could successfully compete with minicomputers in scientific applications.
It is definitely intended to be a "data processing" type of microprocessor and
would be considered overkill in all but the most complex controller applica­
tions.

Features. The TMS 9900 is a 16-bit NMOS microprocessor that runs with a
maximum clock rate of 3 MHz (four clock phases are required). The architec­
ture follows the philosophy of high-speed clock with many small operations per
cycle. A simple add operation takes 14 to 30 clock cycles, depending on the
addressing mode. The TMS 9900 isn't very fast with simple character­
manipulating operations, and this is attributable to the number of cycles it takes
to perform simple operations.

The TMS 9900 is a memory-oriented machine whose structure consists of a
program counter, status register, and workspace pointer. The work-space.:.
register concept employed in the TMS 9900 is quite interesting: Instead of
having a bank of general-purpose registers like the 8080 and COSMAC-or
even dual sets of registers like the Z80-the device uses 16 memory locations
for its working registers. The location of these registers in memory is deter­
mined by the workspace pointer. Once the workspace pointer is set to the
proper location in memory, the 16 memory locations beyond the pointer can be
referenced with simple 4-bit offsets that can be thought of as register labels
(Ot6-Ft6). The workspace registers allow great flexibility in subroutine nesting
and interrupt processing, since saving the machine's registers is simply a mat­
ter of changing and restoring the workspace pointer and using a fresh block of
16 registers in the interrupt service routine or subroutine.

The TMS 9900's memory structure reflects its lineage from the world of
large computers. For its sophisticated minicomputer-like interrupt system,
many of the lowest and highest memory locations are reserved for initialization
trap vectors and interrupt service vectors.

T1

T2

PROGRAM COUNTER

WORKSPACE REGISTER

HNl5
HOLDA

COA5
wr

READY

WAIT
r;m.m:J

DB IN

RESET

lAO

CRUCLK

</l1-<P4

DO-D15

Specifications

Data word size
Memory address range
Clock speed
Package
Power requirements

16 bits
32,768 bytes
500kHz to 4 MHz
64-pin DIP
5 V/75 mA
1.2 V/40 mA
-5 V/0.1 mA

INTREO ICO IC3
AO-A14

15

16

ALU

16

CRUOUT
CRUIN

Programmer's Eye View

TMS 9900

General memory

PC Program

Program counter

WP Workspace

16 general- pointer

purpose
"registers" Status

Figure 2-13 The Texas Instruments TMS 9900 microprocessor. (Courtesy Texas
Instruments, Inc., Dallas, Texas.)

71

72 Selecting the Right Microprocessor

Although the TMS 9900 doesn't transfer or add words very quickly, there
are two features that drastically increase its throughput in arithmetic applica­
tions: its 16-bit precision and its built-in multiply and divide capability. A 16-bit
multiply or divide takes about 400 microseconds using inline code (no loop
counting) on a 4 MHz Z80, and it takes only 18 to 42 microseconds on the TMS
9900.

Interface Characteristics. Three 1/0 methods are used in the TMS 9900:
memory-mapped 1/0, DMA 1/0, and communication register unit or CRU reg­
ister transfer 1/0. Memory-mapped 1/0 and DMA transfer operations are quite
standard and are similar in operation to the 6800's 1/0 scheme, but the CRU
transfer, which is unique to the TMS 9900, deserves a closer examination.

Texas Instruments reasoned that board layout and parallel-data-bus com­
plexity could be reduced if some sort of serial data transfer capability was
incorporated into the microprocessor. In addition to being able to read or write
a bit-stream of data, TI wanted the TMS 9900 to be able to selectively control
the bits it was sending and receiving. The solution to these problems was the
CRU system.

A serial input line (CRUIN), a serial output line (CRUOUT) and a syn­
chronizing clock (CRUCLK) are provided, as shown in Fig. 2-14. Serially
shifting n bits of a word stored at memory location x is simply a matter of
invoking the LDCR X, N instruction (load CRU register with n bits from
location x). As the specified bits are serially shifted out the CRUOUT output
line, the addresses on the address lines are constantly incremented. The first
address on the address lines in this transfer sequence is specified by workspace
register 12. The incrementing address lines can thus be used to multiplex the
serial bits out to different locations using an external multiplexer. Figure 2-14
gives an example of an address-driven multiplexing CRU application.

The CR U 1/0 concept can indeed cut down on interface complexity in
some cases, but the CRU method of 1/0 transfers hasn't been accepted and
isn't being incorporated in other microprocessors. A reason may be that it is a
difficult concept to grasp unless you've worked with CRU transfers before.

Interrupt-driven 1/0 is easily handled by the 16-level priority-interrupt sys­
tem. The TMS 9900 has fairly simple and straightforward electrical interface
characteristics. Address, data, and control information flow on a 16-bit address
bus, a 16-bit data·bus, and a 15-bit control bus. TMS 9900 inputs are high
impedance and reduce loading on the internal bus drivers. The need for bus
drivers and receiver chips is thereby eliminated in small systems, but larger
systems require many bus drivers due to the wide 16-bit data bus. With more
than 32 lines to buffer at each peripheral interface, interface "component
counts'' rise rapidly.

A 4-phase clock must be generated for the TMS 9900. A TIM 9904 is
available to perform this task, but it means that another interface part is added
to the system.

Selecting the Right Microprocessor

INO

IN15

OUTO

OUT7

OUTS

OUT15

0

SN74LS251
(TIM 9905)

8 to 1
MUX

7

0

SN74LS251
(TIM 9905)

8 to 1
MUX

7

0

SN74LS259
(TIM 9906)

8-bit
latch

7

0

SN74LS259
(TIM 9906)

8-bit
latcti

7

A12 A14 4

A

SN74LS04
B
c
s
1---...,...-+--------1---1----~ CRUI N

A
B
c
s ---....jCRUCLK

y

D
A
B
.k
G

Figure 2-14 The TMS 9900's CRU input and output system. (Courtesy Texas
Instruments, Inc., Dallas, Texas.)

15

16

73

To
memory

Support. A 9901 programmable interface chip, a 9902 asynchronous inter­
face chip, and the 9904 clock driver help support the TMS 9900 on the hardware
level.

Software support for the microprocessor is no problem. Because it is pat­
terned after the TMS 990 minicomputer's instruction set, assemblers, editors,
FORTRAN, BASIC and even a program library are available to all users. A
high-order language called PL/9900 eases real-time programming tasks.

Other 9900 Family Members. The 9900 comes in an PL version called the
SBP-9900. A single-phase 4 MHz clock is required, and performance is in­
creased since P L is a bipolar device technology.

A down-sized 8-bit-data-bus version of the TMS 9900, called the TMS
9980, is also available. This part comes in a 40-pin package, is cheaper than the
TMS 9900, and is better suited to controller-type applications.

The MC6809

Motorola has taken the enhanced 8-bit microcomputer approach in entering the
mid-performance 16-bit microprocessor market. By extending the existing 6800
instruction set, increasing the number of memory addressing modes, adding
true 16-bit arithmetic capabilities, and providing an 8- by 8-bit multiply instruc­
tion, the 6809 has become a powerful processor that is well suited for complex
data processing tasks.

Features. The MC6809 is designed to operate in both 8-bit and 16-bit modes.
A complete set of 8-bit instructions with mnemonics identical to those for the
6800 is incorporated. Although object code cannot be transferred directly from
the 6800 due to the different opcodes, old 6800 source programs will run if
assembled with a 6809 assembler. And they will run more efficiently as a result
of architectural improvements.

Because the 6800-series microprocessors are memory-oriented, the 6809
has been designed to operate more efficiently in memory-intensive data pro­
cessing modes.

Figure 2-15 illustrates the MC6809's architecture and enhanced instruc­
tions. When comparing the MC6809 to the 6800, the increase in the number of
registers becomes obvious. A user stack pointer, an additional index register,
and a direct page register have been added. It is interesting to note that Mo­
torola stuck to its dual-accumulator architecture philosophy. The new registers
are not data-manipulation or general-purpose in nature but are rather enhance­
ments to the processor control and addressing capabilities.

One of the biggest complaints programmers had about the 6800 was its total
absence of long conditional branches. Only short (127-byte) relative branches
were possible. This situation is totally remedied in the MC6809. A full comple­
ment of long branch instructions is now available. This improvement is in
keeping with Motorola's philosophy: "make it easy to program." Table 2-2
shows the new 16-bit instructions.

The 6800 microcomputer has always been looked on as an 8-bit PDP-11.
The instruction set is very similar, and extensive addressing capabilities are
present in both machines. The MC6809 moves one step closer to the full ad­
dressing capabilities of the PDP-11 with the introduction of autoincrement
addressing. This mode is very valuable when sequentially indexing through
data because no index updating commands are required. Table 2-3 presents the
new addressing modes; note that autoincrement by one and by two are avail­
able for both 8-bit and 16-bit operating modes.

One final feature that is new to the MC6809 is the SYNC instruction.
Executing this instruction stops processing and causes the processor to wait
until it receives an external interrupt before resuming its operation. This fea­
ture is said to be useful for synchronizing software to events in the real world,
but it will also find use in synchronizing many processors in a multiprocessor
system.

74

....
..

(J
1

A
15

A

14

A
13

A

12

A
11

A

10

A
g

A
s

25

24

23

22

20

19

18

17

I
In

st
ru

ct
io

n
 I

0
7

o 6
o 5

o 4
o 3

o 2

o 1

o 0
26

27

28

29

30

31

32

33

A
7

A
6

A
5

A
4

-
A

3
A

2
A

1
A

0
16

15

,1

4
13

12

11

10

9

E
X

 ta
l

X
 ta

l
M

R
D

Y

B
R

E
Q

H
a

lt

R
es

et

N
M

I

F
IR

Q

I
I

re
qi

st
er

I

--
--

+
'i

 I
R

Q

A
0

-A
1

5

D
O

-D
7

M
C

6
8

0
9

B
A

B
S

S
pe

ci
fic

at
io

ns

D
at

a
w

o
rd

 s
iz

e
8-

an
d

1
6

-b
it

 o
p

e
ra

tio
n

s
M

e
m

o
ry

 a
dd

re
ss

in
g

ra
ng

e
6

5
,5

3
6

 b
yt

es

C
lo

ck
 s

pe
ed

2

M
H

z
P

ac
ka

ge

40
-p

in
 D

IP

P
ro

gr
am

m
er

's
 E

ye
 V

ie
w

I
A

I

I
B

!A

cc
u

m
u

la
to

rs

D

I
x

I

y

r
u

I

I
s

I

In
d

e
x

re
gi

st
er

s

}
S

ta
ck

p

o
in

te
rs

[
P

C

I P
ro

gr
am

 c
o

u
n

te
r

[
C

C
R

-

1 C
o~

di
ti

on
 c

od
e

re
g1

st
er

I
D

P
R

ID
ir
~c
t

pa
ge

re

g1
st

er

F
ig

u
re

 2
-1

5
T

he
 M

ot
or

ol
a

M
C

68
09

 1
6-

bi
t m

ic
ro

co
m

pu
te

r.
 (

C
ou

rt
es

y
M

ot
or

ol
a

S
em

ic
on

du
ct

or
 P

ro
du

ct
s,

 P
ho

en
ix

,
A

ri
zo

na
.)

Table 2-2 The Motorola 6809's 16-bit Instructions

Instruction

ADDD
SUBD
LDD
STD
CMPD
LDX, LDY, LDS, LDU
STX, STY, STS, STU
CMPX, CMPY, CMPU, CMPS
LEAX,LEAY,LEAU,LEAS

SEX
TFR register, register
EXG register, register
PSHS (register) I
PSHU (register) I
PULS (register) i
PULU (register) i

Description

Add memory to D accumulator
Subtract memory from D accumulator
Load D accumulator from memory
Store D accumulator to memory
Compare D accumulator with memory
Load pointer register from memory
Store pointer register to memory
Compare pointer register with memory
Load effective address into index regis­
ter
Sign Extend D accumulator
Transfer register to register
Exchange register to register
Push register(s) onto hardware stack
Push register(s) onto user stack
Pull register(s) from hardware stack
Pull register(s) from user stack

Table 2-3 The Motorola 6809 Indexed Addressing Modes

Mode

,R
[0, R]
,R+
,R++
[,R++]
,-R
,--R
[,--R]
N,R

[N,R]

A,R
[A,R]

B,R
[B,R]

D,R
[D,R]

Effective
Address (EA)

EA=R
EA = [R]
EA = R; R+ 1 ~R
EA = R; R+ 2~R
EA = [R]; R + 2 ~ R
R-1 ~ R;EA =R
R-2~R;EA =R
R-2 ~ R;EA =[R]
EA = R+N

EA = [R+N]

EA = R+A
EA = [R+A]

EA = R+B
EA = [R+B]

EA = R+D
EA = [R+D]

Description

Indexed with zero offset
Indexed with zero offset indirect
Autoincrement by 1
Autoincrement by 2
Autoincrement by 2 indirect
Autodecrement by 1
Autodecrement by 2
Autodecrement by 2 indirect
Indexed with signed N as offset
(N = 5,.8, or 16 bits)
Indexed with signed N as offset indirect
(N = 5, 8, or 16 bits)
Indexed with signed accumulator A as offset
Indexed with signed accumulator A as offset indi­
rect
Indexed with signed accumulator B as offset
Index~d with signed accumulator B as offset indi­

rect
Indexed with accumulator D as offset
Indexed with accumulator D as offset indirect

R = X; Y, U, or S register

76

____ ,,-----------------------------~-· _" ________ ~----

Selecting the Right Microprocessor 77

Interface Characteristics. The MC6809 uses the same memory-mapped I/0
methods employed on the 6800, 6801, and 6802 microprocessors. The external
pinout of the 40-pin device is in fact nearly identical to the 6802; two pins are
assigned as crystal inputs, since the 6809 has a built-in clock to which an
outboard quartz crystal can be connected.

Support. The wide selection of 6800 peripheral chips will all work with the
MC6809. A unique assembler that handles 6800 assembler source code as well
as all the new MC6809 instructions is also available. The EXORciser develop­
ment system is also compatible with the new MC6809.

The 8086

Intel took the same approach as Motorola when it entered the market with its
16-bit high-performance microcomputer. By enhancing and upgrading an exist­
ing processor, the 8080, Intel managed to create one of the highest performance
microprocessors available today. The objectives of the 8086 design were to
provide up to ten times the performance of the 8080A while maintaining
software compatibility at the assembly-language level. These goals were met by
improving and expanding the 8080 architecture and by employing a new device
technology.

The 8086 is the first microprocessor on the market to use the new silicon­
gate short channel HMOS process. This process makes the 8086 faster as well
as more reliable than a similar product fabricated from regular NMOS.

Features. The 8080 was primarily a controller. Signed arithmetic, arithmetic­
conditional branching, and arithmetic shifts were not possible. All of these
problems have been eliminated on the 8086. A complete set of 8- by 16-bit
signed or unsigned arithmetic operations including both 8-bit and 16-bit multi­
plies are available (remember, the 6809 only had an 8-bit multiply).

The 8086 has an expanded register set, also. Figure 2-16 illustrates the new
registers. The general-purpose working registers of the 8080 (H, L, B, C, D) are
retained but are now the A, B, C, and D 16-bit registers. Base pointer, source
index, and destination index registers add to the indexed addressing capabili­
ties of the 8086, and a whole block of relocation registers has been provided to
support the 8086's automatic software relocation feature. The 8086 can address
up to 1 million bytes as 64K pieces with a 20-bit address generated using the
relocation feature.

The 8080 is much less sophisticated than the 6800 and 6502 in the way it
handles instruction fetching and execution. The 8080 waits until it needs in­
structions before fetching them and finally executing them, while the 6800 and
6502 fetch instructions ahead of time and have them ready when the processor
needs them. This form of instruction lookahead overlaps computations with
memory operations (the next instruction is fetched while the current instruction

78

Register file

Data,
pointer, and
index regs
(8 words)

Bus interface unit
1 Relocation 1

register file
Segment
registers

and

6-byte
instruction

queue

CLK Reset Ready MN/MX GND

Vee

BHE/S7
A 1 ~;s6
A 1 ~;s3
AD 15 -AD0

INTA, RD,
WR

DT/R, DEN,
ALE

as0 , as1

Selecting the Right Microprocessor

Specifications

8- and 16-bit
Data word size operations
Memory addressing range 1 megabyte
Clock speed 5 to 8 MHz
Package 40-pi n cerD I P

AX

BX

ex
DX

Programmer's Eye View

SP

BP

Sl

Dl

ES

Accumulator

(H L) Base

(BC) Count

(DE)

(SP)

Data

Stack pointer

Base pointer

Source index

Destination
index

Code segment

Data segment

Stack segment

.Extra segment

Figure 2-16 Intel's 8086 16-bit microprocessor. (Reprinted by permission of Intel
Corporation, Copyright 1978)

is being executed). Instruction lookahead has been successfully used on large
computers for many years. The 8086 does incorporate an instruction lookahead
feature, which helps increase its operating speed.

The 8086 is actually two processors in one package. The bus interface unit
(BIU) handles instruction fetching and maintains a queue of six instructions. In
other words, the 8086 looks ahead by six instructions and uses nonmemory
access cycles to keep the instruction queue full. The instructions are actually

----------------~--------------------------------------·----------~~-.. ------------
Selecting the Right Microprocessor 79

executed by the instruction execution unit (lEU), which performs the typical
microprocessor instruction tasks; but instead of fetching instructions from
memory, it fetches them from the instruction queue.

The six-instruction queue has a few big advantages other than the inherent
speedup of processing due to instruction fetch-execution overlap. Since in­
structions are stored in the queue, the processor is not slowed down by DMA
operations (at least not by light DMA transfers). A direct memory access by
another device on the bus won't delay the fetching of an instruction by the
lEU, because the EIU gets its instructions from the instruction queue rather
than from memory. When the DMA operation is finished, the BID "hurries" to
fill the instruction queue, which has been depleted by the lack of memory-to­
queue fetches. By optimizing memory use in this way, the 8086 makes the most
out of the memory's maximum throughput rate (memory bandwidth).

Intel has gone to great lengths to make the 8086 easy to program and easier
for a compiler to generate code for. A complete set of string-manipulation
instructions result in simplified text and list processing in business data pro­
cessing applications, and the dual index registers and stack pointer make modu­
lar and stack-orien~ed compiled programs easy to implement. Relative address­
ing is also included

1
for software simplicity and for object-code reduction.

Interface Characteristics. The 8086 comes in a 40-pin ceramic dual-inline
package (40-pin cerDIP) and interfaces to 1/0 devices in the same way as the
8080. Intel has again reverted to the three-package-microprocessor concept. As
in the case of the 8080, a clock generator chip (8284 in this case) and a bipolar
bus controller (8288) are needed to make the 8086 into a reasonable system.
(The 8288 can be omitted in minimal configurations, however.)

Support. Support software for the 8086 is well thought out, and anyone
owning Intel's MDS 8080-based development system will have no trouble de­
veloping 8086 programs. By using a new assembler, old 8080 source code can
be compiled into new 8086 object code, and all the new instructions can be used
on new programs.

The new ASM86 8086 assembler is one of the finest assemblers available in
the microprocessor field and offers a comprehensive macro facility, piece-by­
piece modular assembly, and absolute or relocatable object-code generation.

Physical Characteristics. The HMOS device technology has given the 8086
state-of-the-art specifications. The 8086 contains 29,000 transistors, runs on a
single 5-volt power supply, and has a clock rate of 5 to 8 MHz (depending on
the part version). Memory cycle time is 500 ns for the 8 MHz part, which makes
the use of a high-performance RAM (such as Intel's matching HMOS 2147 4K
RAM) imperative.

The zaooo

Zilog took a unique approach in the development of a high-performance 16-bit
microprocessor. Unlike most manufacturers, who took either a minicomputer
and scaled it down or a simple 8-bit microprocessor and enhanced it, Zilog
started from scratch and took a no-holds-barred approach to processing power.
By taking all the advanced design features of large minicomputers and main­
frames, (notably the DEC PDP-11 and IBM 370) the company produced a
very powerful microprocessor: the Z8000. The Z8000 is, in fact, the·first micro­
processor aimed at the high-end minicomputer market rather than the low­
end market of micros that "approach minicomputer performance." A Z8000
microprocessor running at a mere 4 MHz provides twice to five times the
performance of a Digital Equipment Corporation PDP-11/35 and even outper­
forms the PDP-11/45 in many applications.

Features. The Z8000 is in no way compatible at the assembly or compiler
language level with the Z80; the advanced architecture ruled out any similari­
ties. Instead, the Z8000 has a repertoire of 110 unique instructions that include
powerful macroinstructions such as block searches and string manipulations.

'The Z8000 has an interesting memory addressing scheme. Zilog realized
that many users would be perfectly satisfied with a 16-bit address field, while
some specialized applications would require a much larger addressing space.
Therefore, the Z8000 comes in two configurations: a 40-pin version is available
for 16-bit addressing, and a 48-pin version can be used when up to 48 mega­
bytes of memory are required (a segmented 24-bit address is used to accom­
plish the task). Even the fastest-moving memory technologies will have trouble
surpassing this memory addressing range.

Support. Zilog supplies unique support and application software for the
Z8000. Compilers for BASIC, COBAL and FORTRAN are planned. A lower­
level programming language called PL/Z is also available for the Z8000.

BIT-SLICED MICROPROCESSORS

Over the years, large computers and other large digital devices have advanced
from one technology to another. The original mechanical and vacuum-tube
logic designs were replaced by transistor equivalents. Small-scale integrated
circuits then entered the picture.

The first generation of SSI was introduced in 1965, when three to six gates
were available on chips costing from $10 to $20 each. The 7 400 series of logic
elements made its debut a short time later, with gates and dual flip-flops being
the most advanced element in the 7400 line.

80

-----------------------·--------------------------------------~. -----------~ .. -----

Selecting the Right Microprocessor 81

In the late sixties and early seventies, device technology matured to the
extent that counters, shift registers, and complete arithmetic units could be put
onto a single chip. This second generation of integration, called medium-scale
integration or MSI, caused packages to increase in size from 14 pins to 16 and
24 pins. The problem was no longer squeezing a few hundred gates onto a chip,
but rather finding enough pins to bring the terminals of these gates out to the
real world.

Up until the early seventies, bipolar logic (TTL, DTL, and ECL) domi­
nated the picture. The early seventies marked a turning point in logic design.
Metal-oxide semiconductor (MOS) technology developed to the point at which
complete control units could be built on one large-scale integrated (LSI) circuit,
and many slow-speed logic designs started using MOS microprocessors to
replace the unnecessarily fast, power-consuming bipolar MSI logic. High­
performance applications, however, were still being implemented with bipolar
MSI.

While the MOS microprocessor advanced through approximately four gen­
erations of refinements, bipolar logic also advanced. More and more devices
were put onto single chips, and more complex functional building blocks were
used due to the limited number of input and output pins on a single package.
These LSI bipolar functions finally became so complex that they began to
resemble microprocessors. Microprogram sequencers began to be called con­
trol units and powerful register file/ALUs began to be called bit-sliced CPUs.
In reality, the new bit-sliced microprocessors are just logical extensions of
standard bipolar logic families. Two cases in point are the Texas Instruments
74481 series, which is an extension of the 7400 TTL line, and the Motorola
10800, which is an extension of the MECL 10000 series.

For high-performance applications, such as mainframes, high-level mini­
computers, high-frequency instrumentation, and high-speed dedicated logic,
bipolar logic is still the best in terms of pure performance. Bipolar MSI and the
new bipolar bit-sliced microprocessors are currently being used in these appli­
cations.

One of the most popular bipolar bit-sliced microprocessors is the 2900,
which we'll examine now. We'll look at what appears to be the most powerful
microprocessor in existence, the ECL 10800, in the following section.

The 2900 Family

The Advanced Micro Devices (AMD) low-power Schottky TTL 2900 series is a
family of LSI logical building blocks designed for use in high-performance
applications. Instead of having a one-chip structure and a fixed instruction set
like most 8-bit and 16-bit MOS microprocessors, the 2900 is totally user­
configurable to implement any instruction set or logical design the user
chooses.

82 Selecting the Right Microprocessor

The key word for the 2900 series is microprogramming. Advanced Micro
Devices recommends that you use one to four 4-bit microprocessor data slices
(2901s), a few microprogram sequencers (2909 or 2911s), and a microprogram
memory in implementing a logic design. The resulting processor executes a
user's program by fetching a user's instruction out of the real microcomputer
memory and sequencing through a small microprogram in microprogram mem­
ory to move data around and toggle control lines. Instructions in the micropro­
gram memory are called microinstructions. These instructions are not the typi­
qal instructions that you would find in aMOS microprocessor's instruction set,
but rather are wide-word-width (20 to 70 bits wide) instructions with each bit in
the word controlling a unique multiplexer, AL U, or register. By defining the
words in the microprogram memory properly, a 2900 system can be made to
execute instructions in the same way an 8080 or 6800, or for that matter a
PDP-11 or IBM 370 does. With this sort of flexibility it is obvious why many
manufacturers are using 2900 series parts to build their minicomputers: less
parts and identical performance.

In regard to chip counts, the 2900 series microprocessors in no way com­
pare to MOS microprocessors. It typically takes 30 to 40 parts to implement a
simple 2900 series design. The reason is twofold: In order to retain flexibility,
lower-level building blocks are used in the design. Secondly, 16-bit or even
8-bit arithmetic elements are not possible due to the amount of heat generated
by the bipolar circuitry.

Features. Due to the design-it-yourself nature of the 2900 series, it is hard to
talk about instruction sets, branch capabilities, and the like._Figure 2-17 illus­
trates a 2901 microprocessor slice. The best way to examine its characteristics
is to look at its function and clock rate.

The 2901 is built around a 16-word, 4-bit two-port RAM, a high-speed 4-bit
ALU, and associated shifting, decoding, and multiplexing circuitry. Nine con­
trollines (which are intended to be driven by a microinstruction word) control
the RAM and AL U. Fulllookahead inputs and outputs are provided on the
built-in AL U, and a 2902 high-speed carry lookahead generator can be used to
cascade up to four of the 4-bit slices together to make a 16-bit ALU. Banks of
16-bit ALUs can also be cascaded to make machines with even wider word
widths of 32, 48, and 64 bits.

Basically, processing is performed by moving data around within the mi­
croprocessor slice using RAM and the Q register as temporary storage loca­
tions. Data can be processed by the ALU and sent back to the RAM, or it can
be output through the DATA OUT port. It's often desirable to bring data in
from the outside as well, so a direct DATA IN port has been provided.

The 2901's performance· varies, depending on how many bit slices are
cascaded together. A 64-bit (word width) machine will run slower than a 16-bit
machine due to the added AL U propagation delay, but as a general rule the
2901 can be expected to clock at 7 to 10 MHz. To get an idea of what this

8

Destination
control

ALU
function

ALU
source

0

'A' (read)--..,......,.
address

RAM
16 addressable registers F Q

'B'
(read/write) __ ,..,..

'A' 'B'
data data
out out

Q register
address

Direct --+-+-----..
data in--+-+----..

D A B

Carry in--+-+-~

Output __,~~o-~
enable

ALU data source
selector

G
p
CN+4

Q

F3 (sign)
Overflow
F = 0000

Figure 2-17 Advanced Micro Devices' 2901 bipolar microprocessor slice.
(Copyright © 1978 Advanced Micro Devices, Inc. Reproduced with permission of
copyright owner.)

83

84 Selecting the Right Microprocessor

means, performance-wise, compare the 2900's 110 ns add time to the 4 MHz
Z80's 1 J..tS time. Bear in mind that 1~-ts is the equivalent of 1000 ns. Obviously,
there's really no·comparlson.

Interface Characteristics. Again, there is really no general well-defined
way to interface to a 2900 microprocessor; you define your own interfaces. As
with other bipolar designs, plenty of driving current (enough to drive about 10
other equivalent microprocessor loads) is available and little buffering is re­
quired. Figure 2-18 illustrates a 2900-based microcomputer. Notice how the I/0
structure was set up. Independent bus interface registers are used to drive the
data bus, and a 16-bit address bus is set up using four 2930 program control
units. In this case the I/0 protocol is determined by the microprogram memory
contents. A similar 1/0 protocol and structure can be used for easy bus interfac­
ing if you choose the 2900 for your high-performance design.

Support. Assemblers, editors, and compilers are not available for the 2900,
as no firm instruction set exists. Rather, an extensive hardware development
system called System 29 is available from AMD. Based on a 9080 (AMD's
equivalent to the 8080), System 29lets you develop and test your own designs
on a software simulation and hardware breadboard basis. A universal
assembler-which allows you to define the mnemonics and opcodes-is pro­
vided to accommodate almost any configuration we might come up with.

A hardware development kit called the Am2900K 1 is also available as a
learning and breadboarding aid.

Ancillary Devices. In addition to the 2901 CPU, 2909-2911 microprogram
sequencers, and 2902 lookahead units, the 2900 family features an interrupt
expander (2913), vectored-interrupt controller (2914), and a one-by-two port
register (2918). Other simpler interface components such as buffers and gates
are given 2900-series designations also. All of the chips in AMD's extensive
low-powered Schottky line ·are also compatible with 2900-series parts.

The latest addition to the 2900 family is the 2903. This unit does everything
the 2901 does, but it also performs n x n multiplies in n clock cycles, divides,
normalizes, and does double as well as single incrementing.

The 10800 Family

Ever since Motorola introduced its MECL 1 family of emitter-coupled logic
(ECL) in the mid-sixties, competitive logic families such as TTL, MOS, and
PL have had trouble keeping up. On a pure performance basis there is still
nothing that can touch the latest versions ofECL (Fairchild FlOOK subnanose­
cond logic). Large mainframes and scientific computers use ECL circuitry
almost exclusively, and minicomputer makers are resorting to ECL ~esigns to

Selecting the Right Microprocessor 85

keep their CPUs competitive with the ever-threatening microprocessor. With
this in mind, it is not surprising that the microprocessor with the highest pro­
cessing performance is the ECL 10800 4-bit bit-sliced processor, and that Mo­
torola, the leader in ECL technology (IBM may argue with this), introduced it.

The MC10800 is a 4-bit processor slice. similar in function to the 2901
processor slice, except that it contains no register files. The user must provide
an external register file. This allows the user to decide on how large a register
file is necessary and doesn't limit him to 16 registers (as the 2901 does). Note
that the register file is expandable in the improved 2903.

Features. After considering the microprogram control and timing chips for
the 10800 series (the 10800 uses microprogramming, too), it can be seen that the
10800 is better organized than the 2900. On the 2900 many discrete interface
components were required to perform interface functions and generate an ex­
ternal bus (see Fig. 2-18). The 10800's support chips, however, work together
in a ''smoother'' way and require fewer interface components. A small control
memory, an MC1080r microprogram control unit, and a 10802 timing unit
perform all the necessary control functions, while a dedicated memory inter­
face chip, the MC10803, generates an external address and data bus. Figure
2-19 shows the 10800 and Fig. 2-20 illustrates a small system built out of these
bit-sliced parts.

The basic ALU instruction execution time of the 10800 is 30 to 50 ns, which
corresponds to a clock rate of 20 to 30 MHz. In wide-word applications, how­
ever, the clock must be run at 10 to 15 MHz to allow for ALU propagation
delays. Like the 2901, the 10800 has a full carry-lookahead system.

The 10800 has on~ feature that no other bit"'sliced processor has: it can
work directly with BCD numbers. It uses a nines' complement adder circuit to
simplify BCD calculations in the BCD mode.

Interface Characteristics. As with the 2900 series, the user defines the
interfaces to the 10800 microcomputer. All interface levels are ECL. Care must
be taken in 10800 interfacing due to the frequencies of the signals involved. All
lines must be treated as transmission lines and ECL-to-TTL level converters
must be used to interface to any external TTL circuitry.

Physical Characteristics. The 10800 parts come in 48-pin quad-inline pack­
ages (QUIL) for tight mounting configurations.

The 10800 runs on the standard -5.2 ECL power supply voltage and dissi­
pates about 1.5 watts per 4-bit processor slice. Higher power consumption is
the price we pay for speed.

Ancillary Devices. In addition to the processor slice and its interface sup­
port chips, the 10800 series features a 5-bit ECL/TTL level translator (10804), a
32-.x 9-bit register (10806) for building the register file, and a 16-bit programma­
ble shifter (1 0808).

A

Data bus (16 bits) ...

J v
I

Instruction

I register

I

rioE Mapping

I from

Address of interrupt

7 y Shift ~ service routine~
MUX

MAP 0 o-11 Cl
Am2922

roo-+ Condition ,.. code
MUX

Interrupt
request

....

....

A

...

AM2910 t ~ ~ cc Microprogram controller
1o-3

VECT CCEN PL Y0-11
Operand A, B 8-bit select

Vector
MUX

I Microprogram memory I map OE ~
PROM

I BR0 -BR 11 Output enable
5~ ~ for BR0-BR 11

~12

L.~oE Pipeline register l
I ~ IL

0
..-+
:::; I 9-bit ~

Vector

Am2914 4, Priority I
interrupt

-if
Address bus (16 bits)

II
Control bus

Figure 2-18 A complete microcomputer system built out of 2900-series parts.
(Copyright © 1978 Advanced Micro Devices, Inc. Reproduced with permission of
copyright owners.)

86

r--

........_
......--

..

....

(16bits)

I Bus interface register
~

(16bits)
4-Am2917's ""

(16bits)

1---

~ H Shift
\;7 \;7 ~ 7 \/ MUX v

Am2901A ~ Am2901A Am2901A Am2901A 1-
Bipolar ,---.. Bipolar ,---.. Bipolar ,---.. Bipolar
micro- mi·cro-m1cro-

r+
m1cro-

r+' processor ,.._ processor processor r+- processor

r Status l-- register
~

(16 bits)

-
v ~v., \1'7 ~\/'7

Am2930 Am2930 Am2930 Am2930
Program Program Program Program
control f----+ control ~ control f----+ control

unit unit unit unit

v \} ..
...

87

AS16
(LC)

AS2
AS3

PG

GG

CouT
PAR
CAR

OF

R4

ZD
PAR
RES

AS13

AS14

AS7

I

I

I
+ +

Latch l MUX
J

1
f

Mask ·~ -
!

'

t

Output
bus

l cont

Arithmetic
logic
unit

~
Accumulator

MUX
Shift

network + +
l ~ I
t

Input
bus
cont

I bus

Specifications

Data word size
Memory address range
Clock speed
Package
Power requirements

4 bits, bit-sliced
User determined
Dl'l to 15 MHz
48-pin QUI L
-5.2 V /240 rnA
-2.0 V/199 rnA

Programmer's Eye View

User determined.

.....

A bus

0 bus

AS5

AS6

ASO
AS1
AS4
AS10
AS11
AS12

c,N

CLK
AS9
AS15

R-1

AS8

Figure 2-19 Motorola's 10800. (Courtesy Motorola Semiconductor Products,
Phoenix, Arizona.)

88

co

CD

M
e

ad

bu

(1
6

n
o

ry

M

da

bu

(1
 re

ss

bi
ts

)

!m
a

ry

ta

s 3
bi

ts
)

1
bu

s

1
0

8
0

3

...
._

__

 "
--

0
bu

s

I

In
p

u
t

bu
s

(1
6

-b
its

)

N
e

xt

ad
dr

es
s
~

lo
g

ic

~1
C

lo
ck

1

0
8

0
2

 J

t t
 t

[c
o

 1
8

15
 ..

..
l

~
I

r
~

T
im

in
g

..

_
 C

8
-+

--
0

F

18

I
I

si
gn

al
s

..
..

._
c1

2

..
..

_
z

~

~
p

~

B
ra

nc
h

[+
--

G

p
L

IB
cO

U
T

 f+

10
80

1
'-

1
0

1
4

5

1
0

8
0

4

C
IN

'-

G

.....
.

[+
-
+

 R
16

p

10
80

1
t+

 R
1

G

0
8

IR

C

M
A

p

I
1

0
1

7
6

J

G

~

t
[

1
0

1
7

4

J
0

8

B
1
~

j

O
u

tp
u

t
bu

s
(1

6
b

it
s
)

C
o

n
tr

o
l

m
e

m
o

ry
 N

 w
o

rd
s

b
y

'"'
"'4

0
b

it
s

j::
:_

F

ig
ur

e
2-

20

A
 1

08
00

 s
ys

te
m

 c
on

fi
gu

ra
ti

on
.

(C
ou

rt
es

y
M

ot
or

ol
a

Se
m

ic
on

du
ct

or

P
ro

du
ct

s,
 P

ho
en

ix
,

A
ri

zo
na

.)

BUY OR BUILD?

We've been looking over a small sampling of current microprocessors, ranging
from the small4-bit TMS 1000 to the high-performance Z8000 and 10800. When
choosing a microprocessor for your application, consult the up-to-date
manufacturer's specification sheets, the latest electronics journals, and the IC
Update Master for current parts and specifications, evaluating the parts in the
manner used in the examples just given.

The microprocessor world is constantly changing, and more powerful, new
devices will enter the scene in the next few years. What is on the market now is
just a beginning. When very large-scale integration (VLSI) is mature enough to
produce high-yield parts, some major breakthroughs in processing power and
onboard memory will result. We can look forward to microprocessors with the
processing power of a large mainframe along with 65K bytes of onboard mem­
ory.

When you are evaluating a microcomputer system, one question will inevi­
tably arise: What form of microcomputer is best suited to my application?
Starting from scratch with a logically selected microprocessor and a handful of
interface parts is one way to set up a system, but it may not always be the most
practical. Manufacturers have realized that many users have neither the time,
desire, or resources to build a system from scratch, and they therefore offer
completely assembled microcomputer boards and full-blown microcomputer
systems to meet many user requirements. It's well worth considering these
boards and full-sized systems before starting from scratch.

Table 2-4 lists the advantages and disadvantages of the various do-it­
yourself approaches to a microcomputer system. Which method is best for
your application depends primarily on the interface requirements, units to be
produced, and your own (or your organization's) design and fabrication capa­
bilities. By reading the upcoming descriptions of what is available in the
three listed categories, and by using this table, you should be able to determine
what you need.

Let's take an illustrative example of a design calling for a microcomputer.
Assume that you want to build a word-processing electric typewriter for your­
self, and you also intend to sell 40 or 50 of the units to local computer stores.
The unit must be quite small (either built into the typewriter or contained in a
small box that can sit beside the typewriter), and it must perform simple text­
editing functions and a final dump function to type out the perfectly edited
copy.

This is basically a simple data processing task. A typist can only type a few
characters per second, so even the slowest of the data processing type of
microprocessors would suffice in this application.

Table 2-4 reveals that the full-size system can immediately be eliminated
from further consideration. The requirement states that the unit must fit inside
the typewriter or in a small box beside it. Full-size systems come in fairly

90

----------------------~~~~~--------------------- ·""

CD

.....
.

C
ha

ra
ct

er
is

tic

In
cl

ud
es

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

S
pe

ci
al

C

on
si

de
ra

ti
on

s

T
ab

le
 2

-4

M
ic

ro
 S

ys
te

m
 D

o-
lt-

Y
ou

rs
el

f T
ra

de
of

fs

S
ta

rt
 fr

om
 S

cr
at

ch

P
ar

ts
 o

nl
y,

C
us

to
m

 c
on

fi
gu

ra
bl

e;

cu
st

om
 in

te
rf

ac
es

;
m

os
t

ef
fi

ci
en

t f
or

 s
pe

ci
al

 t
as

ks
;

ch
ea

pe
st

 f
or

 la
rg

e-
qu

an
ti

ty

pr
od

uc
ti

on
;

sm
al

l
si

ze
.

M
uc

h
la

bo
r

in
vo

lv
ed

;
gr

ea
t

de
si

gn
 e

ff
or

t
re

qu
ir

ed
;

lo
ng

 l
ea

d
ti

m
e;

m

us
t

w
ri

te
 m

os
t

so
ft

w
ar

e;

al
l

sy
st

em
 p

hy
si

ca
l

de
si

gn
 m

us
t

b
e

do
ne

;
un

pr
ov

en
 d

es
ig

n:
 m

ay
 h

av
e

bu
gs

.

T
hi

s
w

ay
 is

 t
he

 b
es

t
w

ay
 t

o

le
ar

n
ab

ou
t

m
ic

ro
pr

oc
es

so
rs

.

C
om

pu
te

r
F

or
m

O
n

e
-B

o
a

rd
 M

ic
ro

co
m

p
u

te
r

M
ic

ro
pr

oc
es

so
r,

 R
A

M
,

R
O

M
,

in
te

rf
ac

es
 o

n
a

pr
ea

ss
em

bl
ed

 b
oa

rd
.

C
us

to
m

 in
te

rf
ac

es
 o

nl
y;

so

ft
w

ar
e

av
ai

la
bl

e;

le
ss

 c
ri

ti
ca

l d
es

ig
n

at

ca
rd

 e
dg

e;
 c

he
ap

es
t f

or
 f

ew
 u

ni
ts

;
sm

al
l

si
ze

;
pr

eb
ui

lt
 a

nd
 t

es
te

d;

li
tt

le
 l

ab
or

 in
vo

lv
ed

.
S

ho
rt

 le
ad

 t
im

es
;

li
m

it
ed

 s
el

ec
ti

on
 o

f
m

ic
ro

po
rc

es
so

rs
;

sy
st

em
 p

hy
si

ca
l

de
si

gn

m
us

t
be

 d
on

e.

If
 y

ou
 w

an
t

to
 u

se
 a

pr

oc
es

so
r

th
er

e
is

 n
o

bo
ar

d
fo

r,
 f

or
ge

t
th

is

ap
pr

oa
ch

.

F
ul

l-S
iz

e
S

ys
te

m

C
o
m
p
l
e
t
~
 C

P
U

 a
nd

 a
ll

 m
em

or
y

an
d

in
te

rf
ac

es
 i

n
a

re
ad

y-
to

­
pl

ug
-i

n
fo

rm
.

N
o

 d
es

ig
n

la
bo

r
co

st
s;

ve

ry
 l

it
tl

e
te

st
in

g;

co
m

pl
et

e
so

ft
w

ar
e

av
ai

la
bl

e;

st
an

da
rd

 in
te

rf
ac

es
 a

va
il

ab
le

;
bu

il
t

an
d

te
st

ed
;

no
 l

ab
or

 in
vo

lv
ed

.
M

os
t

ha
rd

w
ar

e-
ex

pe
ns

iv
e,

le

as
t

ha
rd

w
ar

e-
ef

fi
ci

en
t;

la

rg
e

ph
ys

ic
al

 s
iz

e.

V
er

y
go

od
 i

n
la

rg
e

d
at

a
pr

oc
es

si
ng

 t
as

ks
 o

r
o

th
er

 t
as

ks

o
f

ge
ne

ra
l-

pu
rp

os
e

na
tu

re
.

92 Selecting the Right Microprocessor

large-sized boxes with card slots for expansion. The size constraint rules out
the large system.

The start-from-scratch approach and the microcomputer single-board ap­
proach are left. Both methods seem to fii the design constraints. Interfacing the
typewriter to the microcomputer will require a small user-interaction interface
that will have to be designed and built in either case. There are two important
factors which now enter into the decision. First, you have to get this product
onto the computer store shelves before the competition saturates your market,
and you have to be cost-competitive to avoid being aced out by others eyeing
your market. If you are designing and building the units yourself, you have an
enormous task to accomplish if you opt for the start-from-scratch approach.
The microcomputer unit as well as the interface must be designed, built, de­
bugged, and integrated. Software must be written for the word-processing task,
and support software for your new microcomputer system design would be
needed. The time constraint makes this approach generally unattractive.

If your company is building a limited-quantity project such as this, the
profits gained on the sale of 50 units would not be large enough to finance a
complete microcomputer and system software development program. In this
case, the microcomputer board seems to be the best alternative. It offers a
balance between development cost and getting your product completed in a
reasonable length of time.

It is objective analysis like this that helps you to determine which micro­
computer form is best suited to any given application. Consideration of the
factors in Table 2-4 can help save you time and money in the production of your
microcomputer product.

Starting From Scratch

If it turns out that designing and building a system from scratch is the best
approach for meeting the system requirements, a large design and construction
task lies ahead. The complexity of the task depends on the system require­
ments and the ease of interfacing to the chosen microprocessor.

Because the start-from-scratch method allows the greatest versatility in
microcomputer function, the first step in the design is to determine exactly
which functions will be performed by the microcomputer. Hardware that would
normally come standard with a microcomputer board or full-sized system can
be eliminated in the early design stages if it isn't needed. The expandability
factor should be considered, however. A system will typically be asked to do
more by the time it reaches actual production.

After you've determined the functional characteristics and drawn a block
diagram of the system, you should decide on the actual interface methods to be
implemented. The microcomputer input and output descriptions in this book

!

I
li

I

I
J,

I
I

~---·--------,--------------------------------·--·-· ",_.,,,,_,.

Selecting the Right Microprocessor 93

explain the advantages of serial 1/0, parallel 1/0, DMA, and other interface
methods. The devices being interfaced must be analyzed for their 1/0 transfer
rates, handshaking requirements, and 1/0 data format. The proper interface
parts for the job must be chosen.

One of the best ways to optimize the interface and processor design is to
obtain all the manufacturers' (including the second-source manufacturer's) lit­
erature on the given microprocessor and see what form of 1/0 is typically used
in the example implementations; In most cases these designs are generated by
the microprocessor desigpers and their staffs, and the best designed-in 1/0
features of the processors are utilized.

While the microcomputer is being designed, a parallel software task should
be taking place. The methods by which software will be developed, loaded into
the microcomputer, and executed should be strictly defined. Software consid­
erations should definitely influence the interface and microcomputer design.
Certain types of interfaces, for example, may demand too much software over­
head; as a consequence, a more autonomous interface may be in order.

The location of the interface and memory block in the memory map could
decide whether you run existing support software on your design or write or
rewrite all the support software yourself. Be sure to consider these facts.

Anyone developing a microcomputer from scratch should seriously con­
sider buying or renting a development system for the chosen microprocessor.
The initial cost or rental fee can easily be paid for with the savings of engi­
neering time and money on the hardware and software development. Probably
the biggest savings will be in the software development area.

A good development system comes with disk-based software, which
usually includes an assembler and editor, a higher-order programming language
such as PL/M or PL/Z, and a good operating system to keep all the programs
neatly organized. The Motorola EXORciser system and the Intel MDS system
are the two most often used development systems, but nearly every manufac­
turer offers one for its own chip.

One word of caution is in order concerning development systems. Some
people believe that they can get by with a "hobbyist-type" microcomputer,
such as one of the proliferating S-100 bus machines, as a development system.
As the S-100 description in this book shows, compatibility between cards,
unprofessional system design, and poor documentation can cause you to waste
more time and money trying to keep the system operative than developing your
product. If you are serious about developing a product, especially in the indus­
trial or commercial market, use the professional equipment.

If you start from scratch, you will also be getting deeply involved in the
physical design of the system. Circuit boards, power bus and clock distribu­
tion, thermal considerations, and backplane design will all have to be consid­
ered. Sections of this book will point out good physical and electrical design
procedures. Manufacturers' literature should be consulted for device electrical
and physical requirements.

The One-Board Microcomputer Approach

The past few years have seen the development of single-board microcomputers

for original-equipment-manufacturer (OEM) applications. The big micropro­

cessor companies take one of their microprocessors, 256 bytes to 16 K bytes of

RAM (their RAM of course), a few kilobytes of ROM, some interface compo­

nents, and put them all on a small ready-to-use card. Many of the low-end cards

are intended for microcontroller applications (such as Intel's SBC 80/40), and

many of the cards are meant to be the CPU section of a large microcomputer

system (such as the 16-bit TMS 990/lOOM and DEC's KDll-F unit). Let's

examine a low-end and a high-end one-board microcomputer.

The ISP-SC/100 SC/MP. One of the first of the low-end microcomputer

controller boards was the ISP-8C/100 by National Semiconductor. This board

is better known as the SC/MP CPU application module. The ISP-8C is based

on National's SC/MP chip. It is intended for end applications and prototyping,

and comes on a circuit card that is 11 by 12.25 em (4.37 x 4.825 in.).
It is therefore small enough to fit into tight quarters.
Figure 2-21 shows the SC/MP CPU application module. This module con­

tains 512 bytes of user-programmable PROM, 256 bytes of RAM, and a handful

of interface buffers and latches. The interface signals are brought out to a

72-pin edge connector that features a 16-bit address and data bus as well as

discrete control lines. Like most one-board microcomputers, the ISP-8C can be

expanded using its external bus.
National supplies separate RAM application modules and PROM applica­

tion modules for memory expansion.
The CPU module runs on two power supplies (+ 5 and -12 V) and is self­

initializing upon application of primary power.
Because the SC/MP is such a simple microprocessor, not much support

software is available for it. In the kind of applications for which the SC/MP is

intended (control functions), programming on the assembly-language level can

easily be accomplished without extensive support.

The M68MM01A. A good example of a one-board microcomputer that pro­

vides all of the processing and control functions required for a microcomputer­

based system is the Motorola M68MM01A. As Fig. 2-22 shows, this unit con­

tains:

• RS-232C serial input/output interface

• Two parallel 1/0 interfaces

• MC6800 microprocessor

• lK of static RAM

• 4K of EAROM (ekctrically alterable PROM) of 8K of ROM

• Complete clock and bus interface circuitry

94

CD

U
1

In
p

u
t/

o
u

tp
u

t
D

B
O

O
-D

B
07

 K
,.

:,
;>

~
da

ta
 b

uf
fe

rs

(8
1

L
S

9
7

-2
 e

a)

SC
/M

P
C

hi
p

A
D

O
O

-A
D

11
 I

 I
I NA

D
S

N

R
D

S
·

N
W

D
S

A
dd

re
ss

st

ro
be

 1
.....

.
1 m

M
 R

11
 s

!=
l7

-1
%

 I"
::!

 li
n

B
R

E
Q

~

O
ut

pu
t-

co
nt

ro
l

F
L

A
G

 0

bu
ff

er

F
L

A
G

 1

(D
M

 8
1

L
S9

7)

F
L

A
G

 2

S
O

U
T

N
H

O
L

D

C
O

N
T

N

R
S

T

E
N

 I
N

S

IN

S
E

N
S

E
 A

S

E
N

S
E

 B

-
-

M
e

m
o

ry

R
un

~
I
n
p
u
t
-
c
o
n
t
r
o
l

I n
it

*

bu
ff

er

C
P

U
 E

N

(D
M

 8
1

L
S9

7)

B
S

IN

A
 S

E
N

S
E

B

 S
E

N
S

E

1-
I W

ri
te

st

ro
be

I

B
D

 0
7

B
D

0
6

B

D
 0

5

B
D

0
4

B
D

0
3

B

D
 0

2

B
D

 0
1

B
D

O
O

~
+
5
V

-
-
1

2
V

D
M

8
1

L
c
s
t9

8
 E

N
1

r
-
-
-
~
=
=
=
=
L
L
-
-
~

E
N

1
*

B
A

 1
5

B

A
 1

4

B
A

 1
3

B

A
 1

2
B

A
 1

1
B

A
 1

0

B
A

0
9

B

A
 0

8

B
A

0
7

B

A
0

6

B
A

0
5

B

A
0

4

B
A

 0
3

B

A
0

2

B
A

0
1

M
em

or
y

da
ta

bu

ff
er

(D

M
 8

1
L

S9
7)

~

B

A
O

O

r
-
t
R

e
a
d

st

ro
be

~
-
-
-
-
+
-
-
-
-
-
-
-
-
-
~
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
B
A
E
N
*

I
I

D
M

 7
4L

SO
O

B
A

D
S

*
B

R
O

S
*

B
W

D
S

*

B
U

S
R

E
O

H

a
lt

D

el
ay

I

F
e

tc
h

R

ea
d

F
L

A
G

 0

F
L

A
G

 1

F
L

A
G

 2

S
O

U
T

R
O

M
S

E
L

M
E

M
S

E
L

 *

R
A

M
S

E
L

F
ig

u
re

 2
-2

1
T

he
 N

at
io

na
l S

em
ic

on
du

ct
or

 IS
P

-8
 C

/1
00

 o
ne

-b
oa

rd
 m

ic
ro

co
m

pu
te

r.

(C
ou

rt
es

y
N

at
io

na
l S

em
ic

on
du

ct
or

, S
an

ta
 C

la
ra

,
C

a.
)

"

~

T
he

 m
ic

ro
co

m
p

u
te

r
bo

ar
d

4
0

 li
ne

s
--

--
--

--
-

da
ta

 a
nd

 c
o

n
tr

o
l

T
im

in
g

A

sy
nc

hr
on

ou
s

2
pe

ri
ph

er
al

 i
nt

er
fa

ce

P
ow

er
-<

?n

an
d

co
m

m
u

n
ic

a
tio

n
s

re
se

t
I"

"

co
n

tr
o

l
ad

ap
te

r
(A

C
IA

)
ad

ap
te

rs
 (

P
IA

s)

ci
rc

u
it

A
dd

re
ss

C

o
n

tr
o

l

D
at

a
t

t
C

ry
st

al

S
oc

ke
ts

 f
o

r

cl
o

ck

M
6

8
0

0

4
K

 o
f

A
R

O
M

1

K
 X

 8

ci
rc

u
it

M

ic
ro

pr
oc

es
so

r
o

r
R

M
A

8

K
 o

f
R

O
M

B
us

 b
u

ff
e

rs

l
fa

f1

4

t16

I

D
at

a
C

o
n

tr
o

l
A

dd
re

ss

bu
s

bu
s

bu
s

P
IA

,
A

C
IA

,
an

d
P

R
O

M
 m

ap

F
F

F
F

1

K
 A

R
O

M
 o

r
R

O
M

s
a

t
F

O
O

O
-F

F
F

F

P
IA

·P

IA

A
 C

IA

N
o

.1

N
o

.2

8
4

0
0

-8
4

0
3

 *
8

4
0

4
-8

4
0

7
 *

8
4

0
8

 *

*T
he

se
 a

dd
re

ss
es

 a
re

re

du
nd

an
t

at
 8

5
X

X
,

8
6

X
X

,
an

d
8

7
X

X
.

R
O

M
 4

 (
2

K
)

1
1

A
 R

O
M

/R
O

M
 4

 (
 1

 K
)

O
R

 I
A

R
O

M
/R

O
M

 3
 (

 1
 K

)

FO
O

D

R
O

M
 3

 (
2

K
):

~ A

 R
O

M
/R

O
M

 2
 (

1
K

)
A

R
O

M
/R

O
M

 1
 (1

 K
)

E
F

F
F

EO
O

O

D
F

F
F

.
R

O
M

 4
 (

2
K

) M
e

m
o

ry
 m

ap

A
va

ila
b

le

fo
r

e
xt

e
rn

a
l

m
e

m
o

ry

1
--

--
--

--
-4

0
 R

A
va

ila
b

le

fo
r

ex
te

rn
al

EO
O

O

D
F

F
F

IR
O

M
 3

 (
2

K
)

m
e

m
o

ry

I
D

O
D

O

D
O

O
O

C
F

F
F

T

A
R

O
M

/R
O

M
 4

 (
1

K
)

IC
F

F
F

R
O

M
 2

(2
K

)
A

 R
O

M
/R

O
M

 3
 (

1
K

)

co
oo

8
8

0
0

8

7
F

F

8
4

0
0

0
4

0
0

0
0

0
0

O
R

A

R
O

M
!R

O
M

 2
 (

1
K

)
R

O
M

 1
 (

2
K

)
A

 R
O

M
/R

O
M

 1
 (

1
K

)
IC

O
O

O

A
va

ila
b

le

fo
r

e
xt

e
rn

a
l

m
e

m
o

ry

1
/
(
(
(
(
(
/
(
(
(
/
(
/
/
/
(
(
(
(
(
(
(
(
(
(
(
/
/
~

A
va

ila
b

le

fo
r

ex
te

rn
al

m

e
m

o
ry

M
ic

ro
m

o
d

u
le

 1
 A

R

A
M

1/
0

8
4

0
0

0
4

0
0

0
0

0
0

F
ig

u
re

 2
-2

2
M

ot
or

ol
a'

s
M

68
M

M
01

A
 o

ne
-b

oa
rd

 m
ic

ro
co

m
pu

te
r.

 (
C

ou
rt

es
y

M
ot

or
ol

a

S
em

ic
on

du
ct

or
 P

ro
du

ct
s,

 P
ho

en
ix

,
A

ri
zo

na
.)

Selecting the Right Microprocessor 97

This module can be used to perform all the processing and 1/0 functions of
a small system through the connectors at the top of the card; or it can be put
into a card cage and expanded to a full 65K system through the well defined
EXORciser bus at. the bottom of the card.

The M68MM01A requires three supply voltages (+5, + 12, and -12V), is
25 x 15.25 em (9. 75 x 6 in.), and has TTL-compatible signal levels at all 1/0
pins (except for the EIA RS-232C communication output).

This card enjoys all the hardware and software support of the 6800 family
of microprocessors. The complete Motorola EXORciser development system,
which includes all the programs and hardware needed to program ·the PROMs,
can be used in the development effort.

Many of the one-card microcomputers have associated cards that may
further reduce the design and construction effort. Analog 1/0 boards are avail­
able for most one-card microcomputers, and specialized boards such as CRT
controllers, fast multipliers, and high-speed DMA interface boards are avail­
able for the more popular units.

If the one-card microcomputer seems to be the best approach for the task,
the first step is to .define the processing and memory requirements of the
desired system. Microprocessor manufacturers should then be contacted to get
the latest information on which kind of one-card microcomputers is available to
match your specifications.

Finally, a prototyping package, which usually consists of a one-board mi­
crocomputer, prototyping board, card cage, programmable memory chips (if
the unit uses PROMs), associated cabling, and documentation, should be pur­
chased. Since most prototyping packages come with a system monitor program
on a PROM, you can have the board operating within hours after receiving the
prototyping kit. You can then get familiar with the system and begin the inter­
face design and construction on the prototyping board.

Full-Size Microcomputer Systems

If a complete microcomputer system that fills all of your requirements already
exists, it makes sense to use that system in your application. One area in which
this is especially true is in the business data processing field. Complete systems
with full complements of disk drives, terminals, and customized software are
available from many microprocessor manufacturers as well as large computer
companies such as IBM, DEC,and Computer Automation.

Full-size systems come with many options. Any given company will have a
minimal-configuration system that is required to run the simplest software
packages and optional peripherals and software to fit the customer's specific
needs. Many of these options are specialized in nature. Array processors, AID
data acquisition units, and powerful graphics display devices can be obtained
from the primary manufacturer or other companies that have built their busi­
nesses by supplying the specialized peripherals in many machine-compatible
formats.

98 Selecting the Right Microprocessor

The Digital Equipment Corporation PDP-11 series of minicomputers has
been a very successful product line .. The PDP-11 minicomputer is available in a
wide range of performances and memory configurations. At the low end of the
PDP-11 series there is the PDP-11/04, which is a bare-bones processor that isn't
much more powerful than an 8-bit microcomputer. At the high end there is the
PDP-11/70, which is so large and powerful that it borders on mainframe per­
formance.

Digital Equipment Corporation has successfully sold tens of thousands of
PDP-11 full-size minicomputer systems and has built a large product line of
peripherals, so it comes as no surprise that the microprocessor version of the
PDP-11, the LSI-11, can also be bought in a nice packaged system form.

A complete business system can be pieced together from DEC's standard
modules and peripherals. First, a CPU must be chosen. The PDP-11/03 is the
natural choice. It is a combination of LSI-11 modules and accessories, inclucl­
ing an H9270 backplane and card guides, an H780-H power supply, and 4K of
RAM. The system comes packaged in a standard width enclosure and has room
in the enclosure for up to six double-height interface modules. Optionally, the
PDP-11/03-KA can be used as the CPU. This is basically the same as the CPU
just described but includes a total of 16K of RAM instead of just 4K.

Secondly, the peripherals and appropriate interface modules for the system
must be chosen. A console terminal and hard-copy device (inthis case a slow­
speed printer will do) are required, and the LA36 DEC Writer II seems to meet
this requirement.

A magnetic data storage unit is required to store programs and records. The
RXV11 dual floppy disk drives seem appropriate for this task. It is important to
have two of any magnetic storage device since files will have to be copied and
transferred from one disk or tape to another.

The peripheral interfaces must now be chosen. The console terminaV
printer requires a serial interface. The DLV11 module is the standard LSI-11
serial interface card and fills this requirement. The floppy disk dnve already
comes with a plug-in controller card, so additional interfacing is not needed.

This completes the hardware selection, but a software package remains to
be chosen. An operating system for the disk is required. The RT-11 operating
system seems like a good choice, because the system is not going to be a
multiuser, timesharing one.

The RT-11 operating system comes with an editor, assembler, system utili­
ties, librarian, linker, and many other useful programs. Optional software such
as FORTRAN, BASIC, and COBAL can be purchased for use under this
system from DEC or independent software houses.

Finally, miscellaneous items can be selected. A mounting rack (to house
the processor and disk) and communication cables (for the terminal) can be
selected.

If the packaged system is the approach for you, a good starting point is to
get a copy of the Digital Direct Sales Catalog, The Microcomputer Handbook,

Selecting the Right Microprocessor
99

and The Peripheral Handbook-all from DEC. It would be wise to obtain
literature from other microcomputer companies specializing in packaged sys­
tems as well. Once you have an idea of what you want, contact the
manufacturer's representative. He will help you set up a system, and he will
very probably give you a good ''package deal.'' All the rules in dealing with
salesmen should be followed in dealing with the representative. Buying a pack­
aged system is like buying a car with many options; the price is negotiable.

The very concept of sequential computing machines assumes that commands

and data are being stored somewhere in the computing machine. Computer

evolution has resulted in processors that can be divided into three functional

pieces: the processor, the input/output unit, and the storage unit or memory.

Because memory is such an integral part of computer systems, it has developed

into a science in itself. Whole companies have been founded around computer

memory devices, and memory technology is at least as complex as processor

technology.
The microcomputer is basically no different from the large computer at the

functional level. Data must be stored somewhere, and thus we have storage

devices.
Most of today's microcomputers can be classified as cell-addressable

single-memory machines. A cell-addressable memory is one that accepts a

processor-issued address and returns a program or data word from the location

in memory corresponding to that address. Most RAMs, ROMs, and other

memory devices are cell-addressable.
The term single-memory machine refers to the way in which a processor

accesses memory. A processor requires a sequence of commands or program,

and it also requires data with which to operate. In the early days of computers

two approaches were taken to this problem. The dual-memory approach pro­

vided a memory for the program and a separate memory for the data. The

single-memory approach uses only one large memory containing both the pro­

gram and the data. The advantage of the single-memory approach is that less

100

Memory
101

hardware is required. Two separate memories and two memory addressing
units are not required on a single-memory machine.

There is no universal form of memory that is suited to every data storage
application. High-speed semiconductor memories store data reliably and allow
fast data access times, but they also lose data at power-down, draw a lot of
power, and are prohibitively expensive for storing huge blocks of data.

Magnetic tape, on the other hand, can store millions of bytes of data per
dollar and doesn't lose its contents unless it is intentionally erased; but it is also
extremely slow, must be sequentially accessed since it is one long strip of data,
and requires a large piece of mechanical equipment-the transport mech­
anism-to be useful.

All this boils down to the fact that engineering tradeoffs must be made in a
system and the proper memory and mass storage device must be used for the
task at hand.

Many exotic memory devices have been designed, and many of them have
been scrapped. The early days of memory technology produced mercury tank
delay-line storage units, phase storage units or paramatrons, drum memories,
and even a memory cathode-ray tube that could store millions of bytes of data
on its face (the only problem was, you couldn't read it back!). These devices
are interesting, but memory technology has finally stabilized to the point at
which fast, reliable semiconductor memories and mechanical memories such as
tape, disk, and core dominate the market. These common memories are the
ones with which you will most likely be. associated; these are the memories we
will examine in this chapter.

MEMORY HIERARCHIES

Computer designers solve the problem of memory storage capacity versus
memory speed and accessibility with memory hierarchies. The CPU section of
a computer system typically uses a high-speed memory to temporarily store
programs and data while it is being processed. This is a system's short-term
memory or working store. Working stores usually range in size from a few
bytes to a few tens of thousands of bytes in most microcomputer systems. This
amount of working storage is enough to store the programs and data for most
micro applications.

A few hundred thousand bytes of programs and data are accessed often
enough in most applications to require a fairly quick storage unit to hold this
data. Medium-term storage units serve this purpose. Disk drives, charge­
coupled devices, and bubble memories work well as medium-term storage
media.

Finally, huge blocks of data that will be referenced periodically require a
bulk storage media. Magnetic tape and large disk packs are ideal for this long­
term storage requirement. Long-term storage units are capable of storing hun­
dreds of millions of bytes of data quite slowly but at a very low cost.

102
Memory

The three types of storage have been briefly outlined: short-term, medium­

term and long-term storage. With today's diversified memory technology,

ultrahigh-speed memories are available for use as fast working stores or short­

term memories, but the price and power consumption of these memories make

even a reasonable size working store out of the question. In high-performance

processors, a fourth level is therefore added to the memory hierarchy: the

cache memory.
A cache memory consists of a few hundred to a few thousand bytes of

ultrahigh-performance memory that acts as a buffer between the processor and

the large, fast, working store. Studies have shown that a few thousand words of

high-performance memory, if operated properly, can make an entire low­

performance working store look as though it's made from ultrahigh­

performance memory (or at least about 80% as fast as the fast memory). Figure

3-1 illustrates a memory hierarchy and shows what devices are currently being

used at what hierarchical level in the microcomputer field.

Memory hierarchies seem to be a simple answer to all data storage prob­

lems ·until·you look at the software required to control a memory hierarchy.

Data must be searched for and re~d-in from the long-term storage devices, put

into the medium-term devices, and paged into the short-term memory as

needed. After the data processing is complete, all the data has to be sent back

down the hierarchy to the long-term storage devices.

Many large mainframe manufacturers have solved the hierarchy control

software problem by using hardware to control hierarchical data transfers. The

programmer pretends that the memory is nearly infinite in size and lets the

hardware worry about paging and long-term storage control. This type of stor­

age is called virtual memory, because it gives the appearance of one huge

short-term memory.

Processor

Ultrahigh­
speed

cache memory

Short-term memory
(high-speed working store)

Medium-term mass storage
(medium speed, medium capacity)

Long-term mass store
(low speed, high capacity)

Figure 3-1

Typical devices

High-speed ECL, 12 L, STTL
RAM. New HMOS RAM

MOS RAM, magnetic
core, MOS ROM for
permanent storage.

Drum memory, floppy
disks, bubble memory,
ceo disk.

Magnetic tape, paper
tape, cards, laser
memories.

The components of memory hierarchies.

Approximate speed

Mainframe Micro

5-100 ns not used

100 ns-
4 J.LS

250 ns-2 J.LS

10 J.LS-
5 J.LS-5 ms 10 ms

50 J.LS- 2 ms-
100 ms 100 ms

Memory
103

Microcomputers don't have hierarchy control problems to the same extent
as mainframes. Because microprocessors are relatively slow, they cannot uti­
lize a high-speed cache memory. And most microcomputers are not asked to
handle hundreds of millions of bytes of data, so the long-term storage device is
usually not necessary. Ordinarily, a medium-term storage device such as a
floppy disk will do. This reduces the memory hierarchy down to two levels­
the working store and the medium-term mass store. Because a two-level mem­
ory hierarchy does not require much control, virtual memory hasn't yet been
needed or incorporated into any microprocessor; but, if the performance of
processors keeps increasing, virtual memory may make its appearance on the
microcomputer scene.

WORKING STORE

Of all the short-term working store media available today, semiconductor
RAMs, ROMs, and magnetic core memories are the most common. Important
characteristics of these storage units include fast access time and random­
access capability.

Semiconductor RAM

A decade ago computers were totally dependent on magnetic core memory for
their short-term memory needs. As semiconductor technology advanced, small
256-bit bipolar memory ICs became available for use in central processor units.
As device technology improved, MOS entered the memory picture and lK
MOS RAMs were built. For the first time, semiconductor memory had the
potential to surpass core memory on a cost and performance basis. Things have
not been the same since. Today nearly every computer's main memory consists
of semiconductor RAM, which comes in packages as large as 64K bits with
access times as fast as a few nano-seconds.

The availability of RAM has also made the microcomputer possible.
Without a low-cost, short-term memory, microprocessors have very little cost
advantage over any other CPU.

A RAM consists of two functional blocks: the memory cell array and the
peripheral interface circuitry. As Fig. 3-2 illustrates, a RAM must take in an
address through a set of address lines and select the appropriate row and
column corresponding to the addressed cell. The cell must be examined by the
1/0 circuitry and sent to the data output. This constitutes a read operation.

If data is being written into the ,cell array, the input data control unit must
turn the addressed memory cell on or off to indicate a 0 or 1.

The memory cell array is the heart of the memory unit. It is usually a
square matrix of individual one-bit memory elements arranged in rows and
columns. Because the memory cell arrays are for the most part square, the
capacity will tend to be an even power of 2. There are many 256, lK, 4K, 16K,

104

I
A0
A,

5-bit row address A2
. A3

A4

Write control---~

Data input---~

32 X 32
memory
cell array

.___-.-_ ___J

I
A5
A6

5-bit column address A7
A a
Ag

Figure 3-2 Memory peripheral circuitry and cells.

Memory

Data output

and now 64K RAMs- but very few 512, 2K, and 8K RAMs. Some companies

make memories that are not integrally an "even power of2," but many of these

just contain two small even-power-of-2 arrays inside.

There are many approaches to the design of the individual memory cells.

The most common are static flip-flop cells, transistor-base-charge dynamic

cells, and pseudostatic charge-pumped cells.
The static memory cell is a two-transistor flip-flop, or bistable multivibra­

tor. By activating either the right or left transistor, a 0 or a 1 can be repre­

sented. This data can be retained until an external current changes the flip­

flop's state or until power is lost. The cell is called static because it can hold

information indefinitely as long as it has power-there is no apparent change

in the cell once it has been set.
The dynamic semiconductor memory cell consists of a single transistor. A

current into the base of the transistor turns the stage on by building up a charge

in the transistor base region. An on transistor represents a 1 while an off

transistor represents a 0.
It may seem that the single-transistor dynamic cell is better than the static

two-transistor cell in every way because it uses less parts, space, and power;

but the dynamic cell has one big drawback: it must b.e refreshed. The term

dynamic refers to the gradual change of state-a transistor can only hold a

base charge for a few milliseconds before it leaks away. If the charge leaks

away without being replenished, the stored data is lost.
To accomplish the replenishing or refreshing, refresh circuitry must be

built into every dynamic RAM. The most common method used to refresh

dynamic cells is to recharge every. memory cell in a given row of a cell array

whenever any element in that row is read. Most dynamic RAMs therefore

--~-·------~------~-----·--~-----------------------------

Memory
105

require a read operation at least once every 2 ms. If this comes naturally in a
processing task, great; if not, a time interval must be set aside to have the
processor sequentially read through memory to refresh it every few milli­
seconds.

A pseudostatic memory cell is a memory cell that combines the advantages
of the static and dynamic memory cells. Pseudostatic RAMs are basically
dynamic RAMs with additional peripheral circuitry to periodically place an
additional charge on all the transistors that are at a logic 1 level. These RAMs
are called charge-pumped devices in reference to this additional charging cir­
cuitry. Pseudostatic RAMs have had some success in large mainframe com­
puter memories, but the need for additional charge-interval clocks and strange
voltage levels has kept these devices from becoming popular in the microcom­
puter field.

A RAMs peripheral circuitry consists of an address decoder that takes half
of the memory address field and divides it into many single row-select lines,
and a decoder that divides the other half of the field into many column-select
lines. The current level used by the memory cells is very small, so low-current
buffers and sense amplifiers must be incorporated to set, reset, and read mem­
ory cells. Anoutput driver is also needed to drive the data output lines.

Dynamic RAMs often have an output latch as well as a driving buffer.
Dynamic RAM timing can be very tricky on the memory-celllevel, and a latch
is used to catch the data as it becomes available in the read sequence.

Modern RAMs confine the complex timing to the chip level and provide
circuitry to handle it. On board peripheral circuitry in many of today' s RAMs is
so complicated that it is almost a little proc~ssor in itself.

Because static RAMs require rtearly twice as many transistors as dynamic
RAMs, static RAMs always lag a step behind dynamic RAMs in memory size.
Today's technology is bringing us 64K dynamic RAMs and 16K statics. By the
time enough parts can be squeezed onto a chip to form a64K static RAM, 256K
dynamic RAMs should be making their appearance.

Important RAM Features. Like microprocessors, RAMs have important
features to watch for. The following paragraphs spotlight the more salient of
these.

Memory type is the first characteristic to be considered. The static and
dynamic memory types have already been discussed. It is important to deter­
mine which of these memory types is best suited for your application. Static
memories are easier to interface because they don't have as many control lines
associated with them. For small memory applications, static memory is usually
the best choice. For large data stores (greater than 4K bytes) dynamic memory
may save enough ICs and power to make its use worthwhile.

In some applications, such as display memory for a graphics terminal,
dynamic memory is an ideal choice. In this and many other applications, the

106 Memory r
memory is constantly being read onto the screein, so special refresh intervals

and additional circuitry are not required. Some (microprocessors (the Z80 is a

typical example) have built-in transparent refre$h capabilities. Dynamic RAM

use should be strongly considered for these· kin~s of microprocessors.

Memory size for a system must be determined by program sizing and

through an analysis of data requirements. In systems requiring a large short­

term memory, the large 16K and 64K RAMs should be used. In less complex

systems, smaller and less costly (in terms of power and price) RAMs should be

investigated.

Memory configuration (the way in which memories are organized) can play

an important role in reducing the parts count in a memory system. The majority

of the memories sold have one data input line and one data output line. A 16K

memory with this sort of output is known as a 16K- by 1-bit (16K x 1) memory:

To make an 8-bit word, eight of these memory packages must be used.

RAMs can also be bought in 1K- by 4-bit, 128- by 8-bit, and other multiple­

I/O-bit configurations.These "wide" RAMs are particularly useful when a

small amount of memory is required and the package count must be kept to a

minimum. The only problem with multiple-I/O-bit RAMs are that they draw

more power and take more 1/0 pins than standard RAMs of 1-bit width.

The power problem is caused by the need for more peripheral circuitry for

the extra 1/0 lines (a RAM's peripheral circuitry usually draws much more

power than the memory cell array) and cannot easily be solved.

The 1/0 pin problem has been solved to some extent by eliminating the

dedicated data input and output lines found on a standard 1-bit-wide RAM. By

bussing the memory's data lines, half the memory's data 1/0 pins are elimi­

nated. The RAM becomes easily interfaceable to microprocessor buses using

this method as well. Extra 1/0 pins are also freed simply because there are less

address lines in a multiple-I/O-bit RAM.

Memory speed is another important consideration. Memory access time and.

memory cycle time are the two most common methods of measuring a

memory's speed.
Access time is the period required for a memory to present valid data at the

memory output pins after it receives a valid memory address. This figure tells

you how fast one word can be read from memory. On many memories (most

dynamic memories), byte after byte of data cannot be read at the single-byte

access rate. Dynamic memories require a minimum amount of time for the

internal sequencing circuitry to recover and reenter another read access cycle.

Read time plus the read recovery time is collectively called the memory cycle

time.
The importance of read access and read cycle time depends on the applica­

tion. In a general processing system 'such as a business microcomputer, mem­

ory isn't accessed in a rapid byte-after-byte sequence. Access time is the most

Memory 107

important consideration in this case. However, if a memory is going to be used
as a fast operational store or input/output buffer, fast bursts of data may be
required. In this case, cycle time will be the memory's limiting factor.

In applications in which memory cycle time is important, static RAMs offer
some advantage over dynamic RAMs. A static RAM usually has no internal
sequencing circuitry, so its access time is the same as its cycle time. The extra
peripheral circuitry surrounding a dynamic cell array can slow memory cycle
time down to twice the memory access time.

One word of caution is in order concerning memory speed. Memory speed
is usually measured as a typical figure at the RAM's pins. The best perform­
ance that can be expected from a RAM is the maximum worst-case figure listed
in the tables inside the manufacturer's specification sheet. The additional
buffers and control circuitry on a microcomputer's memory cards must also be
taken into consideration when determining memory speed. These delays can
amount to a few hundred nanoseconds in some cases.

Device technology plays an important role in a RAM's characteristics. The
standard TTL, NMOS, and RAMs are being rapidly replaced by PL, HMOS,
VMOS, CMOS, and MNOS RAMs that offer higher performance, higher circuit
densities, and lower prices than older RAMs. Table 3-1 lists most of the com­
mon memory device technologies on the market today and shows their advan­
tages and disadvantages. Notice that many of the technologies have special
features that are very desirable in a limited number of applications. The low­
drain CMOS RAM, like the CMOS microprocessor (RCA 1802 COSMAC), is
good in battery-powered applications, while the MNOS RAM has the property
of nonvolatility-the retention of data even when power is switched off. The
table gives a good idea of what to expect in the way of performance and
features from today's RAMs.

Selecting a RAM

Manufacturer's literature should be consulted for the most recent memory
specifications. The factors just discussed and the device characteristics should
be kept in mind when looking at RAMs.

Let's look now at a few popular RAMs and see how to interface them to a
microprocessor bus. The RAMs you select for your system can be interfaced in
a similar manner.

A Simple Static RAM: the 2102. The 2102 is a somewhat obsolete lK- by
1-bit (1K x 1) static RAM that helped build the microcomputer market in its
earliest stages. Small 1 K x 1 RAMs are rapidly being replaced by more effi­
cient 4K and 16K devices, but the 2102 is a good example of a general-purpose
static RAM.

T
ab

le
 3

-1

R
A

M
 D

ev
ic

e
T

ec
hn

ol
og

y

D
ev

ic
e

T
ec

hn
ol

og
y

N
o

te
d

 T
ra

it
A

d
va

n
ta

g
e

D

is
a

d
va

n
ta

g
e

T
T

L
 a

nd
 S

T
T

L
 b

ip
ol

ar

H
ig

h
sp

ee
d,

 2
0-

40
 n

s
ac

ce
ss

S

pe
ed

;
T

T
L

-c
om

pa
ti

bl
e

L
o

w
 D

en
si

ty
;

hi
gh

 p
ow

er
 d

ra
w

;
ex

pe
ns

iv
e

E
C

L
 b

ip
ol

ar

E
xt

re
m

el
y

fa
st

,
5-

30
 n

s
S

pe
ed

;
E

C
L

-c
om

pa
ti

bl
e

L
o

w
 d

en
si

ty
;

hi
gh

 p
ow

er
 d

ra
w

;
ex

pe
ns

iv
e;

 n
o

 in
te

rf
am

il
y

co
m

pa
ti

bi
li

ty

I2
L

V

er
y

fa
st

,
50

-1
50

 n
s

S
pe

ed
;

T
T

L
-c

om
pa

ti
bl

e
N

ew
 t

ec
hn

ol
og

y;
 l

ow
 a

va
il

ab
il

it
y

re
la

ti
ve

ly
 l

ow
 p

ow
er

;
qu

it
e

de
ns

e
pa

ck
in

g
P

M
O

S

F
ai

rl
y

de
ns

e
bu

t
sl

ow
,

In
ex

pe
ns

iv
e

N
o

t
T

T
L

 c
om

pa
ti

bl
e;

 r
el

at
iv

el
y

.....

50
0-

20
00

 n
s

sl
ow

 s
pe

ed

0
N

M
O

S

D
en

se
 a

n
d

 r
el

at
iv

el
y

fa
st

,
In

ex
pe

ns
iv

e,
 T

T
L

-
N

o
t

fa
st

 e
no

ug
h

fo
r

ve
ry

 h
ig

h
co

15

0-
15

00
 n

s
co

m
pa

ti
bl

e
sp

ee
d

ap
pl

ic
at

io
ns

.

H
M

O
S

D

en
se

 a
n

d
 f

as
t,

 5
0-

25
0

ns

H
ig

h
de

ns
it

y;
 l

ow

N
ew

 t
ec

hn
ol

og
y;

 e
xp

en
si

ve

po
w

er
;

hi
gh

 s
p

ee
d

C

M
O

S

F
ai

rl
y

de
ns

e
an

d
 v

er
y

lo
w

L

o
w

 p
ow

er

E
xp

en
si

ve
 d

ue
 t

o
 c

om
pl

ex
 p

ro
-

ce
ss

.

po
w

er

M
N

O
S

F

ai
rl

y
de

ns
e

bu
t

qu
it

e
N

o
n

 vo
la

ti
li

ty

E
xp

en
si

ve
 a

nd
 s

lo
w

sl
ow

V

M
O

S

V
er

y
de

ns
e

an
d

 q
ui

te
 f

as
t

B
es

t
de

ns
it

y
o

f
al

l
R

A
M

s
N

ew
 t

ec
hn

ol
og

y;
 e

xp
en

si
ve

10
0-

50
0

ns

ca
nd

id
at

e
fo

r
25

6K
 R

A
M

=----------------------~---------.-..--.u~u-a-..----~Q~rn--d&._._~~~-.. ~.·.L-... ,-n---•-···-~-·~IWIJ-.---~·

Memory 109

The 2102 is a TTL-compatible 1K NMOS memory with a data input line
and a three-state (logic 0, logic 1, and a high-impedance floating state) data
output line. The RAM comes in a 16-pin package.

Figure 3-3 shows the block diagram and timing relationships of the 2102
along with its important characteristics. Notice that there are 10 address lines
to address a 1K memory space, a data input line, and a data output line. In
addition, there are two control lines that are very typical of static RAMs: the
read-write line and the chip enable line. The chip enable line is optional and is
only used to turn the three-state output on or off (to the active or float states);
therefore, the only real control line on the 2102 is the read-write line.

The timing diagram shows the simplicity of the static RAM timing. In the
read cycle, data becomes valid at a time ta after the address is submitted. This
time,in nanoseconds, is the RAM's access and cycle time.

Writing is accomplished by submitting the write pulse (wp) on the read­
write line for a minimum oft wp ns. The address must be valid during the whole
write pulse and even a little before and after it. These slight timing margins on
both ends of the write pulse are called the address setup and hold times. All
setup and hold times for the a9dress as well as data must be strictly observed. If
the address changes while the memory is being written into, all the memory
loca_tions that the address passes through while it is changing could be wiped
out.

Interfacing the 2102 to a microprocessor is quite simple. The address lines
are connected to the least significant ten bits of the microprocessor's address
bus, as shown in Fig. 3-4. Because the microprocessor has 16 address lines, 6 of
the lines are left over to address the total64K memory space or the other 63 1K
blocks of memory. A decoder is used to determine to which combination of 6
bits this 1K memory block will respond. In this case, it is block zero. The
decoder simply ANDS the decoded memory select signal with the memory
read signal (the phase 1 or ,01 signal on the 6800) and enables the memory chips
when they are properly addressed and a read is requested.

The read-::-write line is connected to the microprocessor's read-write out­
put line so the processor can read or write at its discretion. Since so many
address lines have to be driven (a total of 8 on each address line), buffers have
to be used on the address lines.

A 256- by 4-Bit Static RAM: The 2101. In a very small system requiring
only 256 bytes of memory, there is no reason to use the 2102 lK RAM. It is too
large (1 K x 1) and it requires buffers to drive the address lines as described in
the 2102 section.

The 256- by 8-bit memory requirement can be met using the 256- by 4-bit
version of the 2102: the 2101. As Fig. 3-5 illustrates, this RAM has two fewer
address lines than the 2102, because only 256 bytes are addressed. To accom­
modate the additional data 1/0 pins, a 22-pin package is used.

.....

.....

0

P
in

 c
o

n
fig

u
ra

tio
n

A
6

A
5

R
/W

A
,

A
2

A
3

A
4

A
o

I

C
E

H

L L L

A
7

A
 a

A
g

C
E

D

A
T

A
 O

U
T

D

A
T

A
 I

N

V
ee

G

N
D

 R
/W

X

L L H

Lo
gi

c
sy

m
b

o
l

A
 a A
,

A
2

D
IN

A
3

A
4

A
5

,A
6

A
7

D
o

u
T

A
 a

A
g ~

P
in

 n
am

es

D
1N

D

at
a

in
p

u
t

A
0
-A

9
A

dd
re

ss
 i

n
p

u
ts

R
/W

R

e
a

d
/w

ri
te

 i
n

p
u

t

C
E

C

hi
p

en
ab

le

D
o

u
T

D

at
a

o
u

tp
u

t

V
e

e

P
ow

er
 (

+
5

V
)

T
ru

th
 t

ab
le

D
IN

D

o
u

T

M
od

e

X

H
ig

h
Z

N

o
t

se
le

ct
ed

L
L

W
ri

te
 "

0
"

I
H

H

W

ri
te

 "
1

"

X

D
o

u
T

R

ea
d

R
O

M

A
3 0

P
in

 n
um

be
rs

A

5

R
ea

d
cy

cl
e

2
1

0
2

 T
im

in
g

 W
av

ef
or

m
s

W
ri

te
 c

yc
le

C
hi

p
en

ab
le

D
at

a
o

u
t

CD

1.
5

V
O

L
T

S

@

2
.0

 V
O

L
T

S

@

0
.8

V
O

L
T

S

N
ot

es
:

1.

T
yp

ic
a

l
va

lu
es

 a
re

 f
o

rT
 A

=

 2
5°

 C
 a

nd
 n

o
m

in
a

l
su

p
p

ly
 v

ol
ta

ge
.

2.

T
h

is
 p

ar
am

et
er

 is
 p

e
ri

o
d

ic
a

lly
 s

am
pl

ed
 a

nd
 i

s
n

o
t

10
0%

 t
es

te
d.

C
h

ip

en
ab

le

R
ea

d/

w
ri

te

D
at

a
in

D

at
a

ca
n

ch
an

ge

C
el

l
ar

ra
y

32
 r

ow
s

3
2

 c
o

lu
m

n
s

A
6

A
7

A
 a

tw
e

tc
w

D
at

a
st

ab
le

A
g

F
ig

ur
e

3-
3

T
he

 2
10

2
1K

-
by

 1
-b

it
R

A
M

.
(R

ep
ri

nt
ed

 b
y

pe
rm

is
si

on
 o

fl
n

te
l

C
or

po
ra

ti
on

, C
op

yr
ig

ht
 1

97
6.

)

@

._
;;

;;
;.

..
o

 v
 cc

•
®

O
G

N
D

D
at

a
ca

n
ch

an
ge

D
at

a
O

u
t

Memory 111

M6800 Bus
address bus ~eivers
10 least
significant Vr T J • • T ! + + A0-A9 A0-A9
bits Ao-Ag

CE 2102 CE 2102
A0-A9

CE 2102
A0-A9

CE 2102
A0-A9

CE 2102
A0-A9

CE 2102 CE 2102 A0~A~~ CE 2102
Di DoR/W Di DoR/W Di DoR/W DiDoR/W DiDoR/W DiDoR/W Di DoR/W DiDoR/W Data Bus - 1 I I I 1 l bus transceivers

Do-
1---

D,-
1---

D2-
f---

D3-
1---

D4-
f---

D5-
;----

D6-
!-----

D7-
-
Drive
bus

L___

Memory block decoder

Address.-----
bus ~ Select ra:::=:>-

6 most significant
bits

02
VMA
RW

Figure 3-4 How the 2102 is interfaced to a microcomputer bus.

Using just two of these parts, a 256 x 8 memory may be built that places
only two loads on the processor address lines. This memory is very well suited
for such applications.

One interesting feature about the 2101 demands some discussion. Notice
that two chip enable lines (actually a chip enable and an inverted chip enable)
have been provided. In many RAMs and microcomputer interface components,
multiple chip enable and inverted enables are added to a part if extra pins are
left on the package. These multiple chip enable lines are useful when interfac­
ing the part to an address bus, because they can be wired to act as decoders.
For example, if you had a 9-bit address (capable of addressing 512 bytes), and
you wanted to use two 2101s to fill the memory space, you could simply wire

I

112 Memory

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

A3

A2

A,

Ao

As

As

A7

GND

Dl,

DO,

012

DI,·DI4

Ao·A7

R/W

CE1

Vee
Ao

A4 A, oo,

R!W A2

EE1
A3 002

A4

00 As 003
2101

CE2 As

004
A7 004

014 Dl,

012
00

D03
013

Dl3 014

002
R!W CE2 CE1

PIN NAMES
DATA INPUT CE2 CHIP ENABLE 2

ADDRESS INPUTS OD OUTPUT DISABLE

READ/WRITE INPUT D01·D04 DATA OUTPUT

CHIP ENABLE 1 Vee POWER (+SV)

m
CE2
00 <>-::::--i>'----'

CELL ARRAY
32 ROWS

32 COLUMNS

Figure 3-S The 2101: a 256- by 4-bit equivalent of the 2102 RAM. (Reprinted by permis-

sion oflntel Corporation, Copyright 1976.)

@
---oVcc

~GNO

the ninth address bit to the chip enable input on one RAM (CE2) and to the

inverted chip enable input on the other (CE1). The data inputs and outputs

could then be tied to the processor bus. When the ninth bit was high (logic 1),

one RAM would respond, and when it was low the other RAM would be

enabled. This precludes the requirement for an address decoder in the memory

interface circuitry. By using chip enables wisely, decoder and miscellaneous

gate counts can be significantly reduced in a memory design.

A Simple Dynamic RAM: The 4K 2107. The 2107 is a good example of a

dynamic RAM with a standard 4K- by 1-bit configuration. The timing and

addressing on this RAM is typical for most dynamic RAMs, at least on a

functional level.
Figure 3-6 illustrates the block diagram and timing relationships of the

2107. Notice that the logic signals on the dynamic RAM are similar to those of

the static RAM's, with one exception: a chip enable (CE) signal has been

added. This signal initiates the internal memory accessing sequence required of

the dynamic memory cells.
In dynamic memories, most of the timing signals are. measured with rela­

tion to the CE signal or its equivalent. In the 2107 timing diagram, notice that

the address must be stable during the rising edge of the CE signal. This edge

causes data to be strobed into the row and column buffer registers. After the

CE leading edge has occurred, and after a short stabilization period, the ad­

dress can change because the access address is captured in the buffer registers.

After a short period (the read access time), read data becomes valid at the

memory output pin. The data stays ·valid until the CE signal is dropped. The

Memory 113

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

Vee

Ag

A,o

A,,

cs
o,N

DOUr
Ao
A,

A2

Vee

DIN

Ao-A11

WE

cs

2107A

Vss

As

A7

Ag

Voo
CE

NC

A5

A.o
AJ

WE

PIN NAMES

DATA INPUT CE

ADDRESS INPUTS* DoUT

WRITE ENABLE Vee

CHIP SELECT NC

Ao
A,

2107A

A2 DIN

AJ

~
A5
As
A7 Dour

- Ag
Ag
A,o
An

CS CE WE

CHIP ENABLE

DATA OUTPUT

POWER (+5V)

NOT CONNECTED

*Refresh Addresses Ao-As.

Read and Refresh Cycle

ADDRESS
AND~

v,L

CE

Figure 3-6 The 2107 4K- by 1-bit dynamic RAM. (Reprinted by permission oflntel
Corporation, Copyright 1976.)

RAM's internal timing and control generator circuitry doesn't give the user
much leeway in holding the CE signal high, however. The CE must be high for
at least 280 ns but no more than 3000 ns. Unlike the static memory, with which
you could hold an address and read the same byte of data for as long as you
wanted, the 2107's memory requirements require that you catch the data in a
small data-valid window of time.

114 Memory

The memory write cycle timing is very similar to the read cycle except that

the write enable pulse must be generated. Again, this signal is timed relative to

the CE signal that initiates the write sequence.
The 2107 was one of the first 4K dynamic RAMs and, like the first micro­

processors, it lacks the sophisticated features of today's devices. Many of

today's RAMs have holding latches at the data output so you don't have to time

your system circuitry around the narrow read-access window.
Another primitive feature that is disappearing in today' s RAMs is the

highly capacitive, high-voltage (12 V) chip enable drive requirement. Intel spec­

ifies that the CE signal shall rise to 12 V in a maximum of 50 ns. The high

voltage and fast rise-time problem is compounded by the fact that most mem­

ory systems will be using banks of 8 or 16 RAMs to form bytes of data.

High-power MOS drivers must be used to parallel-drive the CE lines in order to

meet the timing requirements.

An Advanced Dynamic RAM: The 4K 4027. The Mostek 4027 is represen­

tative of a state-of-the-art dynamic RAM. Very fast access and cycle times,

data output buffering, and multiplexed address lines are featured.
To cut down on memory package size, the 4027 and other modern RAMs

use multiplexed addressing. Instead of having a common chip enable line for

the row and column address buffers, the row and column address lines are tied

together and separate row and column address lines are provided. Only half the

address pins are required, which allows for a 16-pin package. Figure 3-7 depicts

the 4027. The row address select (RAS) and column address select (CAS)

signals perform the multiplexing function.
Memory is read from the 4027 by first supplying a valid row address to the

common address inputs and activating the RAS line. A valid column address is

then supplied and CAS is activated to strobe-in the column address. After

about 100 ns have elapsed, the read data is available in the output buffer and

will stay there until the end of the next read cycle, when the most recently read

data will take its place.
There are two features that aren't immediately apparent that allow you to

build very fast memory systems out of 4027s. The first is the fact that the data

stays valid in the output buffer well into the next read cycle. This allows the

user's circuitry to take its time getting the data out of the memory and allows

for wider timing margins. The second feature is that the memory's cycle time is

longer than the sum of all the timing delays. This requires some explanation.

On most dynamic memories the cycle time is simply the sum of all the smaller

delays in the memory cycle (address setup, memory access, CE off time, and

so on). For fast memory applications, the timing margins on all the critical

memory timing signals have to be cut down to their absolute minimums to

attain the maximum cycle throughput.
Mostek has arranged the timing and control circuitry on the 4027 so that all

the critical timing signals can· be above their specified minimums by a 20% or

greater m"rgin and still meet the minimum cycle time. This additional timing

Memory 115

allowance makes the advertised minimum cycle time a realistic figure, because
all the address, data, and control drivers' "timing slop" can be taken up by the
20% margins.

One final4027 feature is the read and write cycles of the page mode. Most
RAMs with multiplexed address lines allow you to operate in a page mode by
submitting a row address and repeatedly submitting a long string of column
addresses. Data can be taken from every column in a given row in a much
shorter period of time using this mode.

The page feature is useful for fast sequential transfers, but it is even more
valuable as a fast DMA cycle timing mode.

In order to speed refresh time, an exclusive row address select refresh
mode has been provided. In this mode, the whole RAM can be refreshed by
sequentially going through all the row addresses but not submitting any column
address or CAS signal. Refreshing must be performed once every 2 ms.

The 16K Mostek 4116. The 4116 16K dynamic RAM has been cleverly
designed to be an almost pin-for-pin replacement for the 4K 4027. By simply
turning the 4027's chip select (CS) line into another address line, two additional
multiplexed address bits were made available to access four times as much
memory. Figure 3-8 illustrates the 4116.

RAM Implementation. A single RAM chip is fairly simple to work with. By
following all the timing restrictions and physical parameters, we can get a RAM
to work just as the specification sheet says it will. When we have to integrate
hundreds of RAMs into a large memory module, however, problems arise.
Address and control decoding and distribution networks are needed. Crosstalk
between parallel memory data lines become a problem. Large current spikes
caused by high-current chip enable lines start producing interference.

Before undertaking a large memory system design project, it is wise to
study the memory interfacing requirements of the specific technology of
choice. The memory manufacturers can supply such information in the form of
notes and data sheets. A section in this book has also been set aside to go over
memory system interfacing methods. This will also be helpful.

Content-Addressable Memory

A content-addressable memory (CAM) works like a cell-addressable memory
in reverse. Data is supplied to the CAM and the address at which that data is
stored is returned to the processor. At first glance, this sort of memory seems
like a novelty item that could serve no useful purpose, but in certain kinds of
processing, CAMs offer much higher performance than regular memories.

One of these applications is in programs requiring a lot of data sorting or
searching. Instead of sequentiatty going through a cell-addressable memory,
interrogating each location, you simply specify what you want to find and the

Functional Diagram

ITE :1 Write ~VDD

clocks
....._Vee

s Clock ~vss
generator

no. 1 Enable ...-yBB
I

• j Multiplexed ~Data in
Data

....
clock (DIN)

generator
in

t t
buffer

Row --
s~)~

Clock enable Data out
generator - (DouTl

~ no. 2 CA

I I Reset

f
Data

D Enable out
Chip select buffer

s input Column
buffer Chip sel enable

Multiplexed Dummy cells

A

decoder I
~

Memory array

A5
Address I

input ~ A4 buffers (6) (1 of 64 row) I ! l I I 64 Row r-'--'--

A3 Row I I lines 1 of 2
I 64 Sense refresh amplifiers Data

and I I I data in/data out gating
:....-.

A2 column I 32 Column 1
~ bus

(1 of 32

1
Data select

A, I column)
sel,ect lines I in/out'---,....-

(multiplexed) W~ I I

0 ~ - I
Memory array 1

Dummy cells

Figure 3-7 The Mostek 4027: an advanced 4K- by 1-bit RAM. (Courtesy Mostek

Corporation, Carrollton, Texas.)

116

Pin Connections

VBB 1

DIN 2

WRITE 3

RAS 4
A0 5

A 2 6

A 1 7

Voo 8

RAS

CAS

Addresses

VrHe-

v,L -

VIHe-
v,L -

v,H

v,L

16 Vss
15 CAS
14 DouT
13 cs
12 A3
11 A4
10 A 5

9 Vee

Ao-A5
CAS

cs
DrN

DouT
RAS

Pin Names

Address inputs

Column address strobe
Chip select

Data in

Data out

Row address strobe

Read Cycle

WRITE

VBB

Vee

Voo

Vss

Read/write input
Power (-5V)

Power (+5V)

Power (+12V)

Ground

k-----------------------tRe--------------------~

k----------------------tRAS--------~
-----t 1+----- tAR ------+-1

------~----~-tRSH-------~

--------~--------~-- ~----~teAs---~ --~~-------------

117

-- DO v
......

E
1

Write _vee
clocks -Vss

Clock -vBB
generator

no. 1
I ~

Multiplexed Data Data in

clock in -(DIN)
generator buffer

~ n= p-~
Clock Data f..--- Data out

I- generator out (Dourl
no.2

h
buffer release

""---t +
A6- Dummy cells

A5-
MUX

I

A4- address Row 128
'10"f2

~
t- data

A3- input
~~

decoder row 128-sense-refresh amps f- bus buffers 1:128 lines ~

A2- (7) Data select

A1- I in/out ~ ~

Ao- Dummy cells

64-Column

~
f--------

select lines

~ MUX

~
Column decoders

switch I 1 of 64

II Ao-A5
.....

Figure 3-8 The Mostek 4116: an advanced 16K- by 1-bit RAM. (Courtesy Mostek
Corporation, Carrollton, Texas.)

memory tells you where it is. Content-addressable memories are also being
used in cell-addressable memory control units. Memory paging (the act of
bringing in pieces of a program due to too small a processor memory) requires.
that the processor look to see if the page that the next instruction is on is
already in memory. Checking each page takes a long time and uses up valuable
processing time, so a CAM is used to store memory pages currently in memory.
By simply asking the CAM if a given page is in memory, the processor can
immediately determine if the page is there and where it is. This scheme is used
in the associative lookaside buffers that control the cache memories on the
Amdah/470 v7.

Semiconductor ROM

It is sometimes desirable to have a nonvolatile memory store within a computer
to hold often-run programs. If a program can be present at the moment a
microcomputer is turned on, the need for program loading and the associated

118

Memory 119

load delay times are eliminated. A permanent, nonvolatile program memory is
also useful for storing a small program that has common system utility pro­
grams and an initialization program or a bootstrap program. Not many years
back, full computer modules containing diode matrixes were used to store
small permanent programs, but semiconductor memory technology now domi­
nates the nonvolatile working storage field. Read-only memories (ROMs) and
programmable read-only memories (PROMs) are the most popular nonvolatile
storage devices. Many other names are given to nonvolatile semiconductor
memories (EROMS, EPROMs, VROMS}, but all of these devices fit into one of
these two categories.

A ROM is similar in design to a RAM. A central array of memory cells is
surrounded by peripheral circuitry that accesses the data stored in the array.
The primary difference lies in the type of memory cells used in the cell array.

A ROM's data storage cells are designed to permanently store a 1 or a 0
even if power is turned off. This is accomplished by either selectively building
1- and 0-generating cells into the array at pre-defined memory locations or by
building many identical !-generating cells and burning out the cells that must be
set to zero.

When the programming (setting of the 1 and 0 states) is done at the factory
by altering the metallization mask on the memory chip itself, the end product is
referred to as a mask-programmed ROM. When all the cells in a memory are
originally one value and the user is given a means of programming the bits in
the device to the values of his choosing (usually by using a high-voltage ''pro­
grammer'' that selectively blows small programming fuses on the chip), the
memory is called a PROM.

Either device will permanently hold a program, but each device has its own
unique advantages. A ROM requires only internal read circuitry to read the
preprogrammed bits, and a PROM requires additional programming circuitry.
Due to this extra circuitry and more complex fusible-PROM cell design,
PROMs are not as dense as ROMs. The current-technology storage capacity of
PROMs is about 50% that of ROMs.

Expense Is the ROM's biggest drawback. A one-time mask setup charge of
a few thousand dollars is required, and if a different program is ever needed, a
new mask must be made. For large-volume applications, however, ROMs are a
much less expensive proposition than PROMs because a ROM (excluding the
one-time mask charge) is cheaper than a PROM.

The PROM's big advantage is, of course, its programmability. The one­
time mask charge and the factory lead time can be avoided with PROMs.

Aside from the lack of write circuitry, the peripheral circuitry of the ROM
or PROM is similar to that of the RAM. Decoders take an address and appropri­
ately pick a memory cell to be examined. Sense amplifiers amplify the memory
cell's small current and send the resulting data to the data outputs.

There are dynamic as well as static ROMs, but most designs today are of
the static type. A dynamic ROM that must be periodically refreshed initially
seems quite ridiculous. A ROM that essentially loses its data if not refreshed

120 Memory

seems to violate the nonvolatility criterion that makes a ROM a ROM. The fact
is, however, a dynamic ROM doesn't really lose its data if the cells aren't
refreshed; it just starts reading them wrong until refreshing is resumed. A
dynamic ROM is much like a dynamic RAM, except that the· 1-geneqtting
transistors are permanently wired to stay in the conducting state. Charge must
still be kept on the base region of the conducting transistors, so refreshing is
necessary.

Dynamic ROMs were primarily used in applications in which refreshing
came naturally, such as in a charact~r generator of a display system. 'It is true
that most of the dynamic ROMs have passed along the wayside, but they might
return.

A Representative Bipolar Programmable ROM. The first ROMs and
PROMs to come into common use were small 64- and 256-bit high-speed bipo­
lar devices. These chips found applications as large computer bootstrap storage
units as well as combinatorial gating and other discrete logic replacements (in
which the addresses act as gating inputs and the data acts as the desired result­
ing output). The DM 74S287 (made by National Semiconductor) is an example
of an advanced version of these early bipolar PROMs.

The DM 74S287 is a 256 x 4 PROM built with Schottky-clamped TTL
technology. It is quite fast (typically 35 ns from the time it receives an address
to valid data output) and runs on a single supply voltage (+5 V).

Figure 3-9 illustrates the 74S287. Notice that the only controls on the
PROM are the two lines that enable the tristate data output lines. Reading a
location from memory is simply a matter of submitting the desired address at
the address inputs and waiting for the data output.

Programming the PROM is not as simple a matter. The 74S287's memory
cells consist of a four-transistor cell structure with a titanium-tungsten (Ti-W)
fuse on the collector of the selecting transistor. By selecting the byte to be
programmed with the address lines and properly sequencing the chip power,
output, and enable lines to the high-voltage values shown in the programming
waveforms, the fuse can be blown and the bit programmed to a logic 1 (high).
Notice that the PROM contains all zeros before it is programmed.

The DM 74S287 was chosen for this example because of its advanced
programming circuitry. On most fuse-programmable PROMs, the programming
timing is very critical. Strange, slowly rising waveforms must be followed
closely to program the PROM properly. Too fast a rise time will cause the
programming fuse to blast apart and splatter beads of metal over adjacent
circuitry, causing failures years after the programming. Too slow a rise time
causes heating, with the result that the fuse will melt very slowly. Heat buildup
from the slow melt causes thermal damage to the surrounding transistors.

National developed the Tri-Safe method to prevent poor programming
caused by slow and fast rise times. By assigning the programming timing con­
trol function to an onboard programmer circuit, the PROM essentially pro­
grams itself at the optimum fuse blow rate.

Address

Vee

Output

MOST SIGNIFICANT
ADDRESS BIT

A7

A6

AS

A4

A3

A2

AI

AO

t

Programming Waveforms

T1 = 100 ns min

03

1024-BIT CELL
32 X 32-BIT

MEMORY MATRIX

02

To bit
decode

01

T2 = 5J.LS min (T2 may be~ 0 if VeeP rises at the same rate or faster than V0 p)
T3 = 100 ns min
T4 = 100 ns min
T5 = 100 ns min

Dual-In-Line Package

A6

AS

A4

A3

AO

AI

A2

GND

TOP VIEW

Fuse
· Programmable
Cell

To enable
circuit

Figure 3-9 The National DM 748287 256- by 4-bit programmable ROM. (Reprinted bv
· permission of National Semiconductor Corporation, ~anta Clara, Calif.)

121

122 Memory

Once a satisfactory PROM software program has been developed, an
equivalent plug-in replaceable mask-programmed ROM, the DM 74S 187, may
be substituted in large-quantity applications.

A Representative Erasable PROM. Like MOS RAMs, both MOS ROMs
and PROMs have a higher number of bits per chip and a lower power dissipa­
tion per bit than bipolar devices; but unlike MOS RAMs, there is little similar­
ity between the way most MOS and bipolar PROMs store their data. Instead of
using fusible links to program MOS PROMs, charges are trapped in memory
cells by applying a high-voltage programming pulse to the memory cell. These
charges remain trapped, representing a logic 0, until an external high-energy
source, such as ultraviolet light, is applied to the charged region (thus allowing
the charge to leak away). This characteristic has been utilized in ultraviolet­
erasable PROMs (EPROMS) and offers good PROM economy, because a pro­
gram can be changed without purchasing a whole new PROM.

The 2708Jamily of EPROMs, which includes the 512 x 8 2704, the lK x 8
2708 and the 2K x 8 2716, is a good example of erasable, programmable, read­
only memories. As Fig. 3-10 illustrates, the organization of the memory cells is
very similar to that of the bipolar PROM. The 9-, 10-, or 11-bit address, depend­
ing on the PROM version, is submitted to the decoding circuitry, and a data
word from the cell array is delivered on the data output pins.

The 2708's programming procedures are less critical than those of the
bipolar PROM. Because no onchip fuse destruction takes place, there is little
risk of damaging the silicon by applying bad programming signals. When unpro­
grammed, and after each erasure, all4K, 8K, or 16K bits in the memory are in
the logic 1 state. Zeros can be programmed into the PROM by raising the
CS/WE input to + 12 V, setting up valid address and data to be programmed,
and applying a 0.1 to 1 ms 26 V programming pulse to the programming pin. A
single pulse only partially programs the PROM, however. The whole program
must be charged into the memory cells gradually and evenly over the whole
surface of the silicon chip, so a programming loop that goes through and pro­
grams each byte about 100 times must be set up. Repeatedly programming the
same memory byte is ineffective, because it violates the evenly distributed
programming rule.

The- only real caution to be pbserved in programming the 2708 is that of
address changes while the programming pin is high. If an address changes
before the falling edge of the CS/WE signal when it leaves the programming
mode, random bits throughout the memory may be unintentionally pro­
grammed.

Interfacing the 2708 to a microcomputer system is very simple because it is
designed to work with microcomputer buses. The address lines are connected
to the microprocessor address bus and the data lines are connected to the data
bus. The lK x 8 configuration allows a !-kilobyte memory to be implemented
with just one chip. The chip select line can be controlled by circuitry that

Memory 123

PIN CONFIGURATIONS BLOCK DIAGRAM

A7

As

As

A4

AJ

A2

lA,

Ao

o,

02

03

Vss

NOTE 1. 2704:
2708:

Vee

As

NOTE 1

Ilea

Cs!WE

Voo

PROGRAM

Os

07

Os

Os

04

PIN 22 • Vss.
PIN 22 = A9.

ADDRESS
INPUTS A4

As--­
As­
A7--­
As-

~-

Read Timing

CHIP SELECT
LOGIC

y
DECODER

X
DECODER

DATA OUTPUT
o, o8

OUTPUT BUFFERS

Y GATING

64 X 128
ROM ARRAY

Address ~~-----------......;ol()<'--------
1 I
I 1

I t--tOH---1

I I I

-----+~--'~ ~~~,----
CS/WE ~ /1 I

I r-tco-j L-t
I I t 0 F I
~tACC____J I

I I

Figure 3-10 The Intel 2708 ultraviolet erasable PROM. (Reprinted by permission oflntel
Corporation, Copyright 1976.)

decodes the specific lK memory block in the microprocessor's address space
this memory will be assigned to.

In production applications in which many of the same ROMs will be used,
the 2708 can be substituted with the pin-equivalent 68308 or 2308 mask­
programmed ROM.

Electrically Alterable ROMs. Electrically alterable ROMs are similar to
EPROMs, but instead of requiring an ultraviolet source to erase them, an
erasing voltage on the proper pin on the package can be used. A EAROM offers
a price advantage, because an expensive quartz lid package (necessary for
ultraviolet erasing on an EPROM) is not needed, and stray sunlight or X rays
can't wipe out a program.

124 Memory

VMOS ROM. New V-groove MOS ROMs, such as the American Microsys­
tems (AMI) S4262, use new device technology to boost memory cell density as
well as decrease access time. Current 64K MOS ROMs are bordering on the
limit of practical silicon chip size. Because VMOS memory cells take up only
half the space of standard MOS cells, this technology will be the most practical
approach in upcoming 128K and 256K ROMs.

RAM/ROM. A very interesting RAM/ROM is currently being developed
and promises to be useful in many applications. The RAM/ROM acts as a
regular RAM when power is stabilized. The difference is the way it "comes
up." Most RAMs initially have a random pattern of logic 1s and Os scattered
throughout the memory array when power is first applied. This initial informa­
tion is useless. The RAM/ROM can be programmed to initially have a program
in it when power is first applied. After power-up, the device acts like a normal
RAM that has just been loaded with a valid program. This chip has the potential
for eliminating small dedicated bootstrap and utility ROMs from many micro­
computer applications. The RAM/ROM can be used either as ROM or as an
extension of normal RAM, thereby cutting down RAM and addressing require­
ments.

MEDIUM-TERM MASS STORE

Medium-term storage devices are used for temporarily storing blocks of data
that are used often enough to require fast random access but are too big to fit
into a short-term working store-at least all at once. In microcompute.,r appli­
cations, these devices are often used as long-term storage as well, because
microcomputer programs and data are typically short enough to fit into a few
hundred thousand bytes of storage.

Devices included in the medium-term mass-store category are non-volatile
media such as floppy disks, magnetic-bubble memories, and solid-state disks
built from charge-coupled-device technology.

The Floppy Disk

Like the Xerox machine and Wankel engine, the so-called floppy disk is a
device that did not initially seem feasible from the standpoint of practicality. A
flexible, paper-thin disk spinning at 360 rpm ~hile still inside its ''record
jacket" doesn't seem like it could possibly be a reliable high-density storage
device; but through engineering development by IBM and other firms, this
product became not only practical, but quite competitive with other storage
media.

Figure 3-11 illustrates a typical drive with a floppy disk inserted into the
drive mechanism. The floppy disk spins in its jacket at 360 rpm with the disk

Memory

Built-in
disk drive
electronics

125

Flexible
magnetic

Drive spindle disk I D labels

Step direction select
Step

Stepping
motor
logic Track 00 indicator

Write gate

Write project

Index sector

Motor on

Motor
control

and
index

sensing Drive
select

Figure 3-11 Details of a floppy disk drive.

drive's read and write heads contacting the disk through a long narrow slot in
the jacket.

The floppy disk contains a number of concentric tracks (77 tracks for a
full-size floppy and 35 tracks for a minifloppy) that are accessed by radially
moving the read-write heads onto the proper track using a stepping motor or
magnetic "voice coil" linear motor. The process of mechanically moving the
heads is called seeking.

The disk drive has two indications that it is on the proper track. Because
stepping motors are used to move the heads, the step movements are counted
and the step count indicates the proper track. Secondly, a track identifier code
is written at the beginning of the first sector on any given track.

A floppy disk's tracks are each divided into 10 to 26 pie-wedge sectors.
Small blocks of data (typically 128 bytes by 8 bits) are stored serially on each
sector along with a few bytes of preamble data and empty data gaps to keep
sectors well isolated from one another.

Sectors are assigned in two ways, depending on the mechanics of the disk
drive. Hard-sectored disks have coding holes at the beginning of every sector
on the disk; photoelectric sensors recognize the holes and thus the beginnings
of sectors. Soft-sectored disks have only one coding hole, which marks the
beginning of the first sector; it is up to the read head and system software to
determine which sector is currently being passed as the disk spins.

The advantage of a hard-sectored disk is reliability. Since the disk drive
doesn't have to continuously read track data to "know" its location, the error
rates are reduced significantly.

126 Memory

As Fig. 3-11 illustrates, the drive control circuitry for a floppy disk is not as

complicated as some people make it out to be. A few simple lines such as drive

select and motor on are self-explanatory. This leaves the head-moving (step­

ping) controls; direction select, step, track 00 indicator; the read and write data

lines; and the write enable or write gate control. A few additional indicators

such as index sector and write protect are also available.
Floppy disk interfaces can range in complexity from a few simple

microprocessor-driven latches (which monitor the drive status and submit the

proper controls) to a completely automated controller that takes a block trans­

fer command from the microprocessor and performs all the sequencing in­

volved in reading the proper tracks and sectors.
Currently available disk controllers have many advanced features that re­

duce the disk-controlling software requirements, but most of these are just

fancy extras; the basics of the disk drive control are very simple.
One function that is typically done by the disk controller (but which can be

done by microprocessor software just as easily) is error detection and correc­

tion. Data write-checking is performed by reading the written data the next

time it comes around after the write is performed. If it is incorrectly written, the

disk drive will try to write it again. After a preset number of tries (usually about

10), the disk drive will give up and declare a write error. This usually indicates a

faulty disk or a dirty disk head.
Read errors are constantly being monitored using a checksum-type error

code. If a sector's checksum is wrong after a block read, the disk will again try

to read it correctly. If it succeeds, the disk is said to have recovered from a soft

error. If after 10 tries the data is still unreadable, a hard error is declared, and

the data is assumed to be lost.
Under rare circumstances a seek error may occur. In this case, the step­

ping motor or voice-coil movement has inadvertently moved the head to the

wrong disk track. The fact that it is on the wrong track is detected by reading

the track identifier at the beginning of the track. Recovering from a seek error

involves setting the heads back to the first track (track 00) and stepping to the

proper track.
A few interface chips that perform disk control and error checking are

currently available, and their use is described in the interface components

section of this text.
Floppy disks come in two general sizes. Full floppies (203mm in diameter)

have the following characteristics:

• Di~k capacity: 250K x 8 (single density)

• Data transfer rate: 30K bytes per second

• Number of tracks: 80

• Rotational speed: 360 rpm

Memory 127

The smaller minifloppies usually found m inexpensive microcomputers
generally have the following characteristics:

• Disk capacity: 110K x 8 (single density)
220K x 8 (double density)

• Data transfer rate: 15K bytes per second
• Number of tracks: 35
• Rotational speed: 300 rpm

In summation, minifloppies have about half the performance of full-size
floppies and cost much less. As to the question of whether to buy two miniflop­
pies or one full-sized floppy disk for a large-capacity micro, it is generally wiser
to opt for two minifloppies. It is always a good idea to have two of any magnetic
storage device. With only one, you can't easily copy files onto other diskettes.
This capability is almost essential in a well balanced system.

Magnetic Bubble Memory

In its early development stages, the floppy-disk seemed to be far-fetched and
infeasible; but compared to the magnetic bubble memory, the floppy disk in its
infancy .looked like a sure thing. Bubble memories are magnetic devices that
store data as magnetically oriented domains in a sheet of magnetic material; but
unlike most magnetic media, such as disk or tape, the magnetic material stays
stationary and magnetic domains or bubbles move around within the magnetic
material under the influence of a rotating magnetic field. By forming a long loop
of magnetic bubbles using a bubble generator/eater and a magnetic field, a large
"shift register" memory is set up.

Bubble memories combine some of the best features of both magnetic and
semiconductor memory storage. They are large-capacity nonvolatile storage
devices like disk or tape, and the area in which the actual data is being stored
requires no power to hold the data. At the same time, a bubble memory can fit
into the space of a dual-inline package and be mounted directly on the CPU or
memory card of a microcomputer.

The Texas Instruments TBM0103 module is an example of a commercially
available bubble memory. This 92,304-bit (not a power of 2) module comes in a
14-pin dual-inline package that includes two built-in magnetic coils, a
gadolinium-gallium-garnet magnetic substrate material, and special shields to
protect the device from stray external magnetic fields. A data transfer rate of
up to 100 kilobits per second is possible with this device, but random access is
not possible, since it is in essence a large shift register. Table 3-2 gives some
specifications of the TBM0103.

128 Memo~

Table 3-2 TBM 0103 Bubble Memory Characteristics

Useful capacity (bits)
Register organization
Drive field rate (maximum)
Input/output data rate (maximum)
Minor-loop data rate (maximum)
Average access time (first bit)
Average cycle time (144-bit block)
Power (100% duty cycle)
Maximum operating tempurature range
Nonvolatile storage temperature range
Size
Pin count
Pin spacing
Pin centers
Weight
Maximum permissible external

magnetic field in any direction

The Charge-Coupled Device

92,304 bits
641 X 144
100kHz
50 kb/s
100 kb/s
4.0ms
12.8 ms
0.6W
0 to 70 oc
-40 to 85 oc
2.5 x 2.6 x 10.1 mm
14
2.54mm
27.94 mm
20 g
40 oersteds

The charge-coupled device falls into the same medium-term storage class as the

bubble memory because it too is a serial shift register. Charge-coupled devices
store data as charges on a row of either T -shaped or chevron-shaped charge
storage cells. By applying the proper voltage levels to these cells, charges can

be moved around; a circulating shift register is thus formed.
Charge-coupled devices are unlike bubbles in that they are volatile in

character. They are also much faster than bubble memories, because they
move charges rather than magnetic domains; but CCDs don't pack the same

density of storage into a given area, because the actual storage structures (the
special shapes) must be fabricated. To make memory access time quicker,
many short shift registers and decoding logic are often incorporated into a CCD
chip. If sixteen 4096-bit shift registers are used instead of one long 65 ,536-bit
shift register, the maximum access time or latency to read any given bit is
reduced by a factor of l6. The overall throughput is also increased by a factor
of 16.

A good example of a CCD having precisely the configuration just described
is the Fairchild F464 65,536 x 1 dynamic serial memory. This device has 16
randomly accessible shift registers that are multiplexed down to a single data
input and data output bit. As Fig. 3-12 shows, the rows are selected by the four
address lines (AO-A3). External logic is required to clock data through the shift
register using the four clock phases (1, 2, T1, and T2), and the user must keep
track of where he is in the shift register.

The F464's performance characteristics are typical of what can be expected
of modern CCDs. Data can be clocked through at a data rate of 1 to 5 MHz.

DIN--~-

--------------,
I
I
I

1--~..__t+-+--t-....,

I
I

L-------------...J

t t
Vee

7

0,
12 Ao

11 A,

10 A2

6 A3

3 cs

15 WE

14 DIN

t t

2 5

13

V00 =PIN 1

Vee= PIN 16

Vss =PIN 8
V 88 =PIN 9

4

Figure 3-12 The Fairchild F464 65K-bit charge-coupled device. (Courtesy Fairchild
Camera and Instrument Corporation, Mountain View, Calif.)

129

Dour

130 Memory

Clocking can be halted for up to 15 microseconds once each interval of 64 or

more clock cycles. This half capability is useful for letting logic perform ad­

dress computations or as a timing margin for other devices.
One of the best applications of the CCD in a microcomputer system is in

the implementation of a solid-state disk for medium-term volatile storage. Us­

ing just 16 of the F464s, for example, a 131-kilobyte shift register memory with

a data transfer rate of 5 MHz could be set up. This solid-state disk could be

loaded from an inexpensive tape drive at the beginning of the day and provide

minifloppy disk storage functions all day long without any of the wear or noise

problems associated with a mechanical device. The file access time would of

course be almost instantaneous with the 5 MHz data transfer rate.

LONG-TERM MASS STORE

Long-term storage devices reside at the lowest levels of memory hierarchies

and are capable of storing vast amounts of data in a somewhat permanent,

nonvolatile form at a very low cost. Access speed and random-access capabili­

ties are of secondary importance for long-term storage devices; memory stor­

age size is the primary goal.
Since the early days of computers, magnetic media have dominated the

long-term storage field, followed by paper media. Magnetic tape units and disks

are two currently popular magnetic media, but at one time magnetic drum

memories were an important part of most computer systems. Paper tape and

the familiar "IBM card" are two popular paper media.
In regard to long-term storage for microcomputers, long- and medium-term

storage devices are usually one and the same. This situation is brought about by

two factors: Microcomputers are slow enough that a tall memory hierarchy (a

many-leveled hierarchy with ever-increasing storage device speed) is not

needed to get the most out of the microcomputer's microprocessor. Secondly,

microcomputers are not typically put to use in extremely large data-base or

program applications.
The three most common forms of long-term storage in microcomputer

systems are floppy disks, magnetic tape (usually cassette), and paper tape.

Floppy disks, which were discussed in the medium-term storage section, are

currently dominating the field, while the more cumbersome cassette and paper

tape are being phased out. Floppy disks have the advantages of high data

transfer rate, convenient storage form (thin, square packet), and semirandom­

access capability.
This section discusses the basic principles of magnetic recordings and

shows how they are used in a few microcomputer long-term storage devices.

Paper tape is also covered.

--------------------------------~--·------~-~-~~~----------~--·~~~----------------------

Magnetic Data Recording

Magnetic materials exhibit many characteristics that are desirable in a memory
cell. They can be magnetized in two or more directions to represent ones or
zeros; they will hold a magnetic state until changed, thus exhibiting a natural
memory characteristic; and they are plentiful and cheap.

Disks, drums, tape, and floppy disks basically use the same magnetic re­
cording principles. A magnetic oxide containing magnetic dipoles is deposited
in a thin layer on a plastic or metal surface. The resulting magnetic tape, disk,
or drum is then drawn past magnetic heads (electromagnets with a very sharply
aimed magnetic field), aligning the dipoles in one direction or the other. This
process is defined as recording.

The process known as data retrieving involves passing the recorded tape or
disk surface past another electromagnetic or Hall-effect (a semiconductor that
is sensitive to magnetic field changes) head. The aligned dipoles generate a
current corresponding to the recorded data.

Magnetic Properties. The idea of a magnetic dipole being aligned in one
direction or another to represent a 1 or a 0 is somewhat simplistic. There are
hundreds of thousands of magnetic dipoles for every few centimeters of mag­
netic tape, and many sorts of dipoles are used in a magnetic coating formula­
tion. The dipoles tend to align to a greater extent as the magnetic field strength
increases. When the magnetic field gets so strong that the dipoles are well
aligned, the tape reaches saturation. A tape in saturation is analogous to an
amplifier in the same state.

For music and voice recording, a linear, nonsaturating tape response is
very desirable. By recording below the saturation level of the tape, analog
waveforms can be recorded. Digital data recording, however, is a different
story. Data can be more effectively recorded by quickly driving the tape into
saturation using a strong magnetic field.

Saturated data recording has a number of advantages over nonsaturated
recording. It is a faster recording method because the magnetic dipoles are
aligned extremely quickly using powerful magnetic fields. Saturated recordings
are also less prone to noise because all the tape's amplitude response has been
"used up" in recording the saturated data.

Certain tape formulations are better suited to saturated data recording than
others, and these are used on disks, drums, and data cassettes. Non saturating
tapes such as audio recording tapes are not well-suited to saturated recording
equipment, just as saturating tapes are poor audio tapes. The fact that a tape is
a computer data tape doesn't mean that it is -an extremely high quality tape; it
just means it is different, and probably of the saturating variety.

Magnetic tape and disk coatings must be very uniform to avoid dropouts in
the data recording. Dropping out a few cycles of a musical passage on an audio

131

132 Memory

tape would hardly be noticeable, but dropping a few bits on a data tape could
ruin a whole program or data base. Magnetic coating uniformity is therefore of
prime importance on magnetic tapes and disks.

Recording Methods. As a tape or disk is moved past a magnetic head, logic
levels (representing the 1s and Os) can be recorded one after the other in a serial
manner. Upon retrieving the bits off the tape or disk, however, a lot more
information than a rapidly changing serial stream of 1s and Os is needed to make
sense out of the data recording. Most importantly, the points at which each bit
starts and stops must be determined. The difference between three 1s in a row
and one or two 1s must be distinguished. Secondly, since most computers deal
with words and bytes, byte boundaries must be distinguishable. Finally, elec­
tromagnetic read heads only generate current at the state-transition boundaries
where the dipole alignment changes. Logic levels must be determined from
these changes.

The solutions to the above-mentioned problems lie in data formats (Fig.
3-13).

Nonreturn-to-zero (NRZ) recording is a logical extension of the simple posi­
tive and negative saturation representation of logic states just discussed. The
only differences are that (1) a clock track is recorded next to the data on the
tape to help determine where bits start and stop, and (2) changes from positive
to negative saturation are used to determine the recorded signal, because elec­
tromagnetic record heads can only sense tape saturation or flux changes and
not levels.

Recording in the NRZ format is simple; data is sent directly to the record
head with a 1 representing negative tape saturation and a 0 representing posi­
tive tape saturation, as shown in Fig. 3-14.

Retrieving NRZ data is a matter of using a flip-flop to toggle between 1 and
0 every time a saturation direction change is detected. This flip-flop essentially
synthesizes the input data that was originally recorded. The clock track is used
to clock the data into an input register at the appropriate times.

The problem with NRZ recording is its error propagation characteristic.
Because flux changes (rather than absolute levels) are used to determine the
original recorded data, reliable reading is dependent on the toggling flip-flop's
ability to track the data perfectly and not miss a single saturation transition. If
the flip-flop happens to miss a flux change (perhaps caused by a tape dropout),
the flip-flop will be set in the wrong direction for that particular bit. Not only
will that bit be affected, however; all th~e following bits will be read "upside
down" since the flip-flop is out of phase with the recorded data.

Nonreturn-to-zero inverted (NRZI) recording solves the error propagation
problem and is therefore more commonly used in commercial tape equipment.
Instead of allowing saturation directions to change from positive to negative on

Memory

Clock

1. NRZ
(non return to zero)

2. NRZI
(non return to
zero inverted)

3. FSK
(frequency shift
keying)

4. cw
(continuous
wave)

5. PWM
(pulse width
modulation)

6. DFR
(double freq.
recording)

7. Biphase M
(manchester code)

8. Biphase L
(phase encoding)

133

Figure 3-13 Common data recording and transmitting formats.

all 0-to-1 transitions and back again on 1-to-0, the saturation is simply allowed
to change, whether it be from negative to positive or vice versa, whenever
input data of one is encountered. Zero data causes no saturation change.

Retrieving the data is a matter of determining if a saturation change has
occurred. If it has, the data is 1; if not, it is 0. If a saturation change happens to
be missed by the read head, a 1 will be misread as a 0, but subsequent data will
still be read correctly, since a saturation change still equals 1 and no change still
equals 0.

As with NRZ, a separate clock track must be recorded beside the data
track on the tape. When a separate clock track is available to tell where bits
stop and start, almost any distinguishable 1- and 0-representing signal can be
used as the data track.

Format

NRZ
non return
to zero

NRZI
non return
to zero
inverted

FSK
frequency-
shift
keying

cw
Continuous
wave
(tone burst)

'

PWM
pulse-width
modulation

DFR
double
recording

Biphase-M
Manchester
code

Biphase-L
phase
encoding

Principle

Change levels from
one to zero when
data changes from
one to zero and
vice versa

Change levels on
every "one".
Remain the same
on every zero.

Low freq. = 1 data
High freq. = 0 data
or vice versa

Tone= 1 data
No .tone = 0 data
or vice versa

Wide pulse= 1
Narrow pulse= 0

One short pulse= 0
Two short pulses= 1

Change level on
every clock edge
and also in middle
of "one" data.

Change level in
middle of every
cell. Upward
change = 0, down-
ward change= 1.

Self
Clocking

No

No

No

No

Yes

Yes

Yes

Yes

Generation Method

Data
Tape data
track

Clock

r Tape clock
track

q~~~l Tape data Data : track

Clock
Tape clock
track

Voltage Tape data
Data controlled track

oscillator
Tape clock

Clock track

I ·I
Oscillator Tape data

Data 1 =On ..
0 =Off

track

Tape clock
Clock

track

Data Stretch
1 =stretch pulse Pulse
0 =short

Tape data
Pulse gen. track

Clock trigger

DataD Pulse gen. trigger I Tape data
Delay

track
Clock I Pulse gen. trigger I

Data

f 1~1 ~D- Tapedata
Clock track

Data) D- *Tape data
Clock track

Figure 3-14 Tape and communications format generation.

134

Memory

IdA L&!ld 21 t U il!'t"

135

Frequency-shift keyed (FSK) recording is a case in point. Using this method,
a high-frequency sine wave represents a 1' while a low-frequency sine wave
represents 0.

Continuous-wave (CW) recording uses a tone burst to generate a 1 and no
tone burst to represent a 0.

Both FSK and CW are seldom used in modern. magnetic data recording
applications, and both are nonsaturated recording methods; but FSK is still the
most commonly used data communication format for remote computer ter­
minals relying on modems.

So far, all the recording methods discussed require two recorded tracks­
one for data and one for clocking. Methods that require clock tracks are known
as clocked data formats. Their disadvantages include the need fora two-track
recorder, their sensitivity to tape skew between the two tracks, and their spars.e
data packing.

It's true that games can be played to eliminate the need for a separate clock
track by going to asynchronous timing methods. A slower-speed clock can also
be recorded and multiplied into an in-phase normal-frequency clock using a
phase-locked loop, but a more realistic approach to the problem is the use of a
self-clocking recording method. Self-clocking recording methods produce a
serial stream of 1 s and Os on a tape in such a way that both clock and data can
be derived from the single serial stream.

Pulse-width modulation (PWM) recording is a good example of a self­
clocking format. Notice in Figure 3-13 that the waveform has a rising edge at
the beginning of every bit boundary. By triggering a "pulse-width watching"
circuit on the rising edges or by simply examining the waveform in the middle
of the third quarter of the waveform, a 1 or 0 can be accurately detected.
Basically, a short pulse equals a 0 and a long pulse equals a 1.

Double-frequency recording (DFR) is similar to PWM except that two quick
pulses represent a 1 instead of one long pulse. Many floppy disk drives use this
recording method. The DFR waveform is identical to the PWM except that the
second quarter of the waveform on each cycle is always 0.

It is fairly easy to generate PWM and DFR, because a variable-pulse-width
generator is all that is required. The two most common types of self-clocking
recording schemes, however, are even easier to generate waveforms for, but
the waveforms are quite cryptic and hard to follow in the timing diagram
(although the hardware has no problem keeping track of the data).

Biphase-M encoding, or Manchester code, is a self-clocking scheme that
changes from 0 to 1 or 1 to 0 on every bit boundary, but an additional change
only occurs in the middle of bits representing 1. This is basically a form of
frequency modulation using only single· cycles of each frequency.

136 Memory

Biphase-L encoding is similar to biphase-M; but instead of a transition oc­

curring on the edge of every clock pulse, it always occurs in the middle of every

clock pulse. The direction of the transition in the middle of the bit determines

whether it is a 1 or 0.
Biphase-L's advantage is that it is slightly easier to generate than Manches­

ter code, but it has the disadvantage of being susceptible to phase inversion. If

the playback tape deck has its magnetic head polarity-reversed from the re­

cording deck, or if the playback deck has an extra inverting amplifier stage, the

data will be read ''upside down.''
Figure 3-14 illustrates how biphase is generated. The generation of biphase

seems to be a difficult task to accomplish, until you realize the trick: in this

case, an exclusive-OR gate.

Microcomputer Magnetic Recording Devices. Floppy disks are becoming

the dominant magnetic recording device in the microcomputer field. Floppy

disks typically use saturatep recording techniques and NRZI or DFR methods.

Before the widespread use of floppy disks, cassettes were very popular as a

data storage medium. Professional companies developed cassette decks that

record in NRZ, PWM, and biphase using saturating recording methods.

A number of popular cassette and tape recording methods were introduced

by microcomputer hobbyists as well. Hobbyist magnetic cassette recording

usually consists of biphase-L recorded data on nonsaturating tape such as

audio cassettes (the popularTarbell cassette format falls into this category),

and a self-clocking form of FSK on nonsaturating tape (commonly known as

the Kansas City Standard).
The saturated cassette formats offer higher performance than the nonsa­

turating audio tape formats, but, at this point, upgrading to a floppy disk is a

wiser choice for most hobbyists than upgrading to saturated cassette record­

ings.

Using Magnetic Tape in a Micro System. While a hobbyist's or small

businessman's single-track, low-speed, microcomputer-controlled cassette re­

corder hardly seems comparable to the multimegabit-rate 9-track high-density

"mag tape drives" used in large business and scientific computers, many prob­

lems and their solutions are shared by both devices.
The first problem is that of accurately locating and reading the desired byte

of data. Unlike random-access memory, tape must be sequentially read. Fur­

ther, it is not possible to start and stop the magnetic tape drive fast enough or

accurately enough to permit reading just one byte at a time. With a tape "den­

sity'' of 32 bits per millimeter (800 bits per inch), for example, each bit occupies

only 31.25 micrometers (microns).
The solutions to the data identifying and reading problems lie in ''file

management.'' Information is written onto the magnetic tape in ''records'' or

Memory 137

''blocks'' that usually consist of a few hundred bytes of data. Between the
records, blank spots or interrecord gaps are left to allow the tape drive to bring
the tape up to speed before reading the tape and to stop it after reading the
single record. The few hundred bytes of data read from the record are stored in
a ''tape read buffer'' area in memory and the program is free to use the bytes
one by one. Finally, when the buffer is empty, the tape is restarted and another
record is read, filling the tape read buffer again.

The simplest form of program tape storage is the storing of a whole pro­
gram in one large record. Most microcomputer tape systems designed for use
with manual motor control recorders use this method. A more advanced way to
store programs and data is in a series of equal-sized records. A series of records
is usually called a file and is ended with an end-of-file mark on the tape. Figure
3-15 illustrates the typical file structure used on most advanced microcomputer
tape units. Figure 3-16 shows a common single-record tape format.

The complexity of a cassette tape interface is dependent on the number of
features incorporated. Read and write circuitry is essential in any tape inter­
face. With just read and write circuitry, it is possible to dump and load memory
by manually turning the cassette recorder on and off at the beginnings and ends
of records. Multiple-record files are not practical with manual motor control
systems.

Motor start and stop control is an option that essentially comes for free in
most cassette recorders, and many inexpensive cassette interface units take
advantage of this feature. A computer-controlled magnetic reed switch is typi­
cally used to start and stop the tape.

Simple motor start-stop control is a vast improvement over manual control
because it offers a crude file management capability. Blocks of data can be read
sequentially in a start-and-stop manner, allowing the processor to perform
processing on single blocks of data. Two cassette recorders and a cassette
interface with motor control make up a single file management system. One
cassette is designated as the reading or input unit and the other is the write or
output device. Blocks of data or pages of text can be read in through the read
cassette, modified or added to by the user, and written out in standard file
format on the output cassette.

Assembler programs also benefit from motor control. Assembling a source
file of a program takes a relatively long time. Storing a whole source file in
memory is not possible with large programs due to the limits in memory size,
and taking in data from a large single record without motor control is not
possible because there is not enough time to assemble the program between the
bytes on the tape. With motor control, the computer can have tape input on
demand by using a read buffer and multiple-record file system.

Th next step up from motor start-stop control is full motor control. Pro­
fession 1 cassette decks usually feature fast forward and rewind as well as
motor tart and stop control. These features allow for hands-off operation of
the cas ette unit, which is very convenient.

138 Memory

Serial data (cassette)

Data bytes~ 256 Checksum byte

Startbyte ~

{ 11 oo 1 o 1 o 1 1 o 1 o 11 o 1 o 11111 oooo 1 o 1 o 1111 o 1 o 11 o 11 oo 1

0

0

0

p

0 0
1

0 0
1

0
0 0
1 0 1
0 0 0
p p p

Serial data

0

1
0

1
0
0
p

P = parity bit

I nterrecord gaps

File 1

<Tape movement

File start

1-1
File 2

Parallel data (9-track mag tape)

Figure 3-15 Tape file structure for single- and multiple-track tape.

Another feature often found on professional cassette decks is the ability to
fast-forward or rewind the tape and search for a certain record in the process of
rewinding. Because tape rewinds 10-20 times as fast as it reads or writes, it is
not possible to use identifying words written at normal read and write speeds to
find a file. Instead, special series of code words-which the cassette elec­
tronics can read if passed over at high speeds-are written at the beginning of
each record. It is easy to find the desired file using these high-speed-readable
file markers.

Typical data transfer rates for magnetic cassette tapes used in microcompu­
ter systems range from 300 to 2400 baud, or 30 to 240 bytes per second, using

Memory

<
~

139

Sync Record Checksum
identification Sequential data error check Gap character markers characters

< Tape movement

Identifier Bytes of Load program 1. Checksum
markers data count. Data bytes error
(file start) =N address

I check
1 byte 2 bytes 2 bytes ------N + 3 bytes----------

Figure 3-16 Typical direct memory load tape formats. (a) Synchronous record format.
(b) Direct memory load format (often used to load programs in microcomputer systems.)

standard audio cassettes at a 1% inch-per-second (4.7625 crn!s) speed, and up
to 32,000 bits per second or 3200 bytes per second using 1600 bits per inch (630
bits/em) saturating data tape at 20 ips (50.8 cm/s). These transfer rates are
relatively slow, so serial interfaces are commonly used with cassette tape units.

Paper Media

The earliest forms of computer data storage were paper cards and tapes. Even
before the development of the electronic computer, an inventor named Bab­
bage envisioned using gears, mechanical counters, and punched cards to form a
"difference engine" or mechanical computer. Difference engines were not suc­
cessful due to friction problems, but paper media have had very large success
in the computer field and remain popular to this day.

Paper media have gained wide support in the microcomputer field because
many inexpensive devices are available to handle them and because they have
some very desirable characteristics. Paper tape, for example, is cheap, rugged,
very reliable, and insensitive to magnetic fields.

The most common paper medium in the microcomputer field is punched
paper tape. Not only is it used extensively for long-term data storag~; it is used
as a program exchange medium as well. The widespread use of paper tape can
be directly attributed to the ASR-33 Teletype unit. This teleprinter consists of a
keyboard, a 10-character-per-second printer, and a paper tape reader-punch.
Many microcomputer users found that this unit met their hard-copy as well as
long-term storage needs for a very low price.

Paper tape has characteristics similar in some respects to magnetic tape. It
is a serial storage medium and can only be read in one direction. Paper tape is
very slow, with read rates ranging from 10 to a few thousand characters per
second.

?

<

140 Memory

Channel
number

5
4
3

T E
A R

-$,B3,&(8R).,9014 57 6

F H
I I
G F
S T

• •• •• ••• • ••••••• ••• •• •• ••• • • • ••
2 • • • • • • • • • • • • • • •

• • ••••••••••••••
ooooooooooooooooooooooooooooo~

• • • • • • • • • • • • • • • •
A B C D E F G H I J K L M N 0 P 0 R S T U V W X Y Z S S Drive sprocket holes

p H
AI
C F
E T (a)

Parity

TABCDEFGH I JKLMNOPORSTUVWXYZ1 23456 7890 -!"#$%&'
·C L

)*=RF?/>.<,t+ \
. ~
.---

--------------------------~

p •

7 ••••••••••••••••••••••••••• •

6 • • •••••••••••••••••••••••••••••••

5 • •••••••••••••••••••••• • ••••

4 • •••••••• ••• •• •• • •••••••••••••• ooooooofo oo

• •••• •••• •••• •••• • •••• • ••••••••
• •• •• •• •• •• •• • •• •• • •••••••••••••
•• • • • • • • • • • • • • • • • • • •• • • • • •• •• ••

Drive
sprocket

holes (b)

Figure 3-17 Paper tape formats. (a) 5-level code (29-code). (b) ASR-33 8-level code.

One very important difference between paper tape and magnetic tape is

paper tape's character-on-demand capability. Magnetic tape requires multi byte

records because individual bytes cannot be accurately or selectively read. Be­

cause paper tape readers usually pull the paper tape across the reader head with

a ratcheting action, it is possible to read just one byte. Due to this capability,

file management methods are not used in systems based on paper tape.

Paper tape is a byte-oriented medium. The most common kind of paper

tape is the 8-level kind that is compatible with the ASR-33 Teletype's paper

tape reader and punch. Level refers to the number of bits of data represented in

each data byte on the tape. The format for 5-level paper tape (which was

popular on earlier non-ASCII teleprinters) is a hole string with five parallel hole

positions across it; 8-level tapes have eight parallel hole positions. Figure 3-17

illustrates these two paper tape formats.
Paper tape punching is always done with some sort of mechanical die, but

there are three distinct approaches to paper tape reading: mechanical, electro­

mechanical, and optical.

--~~~~---~----~~~--~----------------------------

Memory
141

Mechanical paper tape reading is the crudest of the three, but it is very reliable. "Feelers" are poked up through the holes in the tape to read each
byte. The feelers thereby sense which holes are punched, mechanically register the holes, and read the byte. The principal drawbacks- of mechanical tape
reading is the speed limitation and device complexity.

Electromechanical tape reading is a simpler tape reading method that relies on metal contacts or brushes to conduct through the paper tape holes. Again,
tape speed is limited due to the mechanical nature of the making and breaking
contacts.

Finally, the most popular method of reading paper tape on modern readers
is the optical method. Light shines through the holes as the tape passes by the optical read head. Reading speed on an optical reader is limited strictly by how
fast the paper tape can be pulled through the reading mechanism.

Paper tape has developed around the mechanical reader, and some of the
characteristics of the paper tape itself hurt the electromechanical and optical tape reading methods.

The most common type of paper tape comes on a large roll, is oiled to
reduce mechanical punch friction, and has a dull yellow translucence. While this tape works well on the mechanical teletypewriter, it plays havoc with other
types of readers. Electromechanical readers are affected by the oil, which fouls
the electrical contacts; and on optical readers, light often is registered through
the oiled translucent tape where no holes have been punched. Nonoiled, black or gray paper tape has therefore become very popular for high-speed electro­
mechanical and optical readers.

Because paper tape is a byte-oriented medium, most paper tape readers
and punches, with the exception of the ASR-33 Teletype, are driven through
parallel interfaces. An 8-bit parallel interface is enough to send the full ASCII
character set to a reader or punch. Eight bits are sufficient for alphanumeric data because the ASCII character set includes four control characters that are
set aside to control a paper tape reader and paper tape punch. These characters
are DC1, DC2, DC3, and DC4 (DC stands for device control), which have
hexadecimal values of 11, 12, 13, and 14 and the control codes of control-Q, -R -S, and -T (reader on, punch on, reader off, and punch off).

If an application requires that a full complement of 8-bit codes be punched
or read, the device control codes that turn the reader and punch on and off
cannot be used. Whenever these characters are punched or read, the reader or
punch stops or starts. In applications requiring complete character-set punch­
ing capabilities, a separate 8-bit data and 8-bit control port are incorporated in
the device's interface.

Much software is written around the four control characters. Therefore, many microcomputer cassette interfaces as well as paper tape interfaces use the control characters to start and stop the reading and recording devices. This
software then becomes useful with both paper tape and cassette.

SELECTING MEMORY
FOR A MICROCOMPUTER SYSTEM

Once short-, medium-, and long-term storage devices and their interfaces are

understood, individually interfacing any one of them to a microcomputer sys­

tem becomes a fairly straightforward task. Deciding which memory units to

use, however, isn't quite as easy.
Evaluating a system's memory requirements is at:good place to start. A

simple microcomputer-based controller usually requires permanent storage for

a control program and a small amount of random-access memory for temporary

working storage. In simple cases like these, the requirements make the memory

choices quite easy.
In the initial design of a microcomputer-based controller, it is wise to

allocate about twice as much memory (PROM and RAM) as initial memory

estimates call for. Controllers typically take on more tasks as they proceed

through the design process, so expandability can be quite important.

The specific PROMs, ROMs, and RAMs should be selected on the bases of

price, power, performance, and microprocessor compatibility. Memory

devices from the microprocessor's logic family simplify design complexity and

eliminate the need for level translator circuits. Memory devices and a micro­

processor from the same device family are usually well matched in terms of

speed also. NMOS microprocessors, for example, have clock rates ranging

from 1 to 4 MHz, while NMOS memory cycle times range from about 0.25 to 1

microsecond (corresponding to a 1 to 4 MHz clock rate). The advantages of

individual PROMs and RAMs should be weighed as described in the short-term

memory section.
For processing-oriented microcomputer applications, the memory deci­

sions get tougher. Not only does short-term memory have to be considered, but

a medium- or long-term storage device must be selected.

First, enough RAM to run all the desired programs must be provided. Text

editor programs typically use from 2K to 5K of memory, assemblers 4K to

12K, and BASIC interpreters and compilers 2K to 16K. With today's low

memory cost, a good starting point for RAM is 32K. This much RAM allows

enough working storage for the above-mentioned programs plus some data and

system utility programs.
Programs and data can be stored on cassette or floppy disk, but before

deciding on an expensive dual or quad cassette system or dual floppy disks, it is

wise to consider the large memory approach. Memory is quite inexpensive

compared to floppy disks and cassette drives, and can reduce or eliminate the

need for long-term storage devices if enough of it is used.

If a microcomputer's prime purpose is to run user-interactive BASIC and

assembly language support software (text editors and assemblers), a system

consisting of 24K of PROM for BASIC, editor, and assembler programs, and

32K-48K of RAM may be adequate. Not only will a system like this cost less

142

Memory
143

than a floppy disk system, it will perform more reliably and have quicker
program access and response time as well. A single, manually operated cas­
sette deck for storing user programs and data may be desirable in a system like
this as well.

If a floppy disk or cassette system is chosen over the memory approach,
more memory should be allowed to contain the disk operating or cassette
control software or "operating system." Putting this software in PROM is
nearly essential, especially on a microprocessor that has no front-panel data
entry method, because upon power-up the first programs to be run will usually
come off the disk or cassette. An alternative to putting the whole operating
system in PROM is to put a small initial loader or bootstrap loader in PROM
and have that initialize the operating system by doing an initial program load
(IPL).

Two or more of the same magnetic long-term storage devices have many
advantages over just one. The advantages include file copying capability, the
ability to sequentially read one tape while writing onto another (if cassettes
were chosen), and increased storage.

If cassettes are chosen, motor control is imperative for any serious applica­
tion that involves more than just dumping or loading programs manually at the
beginning and end of a session with the computer. Some cassettes with motor
control offer nearly the flexibility, random-access capability, and hands-off
operational characteristics of floppy disks; but the latency time (file access
time) is always longer.

One factor to consider before buying a floppy disk is the amount of data
that can be stored. Minifloppy drives of the single-density type can store only
about lOOK bytes of data, which is barely enough for a couple of large programs
and data bases. Working with minifloppies can become a cumbersome hands­
on operation (constantly removing and inserting disks) if you require large
storage capacities. A full-size floppy disk or one of the high-performance,
double-sided, dual-density minifloppies may be more appropriate for your ap­
plication.

New microprocessors, memory devices, interface chips, and other exotic mi­

crocomputer components enter the market every year, and it is popular to talk

about these fad items. Magazine article after magazine article and even whole

books are devoted to the popular devices.
Two important areas of microcomputer systems that are usually over­

looked are the control structure of microprocessors and the input and output

methods used to get data in and out of the closed microcomputer-memory

system. A new microprocessor, such as the Intel 8086, is usually described as a

revolutionary processor with so many index registers, so many data registers,

and a "pipelined" architecture. Little, if anything, is ever said about a

microprocessor's microprogrammed control unit, sequential control point

instruction-execution logic, or the internal workings of the priority arbitration

logic. Most manufacturers' and authors' block diagrams of microprocessors, in

fact, pass off the most sophisticated part of the processor-the timing and

control unit-as a simple box with the words "timing and control logic" writ­

ten inside.
Two factors contribute to this situation: First, a microprocessor's effi­

ciency and overall performance are greatly affected by the control logic, and

most manufacturers prefer to keep their unique designs proprietary. Dull sub­

ject matter is the second reason for the scarcity of control information. Micro­

computer users are more interested in the available. registers and the instruction

sets of a processor than in the way a processor internally carries out an instruc­

tion. Control logic is somewhat invisible to a computer programmer.

144

----------------------------------~~~------··--~----------------~-~-----------------------------

Microcomputer Input and Output Methods 145

The dull subject matter argument also applies to 1/0 methods. It is much
more interesting to read about a microprocessor's potential than about all the
little details that allow it to live up to that potential. This subject matter can
become very interesting, however, when you try to use a microprocessor in an
actual application.

A microprocessor's control logic and its 1/0 protocols play the largest role
in a microcomputer's communication with the outside world, and this chapter
is devoted to digging into the basics of computer 1/0 methods. A few basic
concepts concerning the low-level logic elements commonly used in 1/0 are
described, followed by explanations of various 1/0 schemes, from simple to the
most complex.

BASICS OF LOW-LEVEL 1/0 COMPONENTS

It is important to precisely define the functions of various common logic ele­
ments before discussing how these elements are used to transfer data in 1/0
systems. Flip-flops, registers, latches, and memory cells, for example, are all
capable of storing bits of information; but the distinctions between these
devices are very important, because data I/0 is essentially the process of
capturing and transferring data to and from these devices.

The Edge-Triggered Register

Data transfers rely on the ability to "catch" a byte of data in a temporary data
storage un~t at a precise instant in time. If the unit sending the byte is a
microprocessor and the temporary data storage register is located in a periph­
eral device, the act of catching the byte of data would amount to a
microprocessor-to-peripheral output cycle. One such data-capturing device is
the edge-triggered register.

Figure 4-1 presents the standard notation used to depict a register. A
register's input and output signals are well standardized in notation. The D
input to the register is the data input, CK is the clock input, and Q and Q
(commonly called Q-bar) are the data output and inverted data output.

Data at the D input is transferred to the Q output on the positive-going edge
of the clock input's signal. The data that is transferred at the positive-going
edge of the clock pulse is stored or captured at the Q output until the next
positive-going clock signal occurs (when new data at the D input replaces it).
the important concept here is that the data is only ''looked at'' .by the register's
input during the very short time in which the clock rises from logic 0 to logic 1.
In other words, data need only be "valid" on the rising edge.

In reality, the data at the data input must be valid a slight bit before the
rising edge (called the data setup time) and a slight bit after the clock's rising
edge (called the data hold time) to allow the register's circuitry to respond to
the data properly.

146 Microcomputer Input and Output Methods

Data captured on rising edge

Data
Data input D output

Clock CK D

Inverted
data
output

Timing

(a)

Data captured on falling edge

Data Data input
output

Clock

Inverted
data.
output 0

Timing
(b)

D Don't care data Don't care data

(c)

Figure 4-1 Edge-triggered register characteristics. (a) Rising-edge-triggered register.

(b) Falling-edge-triggered register. (c) Setup and hold times.

Rising- and falling-edge-triggered registers are available. Falling~edge­

triggered registers capture data on the falling edge of the clock pulse and are
really just rising-edge-triggered registers with inverted clock inputs.

To describe the capturing of data in a register, we use the word clocked.
When data is clocked into a register, it is assumed to be captured on the rising
edge of the clock cycle.

The safest way to use a register to capture data is to allow as much setup
and hold time as possible on the D input. The input data should be valid for a
safe amount of time on both sides of the clock's rising edge. A good way to
make sure this criterion is met is to allow data to be presented and removed
from the data input at the trailing edge of the clock, and to clock data into the

Microcomputer Input and Output Methods 147

register on the rising edge. As Fig. 4-1 illustrates, valid data is symmetrically
sandwiched around the clock pulse, thus allowing very wide setup and hold
time margins.

A register's output takes a certain length of time to change to the new input
data following the clock's leading edge. This delay is known as the clock-to-Q
propagation delay. This lag in register output must be considered when using
registers.

The Bistable Latch

A latch is capable of storing a single bit of data; but unlike the register, it is not
a clock edge that directly causes data to appear on the latch's outputs.

Figure 4-2 illustrates a latch and its timing. A latch has a data input (D),
data output and inverted output (Q and Q), and an enable input (E or sometimes
G). A latch is "transparent" in that it allows data to freely pass from the D
input to the Q output when the enable is high; but it immediately freezes
whatever was at the data input when the enable line is dropped to a logic 0.

At first glance this may seem like a falling-edge-triggered register because
data is captured on the falling edge, but it has the transparent property not
available on the register when the clock is high.

In some applications the transparent feature of the latch is actually used,
but in most cases designers treat latches as registers that capture data on the
falling clock edge. The danger in using a latch in this way is that for the whole
time the clock is high, whatever data is on the data input is allowed to slip
through the latch and appear at the output. This problem is solved by narrowing
the positive clock portion down to a narrow pulse. Data can be thought of as
being captured by the pulse when this sort of arrangement is used. Capturing
data in this manner is referred to as "strobing" data into a latch.

Unless erratic output is acceptable during the time the strobe pulse is high,
data must be valid during the whole strobe time and even a little before and
after the pulse (setup and hold times again).

Data passing/freezing operation
1
I Register-like strobed operation

1
I

~atan0 Data mput output

Gate or _ Inverted
strobe G 0 data

output

Figure 4-2 Bistable latch characteristics.

148 Microcomputer Input and Output Methods

If a narrow pulse is generated by counters or if a multiphase clock with
narrow pulses is available, the latched 1/0 method is a reasonable alternative
because latches. are cheaper and draw less power than registers; but all too
often, bad design practice is used to generate the required narrow pulse. An
edge-triggered monos table multi vibrator (one-shot) is often misused in this
application, and system timing becomes dependent on the one-shot's timing
components as well as the processor's master clock crystal. Because one-shots
are susceptible to electrical noise, a noise burst entering the device containing
the one-shot-driven latches could cause false data to be strobed into the
latches. It is wise to avoid using one-shot-driven latches.

The Multiplexer

Whether you are inputting, outputting, or processing data, it must be channeled
between various processing elements and 1/0 devices. The logic element used
to steer data is the multiplexer.

Figure 4-3 illustrates a multiplexer and its equivalent gate-constructed lo­
gic. Basically, A data is passed to Y if the select line is low, and B data is
passed to Y if the select line is high.

A multiplexer or a series of multiplexers connected in a treelike fashion can
be used to select between many data inputs, but more often than not, virtual
multiplexers are used in 1/0 systems. A tristate data bus that can only be driven
by one tristate buffer at a time is an example of a virtual multiplexer. The buffer
driving the bus acts as the selected input on a real multiplexer, and multiplexing
action takes place even though there is no actual multiplexer part.

The Decoder

A decoder is a gating network that takes a few input bits (usually three or four
in the case of single-chip MSI decoders) and generates a unique output for each
3-bit input combination of ls and Os (Figure 4-3 illustrates a decoder).

Decoders come in two distinct types: those that raise only one output at a
time to logic 1 for each input code, and those that lower only one output to logic
0 for each input code. In TTL, the AND gate is the dominant building block, and
the one-line-lowered type is the most common. The NOR-gate-dominated ECL
uses the one-line-high approach in most cases due to ECL's wired-OR capabili­
ties.

Decoders play an important role in interfaces in the capacity of device
selectors. Because only one output line on the decoder goes high for each input
code, device selection codes can be fed to decoders and the individual outputs
can electrically enable the specified device.

2:1 multiplexer block 3:8 decoder block

~ nput A 0

Y Output Y

Inputs {

A 2
3

Outputs B
4

c 5
6

Input B
s

Select __ __,

7
Equivalent gating

A

y
B Function-1 high decoder

ABC 0 1 2 3 4 5 6 7
s 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

Multiplexer function 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0

Action s A B y 1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Select 0 X 0
Y=A 0

1 X 1

Select X 0 0
Y=B 1

X 1 1

Function-1 low decoder
Virtual multiplexer

ABC 0 1 2 :3 4 5 6 7
Tristate 0 0 0 0 1 1 1 1 1 1 1
buffer 0 0 1 1 0 1 1 1 1 1 1

A D Q 0 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1 enable
1 0 0 1 1 1 1 0 1 1 1

Tristate 1 0 1 1 1 1 1 1 0 1 1
bus line s y

Tristate
1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

buffer
enable

B D Q

(a) (b)

Figure 4-3 Data engineering elements. (a) The multiplexer. (b) The decoder.

149

Single data line Peripheral
device
Register

L.E.D.

Output cycle ..__ ____ __,

line

Microprocessor
CK

Single data line

D

Q

Input
cycle line

D

CK

Q

(a)

Peripheral
device

Microprocessor 1----..J

data capture

(c)

Data strobed into
microprocessor

8-bit data bus

8-bit data bus

Peripheral device

Register 7-segment
readout

(b)

1_/
/_/

Peripheral device

,----
Keyboard Q

Q D
Q D 0000000
Q D Q§lDDDO~ 00000
Q D DO DODD
Q

D Q
Q D I j D
CK D

~
Input cycle linej

I
I Microprocessor I

(d)

Figure 4-4 Simple output and input data transfers. (a) Single-bit output transfer.

(b) Parallel output transfer. (c) Single-bit input transfer. (d) Parallel input transfer.

150

BASICS OF DATA TRANSFER

The true definition of an input or output operation is the act of selectively
transferring data to or from a selected peripheral device. A good place to start
in the explanation of how 1/0 cycles are typically implemented is to take the
simple case of sending a single bit of data to a peripheral.

Figure 4-4 illustrates a single-bit data transfer. The output device consists
of a rising-edge-triggered register and an LED (light-emitting diode) to indicate
the state of the register. Referring to the timing diagram, the microprocessor
presents valid data and an output cycle clock line to the register. The
microprocessor's control unit raises the output cycle clock line to a logic I level
at the midpoint of the data-valid interval on the data line, at which time the data
is transferred from the microprocessor to the output device's register. A simple
one-bit output cycle is thus performed. The LED acts as the peripheral output
device in this case.

Most microprocessors have output cycles that are just embellishments of
this simple scheme. The data on the line usually reflects a bit in the accumula­
tor while the output cycle clock is generated by an output instruction.

Figure 4-4(b) shows the logical extension of the single-bit data transfer: the
parallel data transfer. In this case, eight bits of data are sent to the output
device, which clocks the data into an 8-bit register where it is used to drive a
7-segment readout instead of a simple LED. Again, the timing diagram of
Figure 4-4(a) applies.

Figure 4-4(c) depicts a single-bit input cycle. In this case, the input clock
signal issued by the microprocessor is used to sample the data at the input
register's D input. A short time after the rising edge of the input clock, the data
becomes stable at the register's output and is sampled by the microprocessor.
Again, the microprocessor's control unit provides all the proper timing signals
for the data transfer and usually transfers the valid data on the line to one of the
microprocessor's registers where it can be accessed by the user's program.

Extending this data input principle to 8 bits yields the keyboard input
transfer logic of Figure 4-4(d). An 8-bit key code is generated by pressing a key
on the keyboard. The microprocessor proceeds to examine the 8-bit code by
clocking it into the register and sending it to the microprocessor's accumulator
or one of its registers.

What has been described so far is fine as long as there is only one 1/0
device or peripheral on the microprocessor bus. If two or more devices are
used, the question of which is supposed to receive the data is raised. This issue
is resolved with selection logic.

Figure 4-5(a) illustrates three output devices driven by the same data and
control lines. The microprocessor specifies for which device the output is
destined by supplying a device code. The decoder in the peripheral devices
either enables or disables data transfers to a particular device, depending on the
device code.

151

152

8 bit
data bus

8
,

8

8
,

Q)

.!:: t:
Q) Q)

+-' :J

-~ a-
~

cr:o
s::::-

Peripheral 1
,----

8-bit
D 0 ~data

-
L)-~

Peripheral 2
- a·
D 0

___... -b1t
data

o-~ ~

Peripheral 3
,----

D 0~8-bit
data

rOcK
I ~

3 address bits AOU
I B 1

I c 2r---
3
4 1/0

Microcomputer Input and Output Methods

Z80 clock

3 address bits
"port address"

T1 T2 TW T3

8-bit data bus Valid output data

WR (write)~-____,

(b)

T1

Z80 microprocessor 5
6 sele

device
ction

~
logi c

Decoder

(a)

Figure 4-5 The selection of three output devices on a Z80 bus. (a) Logic.
(b) Output timing.

Most microprocessor 1/0 schemes use a few of the address bits as the
device code bits. Because a memory cannot be accessed while an 1/0 cycle is
being performed (due to 1/0 data tying up the data bus), there is no sense in
adding additional lines for 1/0 device code selection.

From the standpoint of microcomputer software, the I/0 device code that
appears on the address lines is specified in the input or output instruction. An
OUT 5 instruction on an 8080, for example, puts the value 5 on the address
lines and the contents of the accumulator on the data lines.

The Zilog Z80' s input and output cycles are good illustrative examples of
the 1/0 principles just described. Figure 4-5(b) illustrates the Z80 output cycle.
Notice that instead of one output clock line, there are two lines that must be
combined (ANDed) to create an output clock line: the IORQ (1/0 request) line

Microcomputer Input and Output Methods 153

and the WR (write) line. Notice that the port address or device selection code
that appears on the 8 least significant bits of the address lines becomes valid
before the output clock lines are activated. This timing margin is provided to
allow the device selection decoders to stabilize and properly select the output
device before outputting data to it.

THE 1/0 DIRECTION STANDARD

When working with simple systems, the terms input and output are quite clear.
The simple data transfer examples just presented require no detailed explana­
tion of which devices perform the input and output functions. In complex
systems, however, the terms input and output must be explicitly defined to
avoid any confusion about which direction data is flowing. When an output
transfer between an intelligent graphics terminal and a central processing unit
takes place, is the data output from the processor to the terminal or vice versa?

A standard convention was adopted to handle s~ch terminology conflicts.
Data transfers are always spoken of with relation to the central processing unit
of a computer system. Keyboards, digitizers, light pens, card readers, and
paper tape readers are input devices, while graphics displays, line printers,
paper tape punches, and the recording sections of cassette interfaces are output
devices. An output transfer between a graphics terminal and a CPU means that
data flows from the CPU to the graphics terminal.

SERIAL 1/0

Presenting a full byte of data to an output register and supplying an input clock
to clock the data is a fast and simple way of sending data to a peripheral device.
It is not always practical, however, to have eight or more data lines plus a clock
line extending out to all the peripherals in a system. In these situations it is
advantageous to replace parallel data transfer with serial data transmission.

Serial data transmission is the process of breaking bytes of data down into
single bits and shipping them out to the peripheral devices one at a time.

Some problems arise in the implementation of serial communication. First,
an effective method of converting parallel to serial data is needed. A micropro­
cessor under software control or a "broadside-loadable shift register" can
easily perform this task. A string of eight edge-triggered registers are loaded
with the 8-bit byte on the first clock pulse of the serial transmission operation,
and the bits are sequentially moved through the register string at the rate of one
bit per clock pulse. The bits that "fall off the end" of the register string make
up the serial output.

In a similar manner, bits coming into the receiving end are serially shifted
into a shift register until 8 bits are accumulated. This full byte of data can then
be used by the peripheral device.

154

control line

control line

Microcomputer Input and Output Methods

As Fig. 4-6 illustrates, an input line, output line, and a clock line are all that
is needed for bidirectional serial communication between two devices. If the
two devices are in separate cabinets and run on different power supplies, a
common or ground line between the devices must also be provided.

Synchronous Communications

With parallel communication it is clear that the rising edge of the clock indi­
cates the transfer of a whole byte, but in serial communication the rising edge
of the clock indicates the transfer of a single bit, and a scheme to determine
which bit of the byte was transferred is needed. One common approach to this
problem is to initially synchronize the transmit and receive shift registers and
from that point on assume that the transmit circuitry and receive circuitry, by
simultaneously counting to 8 (in the 8-bit shift register case), will keep track of

Data
Transmitter

Serial data shift

Serial data shift

8-bit parallel
data load

Transmission line
I I
I I
I I

_[I
-=-I 'l 1-::-

(a)

Freq. = N Hz I
I

(b)

Data
Receiver

Serial data shift

Serial data shift

8-bit parallel
received data

Freq. ~ N Hz

Clock
generator

Clock
synchronizer

Figure 4-6 Serial data communication clocking schemes. (a) Synchronous serial data
transmission. (b) Asynchronous serial data transmission.

Microcomputer Input and Output Methods 155

the byte boundaries in the bit stream. This type of serial transfer is called
synchronous communication.

The practicality of synchronous communication depends on the
transmitter's and· receiver's ability to stay synchronized after initialization. If
the receiver for some reason gets just one bit off (perhaps through the introduc­
tion of a noise spike in the clock line), all the following bytes will be received
incorrectly. The transmit and receive shift registers must be run off the same
clock in synchronous communication modes.

Initialization of the transmit and receive registers is usually accomplished
through a character matching process. When a synchronous serial transfer
begins, the receiver is put into a bit-stream "watching" mode. The first charac­
ter sent by the transmit register, known as a match character, consists of a
predefined bit pattern known to the receiver. The receiver recognizes the
match character on the clock cycle that it is fully shifted into the shift register
and starts counting out 8-bit bytes from this point on.

Synchronous serial data transmission requires a clock signal in addition to
the input and output data transfer lines.

Asynchronous Communications

A common form of data transmission that eliminates the need for a synchroniz­
ing clock is asynchronous communication. Asynchronous serial communica­
tion relies on the fact that two clocks of approximately the same frequency stay
fairly well synchronized· over a short period of time.

An asynchronous data transmitter sends out an initial timing bit called a
start bit, followed by eight bits of serial data and one or two "stop bits." The
asynchronous receiver syncs up its clock (of approximately the transmitter
frequency) upon receipt of the start bit and clocks in 8 bits of data using the
just-synchronized receiver clock as a guide. By the time the eighth bit is
reached, the receive clock is slightly skewed from where the transmit clock
would be if it had been used, but the skew is not great enough to affect the
proper capture of the short 8-bit serial stream.

The stop bits at the end of the serial data stream are usually used by the
receiving equipment to determine if the clock is too skewed to provide accurate
read data . .If h is, a "bit-misalignment" or framing error is declared. Figure
4-6(b) illustrates the asynchronous communication method.

Serial ·communication requires much more control circuitry than parallel
communication. In addition to the standard parallel interfacing to the micropro­
cessor bus, we must use serial-to-parallel conversion, clock synchronizing, and
bit-counting logic. The common use of serial communication has therefore
resulted in single-device serial communication chips to handle the complex
interface and conversion task. Among these chips are UART (universal

156 Microcomputer Input and Output Methods

asynchronous receiver/transmitter), USRT (universal synchronous receiver/
transmitter), and ACIA (asynchronous communication interface adapter)

devices, all of which we discuss in detail in the interface components section.

OPEN- AND CLOSED-LOOP COMMUNICATION

When you send a byte of data to a peripheral device, it is good to know if that
byte ever reached its destination. The simple parallel and serial 1/0 schemes
just presented do not have any provisions that allow for checking. Data is sent

from the processor to the peripheral and it is assumed that the data correctly

reached its destination. This sort of 1/0 is referred to as open-loop.
There are a number of ways to send data-received status information back

to the sending device. After a word has been received it can be sent back to the
sending device or echoed, thereby "closing the loop." This method is very

common in computer-to-terminal communication. In most cases, the data en­
tered through a compUter terminal's keyboard is sent to the processor,
checked, and sent back to the terminal's display screen or printing mechanism.

Closed-loop operation is provided on the microprocessor bus level with a

method almost universally known as handshaking. With this method, individ­
ual status signals are sent back to the processor acknowledging that the word

has been received properly. Handshaking logic adds considerable complexity

to a microprocessor's bus, but it also adds reliability and flexibility. Reliability
is improved because the processor can determine when data hasn't been re­
ceived and take corrective action. Versatility is increased because the returned

status information can be used to perform powerful timing functions in addition
to closing the communication loop. Asynchronous memory operation is one
example.

In the discussion of memory interfacing (Chapter 3) it was assumed that the

memory address signals, read and write control lines, and data inputs were
strictly .under the control of the microprocessor. The microprocessor would
submit an address and read in the memory's data 250 ns later, for example.
With handshaking, a memory can have internal circuitry to tell the processor

when its data is valid on a read cycle or when it is finished with bus data on a
write cycle. Not only does the processor have an indication that the data was
sent or received properly, but it knows the precise instant to terminate the data
transfer and move on to the next memory access. If memory access and 1/0
handshaking are incorporated in a microcomputer system, memory devices
(RAMs, PROMs, and CCDs) and peripherals with widely differing speed
ranges can be used effectively on the same· bus without the addition of any
speed matching circuitry.

Handshaking is used extensively on DEC's LSI-11 microcomputer. The
data output (DATO) cycle shown in Fig. 4-7 illustrates the sequence.

Microcomputer Input and Output Methods

Master
(initiates transfer)

Digital
equipment

corp.
LSI
II

Master

BRPLY

BDOUT

BSYNC

BWTBT

BDAL0-15

15

Bus reply handshaking line

Output data ready

Transfer initiating line

Write cycle indicator

Address/data lines

(a)

Slave
(data transferee)

1/0
device

Slave

Assert address
Assert BSY NC I ine 1 __ 1_. _A_d_d_r_e_ss_a_c_q_u_is-it-io_n ___ ___,..._l------......,
Assert BWTB line I Decode and

Assert data
Assert BDOUT

Release data
Negate BDOUT

Negate BSYNC
Transfer done

(b)

store address

Assert BRPL Y
when ready

Negate BRPL Y

Figure 4-7 Microcomputer I/0 and memory handshaking. (a) Logic signals involved in
a data output (DATO) cycle on the LSI II. (b) Sequence" of events in a DATO cycle.

157

One feature that must be incorporated in any handshaking system is a
timeout mechanism. When a processor depends on a returned handshaking
signal to resume operation, there must be some provision for error recovery if
that signal doesn't come back. The LSI-11 handles this situation by trapping
(diverting program execution) to a device timeout routine if the accessed mem­
ory or device doesn't respond with a returned handshaking signal within 2 ms.

COMMON MICROCOMPUTER 1/0 METHODS

Every microcomputer has its own way of applying data transfer principles. The
specifics of a microprocessor's I/0 system as well as the general data transfer
concepts must be well understood before successful designs and interfaces can
be built. This section deals with the more specific areas of input and output.

158 Microcomputer Input and Output Methods

With the exception of a few exotic microprocessors, the majority of micro­
processors either use data channel or memory-mapped 1/0. Most have some
sort of interrupt capability and many are capable of direct memory access
(DMA).

The Data Channel

In the early days of computers, when circuit and logic optimization were not
well understood, computers were thought of as machines consisting of a pro­
cessor, a memory, and an 1/0 unit. The memory interfaced with the processor
through one interface and to the peripherals through a different interface.· Sepa­
rate processor instructions were set aside for memory reference and 1/0 opera­
tions. This kind of an 1/0 scheme is called data channel input/output.

Microprocessors must have optimized 1/0 schemes in order to fit a whole
computer into a 40-pin integrated circuit, and pure data channels are not used in
microprocessors due to 1/0 pin constraints. The distinct instruction character­
istics of 1/0 channels, however, is carried over from older designs. The 8080
and Z80 are examples of the 1/0 channel-oriented microprocessors.

Instead of having a separate 1/0 bus and device selection bus (common in
data channel 1/0), the Z80 uses the data bus as the 1/0 bus and the eight least
significant bits of the address bus as the device selection lines. 1/0 devices
therefore reside on the same bus as memory. The thing that distinguishes the
1/0 interfaces from memory is the microprocessor-generated 1/0 request line
(IORQ). If this line is low, it indicates that the data and address bus are acting
as a data channel; if it is high, it indicates a memory reference. Figure 4-5(b)
illustrates the 1/0 channel's timing.

The Z80 has a whole set of I/O-oriented instructions that turn the data and
address bus into an 1/0 channel upon execution. The basic input instruction is
IN A, where A represents the device selection or port address. (The term 1/0
port is commonly used to describe an interface on an 1/0 channel.) Because the
value of A can be 8 bits long, 256 read ports and 256 write ports are available on
the data channel. This number of 1/0 ports is sufficient for nearly every micro­
processor application and is convenient because the port number can be stored
in a single 8-bit byte of memory. Because there are 16 address lines, and only
the 8least significant lines are used in an 1/0 cycle, there are 8lines left over for
other functions. The 8080 simply repeats the 8-bit port address on the most
significant bits, which serves no useful purpose. The Z80, on the other hand,
makes good use of these bits by displaying the contents of the accumulator on
these lines. During output instructions, a register can be output to the data lines
and the accumulator to the high address lines, allowing a 16-bit transfer. On
input cycles, the accumulator can be read by the peripheral interface, resulting
in a simultaneous input/output cycle.

Memory-Mapped 1/0

As computer science advanced, hardware optimization and simple-to-use in­
struction sets became sought-after features in computer systems. Processor
hardware was optimized and instruction sets were simplified by approaching
the 1/0 and memory interface processor logic simultaneously rather than inde­
pendently. By treating every device's data transfer register as a location in
memory and assigning it its-own address, no separate output channel hardware
or dedicated 1/0 instructions are needed. The PDP-11 was a big step forward in
small computer design when it was introduced in the late 1960s, and totally
memory-mapped 1/0 was one of its main selling points.

A memory-mapped 1/0 interface is nearly identical to a memory interface,
but instead of using RAMs or ROMs, input and output registers are incorpo­
rated. Like a memory interface, the peripheral interface must contain a com­
plete 16-bit (for microprocessors with 16-bit address lines) address recognizer,
and any buffers and handshaking logic associated with the microprocessor bus.

Memory-mapped 1/0 lends itself to program organization. A certain section
of a processor's memory addressing space (usually a 4K or 8K block) is allo­
cated for 1/0 devices. These locations in memory are referred to as device
registers (as opposed to ports for data channels). In programs, data is transferred
to and from these locations just as data is transferred to and from memory. If a
processor has direct memory-to-memory transfer capabilities, such as the
LSI -11, data can even be transferred between devices with single memory-to­
memory move instructions.

The, 6800 and 6502 microprocessors are two examples of memory-mapped
1/0 .machines. In both cases, no 1/0 instructions are available.

1/0 Transfer Type Advantages

Like every drastic logic difference in microprocessors, data channel versus
memory-mapped 1/0 data transfers are cause for hours of debate on which is
superior. Both sides have their advocates and opponents.

The data-channel advocates argue that interfaces on a data channel require
less hardware because a short port address instead of a full memory address is

·used to select the device. This argument is true for most memory-mapped 1/0
systems; but Digital Equipment Corporation, realizing the problem, has its
LSI-11 generate a separate signal indicating that the top 8K of memory is being
accessed. This signal can be used by 1/0 devices instead of the top 8 bits of
address to distinguish the 1/0 area of memory.

Another argument against memory-mapped 1/0 is that it clutters the mem­
ory. This argument is not valid because the 1/0 devices are usually grouped in
one confined area of memory, and the useful space taken from the processor's

159

160 Microcomputer Input and Output Methods

memory size is usually so small that it doesn't make any difference. The large
addressing space of the memory-mapped 1/0 has one advantage in special
applications. Occasionally in large control or data communication systems,
more than 256 output or input devices are needed. With memory-mapped 1/0,
thousands of peripherals can be accommodated.

The arguments about the advantages of the two 1/0 methods go on and on,
but it is interesting to note that most modern microprocessors are using
memory-mapped 1/0 methods.

1/0 TRANSFER INITIATION

We have been assuming that the microprocessor knows which peripheral it
wants to send data to and at what time to ,send it. But in real life it isn't that
simple. Peripheral devices can only accept data at a certain rate, and new data
may be input at any time. Two methods of determining when to start a data
transfer are in common use: the examination of device status under program
control or polling, and peripheral-initiated program interruption or interrupt
driven 1/0. Let's look at these two methods.

Polling

Submitting only 8 bits of data to a processor and expecting the processor to
input the data properly is somewhat analogous to telling a moving company to
pick up some goods but not mentioning when or where to pick them up. More
information must be submitted to the processor. One of the most common and
simplest ways to conv_ey enough information is to have a separate input register
built into the interface, which the processor can use to obtain status informa­
tion about new data submitted to the interface.

The keyboard interface shown in Fig. 4-4(d) is a good example of a proces­
sor in need of more information. It is true that the processor can repeatedly
read the keyboard's register, but there is no way to tell when a new key has
been pressed or if a key has been pressed twice in a row. A separate register
with one bit representing keypress (logic 1 if the key is pressed, logic 0 if it is
released) can improve this situation. The updated keyboard interface is shown
in Fig. 4-8.

By getting into a programmed loop that repeatedly examines or polls the
status register waiting for the key to be pressed, the microprocessor can be
made to jump to a keyboard-data-examining instruction immediately after the
key is pressed, thereby reading the new data. The microprocessor can then
jump to a routine that waits for the key to be released, and again resume its
keypress loop waiting for the next character.

...
&

.

en

...
&

.

8
-b

it
 d

at
a

bu
s

P
ol

le
d

K
e

yb
o

a
rd

 I
n

te
rf

a
ce

D

at
a

re
g.

8

-b
it

 k
e

yb
o

a
rd

 d
at

a

K
e

yb
o

a
rd

8
-b

it
 d

at
a

bu
s

<
(

I­ <
(

0
0 0

:

d 0
:

0

M
ic

ro
pr

oc
es

so
r

(a
)

L
 _

_
_

_
_

_
_

_
 :

 _
_

_
_

_
_

_
_

 _J

(b
)

F
ig

ur
e

4-
8

P
ol

li
ng

-i
ni

ti
at

ed
 d

at
a

tr
an

sf
er

s.
 (

a)
 A

 p
ol

le
d

ke
yb

oa
rd

 d
at

a
tr

an
sf

er
.

(b
)

T
hr

ee
 s

im
ul

ta
ne

ou
sl

y
po

ll
ed

 p
er

ip
he

ra
ls

.

P
ol

le
d

ke
yb

o
a

rd

in
te

rf
a

ce

P
ol

le
d

sw
itc

h

in
te

rf
a

ce

P
ol

le
d

te
rm

in
a

l
in

te
rf

a
ce

162 Microcomputer Input and Output Methods

There is no reason to limit the polling loop to one peripheral. Figure 4-8(b)

illustrates a keyboard, switch, and terminal all being polled by a software

polling loop. When the data of any device becomes valid, the processor jumps

to a quick-executing data input or output routine and returns to the polling

loop. The chance of missing data in the short period of time that the data for

another device is being input is very small because the data service routine

executes so quickly and the peripherals are so slow by comparison.
The major advantage. to polled 1/0 initialization is its hardware simplicity.

The major disadvantage is the amount of processing time it takes. Constantly

watching the device status flags is time-consuming, and leaving the polling loop

for even a short period to perform some other processing may cause data to be

missed. The amount of time spent in polling loops may be reduced by having

the status bits for many devices packed into a single status word with either one

bit representing each device or a code indicating which port is requesting an J/0

cycle; but the need for continuous polling remains.

Interrupt-Driven 1/0

Because it is the action of a peripheral (the receipt of a new character, for

example) that marks the beginning of a data transfer, it seems more reasonable

to have the peripheral device "tell" the processor when it is ready with new

data than to have the processor continuously ask if anything new has come in

yet. This is precisely the idea behind interrupt-driven 1/0: when a peripheral

device has data to transfer, it lets the processor know.
An interrupt system must be incorporated in the control structure of a

microprocessor if this 1/0 initialization method is used. An interrupt typically

causes a program (usually normal data processing) to suddenly halt, and diverts

execution to a separate program which inputs or outputs the new data. This

form of operation is inconsistent with the idea that programs flow nicely in

exactly the sequence you specify, and a change in the basic control rules of the

processor are required.
The simplest form is the single-line interrupt system. In this system, an

interface on the microprocessor bus simply puts a logic 1 on the interrupt line

that leads to the processor's control logic. At the end of the currently executing

instruction, the program will be diverted to a fixed interrupt address. A pro­

gram located at this address then inputs data or ''services the interrupt.''
With the simple one-line interrupt system, it is also possible to have many

devices issuing interrupts; but when execution is diverted to the fixed interrupt
address, a polling routine must be used for a peripheral to place its service

program's start address on the address or data bus when the device interrupts,

the processor can take this address and vector execution to the proper service

routine.

-------'-
Microcomputer Input and Output Methods - 163

This sort of interrupt system works well with many peripherals but in­
volves greater interface complexity than the simple scheme of using multiple
interrupt lines. Address-generating circuitry and more complex timing circuitry
are needed on each interrupt-driven interface.

Interrupt Priorities

In interrupt systems in which many devices can make interrupt requests, even­
tually two or more interrupts will occur at precisely the same time. In this case,
priority arbitration logic must decide which request is more important.

A daisy-chain priority system is one of the methods available for deciding
priority. With this method, all the devices issuing interrupts activate a single
interrupt line leading to the processor, as illustrated in Fig. 4-9. The processor,
at this point, realizes that an interrupt is requested and starts to process the
interrupt after completing execution of the instruction in progress. The proces­
sor begins the interrupt sequence by issuing an interrupt grant signal that is
sent to the first device in the daisy-chained peripheral string. If this device
caused the interrupt, it prevents the grant signal from being passed on to the
next device in the string and performs interrupt action by putting its interrupt
service address on the bus.

With this method, the first device in the string naturally has the highest
interrupt priority, because it will be the one to take the grant signal 'first if
multiple interrupts are issued by different devices.

A second priority-arbitration scheme involves multilevel priority lines. Dis­
crete hardware or an LSI chip called a priority interrupt controller works with
the microprocessor to form many (usually 8) interrupt lines. Each line repre­
sents an interrupt level. Interrupt lines with low-level numbers have higher
priority than interrupt lines with high-level numbers. Interrupt level zero is
usually the interrupt level that gets serviced first. By simply placing devices on
different interrupt levels, a priority interrupt servicing order is established.
Figure 4-9(b) shows a multilevel interrupt system.

Assigning priorities to peripherals takes careful thought. Usually, fast
devices that cannot wait with their data are assigned the highest priorities. A
disk, for example, has a relatively fast data flow rate (for a peripheral, that is),
and should be assigned a high priority. If a disk is assigned a low priority, there
is a chance that a byte of data could be missed when the processor is processing
interrupts iss'ued by slow teletypewriters that could wait to be serviced.

Special consideration must be given to the console terminal in an interrupt
system, however. Even though it is a slow peripheral, the computer operator
should be able to interrupt any process and take control of the computer.
Priority level zero is therefore often assigned to the console terminal.

Two methods are used to start a particular peripheral's interrupt transfer in
multilevel schemes. In sophisticated large systems such as the PDP~ 11, grant

.....
.

0
)

~

M
ic

ro
pr

oc
es

so
r

In
te

rr
u

p
t

re
qu

es
t

lin
e

A
cc

e
p

t
In

te
rr

u
p

t
I g

ra
n

t
g

ra
n

t

R
eq

ue
st

in

te
rr

u
p

t

P
er

ip
he

ra
l

A

T
o

p
 p

ri
o

ri
ty

D
at

a
bu

s

M
ic

ro
pr

oc
es

so
r ~
ct

or
le

ve
l

In
te

rr
u

p
t

re
qu

es
t

P
ri

o
ri

ty

in
te

rr
u

p
t

co
n

tr
o

lle
r

A
cc

e
p

t
g

ra
n

t

R
eq

ue
st

in

te
rr

u
p

t

P
er

ip
he

ra
l

B

M
e

d
iu

m
 p

ri
o

ri
ty

(a
}

Le
ve

l
1

in
te

rr
u

p
t

In
t.

 r
eq

.
In

t.
 a

ck
.

Le
ve

l
2

in
te

rr
u

p
t

l
l

Le
ve

l
8

in
te

rr
u

p
t

(b
)

-

A
cc

e
p

t
g

ra
n

t

R
eq

ue
st

in

te
rr

u
p

t

P
er

ip
he

ra
l

C

L
o

w
 p

ri
o

ri
ty

In
t.

 r
eq

.
~

In
t.

 r
eq

.
~

In
t.

 a
ck

.
.,

In
t.

 a
ck

.

F
ig

ur
e

4-
9

C
om

m
on

 i
nt

er
ru

pt
 h

an
dl

in
g

sy
st

em
s.

 (
a)

 D
ai

sy
-c

ha
in

ed
 i

nt
er

ru
pt

 s
ys

te
m

.
(b

)
V

ec
to

re
d

pr
io

ri
ty

 i
nt

er
ru

pt
 s

ys
te

m
.

Microcomputer Input and Output Methods 165

signals at various levels corresponding to the interrupt lines at those levels are
sent to the interrupting peripheral. It is then up to the peripheral to generate the
branch address. Many microcomputers use a simpler and somewhat more
hardware-efficient system, however. The logic performing the priority arbitra­
tion generates a vector address that reflects which interrupt level is requested.
This method eliminates the need for vector address generating logic on each
peripheral interface.

One advantage the peripheral-generated address priority system has over
the priority logic-generated address system is the number of devices it can
effectively handle. Daisy-chain priority on each of the interrupt levels is possi­
ble with the former but not with the latter.

Interrupt Masks

Interrupts can take over program execution in the middle of almost any pro-
. gram. In some cases, such as real-time control or within a timing loop, program
interruption ruins the results of the processing. In most interrupt systems a
software-controlled switch is provided to turn the interrupt system on and off.
On a machine with only a simple single-level interrupt system, simple "inter­
rupt on" and "interrupt off" instructions are provided. In more complex multi­
level interrupt systems, interrupt mask words are used.

In a multilevel interrupt system, a mask word sent to the mask register
allows only the interrupt levels whose bit in the mask word is set to 1 to cause
interrupts. Bits in the mask word are usually assigned so bit 0 enables interrupt
level zero, bit 1 enables level one, and so on. The fact that there are usually 8
interrupt levels on popular interrupt controller chips is due to the 8-bit interrupt
mask's correspondence to a standard byte.

Allowing a computer system's interrupt system to be masked out totally
under software control is unwise. If a program error causes an infinite loop in
the software to occur when the whole interrupt system is masked, there is no
way for even the highest priority device (usually the console terminal and
computer operator) to regain control of the system. Many microprocessors
therefore include a separate line on the microprocessor called the nonmasked
interrupt line. There is no way to turn this interrupt line off under software
control, and if a program accidentally gets into a' 'fatal loop,'' the operator can
pull the system out of it with his console terminal, which uses this line.

Interrupt Processing

Once an interrupt is accepted and program execution is diverted to the service
routine, steps must be taken to insure that the interrupted program can be
safely resumed later. First, the location where processing was interrupted in
the program must be saved so a return to that point can be made. The logic in

166

Tank

Resin

z
s,...
0:

Microcomputer Input and Output Methods

AO-A 15 Address bus

0'>

~ Y1 A (/)

~8
;;}. Y2 o--
r--

G
~ Y3 o--

HLOA

INT
S Y4 ()o.-

Am8080A/
Am9080A

XTAL

~ r01 Control bus*

~ HLOA
I NTA

01 r--- 01 WR ,.. WR

02 r--- 02
lOW

OBIN OBIN
ROY r--- ROY lOR

Reset r-- Reset 00-07

f- K=> Am8228 ~t SYNC SYNC

1> +
STSTB ,.. STSTB I~ RO WR cs lACK C/0

Am8224 ~ ~ GINT ~

+ Am9519 RiP

- El EO

~ PAUSE I REO

~ 0 ~v

Interrupt
*Control bus consists of: requests

MEMR, MEMW, lOR, lOW, BUS EN.
I

v
System data bus

Figure 4-10 A complete interrupt-driven 1/0 system based on the 8080. (Copyright ©
1977 Advanced Micro Devices, Inc. Reproduced with permission of copyright owner.)

the microprocessor's control unit usually performs this function automatically
when an interrupt occurs. The saved "reentry address" is usually saved on the
top of the microprocessor's stack. The saving of other registers and machine
status information is sometimes performed by the hardware itself, but it is often
left up to the programmer to perform in the service routine software.

A quick way to tell exactly what is automatically saved on the stack when
an interrupt is initiated is to look at the operation of the return-from-interrupt
instruction, which should be executed at the end of every interrupt service
routine. As an example, let's look at the 6800's return-from-interrupt (RTI)
instruction.

The 6800's RTI is a series.of seven stack pops. The condition code register
and then the two accumulators are popped off the stack, restoring them to their

Microcomputer Input and Output Methods 167

-

~

Address

Control

Peripheral Peripheral Peripheral Peripheral
1 2 3 4

DATA - DATA f.+ DATA 1- DATA 1-

l Interrupt
levels INT INT INT INT

RD WR cs lACK C/D 0 ~ 1 GINT 1

2
RIP Am9519 3 I

4
El r--------- ----- 1------ -------

PAUSE I REO 5
~---------· ~----- ~----- -------

1_j
r--6 _______ ----- 1------ -------I. ~ ~~-- 7
~-------· ~----- ------· -------

Interrupt
requ~sts

8-15

\/
8

(DBO-DB7) Data

time-of-interrupt values. The index register is popped, and finally the program
counter data is popped off the stack. The program counter value is the restart
address of the interrupted program, so the program execution is effectively
diverted back to the original program.

One hardware-initiated event that takes place when an interrupt is accepted
is the setting of the interrupt mask. If more than one interrupt was issued at one
time and the interrupt mask bits were not set, the processor would immediately
be interrupted again when it entered the service routine. This would keep
happening until the final interrupt (usually at the lowest priority level) was
serviced. Low-priority devices would therefore be serviced first in a strange
nested-interrupt manner. Figure 4-10 puts all the ideas about interrupts together
into an operating interrupt system.

Interrupt Software Consequences

Software running in an interrupt environment can be fairly standard if masks
are properly set within timing loops and the interrupt routines are independent
of main program software; but as soon as interrupt routines and the main
program start sharing utility routines, some very strange events can occur.

A multiply subroutine is a fairly often-used utility subroutine in many
programs, and a user may be tempted to call the same multiply subroutine from
an interrupt program and the main program. The danger here lies in the way
data is stored in the multiply subroutine's intermediate calculations. If data is
stored in absolute-addressed memory locations, a multiply routine may give
wrong results if interrupted in the middle of a calculation. The multiply subrou­
tine may have been used in the interrupt routine, thereby destroying the partial
results stored in the absolute memory locations. The program was "reentered"
and produced a bad result.

There are three solutions to the reentrancy problem. First, the use of the
same multiply subroutine in interrupts can be avoided, and another separate
multiply subroutine can be used; but this is a memory-wasteful solution, be­
cause two copies of the same program are needed. The multiply routine can set
interrupt masks at the start of the subroutine and remove them at the end,
prohibiting any interrupts while the multiply is in progress. This is a fairly good
solution if long delays in interrupt response time are acceptable. A more elo­
quent solution to the problem, however, is the use of a reentrant multiply
subroutine.

A subroutine is said to be reentrant if it can be interrupted at any time and
be called again without affecting the interrupted calculation. Reentrancy is
typically written into a program by limiting data storage to registers that are
saved when interrupted, and to the stack that also isn't affected.

The problem with reentrant code is that it tends to be slow-executing,
especially on a memory-oriented machine that relies heavily on time­
consuming stack operations. For high-performance applications, it is wise to
trade off interrupt response time or memory size for speed and go with one of
the first two reentrancy solutions.

Interrupt-oriented programs should be carefully checked for possible reen­
trancy problems before they are run. Interrupt-generated errors are the hardest
kind to find because interrupts act differently on every run of the program.

DIRECT MEMORY ACCESS

It's often said that the quickest way to get a job done is to do it yourself.
Instead of going to the bother of asking someone to do the job, explaining how
to do it, and waiting for it to be finished, you can do it yourself and it's done.
This is precisely the idea behind direct memory access (DMA). Some periph­
erals with high transfer rates and lots of data to transmit really can't wait

168

Microcomputer Input and Output Methods 169

around for the processor to take their data andplace it in memory; so their
interfaces are designed to go off on their own, take control of the microcompu­
ter bus, and directly place data in and take data out of memory with no proces­
sor involvement. Direct memory access provides the highest possible memory
transfer rates and reduces processor 1/0 processing time.

The DMA concept is quite simple, but some hardware ingenuity is required
to implement it. The main problem is that the processor is in control of the
microcomputer bus, and bus control must temporarily be diverted to the DMA
peripheral. Microprocessors are usually designed with some sort of DMA pro­
visions in their control units that allow them to be electrically removed from the
bus during a DMA cycle. The following paragraphs describe a few DMA
methods using these features.

Processor-Halt DMA

Probably the crudest way to take control of the processor bus for a DMA cycle
is to shut down the microprocessor and electrically remove it from the bus by
floating its tristate address, data, and control lines. This is the most commonly
used method of performing DMA in microcomputer systems.

-The Z80 is a good example of a device that is designed to,use processor-halt
DMA. A bus request line (BUSRQ) is available to DMA devices. Raising this
line causes the processor to ''get off the bus'' and go into an idle state as soon
as it has completed execution of its current instruction. When the Z80 is finally
off the bus, the bus acknowledge (BUSAK) signal is sent back to all the periph­
erals to indicate that the bus is free for DMA use. While DMA is being per­
formed, the processor is internally performing NOPs (no-operation instruc­
tions) to keep the dynamic registers in the processor refreshed.

The interface complexity of the DMA peripheral interface is quite high due
to the logic needed to take control of the bus and generate processor-like
signals. A DMA interface typically consists of a transfer address register
(which indicates the memory address to transfer data to or from) and a transfer
length register (that indicates how many bytes of data are to be transferred).
The transfer address register typically counts as bytes ani transferred, thereby
placing data in sequentially increasing memory addresses. The transfer length
register counts down by one for each byte transferred. When the transfer length
count is decremented to zero, the transfer is complete and bus 6ontrol is re­
turned to the processor.

The transfer address and transfer length registers are usually loaded by the
processor, so a DMA device isn't totally on its own. The microprocessor
initiates all transfers.

Simple processor-halt DMA works on a principle known as cycle stealing:
. clock cycles that the processor could have used to do useful wotk are "stolen"
by the DMA device for its own purposes. Other DMA methods that require no
cycle stealing do exist, but they are not often incorporated in microcomputer
DMA interfaces due to their complexity.

Interleaved DMA

Interleaved DMA is the process of taking control of the system bus when the
processor is not using it. Because the bus is not going to be used by the
processor, no time is wasted in the DMA transfer.

The Intel 8086 allows this sort of DMA. By making optimal use of the bus
accesses employing its 6-byte instruction queue, the processor can run for a
few cycles and not miss a single clock cycle if a DMA access is initiated. The
8086's philosophy is essentially this: The bus is free at any time as long as you
don't use it for too many clock cycles in a row (the instruction queue must
eventually receive its data).

DMA Interface Components

Because DMA is a fairly tough function to implement with discrete logic, LSI
DMA chips have been introduced. These chips usually contain transfer address
and length counters for one or more DMA devices. The cost of DMA chips is
usually high compared to other 1/0 chips, because (1) DMA is not used as often
as simpler interfaces and (2) production quantity of the parts isn't nearly as
great. Figure 4-11 illustrates a typical DMA interface and an LSI chip that
performs the same function. These chips are discussed further in the interface
device section.

DATA COMMUNICATION BUSES

The signals coming out of and going into a microprocessor chip are adequate to
communicate with any peripheral or memory device controlled by the micro­
processor, but the signals rarely are sent directly to interfaces and memory.
Instead, additional logic is used to form a standardized communication bus or
the microcomputer bus to which memory and peripherals may be interfaced.
The LSI-11 Q-bus, IEEE 488 bus and S-100 bus are all examples of microcom­
puter buses.

Microcomputer buses offer many advantages over haphazard connection
of microcomputer interfaces. The advantages include modularity, standardiza­
tion, high fan-out, and circuit protection. These characteristics will be ex­
amined more closely, but first let's be sure we agree on what a microcomputer
bus is.

A microcomputer bus is a set of address, data, control and power lines
arranged in a standardized manner and operating under a strict set of data
communication rules. Physically, a bus is typically a row of standardized paral­
lel connectors, with each pin on every connector assigned a specific signal. The

170

~----------------------------~--~--------~--~~--~-------------------

I

I
I

I

I
I

I

Microcomputer Input and Output Methods

Discrete interface
or LSI chip.

DMA
sequence

Data from control
peripheral

Tristate data
Control

line
register I Microprocessor I drivers

(Z80)

Z80 clock
BUSRQ

I Data bus
Address bus
Control bus

171

Transfer length ~ement
counter

"0" detector
DMA control

Transfer don~ logic

Tristate
Memory

address
counter Increment

Data Address

Direct memory transfer} l fjJ
. \ "'-..._;/

"' /

BUSAK Microprocessor gives-up bus Microprocessor regains bus control

Address and
data bus

DMA device takes control of address bus and data bus

0
~~
0
u

Microprocessor control Final DMA trans.
Control bus
(MREQ, RD
WR, IORQ,
RFSH)

Microprocessor
controlled

DMA transfer 1 DMA transfer 2 • •

t---------DMA device in control of bus----------1

Figure 4-11 A typical microprocessor DMA cycle.

standards for the most common microcomputer bus are presented in Chapter 7,
but a typical bus has approximately the compleme11ts described in the following
paragraphs.

Power Lines

Every interface circuit on a bus needs power to drive its interface logic (and
sometimes to drive the peripherals themselves). Microcomputer buses, there­
fore, usually have a few different power lines· of different voltages. A prere­
quisite for a reliable computer system is. a good solid ground for all circuits in
the system. A few pins on the bus connectors are dedicated to system grounds.
Heavy wire (or a wide printed circuit path if the bus is built on a circuit board)
is used for the ground line. On sophisticated microcomputer buses, individual

172 Microcomputer Input and Output Methods

power-ground and signal-ground lines are provided. (The design practices sec­
tion of Chapter 6 details the advantages of the dual ground system.)

The microprocessor, memories, and other components in a microcomputer
system use a wide range of voltages for operation. Four power forms are
usually provided on a microcomputer bus: +5 volts for TTL and MOS logic;
+ 12 volts for MOS drivers, interfaces, and RAMs; -5 volts for EIA communi­
cation drivers and other interface components; and -12 volts for MOS sub­
strate voltages. The +5 volt supply usually has the highest current capabilities.

Two approaches are taken in distributing power on the bus. In one, an
external, regulated power supply places a voltage of precisely the proper level
on the power lines. Power can then be taken directly from the microcomputer
bus and used to power interface circuitry. In the other approach, on board
voltage regulators are used. Unregulated power, a few· volts above the desired
voltage level, is placed on the bus. The individual cards that plug into the bus
must contain their own regulators. An unregulated 8-volt line would be regu­
lated down to a 5-volt level by the circuit boards requiring this voltage level
for operation ..

The on board-regulator approach has the advantage that if any one regulator
breaks down, 'only the circuitry on that card will be damaged. Undesirable heat
~mitted by the onboard voltage regulator is the greatest drawback to this
-scheme.

Data lines

Most microprocessors have bidirectional data buses that permit transfer of data
to and from memory and peripheral devices. They are bidirectional in order to
save 1/0 pins on the IC package.

A few microcomputer buses abandon the bidirectional approach in favor of
individual input and output buses. Separate buses are rather inefficient and
wasteful of bus pins if both buses cannot be used at once-and in most micro­
computers using this approach, they cannot. The S-100 bus falls into this cate­
gory. Because most microprocessors use a bidirectional bus, it takes a lot of
circuitry to split the bus into separate input and output lines.

Address Lines

Address lines from the microprocessor are usually sent to high-current drivers
that drive address lines on the microcomputer bus. The drivers supply suffi­
cierit current to drive many interfaces.

Both the data- and address-line drivers of a computer are of the tristate
type'. During DMA operations, these bus lines can be floated as they are on the
microprocessor.

Control Lines

The control lines on the microcomputer bus are dependent on the processor
driving the bus. There are a few basic control lines of which most buses have
variations.

Clock Lines. These are generated by the processor card and received by the
interfaces to use as a master timing reference. On processors having multiphase
clocks, such as the 6800, more than one clock line,exists on the bus. Occasion­
ally the processor card will also break the master clock frequency down into
standard interface communication rates, and send these signals to interfaces
over the bus. This saves a lot of duplicated clock gent;!ration circuitry on the
interface cards.

Memory Control Lines. Toindicate the processor's requests for memory
access and whether a read or write cycle is needed, memory control lines are
used on most buses. In systems using 1/0 channels, a line indicating an I/0
channel reference is incorporated.

Initialize Line. To simultaneously reset all peripherals, an initialize line is
usually generated by the processor card, power supply, or front panel circuitry.

lpterrupt Lines. Any bus that supports interrupt-driven operation uses in­
terrupt lines. In many cases, multiple interrupt lines indicating priority level or
nonmasked interrupt requests are used. Interrupt handshaking logic and grant
lines are also used.

Halt and Wait Lines. To half processor operation during long memory
reference cycles or under front panel control, halt lines and wait lines are often
available.

DMA Status Lines. These provide DMA devices with an indication that the
processor is off the bus and free for use.

Bus Compatibility

It is very important that a microcomputer bus b,e well defined.·. Many manufac­
turers build products to operate on popular microcomputer buses; if a formal
definition of the bus signals isn't available, they do' their best to build something
that works. A compatibility problem arises when trying to operate that device
with another device ·designed to different bus interpretations~ The popular
S-100 bus is plagued by this problem. Very well defined buses such as the
LSI-11 bus and the IEEE bus, however, have no compatibility problems.

173

174 Microcomputer Input and Output Methods

A microcomputer bus tends to protect easily damaged components from
overload conditions. Properly designed interfaces and processor cards have
buffers on all lines leading to the bus: Buffers are very rugged and are much less
susceptible to damage than lines coming directly out of LSI parts. Buffers are
also less noise-susceptible, which results in more reliable operation.

Bus Terminations

Bus lines are limited in length, and the physical distance is typically cited in the
bus specification. A bus length of half a meter or so is usually the limit on an
unterminated bus. A bus is a transmission line and is subject to the same kind of
signal propagation and reflection problems, which are more critical with in­
creased line lengths.

A signal propagates along a line until it reaches the terminal point. If the
signal is absorbed entirely at the terminus (the ideal situation), there is a good
impedance match between the resistive characteristic of the line and that of the
terminal. However, if there is any discrepancy between the impedance of the
line and that of the terminal point, the propagated signal will not be entirely
absorbed; a portion of the signal will be reflected back down the line in the
direction from which it came. These reflected signals are the ones that can
cause severe problems, because they can mix with other intended signals in
various ways to "confuse" the devices that are interfaced to the line.

Because signals are propagated at a speed that is a sizable percentage of the
speed of light, it is easy to see why short bus lengths offer a minimum of
difficulty -and why long line lengths create substantial problems. If the line is
short enough, the delay between application of a pulse to a line and arrival of
that pulse at the destination end of the line is negligible. But when the line is
long, the delay-particularly in high-speed systems-can be significant; and
when a reflection takes place because of a terminal impedance mismatch, un­
wanted signals can be propagating along the line while new signals are being
output to that bus.

The object of bus terminators is to match the impedance of the bus at its
end instead of letting it end with no connection. Resistors are typically used to
match the impedance.

LONG DISTANCE DATA COMMUNICATIONS

Data sent from a microcomputer interface card on a bus to a terminal may have
to travel as much as 10 meters to reach the terminal. Even longer links are
necessary between sensors and other processors in distant locations in an
installation. Asynchronous serial data communication is the most common

Microcomputer Input and Output Methods 175

form of general-purpose long-distance links, with synchronous serial communi­
cation being more popular for high-performance applications.

Data communication links can be unidirectional or bidirectional. If a device
is strictly an input device or strictly an output, data only needs to be sent in one
direction. In either case, a serial signal line is all that is required to complete the
communication link.

Devices that can operate as either input or output devices require bidirec­
tional communication. There are two possible ways to accommodate such
devices. A single line can be provided as a shared communication line. Data
can be sent down the line in either direction- but only in one direction at once.
This mode of operation is called half-duplex.

If simultaneous bidirectional data communication is required, two lines can
be sent from the processor to the peripheral. One line would be permanently
assigned to input while the other would be an output line. This mode of opera­
tion is called full-duplex. Figure 4-12 illustrates unidirectional, half-duplex, and
full-duplex communication.

Long data communication lines are susceptible to signal losses as a result
of noise, cable resistance, and capacitance. Normal low-current logic signals
(TTL or CMOS) are not adequate for long-distance communication lines.

Special long-distance serial interface 1/0 standards have been adopted to
provide a universal way of communicating with terminals and other periph­
erals. Connector pin assignments as well as electrical characteristics are de­
fined. The Electronic Industries Association's RS-232C standard, Teletype's
current-loop standards, and various other standards have become quite pop­
ular. These provide for large current levels and voltage magnitudes to minimize
the losses oflong lines. The standards also limit operation to fairly low frequen­
cies in order to minimize capacitive losses (which increase with frequency) and
keep reliability high.

Medium-length data transfer lines need not be driven with special drivers if
proper impedance matching methods are used. A standard ECL gate, for in­
stance, can successfully drive a 15-meter line at 70 MHz if its differential
outputs are connected to an impedance-matched twisted-pair line (two wires
twisted together to form a balanced transmission line). Figure 4-13 illustrates
this combination.

ERROR DETECTION AND CORRECTION

A byte of data flowing through a microcomputer system has many opportuni­
ties to have an error introduced. A single part failure or noise spike in any one
of the communication lines can cause a 1 to come out as a 0 or a 0 to become a
1. Because computers depend on 100% reliable data for correct operation, a

176

Processor

Processor

Processor

Microcomputer Input and Output Methods

Simultaneous two-direction
data transfers

(a)

Two direction
data transfer

only one direction
at once

(b)

One direction data transfer

(c)

Figure 4-12 Data communication line formats. (a) Full-duplex communication.
(b) Half-duplex communication. (c) Unidirectional communication.

whole branch of computer science has developed around detecting and correct­
ing data-transmission errors. Most large computer systems have error correc­
tion circuitry within the CPU, memory systems, and 1/0 interfaces. The 1/0
channels cause the greatest number of errors. Because 1/0 lines typically run
outside the computer through mechanical connections and noisy environments,
they are much more exposed to data-destroying conditions. Microcomputer
systems typically use error detection on 1/0 channels. Error detection on mi- ·
crocomputer memory modules is just starting to appear.

Error handling methods can be grouped into two classifications: (1) those
methods that detect an error and warn the processor that an error was encoun­
tered, and (2) those methods that detect the error and proceed to correct it.
Error correction is much harder to implement than error detection and is there-
fore used less often. ·

Parity

The most common form of error detection used in microcomputers is byte
parity. Parity is used between peripheral devices and the microcomputer. to
detect errors on long, error-prone data transmission lines.

~------------------------------------~------------·---------~--------------------------------

Microcomputer Input and Output Methods
177

Differential
driver

-2.0 V de

50 ft.

(a)

Differential
line

+5 to +15 V
EIA-Iine

E.IA-Iine---[> · ~~eceiver
driver _ ~ ~ ~ ~-+

 _ ,

8T15 ~ ~~<::::::::;::>' -

(Signetics) j_
-5 to -15 V-::-

-::- 8T16

Current
source

(b)

Usually 20-60 rnA­
__...

(c)

Figure 4-13 Data communication lines. (a) ECL ~ hi~frequency (70 MHz) twisted pair

differential communication line. (b) EIA -low-frequency (20kHz) communication line.

"(c) Current-loop communication line.

With a parity system, every word sent over a data transmission bus has

either an odd or even number of 1s. Whether a given word has an odd or even

number depends on what value or character is being sent. In odd-parity genera­

tion schemes, an extra bit (the parity bit) is added to a word. This bit is used to

insure that each byte, including the parity bit, has an odd number of 1s in it. On

bytes with an even number of data bits set to 1, the parity bit is set to make the

total number of 1s odd. Whenthe data word and its parity bit are received,

parity checking circuitry determines if the number of 1s in the word is odd. If

any one of the bits changes value in the data transmission, perhaps due to a

noise pulse, the number of 1-valued bits will be even and the error will be

detected immediately.
Parity error checking is a single-error detecting scheme. If one bit of data in

a word changes, an error will be detected due to the change in the odd-bit

characteristic. If two bits change values, however, the number of 1s will be

178 Microcomputer Input and Output Methods

changed back into an odd number by the second bit failing. The word will again have an odd number of 1s and the error will go undetected.
There are actually two types of parity. Odd parity, which was just described, means that every byte will always contain an odd number of 1s. With even parity, every byte always contains an even number of 1s. Odd parity is most commonly used because the presence of a word can be detected by checking to see if any bits in the word are one. A word with all zeros is an error condition in odd-parity transmissions.
The price paid for parity checking in an interface is twofold: a slower transmission rate, because an extra bit of data must be sent for every word, and additional parity-checking hardware. Parity generation and checking hardware is relatively simple, however.
A tree of exclusive-OR gates determines if the number of 1s in a word is even and sets the parity bit to 1 (for an odd parity system) if it is. The parity checking hardware uses an exclusive-OR tree to determine if the number of 1s, including the parity, is odd. If it isn't, a parity error is flagged. Figure 4-14 illustrates a parity generator and checker.
Parity is a very common feature on serial interfaces, s9 most LSI data communication chips include parity-checking hardware. The Motorola 6850 ACIA (asynchronous communication interface adapter), for example, can be programmed under software control to check for even, odd, or no parity at all. A bit is set in the peripheral's status word if a data transmission error is detected.

Checksum

In many applications, the extra bit of data added to each word using the parity­error detection scheme is too wasteful to be desirable. In data storage, for example, an error detection method is desirable, but storing one extra bit for every eight means a 12.5% loss of data-storage capacity. For this reason, a less storage-intensive error checking method is used on most disks and tape drivers. The method is called checksum of cyclic redundancy checking (CRC). Checksum error detection spots errors in blocks of many bytes instead of in individual bytes as parity does. This is accomplished by taking all the bytes in the block of data into consideration and adding one byte to the end of the block that reflects a characteristic about the whole block. One characteristic that could be used is the sum of all the bytes in the block. If an error occurred in any one of the bytes in the block, surely the sum of all the bytes would change as well. The problem with this method is the sum grows so large that it overflows a single byte of data. The solution is to let the sum byte overflow. The bottom 8 bits of the sum in an 8-bit checksum scheme are adequate to indicate any errors that may have occurred.

Microcomputer Input and Output Methods 179

8-bit data register (transmit)

l ~ J ~ I~~-~ I~ l ~ l ~ l ~I 9-bit data receive register

1

2

3

4

5

6

7

" ~ Parity

0

0

0

0

0

0

0

0

0

Q

Q

Q

Q

'""--""' .. .__~,..__~.--__~.--
Parity
checker

Figure 4-14 Parity generation and checking.

Odd
parity

1 =valid data
0 = error data

Even 1 = error data
parity 0 =valid data

Typically, in a checksum scheme, all the bytes in a block of data are added
together without regard to overflow (thus the term cyclic redundancy). The
resulting byte is complemented and written at the end of the block. The com­
plemented word simplifies error checking. Upon block readback, all the bytes
in the block are added together. The addition of the final byte essentially adds
the sum of all the bytes to its complement and turns the result into zero. A valid
block can be detected by simply checking for a zero sum.

One common misconception about parity, checksum, and error detecting
and correcting codes, in general, is that the extra bits of bytes added to a byte
or block of data must be transmitted correctly to perform the error checking
task. This is not true, because the check byte or bit is usually treated identically
or nearly identically to any other element in the byte or block. An erroneous
check bit or byte will be detectable just as an erroneous data byte or bit will.

180 Microcomputer Input and Output Methods

Once an error is detected, there are several courses of action that can be

taken. The data transfer can be aborted, or a signal can be sent back to the

transmitting device to indicate that a byte was in error and the block or byte

should be set again. Errors in tape and disk reading are usually handled by the

second method. If the tape or disk is read about 10 times and the error is still

present, a nonrecoverable error is declared and the data transfer is aborted.

Error-Correcting Codes

The need for retransmitting a byte if an error is encountered can be totally

eliminated by adding parity-type digits to a byte in a way that lets you correct

as well as detect bad bytes. The key to such error-correcting schemes is mqlti­

ple representations of the same value. If a 4-bit value of 0001 represents a one,

a single-bit change in that byte must also be interpreted as a one. The values

0000, 0011, 0101, and 1001 must therefore also be equivalent to one. Many

coding schemes have been set up to perform error checking using this principle.

The most common error-correcting code is the Hamming Code. This cod­

ing scheme relies on parity bits interspersed with data bits in a data word. By

combining the data and parity bits according to a strict set of parity equations, a

small byte that contains a value that actually points to the bit in error is gener­

ated. Figure 4-15 illustrates a simple Hamming Code. The M bitsrepresent

memory bits; the P bits are parity bits. The derivation of the parity bits from the

data bits is shown.
An error can be detected and corrected if any bit is changed in any value. If

the value 7 is transmitted (0 0001 111 binary) but the bit in the third position is

accidentally changed to one (0 0011 111 binary), the reconstruction equations

shown in Fig. 4-15 can be used to reconstruct the word as illustrated in the

figure.
Error-correcting codes are very bit-wasteful, but large memories of the

future may rely on error-correcting circuitry to be reliable. If building a multi­

megabit memory on one chip nearly always results in one or two bad cells,

error-correction logic within the chip could be used to mask out the one-in-a­

million errors. This method could cause some inefficiency, but a buildable

RAM of a million bits (error corrected) is far more desirable than an unbuilda­

ble 4-megabit non-error corrected unit.
The hardware used to generate and check error-correcting Hamming Codes

is quite complex and essentially implements the error-correction equation of

Fig. 4-15.
Hamming and other error-correcting codes offer an additional bonus. They

can detect errors of two or more bits, although they can only correct one-bit

errors.

Position Value= m4, m3, m2, m1 (binary) (5 = 0101 for example)
1

Value P!
0 0

1
2 0
3
4 1
5 0
6 1
7 0
8 1
9 0

m =data bit
p = parity bit

2 3
P2 ml
0 0

0
1 0
0 0
0 0

0
1 0
0 0
1
0

(a)

4 5 6 7 P1- m1 Ea m2 Ea m4
P3 m2 m3 m4
0 0 0 0 P2- m1 E9 m3 Ea m4

0 0 P3- m2 ED m3 Ea m4

1 0 0
0 0 1 1 (b)

1 0 0
0 0 c3 = P1 Ea ml EB m2 EB m4

0 1 0 C2 = P2 Ea ml Ea m3 Ea m4
1 1 1 cl = P3 EB m2 Ea m3 E9 m4
0 0 0 0 cl, c2, c3 binary= binary value

0 0 pointing· to position of error.

1 2 3 4 5 6 7
Good value 7 = 0 0 0

Transmission error value= 0 0 1

Using above equations: C1 = 0 C2 = 1 C3 = 1
Error position= 011 = position 3.
Changing position 3 from 1 to 0 yields:

0001111, the corrected value.

(d)

(c)

Figure 4-15 Hamming error correction. (a) Hamming representation of digits 0-9.
(b) Hamming generation rules. (c) Hamming error correction location rules. (d) An error
correcting example.

181 \

Before attempting to design microcomputer interfaces and systems, it is wise to

get familiar with the interface components available to the microcomputer
designer. What could be more disheartening than spending a week designing a

special interface circuit only to find that a one-chip interface component could
have performed the task?

There are two general levels on which interface parts should be known: the
functional level and the electrical level. In the past, simple devices such as
transistors and resistors were well understood'on both levels by most designers

mainly because the functions of these devices were directly related to\ their
electrical characteristics. A resistor, for example, could be selected to perform
a variety of functions, its value being determined by a simple application of
Ohm's law.

In regard to microprocessors and interface parts, however, the functional
or logical aspects tend to eclipse the electrical characteristics. Thinking only on
the logical level can lead to trouble when designing a system. Unless logic
thresholds, noise margins, fan-outs, and propagation delays are taken into
account, a logically correct circuit simply will not work. Basically, an interface
component will not perform its logical function unless it is run within its electri­
cal limits.

When a 1 or 0 is sent from a microprocessor to an interface part, there are
actually three events that take place. A driver circuit within the microprocessor
generates a voltage or current level that corresponds to the logic level of 1 or 0.

182

Interface Components and Their Characteristics 183

The resulting current travels down a conductive path that is commonly called a

bus line, and the current or resulting voltage is sensed by a receiver in the

interface part, which in turn generates a usable onchip voltage corresponding to

0 or 1.

DRIVER CIRCUITS

Driver and receiver circuitry is used on all input and output lines on flip-flops,

latches, registers, and even large PIAs, ACIAs, and microprocessors. Design­

ing a reliably running system is simply a matter of properly matching the

receivers to the drivers and making sure the interconnecting lines transfer the

signals without too much loss or noise pickup. We will look at transmission line

layout in Chapter 6. In this chapter we examine drivers and receivers.

TTL Drivers

A driver is an output device capable of generating a standardized voltage or

current that other parts can use. A driver consists of one or more transistors.

thaf switch voltage levels or apply c;urrent to represent logic values. The driver

is characterized by its high and low (voltage) output levels, the number of

receivers it is capable of driving (its fan-out), and its switching speed. Other

factors such as rise time and noise threshold are also important, especially in

high-speed Schottky TTL and ECL designs.

TTL Open-Collector Driver. Figure 5-1 illustrates five common driver cir­

cuits. Perhaps the simplest is the TTL open-collector output stage shown in

Fig. 5-1(a). In this circuit the transistor, identified as Q2, is switched on and off

by the applied logic signal and the associated one-transistor input buffer (Q1).

The output transistor, Q2, goes into saturation to represent a logic 0. In this

state, the driver ·output is in a low-impedance mode at about 300 mV (the

emitter -collector saturation voltage of Q2). Current flows through the external

pull up resistor, Rx. The output transistor is turned off to represent a logic 1. In

this mode, Q2 is a high-impedance state, causing very little current (only the

transistor's leakage current) to flow down the Rx resistor. The driver output is

thus at a nearly 5 V level, which represents 1.

The open-collector driver's primary disadvantage is its variable impe­

dance. Logic 1 is a high impedance and logic 0 is a low impedance. The transis­

tor can turn on very quickly, thereby generating a very fast high- to low-voltage

(1 to 0) transition; but when the transistor is turned off, a very slow voltage rise

to 5 V occurs as the stored charge is bled off the driver transistor. Overall slow

system operation is the result.

Internal
logic '1' or '0'
voltage level

Inverted
internal
input

+5 v

-::-

(a}

(c)

+5

d. Rx ~40011
Driver ~
---~

output Output
to receivers

-

+5 v

1oon

-

Depletion
load

Internal logic
'1' or '0'
voltage level

Output

Internal logic
'1' or '0'
voltage level

-

+5 v

(b)

-Voo

-
(d)

ov

Output

--~To receiver.;
100Q

-2 v

(e)

Figure 5-l Typical driver circuits. (a) TTL open-collector. (b) TTL totem pole.
(c) TTL tristate. (d) MOS. (e) ECL.

184

Interface Components and Their Characteristics 185

The stage's high-impedance logic 1 state can be used to advantage, how­

ever. The outputs of many open-collector drivers can be connected together to

perform a wired-AND function. Only when all the drivers are in their high­

impedance state will the output rise to 5 V. The open-collector driver therefore

makes a good bus driver when many drivers are connected to a common line.

Many minicomputers and microcomputers (notably the PDP-11) use open­

collector bus drivers.

TTL Totem-Pole Driver. The variable impedance problem associated with

the open-collector driver is solved in the totem-pole driver shown in Fig. 5-1(b).

Tbe external pull up resistor is replaced by an internal pull up transistor, diode,

and low-impedance (130-ohm) resistor. Instead of letting the voltage slowly

drift up to 5 V through the low-impedance pull up resistor, the active pull up

circuitry (Q3) is turned on, causing a rapid transition. The totem-pole output

results in faster overall system operation due to faster rise times.

Although the totem-pole structure eliminates the disadvantages of the high­

impedance logic 1 state, it also eliminates the wired-AND driving capability. If

two totem-pole outputs representing 0 and 1 are connected together, current

will flow through R3, Q3, and D1 of the logic 1 driver and through Q2 of the

logic 0 driver. An undefined logic value will result as the two drivers "fight"

each other. Most TTL totem-pole outputs are protected from transistor

breakdown resulting from the high current flowing through the low-impedance

Q3 stage, but eventually thermal destruction of the top half of the driver totem

pole can occur, especially if more than one driver on an interface chip is

short-circuited. If is good to know that two connected totem-pole outputs will

not cause chip destruction (wiring errors and solder bridges do sometimes

occur on interface cards), but connected totem-pole outputs should never be

designed into a system.

TTL Tristate Driver. The advantages of the totem-pole driver are combined

with the ability to put a driver into a high-impedance state in the tristate driver

shown in Fig. 5-1(c). A tristate driver's states are 1, 0, and float (or high­

impedance). An external enable line allows the driver to be manually put into

the float state. Most microcomputers use tristate drivers for speed reasons.

TTL Driver Characteristics. The important factors to watch for in TTL or

TTL-level drivers are high- and low-voltage (and current) driving capabilities,

driving impedance, switching speed, and noise-generation characteristics.

These vary greatly depending on the TTL family. Standard TTL gates such as

the 7400 (totem-pole output), 7401 (open-collector), and 74125 (tristate) typi­

cally have logic 0 current-sinking capabilities of about 16 rnA. In TTL, it is the

current-sinking capability of a driver that will be the first parameter to be

exceeded if too many receivers are being driven. A typical TTL receiver

sources about 1.6 rnA, so about 10 TTL receivers can be driven by a standard

186 Interface Components and Their Characteristics

TTL driver. Special high-power buffer gates are capable of sinking much more
current.

Voltage levels for TTL are 0 to 0.8 V for logic 0 and 2 to 5 V for logic 1.
Drivers have np trouble supplying voltages within these ranges as long as the
fan-out restrictions are observed.

When driving long data transmission lines, high-power impedance-matched
drivers such as the 74128 50-ohm line driver must be used. The output stage on
these drivers is similar to the totem pole of Fig. 5-1 (b) with R3 being 30 ohms
instead of 130 ohms.

High-speed, Schottky, low-power, and low-power Schottky TTL drivers
have different characteristics. Schottky current and power levels are slightly
greater than standard TTL, while low-power and low-power Schottky drivers
use much less current.

TTL output drivers generate power line noise. Open-collector drivers draw
substantial current only in the logic 1 state. Transitions from 0 to 1 therefore
cause current demand changes that contribute to noise. In theory, totem-pole
and tristate drivers reduce this problem, because only low-impedance states
are switched between, but in practice these output drivers generate even worse
noise than open-collector drivers. The noise is the result of both totem-pole
driver transistors being on momentarily while switching from 0 to 1 or 1 to 0.
These conditions allow large currents to flow through both transistors, generat­
ing huge current spikes. Decoupling capacitors are used to reduce the noise.
We will discuss these in Chapter 6.

MOS Drivers

MOS and CMOS systems draw much less power and work with much lower
currents than TTL systems (when run at low frequencies) and their drivers use
much less current. In principle, however, the MOS driver is very much like the
TTL totem-pole driver. Instead of using bipolar (NPN in most cases) transis­
tors, MOS transistors are used, as in Fig. 5-1(d). Because MOS transistors
are more like variable resistors than switches, no current-limiting resistor is
needed as in the totem pole. Instead, the internal resistance of the MOS transis­
tor is used to limit current.

The most important characteristic to watch for when using MOS drivers is
drive-current capability. Most microprocessors use MOS drivers to generate
TTL-compatible outputs, but due to the low-power characteristic of MOS
devices, these outputs are usually only capable of driving one or two normal
TTL loads.

The current driving capability. of a MOS driver is usually specified in a
different way than that of a TTL driver. The MOS driver acts like a resistor.
This means that the more current that is sunk through the driver, the higher
(from 0 V) or lower (from 5 V) the ·output will go. The output reaches its limit

Interface Components and Their Characteristics 187

when logic levels at the output are no longer distinguishable (1.1 Vas zero, for

~xample). MOS drivers are therefore specified by stating how much current

they can sink at a given voltage. The Zilog Z80's output low voltage, for

instance, is rated at 1.8 rnA at 400 mV. This is enough to safely drive one TTL

load or a few low-power-Schottky loads.

The MOS driver can drive many MOS receivers, and MOS input capaci­

tance is the limiting factor when doing so. This is discussed in the receiver

section.
Pushing the MOS driver past its limits is a bad design practice. The Z80

mentioned above, for example, could probably drive two TTL loads (about 2

rnA, typically) but the 0 logic-level voltage would climb above 400 m V and

possibly to 700 or 800 m V. This voltage level is right at the borderline of the

TTL's zero-recognition voltage, and the slightest bit of noise on the data line

could push it over, causing bad data to be sent. The danger here lies in the fact

that the system will operate, but unreliably. A failure may not occur until the

final product leaves the lab and goes into a noisy environment.

Matching drivers and receivers of different logic families (and even the

same logic family) requires examination of noise margins. Figure 5-2 illustrates

the noise margins of several logic families. The shaded areas represent voltage

levels at which Os and 1 s will be correctly recognized. It is preferable to drive a

logic level well into the shaded areas, as the remainder of the shaded area acts

as a noise margin. The MOS driver driving a 1 rnA load, for example, generates

a logic 0 level of about 200 m V. Because anything up to 800 m V is considered as

an acceptable signal by the receiver, there is 600 m V to spare-or a 600 m V

noise margin. A 500 m V noise spike could come along and not even affect the

receiver.

ECL Drivers

Emitter-coupled logic is a current-oriented logic as opposed to TTL, which is

voltage-oriented. Voltage and current are indeed related to one another in any

form of logic, but ECL is more easily thought of in terms of current. The reason

ECL is such a high-speed logic is that it is nonsaturating. TTL turns transistors

on and off by saturating them, while ECL channels currents using transistors

that operate in their active regions. Because saturation charge is not built up on

the transistors, it never has to be drained. Schottky TTL attempts to accom­

plish the same thing by using Schottky clamping diodes to keep the transistors

out of saturation. In this sense, ECL is more like an analog than a digital logic.

Many high-speed ECL parts can, in fact, be used as analog devices. The analog

nature of ECL must be considered when working with drivers and receivers.

Good de amplifier coupling practices must be adhered to.

The ECL driver shown in Fig. 5-1(e) is similar to the TTL open-collector

driver in that the output is driven by a single transistor and is terminated by a

188 Interface Components and Their Characteristics

6

5

4

3

-1

-2

-3

-4

-5

Standard
7400 TTL

Minimum
7400
gate '1'
output

Noise margins Q)
O'l

Max 7400 !9
0

Gate '0' >
output :::J

a..
:::J
0

$
ctS

(!)

(a)

-.4

-.6

-.8

-1

-1.2

-1.4

-1.6

-1.8

-2

ECL operating region Maximum and
_..--=::...___-+- minimum high

level (logic 1)
output voltage

Logic '0'
Logic '1'

Maximum low level
,.,.,..,..,..;;;;;;;;--(logic '0') output

-2 -1 .8 -1.6 -1.4 -1.2 -1 -.8 -.6 -.4 -.2

Volts

Gate input voltage

(b)

Figure 5-2 Logic thresholds of TTL and ECL logic families. (a) TTL thresholds.
(b) ECL's operating region, commonly known as the "Lazy H."

resistor. The big difference, of course, is that the ECL output is coupled to the
transistor's emitter rather than its collector. Unlike the open-colle~tor driver,
the ECL driver's output transistor is never turned completely on (saturated) or
off (cut off). When the transistor is in its lowest impedance or on state, a logic 1
is represented. ECL' s logic 1 voltage is -850 mV. When the transistor is in its
high-impedance state, the output is pulled to a logic 0 value of approximately
-1.8 V. The high-impedance state is not as high an impedance as the open­
collector output, however, because the transistor remains turned on the
slightest bit to keep it out of cutoff.

The ECL driver has all the advantages of the open-collector, TTL totem­
pole, and tristate drivers. Outputs from multiple ECL drivers can be connected
together to form a wired-OR. A bus can therefore be built with ECL drivers.
Because there are no saturating driver transistors, the open-collector desatura­
tion problem is avoided and a noisy (current-spike generating) totem pole is not
necessary to increase the speed.

The biggest problems in working with ECL drivers are noise reduction due
to the high frequencies involved, and threshold matching. While it is true that

Interface Components and Their Characteristics 189

ECL is a current-mode logic, it relies on voltage changes to generate the cur­

rent changes. ECL has only a 1 V logic swing with appropriately small noise

margins (see Fig. 5-2). To make matters worse, the logic level thresholds of

ECL parts drift with temperature. Unless the ECL family being used is

temperature-compensated, a hot driver may not be able to send data to a cold

receiver due to threshold differences. A solution to this problem is the differen­

tial driver and receiver. ECL drivers usually have true and complementary out­

puts, because this feature comes nearly without cost in the design· of ECL

parts. By sending the true and complementary outputs to a special differential

receiver (a differential amplifier or comparator), the threshold shift due to

temperature can be rejected by the common-mode rejection inherent in dif­

ferential amplifiers.
One note of caution about using the wired-OR capability of ECL drivers:

Because a driver's output transistor is never completely off, it leaks current in

the high-impedance state. If many drivers are combined in a wired-OR arrange­

ment, the sum of their leakage currents can pull the output voltage out of the

logic 0 state. With every additional driver wired to an output, a slight loss in

noise margin is incurred. So the wired-OR configuration does have its penalty.

RECEIVER CIRCUITS

A receiver is· an input device capable of converting a signal from a driver into a

signal that is usable within the chip with which it is associated. Figure 5-3

shows a few common input circuits-the standard TTL, the low-power Schot­

tky TTL, a noncomplementary MOS circuit, and an input circuit from the

emitter-coupled logic (ECL) family.

Internal voltage levels and current requirements vary widely from chip to

chip, and it is the receiver's job to match the internal requirements to the

signals arriving at the chip's input pins. A receiver's input characteristics are

designed to meet the input specifications of a given logic family, thus making

the receiver an easy-to-use building block. Many ''TTL-compatible'' RAMs

and peripheral chips are in fact ECL, MOS, or even J2L internally; but the

designer need not concern himself with level matching, thanks to the built-in

receivers.

TTL Receivers

The important receiver characteristics to consider when inter-connecting TTL

circuits are input current level, input voltage level, and circuit immunity to

environmental· noise. These considerations apply to standard. TTL as well as

special TTL circuits such as high-speed and low-power Schottky types, al­

though the susceptibility. to excesses varies according to the characteristics of

any given TTL family member.

190 Interface Components and Their Characteristics

+5 v

(a)

(c)

Internal
logic signal

I
I
I

lnputBTJ

(b)

(d)

+5 v

Internal
logic signal

Internal
logic signal

Figure 5-3 Typical receiver circuits. (a) TTL input circuit. (b) LSTTL input circuit.
(c) MOS input (AND gate) circuit. (d) ECL input circuit.

Unit Loads. Each gate of a given logic subfamily (TTL is a family, the
variations are subfamilies) is considered a unit load. Because drivers are capa­
ble of driving only a finite number of such unit loads, it is essential to keep the
number of receiver unit loads to no more than the maximum that can be driven
by the associated driver. A driver, for example, with a rated fan-out of 10 may
be used to drive a maximum of 10 unit loads. But each unit load must be of the
same logic subfamily as the driver, or the fan-out specification becomes mean­
ingless. As long as the unit-load restrictions are observed, the logic circuit

Interface Components and Their Characteristics 191

arrangements should be well within the design limits of the component ele­

ments.

Mixed Logic Families. If devices of mixed logic families are used, the unit­

load specifications cannot be used with any reliability. The. input currents and

voltage requirements and capabilities of the drivers and receivers must be

compared to determine compatibility. Figure 5-4 illustrates the comparison

process. In this example, a low-power Schottky TTL (LSTTL) driver is driving

two standard TTL receivers. First, the threshold voltages of the two logic

families are compared (tests 1 and 2). For a logic 1, the receivers need at least 2

V; the driver supplies 2.5 V, leaving a 500 m V noise margin. On the logic 0 side,

the receiver will tolerate no higher than 800 m V as a logic 0. The driver puts out

500 m V maximum as a logic 0, so logic 0 leaves a 300 m V noise margin.

cu
C'l
ro
+"'

0
>

+"'
c::

t
::J

(..)

74LSOO
LSTTL
driver 3.2mA

Logic -
signal

Logic '0'

Logic 1 High level input V

Logic 0 Low level input V

7400
Standard
TTL receivers

1.6 rnA
3.2 rnA,__ ..____

t

(Driver)
74LSOO

2 V min

.7 V max /

(Receiver)
7400

~~~in 
~8Vmax 

Logic 1 High level output V Q.5Vmi]:f / 2.4 V min 

Logic 0 Low level output V C::5Vmaif 

Logic 1 High input I 20JJ.A max 

Logic 0 High input I -.36mAmax/ 

Logic 1 High output I -400JJ.Am¥ 

Logic 0 Low output I ~mAma~ 

Tests: G) Logic high voltage comparison 

@ Logic low voltage comparison 

@ High current test 

@ Low current test 

Figure 5-4 Interfacing mixed logic families. 

.4 V max 

~JJ.Ama 

~.6mAmax 
® -400JJ.A max 

16 rnA max 



192 Interface Components and Their Characteristics 

Because both logic families are TTL, voltage thresholds cause no problem and 
are in fact nearly identical for standard and LSTTL parts. 

Drive Current Considerations. Next, the driver and the sum of the 
receiver's currents must be checked to insure that the driver can indeed supply 
enough drive current. Because two TTL receivers are connected, the sum of 
two input currents must be matched against the single driver's total current 
capability. As Fig. 5-4 shows, -3.2 rnA is required to drive to logic 0. The driver 
can supply 8 rnA, so there is no problem. Likewise, with the sum of the logic 1 
currents, -400JL A can easily handle the 80JL A high current. 

From these specifications it is obvious that the first area in which trouble 
will occur if more recievers are driven is the low output current level. Five 
standard TTL loads will push the LSTTL driver to its 8 rnA limit. As stated in 
the driver section, it is typically the low-level output current of the driver that is 
the limiting factor in TTL. 

In cases in which AND gates are used as receivers (see Fig. 5-4), it is a 
common practice to connect the two or more inputs together if the AND func­
tion is not desired. Because the two or more inputs are connected to the 
emitters of the same transistor, this receiver acts as a single load-1.6 rnA in 
the TTL case. (This rule doesn't apply to LSTTL, however; because individual 
diodes are used for each input, tied-together inputs act as multiple loads.) 

Floating Inputs. On the logical function level, an input that is not connected 
to anything is at an undefined logic level. On the electrical level, howeyer, open 
TTL inputs float to a logic 1 level, and ECL inputs float to 0. As Fig. 5-3(a) 
illustrates, if nothing is connected to the A and B inputs, current flows through 
R1 and turns the Q2 transistor on. 

Although the floating-input feature can be used in system design, it is better 
to connect any open inputs to a solid 1ogic 1 (or 0) level i(they are not being 
used. Because open inputs on some TTL circuits are susceptible to noise, 
reliability problems can result. 

The best way to set an input to a 1 or 0 is to tie it to -l-5 V or ground. Many 
designers prefer to tie to + 5 V through a mild pull up resistor, thereby reducing 
current flow through the input transistor caused by power-line transients ex­
ceeding maximum input voltages. One 1000-ohm resistor can be used to tie up 
to 10 inputs to a logic 1 level and should be used for all inputs with input 
breakdown voltages of less than 7 volts. 

Standard TTL Input Circuit. In ·the standard TTL input circuit (Fig. 
5-3( a)), an input signal is taken through the input transistor's emitter electrode 
(Q1). The resulting high or low voltage value-depending on a 0 or a 1 input 
value-is used to turn on (or off) the internal logic-level generating transistor 
(Q2), thereby creating the logic signals for internal operation. 



Interface Components and Their Characteristics 193 

Two points should particularly be noted about this design: (1) the input 

portion of the. stage often has multiple emitters, and (2) clamping diodes are 

used on the emitters. The incorporation of multiple emitters constitutes an AND 

gate; Q2 cannot be turned on until all the emitters are at a high voltage level. 

The shunting emitter diodes provide the necessary forward voltage drop during 

negative excursions of the input signal and create a clamping effect that pre­

vents ringing or oscillations after gating. 

Low-Power Schottky TTL Input Circuit. Low-power Schottky TTL in­

puts differ from standard TTL circuitry. Instead of using multiemitter transis­

tors as the input element, hot-carrier (Schottky) diodes are used [Fig. 5-3(b )] , 

with the result that less current is needed to operate the gate. While a standard 

TTL gate requires about 1.6 rnA in the logic 0 state, the low-power Schottky 

input requires but 0.36 rnA. As with the other input circuits, clamping diodes 

are used to prevent ringing and to stabilize the circuit upon receipt of the gating 

signal. 

Tristate TTL Receivers. A common feature found on interface components 

designed for microprocessor-bus use is the ability to "turn a receiver off' or 

put it into a high-impedance state. At first this may not seem to make much 

sense, because you cannot use wired-AND inputs anyway. The real reason 

behind this feature is bus loading reduction. Many more receivers can be put on 

a microcomputer's address and data bus if most of the receiver inputs are in a 

high-impedance state most of the time. A high-impedance input draws an order 

of magnitude less current than an active input. 

Schmitt-Trigger Input. Standard TTL inputs are fine as long as clean wave­

forms with quickly rising edges are available. However, in the real world, 

conditions are not always ideal; noisy or slowly rising waveforms can cause 

noise generation problems with standard inputs. The problem lies in the area in 

which the waveform crosses the receiver's switching threshold. Because this is 

the point at which the receiver switches between 1 and 0, a slowly rising 

waveform that stays at this level for any length of time will cause rapid toggling 

between 1 and 0, especially if there is noise on the line-as Fig. 5-5 illustrates. 

A circuit that solves this problem is the Schmitt trigger. This circuit actu­

ally varies the switching threshold depending on whether the receiver is in a 1 

or 0 condition. The instant a rising waveform crosses the threshold from 0 to 1, 

the Schmitt trigger drops the threshold to a lower value so small excursions 

, aro~nd the original threshold point have no effect on the output waveform. 

On the falling waveform, the Schmitt trigger does just the opposite; it raises 

the threshold as soon as a 1-to-0 transition occurs. The variable threshold effect 

is called hysteresis. A typical Schmitt trigger (the 74Sl32) has a 0-to-1 threshold 

of 1. 77 V and a 1-to-0 threshold of 1.22 V. A 550 m V hysteresis is the result. 



194 

5 

4 
Q) 

~ 3 
0 2 > 

1 

0 

5 

Q) 4 
C') 
co 

3 ..... 
0 
> 2 

1 

0 

Input waveform and thresholds 

\ Logic '1' 

Logic '0' 

Output waveform 

Q) 

5 

4 

~3 
g 2 

1 

Interface Components and Their Characteristics 

1.2 v 
Logic 1-0 
threshold 

/ j_ 
L ____ ,.,. __ .50V 

lHvsteresis 0 

5f­

a>4t­
C') 
co 
~3f-
>2f-

1 1--

Input wavefc and (resholds 

0-1 transition Since waveform must drop 
below 1-0 threshold, noise 
on input is ignored. 

0 ~------------------------------Output waveforms 

Input Output Input Output 

(a) (b) 

Figure 5~5 Transfer characteristics of standard versus Schmitt trigger gates. (a) Standard 
gate. (b) Schmitt trigger gate. 

Schmitt triggers are used extensively for inputs that do. not change very quickly, such as inputs from slow logic and analog devices. Schmitt triggers also find use in converting slow rise times to fast rise times and in microcompu­ter bus receivers in which ringing can be a problem. 

MOS Receivers 

Figure 5-3( c) illustrates a typical MOS input circuit. The main feature is its MOS input transistor. Input operation is quite simple. Voltage levels are de­tected by the MOS input transistor, causing it to act as a variable resistor. This variable resistance is used to switch between logic levels. 

Loading. MOS input circuits are characterized by their extremely high input impedance. MOS transistors are charge-oriented devices and only draw current when they are changing their resistance (current is induced by the buildup of charge). The more often the input logic state is changed, the more power the input circuit will consume. Due to· this charge-transfer characteristic, MOS inputs are treated as capacitive loads. The number of unit loads a driver can handle is limited by either how fast the capacitive inputs can be switched or the instantaneous current required to switch all inputs. When designing with MOS receivers, it is necessary to compare input capacitance as well as voltages. 



Interface Components and Their Characteristics 195 

This fact is illustrated in the specifications for the 6800 microprocessor. 
The number of peripheral chips of the 6800 variety that can be placed on the 
MOS-driv{m bus is 8, limited by the 130 pF loading specification of the MOS 
drivers. Motorola allows 100 pF for data bus driver capacitance and 30 pF for 
interconnection capacitance. 

Operating Voltages. Because MOS receiver impedances are so high, it is 
easy to change the voltage on the input pin. A 5 V input signal moves the input 
to 5 V with practically no current at all. The same thing applies to a 10 kV static 
charge that you might have on your hand. High impedance makes MOS devices 
highly susceptible to static electricity damage. In the early days of MOS 
devices, just touching an open lead with a fingertip would virtually assure a 
burned-out part, but today's devices are well protected against static charges 
with zener diodes. 

Figure 5-3( c) shows the zener diode on the MOS transistor input. If voltage 
exceeds the maximum safe voltage, the zener diode provides a low-impedance 
path to ground to absorb the charge. Most MOS parts are still labeled with 
caution warnings concerning static discharge, but most new devices are in fact 
extremely rugged and will only be damaged by the greatest abuse. 

ECL Receivers 

The ECL receiver shown in Fig. 5-3( d) is simply an NPN transistor that is 
turned on and off by input current from the emitter-coupled driver. This re­
ceiver is basically a one-transistor amplifier that operates in its linear region. 
Operation within its linear region means that the transistor does not have to be 
driven completely into saturation to achieve full turn-on; the stage is turned on 
at virtually the instant the device begins to conduct. Because current goes into 
the base of the transistor instead of the emitter, very low current is demanded 
by the input. ECL drivers are capable of driving up to 90 ECL input loads. This 
figure is somewhat misleading, however. At ECL's high operating speed (20 to 
500 MHz), the relatively small capacitances introduced by the inputs and asso­
ciated transmission lines reduce the drive capability down to 10 or less unit 
loads. In ECL design, fan-out must be sacrificed for high-speed operation. 

INPUT/OUTPUT INTEGRATED CIRCUITS 

Now that the basics of data transfer have been covered on the functional and 
electrical levels, some of the commercial parts available to perform simple and 
advanced 1/0 functions will be examined. Because microcomputers are bus­
oriented machines, the bus transmitter (buffer or driver) is a good place to 
begin. 



196 Interface Components and Their Characteristics 

Figure 5-6 illustrates the Signetics 8T96 bus driver. Bus drivers are de­

signed to take low current and two-state outputs from microcomputer compo­

nents and discrete logic and put them into a high current, standardized tristate 

(or open-collector) compatible driving format. Bus drivers s4ch as the 8T96 

have four characteristics that make them ideal for b~s driving applications: high 

current drive, a low-leakage high-impedance state so many drivers can be 

placed on one bus, short propagation delay due to the Schottky technology, 

and the ability to maintain a high impedance during power-up and power-down. 

The last feature is desirable, because it prevents an intentional or unintentional 

power-down of a device on the microprocessor bus from tying up the bus. 

Bus drivers usually come in 14- and 16-pin packages and have one or more 

common enables that control 4-6 drivers within the package. These common 

enable lines are useful for coincident bus control. 
Buffers are available in inverting and noninverting versions. It is traditional 

to have data inverted on a data bus because most old computers use open­

collector bus drivers to form a wire-AND inverted bus. With tristate logic, there 

is no advantage to the inverted bus. 
Receivers are also available in 14- and 16-pin quad and hex versions. The 

8T380, an example of such a receiver, is shown in Fig. 5-6. 

Bus receivers are characterized by their high impedance, which allows 

many to be put on a bus without undue loading. In many cases, a high­

impedance PNP input transistor is used to provide high impedance as well as 

fast switching. 
Bus receivers often contain Schmitt-trigger input circuitry also. This en­

hances the noise immunity of a computer system and increases overall system 

reliability. 
Transmitters and receivers are often connected to the same line, and spe­

cial parts that combine transmit and receive functions are useful in these appli­

cations. The 8T26 bus transceiver shown in Fig. 5-7 is one such part. Four bus 

transceivers are provided in a single 16-pin package. The 8T26 has tristate 

outputs as well as tristate inputs controlled by the driver enable and receiver 

enable inputs. Like the 8T96 bus driver, the 8T26 goes into a high-impedance 

state on power-down. 
Detailed information about interface components is available in manufac­

turers' catalogs. Signetics has a very broad line of interface components (their 

8T series), as does National Semiconductor. Microprocessor manufacturers 

such as Motorola, Intel, and Fairchild have nearly identical parts that go by 

microprocessor series numbers. The Motorola XC68S5, for example, is basi­

cally an 8T95 driver. 

One-Chip Parallel 1/0 Ports 

The one-chip parallel 1/0 port, which is often called a peripheral interface 

adapter (PIA) or programmable peripheral interface, is a combination of bus 

transceivers and registers designed to interface peripheral equipment in a paral-



Interface Components and Their Characteristics 

..... 
c: 
t 
:J 

Cl) (.) 

.......... 
:J :J 
a. a. 

.S .S 
(.) -·-o Cl, 

.Q (.) 

..... ·a, 
c: 0 
QJ-

t<( a ::t 
~8 
.31 

Enable 

+5 v 
16 

12 

14 

10 

6 

4 

'2 

1 

Tristate-60 rnA driver outputs. Ideal 
for tristate microprocessor bus. 

(a) 

en 
:J ..a 
..... 
(.) 

7 

£ 6 
ro -+----~ 
..... 
0 
c: 
Cl) 
QJ 

-8 4 
QJ 
(.) 
c: 
QJ 

:J 
C" 
QJ 
Cl) 

Cl) 

Cl) :J 

-1------\ 
5 

"5..0 9 
a. c: -+-----\ 

.S 8 10 
~ "9 -+------1 

..a ~ 
~ 8 
~a. 
~ a: 11 
a. :J -;------\ .s ~ 12 
~ ~ ~~------~ 
sE. 

+5 v 
8 

Note: Hysteresis on 
inputs increase noise 
immunity. 

1 

Standard TTL outputs. 

(b) 

Figure 5-6 One-chip bus drivers and receivers. (a) 8T96 hex bus drivers. 
(b) 8T380 quad. 

197 

2 

3 

14 

13 

lei manner to external equipment. Two or more parallel input/output channels 
whose I/0 directions are programmable under microprocessor control are 
usually available. · 

The 6821 PIA. A good example of a one-chip I/0 port is the 6821 PIA, 
designed for use with the 6800 microprocessor family (Fig. 5-8). Data and 
control signals enter the PIA through data bus buffers (transceivers) and are 
sent to data output or control registers under program control. The PIA pro­
vides all necessary bus communication and handshaking. As far as the micro­
computer programmer is concerned, the registers appear as memory locations, 
because they are decoded (using CS1, CS2, and CSO) to respond to certain 
addresses. 

The 6821 has two 8-bit parallel input/output ports called PA and PB. Data 
can be sent to or read from the data registers that drive these ports. The PA 



198 

Receiver 
ENABLE 

...... 
c "' Q) ...... 
... :::::1 
... Cl. 
:::::1 c 
U·-
3:.~ 
0 C'l _J.E. 

11 

14 

+5 v 
16 

8 

(a) 

Interface Components and Their Characteristics 

~----- -- -8T26--: 

I ~ I 
I 8-bit bus ·a; 1 
lda~to ~ I 
I peripheral a: 

8-bit 
peripheral 
data to 
bus 

Q) 

1"'"""'1~-+-1 > 
~ 4 

I 
I 
I 
I 
I 
I 
I 

Driver enable/ 1 

address '--+-1 --li----t 
decoder 

1 
L ____________ j 

(b) 

16 

Figure 5-7 One-chip bus transceivers and their uses. (a) 8T26 quad bus transceiver. 

(b) Use of bus transceivers. 

port can be programmed to act as either an input or output port by setting all 8 

bits in the data direction register to 0 or 1, respectively. Because each of the 8 

bits in the data direction register corresponds to a line in the P A port, selected 

lines of the PA port can be programmed to act as individual outputs and inputs. 

When the microprocessor or DMA device reads the PIA's PA register, the 

data on PA's input-programmed lines appears directly on the microprocessor 

data bus. Data written into the PA register appears on the output-programmed 

lines as logic 0 and 1 levels. In the input mode, the P A lines will accept anything 

below 800 mV as a 0 and anything above 2.0 Vas a 1. In the output mode, the 

P A lines will each supply 1.6 rnA of sink current or one standard TTL load. 

The PB port is similar to the PA port from a functional standpoint. The PB 

port and its corresponding control and data direction registers respond to dif­

ferent bus addresses, however. The electrical characteristics of the PB lines in 



.....
 

CD
 

CD
 

8
-b

it
 

8 

,.
./

""
'-

--
M

ic
ro

c
o

m
p

u
te

r 
~
b
u
s
 in

te
rf

a
ce

 

D
at

a 

:e
ri

p
h

e
ra

l 
>

 
m

te
rf

a
ce

 

D
at

a 

C
on

tro
l 

re
gi

st
er

 A
 

"' -:;; -~
 

D
at

a 
di

re
ct

io
n 

re
g.

 A
 

~
 

da
ta

 b
u
s
~
 

bu
s 

D
O

-D
7 

2
6

-3
3

ltr
a

n
ce

iv
e

rs
 

P
A

 1
/0

 
p

o
rt

 
0 a.
. 

I 
1-

l 
I 

I 
I 

I 
l 

I}E
 ~ 

"' 
Pe

rip
he

ra
l 

re
gi

st
er

 A
 

~ 
E

 

r 
"' 

-o
 

"' 

~~ 
::

l 
_o

 ~ "' (1
J u 0 a. 

c: 
e 

0 

u 
u 

~
 

l 

In
te

rr
u

p
t 

C
A

1 

C
A

2
 

8-
bi

t 
1/

0 
po

rt
 A

 d
at

a 
I t

5 
-g

 

C
on

tro
l 

re
gi

st
er

 8
 

3
8

 
re

qu
es

t 
A

 _
_

 ,_
. _

_
_

_
_

_
 +
-+

--
--

-.
..

..
::

=
."

"'
r-

1
--

--
-J

 
~ ·~.

 

(I
R

Q
A

) 

cs
o 

C
S1

 
C

S
2 

R
SO

 
R

S1
 

In
te

rr
u

p
t 

re
qu

es
t 

B
 

(I 
R

O
B

) 

C
h

ip
 

se
le

ct
 

an
d 

re
a

d
/ 

w
ri

te
 

co
n

tr
o

l 

3
7

 

D
at

a 
di

re
ct

io
n 

re
g.

 S
 

PB
 1

/0
 

IX
l 

0 a.
. 

I 
I 

I 
I 

I 
I 

I 
I 

I}E
 

Pe
rip

he
ra

l 
re

g.
 8

 
~ 

~ 
ca

-o
 

I 
8-

bi
t 

1/
0 

po
rt

 8
 d

at
a 

I t
5 

-g
 

R
eg

is
te

r 
co

n
tr

o
l 

si
gn

al
s 

(a
) 

C
B

1 

C
B

2 

F
ig

ur
e 

5-
8 

T
he

 6
82

1 
pr

og
ra

m
m

ab
le

 in
te

rf
ac

e 
ad

ap
te

r 
(P

IA
).

 (
a)

 B
lo

ck
 d

ia
gr

am
. 

(b
) 

P
ro

gr
am

m
er

's
 v

ie
w

 o
f a

 P
IA

. 
(C

ou
rt

es
y 

M
ot

or
ol

a 
S

em
ic

on
du

ct
or

 P
ro

du
ct

s,
 P

ho
en

ix
, 

A
ri

zo
na

.)
 

Th
e 

re
gi

st
er

s 
ap

pe
ar

 a
s 

m
em

or
y 

lo
ca

tio
ns

 b
ec

au
se

 t
he

 6
80

0 
is 

a 
m

em
or

y-
m

ap
pe

d 
m

ac
hi

ne
. 

(b
) 



200 Interface Components and Their Characteristics 

their output mode are quite different from the PA outputs. These lines have the 
tristate character and enter their float state when programmed as inputs. In 

addition, these lines are capable of supplying up to 1 rnA of current at 1.5 V to a 

transistor. It is obvious that Motorola had high-power control switching appli­

cations in mind when this feature was incorporated. 
In addition to the two 8-bit-wide P A and PB ports, the 6821 has two dis­

crete programmable I/0 lines (CA2 and CB2) and two discrete input-only lines 

(CAl and CBl). These lines are under direct control of bits in the control 

register. The CAl and CBllines can be programmed to cause interrupts on the 

rising edge or falling edge of data at theCA inputs. The CA2 and CB2lines can 

be programmed to act as interrupt lines or output lines. These discrete output 
lines are ideal for use in which the PA port is an 8-bit output port and PB is an 

8-bit input port from a peripheral. Peripheral motor control, handshaking con­

trol, or some other discrete function can be controlled by CA and CB. 
Because the PIAs are programmable devices, the first thing you must do in 

a program is initialize the PIA in the microcomputer system. This involves 

setting all the data direction registers to their proper values. When a PIA is 

reset during power-up, all the programmable I/0 lines are activated as inputs 

and must be programmed to be outputs if desired. 

The 8255 PPI. The 8080 family of microprocessors has a part that is similar 

to the PIA called the programmable peripheral interface or PPI (Fig. 5-9). Like 

the 6821, the 8255 has dual 8-bit PA and PB ports, but the remaining I/0 lines 

are slightly different. Two groups of four control lines corresponding to the P A 

and PB I/0 ports can operate in three modes: 

1. Each group of 12 lines (PA and its 4 control lines) can be pro­

grammed to act as an output or input. 

2. A group of 12 lines can act as 8 data lines, 3 handshaking lines, and 1 
interrupt line. 

3. A group of 8 lines can act as a bidirectional bus with 5 lines (one 
borrowed from the other port) acting as handshaking. 

The output characteristics of the P A and PB lines are similar to the outputs 

of the PB section of the 6821. The outputs can source 1 rnA to 1.5 V. Intel 

suggests that these lines can be connected to darlington transistors to directly 

drive printers and high-voltage displays. 

Serial Interface Chips 

The process of sending serial data to and from peripherals is so common that a 

wide assortment of one-chip serial-to-parallel and parallel-to-serial converter/ 
controllers has been developed. These chips go by different names, depending 



N
 

0 .....
 

M
ic

ro
co

m
p

u
te

r 
in

te
rf

a
ce

 

<
-

P
ow

er
 

{-
-.

..
..

..
 +

5
 V

 
su

pp
lie

s 
G

N
D

 

B
id

ir
e

ct
io

n
a

l 
da

ta
 b

us
 

D
at

a 
bu

s 
b

u
ff

e
r 

I 
I 

T
 

I 

fi
ll

 

G
ro

u
p

 
A

 
co

n
tr

o
l 

W
R

 =1 
R

ea
d/

 H
 Gro

up
 

w
ri

te
 

B
 

A1
 

co
n

tr
o

l 
co

n
tr

o
l 

A
o 

lo
gi

c 

R
es

et
 

cs
 

u
-u

•L
 

in
te

rn
a

l 
da

ta
 b

us
 

(a
) 

P
er

ip
he

ra
l 

in
te

rf
a

ce
 

--
>

 
1/

0 
P

A
7

, 
P

A
0 

1/
0 

P
C

7
,P

C
4

 

1/
0 

P
C

3,
 P

C
o 

1/
0 

PB
7

,P
B

o
 

A
dd

re
ss

 
A

ct
io

n
 

A
I 0 0 1 1 

A
o 

R
ea

d 
W

ri
te

 

0 
P

o
rt

 A
 -

-* 
da

ta
 b

us
 

D
at

a 
bu

s 
--*

 p
o

rt
 A

 

1 
P

o
rt

 B
 -

-*
da

ta
 b

us
 

D
at

a 
bu

s 
--*

 p
o

rt
 B

 

0 
P

o
rt

 C
--

* 
da

ta
 b

us
 

D
at

a 
bu

s 
--*

 p
o

rt
 C

 

1 
N

o
 a

ct
io

n
 

D
at

a 
bu

s 
--

*c
o

n
tr

o
l 

N
o

te
: 

T
h

e
 w

o
rd

 w
ri

tt
e

n
 i

n
to

 t
h

e
 

co
n

tr
o

l 
w

o
rd

 d
et

er
m

in
es

 1
/0

 m
o

d
e

. 

(b
) 

F
ig

u
re

 5
-9

 
T

h
e 

82
55

 p
ro

gr
am

m
ab

le
 p

er
ip

he
ra

l 
in

te
rf

ac
e 

(P
P

I)
. 

(a
) 

B
lo

ck
 d

ia
gr

am
. 

(b
) 

P
ro

gr
am

m
er

 c
on

tr
ol

 c
om

m
an

ds
. 

(R
ep

ri
nt

ed
 b

y 
pe

rm
is

si
on

 o
f I

nt
el

 C
or

po
ra

ti
on

, 
C

op
yr

ig
ht

 
19

77
.)

 



202 Interface Components and Their Characteristics 

on what kind of serial communication they handle. The DART, ACIA, and 

DSRT are but a few of these chips. 

The UART. One of the first MOS LSI chips to gain popularity (prior to the 

microprocessor in fact) was the universal asynchronous receiver/transmitter, 

or DART. This chip is used widely in data terminals and on large computer 

interface cards to provide bidirectional full-duplex asynchronous data com­

munications. 
For ease of understanding, a DART can be split into two completely sepa­

rate sections: transmit and receive. Figure· 5-lO(b) illustrates this functional 

breakdown. The transmit section consists of a transmit data shift register (to 

shift data out at the transmit clock rate) and a holding register (to hold new data 

until the shift register has emptied its previous data). Data is automatically 

loaded into the shift register when it is empty. A number of status lines are 

presented to the user by the transmit section. Lines indicating an empty trans­

mit register (TRE) and empty transmit holding register (HTRE) indicate when i 

new data can be submitted to the DART. 
The user must program the parity and number of start and stop bits to be 

transmitted. In the case of the DART, the term "programmed" has a different 

meaning than in the PIA. 
Separate inputs on the DART's 40-pin package are set aside for these 

functions. These pins can be connected to an external control register or simply 

hard-wired to logic 1 or 0 values. The hard-wiring feature is nice because 

initialization programming is·not required. 
The DART's receiver section is basically a transmit section in reverse. 

Data is shifted into the input shift register at the receive clock rate. When a full 

word has been received it is sent to the receive holding register and can be read 

by the user. The DART checks parity, overrun and data framing, and indicates 

errors on discrete outputs. 
DARTs certainly replace a large number of registers and timing circuitry in 

an interface and are especially useful in nonmicroprocessor interfaces (such as 

a data-terminal interface) in which program-controlled initialization is not pos­

sible. DARTs offer a great deal of interface capability for just a few dollars. 

The ACIA. A DART can be connected directly to a microprocessor bus for 

serial data communication by connecting the inputs to the transmit holding 

register and the tristate outputs of the receive holding register to the 

microprocessor's data bus. A small amount of decoding circuitry would, of 

course, be necessary to make the DART respond to the proper address and 

control signals of the microprocessor. There is an even easier way of imple­

menting serial communication, however. A part called an asynchronous com­

munication interface adapter or ACIA performs the task of the DART and 

incorporates all the necessary handshaking and control signals required to 

interface it to a microprocessor. 



N
 

0 c.
,)

 

V
 cc

 =
 4

 t
o

 1
1V

 

N
/C

 

G
ro

un
d 

R
ec

ei
ve

d 
d

at
a 

P
ar

it
y 

er
ro

r 

F
ra

m
in

g 
er

ro
r 

O
ve

rr
un

 e
rr

o
r 

S
ta

tu
s 

fl
ag

 d
is

ab
le

 

R
ec

ei
ve

 r
eg

. 
cl

oc
k 

D
at

a 
re

ce
iv

ed
 r

es
et

 

D
at

a 
re

ce
iv

ed
 

R
ec

ei
ve

r 
re

g.
 i

n
p

u
t 

(a
} 

T
ra

n
sm

it
 r

eg
. 

cl
o

ck
 

E
ve

n-
pa

ri
ty

 e
n

ab
le

 

C
h

ar
ac

te
r 

le
ng

th
 s

el
ec

t 

S
to

p
 b

it
 s

el
ec

t 

P
ar

it
y 

in
h

ib
it

 

C
o

n
tr

o
l 

re
g.

 l
oa

d 

T
ra

n
sm

it
 d

at
a 

T
ra

ns
. 

re
g.

 o
u

tp
u

t 

T
ra

ns
. 

re
g.

 e
m

p
ty

 

T
ra

ns
. 

ho
ld

in
g 

re
g.

 l
oa

d 

T
ra

n
s 

ho
ld

in
g 

re
g.

 e
m

p
ty

 

T
ra

ns
. 

ho
ld

in
g 

re
g.

 e
m

p
ty

 
T

ra
n

sm
it

 S
ec

ti
o

n
 

T
ra

n
sm

it
 

ho
ld

in
g 

re
gi

st
er

 
lo

ad
 

D
at

a 
re

ce
iv

ed
 

D
at

a 
re

ce
iv

ed
 

re
se

t 

• 
T

ra
ns

. 
re

g.
 

em
p

ty
 

C
o

n
tr

o
l 
~
-
+
-
-
-
-
-
~
 

T
ra

ns
. 

re
g.

 c
lo

ck
 E
rr

o
r 

fl
ag

s 
r
-
-
-
'-

..
 

S
F

D
 

O
E

 P
E

 
F

E
 

C
o

n
tr

o
l 

R
ec

ei
ve

 r
eg

. 
in

p
u

t 

R
ec

ei
ve

 r
eg

. 
cl

oc
k 

(b
) 

T
ra

n
sm

it
 d

at
a 

T
ra

n
sm

it
 r

eg
is

te
r 

S
h

if
t 

R
ec

ei
ve

 r
eg

is
te

r 

C
l
o
c
k
~
 

S
h

if
t 

F
ig

ur
e 

5-
10

 
T

he
 I

M
64

02
A

 u
ni

ve
rs

al
 a

sy
nc

hr
on

ou
s 

re
ce

iv
er

-t
ni

ns
m

it
te

r 
(U

A
R

T
).

 (
a)

 I
M

64
02

 U
A

R
T

. 
(b

) 
F

un
ct

io
na

l 
di

ag
ra

m
. 

T
ra

n
sm

it
 

re
g.

 
o

u
tp

u
t 



204 Interface Components and Their Characteristics 

The 6850 is a good example of a popular ACIA. The ACIA's structure 

(shown in Fig. 5-11) closely resembles that of the UART of Fig. 5-10. The 

transmit data register and transmit shift register correspond to the transmit 

holding register and transmit register of the U ART. Because both transmit and 

receive data are sent to the data bus lines (DO-D7) through the DATA bus 

buffers, there is no need for separate receive and transmit output pins. Many of 

the discrete status lines such as the parity drror, framing error, and transmit 

data register ready signals are interrogated by the microprocessor through the 

data bus, thereby saving more 1/0 pins. ' 

Unlike the UART, individual hard-wirable programming pins for parity and 

number of stop bits are not available on the ACIA and must be loaded into the 

control re'gister through the data bus. This feature also saves 1/0 pins but 

necessitates program-controlled initialization when the microcomputer system 

is initially turned on. 
The 1/0 pin reductions caused by combined receive, transmit, control, and 

status lines-plus the savings in power pins (the 6850 requires only one 5 V 

power supply as opposed to the DART's three)-allow the ACIA to be built 

into a 24-pin package with 4 pins to spare. These pins are used for data com­

munication lines associated with terminals and modems. Request to send, clear 

tq send, data carrier detect, and interrupt request lines are provided. 

Figure 5-ll(b) shows what an ACIA looks like from the programmer's 

point of view. On a 6800-based processor, the ACIA looks like four registers 

located at two addresses in memory. The transmit data register and the receive 

data register share the same address (one is read and the other write), as do the 

status and control registers. Data transmission is accomplished by reading the 

status register (under polled or interrupt control) to determine if the transmit 

holding register is empty. If the first bit is set to 1, data is written into the 

transmit data register and the microprocessor can resume its original program 

while the ACIA serially shifts the data out. If the bit is not set, however, a data 

transfer is still in progress and the program must wait by looping or executing 

another program. 
A receive sequence is similar to the transmit sequence, except that the 

"receive data register full" status bit is checked and data is read from the 

receive data register if set. The framing error, receiver overrun, and parity 

error bits of the status register can also be checked by the program if error 

checking is important to the programmer. 

Initialization of the ACIA involves writing a reset word and a program 

word into the ACIA control register. Upon power-up, the ACIA goes into a bus 

protection mode automatically and must be reset by sending a reset word to the 

control register with bits DO and D1 set to logic 1. The program word, which 

determines the transmit and receive clock divide rate, the number of stop bits, 

and even or odd parity, must then be set. 

Other ACIAs include the TMS 9902 for the~TI 9900 series, the 8251 for the 

8080 series, and the TR1953 for the 16-bit Western Digital MCP-1600/WD-16 

series microprocessors. 



T
ra

ns
m

it
 c

lo
ck

 4
 

E
na

bl
e 

14
 

R
ea

d/
w

ri
te

 1
3 

C
hi

p 
se

le
ct

 0
 

8 
C

hi
p 

se
le

ct
 1

 
10

 
C

hi
p 

se
le

ct
 2

 
9 

R
eg

is
te

r 
se

le
ct

 1
1 

D
O

 2
2

 

D
1 

21
 

D
2 

2
0

 
D

3
1

9
 

D
4

1
8

 
D

5
1

7
 

D
6

1
6

 

D
7

1
5

 

M
ic

ro
pr

oc
es

so
r 

bu
s 

in
te

rf
ac

e 

¢=
::

::
=

1 

v 0
0

=
P

in
1

2
 

v 55
 

=
P

in
1

 

S
er

ia
l 

pe
ri

ph
er

al
 

in
te

rf
ac

e 

~
 r:::

:::=
:> 

6 
tr

an
sm

it
 d

at
a 

l-
4

-.
..

. -
-
-
-
-

2
4

 C
le

ar
­

to
-s

en
d 

'-
-
-
-
-
"
 7

 I
n

te
rr

u
p

t 
re

qu
es

t 

2
3

 D
at

a 
ca

rr
ie

r 
-,

 
1 

L•
 --

--
..

r-
--

--
--

- d
et

ec
t.

 
!'

 
1 

I 
• 

5 
R

eq
ue

st
-t

o-
se

nd
 

14
--

--
-...

. --
2 

re
ce

iv
e 

d
at

a 

II
)~
 

:::1
 

Q
) 

+
-' 

,_
 

CO
"' 

+
-'

"
0

 
~
c
o
 

0 
,_ 

,_
 

Q
) 

+
-'

+
-'

 
c:

.!
!!

 
oc

::n
 

u
e
 

g 
+

-'
 

Q
) 

II
) 

c:
 

Q
) 

:::1
 

:::1
 

C
' 

,_
 

0 
,_

 
e 

g 
Q

) 
,_ 

>
 

,_
 

+
-'

 
0 

Q
) 

a.
 

Q
) 

Q
) 

C
l 

:::1
 

c:
 

.....
 

>
 

>
 

,_
 

+
-' 

·a:
; 

.E 
~
 

·;:
: 

(.
) 

~
 

c:
 

co
 

Q
) 

0.
. 

a:
 

L
L

 

R
ec

.l
 T

ra
ns

m
it

 
in

t.
 

co
nt

ro
l 

en
. 

bi
ts

 

~
 

:::1
 

"
0

 
+

-'
 

+
-'

 
'+

-
(.

) 
c:

 
c:

 
Q

) 
Q

) 
c,

 
Q

) 
+

-'
 

II
) 

Q
) 

c,
 

e 
0 

"
0

 
e 

Q
) 

,_
 

+
-' 

Q
) 

II
) 

>
 

,_ 
.E 

c:
 

·a:
; 

co
 

co
 

(.
) 

Q
) u 

co
 
~
 

Q
) 

(.
) 

a:
 

R
ea

d 

W
or

d 
I 

C
lo

ck
 

fo
rm

at
 

7
1

 7
16

 7
 3

21
 W

ri
te

 
se

le
ct

 
se

le
ct

 
bi

ts
 

.t 
~~ 

8-
bi

t 
re

ce
iv

ed
 d

at
a 

I R
ea

d 
Q

) 
II

) 
,_

 
II

) 
Q

) 

~ 
-D 

I 
8-

bi
t 

se
nd

 d
at

a 
I W

ri
te

 
Cl

-g
 N

ot
e:

 
T

h
e 

6
8

0
0

 is
 a

 m
em

or
y-

m
ap

pe
d 

m
ac

hi
ne

. 
T

he
 c

o
n

tr
o

l/
st

at
u

s 
an

d 
da

ta
 r

eg
is

te
rs

 a
pp

ea
r 

as
 

tw
o

 c
on

se
cu

ti
ve

 a
dd

re
ss

es
 i

n 
m

em
or

y.
 

(b
) 

R
ec

ei
ve

 c
lo

ck
 3

 
.. 
I 

I 
(a

) 

F
ig

ur
e 

S-
11

 
T

he
 6

85
0 

as
yn

ch
ro

no
us

 c
om

m
un

ic
at

io
ns

 in
te

rf
ac

e 
ad

ap
te

r 
(A

C
IA

).
 

(a
) 

B
lo

ck
 d

ia
gr

am
 o

f 
A

.c
iA

. 
(b

) 
P

ro
gr

am
m

er
's

 v
ie

w
 o

f 
A

C
IA

. (
C

ou
rt

es
y 

M
ot

or
ol

a 
S

em
ic

on
du

ct
or

 P
ro

du
ct

s,
 P

ho
en

ix
, 

A
ri

zo
na

.)
 



206 Interface Components and Their Characteristics 

Synchronous Devices. Synchronous data communication is desirable in 

high-performance data links, and chips that handle the synchronous serial com­

munication function are available. The first ofthese chips were the synchro­

nous receiver and synchronous transmitter chips. Later, these two functions 

were combined into universal synchronous receiver/transmitter or USRT 

chips. Finally, microprocessor-bus-oriented versions, called synchronous se­

rial data adapters (SSDAs), were developed. 

The 6852, an example of such a chip, is illustrated in Fig. 5-12. Because 

synchronous communication does not require start-bit sensing, it would seem 

that the SSDA would be much simpler than 'the asynchronous ACIA. This is 

not true, however, due to the need to keep data continuously synchronized. 

When data transmission begins, the receiver must "watch" for a match charac­

ter that signals the start of a data stream. The SSDA contains a sync code 

register and a comparator to perform this function. Because a break in the 

serial stream of data causes desynchronization, the SSDA's transmit section 

must generate fill characters (dummy characters that do not contain data) to 

keep the data stream in sync when the microprocessor has no new data to send. 

Because SSDAs are meant for applications where high data rates are neces­

sary, a few features that help keep a constant stream of valid data flowing are 

incorporated. Three-level FIFO (first-in-first-out) registers are used to stack 

transmit and receive data. The FIFOs give the microprocessor much greater 

leeway in data send and receive timing. 

One-Chip Modems. Serial data transmissions over telephone lines to time,. 

sharing computers became popular before it was feasible for an individual to 

have his own personal microcomputer. Today, time-sharing remains popular 

due to the large storage capacities and software resources of large mainframes; 

but the arrival of the microprocessor has had an impact on this area of com­

puter technology as well. 
Intelligent terminals with built-in computing power that allow simple func­

tions to be performed in offline modes are now popular. Networks of terminals, 

each with its own processing resources, are in the experimental stages and go 

by the name of distributed processing. At any rate, the advent of the micropro­

cessor has increased the need for low-speed serial data transmission over 

voice-grade telephone lines. 
As might be expected, single chips that replace many discrete circuits are 

now available to provide the modulation/demodulation or modem function 

needed for this communication. Modem chips differ from' the serial interface 

chips described so far in that they digitally synthesize and decode analog wave­

forms that are transmitted on telephone lines. 

Transmission over a voice-grade telephone link is accomplished using 

asynchronous data transmission with two pitches of tones representing the 0 

and the 1 state (FSK data transmission). 
Figure 5-13(a) shows a terminal communicating to a large computer over a 

telephone link. The user terminal of the link is called the originate end, because 



N
 

0 .....
 

E
n

a
b

le
 

1
4

 
f 

R
e

a
d

/W
ri

te
 
1

3
-

A
d

d
re

s
s
 

T
ra

n
s
m

it
 C

lo
c
k
 4

-
-
-

T
ra

n
s
m

it
 
~
 f
-
~
 

~
 

P
a

ri
ty

 

G
e

n
e

ra
to

r 

' 
T

ra
n

s
m

it
te

r 

6 
T

ra
n

s
m

it
 

C
h

ip
 S

e
le

c
t 
1

0
-

R
e

g
is

te
r 

S
e

le
c
t 

1
1

 
-

L
o

g
ic

 
8 

E=
t 

R
e

g
is

te
r 

(3
 B

y
te

s
) 

#
1

 

#
2

 

r-
rv

"'
 

S
h

if
t 

D
a

ta
 

R
e

g
is

te
r 

_
_

 __
._U

_._
__

._I
 --,

 
U

n
d

e
rf

lo
w

 

~ 
1

\ 
.,. 

8 
T

ra
n

s
m

it
te

r 

D
O

 

D
1 

D
2

 

D
3

 

D
4 

D
5 

D
6

 

D
7

 

R
e

s
e

t 

2
2

-

2
1

 
_

_
_

..
..

 

2
0

 
_

_
_

..
..

 

1
9

 :J
 Da

ta
 

B
u

s
 

1
8

 
B

u
ff

e
rs

 

1
7

-

1 

1
6
~
 

1
5

 
---

--1
 

9 
~ 

V
D

o
=

P
in

 
1

2
 

V
s
s
 

=
 
P

in
 

1 

~
 

L
.,

 

v 

t.
__

__
_.

, 

,.._
_·- / 

r-
--

.-
-

L
.,

 

f 

C
o

n
tr

o
l 

R
e

g
is

te
r 

1 

H
~
 

~
 

r=
=-

R
e

c
e

iv
e

 
D

a
ta

 F
IF

O
 

R
e

g
is

te
r 

(3
 B

y
te

s
) 

#
1

 

#
3

 

l_
__

_.
!3

 r 

C
o

n
tr

o
l 

R
e

g
is

te
r 

3 

r
-
- r
-

]~ 
i 

T
ra

n
s
m

it
 

I~
 

r 
2

4
 

C
le

a
r 

to
 S

e
n

d
 

C
o

n
tr

o
l 

I 
I 

I 

D
a

ta
 C

a
rr

ie
r 

I I
 I 

I I
 

~
 :, 

~:~,~
;.~. 

L
_

_
_

 

L
_

_
_

 
R

e
c
e

iv
e

 
1
4
-
-
+
-
+
-
-
-
-
+
-
~
-
-
-
-
-

2 
D

a
ta

 

1
4
-
-
+
+
-
-
-
-
+
-
~
-
-
-
-
-

3 
R

e
c
e

iv
e

 
C

lo
c
k
 

S
y
n

c
 

1
-
-
-
-
-

5 
M

a
tc

h
/ 

D
a

ta
 T

e
rm

in
a

l 
R

e
a

d
y
 

F
ig

ur
e 

5-
12

 
T

he
 6

86
2 

sy
nc

hr
on

ou
s 

se
ri

al
 d

at
a 

ad
ap

te
r 

(S
S

D
A

) 
bl

oc
k 

di
ag

ra
m

. 
(C

ou
rt

es
y 

M
ot

or
ol

a 
S

em
ic

on
du

ct
or

 P
ro

du
ct

s,
 P

ho
en

ix
, 

A
ri

zo
na

.)
 



208 Interface Components and Their Characteristics 

the person at the terminal originates the communication by calling the com­

puter. The computer's end of the link is the answer end. 

Data can be sent bidirectionally in a full-duplex mode because two sets of 

communication frequencies are used. The originate frequencies are 1070Hz for 

a space (0) and 1270Hz for a mark (1). The answer modem has filters to receive 

and decode these two audio frequencies. The answer modem's transmit fre­

quencies are 2025Hz for a space and 2225 for a mark. Data transmissionrates 

of up to 600 bits per second are possible using these modulation frequencies, 

but 300 bps telephone-terminal commu~ication is most often used for reliability 

and because of the limitations of the terminal printer. 

Figure 5-13(b) depicts the MC6860 digital modem chip. The chip does not 

perform the necessary serial-to-parallel conversion for use with a microproces­

sor bus, so an A CIA must be used for this purpose. The 6860 is designed to 

operate in either originate or answer modes, making it usable on both the 1 

terminal and computer- ends of a system. Additional control functions are also 

provided. An input for a telephone ring sense signal can be used in conjunction 

with the "answer phone" output to implement an automatic telephone 

answering data communication link at the central computer. This is commonly 

referred to as a dialup system. Internal chip timing allows timing margins of a 

few seconds for automatic hangup after a loss in the carrier signal (terminal's 

signal). 
Although a sine wave is digitally synthesized and sent to the transmit 

carrier output, a low-pass filter, duplexer, and data coupler must be used to 

connect the 6860 to the telephone line. The inductive and capaciti\:'e elements 

needed to meet the telephone system interface standards were just too large to 

fit on an integrated circuit. 

ONE-CHIP CONTROLLERS 

Interface chips that handle complex control as -well as data functions are avail­

able for many of the common microprocessors, and many are designed for use 

on a stand-alone basis as well. This class of interface device includes cassette 

controllers, floppy disk controllers, DMA controllers, and CRT controllers. 

New controller interface chips seem to be introduced when the demand for a 

specific application becomes large enough. 

Floppy Disk Controllers (FOGs) 

Floppy disk controllers provide a simple one-chip interface to floppy disk 

drives, thereby replacing many discrete interface components and reducing 

overhead support software for disk read, write, head control, and error check­

ing. Floppy disk controllers are now available for the 6800 and 8080 micropro­

cessors as well as in stand-alone versions that can be interfaced to nearly any 

microprocessor with a couple PIAs. 



N
 

0 CD
 

P
ar

al
le

l 
da

ta
 X

F
E

R
 

S
er

ia
l 

d
at

a 
X

F
E

R
 

M
od

ul
at

ed
 

se
ri

al
 X

F
E

R
 

T
el

ep
ho

ne
 s

ys
te

m
 

(a
) 

D
at

a 
co

up
le

r 
(e

le
ct

ri
ca

l 
o

r 
ac

ou
st

ic
) 

C
o

m
p

u
te

r 
"A

n
sw

er
" 

E
nd

 

U
se

r 
"O

ri
g

in
at

e"
 E

nd
 

E
~
 

a.>
 

0 
-g

E 
:2
:~
 

0
~
 

(
0

 
·
-

f8
·~
 

0 

C
o

m
p

u
te

r 
te

rm
in

al
 

D
at

a 
te

rm
in

al
 

2
0

 
re

ad
y 

C
le

ar
-t

o-
se

nd
 

23
 

B
re

ak
 r

el
ea

se
 

9 

R
ec

ei
ve

 b
re

ak
 

3 

T
ra

n
sm

it
 b

re
ak

 
8 

D
ig

it
al

 c
ar

ri
er

 
11

 

T
ra

n
sm

it
 d

at
a 

2 

T
ra

n
sm

it
 c

ar
ri

er
 

10
 

R
ec

ei
ve

 d
at

a 
2

4
 

R
ec

ei
ve

 d
at

a 
ra

te
 

14
 

R
ec

ei
ve

 c
ar

ri
er

 
17

 

C
ry

st
al

 
13

 

T
es

t 
cl

oc
k 

18
 

F
ig

ur
e 

5-
13

 
T

he
 6

86
0 

di
gi

ta
l m

od
em

. 
(a

) 
M

od
em

 c
om

m
un

ic
at

io
n 

us
in

g 
th

e 
68

60
. 

(b
) 

B
lo

ck
 d

ia
gr

am
 o

f t
he

 6
86

0.
 (

C
ou

rt
es

y 
M

ot
or

ol
a 

S
em

ic
on

du
ct

or
 P

ro
du

ct
s,

 P
ho

en
ix

, 
A

ri
zo

na
.)

 

(b
) 

a.>
 

c 0 ..c
 

a.
 

.... a.>
 

$:
 

V
I c <
( 

o::
t 

0 
.::

t:.
 

.....
 

(1
:1

 
0 

(J
 

0 
~
 

..c
 

. !:
: 

..c
 

O
l 

(J
 

a.>
 

.....
 

"'
0

 
c 

"3:
 

0 
c:

 
en

 
:2

: 
C

» 
N

 
LO

 
,....

.. 
,....

.. 

A
u

to
 

an
sw

er
/ 

d
is

co
n

n
ec

t 
lo

gi
c 

.....
 

(J
 

~
 

a.>
 

"'
0

 
"'

0
 

0 ..c
 

V
I 

a.>
 .... ..c
 

1- ,....
. 

S
el

f 
te

st
 

16
 2

2
 5

 
6 

E
SS

 

E
SD

 
E

S
L

 



210 

V'> 
:::l 

..c 
6 
0 
OJ 
~ 

0 
V'> 
V'> 
Ql 
(.) 

0 c. e 
(.) 

~ 

Interface Components and Their Characteristics 

One-chip floppy disk controllers generally provide the following functions: 

1. Track-to-track head stepping and status checking. 

2. Read and write control for single or multiple records. 

3. Full-track read and write capability. 

4. Soft-sector timing generation. 

5. Automatic sector searching. 

6. DMA disk data transfer capability. 

7. CRC error checking. 

The 6843. This controller is a good example of an FDC designed for use with 

a particular microprocessor-in this case, the 6800. Fifteen internal registers 

are built into this 40-pin controller chip. Twelve are programmer accessible, as 

Fig. 5-14 illustrates, and three are nonaccessible registers that perform serial­

to-parallel, parallel-to-serial, and data-clock pattern generation. Floppy disk 

status (error, interrupt, and capstan) can be monitored by reading the three 

appropriate registers. By using the three registers, track and sector address can 

also be monitored while the disk spins. 
The setup register is a user-programmable register that is meant to be 

initialized during power-up along with all the PIAs and ACIAs. The setup 

Bits 
+5 v 1716151413121 I o I 

RSO 
File inoperable Data out reg. (write) 

Index 
RS1 Track zero Data in reg. (read) 

RS2 
Write protect 

Set-up (write) 
cs Ready 

Ql 
> 

RW Step :§ I Current track address ( R/W) 

E F I reset -;,; 
Head direction Command (write) 

DO-DB Head load 
:.0 
> 

IRQ Write gate 0.. General count (write) 
0.. 

Reset Low current 0 
;:;::: Search track address 

Clock Write data 0 
1-

Bus direction Data clock Capstan status (read) 

DMA end 
Read data 
VFO control I Error status (read) 

DMA req. 

DMA ackno. I Sector address (write) I 
11 nterrupt status ( R) I 

-=- jCRC CTRLj 

(a) (b) 

Figure 5-14 The 6843 floppy disk controller. (a) Floppy disk control lines. (b) 

Programmer's view of 6843 registers. (Courtesy Motorola Semiconductor Products, 

Phoenix, Arizona.) 

I 



Interface Components and Their Characteristics 211 

information includes the seek time and the settling time the FDC will produce. 
The values used are dependent on the model of disk drive being controlled. 

The command register has one bit allocated to specify DMA or PIO disk 
data transfers, and the remaining bits are set aside for disk control commands. 
The 6843 has a set of macro commands that perform complex disk operations 
that would normally require extensive software. These commands include 
track seeks, single sector reads and writes, CRC reads, multiple-sector reads 
and writes, and free-format reads and writes. The general count register pro­
vides track number and sector count values for the macro commands. The data 
in and data out registers are used in PIO transfers to read and write to the disk. 

The uPD372. The NEC uPD372 is a floppy disk controller designed to work 
with the 8080 microprocessor. This FDC is IBM 3740 format-compatible and 
provides programmable step-pulse and stepping rate, CRC generation, and a 
programmable data-transfer rate. The 372 can control up to four disks simulta­
neously. 

One-Chip Cassette Controllers 

The, NEC uPD371 is an interface chip designed to mate directly with the 8080 
bus to control two digital cassette transports. The chip performs all the parallel­
to-serial conversion as well as the phase-encoded data generation. Like the 
floppy disk controllers, the 371 performs cyclic-redundancy error checking. 

CRT Controllers 

The process of putting characters and graphics onto a cathode-ray tube (CRT) 
screen is really quite simple, but it involves considerable circuitry. Horizontal 
and vertical counters, character generators, and refresh memory, as well as an 
interface to the microcomputer or mainframe are needed. To understand the 
function of the CRT controller, it is first necessary to understand the basics of 
CRT raster-scan display. 

A standard TV monitor-or even the standard home television set, for that 
matter- "draws" an image on a phosphor-coated screen by sweeping an elec­
tron beam across it. When struck by the beam, the phosphor emits light. By 
modulating the intensity of the beam, a selectively dotted or dashed line is 
drawn. TQ form an entire TV picture, a monitor starts its electron beam in the 
upper left corner of the screen and scans 262 horizontal lines across the screen 
starting from the top, going down. The beam sweeping is caused by oscillator­
controlled electromagnetic or electrostatic deflection. 

The 262 lines scanned on the first frame are not quite above one another. 
There are black (nonscanned) lines between them. The electron beam, there­
fore, proceeds to rescan the screen, filling in the spaces. This second frame is 
called the interlaced frame. 



212 Interface Components and Their Characteristics 

It is important to remember the following facts about raster scan when 

working with CRT display generators: 

1. Each 262-line frame takes 1/60 second to scan. 

2. A full interlaced frame of 525 lines hikes 1/30 second and consists of 

two 262-line frames. 

3. The electron beam must move back to the left of the screen when a 

line is done, and back to the top when a frame is finished. These 

actions are called horizontal and vertical retrace, respectively. 

4. A horizontal line is 64 microseconds wide, of which about 50 show 

up on the screen (some is lost off the screen and on retrace). 

5. Only about 240 lines of the 262 appear on the screen (some are lost 

off the screen). 

A video waveform must be fed into a TV monitor to provide the beam­

sweep timing. An NTSC standard for the voltage levels and timing require­

ments required at the monitor's video input is shown in Fig. 5-15. 

An image can be put onto the screen using a device that scans out frames at 

exactly the same rate as the monitor. This device must use a photodetector to 

detect and modulate a video signal, which in tum is sent to the monitor. Image 

orthicons and vidicon tubes are such devices and are commonly used in TV 

cameras. 
Another way of putting an image onto a screen is to use a circuit that scans 

out frames at exactly the same rate as the monitor and uses a long stream of 

serial bits read out of a memory to modulate the scanning beam. By simply 

letting 1 equal a white level and 0 equal a black level (see the waveform 

standard of Fig. 5-15), any desired black and white (or bilevel) pattern can be 

put onto the screen. The process just described results in a large grid of points 

or pixels (picture elements)-commonly called a raster-scan bit map. 

It is easy to visualize how bits on the screen could be turned on and off to 

create graphics patterns and alphanumeric symbols, but a few quick arithmetic 

calculations show that this is a very expensive way to generate an image. First, 

to generate a 525 vertical (one for each scanned line) by 525 horizontal (to make 

it a square) bit map requires 275,625 bits of memory. To fit the 525 bits across 

the 50~-ts portion of the 64~-ts line requires that bits be accessed at a rate of 95 

ns per bit. 
Paralleling banks of slow memory, simultaneously reading many bits, and 

shifting bits out through a high-speed shift register decreases the 95 ns memory 

access requirement, but the need for a large memory still exists. In graphics 

systems in which any random pattern can be put onto a screen, users must live 

with this large memory requirement. In a data-terminal application (which is 

synonymous with "most applications"), a form of data corrwression can be 

used to save on the amount of display memory used. 



~
 

.....
 

w
 

tj +-'- CI
J 

0 
Ci

i 
>

 
C

::
N

 

S
yn

c 
le

ve
l 

B
la

ck
 le

ve
l 

G
re

y 

W
h

ite
 l
e

v
e

l-
-
-

-
-

S
yn

c 
le

ve
l 

~L
aQ
_k
 l

ev
el

 

I H
 =

 6
4

 J
l.S

ec
 
I H

 =
 6

4
 J

l.S
ec

 
I H

 =
 6

4
 J

l.S
ec

 I 
'H

o
ri

zo
n

ta
l 

1 

' 
H

o
ri

zo
n

ta
l 

1 

's
ca

n 
lin

e
 3

 
1 

sc
an

 l
in

e 
1 

sc
an

 l
in

e 
2 

d
ig

it
a

l 
(a

na
fo

g 
da

ta
 

d
a

ta
-w

h
it

e
 

w
it

h
 g

re
y 

an
d 

b
la

ck
 

sh
ad

es
) 

.5
 H

 

H
 

(a
) 

B
o

tt
o

m
 o

f 
sc

re
en

 

I 
6

4
 J

1S
ec

 
I 

's
ca

n 
lin

e
 2

4
9

 I 

V
e

rt
ic

a
l 

re
tr

ac
e 

a
ct

io
n

 

I 
6

4
 J

l.S
ec

 
1 

H
o

ri
z
o

n
ta

i I 
sc

an
 l

in
e 

1 H
o

ri
zo

n
ta

l 
sy

nc
 p

ul
se

s 

I· 
3H~

192
~se

c 
·I· 

3H~
192

~se
c 

·I· 
3H~1

92~s
ec 

·I 
E

q
u

a
liz

in
g

 
V

e
rt

ic
a

l 
sy

nc
 p

ul
se

 
E

q
u

a
liz

in
g

 
pu

ls
es

 
in

te
rv

al
 

pu
ls

e 
in

te
rv

a
l 

L
in

e
 5

 
L

in
e

 2
4

9
 

(b
) 

F
ig

ur
e 

5-
15

 
B

la
ck

-a
nd

-w
hi

te
 s

ta
nd

ar
d 

te
le

vi
si

on
 t

im
in

g.
 (

a)
 2

50
 v

is
ib

le
 h

or
iz

on
ta

l 
li

ne
 s

w
ee

p 
fo

rm
at

. 
(b

) 
V

er
tic

al
 r

et
ra

ce
 f

or
m

at
. 



214 Interface Components and Their Characteristics 

Characters on CRTs are typically constructed on 5 x 7- or 7 x 9-bit pieces 

of the bit map. Each character therefore takes up 35 or 63 bits of the bit map. 

When you consider that a 1-bit wide space is left on the top and right of each 

character, these figures increase to 48 and 80 bits. Because 64 characters (or 

128 if a full character set is used) are all that are needed for a terminal, a 6- or 

7-bit code is all that is needed to specify what is needed to fill the 48 or 80 bits of 

the bit map. This is about a 10:1 savings over specifying each of the 48 or 80 

bits. Something to convert the 6- or 7-bit code to the 48- or 80-bit character is 

needed within the CRT generator, however. The part that performs this func­

tion is a character generator ROM. 

Putting a typical80-character-wide by 24-line display on a CRT is a matter 

of having an 80 x 24 x 7 bit memory (approximately 1920 8-bit bytes) that is 1 

accessible to the microcomputer, and a screen display controller. In this case 

the CRT controller simply reads out a character and sends it to the character 

generator ROM, which in turn uses a shift register to serially send it out to the 

screen as the beam moves from left to right. On the horizontal scan, 80 charac­

ters must be read in about 50 /.LS, which works out to one byte every 626 ns. 

This read rate is easily accomplished. Because each character is more than one 

scan line high, each character must be repeatedly read for 7 or 9 scan lines 

before going on to the next row of characters. 
The hardware needed to perform the CRT control operations includes: 

1. A horizontal character counter to keep track of the character col-

umn. 

2. A vertical counter to keep track of the scan-line row. 

3. A high-speed shift register to shift data onto the screen. 

4. A memory for the 1920 characters. 

5. A video generator to mix the serially shifted data with sync signals 

that generate the NTSC waveform of Fig. 5-15. 

6. Interface circuits to allow a microcomputer to get into the character 

memory and modify it when it isn't being used by the scanning 

process (typically during retrace time or on an interleaved basis, if 

the memory is fast enough). 

7. A character generator ROM. 

The AMI68047 is a single-chip CRT controller that contains all of these 

parts but requires external display memory. A number of desirable additional 

features are also incorporated. Some of the features include timing and control 

circuitry; address buffers; an internal 64-character, 5 x 7-dot, ASCII-encoded 

alphanumeric character generator; and a color generation system. 

In a typical application, a system would consist of the CRT generator chip, 

a 6800-type microprocessor, a 1K- by 10-bit display memory, an external3.58 

MHz clock for timing, and a few additional interface gates. With such a system, 



Interface Components and Their Characteristics 
215 

the user can generate normal or inverted characters using the internal character 
generator ROM. Two "semigraphic" display modes allow the user to display 
combined alphanumerics and graphics using the 8 bits of the display word to 
form a small dot matrix rather than sending them to a ROM. These graphic 
modes can be switched on or off for each display line scanned. 

With larger external memories the 68047 can operate in 8 full-graphic 
modes. A low-resolution 128 x 192 pixel display with 4 colors per element, or a 
high-resolution 256 x 192 two-color display can be generated. A 6K- by 8-bit memory is required for these modes. Versatile alphanumeric and graphic field 
capabilities are possible using the 68047, because the device can switch be­
tween any of the display modes every 12 lines. 

Another interesting feature is the chip's ability to produce a screen border 
in all the graphic modes. A border makes graphic images look much more impressive and complex. 

The 68047 is oriented towards graphics as well as alphanumerics, but most 
CRT controllers (including the Motorola 6845 and Intel 8275) are designed 
mainly for character generation within a data terminal. These chips replace the 
complex graphic control functions with powerful cursor control capabilities (auto-feeding, scrolling, blinking of cursor, and the like). Other valuable fea­
tures of the 6845 are its programmable character generator and light-pen con­
trol registers. 

Other Controllers. A number of specialized complex controllers that inter­
face directly to microcomputer buses are available. The 6854 advanced data­
link controller (ADLC) provides complex communication formatting to meet 
Advanced Data Communication Control Procedures (ADCCP), high-level data link control (HLDLC), and synchronous data link control (SDLC). Primary 
and secondary data communications stations can be handled in stand-alone, 
loop, and polling configurations. 

Another specialized microprocessor interface is the 68488 chip. This device 
is designed to interface the standard IEEE 488 instrument-and-microcomputer 
bus to the 6800 bus structure. This chip is useful for moving data to and from instrument interfaces designed around the 6800 microprocessor. This chip 
greatly reduces the amount of discrete circuitry needed to meet the IEEE 488 
bus protocol. 

MONOLITHIC ARITHMETIC 
PROCESSING UNITS 

Real-time processing is the act of processing data as it arrives, as opposed to storing it, and processing it at a leisurely pace. Real-time data processing presents a problem for most microprocessors, especially if complex arithmetic operations are involved. Multiplication and division naturally slow most micro­processors, because few have hardware multiply and divide instructions (the 



216 Interface Components and Their Characteristics 

new generation of microprocessors is changing this). At least 16 bits of data are 

used in any serious arithmetic processing, so double-precision mathematics 

must be performed on 8-bit microprocessors, further hindering pr~cessor per­

formance. In many applications involving wide ranges of numbers, floating­

point arithmetic must be used, reducing performance even more. 

A number of approaches can be taken to solve the computational 

throughput problem. Multiple microprocessors are one solution, of course, but 

dividing a software task between many processors is a very difficult task, 

especially if a compiler or interpreter must write the machine code. 

A more reasonable approach to this problem is the use of an external 

arithmetic processing unit dedicated to performing floating-point or double­

precision arithmetic at a very high rate. Such a processor can be built out of 

discrete components, or one of the new monolithic processing units can be 

interfaced directly to a microcomputer bus. We will look at two such units. 

The AM9511 APU 

The AM9511 arithmetic processing unit (APU), built by Advanced Micro 

Devices, is designed to increase the mathematical capabilities of microcompu­

ters as well as large systems. While the 9511 's repertoire of functions resembles 

that of a powerful scientific calculator, its internal circuitry and performance 

are a far cry from slow calculator chips. Fixed- and floating-point trigonomet­

ric, logarithmic, and power functions, as well as the four basic functions are 

provided. Figure 5-16 illustrates the 9511. 

The APU performs its functions by taking 8-bit bytes of data representing 

operands and pushing them onto the internal 8 x 16 operand stack. Operands 

may be 16- or 32-bit twos' complement binary numbers or floating-point nqpl­

bers with 24-bit mantissas and 8-bit exponents. Each operand, therefore, takes 

two or four 8-bit transfers from the microcomputer bus. Function commands 

are then sent to the command register and" the function is performed using the 

ALU, working registers, and the constant ROM (which contains essential log 

and trig constants). The result of the function is finally put back on the operand . 

stack and can be retrieved as a 2- or 4-byte answer by the microprocessor ' 

through the bus buffers. Alternatively, a DMA controller can interface the 9511 

to the bus, allowing arrays of data to be automatically processed. Figure 5-16 

shows the command word format and Table 5-1 lists the available commands. 

It is interesting to compare the processing throughputs of APUs to the 

inherent processing power of the latest high-performance microprocessors to 

see how the APU s fare. A single-precision multiply takes 92 clock cycles or 23 

JJ-S with a 4 MHz 9511 and 150 clock cycles of 30JJ-S with a 5 MHz 8086. The 8 

MHz 8086, however, only requires 19JJ-s. At any rate~ the new microprocessors 

are similar to the 9511 when it comes to single-precision multiplication and 

division. The 9511, however, can easily outrun the 8086 on 32-bit floating-point 

and advanced trig and power functions, because the 8086 would be forced to 

perform these tasks under software control. 



Interface Components and Their Characteristics 
217 

Microprocessor bus 

~~1~3~l~dil~ig! 
Control logic 

Signal Meaning 8 
cs Chip select (input) Command format 

jRjsjFj I I I I I RD Read (input) 
PAUSE Pause (output) '---:-v----' C/0 Command/data (input) 5-blt op code 

F = fixed/floating pt. WR Write (input) 
S = single/double precis. END End of execution (output) 
R = SVREO CLK Clock (input) 

RESET Reset (input) 
SVACK Service acknowledge (input) 
EACK End acknowledge (input) 
SVREQ Service request (output) 

Command word format 

I I \ I· ·I 
SV~EQ \ Fixed 5-bit operand code 
bit Single/ point 

double bit 
precision 

Figure 5-16 The AM 9511 arithmetic processing unit (APU). (Copyright © 1978 
Advanced Micro Devices, Inc. Reproduced with permission of copyright owner.) 

The TRW MPY-16AJ 

A 16- by 16-bit multiply in 23 JLS with the 9511 is certainly a vast improvement over the 150 JLS needed to petform multiplication on a simple 8-bit microproces­sor, but for many forms of processing that require vast amounts of multiplies, such as graphics, image, and signal processing, an even higher multiply rate is necessary. For these applications, high-speed monolithic multipliers such as TRW's MPY-16AJ can be used. 
The MPY-16AJ is a 16- by 16-bit one-chip multiplier (Fig. 5-17) that can generate a 32-bit product in 200 ns. The chip comes packaged in a 64-pin DIP with a large integral heatsink; it dissipates 8 W of power. Internally, the multi­plication is performed by emitter-follower logic that resembles ECL, but the device is TTL-compatible at the pins. 



T
ab

le
 5

-1
 

T
he

 C
om

m
an

ds
 a

nd
 T

im
in

g 
of

 t
h

e
 9

51
1 

A
P

U
 

C
om

m
an

d 
C

od
e 

C
om

m
an

d 
C

om
m

an
d 

D
e

sc
ri

p
tio

n
 (

1)
 

C
lo

ck
 C

yc
le

s 

7 
6 

5 
4 

3 
2 

1 
0 

M
ne

m
on

ic
 

(M
ax

.)
 

F
ix

ed
 P

oi
nt

 S
in

gl
e 

E
 P

re
ci

si
on

 

R
 

1 
1 

0 
1 

1 
0 

0 
S

A
D

D
 

A
dd

s 
T

O
S

 t
o 

N
O

S
. 

R
es

ul
t 

to
 N

O
S

. 
P

op
 S

ta
ck

 
17

 

R
 

1 
1 

0 
1 

1 
0 

1 
S

S
U

B
 

S
ub

tr
ac

ts
 T

O
S

 f
ro

m
 N

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

30
 

R
 

1 
1 

0 
1 

1 
1 

0 
S

M
U

L
 

M
ul

ti
pl

ie
s 

N
O

S
 b

y 
T

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

92
 

R
 

1 
1 

0 
1 

1 
1 

1 
S

D
IV

 
D

iv
id

es
 N

O
S

 b
y 

T
O

S
. 

R
es

ul
t 

to
 N

O
S

. 
P

op
 S

ta
ck

 
92

 

F
ix

ed
 P

oi
nt

 D
ou

bl
e 

P
re

ci
si

on
 

R
 

0 
1 

0 
1 

1 
0 

0 
D

A
D

D
 

A
dd

s 
T

O
S

to
 N

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

21
 

R
 

0 
1 

0 
1 

1 
0 

1 
D

S
U

B
 

S
ub

tr
ac

ts
 T

O
S

 f
ro

m
 N

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

38
 

R
 

0 
1 

0 
1 

1 
1 

0 
D

M
U

L
 

M
ul

ti
pl

ie
s 

N
O

S
 b

y
 T

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

20
8 

R
 

0 
1 

0 
1 

1 
1 

1 
D

D
IV

 
D

iv
id

es
 N

O
S

 b
y 

T
O

S
. 

R
es

ul
t 

to
 N

O
S

. 
P

op
 S

ta
ck

 
20

8 

F
lo

at
in

g 
P

oi
nt

 

N
 

R
 

0 
0 

1 
0 

.... 
0 

0 
0 

F
A

D
D

 
A

dd
s 

T
O

S
 t

o 
N

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

35
0 

co
 

R
 

0 
0 

1 
0 

0 
0 

1 
F

S
U

B
 

S
ub

tr
ac

ts
 T

O
S

 f
ro

m
 N

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

35
2 

R
 

0 
0 

1 
0 

0 
1 

0 
F

M
U

L
 

M
ul

ti
pl

ie
s 

N
O

S
 b

y 
T

O
S

. 
R

es
ul

t 
to

 N
O

S
. 

P
op

 S
ta

ck
 

16
8 

R
 

0 
0 

1 
0 

0 
1 

1 
F

D
IV

 
D

iv
id

es
 N

O
S

 b
y 

T
O

S
. 

R
es

ul
t 

to
 N

O
S

. 
P

op
 S

ta
ck

 
17

1 

D
er

iv
ed

 F
lo

at
in

g 
P

oi
nt

 F
un

ct
io

ns
 (

2)
 

R
 

0 
0 

0 
0 

0 
0 

1 
S

Q
R

T
 

S
qu

ar
e 

R
oo

t 
o

fT
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
80

0 

R
 

0 
0 

0 
0 

0 
1 

0 
S

IN
 

S
in

e 
o

f T
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
44

64
 

R
 

0 
0 

0 
0 

0 
1 

1 
co

s 
C

os
in

e 
o

fT
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
41

18
 

R
 

0 
0 

0 
0 

1 
0 

0 
T

A
N

 
T

an
ge

nt
 o

f T
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
57

54
 

R
 

0 
0 

0 
0 

1 
0 

1 
A

S
IN

 
In

ve
rs

e 
S

in
e 

o
fT

O
S

. 
R

es
ul

t 
in

 T
O

S
. 

76
68

 

R
 

0 
0 

0 
0 

1 
1 

0 
A

C
O

S
 

In
ve

rs
e 

C
os

in
e 

o
f T

O
S

. 
R

es
ul

t 
in

 T
O

S
. 

77
34

 

R
 

0 
0 

0 
0 

1 
1 

1 
A

T
A

N
 

In
ve

rs
e 

T
an

ge
nt

 o
f T

O
S

. 
R

es
ul

t 
in

 T
O

S
. 

60
06

 

R
 

0 
0 

0 
1 

0 
0 

0 
L

O
G

 
C

om
m

on
 L

og
ar

it
hm

 (
ba

se
 1

0)
 o

f T
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
44

90
 

R
 

0 
0 

0 
1 

0 
0 

1 
L

N
 

N
at

ur
al

 L
og

ar
it

hm
 (

ba
se

 e
) 

o
fT

O
S

. 
R

es
ul

t 
in

 T
O

S
. 

44
78

 

R
 

0 
0 

0 
1 

0 
1 

0 
E

X
P

 
E

xp
on

en
ti

al
 (e

x)
 o

fT
O

S
. 

R
es

ul
t 

in
 T

O
S

. 
46

16
 

R
 

0 
0 

0 
1 

0 
1 

1 
P

W
R

 
N

O
S

 r
ai

se
d 

to
 t

he
 p

o
w

er
 in

 T
O

S
. 

R
es

ul
t 

in
 N

O
S

. 
P

op
 S

ta
ck

. 
92

92
 



D
at

a 
M

an
ip

ul
at

io
n 

C
om

m
an

ds
 (

3)
 

R
 

0 
0 

0 
0 

0 
0 

0 
N

O
P

 
N

o 
O

pe
ra

ti
on

. 
4 

R
 

0 
0 

1 
1 

1 
1 

1 
F

IX
S

 
C

on
ve

rt
s 

T
O

S
 f

ro
m

 f
lo

at
in

g 
po

in
t 

to
 s

in
gl

e 
pr

ec
is

io
n 

fi
xe

d 
po

in
t 

fo
rm

at
. 

21
6 

R
 

0 
0 

1 
1 

1 
1 

0 
F

IX
D

 
C

on
ve

rt
s 

T
O

S
 f

ro
m

 f
lo

at
in

g 
po

in
t 

to
 d

ou
bl

e 
pr

ec
is

io
n 

fi
xe

d 
po

in
t 

fo
rm

at
. 

34
6 

R
 

0 
0 

1 
1 

1 
0 

1 
F

L
T

S
 

C
on

ve
rt

s 
T

O
S

 f
ro

m
 s

in
gl

e 
pr

ec
is

io
n 

fi
xe

d 
po

in
t 

to
 f

lo
at

in
g 

po
in

t 
fo

rm
at

. 
18

6 
R

 
0 

0 
1 

1 
1 

0 
0 

F
L

T
D

 
C

on
ve

rt
s 

T
O

S
 f

ro
m

 d
ou

bl
e 

pe
rc

is
io

n 
fi

xe
d 

po
in

t 
to

 f
lo

at
in

g 
po

in
t 

fo
rm

at
. 

37
8 

R
 

1 
1 

1 
0 

1 
0 

0 
C

H
S

S
 

C
ha

ng
es

 s
ig

n 
o

f s
in

gl
e 

pr
ec

is
io

n 
fi

xe
d 

po
in

t o
pe

ra
nd

 o
n 

T
O

S
. 

26
 

R
 

0 
1 

1 
0 

1 
0 

0 
C

H
S

D
 

C
ha

ng
es

 
si

gn
 o

f 
do

ub
le

 p
re

ci
si

on
 f

ix
ed

 p
oi

nt
 o

pe
ra

nd
 o

n 
T

O
S

. 
34

 
R

 
0 

0 
1 

0 
1 

0 
1 

C
H

S
F

 
C

ha
ng

es
 s

ig
n 

o
f f

lo
at

in
g 

po
in

t 
op

er
an

d 
on

 T
O

S
. 

16
 

R
 

1 
1 

1 
0 

1 
1 

1 
P

T
O

S
 

P
us

h 
si

ng
le

 p
re

ci
si

on
 f

ix
ed

 p
oi

nt
 o

pe
ra

nd
 o

n 
T

O
S

to
 N

O
S

. 
16

 
R

 
0 

1 
1 

0 
1 

1 
1 

P
T

O
D

 
P

us
h 

do
ub

le
 p

re
ci

si
on

 f
ix

ed
 p

oi
nt

 o
pe

ra
nd

 o
n 

T
O

S
 t

o 
N

O
S

. 
20

 
R

 
0 

0 
1 

0 
1 

1 
1 

P
T

O
F

 
P

us
h 

fl
oa

ti
ng

 p
oi

nt
 o

pe
ra

nd
 o

n 
T

O
S

 t
o 

N
O

S
. 

20
 

R
 

1 
1 

1 
1 

0 
0 

0 
P

O
P

S
 

P
op

 s
in

gl
e 

pr
ec

is
io

n 
fi

xe
d 

po
in

t 
op

er
an

d 
fr

om
 T

O
S

. 
N

O
S

 
N

 
be

co
m

es
 T

O
S

. 
10

 
.....

 
R

 
CD

 
0 

1 
1 

1 
0 

0 
0 

P
O

P
D

 
P

op
 d

ou
bl

e 
pr

ec
is

io
n 

fi
xe

d 
po

in
t 

op
er

an
d 

fr
om

 T
O

S
. 

N
O

S
 

be
co

m
es

 T
O

S
. 

12
 

R
 

0 
0 

1 
1 

0 
0 

0 
P

O
P

F
 

P
op

 f
lo

at
in

g 
po

in
t o

pe
ra

nd
 f

ro
m

 T
O

S
. 

N
O

S
 b

ec
om

es
 T

O
S

. 
12

 
R

 
1 

1 
1 

1 
0 

0 
1 

X
C

H
S

 
E

xc
ha

ng
e 

si
ng

le
 p

re
ci

si
on

 f
ix

ed
 p

oi
nt

 o
pe

ra
nd

s 
T

O
S

 a
nd

 
N

O
S

. 
18

 
R

 
0 

1 
1 

1 
0 

0 
1 

X
C

H
D

 
E

xc
ha

ng
e 

do
ub

le
 p

re
ci

si
on

 f
ix

ed
 p

oi
nt

 o
pe

ra
nd

s 
T

O
S

 a
nd

 
N

O
S

. 
26

 
R

 
0 

0 
1 

1 
0 

0 
1 

X
C

H
F

 
E

xc
ha

ng
e 

fl
oa

ti
ng

 p
oi

nt
 o

pe
ra

nd
s 

T
O

S
 a

nd
 N

O
S

. 
26

 
R

 
0 

0 
1 

1 
0 

1 
0 

P
U

P
I 

P
uc

h 
fl

oa
ti

ng
 p

oi
nt

 c
on

st
an

t 
" 

TI
" 

on
to

 T
O

S
. 

P
re

vi
ou

s 
T

O
S

 
be

co
m

es
 N

O
S·

. 
16

 

N
ot

e:
 N

O
S

=
 N

ex
t 

on
 S

ta
ck

 
T

O
S

 =
 T

op
 o

f 
S

ta
ck

 



220 Interface Components and Their Characteristics 

Register to register 
product calculation 
time: 200 ns max 

160 n.s typical 

16-bit MPYER/MCAND Inputs 

Asynchronous 
multiplier 

array 

32~bit product output 

Clock Y 

Figure 5-17 The TRW MPY16 AJ 16 x 16 200 ns multiplier. 

., 
+-' 
::I 
0. 

t-------t .S 

+-' 
a.> ::I 
> 0. 
·- +-' ., 
,_ ::I ::I 
Oo..c 

e 
+-' 
c: 
0 
u 

When interfacing chips such as this to a microprocessor, careful analysis 

must be done beforehand to determine if the vast multiplying power can suc­

cessfully be utilized by the microprocessor. Interfacing a 200 ns multiplier to a 

1 MHz 6800, for instance, would be overkill, because it takes at least 12 p,s just 

to move two operands to the multiplier under processor control. For faster 

processors such as the 8086 (8 MHz version), and for bipolar processors built 

from the TTL 2900 or ECL 10,000 series, the MPY-16AJ makes more sense. 

Both 8- and 12-bit versions of this 16-bit part are available; these are more 

appropriate for lower-performance processors. 

ANALOG-TO-DIGITAL CONVERTERS 

The process of taking analog signals from the real world, preprocessing them, 

converting them to digital data, and finally bringing thy resulting digital data 

into a computer's memory is called data acquisition. In this section we ex­

amine the principles and components involved in this process. 

Figure 5-18 illustrates an overall picture of a data acquisition system. Volt­

age levels, current flows, fluid flow, pressure, or some other physical parame­

ter is first converted to an electrical signal by a transducer. If the transducer 

doesn't already generate enough of a signal for the processing circuitry to work 

with, an amplifier is used to amplify the voltage level. An active filter removes 

unwanted high- and low-frequency signal components, and special conditioning 



Interface Components and Their Characteristics 221 

Digital 
representation 

Input waveform Amplified Filtered and Shaped Quantized Sample Output 

Physical 
event 

1 00001 
2 00010 
3 00011 
4 00100 
5 00101 
6 00100 
7 00011 
8 00010 
9 

AID converter 
control !--........,.., 

Microcomputer bus 

Figure 5-18 A microprocessor-based acquisition system. 

circuits are used as necessary for signal compression, multiplying, and 
squaring. The filtered signal is switched by an analog multiplexer and sent to a 
sample-and-hold circuit, itself an analog memory of a sort. The multiplexer 
switches between many analog signal sources, thereby reducing the need for 
repeated circuitry upstream. The sample-and-hold unit samples the voltage 
level of the input at a specific instant of time and holds it constant at its output 
so the analog-to-digital (A/D) conversion circuitry can sample a steady voltage 
level. The AID unit converts the stable voltage level to a digital value corre­
sponding to the input voltage. This data can be put through some interface parts 
(perhaps a PIA) and sent to a microprocessor. 

The microprocessor or discrete control circuitry must control the signal 
acquisition and processing circuits to insure that (1) the proper analog inputs 
are selected, (2) data is sampled at the proper time, and (3) the data is held long 
enough for the D/ A converter to make a valid conversion. 



Quantizing 

Quantizing is the process of dividing an analog input signal into a string of 

equally spaced discrete outputs, each of a constant amplitude. Binary codes 

can be generated for each of these levels, and the quantized waveform can be 

stored in a microcomputer memory. The sample-and-hold function performs 

the equally spaced sampling of an input signal, while the AID converter per­

forms the binary coding. Figure 5-18 illustrates the input, quantized, and coded 

waveforms. The quantized waveform differs slightly from the input waveform, 

because it is constructed as a series of discrete steps. The difference in the 

waveforms is the quantizing error. The degree of the error is dependent on the 

sampling resolution and the irregularity of the waveform. The duration of one 

sampling period is defined as Q, and the quantizing error is defined as the time 

between samples, as measured from the center of each sampling period. Quan-· 

tizing error can be reduced by reducing Q through faster sampling. 

The rate of sampling is limited to the rate at which samples can be con­

verted to output codes by the AID converter. The aperture time is the time it 

takes an AID converter to perform one conversion. The coding error intro­

duced by the AID is called the amplitude uncertainty. 

The questions asked most often in regard to choosing a data acquisition 

system are these: What amplitude resolution should the sampling be? How 

many bits should the AID converter generate? How fast should the sampling 

rate be? One guide often used in determining sampling rate is the theorem that 

states that an input signal with a highest frequency component of f can be 

recovered without distortion using a sampling frequency of 2f. A sampling rate 

of 2f or greater will therefore minimize the likelihood that analog information is 

being lost in the quantizing process. 

Sample-and-Hold Circuitry 

Sample-and-hold circuits are designed to accept an input voltage level at a 

precise instant of time and hold that voltage level at an output until the next 

sample is taken. A device capable of ''remembering'' a voltage is needed in 

such circuitry, and a capacitor has precisely this characteristic. 

A crude sample-and-h<;>ld circuit can be constructed using a capacitor and a 

switch, as Fig. 5-19(a) illustrates. When the switch is closed, the capacitor's 

voltage follows or tracks the input voltage. The moment the switch is opened, 

the tracking stops and the voltage level of the capacitor remains constant at the 

last switch-closed value. 
A capacitor and a switch cannot be connected directly to analog circuitry 

because of the capacitor's effect on the driving waveform, so a buffer must be 

used for isolation. The switch used to turn the sampling on and off must be a 

very low-leakage, electrically controlled unit such as a field-effect transistor to 

222 



Interface Components and Their Characteristics 

Output buffer 
amplifier 

Sample------------' J 
Low leakage 
"holding" capacitor 

(a) 

Integrating 
Sample ---------------, 

In 

Input buffer 
amplifier 

R Analog 
switch 

(b) 

-=-Output/integrator 
amplifier 

Figure 5-19 Common sample-and-hold circuits. (a) Simple switched capacitance. 
(b) Accurate operational integrator. 

223 

prevent current from leaking from the input buffer to the capacitor when the switch is open. 
Figure 5-19(a) depicts a common open-loop, fast sample-and-hold circuit. Figure 5-19(b) illustrates a very accurate and linear circuit that uses an opera­tional integrator (capacitive feedback amplifier) for the hold circuit. 
The five most important parameters of a sample-and-hold circuit are: 

1. Acquisition time (the time between start of sampling and stable 
output-analogous to digital propagation delay.) 

2. Aperture time (the time it takes for the sampling switch to fully 
open). 

3. Aperture uncertainty time (the variation characteristics of the aper­
ture time). 

4. Decay rate (the change in output voltage resulting from capacitor 
discharge per period of time). 

5. Feedthrough (the amount of input signal that manages to leak 
through to the output when in the hold mode). 



A/D Conversion Circuitry 

Converting an analog level to a digital signal is not a trivial process, and many 

methods of performing conversion are used. The method used is dependent on 

conversion speed and accuracy requirements. 

Servo. The simplest and cheapest form of converter is the counter or servo 

type shown in Fig. 5-20(a). A counter controls a DIA converter, which gener­

ates a rising voltage staircase as the counter increments from zero. A compara­

tor compares the input waveform to the generated waveform and indicates 

when a precise match in voltage exists. At that instant, data in the counter can 

be read to determine the input voltage level. Conversion rates are low with this 

type of AID converter due to the counting time needed to reach the desired 

voltage level. 

Dual-Slope Integrator. The dual-slope integrating AID converter is illustra­

ted in Fig. 5-20(b). An integrator first integrates the input signal over a constant 

time. A charge that is proportional to the input voltage builds up on the 

integrator's capacitor. The second stage of the conversion involves bleeding the 

charge off the capacitor (by integrating down to a negative reference) and 

determining how much charge was on the capacitor by how long the capacitor 

takes to discharge. A counter keeps track of the time, and the converted volt­

age is the product of the reference voltage and the ratio of discharge-to-charge 

time. Dual-slope AIDs are inexpensive and accurate. The accuracy feature 

makes them very desirable for digital panel meters, where they are used exten­

sively. 

Successive Approximation. The successive-approximation type of AID 

converter is commonly used and is noted for its ability to perform fast and 

accurate conversions. Conversions are performed by a trial-and-error process 

that starts with the most significant bit (MSB) of the converter's output word. 

The MSB is first turned on, and a Dl A converter generates a voltage corre­

sponding to the output word. If the input voltage is exceeded (as determined by 

a comparator), the bit is turned off. If it is not exceeded, it is left on. The next 

most significant bit is then processed in a similar manner. This process con­

tinues until the least significant bit of the converter is determined. The 

successive-approximation AID essentially ''homes in'' on the proper answer. 

Parallel Conversion. The parallel AID converter is the fastest and most 

expensive of all AID converters. In principle, its operation is simple. A sepa­

rate comparator is assigned to every possible voltage step in the converter's 

resolution. The comparators' references are set with a precision voltage divider 

network. All the comparators with references below the input voltage level will 

generate ls, and all comparators with higher references will generate Os. A 

224 



1
\)

 
1

\)
 

(J
1 

I I 
In

p
u

t 
i 

le
ve

l 
1 

vo
lta

g
e

 I I I \ " 
.....

 _
 

.....
 

.....
 

.....
.....

 , 
A

n
a

lo
g

 
~ 

in
p

u
t 

C
lo

ck
 

R
es

et
 

(s
am

pl
e)

 

',
,,

 .....
.....

. , 
.....

 , ' ' \
 \ 

T
i·

m
e

-
\ \ fl 

C
o

m
p

a
ra

to
r 

11
 

I 
I I I I I 

f D
ig

it
a

l 
llj,

 
1 

o
u

tp
u

t 

(a
) 

C
o

n
ve

rs
io

n
 

d
o

n
e

 

l
n
p
u
t
o
-
-
-
-
-
-
-
-
-
-
-
~
-
-
~
 

C
lo

ck
 

R
es

et
 

(s
am

pl
e)

 

(c
) 

T
im

e
 

l D
ig

it
a

l 
"
'
 

1 
f ou

tp
u

t 

T
o

o
 h

ig
h

 

C
o

n
ve

rs
io

n
 

d
o

n
e

 

C
a

p
a

ci
to

r 
ch

ar
ge

 

C
ha

rg
e 

st
or

ag
e,

../
· 

. 
/ 

ca
p

a
ci

to
r 

/ 
/ 

S
am

pl
e 

C
o

n
ve

rt
 t

im
e

 / 
--

--
-

In
p

u
t 
~
A
A
A
-
L
J
 

/
/
 ..... S

to
p

 c
o

u
n

te
r 

N
e

g
a

tiv
e

 
re

fe
re

n
ce

 
vo

lta
g

e
 

S
am

pl
e 

S
ta

rt
 c

o
u

n
t 

~
 

(b
) 

l D
ig

it
a

l 
, .......

. -, -
--
--
--
--
--
--
ii
~J
 o

u
tp

u
t 

S
to

p
 c

o
u

n
te

r 

C
o

n
ve

rs
io

n
 

d
o

n
e

 

-
C

o
m

p
a

ra
to

r 
4 

=
 o

n
 

In
p

u
t 
~
-

C
o

m
p

a
ra

to
r 

3 
=

o
ff

 
vo

lta
g

e
 

-
C

o
m

p
a

ra
to

r 
2 

=
 o

ff
 

-
C

o
m

p
a

ra
to

r 
1 

=
 o

ff
 

D
ig

it
a

l 
o

u
tp

u
t 

N
o

te
: 

n
o

 c
o

n
ve

rs
io

n
 d

o
n

e
; 

si
gn

al
 g

en
er

at
ed

 a
s 

on
e-

st
ep

; 
co

n
ve

rs
io

n
 i

s 
p

e
rf

o
rm

e
d

. 
(d

) 
F

ig
ur

e 
5-

20
 

R
ep

re
se

nt
at

iv
e 

an
al

og
-t

o-
di

gi
ta

l 
co

nv
er

si
on

 m
et

ho
ds

. 
(a

) 
C

ou
nt

er
 o

r 
se

rv
o.

 (
b)

 D
ua

l-
sl

op
e.

 (
c)

 S
uc

ce
ss

iv
e-

ap
pr

ox
im

at
io

n.
 (

d)
 P

ar
al

le
l.

 



226 Interface Components and Their Characteristics 

decoder then decodes the bit values and generates a binary output code. The 

problem with parallel ND converters is the number of comparators they re­

quire. As a rule, 2n comparators are needed; a simple 8-bit AID converter 

therefore requires 256 comparators. 

Selection Criteria. When choosing an AID converter, there are a few impor­

tant parameters to consider: 

1. Range (the voltage difference between the converter's minimum and 

maximum input voltage). 

2. Resolution (the size of the voltage steps). Resolution is expressed as 

the number of bits in the output code and the percentage of the range 

covered. A 10-bit ND is a 0.1% AID. 

3. Linearity (the maximum difference between the voltage steps). Ide­

ally, all voltage steps should be precisely the same size. 

4. Monotonicity (the property of having an increasing output for an 

increasing input over the converter's entire range). 

5. Missing codes (the property of a converter skipping a code due to 

nonlinearity). 

6. Quantizing error (the maximum voltage error due to the converter's 

noninfinite resolution). 

7. Relative accuracy (the full-scale error in output voltage for any two 

input voltages across the entire range). 

8. Absolute accuracy (the full-scale error in output voltage for full-scale 

input voltage). 

9. Offset error (the value output by the converter when a 0 V input is 

applied). 

DIGITAL-TO-ANALOG CONVERTERS 

Converting a digital word to a proportional analog value is a necessary task in 

counter and parallel types of AID converters, and is useful for digitally generat­

ing analog control signals as well. The D/ A converter performs this task. One 

common device used to turn a word into a voltage is a precision resistor 

network driven by electronic switches controlled by each bit in the input word. 

Each bit of the input word contributes a current proportional to its binary 

weight to a common line. Figure 5-21(a) shows the weighted-current-source 

Dl A converter. A final output amplifier with resistive feedback converts the 

current to a proportional voltage. This DIA conversion method is fast and 

accurate. 



Temperature 
compensated J 
base reference 
voltage 1 
generator 

I 
I 
I 
L 

r 

-~ 

MSB 

LSB 

Digital inputs 

MSB 

(a) 

R 

R 

R 

2R 

(b) 

4-bit digital input 
A 

~ 
LSB 

BR 

>--._-o Output 

Figure 5-21 Two common digital-to-analog conversion methods. (a) Weighted-current-
source D/ A. (b) R-2R network D/ A. 

227 

Switchable 



228 Interface Components and Their Characteristics 

Another D/A configuration is the R-2R network shown in Fig. 5-21(b). 

Again, the sum of currents from all the bits in the input word are fed to an 

amplifier and converted to a voltage. The MSB has a much greater effect on the 

amplifier because it is closest to it in the resistor ladder, while the LSB has the 

least effect of all. The values of R for series resistors and 2R for shunt resistors 

provide proper weighting for the binary system. 

The following features should be evaluated before purchasing a D/ A con­

verter: 

1. Resolution (the number of bits converted). 

2. Accuracy (typically measured as percentage error in voltage output). 

3. Settling time (the time it takes for the digital input to be converted to 

an analog output with the rated specification characteristics). 

4. Linearity (the maximum error in the conversion between adjacent 

input codes) 

5. Output range (the voltage difference between the maximum and 

minimum output voltage). 

6. Input coding (the binary or BCD format of input code). 

HIGH-POWER INTERFACE DEVICES 

The TTL logic gate (which can sink about 16 rnA) has been the largest current 

handling device discussed so far in this book. Turning on a 220 V, 50 A indus­

trial motor can hardly be handled by this gate-directly, that is. Additional 

amplifying or high-power switching is needed. There are many approaches to 

the power switching problem. Solutions range from the antiquated relay to the 

rapidly dominating VFET. 

Buffer-Interface Gates 

The next step from the standard 16 rnA TTL output gate is the buffer-interface 

gate. Buffer-interface gates come in the same packages and even pinouts as 

regular TTL gates such as the 7400, and they can be used in the same way as far 

as the inputs are concerned. The difference lies in the output driver's character­

istics. The voltage- and current-handling capabilities are three times as large in 

many cases. 
The 7438 is an example of an interface gate. This part looks exactly like a 

7400 quad NAND gate in function and pinout, but it has an open-collector driver 

instead of a totem-pole output. The 7438 can sink 48 rnA as opposed to the 

7400's 16 rnA. 



Interface Components and Their Characteristics 229 

Interface gates are useful in applications requiring high logic fan-outs or 
low-current peripheral drive currents (such as LED drive current). They are 
often used as drivers for even higher-power switching devices as well. 

MOS driver gates· fall into the interface gate category also. Many older 
memory IC designs brought high-capacitance MOS lines directly to the mem­
ory 1/0 pins, and it was up to the external circuitry to drive these fast-rise-time 
lines. Interface gates such as the Intel3207 A quad bipolar-to-M OS level shifter 
and driver provide MOS drive capability. The 3207 A is capable of driving 100 
rnA of current with a 200 pF capacitive load while maintaining a 45 ns rise time. 
The 3207 A has a totem-pole output that improves the rise characteristics. Gate 
output swings between 0 and 16 V. 

Power Transistors 

Discrete transistors designed to handle high current levels can be successfully 
used as peripheral control devices. By varying the transistor's base current, an 
amplified collector-to-emitter current can be variably controlled. 

When a transistor is used as a switching element, it is usually acting in an 
amplifying capacity: the output current is the input current multiplied by tran­
sistor gain. This means that a transistor must be driven with a fairly heavy drive 
current iflarge current outputs and low-gain transistors are used. Figure 5-22(a) 
shows the simplest form of discrete transistor interface: a gate driving a transis­
tor. 

The 2N2222 is a good example of an NPN transistor designed for high­
speed, medium-power switching and general-purpose amplifier applications. 
The 2N2222 can drive up to 800 rnA and has a breakdown voltage of 40 V. Up 
to 1.8 W can be dissipated if the transistor has an appropriate heatsink. At 500 
rnA and 10 V, the 2N2222 has a static forward-current transfer ratio (amplifica­
tion) of 30. At least 17 rnA of base current from the driving gate is needed to 
switch 500 rnA of load current, making the use of an interface gate desirable. 

It is important that the drive current to a switching transistor be high 
enough. If insufficient drive current is available, the transistor will limit the 
load current by dropping voltage across the transistor, thereby destroying it. In 
the normal2N2222 switching mode, the 1.8 W thermal dissipation is not consid­
ered too important because the transistor either has a high voltage with nearly 
no current across its emitter-collector path when off, or a high current (of 800 
rnA in this case) and only about 300 m V across the junction when on. 

The maximum power dissipation is 240 mW, but during the switching tran­
sition the transistor goes through a dangerous "burnout" zone. When the 
transistor is sinking only half the current while in the middle of its turn-on 
transition, it drops half the load voltage across the collector-emitter junction. 
The worst case for the 2N2222 is 40 Vat 400 rnA, or 16 watts. It is acceptable to 



Logic 
inputs 

Logic 
inputs 

(c) 

Back-EMF 
surpressor 
diode 

TTL gate 

+20 v 

(a) 

ac input 

.1 pF 

+20 v 

+5 v 

(e) 

+5 v 

Darlington transistor 

(b) 

+5 v 

MRD-300 
phototransistor -::-

(d) 

Logic 
inputs 

gate 

(f) 

Figure 5-22 Power switching circuits. (a) Simple transistor driver. (b) Darlington driver. 

(c) SCR driver. (d) Optically isolated SCR. (e) Reed relay. (f) VMOS driver. 

230 

+20 v 

Logic 
inputs 

V-MOS 
VN66AF 



Interface Components and Their Characteristics 
231 

swing switching transistors quickly through dangerous zones because it is the 
thermal effects, which take time to build up, that destroy in these areas; but if 
too low a current is used to drive the transistor, the transistor could get stuck on one of these zones and bum up. 

Darlington Power Devices 

There are three solutions to the drive current problems of regular switching transistors: more drive current, more stages of amplification, and higher tran­
sistor gains. The darlington power transistor is a device that combines the latter 
two advantages. The darlington power transistor is really two transistors in 
one, as Fig. 2-22(b) illustrates. This configuration results in a high input impe­
dance and a very high gain. 

The General Electric D40 series of power darlingtons is designed for use in 
IC interfaces, audio output stages, lamp-driver circuits, and relay substitutions. 
The D40K1 is an NPN darlington in a T0-202 package (power tab). The 
collector-emitter potential is rated at 30 V, the power at 10 W, and the mini­
mum gain is 10,000 (at 200 rnA). With a gain this high, even a CMOS circuit can 
control high-power switching: It takes only 20~-t A to switch 200 rnA! 

Thyristors 

Silicon controlled rectifiers are solid state devices that act as rectifiers when on and high-impedance circuits when off. They are three-terminal devices, with 
the anode corresponding to a transistor collector, the cathode to the emitter, 
and the 'gate to the base. Unlike transistors, SCRs are not designed to operate 
in the active region and so cannot be used as linear amplifiers. They are either 
on or off. 

It takes very little current to switch an SCR on. The ratio of load current to 
drive current (similar to a transistor's gain) is rarely less than 1000. A gate 
current of 50 rnA can switch 50 A or more. The SCR would seem to be the ideal 
switching element, but it has one important characteristic: once it is on, it will not tum off-even if the gate current is removed. This is due to the internal 
feedback characteristics of the device. The device will turn off, however, if 
load current is removed and then reapplied. 

Because of this characteristic, SCRs have found wide use in heavy-duty ac switching circuits. Alternating-current waveforms drop to zero every cycle, so 
turnoff is no problem. Because SCRs can only be on or off, the duty cycle of the ac waveform is typically varied to increase and decrease power going to a load if variable power is required. Figure 5-22(c) illustrates a simple SCR switching circuit. Because SCRs usually control large loads with large voltage 
swings, it is difficult and dangerous to connect an SCR switching circuit di­rectly to digital logic circuitry. Some form of isolation is necessary. Optical and inductive coupling are often used. 



232 Interface Components and Their Characteristics 

SCRs act as rectifiers when used with ac signals and thus permit only 

half-cycle current to pass through them. A related device-the triac-is bilat­

eral in character and permits anode.:...cathode conduction with either polarity. 

With triacs, the terms anode and cathode are virtually meaningless because, 

of the bidirectional character of the conducting electrodes; instead, these elec­

trodes are referred to as main terminal 1 and main terminal2. The triac may be 

thought of as a pair of SCRs connected in reverse parallel with the gates tied' 

together. A small current of either polarity gates the device on, but removal of 

gate voltage causes turnoff when used in ac applications. Like SCRs, triacs are 

used to switch large currents and for phase control of high-current resistive 

loads. 
SCRs and triacs can create a large amount of electrical interference when 

turning on a load. If the ac voltage is in the middle of either half-cycle of its 

waveform, a fast-rising current step will result when the SCR is turned on, 

generating a large amount of electrical interference. Zero-point switching cir­

cuits are designed to trigger an SCR or triac when the ac voltage is at the 

beginning of its cycle so that no large voltage steps result upon turnon. It is 

wise to use these circuits for noise-reduction purposes when using SCRs. Semi­

conductor power circuit handbooks, published by SCR makers such as Mo­

torola and RCA, contain these and many other useful power control circuits. 

Mechani<?al Relays 

Mechanical relays are used in conventional controls in whichlow-current tog­

gle switches must control large loads, and there is no reason why they cannot 

be digitally controlled as well. Over the past few years, many mechanical relays 

designed to be directly driven by logic circuitry have entered the market. 

Reed relays consisting of two magnetic reeds that contact one another 

when exposed to a magnetic field usually require very little control current. 

The Electronic Applications Company 1A6AH reed relay, for example, has a 

coil resistance of 380 ohms and can be driven by a 5 V input voltage. A 13 rnA 

drive current is all that is required to operate it. 

Contacts on reed relays can handle anywhere from 500 rnA to tens of 

amperes, depending on the model; but logic-compatible reed relays seldom 

handle more than an ampere. 
The biggest problem reed relays have is contact arcing. Because very 

minute spring force is used to separate the relay contacts (the torsional forces 

of the relay reeds), the small amount of arcing associated with a contact closure 

may be enough to weld the reeds together. A zener diode across the relay 

contacts as illustrated in Fig. 5-22(e) prevents arcing and avoids this situation. 

Conventional switch-and-coil relays are available in miniaturized form for 

digital circuits. The Teledyne T0-5 relay series is a good example of these 



Interface Components and Their Characteristics 233 

miniaturized relays. Like large relays, multiple-pole and latching versions are 
available. 

When interfacing mechanical relays to a microcomputer system, it is im­
portant to remember that these devices are mechanical and they take time to 
respond to an input signal. If a relay has to be on before another event occurs, a 
waiting loop of some sort must be programmed into the control program to 
allow for the mechanical contact closure and magnetic field buildup and col­
lapse. 

It is necessary to put a diode across the input coil of a relay to absorb the 
inductive back-emf voltage spike generated by the collapsing magnetic field 
when the relay is turned off. Unless there is a diode or some other protective 
circuit to attenuate this voltage spike, a breakdown of the driver transistor or 
gate can result. 

Solid-State Relays 

Solid-state relays are designed to be nearly direct, one-package replacements 
for conventional mechanical relays. To obtain the amplified switching charac­
teristics of a relay, triacs are usually used. Total input/output circuit isolation 
(another mechanical relay feature) is accomplished by photon coupling­
coupling the input to the output circuitry with an LEO and phototransistor. 
Appropriate input circuitry allows a user to turn the relay on by applying the 
proper input voltage; but unlike the mechanical relay, there is no inductive 
kickback because no inductive coil is used. 

The North American Philips 501 series solid-state relays are tiny modules 
with two input and two output terminals. Input control voltage is typically 5 V 
at 7 rnA. The outputs can control ac signals of 115 V with currents up to 2 A. 
Turnon time is 8 ms, and turnoff time is 32 ms (typical). These solid-state relay 
modules can be soldered directly to a board and require no heatsink, even at 
full-rated load. 

VFET Devices 

Field-effect transistors have always offered desirable switching characteristics, 
and MOS technologies are built around them; but it was not until the mid-1970s 
that these devices could handle even moderate power levels. With the advent 
of VMOS (a MOS device employing a V-shaped semiconductor channel), 
moderate- and even high-power PETs became available. Some of the VMOS' 
important features include high-frequency operation, low input current, and the 
ability to be turned off at will (as opposed to the SCR, which stays on). 

The primary advantages of VMOS from the interface standpoint is the 
control current requirements. Because PETs are charge-oriented devices, 



234 Interface Components and Their Characteristics 

drive current is only necessary to turn the FET on or off. Normal transistors 

are current-oriented and require a continuous drive current. VMOS power 

FETs require microamperes of input current (for control) versus milliamperes 

for standard bipolar transistors. VMOS devices, therefore, offer all the advan­

tages of the transistor and the SCR but few of the disadvantages of either. For 

this reason, VMOS devices are gaining wide popularity as interface and control 

elements. 
The Siliconix VN84GA is an example of one of the more recent VMOS 

power FETs. This device can dissipate 80 W at low frequencies and 50 W at 30 

MHz. Up to 12.5 A can be controlled. Figure 5-22(t) illustrates a VMOS motor 

control utilizing the VN66AF, a lower-power VMOS device. 

Servoamplifiers 

Often an analog drive voltage or current much higher than a D/ A converter's I 

output is required to drive a variable-voltage peripheral. None of the switching 

circuits so far described will perform the task, because more than on and off 

conditions are required. The de amplifier or servoamplifier is designed to fill 

this control circuit gap. 
Servoamplifiers are simply linear de amplifiers that accurately amplify an 

input voltage. Servoamplifiers are similar to audio amplifiers,·and can in fact be 

used as audio amplifiers, with one exception: There is no capacitive or induc­

tive coupling between amplifier stages. 

One-chip operational amplifiers driving high-power single-ended or 

complementary-output transistor stages are the most common types of ser­

voamplifiers. The VMOS transistor promises to become a desirable output 

stage component for servoamplifiers as well. 

Details concerning servoamplifier design can be found in semiconductor 

power circuit handbooks and in linear component handbooks published by 

semiconductor manufacturers. Motorola, RCA, and General Electric are big in 

the area of industrial control and have wide selections of circuit products. 

Analog Switches 

Digital waveforms can easily be switched using a multiplexer logic element. 

The digital multiplexer simply gates the appropriate select and data signals 

together and generates a digitally "perfect" output corresponding to the input 

channel. No data bits are lost because this is digital circuitry. Multiplexing 

analog signals, unfortunately, is not this easy. Noise and distortion can be 

introduced by the analog switching element, so efforts have been made to 

produce linear, low-distortion analog switches. 



Interface Components and Their Characteristics 

Top view 

D1 

D2 

Analog 
switch 
DG17S 

TTL-level 

Input 

ADC-EH881 
AID converter 

FET 
switching 
elements 

(b) 

} 

Digital 
output 
to PIA 

... -----------.....,.._} Switch control 
TTL drive from PIA from PIA 

(c) 

Figure 5-23 Siliconix DG 175 analog switch. (a) Package and function. (b) Block dia-
gram. (c) Typical application in AID input selector. 

235 

Vee 
S2 

D2 

D1 

S1 

One of the best analog switches is the mechanical relay. Analog signals 
from de to radio frequencies can pass through the contacts of a relay with 
virtually no noise or distortion. Low switching speeds and mechanical unre­
liability make relays undesirable in many analog switching applications. 

Solid-state analog switches are usually constructed around FET switching 
elements. The FET makes a good analog switch, because it has a very high 
impedance when off, and it can act as a very linear resistor when on. 

The Siliconix DG 175 is an example of an analog switch with a P-channel 
MOSFET output stage. This analog switch performs a single-pole, double­
throw, make-before-break switching function and has TTL-compatible control 
inputs that eliminate the need for complex MOS level interfacing. Figure 5-23 
illustrates the DG 175 and lists its characteristics. 



TRANSDUCERS 

A transducer is officially defined as a device that converts electrical energy to 

mechanical energy or mechanical to electrical energy. Transducers, with rela­

tion to microcomputers, are those devices that allow a system to sense and 

control events in the real world. 

Input Transducers 

The final output from all transducers is a voltage or current level. Interfacing a ' 

transducer to a microcomputer is simply a matter of amplifying the input signal 

with a preamplifier and either counting the resulting digital waveform (in the 

case of the switch) or converting the analog voltage level to a digital form with 

an A/D converter. It is often necessary to filter and limit the input waveform as 

well. Commercially available transducers specify exactly what sorts of outputs 

to expect and usually come with application notes that specify the proper filter 

components for their use. 

Motion-Sensing Transducers. The function of a motion transducer is to 

convert mechanical motion into an electrical signal, and there are four common 

means of accomplishing this task. 
Electromechanical switches can determine the rate of mechanical motion if 

set to toggle synchronously with the motion. The breaker points in an 

automobile's ignition system are a perfect example: A cam causes switch clo­

sure once every shaft rotation. An appropriate closure sensing and counter 

circuit can be used to count the number of switch closures in a given period of 

time, and the resulting value can be used by the microcomputer. 

Magnetic induction can be used in two ways to determine the rate of 

mechanical motion. A magnet rotating on a shaft causes current pulses to be 

gel).erated in a coil next to the shaft. The faster the shaft rotation, the higher the 

pulse rate. These pulses can be counted, just as the switch's closures were 

counted, or the pulses can be integrated with a capacitor to produce an analog 

voltage level that is proportional to the shaft rotation rate. In the second case, 

an A/D converter is necessary to convert the voltage level to a usable digital 

value. 
Magnetic induction coils sense the change in magnetic fields as a magnet 

moves by. When the motion is very slow, the magnet does not move by the 

induction coil quickly enough to generate a readable pulse. In such cases, 

Hall-effect devices are used to sense the magnetic field. Unlike coils that detect 

changes in field strength, Hall-effect devices are semiconductors that vary their 

conduction directly with magnetic field strength. Hall-effect devices find appli­

cation in slow-motion sensors as well as in keyboard switches. 

Another method of determining motion is the optical method. A slotted 

wheel on a rotating shaft can break a light beam that is detected by an optical 

236 



Interface Components and Their Characteristics 237 

sensor. This signal can be counted and the rotation rate measured. Two com­
mon motion sensors are the rotary encoder and the odometer. 

Pressure-Sensing Transducers. Capacitive sensors are often used to detect 
pressure. By sandwiching a layer of compressible dielectric material between 
two metal sheets, a capacitor is formed. Pressure applied to the capacitor 
moves the plates closer together, thereby changing the capacitance. The varia­
ble capacitance can then be fed to a circuit that converts capacitance to a 
voltage level. The voltage level can be sent to an ND converter, and finally to a 
microcomputer. 

Piezoelectric materials (materials that generate electricity when com­
pressed) are occasionally used for pressure sensors, especially when a device 
to detect changes in pressure (versus absolute level) is needed. 

Flow~Rate Transducers. Fluid flow rate can be measured by monitoring a 
pump or regulating device on a fluid line or by installing a flow-rate transducer 
directly into a line. 

Pumps usually deliver a constant volume of fluid on every stroke (if recip­
rocating) and on every rotation (if centrifugal). The rate may vary in the case 
of the centrifugal pump, depending on the viscosity of the fluid; but for one 
type of fluid, the rate remains relatively constant. By counting the number of 
pump strokes using a switch or magnetic transducer, or the number of rotations 
using a rotation transducer, a very accurate flow rate can be established. 

An alternative to the indirect pump approach is the inline flow transducer. 
This device usually consists of a turbine with a built-in magnet contained in a 
tube that splices into the line. Fluid flow causes the turbine to spin at a flow­
proportional rate. An external coil monitors the turbine's rotation. 

Smoke Detectors. There are three methods currently used to detect smoke: 
resistance changes in gas sensors, current changes due to smoke slowing the 
travel of alpha particles in an ionization chamber, and optical smoke sensing 
methods. Single components that perform these functions are available. The 
MCC 158 is an example of a commercial smoke sensor. The device is built 
around a gallium-arsenide infra-red emitter that works with a photodiode and 
PL amplifying circuitry to detect a 2% obstruction of light transmission. The 
sensor has built-in test and sampling circuitry that operates the sensor in a 
pulsed mode. The LED is pulsed once every 5 s with a 50 JLS pulse. This 
reduces the chance for false triggering and cuts down on power drain in battery­
powered applications. 

Output Transducers 

Output transducers require either a switched current to actuate a stepping 
motor or solenoid or a precisely controlled current or voltage to drive a motor 
or other voltage-dependent device. A simple power-switching circuit that uti-



"' ::I 
.Cl 

£ 
"' Q) 

g 
c_ 
0 
u 
~ 

238 Interface Components and Their Characteristics 

lizes an SCR, transistor, or VMOS device is all that is required in the switching 

case. For precise voltage control, a D/ A converter and servoamplifier are re­

quired. 

Solenoids. A solenoid is a transducer that turns current into linear motion. 

Solenoids consist of one or more electromagnets that move a metal plunger. 

The plunger is sometimes returned to its original position after an excursion 

with a spring or permanent magnet. 
The motion created by a solenoid can be used as is, or it can be used to 

control a switch or hydraulic valve to actuate an even larger mechanical mo­

tion. 

Stepping Motors. In many applications, a precisely controllable rotating 

source is desirable. Stepping motors work well in these applications. A step-
1 

ping motor consists of a gear-like inner rotor surrounded by three or more 

gear-like stators, as Fig. 5-24 illustrates. The rotor tends to align itself with the 

stator, which is actuated with an electromagnet due to magnetic induction. By 

switching current sequentially between the stator magnets, the rotor can be 

stepped in a rotary or back-and-forth motion. 

Controlling a stepping motor is simply a matter of sending current to the 

appropriate stator magnets at the proper times. 

Servomechanisms. A servomechanism or servo is a device that converts 

electrical input signals to controllable linear or rotary motion. Servos consist of 

V+ 
VMOS-FET 
VN66AF 

Stator 1 Stator 2 Stator 3 to energized 
stator 1 

Figure 5-24 Microprocessor/VMOS/stepping-motor system. 



Interlace Components and Their Characteristics 239 

an electrically controlled mechanical motion source (a geared motor, a stepping 
motor, or a solenoid-controlled hydraulic or vacuum piston) and a motion­
sensing transducer to "report" movement information to the controlling logic. 
Precise positioning is thus possible using feedback to judge position. , 

OPTICAL DISPLAYS AND SENSORS 

It used to be that you had a choice between an incandescent or a neon bulb for 
an indicator and a phototube or cadmium-sulfide cell for an optical sensor. If 
you could afford the luxury of a digital readout, the neon-filled Nixie tube was 
the obvious choice. Today, new display devices such as light-emitting diodes 
and liquid-crystal displays, and new sensors such as photodiodes and photo­
transistors are available. Updated versions of the older devices, manufactured 
by companies trying to keep competitive with the new technologies, are also 
available and are actually the best choice in many applications. 

Light-Emitting Diodes 

For status indicators, pilot lamps, and multisegment digital displays, the LEDs 
are by far the most common device in use today. These solid-state light sources 
provide good visibility, do not burn out as incandescent lamps do, and require 
very low current and voltage levels for light generation. One of the LED's 
major advantages with regard to microcomputer interface components and 
digital logic in general is its ability to be driven directly by low-voltage and 
low-curent signals. 

The discrete LED comes in many package forms and four major visible 
colors (red, orange, yellow, and green). Infrared LEDs are also available for 
use as invisible light sources. To understand the characteristics of the LED it is 
necessary to look at the physics behind it. 

In most light sources, photons are generated by electrons falling to a lower 
energy state. It was discovered that certain semiconductor materials generate 
light when the electrons fall from the conduction to the valence energy bands at 
a diode junction. The physical properties of the semiconductor material deter­
mine how large an energy drop exists between bands, thus establishing the 
color of the LED. Unlike incandescent lamps, in which energy drops of many 
levels are generated thermally, LEDs only drop their energy at certain levels. 
Light-emitting diodes, theref0re, generate light in very narrow color ranges and 
can in fact generate coherent (essentially monochromatic) laserlight. 

Materials that generate photons in the infrared and a portion of the visible 
light region have been found. Gallium-arsenide phosphide is a good red emitter; 
gallium-arsenide phosphite on gallium phosphide is a good yellow emitter, and 
gallium phosphide is a fairly good green emitter. There are no blue or violet 



240 Interface Components and Their Characteristics 

Characteristic 

Axiallurninous intensity 
Peak Wavelength 
Speed of response 
Forward voltage 
Reverse breakdown 

Table 5-2 Typical LED Characteristics 

Values 

High-Efficiency Red Yellow 
(Gallium-arsenide (Gallium-arsenide 
phosphide on phosphide on 
gallium phosphide) gallium phosphide) 

11.0@ 10 rnA 
635 

90 
2.2 
5.0 

11.0@ 10 rnA 
583 
90 

2.2 
5.0 

Green 
(Gallium 
phosphide) 

Units 

11.0@ 20 rnA Mcd 
565 nrn 
200 ns 

2.4 v 
5.0 v 

emitters commonly available because semiconductor materials that exhibit an 

energy transition in the blue range are rare. 
Table 5-2 lists the characteristics of a typical LED. The forward voltage 

drop across the LED ranges from 1.6 to 3 V, depending on the LED's color. 
The axial luminous intensities shown in the table reflect a characteristic 

that is true of all LEDs: green LEDs draw much inore power for the same light 

intensity output than red or yellow devices do. In order to output 11 millicafide­

las ( 11 mcd), the green LED requires 20 rnA at 2.4 V ( 48 m W) versus 10 rnA at 

2.2 V (22 mW) for the red and yellow LEDs. 
The speed of response of the LEDs shown is 90 ns for the red and yellow 

LEDs and 200 ns for the green LED. Because LEDs are semiconductor devices 

and do not rely on thermal effects to generate light, they can be switched on 

and off very quickly. This characteristic makes LEDs ideal for light modulation 

and communication applications. Some LEDs are capable of operating in the 

hundreds of megahertz (1 to 5 ns range). 
Interfacing an LED to a digital system is a trivial matter. A gate capable of 

providing the LED with its required voltage and current levels can be used. 

Because an LED is a diode, it will always drop its forward voltage across the 

diode junction, and it draws as much current as is supplied to it. A current­

limiting resistor is therefore required to put a ceiling on this value. 
Figure 5-25 illustrates a few common LED driving circuits. In Figure 

5-25(b), an LED with a built-in resistor (the Hewlett-Packard 5082) is used, 

thereby eliminating the need for a separate current-limiting resistor. Advanced 
LEDs with built-in constant-current sources (actually small integrated circuits) 

are becoming commonplace. These LEDs will provide a constant light output 

for any given input voltage as long as it is above a minimum threshold voltage. 
Figure 5-25(e) illustrates an ingenious device: the back-to-hack red-green 

LED. This basically consists of red and green LEDs mounted in a common 

package, connected with opposite polarities. When current flows through the 

diode in one direction it outputs red. In the other direction it outputs green. 
There's only one problem with most red-green LEDs: Because green 

LEDs are much less efficient than red ones, a much higher current is required 

for green displays. This makes interfacing difficult. 



Interface Components and Their Characteristics 241 

Logic 
input 

+5 v 

1 =red on 
0 =red off 

74126 buffer 

+5 v +5 v 
20 rnA + Red t 10 rnA 

115 n, 250 n, 

Note: 250 .n resistor limits 
current to 10 rnA. 

(b) 
Green 

Note: If red and green are 
both set to be on, neither 
LED will light. 

Vl 
:::::J 

.0 ,_ 
2:1 
:::::J 
c. 
E 
0 
(.) e 
.~ 
::2: 

(a) 
+5 v 

> 
+-' 
'iii 
c: 

Peripheral +5 V 
interface 1 0 kQ 

2:1 
.!::: 
Vl 

adapter :::::J 
0 
·c 
.E 
..=! 
Q) 

> ·;::; 
('(I 

a:; 
a: 

(d) 

3.0 

2.5 

2.0 

1.5 

1.0 

.5 

(c) 

10 20 30 40 50 
Foreward current- rnA 

(e) 

Figure 5-25 LED driving methods and characteristics. (a) Standard LED with TTL 
driver. (b) LED with built-in resistor and TTL driver. (c) Red/green LED with dual 
current drive. (d) MOS device driving an LED. (e) Typical LED intensity curve. 

If not enough current is available to drive an LED in a given application, a 
high-power driver can be used. If the drive current is marginal and less light is 
acceptable, good results can be obtained by simply lowering the drive current. 
As· Figure 5-25(e) illustrates, the output of an LED is very linear with current 
variations. 

LED Arrays 
( 

Arrays of LEDs can be used to represent alphanumeric characters. There are 
many preassembled LED arrays available, ranging from the simple ?-segment 
types found .in calculators and digital clocks to 5 x 7 and higher dot matrix 
units. Figure 5-26 illustrates two common configurations. 

Interfacing LED arrays is, in theory, no different from interfacing a lot of 
single LEDs. Individual segments can be driven with one gate apiece. Special 
decoder-driver circuits such as the 7447 TTL IC are designed to take a binary­
coded-decimal code and drive appropriate array segments to indicate the input 



dp 

242 

/~/ 
)~I 

Ripple blanking 
input 

4-bit { 
BCD 
input 
code 

Lamp test { 

Interface Components and Their Characteristics 

code on the array. For larger displays, such as in a calculator in which 12 to 16 
of these decoders would be required to drive all digits, scanned displays are 
used. 

Figure 5-26( d) illustrates a scanned display circuit. Basically, external 
counting and addressing circuitry select individual LEDs in the LED array and 
strobe them with a short current pulse if they are to be lit. The scanning 
circuitry addresses and pulses all array elements many times per second, 
thereby giving an illusion of a solid multidigit display. Because the LEDs are 
operating in a pulsed mode, higher input currents are required to give a visible 
intensity equal to a corresponding non scanned display. 

Incandescent Displays 

Filament-lamp technology has advanced in parallel with the development of 
modem LEDs, and a wide selection of small, low-current, almost logic-level­
compatible incandescent lamps and displays are now available. The primary 

Pin 3 

(a) 

(c) 

1 
13 
10 
8 

7 
2 

11 
6 

Segment 
driver 
lines 

These pins are common to 
all anodes in each row. 

These pins are common to 
all cathodes in each column. ,_..__, 

Individual LEOs 

(b) 

Note: only one digit is lit at one time 

Scanned { 
BCD 
data 

7-segment 
decoder 

driver 

Digit 
scanner 

and 
clock 

Digit 1--------' 
buffers 1-----------' 

Digit select lines 

(d) 

Figure 5-26 LED arrays and array drivers. (a) Common-anode 7-segment. 

(b) Alphanumeric 5 X 7 dot matrix. (c) 7448 BCD-to-7-segment decoder/driver IC. 

(d) Scanned 7-segment digits. 



Interface Components and Their Characteristics 243 

advantage the incandescent display has over an LED array is its ability to emit 
light of a wide spectrum-white light. By using color filters, colors that are not 
available in LEDs can be created. Another advantage of incandescent lamps is 
their high-intensity .capabilities. An inexpensive incandescent lamp can light up 
a whole room if necessary-something considered impossible for even the 
largest noncryogenically cooled LED. 

An example of an advanced miniature incandescent lamp which is competi­
tive with LEDs is the Chicago Miniature Company's CM22-1-XX-43. This 
lamp, rated at 3.0 Vat a drain of a mere 15 rnA, can be driven with a standard 
TTL gate. Although this lamp does not have a 100-year lifetime (the claim for 
most LEDs), its rated 10,000-hour life is quite acceptable in most applications. 

Like LED arrays, incandescent lamps have also been built into arrays and 
digits. Incandescent 7-segment displays whose segments consist of single long 
filaments find wide use in automobile instrumentation in which the red charac­
teristic of the standard LED is not acceptable. These displays are also quite 
desirable in scanned displays. Due to the incandescent lamp's slow turnoff and 
turnon response (persistence), flicker problems associated with display scan­
ning are eliminated. 

Interfacing an incandescent display or indicator is a simple task, but a few 
restrictions must be carefully observed. Incandescent lamps are voltage­
specified devices, while LEDs are current-specified. When choosing a lamp to 
be driven by a driver, you must calculate the voltage that will be put across the 
lamp and make your choice accordingly. Because the current of the lamp will 
be self-limiting at the specified voltage, no current-limiting resistor is required. 

Incandescent lamps are nonlinear devices: They act like resistors of the 
lamp's rated value once they are turned on; but when they are not lit, they have 
very low resistance. A resistance change of 10:1 is not uncommon for incandes­
cent lamps. When choosing a driver for a lamp, you must keep this in mind. 
When the lamp is initially turned on, a current surge of up to an order of 
magnitude greater than the driving value can be anticipated. Most driver cir­
cuits can withstand the initial current surge, because it is long-term thermal 
effects that limit driving current; but it is wise to look into the lamp and driver 
characteristics before deciding on a final design. 

Liquid-Crystal Displays 

Incandescent, LED, and gas-discharge displays fall into the active-device cate­
gory: they emit light as a function of the electrical energy applied to them. The 
liquid-crystal display or LCD is a device that we consider passive, because it 
simply controls light reflection and transmission as a function of supplied volt­
age. The LCD acts as a light shutter. 

Two characteristics make LCDs particularly desirable in certain applica­
tions. First, LCDs draw very little power (in the millionths of a watt), because 
controlling light with a shutter takes much less power than creating light. The 
LCD cannot be drowned out by high-level ambient light like an LED can. 



244 Interface Components and Their Characteristics 

Because the LCD. is a shutter, the more light you shine at it the more it will 
reflect. 

The passive nature of the LCD creates its disadvantages as well as its 
advantages. Because the LCD emits no light, it cannot be seen in the dark as an 
LED can. Solutions to this problem are (1) the use of built-in lights in front or in 
back of the LCD for in-the-dark applications, and (2) use of special 
fluorescence-activated LCD displays (FLADs), which essentially grab as much 
ambient light as possible and direct it toward the digits (FLADs still require 
some light, however). 

Liquid-crystal displays are easy to interface to almost any logic family. 
Because they draw current in the microampere range at potentials of only a few 
volts, even CMOS circuitry can successfully drive them directly. The only 
precaution in using LCDs is to stick to the recommended drive voltages for the 
LCD being used. Too much drive voltage can seriously damage the liquid 
crystal dyes used in the LCD display panel. 

Photocells 

One of the oldest, cheapest, and slowest-responding photodetectors is the cad­
mium sulfide (CdS) photocell. This device is essentially a light-controlled varia­
ble resistor that is very sensitive to light in the visible spectrum. 

Three advantages of the CdS photocell are its high power-dissipation capa­
bility, good sensitivity in the visible light spectrum, and its ve_ry low on resis­
tance. The CdS cell is ideal for use in light-level sensors, light on-off sensors, 
and in low-frequency counting applications where a breaking light beam indi­
cates an event. 

A CdS cell can be treated as a switch or variable resistor in microcomputer 
interface applications, because the dark-to-light resistance of a CdS cell can 
vary from 2 Mfl to 10 fl. As Fig. 5-27 illustrates, a minimum of components is 
needed to make a CdS switch and CdS light-level detector. 

The PbS (lead sulfide) cell is very similar to the CdS cell, but it is more 
sensitive to infrared radiation. This cell should be used in applications requiring 
infrared detection or absorption measurements. 

The selenium cell is another form of photocell and is sensitive to radiation 
toward the blue end of the spectrum. 

Photodiodes 

In many applications, such as light-beam communication and high-speed 
tachometry, the slow response times of CdS, PbS, and selenium cells (up to 1 or 2 
seconds to turn off) are too slow to be useful. The photodiode is a device that 
exploits light's effect on reverse-biased semiconductor junctions to produce an 



+5 v +5 v Peripheral 
interface 

A/D converter adapter 

PAD 

TTL-LEVEL • • Logic signal • • 
PA7 

Microcomputer bus 

- ":"' 

(a) (b) 

+ 
Light 

Constant 
supply 
voltage 

controlled 
_voltage 

u---~--------------------o output 

(c) (d) 

+5 v 

(e) 

Figure 5-27 Photoelectric circuits. (a) Simple on-off CdS photosensor. (b) Simple 
microcomputer-based light-level sensor. (c) Photodiode sensor (linear operation). 
(d) Photodiode sensor (logarithmetic operation). (e) Phototransistor (photodarlington) 
TTL-level light sensor. 

245 

Light 
controlled 
voltage 

-!-output 



246 Interface Components and Their Characteristics 

optical sensor with a response time in the nanosecond range. These devices are 

used in high-speed applications. 
A photodiode acts as a variable current source. By reverse-biasing a photo­

diode with 10 to 40 V, a linearly light-dependent current, which ranges from a 

few (dark) to a few hundred (light) microamperes, results. This current can be 

used to control an operational amplifier to generate a usable signal for micro­

computer interfacing. Figure 5-27 illustrates two photodiode applications. 

It is true that photodiode circuits require more interface components than 

CdS systems, but the added operational amplifiers can be used to advantage in 

varying the response characteristics of the overall sensor. The exponential 

detector "sees" light levels more closely to that of the human eye, which may 

be useful in some applications. 

Phototransistors 

High-frequency light response, as well as good current-handling capabilities, 

can be obtained using a phototransistor. This device is similar to a standard 

transistor, but instead of having an input lead for the transistor's base, a light 

window is provided. Light turns the transistor on and off by light-generated 

current carriers in the transistor junction. 
The phototransistor can be used in interface applications in the same way a 

normal transistor would. Phototransistors can handle many milliamperes of 

current and therefore require little amplification when used in switching or 

level-detection circuits. Figure 5-27e illustrates a phototransistor circuit. 

Optoisolators 

It is often necessary to send signals back and forth between two circuits that 

must be electrically isolated from one another. Data communications between 

computers in two adjacent buildings is an example of such a situation. If either 

building is struck by lightning during a storm, thousands of volts of potential 

difference can build up between the two buildings. Electrical isolation of the 

two computers can save their circuitry. High-frequency pulse transformers 

were once used extensively for these applications, but the advent of LEDs and 

high-speed photodiodes and phototransistors resulted in an equally reliable, 

higher performance and lower cost alternative: the optically coupled isolator or 

optoisolator. 
An optoisolator is basically an LED aimed at a phototransistor or amplified 

photodiode encapsulated in a single package. Figure 5-28 shows three common 
optoisolator configurations. The phototransistor is less expensive than the am­

plified photodiode isolator, but the photodiode version has a much higher fre­

quency response. 



communication 
link (twisted pair) 

(c) 

Figure 5-28 Optoisolators. (a) Low-cost phototransistor isolator. (b) High-speed photo-
diode isolators. (c) Electrically isolated TTL communications receiver. 

247 



O
F 

~
:
~
 8-o

r 
9

-b
it

 § 8
-

o
r 

9
-b

it
 ~=

 =
~ 8

-
o~ 9b

it
 § 

8-
o

rB
-b

it
 

O
o 

Q
l 

I 
re

gi
st

er
 

re
g1

st
er

 
re

g1
st

er
 

re
gi

st
er

 
I 

07
 

0 
1 

-
-

30
 

31
 

0
7

 

S
tr

o
b

e 
O

s 
O

s 
~-

. 
~-

. 
-

-
~-

. 
. ·

-

S
L

 

I 
I 

t 
I 

I 
I 

I 
n

i=
J
 

' 
I 

(S
O

 

N
 
~
 

co
 

g 
PL

 
C

on
tr

ol
 

~
~
 

PO
 

lo
gi

c 
c
l 

IR
 

R
 1

\l
lo

 
Q

 
0 

Q
 

O
R

 

~
-
-
-
-
-
-
-
-
-
-
*
-
-
-
-
-
-
-
-
-
-
-
-
-
~
~
-
-
-
-
-
-
-
-
~
~
-
-
~
~
-
-
-
-
-
-
-
-
-
-
<
M
R
 

F
ig

ur
e 

5-
29

 
T

he
 A

m
28

12
 F

IF
O

 m
em

or
y.

 (
C

o
p

y
ri

g
h

t©
 1

97
6 

A
dv

an
ce

d 
M

ic
ro

 

D
ev

ic
es

, 
In

c.
 R

ep
ro

du
ce

d 
w

ith
 p

er
m

is
si

on
 o

f 
co

py
ri

gh
t o

w
ne

r.
) 



Interface Components and Their Characteristics 249 

Inputs and outputs on optoisolators are often matched to standards to 
provide easy interfacing. The LED end often has appropriate built-in current­
limiting resistors to meet the EIA RS-232C standard for line receivers, and 
standard 16 rnA current sinks (output transistors) are frequently used as out­
puts. Interfacing to optoisolators is simply a matter of interfacing to whatever 
the inputs and outputs are set up to look like. If an input is a pure LED with no 
current-limiting resistor, it must be driven as such. If the output is a TTL 
driver, it can directly drive a number of TTL gates. 

FIRST-IN- FIRST-OUT MEMORIES (FIFOs) 

Catching information "on the fly" can often be a problem for a 
microprocessor-based system. A system may have the processing power to 
accept data at an overall fast rate, but at times other processing tasks may 
cause a few words to slip by unread. One solution to this problem is to build a 
small memory circuit to pile up data as it comes in. With such a memory system 
the microprocessor can process the data when it gets around to it; as long as the 
memory never gets filled to capacity, no harm is done. 

There are single integrated circuits designed to do precisely what has just 
been described. First-in-first-out (FIFO) memories are devices that have data 
input lines (usually 8 or 9) with a control called push, plus data output lines 
with a control called pop. Data is • • pushed onto the top'' of an internal memory 
when the push line is pulsed; it ripples through the FIFO, "stacking up at the 
bottom," where it can be conveniently popped off when needed. Pushes and 
pops can be done completely asynchronously. 

The Advanced Micro Devices 2812 is a good example of a FIFO. It consists 
of 32 ripplethrough memory locations of 8 bits' width plus corresponding con­
trol logic. Figure 5-29 illustrates the 2812. A low-to-high transition on the PL 
line (parallel load) causes the 8-bit input data (DO-D8) to be loaded into the 
FIFO, while PD (parallel dump) causes it to be popped off. This FIFO also 
features a serial load and dump capability and a master reset (MR) line. Input 
ready and output ready lines are provided to help external control logic deter­
mine FIFO overflow and out-of-data conditions, and a half-full flag line indi­
cates that the FIFO's bottom 15 locations are full. The half-full flag is useful in 
applications in which control over input and output data is possible. A half-full 
FIFO provides the best 1/0 rate matching for varying 1/0 rate buffering. The 
half-full flag can also be used to send a "you'd better start unloading this 
FIFO'' signal to the microprocessor. An interrupt line connected to the ,half-full 
flag is a possible implementation. 



After a system has been fairly well specified and all the desired microprocessor 

components, interface parts, and transducers are well understood, it is time to 

begin the system design. This is the most critical stage in the system develop­

ment, for a few errors or a large amount of rule-bending at this point will result 

in an unreliable piece of digital equipment. This chapter discusses design proce­

dures and outlines desirable design practices. Bad design practices are also 

presented. 

THE MANY-PARTS PROBLEM 

A single part functioning by itself or a few parts connected to function as a very 

simple circuit usually poses no problem as far as "system design" goes. The 

engineers who designed the parts, especially if the parts are of a universal 

digital logic family type such as TTL, have done their best to make sure their 

designs have adequate noise margins, are free of redundancy, are logically 

optimized, and are in general good designs. Unfortunately, most systems con­

sist of more than a few parts. An average microcomputer can, in fact, consist of 

many hundreds of parts. At this level of system complexity, the integrated 

circuit designers at the factory are no longer responsible for overall system 

operation. It is up to the system designer to make it work and make it work 

well. 

250 



Designing Interface Circuits 251 

All too many systems these days are thrown together by people who lazily 
fall back on the inherent reliability and versatility of today's components in­
stead of following good design practices and working out all circuit problems 
in an optimized way. Thus, poor designs are not restricted to one-of-a-kind, 
homebrew projects but are propagated throughout the microcomputer indus­
try. The fact of the matter is that you cannot learn good system design by fol­
lowing the circuitry of others, even if the designs are disseminated by "high 
class" companies and trade journals. 

How, then, does one design "good" logic and circuitry? The answer is 
simple: in exactly the same way hard-working professional engineers do and 
the way lazy engineers know they are supposed to. You must define your 
specifications, study the available component options, set up design rules, and 
strictly follow those rules. You must take the professional approach. 

The microprocessor, memory, and components sections of this text have 
described how to select the proper components to meet your specifications. 
From the initial design specification process, a system block diagram should 
have been generated. Before starting to translate the block diagram and compo­
nents into final schematics you must take the most often neglected step in 
system design: defining the design rules. 

DEFINING DESIGN RULES 

Design rules are a series of conventions that are established to account for 
physical constraints in a system and to make drawings and documentation 
understandable to all design team members. These rules should be written out, 
and copies should be given to all members of the design team (if one exists). 
Design rules also help new design team members to quickly familiarize them­
selves with the project if they enter late in the program. 

You must first define how documentation will be written. Large systems 
require many drawings. You must specify how signals will be passed from one 
drawing to another. For simple systems with just a few drawings, a circle can 
represent a signal that goes to another page. For larger systems in which many 
drawings are used, a notation indicating to which drawing the signal goes and 
from which drawing it comes is necessary. Signals that go to a card's edge can 
be represented by another symbol-perhaps a triangle or, more conven­
tionally, a pointed tab as shown in Fig. 6-1. 

It is also a good practice to give all signals and components names. This 
makes explanations and references in discussions and documentation less con­
fusing. By assigning functional names to system components such as "memory 
control ROM" or "output selection decoder," it will be easier to relate the 
detailed schematics to the overall system block diagram. In the case of naming 
signals, shorter abbreviated names are preferable. An 8-bit data input bus might 
be given the name DIO through DI7. 



252 

Inputs 

Designing Interface Circuits 

----<J Output TAB . d' . . d 
strobe K4 1n 1cates c1rcu1t car connector 

~OR gate performing an OR function 

~OR gate performing an AND function 

D-AND gate performing an AND function 

1. Data flow on drawings should 
be from left to right. 

2. Symbols should be specified. 

PROM enable 

PROM select 

• 

~{ 
Clock 01 

ROM enable gate 

Memory control 

D 0 

D 0 

D 0 

D 0 

74163 
counter 

counter 

Memory 
control 
ROM 

E 
Ao Do 

AI D1 

A2 D2 

A3 D3 

8223 
PROM 

• 
Most 
significant 
bit 

7 6 5 

4. Define MSB and LSB. 

4 3 2 

Least 
significant 
bit 

o I. 
Binary point 

3. Name all parts for easy reference. 

Figure 6-1 Design rule conventions. 

The design rules must also state how buses are to be number:ed. In many 

computers the 0 line represents the most significant bit; in others it represents 

the least significant bit. Problems could arise if the designer of one card num­

bers his bus from DIO to Dl7 while another numbers his Dl7 to DIO. 
A convention for representing wide buses on drawings must also be de­

fined. A coded representation with a slash indicating how many lines run down 

the bus is preferable. In some cases, designers assume that buses should ex­

pand the same way they contract. This is acceptable for a single bus with just 

one start and end point; but if the bus goes to more than one location, an 

inconsistency exists as Fig. 6-2 shows. By using a dot as a key on bus ends, the 

ambiguity is resolved. 
More extensive documentation rules are appropriate on very large proj­

ects. Recommendations concerning drawing sizes, pencil lead hardness (so 

drawings do not smear), and data flow direction (data on drawings should 

always flow from left to right, for example) should be specified. 



Designing Interface Circuits 

00 
01 
02 
03 

1. Simple compressed bus notation 
works well in simple cases. 

• 

253 

Note: If you straighten-out D to A connections 
03 corresponds to AO. 

2. Simple bus notation is ambiguous 
in complex wiring . 

• 

3. Keyed bus notation is always well defined. 

Figure 6-2 Bus notation conflicts. 

Physical restrictions must also be laid out in the design rules. The logic 
families being used should be studied and a limit should be put on gate fan-out. 
Design recommendations are usually given at the beginning or ends of data 
catalogs and on parts specification sheets. These can be used as a general 
guide, but be sure to consider all variables. A current fan-out of eight may be 
specified, but too much capacitance may cause the actual limit to drop to six if 
high frequencies are used. 

Maximum signal-wire lengths should be specified. Long lines can cause 
ringing and excessive propagation delays in a system. Methods for transmitting 
signals over long distances through the use of differential drivers should be 
specified. 

Noise reduction methods such as the use of decoupling capacitors (which 
will be discussed shortly) on TTL logic boards, and termination and line impe­
dances on ECL circuits must be clearly described. The power supply and clock 
distribution system for the overall system should be defined. 

Finally, a more qualitative characteristic must be presented: the philosophy 
of the design. The general method of moving data around the system must be 
outlined. Logic design guidelines must be laid out. The next section presents 
many guidelines that will help improve a system design. 



LOGIC DESIGN GUIDELINES 

Computer system design can be broken into two categories: theoretical design 

and practical design. The theoretical aspects are at the highest level of system 

design and are already fairly well laid out in a microcomputer system. The 

microprocessor that is chosen determines the overall designs of most micro­

computers. Practical design aspects of a microprocessor must be well under­

stood to implement the theoretical design on a logic-level basis. 
Theoretical design information for a microcomputer can be obtained from 

most microprocessor specification booklets. The detailed practical design as­

pects, however, apply to all microprocessors in general and none in particular 

and are therefore infrequently covered in microprocessor literature. 
Many of these important practical design guidelines are presented here. 

Additional discussions of these guidelines can be found in logic family catalogs 

(not concentrating on microprocessors) and in manufacturers' application 

notes. Advanced Micro Devices, Motorola, and RCA are particularly good 

sources of practical design information. 

Synchronous and Asynchronous Design 

There are two ways to build a logic circuit. One way is to have some flip-flops 

and registers clock in data on the rising edge of a system clock, and other 

registers preset, reset, or clock as a result of new data generation. This is 

asynchronous design. An example of this type of design is shown in Fig. 6-3. 

On the rising edge of the system clock, new data enters flip-flop A and causes 

the Q output to change, thereby clocking flip-flop Band setting flip-flop C. 
The second way of building the same circuit is shown in Fig. 6-3(b). Notice 

that in this circuit all devices are clocked by the master system clock. No 

clocks are driven by anything other than system clocks, and preset and clear 

inputs are not used. 
There is no logical difference between these two circuits, for they provide 

the same logic function; and if there were no such thing as propagation delay or 

noise, both circuits would be equally desirable. This, however, is not the case. 

The first thing you can do to greatly improve the reliability of your system 
design is to write the words "no asynchronous logic permitted" in your design 

rules. The noise graphs of Fig. 6-3 help explain why synchronous design is 

superior to asynchronous design. When the system clock's rising edge comes_ 

along, many registers and flip-flops change states; these state changes cause 

data lines throughout the system to change. Due to propagation delays, data 
changes at slightly different times on data lines, creating system noise. This 

noise is radiated as radio-frequency energy through the power supply lines and 

is picked up by other system lines that act as antennas. In the asynchronous 

case, noise is generated continuously as data ripples through the system and 

more flip-flops are clocked or preset (generating more noise). 

254 



Designing Interface Circuits 255 

'1' 

Master 
clock 

Master 
· clock 

c 

'-----Output A 

Output C 

'1' 

Master 

External __ --! 

input 

Output 
A 

Output 
B 

clock __ ....., ____ _,. ___ __, 

Master 
clock 

Output 
c 

Output A 1----+--1 Output A t------+-4 

Output B 1----+--+-4 

0 u tput C t----+--+-+--4 

I I 1 

Long 
settling 
time 

Time 

(a) 

r-----------------
Output B t------+-4 r------------------
Output C 1----H 

Noise 

Short 
setting time 

Time 

(b) 

Figure 6-3 Synchronous versus asynchronous logic. (a) Asynchronous logic circuit 
and timing diagram. (b) Equivalent synchronous logic circuit and timing diagram. 

In the synchronous case, one large noise burst occurs, then things settle 
down nicely. Synchronous logic therefore runs faster, because no ripple propa­
gation is used and because the system stabilizes faster. More importantly,· 
synchronous logic is immune to noise that occurs at times other than at the 
rising edge of the system clock. As long as the system clock is well shielded 
against crosstalk (which is not hard to accommodate) and the data is stabilized 
by the next system clock edge, system noise poses little threat to reliability. 

Reliability is low in asynchronous systems because noise-susceptible data 
lines are used to drive reset, set, and clock lines. A noise glitch at any time on 
any one of these data lines is enough to change the system's state by uninten­
tionally setting or resetting a flip-flop. 

Noise from external sources has less of an effect on synchronous circuits as 
well. Data is only clocked into registers on rising edges of clocks, so noise must 



256 Designing Interface Circuits 

enter the system at precisely the time of the rising edge of the system clock to 

have an effect. This leaves only a small window of noise-sensitive time. If this 

noise window is 5% of a system clock's cycle time, the design is said to be 95% 

glitch-free. Because noise can affect an asynchronous design at any time 

through a data-driven clock, preset, or clear input, an asynchronous design is 

glitch-prone. 
Another advantage to synchronous design is that it is much easier to con­

ceptualize the system action on timing diagrams. A synchronous design is more 

likely to work the first time than an asynchronous one, and if it does not work, 

it is much easier to troubleshoot. 
Finally, synchronous designs are not as easy to design as asynchronous 

ones. If a flip-flop must be set at the time a convenient data line happens to 

change, it is much easier to connect the flip-flop's clock or preset line to the 

data line than carefully reason out a synchronous way to determine the signal 

one clock pulse ahead of time and clock it in on the system clock edge. In some 

cases it even requires an extra gate or two, but the extra design effort and small 

increase in parts are well worthwhile. A synchronous design will return your 

investment many times over in reliability, ease of debugging, and increased 

processing speed. 

Simplicity in Design 

" Simplicity is often said to be the ultimate sophistication. This is definitely true 

in regard to the number of gates and flip-flops required to implement a certain 

logic function. The less parts a system has, the less chance for failure there is. 

Two ways of simplifying a system design will now be presented. 

Gate Reduction. Logic gating in a system can usually be simplified from the 

first-cut design by applying the theories of Boolean algebra. An oR gate feeding 

an oR gate can be consolidated into one large oR gate, and an AND gate feeding 

an AND gate can be combined also. Figure 6-4 illustrates some of the most 

common logical reductions. 
In system design, there are a few conflicts that do not arise in theoretical 

Boolean algebra. The first is package count. It is better to have three packages 

of 2-input OR gates than four packages of optimal Boolean gating. As long as the 

combination of gates causes no unacceptable propagation delay, it is wisest to 

opt for the lowest package count. 
Another conflict is having spare gates after a design is completed. If an AND 

gate and three inverters are available as spares, it is wiser to use them to make 

an OR gate than to add a new chip to the design. 
One of the most powerful Boolean algebra laws for gate reduction, espe­

cially when wired-oR connections are allowed, is De Morgans law. This law can 

help change AND gates to oR gates. and vice versa. This law can be related as a 



Designing Interface Circuits 
257 

A 

B 

C=:=L)o-c 
(a) 

A 

B 

A 

B 

c 
D 

c 

(c) 

(b) 

A 

c 
B 

Figure 6-4 Logical reductions. (a) Logical reductions by De Morgan's law. (b) Consoli-
dated gate reduction. (c) ECL gate reduction using wired-OR approach. 

complex Boolean expression, but an easier way to remember it is: change the. 
outputs, change the input, and change the gate (from an AND to OR, or an oR to 
AND). Because inverting outputs are usually available on flip-flops and regis­
ters, this can easily be accomplished in most cases. It can reduce signal propa­
gation time. Figure 6-4(c) shows such an ECL reduction that saves parts as well 
as increases speed. 

When the high speed of gates is not required, large gating networks can be 
replaced by ROMs and PROMs. By simply feeding all the gating network's 
input lines to the ROM address and taking the outputs from the ROM data 
lines, extremely complex gating functions can be implemented. One advantage 
to this method is that a gating network can be changed by simply reprogram­
ming a PROM instead of tearing apart a circuit board. 

It is wise to do a preliminary gate reduction before implementing a ROM 
gating network, however. It may be that no gates or ROMs are needed. It is 
also desirable to do a tradeoff study between gates and ROMs. It takes one 
quarter of a 4-data-line ROM to implement one gating input. If a simple gate 
that takes one quarter of a package can implement the same function, it is 
better to use the gate. Gates are simpler, more reliable, and draw less power 
than ROMs. 

State Reduction. Every unnecessary flip-flop and register doubles the num­
ber of states a digital device can be put into. The probability of the device going 
into the wrong state is increased accordingly. By reducing the number of states 
a machine has, reliability can be increased and parts can be eliminated. 



258 

Master clock 

Bus 

A 

B 

Master clock 

Note: One register is eliminated. 

(a) 

c 

(b) 

Designing Interface Circuits 

A 

B 

c 

Figure 6-5 State reductions. (a) Redundant register elimination. (b) Pushing gates in 

front ofregisters. 

One way to' reduce the number of flip-flops and registers in a system is to 

look for similarities in the output of each register and determine if some other 

register outputs the same signal under the same conditions. If it does, one of the 

two registers can be eliminated. 
Registers can also be eliminated by ''pushing'' gating networks to the 

inputs of a register instead of the outputs, as Fig. 6-5 illustrates. 

In some cases registers can be saved by moving the gating to the outputs 

instead of the inputs. This should also be considered in state reduction. 

Finally, it is sometimes possible to create signals, which were formerly 

created by a register, with a gate fed by two or more other registers. Unless the 

single-gate delay propagation is too long for a given application, trading a 

flip-flop or register for a gate is a good move, because complexity remains 

about the same but the number of states is cut in half. 

Synchronous design lends itself to state reduction more readily than asyn­

chronous logic. Replacing a flip-flop in an asynchronous string of flip-flops is 

likely to upset a timing cycle. 



Designing Interface Circuits 259 

A 

B 
H 

A 

B 
H 

---------..1 
Redundant path (fast) 

Note: Signal C was not needed 
in this function. 

(a) (b) 

Figure 6-6 Redundant signal paths. (a) Gating network with redundant signal path. 
(b) Equivalent, logically reduced gating network; no redundant paths exist. 

Redundancy Avoidance 

A redundant signal (Fig. 6-6) is one that duplicates the function of one or more 
combined signals in a gating network. If the redundant signal line were cut, the 
circuit would logically be the same. At first glance, such a signal seems quite 
desirable. If the redundant signal happens to break or get stuck at a 1 or 0, the 
machine would keep on running. If this sort of redundancy is planned, it can be 
advantageous; but if it happens by accident, it can cause major reliability 
problems. 

Redundant signal paths are often formed unintentionally in large gating 
networks in which the redundant signal takes a long multigate path to its final 
destination. If the intended signal (which the redundant signal is backing up) 
happens to fail, the logic function may keep on working due to the redundant 
signal, but a much larger propagation delay in the final output caused by the 
delayed redundant signal is the result. 

A computer system that is relying on its redundant signal after a main signal 
failure may fail in one out of a billion operations due to borderline propagation 
delay. Finding the fault would be nearly impossible, because all gate outputs 
downstream from the error as well as upstream would seem normal in most 
tests. 

Large computer companies rely on simulation programs to check their 
circuits for redundancy. If a redundancy checking program is not available, the 
only way to check for redundancy is to evaluate a circuit and assure yourself 
that an error in any line would cause a failure. Gate optimization also tends to 
eliminate redundant signals from a system. 



Using Large-Scale Integration 

The reliability of integrated circuits has increased to a point at which system 

reliability is essentially a function of package count. Reliability, for the first 

time, is not a function of circuit complexity. In order to increase system relia­

bility, it is advisable to use the largest-scale integration possible, even if it 

requires a slight increase in overall system complexity. 
In some cases the use of LSI may seem wasteful. An example is using a 

one-chip 8-bit counter when only a 4-bit counter and a single flip-flop are 

necessary. When compared on the bases of cost, reliability, and circuit-board 
complexity, however, the LSI usually wins. Just as you would not think of 

building gates out of discrete transistors to save a few resistors, you should not 

consider building counters out of flip-flops if LSI is available to perform the 
task. · 

Timing Margins and Sampling 

When data is transferred from one register to another using a common system 

clock, successful transfer relies on the fact that data is available for the speci­

fied setup and hold times of the register being used. As the timing diagram of 

Fig. 6-7 illustrates, the hold time on data in register-to-register transfers can be 

quite low due to the data changing immediately after the clock edge. Registers 

are designed to work with common clocks in this manner. There are usually no 

hold time problems as long as parts of the same logic family in close proximity 

to one another are used. If parts of different logic families are used, or long 

clock and data paths between cards are encountered, the data to be clocked 

into a register may indeed change before the clock edge has arrived. 

There are many solutions to these types of problems. The most obvious is 

to add more delay between the output of one register and the input of another. 

The hard-wired clock signal will surely beat the data propagated through a gate, 

to the next register for example. This solution is inefficient, however, because 

it involves additional parts. Another solution is to move the second register's 

data clock-in time to the middle of the data-valid period of the first register by 

clocking data into the second register on the falling edge of the clock, as shown 

in Fig. 6-7(b). The disadvantage to this method is that it could change system 

timing in an undesirable way due to a 180° phase shift in the output signal. 

The simplest way to solve the problem is to run the system clock line in a 

direction opposite data flow as illustrated in Fig. 6-7(c). There is no possible 

way for changed data to get to a register before a clock edge because the clock 

always arrives at the second register before new data is clocked into the first 
register. 

Even if a reversed clock, central timing, or the extra delay method is used 

to eliminate register-to-register hold-time problems, it is a good idea to check 

hold times specified for parts, especially if parts of mixed logic families are 

used. 
260 



N
 

en
 .... 

R
eg

. 
A

 

Dat
a {=

:1 ~
 ~

 
.~
.D
 

Q
 

CK
 

R
eg

. 
B

 

}ou
tpu

t 

C
lo

ck
 -
-
+
-
-
4
~
-

..
..

 -
-
-
-
.
-
-
~
 

N
ot

e:
 

C
lo

ck
 m

us
t 

be
at

 c
ha

ng
in

g 
da

ta
 f

ro
m

 R
eg

. 
A

 t
o

 R
eg

. 
B

. 

C
l
o
c
k
~
 

L
-.

..
.1

 
I D

at
a 

X
 
i 

R
eg

. 
A

 o
u

tp
u

t 

R
eg

. 
B

 o
u

tp
u

t 
~
 

(a
) 

R
eg

. 
A

 

L
-.

..
.1

 

I ~
 .....

.. ,
, 
._

_ 

R
eg

. 
B

 

R
eg

. 
A

 

Da
ta{

 
}ou

tpu
t 

• 

C
lo

ck
 

R
eg

. 
A

 o
u

t 

R
eg

. 
B

o
u

t 

I 
T

im
e

- (b
) 

Da
ta{

 
}ou

tpu
t 

Dat
a{~

~ 
UE
~~
r 

~§
Ou
tp
ut
 

Q
 

D
 

Q
 

D
 

Q
 

0 

• 
• 

1 
.N

V
' 

• 
• 

C
lo

ck
 

(c
) 

(d
) 

F
ig

ur
e 

6-
7 

R
eg

is
te

r 
tr

an
sf

er
 m

et
ho

ds
. 

(a
) 

S
im

ul
ta

ne
ou

sl
y 

cl
oc

ke
d 

re
gi

st
er

s 
w

ith
 s

ho
rt

 d
at

a 
ho

ld
 ti

m
e.

 (
b)

 O
ut

-
of

-p
ha

se
 c

lo
ck

ed
 r

eg
is

te
rs

 w
ith

 e
qu

al
 s

et
up

 a
nd

 h
ol

d 
ti

m
es

. 
(c

) 
G

oo
d 

de
si

gn
 p

ra
ct

ic
e 

to
 e

ns
ur

e 
th

at
 c

lo
ck

 r
ea

ch
es

 
R

eg
. 

B
 b

ef
or

e 
R

eg
. 

A
 d

at
a 

ch
an

ge
s.

 (
d)

 B
ad

 d
es

ig
n 

pr
ac

ti
ce

 th
at

 s
lo

w
s 

cl
oc

k 
to

 R
eg

. 
A

 (
sh

ou
ld

 n
ot

 b
e 

us
ed

).
 



262 Designing Interface Circuits 

One practice to be avoided in solving the hold-time problem is the use of a 

capacitor and resistor to cause some added delay. Figure 6-7(d) illustrates this 

practice. Logic families have well matched inputs and outputs that allow you to 

easily build complex circuits. Randomly throwing resistors and capacitors 

across lines causes impedance mismatches, reduces noise immunity, and adds 

dangerous noise-generating capabilities to a system. 

Replacing Registers with Register Files 

Both registers and RAMs have their place in digital design. Registers are well 

suited for storing single words of data on a temporary basis and can be read and 

written into simultaneously. Random-access memory is desirable when large 

blocks of data must be stored on a somewhat less temporary basis. There 

comes a point in the design of many systems, however, when a bank of regis­

ters seems to take up too many packages and the storage requirements are not 

large enough to fully justify a large RAM. 
In these cases it is necessary to look at not only the data storage circuitry, 

but the control circuitry as well. It usually takes more control circuitry to 

address, write into, and read data out of a RAM than to simply clock a register. 

This control circuitry is harder to design and debug and can pose some tricky 

timing problems if data must be read and written at the same time (a multiport 

register file can solve this problem). A general rule to follow when deciding to 

use a multiple register implementation or a highly controlled RAM is: Use the 

registers if it requires only a few more parts overall (25% is a good figure). 

Unless the system is a high-volume consumer item with which expense has 

high priority, or if the circuit module is extremely tight on space, the simpler 

register scheme will solve the design problem in the fastest, most efficient way. 

Interfacing Asynchronous Devices 

Data that comes in from devices running on different clocks cannot be directly 

clocked into a synchronous system. Data transitions from the external device 

can happen at any time, and if data happens to reach the inputs of a few 

registers at exactly the same time the synchronized clock does, some registers 

may correctly receive the data while others may miss it. 
Incoming data must be synchronized to a system's master clock before it is 

sent through the system. This can easily be done with a sampling flip-flop. As 

the signal enters the system, it should be clocked into a single flip-flop clocked 

by the system's master clock. With this system there is no chance ofthe signal 

being received by some system components and missed by others. If the syn­

chronizer flip-flop misses the signal, the whole system misses it and it will be 

clocked in on the next pulse. 
Commercially available pulse synchronizers such as the 74120 can also be 

used to "sync up" asynchronous input signals. 



The Proper and Improper Use of One-Shots 

The monostable multivibrator, or one-shot, is designed to generate 
controllable-duration pulses when triggered by the rising or falling edge of a 
trigger clock. In the case of bidirectional one-shots, pulses are generated on 
both the rising and falling edges of the clock. 

One-shots have theirplace in logic design, but they are probably misused in 
most designs. There are two main problems with one-shots: they are time­
independent of the system clock and tend to set up their own timing reference 
frames; they tend to trigger by themselves if they encounter even a small 
amount of noise (they are noise amplifiers). 

One-shots should never be used to drive set, clear, or clock inputs of logic 
devices. Clocking data into a register at the wrong time can result from a falsely 
triggered one-shot. The practice of not driving clock inputs with anything other 
than system clocks is consistent with synchronous design practices also. 

One-shots should not be used to stretch pulses to meet setup, hold, or 
standardized times. Because the pulse widths of the one-shots will not change 
as the system clock varies (due to thermal changes, time drifting, or an inten­
tional system-clock speedup for higher performance), system timing will be­
come faulty at any speed other than the speed the one-shots are tuned for. 

In system-timing cases, it is much wiser to produce single pulses with the 
synchronous "one-pulse" circuit shown in Figure 6-8. This circuit varies ap­
propriately as system clock frequency changes. 

There are a few good applications for one-shots. Areas of application in­
clude display and interactive interfaces in which an accidental triggering of the 
one-shot will have no harmful effect on system operation. A one-shot can be 
used to control the horizontal scan delay on a data terminal character generator, 
for example, because a false triggering will merely cause a nearly unnoticeable 
glitch in the image that the viewer sees. The system will operate normally on 
the next scan line. 

Many one-shots have built-in features to help reduce the problem of false 
triggering, and these features should be used to increase the one-shot's noise 
immunity. The one-shot illustrated in Fig. 6-8, for example, has two inverted 
trigger inputs and a master gate that enables the pulse. The AND gate has 
hysteresis characteristics to increase its noise immunity. This gate can be used 
to disable 'the one-shot during noisy periods (the time immediately after the 
master clock's rising edge) and reduce the chance of false triggering. 

PHYSICAL DESIGN GUIDELINES 

The design guidelines just presented are surely on a less theoretical level than 
the architectural concepts of the microcomputer system, but in order to build a 
good system, it is necessary to go down even one level further - to the 

263 



N
 

C
J)

 

R
eg

. 
A

 

O
u

t 
In

 
In

 

C
lo

ck
 o

--
--

-J
 

T~
 

. 
" 

C
lo

ck
 

tm
m

g 
co

m
p

o
n

e
n

ts
 

O
ne

-p
ul

se
 c

ir
cu

it
 

R
eg

. 
A

 

~
 

,.
..

, 
_

_
 ,
,
 

1 
1 

1 
1 

C
lo

ck
 

R
eg

. 
A

 
o

u
tp

u
t R

 
o

u
tp

u
t 

O
ne

sh
ot

 
O

ne
-p

ul
se

 
1 

P
ul

se
 w

id
th

 
o

u
tp

u
t 

f· 
~P

ul
se

 wid
th

 
o

u
tp

u
t 

1 
d

et
er

m
in

ed
 b

y 
I 

de
te

rm
m

ed
 b

y 
: 

cl
o

ck
 f

re
q

u
e

n
cy

 
R

C
 n

e
tw

o
rk

 

(a
) 

(b
) 

F
ig

ur
e 

6-
8 

A
sy

nc
hr

on
ou

s 
an

d 
sy

nc
hr

on
ou

s 
pu

ls
e-

ge
ne

ra
ti

ng
 c

ir
cu

it
s.

 (
a)

 O
ne

-s
ho

t 
op

er
at

io
n 

(a
sy

nc
hr

on
ou

s)
. 

(b
) 

O
ne

-p
ul

se
 c

ir
cu

it
 a

nd
 o

pe
ra

ti
on

 (
sy

nc
hr

on
ou

s)
. 

O
u

t 



Designing Interface Circuits 265 

nuts-and-bolts level of computer design. On this level we find topics such as 
power distribution, transmission line effects, propagation delay analysis, and 
other nonideal aspects of microcomputers. 

Deciphering the Spec Sheet 

To supply all the components of a system with their specified values, it is 
necessary to know what those specified values are. All the data needed to use a 
device properly can be obtained from the manufacturer's specification sheet. 
Manufacturers sometimes tend to exaggerate the true capabilities of their parts 
and cover up the bad features by mentioning them in fine print near the bottom 
of the sheet. In some cases, disadvantages are turned around to look like 
advantages. In one case, for example, a large memory manufacturer produced 
specifications for a 4K RAM and a 16K RAM of similar design. The only 
difference between the parts was the addition of a chip select line on the 4K 
version where an address line previously appeared on the 16K part. The 4K 
RAM spec sheet boasted "chip select line improves design flexibility," while 
the 16K RAM spec sheet claimed "no chip select line to complicate designs." 
When reading a spec sheet, you must look beyond the boastful claims and 
decide what the features and device limitations mean to your design. 

The propagation delays specified in spec sheets should be used to deter­
mine if your designs have large enough timing margins. Propagation delays, 
often appearing under the title of switching characteristics, are specified in a 
few ways. Minimum, typical, and maximum times are given, and in some data 
books these figures will be given at two or three temperatures. The parts 
received from the manufacturer are only guaranteed to the maximum worst­
case propagation time; and if a logic circuit does not work because typical 
values were used in the design, it is no one's fault but the designer's. 

The added propagation delay in a long string of gates with maximum propa­
gation delay versus the same string with typical delay can be substantial (some­
times nearly 2: 1). 

The same typical-maximum argument applies to current draw and power 
consumption. The maximum values are the only ones that can be relied on. 
With power ratings, it is also necessary to consider the external devices needed 
to make a device work. Typical and even maximum power ratings do not 
include such items as ECL termination resistors, open-collector pullup resis­
tors, and full driver output on each line. These figures must be considered in 
addition to the component's rated specifications. 

Spec sheets also present temperature data and give operational voltage 
ranges of their parts. Commercial versions of parts are usually designed to 
operate between 0 and 70°C. This range can easily be exceeded on a cold winter 
day or within a warm chassis without proper cooling. In applications destined 
for outdoor use, such as automotive electronics, military-specification parts 
must be used. This decision must be made early in the design because the 



266 

200 

Designing Interface Circuits 

specifications for military parts are sometimes different (usually longer delays) 
and--must-be compensated for. 

Lack of Statistical Mix 

In mass production applications, in an effort to cut costs, it is often thought that 
typical values (or values somewhere between typical and maximum) are ade­
quate for a large production run. The reasoning is that a probabilistic mix of 
parts will yield a high percentage (say 90%) of operational units, and the money 
saved by using less expensive parts will make up the 10% difference many · 
times over. Using this philosophy with semiconductors can have unwanted 
consequences, unless the manufacturing organization has very close contact 
with the manufacturer. The major reason for this is the lack of a statistical mix 
of parts. 

Many logic ·elements, and most microprocessors and memories, come in a 
number of versions of varying speed. These devices are rarely built especially 
to be high-performance parts but, rather, are selected from a total yield of 
parts. The selection process varies from batch to batch, depending on how 
many parts of which version are needed. If there is currently a surplus of 
high-speed parts, parts that pass high-speed screening may be marked as slow 
parts and sold as such. If the supply of high-speed parts is low, all the high­
speed parts will be pulled from a batch and sold separately. 

In the end, the user who is trying to economize by using low-speed parts 
may find most of his parts to be typical one day, above average the next, and all 
at their minimums the third day, depending on how many high-speed parts were 
pulled from his batch. Figure 6-9 illustrates this situation. 

300 400 
RAM access time (ns) 

(a} 

500 

These RAMs were prepicked and 

sold as 300:l:Ms. · 

I 

200 400 
RAM access time (ns) 

(b) 

Figure 6-9 The inconsistencies of statistical component calculations. (a) RAMs 
received from vendor on Week 1. (b) RAMs received from same vendor on Week 2 
(production run has been prepicked, upsetting the statistical mix). 

500 



Critical-Path Analysis 

A system's critical data path is the signal path with the longest propagation 
delay necessary to proper system operation. This path may be the time it takes 
a signal to leave a register, go through anAL U, and enter another register; or it 
may be the time it takes an address to reach RAM and result in a data output. 
This critical delay path must be determined to insure that the system clock is 
slow enough to allow proper system operation. 

A critical path can be found by tracing all delays through all possible data 
paths. This method, however, is difficult and time-consuming. The best way to 
find a critical path is to first look in likely candidate areas. The areas around 
RAMs and ROMs are usually good candidates. Large arithmetic units and 
many-leveled gating networks also create critical paths. Direct register-to­
register transfers and one- or two-level gating networks can be eliminated from 
consideration almost immediately. Figure 6-10 illustrates the determination of a 
critical path. 

It is important to use maximum delay values in critical-path analysis. 

Power Distribution 

Many small integrated circuits drawing a couple of hundred milliamperes 
apiece can very quickly add up to create current requirements of ten to one 
hundred amperes. This is particularly true of dense logic such as that found in 
large memory systems and high-speed-high-power logic designs (ECL designs, 
for example). 

High-current requirements combined with the low-voltage levels at which 
most logic operates creates power distribution problems. Just a tenth of an ohm 
resistance in a 10 A, 5 V power-supply line is enough to reduce onchip voltages 
to 4 V. 

Digital parts, by their very nature, turn signals on and off at extremely high 
frequencies, thereby placing high-frequency current demands on power supply 
lines. Noise on power supply lines is another one of the most frequent problems 
in digital systems. 

Noise and voltage variation problems in a microcomputer system must be 
solved using good overall power system design. A high-quality power supply 
alone is not enough to solve a system's power problems. 

The first requirement of a good power distribution system is a solid ground. 
A system's ground line must sink all the current from all the system's power 
supplies and is therefore exposed to the highest currents and voltage drops. 
Because many digital and analog ICs use ground as an absolute voltage ref­
erence, it is important to keep it noise-free. 

A good grounding system begins at the power supply connections. Low­
gage (thick) wires should be used to connect the power supply to the circuit 

267 



268 

Inputs 

Critical 
path 
starts 
here 

Sampling 
register 
AM25LS173 

Data 
ALU 
74LS181 

1------t Ao 
1-------1 AI 
1------1 A2 

t---~---1 A3 

Designing Interface Circuits 

6820 PIA 

Microprocessor 
bus 

Fo~---------------~ 
1-------1 B0 F 1 ~-------------------~ PA1 

t-------1 B I F 2 p A2 

288ns 

74LSOO 

74LS02 

Critical path from clock to PIA inputs is: 
1. Sampling register clock to Q to 8 0 = 35 ns max 
2. Data ALU 8 0 to C0 = 38 ns max 
3. C0 to NAND GATE output = 15 ns max 
4. PA4 set-up time = 200 ns min 
Data at the PIA must Total 288 ns max 
therefore not be read 
until at least 288 ns after 
the clock edge. 

Figure 6-10 Critical path analysis. 

PA3 

1 MHz Data 
clock Alu 

23 ns typical 
25 ns typical 
10 ns typical 

150 ns typical 
208 ns typical 

board or circuit card cage. Ground lines should be kept short and direct. The 
connections at which ground enters circuit cards should also be of heavy-duty 
design. On plug-in circuit cards, it is wise to allocate many pins for ground 
level, preferably spaced evenly along the connector width. 

On circuit cards it is desirable to have a ground plane. This can be either a 
whole plane of ground metal as a conductor on a multilayer board or a partial 
plane with conductors and cutaways as necessary on a two- or one-sided board. 
The idea is to get as much ground conductions to the IC ground pins as possi­
ble. A ground plane also helps reduce signal noise and crosstalk between lines 
separated by it. Figure 6-11 presents good grounding techniques. 

In large computer systems it is a common practice to have a power ground 
and a signal ground. This concept can be used in microcomputers as well to add 
an extra margin of noise immunity. 

Figure 6-12 illustrates a separate power ground and signal ground system. 
High currents flow through the power ground, and switching noise from high-



contact at 
power supply 

Power supply 

Large area 
ground plane 
or grid 

Short, heavy guage 
ground cable 

Circuit card 

connections 

Figure 6-11 Circuit ground practices. 

Circuit card Circuit card 

o.o1 n 

ov 

~ 200 rnA 

_ Chassis ground 

Figure 6-12 The concept of separate signals and power grounds. 

269 

Reliable socket 
pins capable of 
handling the current 

1-----+-+-+-\ 
0.010 v 
(5mV 
noise) 

1/0 
connectors 

/ 



270 Designing Interface Circuits 

frequency current demands is high. Due to the high current flow, ground level 
is raised to 200 mV and has a 100 mV ripple and noise level. The signal ground, 
however, is used as a voltage reference instead of a current sink. In this case, 
only 200 rnA of current flows through the signal ground, and ripple is 10 mV. 
Gates, registers, and other components using the signal ground have 190 mV 
more noise margin than components using power ground. They are also ex­
posed to less noise. Sending signal grounds to peripherals on long~ noise­
sensitive cables is more desirable than sending power ground because they 
have less noise to start with. 

Sending power forms ( +5 V, + 12 V, -5.2 V, -15 V, and so on) to circuitry 
is not quite as critical as sending ground, but the rules of power distribution 
must still be applied. Heavy power lines, many connector pins for high-current 
power forms, and power planes for common voltages are desirable. 

There are two basic philosophies concerning power regulation: the oncard 
and the offcard philosophies. Offcard regulation consists of a high-current, 
precisely voltage-controlled power supply feeding the circuit card or cards 
directly. The advantages of this method include the need for only one central 
power regulator circuit, even power application and removal of power to all 
cards simultaneously, and a reduction of onboard heat that onboard regulators 
dissipate. 

Before monolithic three-terminal voltage regulators became commonplace, 
offboard regulation was the only available mode. The availability of new IC 
regulators has allowed the regulation task to be performed on individual cards. 

As Fig. 6-13 illustrates, the power forms feeding the cards are unregulated 
and higher in voltage than required. Onboard regulation therefore simplifies 
power supply design and entirely removes the regulator from the central sup­
ply. It does, however, increase overall system complexity because each card 
must have a regulator. The primary disadvantage of onboard regulators is the 
heat they generate and the necessity for associated onboard heatsinks. On­
board regulated cards cannot be packed as closely together in a card cage due 
to heatsink height. 

Cards using onboard regulation tend to be "safer" cards. Onboard regula­
tors have built-in current limiters; an oncard short circuit will cause them to 
limit at about half an ampere of current. Circuit cards fed directly by a 100 A 
power supply can literally go up in smoke if a short circuit occurs. 

Whether onboard or ofiboard regulation is used, it is good to put a filter 
capacitor at the power input of every card as shown in Fig. 6-13. Small (10-100 
~-tF) electrolytic and tantalum capacitors are ideal in 'this application. Sudden 
current demands can be supplied by these capacitors, thereby reducing the 
noise and ohmic power-line drops caused by current spikes. 

Very fast current spikes caused by totem-pole driver switching cannot be 
eliminated by one large capacitor on a circuit card. Current spikes in the 
hundreds-of-picoseconds range are over before they even have time to propa­
gate through the power and ground plane to the filter capacitor. These high-



Power 
supply 

Regulation 
heat 

( regu I ated) 

Cable 
resistance 

100 11F 
Power 
capacitor 

GND 

Power 
supply 
(unregulated) 

5V 

-, 
0.05 v I 5.05 v 

L R_:g~a_:e~.::L 
Local G N D reference-=-

(a) (b) 

Figure 6-13 (a) Central and (b) onboard voltage regulation. 

7.95 v 
Unregulated 

7.90 v 
Unregulated 

speed current spikes can be successfully damped on circuit boards using de­
coupling capacitors. Many small capacitors (typically 0.01 to 0.1 p,F) should be 
spread evenly around circuit cards using the general rule of 1 capacitor for 
every 4 /Cs for standard TTL. Other logic families require different decoupling 
capacitor spreads, which can be found in manufacturers' applications manuals. 
ECL designs need few decoupling capacitors because they do not use totem­
pole outputs; CMOS requires few due to its noise immunity and low current 
draw. 

A power supply, like any other device, can fail. Ideally, when a power 
supply does fail, it will do so in such a way that voltage and current output will 
drop; but in some cases the voltage will go wildly out of control. It is wise to 
protect a microcomputer system's logic circuitry against such a catastrophe. 
Overvoltage protection (OVP) circuits serve this purpose. Figure 6-14 illus­
trates two OVP circuits. The first circuit is goodforlow-currentpowersupplies. 
Simple zener diodes mounted on each card's power-form inputs will limit input 
voltage to a safe value. A 5.5 V zenerfora5V supply is a good choice. Thezener 

271 



272 Designing Interface Circuits 

diode also offers reverse-voltage protection. If a -5 V level is accidentally 
applied to the circuit instead of + 5 V, the zener will limit the reverse voltage to 
-700 m V (one diode drop), saving the logic circuitry. 

The zener diode OVP circuit can be used in a second mode. If the power 
line being protected carries too much current to effectively limit with a zener, a 
zener diode that is rated far below the power lines current can be chosen to 
protect the circuit. When voltage surges over the zener's value, the diode will 
burn out (break down), causing a direct short circuit across the power supply, 
thereby blowing the fuse. (Needless to say, the line being protected should 
have a fuse.) 

A better OVP circuit is shown in Fig. 6-14(b). The OVP "crowbar" consists 
of a zener diode that triggers an SCR to short out the power supply. This circuit 
has the advantage that it is not self-destructive (unlike the zener-breakdown 
OVP), and it is adjustable. Perfectionists are often tempted to adjust an QVP 
crowbar to a hair's width above the supply voltage. This practice should be 
avoided because the slightest bit of power-supply noise is enough to falsely 
trigger a sensitive crowbar. A rule-of-thumb for crowbar adjustment is 10% of 
the supply voltage plus 1 V. A 5 V power supply should have a 6.5 V crowbar, a 
12 V circuit a 14.2 V crowbar, and so on. 

Clock Distribution 

The master clock lines are among the most important signals in a microcompu­
ter system. They have very high fan-outs because they drive many registers, 
flip-flops, and interface components and because their routing is important (it 
should be opposite the data flow through registers). A synchronous system's 
reliability is based on the premise that a noise-free, well shielded clock is 
available. 

Clocks should be run as far from data buses as possible, and they should be 
separated by a strip of ground plane if possible. It is also a good idea to put the 

Power 
supply 
output 

5V 

(a) 

5.2 v Protected 
5 V output 

Fuse 

Noise protection 
capacitor 

(b) 

Protected 
5 V output 

Figure 6-14 Overvoltage protection circuits. (a) Zener-diode voltage limiter. (b) SCR 
OVP "crowbar" fuse blower. 



Designing Interface Circuits 273 

clock pin on a module connector between two ground pins to reduce crosstalk 
between pins. In large system applications it is a common practice to send 
clock signals from module to module using differential drivers and receivers 
connected with balanced twisted pairs of wire or shielded cable. 

Clock line lengths should also be controlled as tightly as possible. Extra 
cable on the computer's backplane should be added to match the clock's signal 
propagation distances to all cards. In some cases a clock signal can be strung 
from module to module, but register data-flow direction must first be deter­
mined, then opposed. 

Because clock lines typically have high fan-out, high-current buffers should 
be used to drive them. 

Unused Input and Output Pins 

In applications in which inputs and outputs that serve no useful purpose are left 
over after a logic design is complete, it is bad design practice to leave the inputs 
and outputs free-floating. Floating inputs can act as antennas and cause gates 
and flip-flops to accidentally preset, clear, or generate noise. Open outputs can 
cause unbalanced current draws in some logic families. ' 

In TTL, inputs will float to high (logic 1 state if left open). For this reason, 
most inputs that are unlikely to be used in many applications (such as preset, 
clear, and enable lines) are inverted. A flip-flop with inverted preset and clear 
inputs, for example, acts as if the preset and clear lines are turned off when 
nothing is connected to the input pins. Just to be sure the inputs on unused 
input pins remain at logic 1levels, it is a good idea to clamp them to + 5 V either 
directly or through a mild (1000 ohms) pullup resistor. The resistor is a precau­
tion against high current caused by power-line spikes, and one resistor can be 
used to drive about 10 inputs. 

If an open TTL input must have a logic 0 level to make a part operational, 
the input can be tied directly to ground. 

Open-circuit ECL inputs float to a logic 0. Internal input pulldown resistors 
insure that an open pin will remain below the low threshold level. Open ECL 
inputs that must be clamped to a logic 1 level can be either tied to the output of 
a gate generating a logic 1 or tied to ground through a silicon diode. Current 
must flow through the diode in the forward direction to insure a voltage level of 
-700 m Vat the input. 

In large systems it is desirable to terminate unused ECL outputs in order to 
balance the current draw of gatt(s and flip-flops. Because ECL generates no 
totem-pole transients when it switches logic states, the only power-supply 
noise is .caused by devices switching from driving a load to not driving a load. 
Because most ECL gates have complementary as well as true outputs, it is 
possible to eliminate switching noise by terminating an equal number of invert­
ing and noninverting outputs on gates and flip-flops. This principle is used on 



274 Designing Interface Circuits 

all the circuitry in one of the most powerful mainframe computers in existence: 
the Cray One (by Cray Research, Chippewa Falls, Wisconsin). This mainframe 
runs essentially noise-free due to its balanced ECL design. One note of caution 
is in order concerning balanced ECL: If MSI and LSI ECL parts are used, 
there are most likely unbalanced gates inside packages. It is impossible to 
terminate these gates, so balanced design is not possible using these parts. 

MOS inputs should always be tied to a logic 0 or logic 1. MOS lines will 
float between logic 1 and 0 due to their high impedance and may actually be 
damaged by static charge if they are left open. When inputs to MOS devices go 
to an edge connector of a circuit card, shunt resistors should be connected to 
Vnn or Vss to avoid static damage and noise generation when the inputs be­
come unterminated with the power supply on. 

Transmission Line Effects 

One of the primary sources of noise in a microcomputer system is transmission­
line noise caused by improperly terminated lines and mismatched driver-line 
impedances. When designing a system, it is important to specify terminations 
and line impedances according to the manufacturer's recommendations for the 
logic family being used. 

One of the most common misconceptions concerning transmission lines is 
that low-frequency lines need not be terminated because low-frequency signals 
generate very little noise. The error in this reasoning is that noise generation 
depends on waveform as well as frequency. It is transition time rather than 
frequency that determines noise generation, and square waves have fast rise 
times, whether they are at 50 MHz or 50 Hz. It is therefore the logic family that 
determines noise generation, not the frequency at which it is run. 

Regular, low-power, and low-power Schottky TTL and CMOS have rela­
tively slow rise times, and even poor impedance matching and the lack of 
ground planes do not have too great an effect on circuit operation. Generally, 
obeying good power supply and clock distribution, keeping leads as short as 
possible, and adequately decoupling TTL circuitry is all that is necessary to 
keep transmission-line noise at a minimum. 

Emitter-coupled logic and Schottky TTL, however, are a different matter. 
The Motorola MECL 10,000 series of ECL parts are specifically designed to 
provide low propagation delays as well as slow rise times, and although they 
can run at higher frequencies than Schottky TTL, they generate less noise. 
Schottky TTL's noise problem is compounded by totem-pole output spikes. 
For these two logic families it is necessary to use proper termination resistors 
and impedance-matched transmission lines as well as good power and clock 
distribution practices. Manufacturers' literature clearly outlines procedures for 
working with high-speed logic and should be followed for best results. 

Microcomputer backplanes or motherboards are very prone to detrimental 
transmission line effects due to the large number of signal sources (bus drivers) 



Designing Interface Circuits 
275 

and stubs (card connectors) on each line. Some buses have provisions tore­duce these effects through impedance matching. The PDP-11 Unibus and LSI-11 bus are two examples of open-collector buses that have impedance­matched termination resistors. 

Memory System Design 

Memory system design poses a number of problems not encountered in the design of discrete microcomputer logic. Densely packed arrays of identical memory chips, row after row of parallel address and data lines, and high­voltage, fast-rise-time MOS driver lines tend to cause extensive noise, power­distribution, and crosstalk problems. Memory interface parts add delay and timing uncertainties to memory designs. It is therefore important to take pre­cautions to reduce noise and crosstalk as well as make sure that cumulative propagation delay is taken into account. 
The following general rules should be followed in memory system design: 

1. Make sure enough drivers are used to drive address and data lines. 
2. Use a good power distribution system with heavy grounds and an adequate number of decoupling capacitors. 
3. Run high-voltage, high-current MOS driver lines perpendicular to address and data lines to reduce crosstalk. (On two-sided boards this is accomplished by using perpendicular conductors on opposite sides of the board.) 
4. Obey all memory timing requirements. Most components are speci­fied quite conservatively, but due to the competition in the memory market, memories are specified right to the limit. A 500 ns memory IC, for example, could start causing problems at 490 ns access times. 

A number of books entirely devoted to memory design exist and should be consulted if very large memory systems are to be built. You should consult large, well-known memory manufacturers, such as Intel, for up-to-date mem­ory application information. 



Mass production and standardization are the two factors most responsible for 

the wide availability and low cost of microcomputers. Mass-produced micro­

processors, RAMs, interfaces, and discrete components spread expensive 

overhead and development costs among millions of economically priced parts, 

while standardized microcomputer buses encourage the development of pe­

ripherals and computer add-ons. Standardization is an evolutionary process. 

Standards are written and introduced into the electronics industry and market- -

place by electronics organizations and individual companies, but it is ultimately 

the public who decides which standards survive and which die. Many times, 

well-developed standards have failed to take hold while haphazardly defined 

ones have thrived. In the end, it is down-to-earth practicality and utility rather 

than theoretical perfection and years-ahead conceptualization that makes a 

standard desirable. 
A standard's popularity tends to build on itself. As a standard microcompu­

ter bus gets popular, manufacturers develop many peripherals and add-ons to 

meet the market demand, and the market demand increases because of the 

wide availability of products. 
We will discuss a few of the most popular microcomputer buses in this 

section. Data communication standards and common peripherals will also be 

covered. 

276 



THE FORMATION OF STANDARDS 

There are two types of standards: proclaimed and de facto. Proclaimed stan­
dards are standards that are reasoned out and officially established by elec­
tronics associations such as the Institute of Electrical and Electronics Engi­
neers (IEEE) or the Electronic Industries Association (EIA). These organiza­
tions attempt to ''design standards to serve the public interest through eliminat­
ing misunderstandings between manufacturers and purchasers, facilitate inter­
changeability and improve products, and assist the purchaser in selecting and obtaining with minimum delay the proper product for his particular needs."* 
Proclaimed standards tend to be extremely well defined with next to no ambi­
guities or loopholes. The IEEE 488 instrument bus, EIA RS-232C, and IEEE-583 CAMAC interface system are examples of proclaimed standards. 
Standardizing associations are at the mercy of the manufacturers in regard to 
bus implementation, because these organizations do not build computers. 

What we refer to as de facto standards are interface methods that gained 
popularity through widespread use without being officially defined. Whenever 
a manufacturer introduces a new microcomputer bus, a candidate for a de facto standard is generated. Unlike proclaimed standards, no official definition is 
available (unless the manufacturer had the foresight to generate one); periph­
eral device manufacturers do the best they can to figure out' how signals are 
supposed to be used, and use them accordingly. The problem with this interfac­
ing approach is the lack of compatibility of devices designed for the same bus. 
The S-100 microcomputer bus is a prime example of a de facto standard that has caused many compatibility problems. The Digital Equipment Corporation's 
PDP-11 Unibus and LSI-11 bus as well as Teletype's 60 rnA and 20 rnA current­
loop standards are examples of well defined de facto standards. 

MICROCOMPUTER BUS STANDARDS 

In microcomputing's short history, many bus standards have come and gone. In 
many cases the buses were found to be cumbersome and hard to work with, 
and in some cases the company supplying the buses went out of business. A 
few of these standards, however, have become very popular. The S-100 bus 
originally appeared on the MITS Altair computer and subsequently on the 
IMSAI 8080 system. The SS50 bus was originally incorporated in Southwest Technical Products' 6800 system. These and the LSI-11 bus are currently the 
three most popular microcomputer buses. Three buses that are gaining in pop­ularity at this time are the IEEE 488 bus featured in the Commodore Pet, the TRS-80 bus incorporated into the Radio Shack TRS-80 system, and the Apple 

*Quote from the front page of an EIA RS-232C 
1
standard document. 

277 



278 Interfacing to Standard Buses and Peripherals 

II peripheral bus found on the Apple II microcomputer. The high sales volume 

of these systems is aiding the popularity of these buses. 

The S-100 Bus 

The S-100bus is a 100-line bus originally designed to be used with the Intel8080 

microprocessor. Many of the signals are similar in name and function to those 

coming directly out of an 8080. This bus has gained wide popularity because it 

was the first inexpensive microcomputer bus, and hundreds of peripheral 

cards, including memories, terminal interfaces, graphics units, and speech syn­

thesizers, are available for it. 
The S-100 bus is very poorly defined. Until recently there was no official 

definition concerning how the signals were intended to be used. Many compati­

bility problems between S-100 bus processor cards and peripherals are caused 

by interface designers' misunderstandings of bus line functions. Status lines as 

well as control lines are sent along the bus, and many S-100 peripheral cards 

use the status lines as control signals. The greatest incompatibilities arise when 

microprocessors other than the 8080 are used with the bus. A wide selection of 

Z80, 6800, and 6502 processor cards that mimic the 8080's control signals are 

now available, and most of them cannot produce the 8080's signals completely 

correctly. 
This bus takes the onboard regulation approach to power distribution. Two 

ground lines (there would have been more on a professionally specified bus), 

two unregulated 8 V power lines (to supply 5 V regulators), and single unregula­

ted + 16 V and -16 V lines (to supply ± 12 V regulators) are used. 

The S-100 bus has become so popular that an official specification for it is 

being written by the microprocessor standards committee of the IEEE Com­

puter Society. Perhaps this standard will reduce compatibility problems on 

future products. There may be a few slight changes in the final specification, 

but all the signal line functions are quite firmly established and the l/0 cycles 

(Fig. 7-1) will work with most properly designed equipment. (Chapter 4 of this 

text should be referenced for explanations of l/0 terms and methods.) 

Table 7-11ists the S-100 bus signals and their assigned functions and names. 

The SS50 Bus 

Southwest Technical Products Company's 6800 computer system was one of 

the first microcomputers to gain wide popularity. This system is based on the 

6800 microprocessor and follows Motorola's design suggestions very closely. A 

few characteristics that helped make this machine popular were: high reliabil­

ity, low cost, no audible noise (this unit is convection cooled), and good 

software support. 



N
 

.....
. 

co
 

~
 5

0
0

-
l-

-
-
-
-
-
, 

02
 

_j
~ t 

~ ~
~~ 

L
_

_
_

j 
I
L

 
~
 

1 

t 
~
 3

00
 t.

o=
 

5 
~ 

t 
~ 

12
0 
f 5 ~

 t 
~ 

12
0 

r 
P

S
Y

N
C

 
l\

\-
--

--
--

-
~t<

;;2
50 

5~
t 
~ 

1
4

0
-j

 ~
~
t
~
 1
4~
0-
l 

1;
:
:
.
,
:
 t 
>

 5o
o 

_ 
P

D
B

IN
 

l 
O~
t~
 15

0
j 

j-.
-O

 ~t
~ 1

00
~-
--
--

D
l 

S
IX

 I 
B

us
 c

yc
le

 1
 

1 
2 

1 
3 

1 

P
W

R
 

z 

(a
) 

(b
) 

F
ig

u
re

 7
-1

 
S

-1
00

 b
us

 i
np

ut
 a

nd
 o

ut
pu

t 
ti

m
in

g.
 (

a)
 M

em
or

y 
or

 I
/0

 r
ea

d.
 (

b)
 M

em
or

y 
or

 1
/0

 w
ri

te
., 

I 
3 

I 



Table 7-1 .. IEEE 8100 Microcomputer Bus Standard (Proposed) 

Pin # Signal Name and Type Polarity 

+8 volts (B)' Instantaneous minimum greater than 

7 volts, instantaneous maximum less 

than volts, average maximum less 

than volts. 

2 + 16 volts (B) Instantaneous minimum greater than 

14 volts, instantaneous maximum 

less than 35 volts, average 

maximum less than 20 volts. 

3 XRDY (S)"10 positive One of two ready inputs to the 

current Bus Master. The bus is 

ready when both these ready 

inputs are true. 

4 VIo (S)10 negative Vectored interrupt line ~-

5 VI, (S)10 1. 

6 Vh (S)IO 2. 

7 Vh (S)10 3. 

8 VI4 (S)10 " \.. 4. 

9 VIs (S)10 5. 

10 VI6 (S)10 6. 

11 Vh (S)10 7. 

12 Not specified. 

13 
14 
15 
16 
17 
18 STAT DSB (M)"10 negative The control signal to disable 

the 8 status signals2 • 

19 C!C DSB (M)10 The control signal to disable 

the 6 command/control signaP. 

20 UN PROT Not specified. 

21 ss Not specified. 

22 ADD DSB (M)10 negative The control signal to disable 

the 16 address signals4. 

23 DO DSB (M)10 The control signal to disable 

the 8 data outputs signals. 

24 cfn (B) positive The master timing signal for 

the bus. 

25 cp! Not specified. 

26 PHLDA(M) positive A command/control signal used 

in conjunction with PHOLD to 

coordinate Bus Master transfer 

operations. 

27 PWAIT (M) The acknowledge signal to either 

of the bus ready signals XRDY, 

PRDY or to a HLT instruction. 

28 PINTE Not specified. 

29 A5 (M) Address bit 5. 

30 A4(M) Address bit 4. 

280 



Table 7-1 (continued) 

Pin # Signal Name and Type Polarity 

31 A3 (M) Address bit 3. 
32 A15 (M) Address bit 15 (most significant). 33 A12 (M) Address bit 12. 
34 A9(M) Address bit 9. 
35 DOl (M)/EAl (M)/DATAl (M/S) Data out bit 1, Extended address 

bit 1, Bidirectional data bit 1. 
36 DOO (M)/EAO (M)/DATAO (M/S) Data out bit ~' Extended address 

with bit ~' Bidrectional data 
bit ~ (least significant) 

37 AlO (M) Address bit 10. 
38 D04 (M) positive Data out bit 4. 
39 DOS (M) 5. 
40 D06 (M) 6. 
41 D12 (M) Data in6 bit 2. 
42 D13 (M) Data in bit 3. 
43 D17 (M) Data in bit 7 (most significant). 44 SMl (M) The status signal which indicates 

that the current bus cycly7 is an 
op-code fetch. 

45 SOUT (M) The status signal identifying the 
data transfer bus cycle of an OUT 
instruction. 

46 SINP (M) The status signal identifying the 
data transfer bus cycle of an IN 
instruction. 

47 SMEMR(M) The status signal identifying bus 
cycles which transfer data from 
memory to a Bus Master which are 
not interrupt acknowledge instruc-
tion fetch cycle(s). 

48 SHLTA (M) The status signals which acknowledges 
that a HL T instruction has been 
executed. 
that a HL T instruction has been 
executed. 

49 CLOCK Not specified. 
50 GND Signal and power ground. 
51 +8 volts (B) See comments above for pin # 1. 52 -16 volts (B) Instantaneous maximum less than --'-14. 

volts, instantaneous maximum greater 
than -35 bolts, average minimum 
greater than -20 volts. 

53 SSW! Not specified. 
54 EXTCLR negative A reset signal to reset Bus Slaves. 

When this signal goes low, it must 
stay low for at least 3 bus states. 55 Not specified. 

56 
57 

281 



Table 7-1 (continued) 

Pin # Signal Name and Type Polarity 

58 Not specified. 

59 SXTRQ (M) negative Master signal which requests 16 

bit wide slaves to respond by 

asserting SXTN. 

60 Not specified. 

61 SXTN (S) negative The signal generated by 16 bit 

slaves in response to the 16 bit 

request signal SXTRQ. 

62 Not specified. 

63 
64 
65 
66 
67 PHANTOM(B) negative A bus signal which disables normal 

slave devices and enables phantom 

slaves- primarily used for 

bootstrapping systems without 

hardware front panels. 

I, 
68 MWRITE (B) positive The logical negation of PWR and 

SOUT; this signal must follow 

PWR by not more than 30 ns. 

69 PS Not specified. 

70 PORT 
71 RUN 
72 PRDY (S)10 positive See comments above for pin #3. 

73 PINT (S)10 negative The primary interrupt request 

bus signal. 

74 PHOLD (M)10 The command/control signal used 

in conjunction with PHLDA to coor-

dinate Bus Master transfer operations. 

75 PRESET(B)l 0 The reset signal to reset Bus Master 

devices. When this signal goes low, 

it must stay low for at least 3 

bus states. 

76 PSYNC (M) positive The command/control signal identi-

fying BS1. (See bus states comments.) 

77 PWR (M) negative The command/control signal signi-

fying the presence of valid data on 

the DO bus8 • 

78 PDBIN (M) positive The command/control signal that 

requests data on the DI bus9 from 

the currently addressed slave. 

79 A~(M) Address bit ,0 (least significant). 

80 Al (M) Address bit l. 

81 A2(M) " 2. 

82 A6(M) " 6. 

83 A7 (M) " 7. 

84 AR(M) " 8. 

282 



Interfacing to Standard Buses and Peripherals 

Table 7-1 (continued) 

Pin # Signal Name and Type 

85 A13 (M) 
86 Al4 (M) 
87 All (M) 
88 D02 (M)/ AS (M)/DAT A2 (MIS) 

89 D03 (M)/Al9 (M)/DATA3 (M/S) 

90 D07 (M)/A23 (M)/DATA7 (M/S) 

91 Dl4 (S)/DATA12 (M/S) 

92 Dl5 (S)/DATA13 (M/S) 

93 Dl6 (S)/DATA14 (M/S) 

94 Dll (S)/DATA9 (MIS) 

95 Dl~ (S)/DATA8 (M/S) 

96 SINTA (M) 

97 SWO (M) 

98 SSTACK 
99 POC (B) 

100 GND 

Polarity 

positive 

positive 

positive 

positive 

positive 

negative 

negative 

, 13. 
, 14. 
, 11. 

Data out bit 2, extended address 
bit 2, & bidirectional data bit 2. 
Data out bit 3, extended address 
bit 3, & bidirectional data bit 3. 
Data out bit 7, extended address 
bit 7, & bidirectional data bit 7 
(most significant). 
Data in bit 4 & bidirectional data 
bit 12. 
Data in bit 5 & bidirectional data 
bit 13. 
Data in bit 6 & bidirectional data 
bit 14. 
Data in bit 1 & bidirectional data 
bit 9. 
Data in bitff & bidirectional data 
bit 8. 
The status signal identifying the 
instruction fetch cycle(s) that 
immediately follow and accepted 
interrupt request presented on PINT. 
The status signal identifying a bus 
cycle which transfers data from a 
Bus Master to a slave. 
Not specified. 
The power-on clear signal for all bus 
devices; when this signal goes low, 
it must stay low for at least 3 bus 
states. 
Signal and power ground. 

Adapted from table by the IEEE Computer Society Microprocessor Standards Committee. 

283 

A number of manufacturers, including Smoke Signal Broadcasting, 
Midwest Scientific, and Percom, are currently supporting this bus. 

The SS50 bus is actually two buses. A large 50-line bus is used for large 
processor and memory cards, and a smaller 30-line bus (which is a subset of the 
50-line bus) is used for peripheral interface cards. All the address lines are 
removed from the peripheral bus and are replaced by single peripheral select 
lines driven by a decoder circuit built onto the wotherboard. 

The SS50 motherboard is unconventional. It consists of rows of 50 vertical 
Molex-connector pins soldered to the printed-circuit motherboard. In the rear 



284 Interfacing to Standard Buses and Peripherals 

of the 6800 chassis, rows of 30 vertical pins for the peripheral cards run perpen­

dicular to the larger cards. The peripheral selection logic along with a voltage 

regulator is mounted in the center of the motherboard. The whole motherboard 

snaps in and out of the 6800's aluminum case. 

Electrically, the SS50 bus is nearly identical to the 6800 microprocessor's 

signals with a few power supply and baud rate clock frequencies thrown in for 

easy interfacing. 
There are no official numbers for the SS50's pins, and the signal names are 

marked directly on the motherboard. 

Data bus DO-D7 
Address bus A15-AO 

Ground pins 
+8 V unregulated 
-12 v 
+12 v 
Index 
M.RST 
NMI 
IRQ 
UD1 and UD2 
phase 2 
VMA 
R/W 
Reset 
BA 
phase 1 
HALT 
110,150,300,600,1200 

UD3 and UD4 
-12 V, + 12 V, 2 grounds 

Index 
NMI, IRQ 
RSO, RS1 
DO-D7 
R/W 
8 V unregulated 
1200,600,300,150,110 
RESET 
I/0 # 

50-Pin Bus (from left to right) 

-8-bit data bus 
-16-bit address bus 
-3 ground pins are used 

-3 unregulated power pins are used 

-Unregulated; can vary from -12 to -15 V 

-Unregulated; can vary from 12 to 15 V 

-Card index pin. Filled with plastic. 

-Master reset. Connected to front panel switch. 

-Nonmasked interrupt 
-Interrupt request 
-Two undefined lines 

-6800 clock, ~2 
-Valid memory address 
-Read-write line 
-Clean, processed reset signal 

-Bus available 
-6800 clock, %1 
-Processor halt 
-Baud rate output pins 

30-Pin Bus (from back to front) 

-Undefined lines 
-4 power lines 
-Card index pin 
-Interrupt request lines 
-2-bit register select code 
-8 data lines 
-Read-write 
-2 power lines 
-Baud lines 
-Interface reset lines 
-I/0 device select line (decoded by motherboard) 



Interfacing to Standard Buses and Peripherals 
285 

+8 v 

GND 

DO 

D1 
D2 
D3 
D4 
D5 

D6 
D7 

02 
RS 

1/0# 

R/W 

IRQ 
300 b 

..... 

..... 

~ 

r>c 

..... 

,.... 

SS50 bus Interface card 
(30-pin) 

LM 309 K 

In I 5V l Out 

1 Regulator 1 

_=f 
Voo TX 

GNDI data 
Vss 

DO 

D1 6800 Interface Part 
D2 (6850 in this case) 
D3 RX 

data D4 
D5 

.,., 

D6 
D7 

CTS E Control 
DCD RS 

+5Vc - cso 
- CS1 

CS2 
!Interrupt I ~ R/W IRQ Tx Rx 

I 

I I 
I 

Figure 7-2 SS50 bus interface. 

~ 

Serial 
data 
out 

Serial 
~d at a 

I n 

~ 

Interfacing to the 50-pin bus is nearly identical to interfacing to a 6800 
microprocessor bus. A 6800 inktoprocessor application manual can be used as 
a timing guideline. The baud lines can be used whenever data communication frequencies are called for. 

Interfacing to th€ 30-pin bus is even simpler than interfacing to the 50-pin bus because the address decoding is already performed by the motherboard. A serial interface, for example, can consist of just two parts: an ACIA and a 
voltage regulator. Figure 7-2 illustrates an SS50 interface. 

The LSI-11 Bus 

The Digital EquipmentCorporation's LSI-11 series of microcomputers is based on the PDP-11 minicomputer system that preceded it. The LSI -11 is very much like a PDP-11 in its register and memory operational formats, and the LSI-11 



286 

Bus master 

Supply address to slave: 
1. Assert address on BDAL lines 
2. Assert BBS7 if address is in 

28-32 K memory 
3. Assert BSYNC 

Request data from slave: 
1. Remove address from BDAL lines 

2. Remove BBS7 
3. Assert bus data input (BDIN) 

Accept data: 
1. Input the data on BDAL lines 

2. Negate BDIN 

End bus cycle: 
1. Negate BSYNC 

Interfacing to Standard Buses and Peripherals 

Bus slave 

Decode address: 

/ 1. Store the address 

3 Send data to slave: 
1. Place data on B DA L I ines 

~ 2. Assert bus reply (BRPL Y) 

~ Complete transfer: 
6 1. Terminate B RPL Y 

Figure 7-3 LSI -11 data input cycle (DATI cycle). 

can even be equipped with an extended instruction set and floating-point in­

struction set option. The LSI-11 bus (sometimes called the Q-bus) is. quite a bit 

different from the PDP-11's Unibus, however. The general philosophy of the 

Unibus remains the same, but the number of bus lines has been greatly reduced 

through the use of a multiplexed address and data bus. 

The LSI-11 bus is an asynchronous, 16-bit transfer-oriented bus·. Data 

transfer is based on handshaking between devices, and no master clock lines 

are used. This feature allows a wide range of different-speed peripherals to be 

placed on the bus. The bus also has a number of sophisticated features not 

normally found in a microcomputer. A power available (BPOK H) and de 

power available (BDCOK H) line from the power supply are meant to automat­

ically reset the processor as power is applied and to initiate a power failure 

routine (save registers in nonvolatile memory such as core) when the power 

gets too low. This power fail-restart is a standard feature on most large main­

frames. 
The LSI-11 bus uses central voltage regulation. Regulated +5, + 12, and 

-12 V are available, and 8 ground pins are allocated to each card. 

The LSI-11 system uses very sophisticated bus communication methods, 

card mounting methods, signal pin labeling, and card designs that are carried 

down from DEC's larger computers. Anyone who is us~d to working with DEC 

hardware will feel comfortable with the LSI-11. The 800-page Microcomputer 

Handbook, published by DEC, is a good source of information concerning 

DEC design philosophy and LSI-11 particulars. 

Figure 7-3 shows a typical LSI-11 bus input transfer. The master device 

(processor or DMA device) is reading data from a slave device (memory or 

input interface). The address and data are sent over the same set of signal lines 



Interfacing to Standard Buses and Peripherals 

Interface 
management 

r 

Digital 
meter 

Talker, 
listener 

t 

DAV 

NDAC 

II 

NRFD I I 
II II 

Pulse Microcomputer· 
generator system 
Listener Talker, listener, 

controller 

t ~ 
Figure 7-4 IEEE 488/Commodore PET bus. 

EOI 
REN 
SRQ 
ATN 
IFC 

} 

Data byte 
transfer 
control 

8-bit data bus 

287 

(BDAL0-15). The handshaking on the bus insures that data is received, but it also slows down the data transfer. The LSI-11 bus is therefore not a very fast communication bus. 

The IEEE 488 Bus 

The IEEE 488 bus was initially designed to be an electronics instrument inter­face bus. This bus has been used extensively by electronics instrument manu­facturers, and Hewlett-Packard makes extensive use of it in computers as well as instruments. The IEEE 488 bus is sometimes called the HPIB (Hewlett­Packard interface bus). 
The IEEE 488 bus is of considerable interest in the microcomputer field because of its use in the Pet microcomputer by Commodore. This microcompu­ter is destined to become one of the most popular microcomputers, and many peripherals will eventually be built around it. Interface users should be cau­tioned that the 488 bus interface handshaking protocol is patented by Hewlett­Packard and a license is required to manufacture devices incorporating it. The 488 bus is an asynchronous, handshaking-oriented bus and uses com­munication protocols that are similar to the LSI-11 bus. Instead of master and slave devices, however, "talkers," "listeners," and "controllers" are used. Devices can each contain talker or listener circuitry, and one controller is enough for a whole system. Talkers send data to listeners under control of the controller. A microprocessor card can act as a controller, talker, and listener and can send data to listener-controlled pulse generators or read data from a listener-controlled digital meter, for example~ Figure 7-4 illustrates a typical IEEE 488 bus configuration. 



288 

252423 

26 27 28 

Interfacing to Standard Buses and Peripherals 

1/0 slot 

Top view 

--+- Rear of cabinet 
3 2 1 

48 49 50 

Address lines AO-A15 pins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 

where AO = pin 2 

Data lines DO-D7 pins 49, 48, 47, 46, 45, 44, 43, 42 

where DO= pin 49 

Pin Signal Pin Signal 

1 1/0 SELECT 30 IRQ 

18 R/W 31 RES 

19 n.c. 32 INH 

20 1/0 STROBE 33 -12 v 
21 RDY 34 -5V 
22 DMA 35 n.c. 

23 INT OUT 36 7M 

24 DMA OUT 37 03 

25 +5 v 38 Phase one 

26 GND 39 User one 

27 DMAIN 40 Phase zero 

28 INT IN 41 Device select 

29 NMI 50 +12 v 

Figure 7-5 Apple II 1/0 slot signals. 

The Apple II Bus 

The Apple II microcomputer does not have a full:-featured bus as do the LSl-11, 

SS50, and S-100 machines. Because this microcomputer is. essentially a one­

card microcomputer with built-in memory, keyboard interface, audio interface, 

and video generator, it does not really need one. A row of eight 50-pin connec­

tors for external peripherals is incorporated into the system card, however, to 

add expandability to the system. Printers, disk drives, and other peripherals 

can be interfaced to the Apple II using these interface slots. Figure 7-5 shows 

the pinout for an 1/0 slot. 
Interfacing to the 1/0 slot is quite simple. Synchronous bus transfers using 

16 address, 8 data, and a few control lines are performed in typical micropro­

cessor fashion. The 1/0 slot closely resembles the 6502's bus that drives it. An 

interface can easily be built by reading the signal descriptions and using the 

proper signals to perform the required l/0 functions. 

Power lines -The Apple II can supply small amounts of +5, -5, + 12, and 

-12 V for interface use. In large peripherals it is advisable to 

have a separate power supply, however, because current is lim­

ited. 



Interfacing to Standard Buses and Peripherals 
289 

Address lines 

Data lines 

Device select 

DMA IN and DMA OUT 

INT IN and INT 0 UT 

I/0 select 

I/0 strobe 

-AO-A15; a 16-bit address becomes valid on these lines 300 ns 
after the beginning of theft1 clock. Each address line can drive 
16 TTL loads. 

-DO-D7; during write cycles data is available 300 ns after the 
beginning of the fJ2 clock. Data must be ready 100 ns before the 
end of the #2 clock during reads. These lines can drive 8 low­
powered Schottky loads. 

-A read or write to one of 16 peripheral addresses assigned to a 
slot will assert this signal during clock ~2. Up to 4 standard TTL 
loads per I/0 socket are allowed. 

-This direct memory access control output should be driven with 
an open-collector driver. 

-A DMA priority system uses these lines in a daisy-chain fash­
ion. DMA IN accepts signals from higher priority devices, while 
DMA OUT sends to lower priority ones. 

-This line can be pulled low by an open-collector driver to inhibit 
all internal ROMs. 

-Interrupt daisy-chain lines that follow the same convention as 
the DMA lines. 

-This line will go low during clock fJ2 if data is written to or read 
fr'om any of the 256 addresses assigned to the peripheral connec­
tor. 

-This line goes low during ~2 if memory locations C800 to CFFF 
are accessed. 

-This line will halt the microprocessor when driven low with an 
open-collector driver. This line should be submitted during ~1 
time. 

-Goes low when the keyboard's reset button is pushed. 
-This line means read when high and write when low. 
-Microprocessor "phase zero" clock. 
-Complement of ~0. 
-General-purpose 7 MHz clock. 

Further information concerning the ·Apple II bus can be obtained from the 
A~ple II reference manual. Literature pertaining to the 6502 is also helpful when working with this bus. 

The TRS-80 Bus 

The TRS-80 microcomputer, sold by Radio Shack, is the best-selling micro­computer in the world. Its wide success is attributed to its low cost, vast media exposure, and large distribution network. The TRS-80, like the Apple II, is basically a single-board microcomputer, but an expansion bus connector is built into the TRS-80 instead of many peripheral interface slots. This 40-pin bus is designed to plug into the nearest peripheral, which in turn plugs into yet another peripheral. The bus therefore daisy~chains itself between peripherals. Figure 7-6 depicts the TRS-80 bus pinout. Because the TRS-80 uses dy­namic memory and the Z80 microprocessor's automatic RAM refreshing sys­tem, bus lines for row and column select lines on dense 16K RAMs are pro­vided. 



290 
Interfacing to Standard Buses and Peripherals 

From back of case 
Odd 3 ••••••••••••••••••••••••••••••••••••••••••••••••• 37 39 

I~ ~ ~ ~I 1up 
Even 2 4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 38 40 

Address pins AO-A 15 
(Processor driven) 
Data pins DO-D7 
(Bidirectional) 

Pin 
1 
2 
3 
8,29,37 
12 
13 
14 
15 
16 
19 
21 
23 

33 
39 

Signal 
RAS 
SYSRES 
CAS 
GND 
OUT 
WR 
INTAK 
RD 
MUX 
IN 
INT 
TEST 

WAIT 
+5 

25,27,40,34,31,35,38,36, 11, 17,4,9,5,6, 10,7 

where AO = pin 25 
30,22,32,26, 18,28,24,20 

Function 
Dynamic memory row address strobe output 

System reset. High during system operation 

Dynamic memory column address strobe output 

Ground lines 
Output write strobe (for peripherals) 

Memory write strobe 
Interrupt acknowledge output 

Memory read strobe 
Dynamic memory multiplexer control output 

Input read strobe (for peripherals) 

Maskable interrupt line 
A logic zero externally applied tristates address, data and 

lines 13, 15, 19, 12, 1, 3, 16 

Cause processor to wait for slow memory 

Power supply output 

Figure 7-6 Radio Shack TRS-80 bus signals. 

SERIAL DATA 
COMMUNICATION STANDARDS 

I 

Although most peripherals such as terminals, line printers, and modems are 

designed to transfer characters of data in the form of the American Standard 

Code for Information Interchange (ASCII), data is rarely sent to these periph­

erals as parallel bytes. Due to the slow-speed nature of these devices and the 

long cable requirements for remote peripherals, serial data transfer is used 

almost exclusively. Two very popular standards are used in nearly every com­

puter terminal that uses serial communication: the EIA RS-232C standard and 

the 20 rnA current-loop standard, the latter of which is a de facto standard that 

gained popularity due to the widespread use of Teletype printers. 

The RS-232C standard is a more official standard derived from the 

C.C.I.T.T. telecommunications standard. Most computer terminals have inputs 

for both RS-232C and current-loop serial 1/0; interface cards that provide 

either or both standards are widely available. 

The EIA RS-232C Standard 

The EIA RS-232C standard defines the interfacing between data terminal 

equipment and data communications equipment employing serial binary data 

interchange. Electrical ·signal and mechanical aspects of the interface are well 



Interfacing to Standard Buses and Peripherals 291 

Table 7-2 RS-232C Interface Signals 

Pin Description 

Protective Ground 
2 Transmitted Data 
3 Received Data 
4 Request to Send 
5 Clear to Send 

6 Data Set Ready 
7 Signal Ground (Common Return) 
8 Received Line Signal Detector 
9 (Reserved for Data Set Testing) 

10 (Reserved for Data Set Testing) 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

Unassigned (See section 3.2.3) 
Sec. Rec'd. Line Sig. Detector 
Sec. Clear to Send 
Secondary Transmitted Data 
Transmission Signal Element Timing (DCE 
Source) 

Secondary Received Data 
Receiver Signal Element Timing (DCE Source) 
Unassigned 
Secondary Request to Send 
Data Terminal Ready 

Signal Quality Detector 
Ring Indicator 
Data Signal Rate Selector (DTE/DCE Source) 
Transmit Signal Element Timing (DTE Source) 
Unassigned 

specified. The complete RS-232C interface consists of25 data lines. This would 
seem to be enough signals for a complex parallel communication line, but many 
of the 25 lines are very specialized and a few are undefined. Most computer 
terminals only require from 3 to 5 of these lines to be operational. Table 7-2 briefly describes all 25 of the defined lines. 

Figure 7-7 illustrates an RS-232C data communications system. Because 
RS-232C was originally intended for data communications equipment, a few 
lines must be swapped between a computer and terminal if no modem or other data communications equipment is used. These wires are swapped within the cable connecting the two devices. This line is called a null modem cable. 

The five signals shown in Fig. 7-7 are the most commonly used RS-232C 
signals. Bidirectional data lines are provided (transmit and receive data) and a handshaking system consisting of the request to send and data set ready line are used to control data transfers. 



292 

Computer 

~ 
~elephone lines 

r--.: -
Signal ground 

Transmit data Modem 

Request to send 

Receive data 

Data, set, ready 

Standard data communication 

Baud rates: 50, 75, 110, 150, 

300,600,1200,2400,4800, 
9600, 19200 

(a) 

Interfacing to Standard Buses and Peripherals 

~ ~ ·,. 

Signal ground 
Modem Transmit data Terminal 

Request to send 

Receive data 

Data set ready 

j- Maximum 50 feet-j 

Signal voltages: 
Minimum +5 V = 1 -5 V = 0 

Max +15V=1 -15V=O 
*At interface point 

Computer 1 
Ground 1 Terminal 

Transmit data Transmit data 
2 
3 
4 

5 
8 
6 

22 
20 

7 

2 

Receive data X Receive data 3 

Request to send Request send 4 

Clear to send J I Clear send 5 

Carrier detect Carrier detect 

Data set ready 
8 

Data set ready 
6 

Ring indicator J I Ring indicator 

Data terminal ready Data terminar ready 
22 
20 

Signal ground 7 

(b) 

Figure 7-7 RS-232C data communications. (a) RS-232C interface with data communi-

cation equipment. (b) Direct-to-computer RS-232C wiring. 

The RS-232C electrical specification calls for a number of voltage and 

current limitations: 

1. Drivers must be able to withstand open or short circuits between any 

pins in the interface. 

2. Voltages below -3 V shall be called mark potentials; above 3 V, 

called space voltages. 

3. Maximum transfer rate is 20,000 bits per second. 

4. The load impedance of the terminator side of the interface must be 

between 3000 and 7000 ohms, and not more than 2500 pF. 

The 20 rnA Current-Loop Standard 

This standard is much simpler than the RS-232C interface standard and consists 

of only four basic wires: transmit plus, transmit minus, receive plus, andre-



Interfacing to Standard Buses and Peripherals 

Computer + 

Transmit :t-

Transmit-

20mA 

20mA 
~ 

20mA ...,.__ 

20mA 
~ 

Data 

Data 

Figure 7-8 20 rnA current-loop interface. 

293 

Terminal 

Receive+ 

Receive-

ceive minus. As Fig. 7-8 illustrates, four lines form two 20 rnA current loops. Logicalls and Os are sensed by opening and closing the current loop. When the current loop was first used in teletypewriters, the loop was connected and broken by actual rotating switch contacts within the teletypewriter sending the data, and the 20 rnA signal drove a print magnet in the receiving teletypewriter. Today, most 20 rnA current loops electronically mimic the opening switch and magnet arrangement. 
It is important to note where the current is generated. Voltage is applied to a current-limiting resistor at the data sending end (the end with the switch). Voltage is dropped across current-limiting resistor RT and also across load resistor RL. The values of the transmit resistor and positive voltage applied to it must provide a 20 rnA current flow. Although a low-voltage and a low-value resistor can be used, a high voltage and a high-value resistor are usually cho­sen. One of the big advantages of a current-loop communication system is that wire resistance has no effect on a constant-current communication loop. Volt­age does not drop across it as it does in a voltage-oriented interface such as RS-232C. For this advantage to be realized, however, a constant-current source, instead of just a resistor and voltage, are needed to generate the 20 rnA. A high-voltage and a high-value resistor are less affected by line resistance variations and essentially act as a near-constant current source. 

In many s~ystems a mixture of EIA RS-232C interfaces and 20 rnA current­loop interfaces is unacceptable. Standardization to the more modern RS-232C standard is usually the recommended course of action. This conversion can be simply performed by using an RS-232-level receiver to drive a switching tran­sistor on the transmit end, and an optoisolator and load resistor to drive an RS-232C driver on the receive end. 



PARALLEL DATA 
COMMUNICATIONS STANDARDS 

Parallel data communications over microcomputer buses is satisfactory for 

short interconnecting distances within microcomputer enclosures, but parallel 

communication over long distances is often required as well. High-speed disk 

drives, tape transports, and even powerful terminals outrun the common serial 

interface standards. It would seem appropriate to start describing the common 

standardized parallel interfaces C;tt this point; but the fact is, there are no com­

mon standardized parallel interface formats. This situation has been brought 

about by (1) the lack of a popular device that uses a parallel interface from 

which a de facto standard might have been derived, and (2) the lack of an 

industry standard such as EIA RS-232C. 

Most parallel communications buses do follow a general pattern, however. 

There are usuall-y two parallel data buses: an input and an output. There are 

also handshaking signals indicating when data is ready and when it can be sent. 

The input/output section of this text describes typical parallel data transfers, 

and the explanations given apply to most parallel interfaces. 

MATCHING NONSTANDARD 
TO STANDARD INTERFACES 

A completely standardized I/0 system can improve a system's flexibility and 

expandability enormously. If all microcomputer inputs are designed to handle 

RS-232C, for example, off-the-shelf peripherals can be bought, plugged in, and 

operated without any redesign or new interface work. In a completely I/O­

standardized microcomputer system, all the peripherals must be converted to 

the chosen standard as well (with the exception of high-speed system devices 

such as disks and tapes). This procedure adds versatility to the peripherals as 

well as the overall system, for the peripherals then become compatible with 

other systems using the same interface standards. 

Parallel-to-Serial 

Because there are no common parallel standards, it is usually necessary to 

convert devices to serial data communications standards. A keyboard that is 

connected to a parallel interface, for example, should be converted to a serial 

device with an RS-232C driver. Converting to serial standards has the added 

benefit of increasing equipment mobility. A parallel keyboard requires about 

ten lines, for instance, while an equivalent serial keyboard requires but two. It 

is simpler and less expensive to route a 2-conductor wire than a 10-conductor 

ribbon cable. Figure 7-9 illustrates a sample parallel-to-standardized-serial con­

version. 
294 



Interfacing to Standard Buses and Peripherals 

-- ·--- --------.., I Computer terminal 1 8 d 1· I 
I 
I 
I 
I 
I 

ata mes 

I I ill L __ 
Key press strobe 

I 
I 
I 
I 
I 
I 
I 

I Keyboard I --- ...., 

~ Display 

~ unit 

~ ~ 
~ L ___________________ l 

(a) 
rr-------------------~ 

Keyboard UART I 

Data Serial 
in out 

'---------~ Trans Key press strobe reg. 

Display 
unit 

load 

Data Serial 
out input 

Data 
New received Clocks 
data L _______ 

1 
ready 

I 
I 
I 

(b) 

8 data lines 

New data ready 

UART 

Serial Data 
in out 

Data 
received 

Serial Data 
out in 

Trans. reg. load 
Clocks 

8 data 

Figure 7-9 Conversion of a nonstandard parallel terminal. (a) Nonstandard parallel 
interface. (b) Standardized serial terminal interface. 

Interfacing Common Peripherals 

295 

Microcomputer 

Computer 

Input data 

Key pressed 

Output 
data 

New data ready 

The number of types of peripherals a computer can have is nearly limitless, ranging from light pens to joysticks. With nearly all of these peripherals, how­ever, there is usually some way to put the input into a standardized form. Table 7-3 lists some common peripherals and offers suggestions concerning possible interface methods. 



Device 

Terminal 

Disk drive 

Magnetic 
tape drive 

Cassette 
tape drive 

Image sensor 

Plotter 

Table 7-3 Popular Device Interface Methods. 

Purpose 

Data entry and read-back. 

Simple terminals have 

alphanumeric capability 

only. Complex terminals 
have graphics. 

High density, low access 

time data storage. 

Very high density, 
sequential data storage. 

Medium density, sequen­

tial data storage. 

Device that converts 

images into a computer­

readable form. 

Hard copy device that 
draws images, graphs, and 

alphanumerics with a mov­

ing pen. Line drawings 

are generated with 
plotters. 

296 

Interface 

Serial interfaces of the 

20 rnA or RS-232C type are 

adequate in most cases. 

Slow speed 110 to 1200 

baud rates are usually 

necessary in hard-copy 

terminals, while video 

terminals can usually 
accept 9600 to 19,200 baud. 1 

Due to the high data trans­

fer rates and disk drive 

control functions, unique 

parallel interfaces are 

practically the only way to 

interface these devices. 

Like the disk drive, high 

data transfer rates and 

control functions necessi­

tate the use of parallel 

interfaces. 

Cassette data transfer 

rates are low enough to 

allow serial data trans­

fers. Control functions 

require either the use of 

reserved characters that 

are sent over the serial 

line, or discrete control 

lines. 

Because data is usually 

scanned out in these 
devices, serial interfaces 

are adequate, but RS-232 

is much too slow. Spe­

cial drivers, receivers, 
and lines that operate 
in the MHz range are 
required. 

Due to the mechanical 
motion involved, plotters 

require low data transfer 

rates. Serial data trans­

missions over RS-232C lines 

is often used. 



Device 

Data tablet 

Joystick 

Light pen 

Speech 
synthesizer 

Card 
reader/punch 

Table 7-3 (continued) 

Purpose 

A device that translates 
operator pen motions into 
computer data. Data tab­
lets are essentially the 
opposite of a plotter. 

A control stick with X 
and Y axes of control. 
Two potentiometers con­
nected to a gimbal are 
usually used. 

A device that trans-
lates operator pen move­
ments on a CRT into com­
puter data. Similar to 
a data tablet in function. 

A device that mimics 
human speech under com­
puter control. 

A unit that reads or 
punches 80-column "IBM 
cards.'' 

297 

Interface 

Data tablets can generate 
low- or high-speed data, 
depending on their operation. 
Serial data transfer for 
"end point only" data 
tablets is adequate, while 
parallel transfer is 
required for continuous 
sample models. 

Joysticks are basically 
analog devices and require 
AID conversion before data 
can be used. Analog data 
transmission to an inter­
face at the computer is 
popular, but conversion at 
the joystick and serial or 
parallel transmission is 
better. 

Conversion circuitry is 
required at the light pen. 
Data can be sent serially. 
Light pens are often part 
of terminals and blend into 
the terminal's serial or 
parallel communication 
format. 

There are two basic types 
of generators and inter­
faces. Computer-controlled 
waveform generators require 
parallel interfaces due to 
their high data rate. Word­
or phoneme-oriented gener­
ators require simpler com­
mands and serial interfaces 
can be used. 

Most card readers transfer 
data slowly enough for a 
serial RS-232C interface 
to handle. Vacuum-actuated 
high-speed readers require 
parallel interfacing due 
to high data rates and many 
control functions. 



Device 

Line printer 

Table 7-3 (continued) 

Purpose 

A hard-copy device that 

prints alphanumeric copy 

on a line rather than a 
character basis. 

298 

Interface 

Line printers with print 

rates up to about 600 
lines per minute can be 

interlaced serially at 
RS-232C data rates. High­

speed line printers re­

quire parallel interlace. 

Nearly all commercial line 

printer interlaces are 
parallel in nature. 



The design is finished. All interface components have been chosen, the circuits 
have been carefully planned following the design rules, and timing diagrams 
and logic design have been double-checked to insure that the circuit will work. 
The final steps of system hardware development must now be taken: fabrica­
tion and testing. Even logic circuits built in a haphazard manner will probably 
work, especially if good design practices were· followed and low-speed logic 
such as TTL is used. A little care in the layout and construction, however, will 
vastly improve the reliability, testability, and appearance of the final product 
and is certainly preferable to haphazard construction. 

For a small single-board microcomputer system, circuit board layout, en­
closure selection, and external interface wiring must be performed. With larger 
multicard systems, a universal cardmounting method, commonly known as a 
backplane or motherboard, must also be chosen. A topdown approach should 
be taken in large systems. The card mounting method and enclosure must first 
be selected, followed by logic card layout and construction. In many cases it 
will be necessary to iterate the enclosure and board layouts a few times to come 
up with the optimum system configuration. A 10-card backplane may be ini­
tially chosen and eventually changed to a 20-card backplane to accommodate 
all circuit modules, for example. It is therefore a good idea to have fairly firm 
board layouts and enclosure selection before parts procurement. 

299 



CHOOSING AN ENCLOSURE 

The type of enclosure ultimately chosen for a microcomputer system is depen-' 

dent on system complexity, system application, and component constraints. , 

The Integrated Enclosure 

A metal or plastic box containing one circuit card, a built-in power supply, and 

possibly a few status lights' switches' or a keyboard is a popular enclosure for 

single-card microcomputer systems. Figure 8-1 depicts such an enclosure. A 

single circuit board is mounted in the box with spacers, and a power supply is 

mounted next to it. There are a few important features to note about this box. 

1. Five spacers(one in each corner and one in the middle of the circuit 

card) are used to hold the card in position. It is important that the 

card be rigidly supported and that the exposed conductors on the 

back of the card do not touch the metal case. 

2. Connectors are used on all board-to-case and board-to-power-supply 

connections. This feature allows easy board removal and installation 

for servicing. 

3. The power supply is mounted rigidly on spacers; care is taken to 

make sure the parts will remain mounted. Power supplies contain 

many big components such as resistors and transformers that require 

more than solder to keep them in place. Lockwashers are used on the 

transformer, and capacitor clips are used on the filter capacitors. 

4. A fan keeps the circuit cool. This fan is optional if enough air circula­

tion can be generated by ventilation slots. It is important to remem­

ber that even low-power devices can build up heat in a sealed enclo­

sure. There should always be some sort of ventilation. Another point 

of interest concerning the power supply is the direction of air flow. 

The air flows over temperature-sensitive logic circuitry before cool­

ing the power supply. Power supplies are less sensitive to heat and 

tend to preheat, the air if air is used to cool them before it reaches the 

logic. 

5. Cables and wiring are protected against strain. Individual wires are 

bound with cable ties and the power ,cord has a strain relief. 

6. Components are mounted only on the bottom of the enclosure. This 

allows, the cover to be taken off for testing and servicing without 

being inconvenienced by dangling wires. If parts must be mounted 

ion the cover, it is wise to use a connector or at least to leave a long 

length of wire so the cover can be set aside. 

300 



w
 

0 .....
 

1/
0 
~
 

/

S
ta

nd
ar

d 

~
 

..
.-

--
: 

co
nn

ec
to

rs
 
~
 

C
a
p

a
c
it

o
r-

rr
-

-
•u

 

cl
am

p 
T~
 ~
n~
 ~
T 

.L
u 

L
L

 
0 

IIII
I 

H
ot

 
ai

r 

E
le

ct
ro

m
ag

ne
ti

c 
sh

ie
ld

 (
w

it
h 

sl
ot

s)
 

R
es

et
 b

u
tt

o
n

 

T
op

 v
ie

w
 

(J
 

@
 

o 
o 

oJU
 

I 
I 

I 
\ 

tt
 

7 
I 

I 
\ 

R
es

et
 

E
rr

or
 R

un
 .

Po
w

er
 

F
ro

nt
 v

ie
w

 

F
ig

ur
e 

8-
1 

II
\\

 
I I 

I 
O

n/
of

f 
sw

it
ch

 

In
te

gr
at

ed
 e

nc
lo

su
re

. 

C
ov

er
 

/ 

-

I 
I 

R
es

et
 

E
ri

·o
r 

R
un

 
P

ow
er

 

3
-0

 v
ie

w
 

1/
0 

pl
ug

 

~ 
m

 
m

 
~
 

@
 

L
..

T
 

P
ow

er
 

~
 

S
id

e 
vi

ew
 



302 Interface Layout and Construction 

7. A metal shield between the power supply and the circuitry protects 

analog components on the circuit card from power supply noise. This 

is particularly important when switching-type power supplies ar~ ' 

used. 

A few additional ideas concerning integrated enclosures should be noted, 

In many cases integrated enclosures will be sitting next to a microcomputer 

user. Convection cooling or a low-noise fan should be used to cut down on 

annoying fan noise. Fans such as Rotron's Whisper Fan are ideal in these 

applications. When a keyboard is incorporated into an enclosure, it is some­

times a good idea to put the on-off switCh and reset button (in the case of a 

reset-and-go microcomputer) on the back of the enclosure. It may be more 

difficult to turn the microcomputer on and off, but the risk of accidentally 

resetting the microcomputer or turning it off in the middle of a program while 1 

reaching for the keyboard is eliminated. 

Finally, safety should be considered. A three-terminal power plug should 

be used and the case should be grounded to the protective ground. Any high­

voltage points should be insulated or marked, and the cover should be firmly 

fastened. 

Modular Card Cages 

Most large computers and many microcomputers use a modular card cage to 

house system logic. Figure 8-2 illustrates the modular card cage. In this case, 12 

connectors are provided for plug-in cards. The connectors are wired in a 

parallel-bus format (in this case, the S-1 00 bus is being used). A separate circuit 

card, called a motherboard, is used to carry power and signals to the connec­

tors. Motherboards are available for most of the common standard buses 

(S-100, SS50, IEEE 488). 
Most of the features that applied to the integrated enclosure also apply to 

the modular card cage. The main difference is the way in which cards are 

mounted. Each card simply slides into place and is usually held in by the 

connector's insertion force. Because this force is substantial on large cards, 

small levers that aid in inserting and pulling the card are often incorporated. 

Figure 8-2 shows a card with built-in card extractors. 

Rack Mounting 

Before microcomputers were invented, computers took up so much volume 

that integrated enclosures and modular card cages were not even considered in 

the enclosure decision. One of the largest available enclosures of the times, the 

19-inch relay rack (used in telephone switching and industrial equipment), be­

came the de facto standard for computer construction. Figure 8-3 illustrates a 

19-inch relay rack. 



w
 

0 w
 

C
ir

cu
it

 
ca

rd
s 

P
ow

er
 

1
/0

 c
o

n
n

e
ct

o
rs

 

S
pa

re
 

co
nn

ec
to

rs
 

M
ic

ro
co

m
p

u
te

r 
bu

s 
4

4
-2

0
0

 li
ne

s 

M
o

d
u

la
r 

ca
rd

 c
ag

e 

T
o

p
 V

ie
w

 

F
ig

ur
e 

8-
2 

~
V
e
n
t
i
l
a
t
i
o
n
 

sl
ot

s 

R
es

et
 

@
 

In
te

ri
o

r 

A
 m

od
ul

ar
 c

ar
d 

ca
ge

. 



304 

.ft. 

u 
Lift-in 
swinging 
doors 
(optional) 

f 

l. 

Interface Layout and Construction 

61" 

Peripheral 
hardware 

00000 
0 DODO 

Figure 8-3 19-inch relay-rack mounting system. 

Rack-mounted 
slides for easy 
servicing 

Floppy disk system 

Mounting rails 
for 10-32 screws 

Modular card 
cage system 

Microcomputer 
system 

The relay rack still offers some advantages not found in other enclosures. 

Many peripherals are designed to be mounted directly into relay racks, and a 

microcomputer or minicomputer system along with a rack-mounted disk, tape 

drive, and modular power supplies can fit in one nice enclosure. Power supplies 

are traditionally mounted on a separate relay rack plate (usually at the bottom 

of the rack to lower the center of gravity). 

The relay rack also increases serviceability. Rack slides allow circuitry to 

pull out of the rack like drawers out of a filing cabinet. 

Custom Enclosures 

In some cases the enclosure choice does not have to be made at all because the 

enclosure already exists. Mounting a small microcontroller inside another piece 



Interface layout and Construction 
305 

of equipment is a good example of this situation. In these cases you must do the best you can to follow good mounting, wire securing, and noise shielding prac­tices. 
If an existing enclosure must be used, and the environment inside that enclosure is not well suited to microcomputer circuitry, an integrated enclosure housing the microcomputer circuitry should be built into the existing enclosure. This "box inside a box" approach can greatly increase reliability. 

CHOOSING A CONNECTOR SYSTEM 

Virtually no microcomputer is a "sealed box." There are always connections to peripherals and external power. As systems grow more complex, the number of interconnections increases. It is therefore important to choose a good, stan­dardized connector system for external as well as internal microcomputer con­nections. 
The crudest approach to interconnections, aside from soldering wires di­rectly into place, is the direct card-connector method. Wires from external peripherals, as well as card-to-card connections not connected on the mother­board, are terminated with connectors that plug into the tops of cards or into sockets on the cards. Holes in the ba,ck of the enclosure are used to pass cables leading to peripherals. Two problems with this method include strain on the cards caused by external cable tension, and cable clearance problems for large peripheral cables. A clamp at the back of the enclosure is often used as a strain relief, as shown in Fig. 8-4. 

To peripherals CINCH 
DB-25 
connectors 

Circuit assembly 
corporation 
DIP header and 
ribbon cable 
(Plugs into DIP 
IC socket) 

~~~o~ls 
........

Figure 8-4 Connector systems. (a) Simple, inexpensive connector system. (b) Rugged, professional connector system.

306
Interface Layout and Construction

More sophisticated is the use of enclosure-mounted connections. Standard­

ized l/0 connectors such as the DB25/EIA RS-232C connector are mounted to

the back of the microcomputer and separate two-sided connector cables are

used to connect cards to the connectors. Ribbon cable is used to keep cables

organized and flat, which allows good cover clearance. Figure 8-4(b) shows the

ribbon cable connector method.
Cables used to connect microcomputers to external devices are one of the

weakest links in a microcomputer system. The use of quality wire with strong

insulation and firmly mounted plugs and sockets helps reduce problems in this

area. Strain reliefs should be used on cable ends to keep tension off actual

electrical connections.

CIRCUIT CARD LAYOUT AND CONSTRUCTION

A few tradeoffs must be made when choosing a circuit board for a logic circuit.

Ruggedness, ease of servicing, and packaging density requirements must be

weighed and the best card for the job chosen. Let's turn now to look at a few

common circuit board construction techniques and their advantages and disad­

vantages.

Circuit Boards

Double-sided circuit boards are the most common production-type logic cards.

These cards are usually made of fiberglass-epoxy with copper-clad printed

circuitry on both sides of the card. Plated throughholes connect the circuit

paths between the two sides. Generally, double-sided circuit cards are laid out

with parallel conductors running in one direction on the top of the card and in a

perpendicular direction on the bottom of the card. This simplifies layout and

helps avoid crossover problems. If a data bus or single line must cross another

bus, it can do so by "jumping over it" on the opposite side of the card.

Single-sided printed circuit boards are seldom used in digital logic due to

the crossover problem and the complexity of logic circuits. It takes jumpers to

jump over other circuit etches, and the installation time is prohibitive on large

circuits. Layout is also trickier with single-sided boards.

Single- and double-sided circuit boards have the advantage of low cost,

relatively simple fabrication, and easy servicing, because conductors are ex­

posed. The major disadvantage of single- and double-sided boards is packaging

density. Room must be left around ICs for data buses and power buses, and

only about a quarter of a circuit board's area is covered by components.

Multilayer Boards

The multilayer board is a stack of very thin printed circuit boards, each with a

circuit pattern on one side. The multilayer board overcomes most of the disad­

vantages of double- and single-sided circuit boards. Packaging density can be

Interface Layout and Construction 307

increased, because many circuit levels are available for complex interconnec­
tions, and whole layers of a multilayer board can be dedicated to ground and
power planes.

While the multilayer board overcomes packaging density problems, it
creates two new problems. Multilayer boards are expensive to produce due to
the precision required to fabricate them, and circuit tracing and repairing are
very difficult due to the hidden layers between the board.

Wire-Wrap Boards

Wire-wrap boards consist of firmly mounted integrated circuit sockets or
socket pins inserted into a fiberglass board material. Square, plated (or tinned)
posts protrude from the back of the card. Thin (typically 30-gage) silver-plated
wires are wrapped around these posts (about 5 to 10 times) to make intercon­
nections. The height of the posts determines how many wires can be wrapped
to it. A post capable of holding three wires is called a three-level wire-wrap
post.

The general first impression of wire-wrap is that it is a shoddy way to build
a circuit, but it is in fact one of the most reliable circuit interconnection
methods. The tool used for wire-wrapping puts a high tension on the wire as it
is wrapped around the posts, so airtight connections are formed at the square
post corners. A wire twisted around a post 10 times therefore has 40 connection
points. Because the wire-wrap wire is silver-plated, it conducts signals very
well at high frequencies. 1

Circuit packing densities are very high where wire-wrapped construction is
used. Integrated circuits can be mounted right next to each other, because
circuit-board etches are nonexistent. The surfaces of the circuit board on which
the wire-wrap pins are mounted are often used as ground and power planes.
Circuitry remains accessible because there are no buried planes (as there are in
multilayer boards), and circuit modification is quite simple. Figure 8-5 illus­
trates wire-wrapped construction and shows the recommended method of
stringing buses from pin to pin. Using this method, it is never necessary to
remove more than three wires in the replacement or modification of a wire.

Wire-wrap construction has one big disadvantage: board thickness. Wire­
wrap posts protrude from the back of a card while socket thickness adds width
to the front.

Special. Board Wiring Methods

A number of special board wiring methods for special applications exist. One
such method is the multiwire method, a type of wiring that consists of insulated
wires that connect circuit pins in much the same way wire-wrap does; instead
of using square posts, however, wires are terminated directly to the IC leads
and are soldered. The wires are applied by a special machine and are adhe­
sively attached to the back of a card. Multiwire boards have all the advantages

308

Densly packed
components

Printed
circuitry

Ground plane

Printed
circuitry

Printed
circuitry

Jumper wires

Printed circuitry

(a)

QQQQQQQ
QQQQQ{;;I

QQQQQQQ

(c)

Printed

Printed
circuitry

Densly
packed
IC sockets

Wire-wrap pins

Insulated
wire

Interface Layout and Construction

Plated through holes

(b)

Side view

Level 1 wire wrap

Level 2 wire wrap

(d)

Figure 8-5 Wiring methods. (a) Single-sided board. (b) Double-sided board. (c) Multi-

layer construction. (d) Wire wrap.

of wire-wrap, are quite easy to modify (although some soldering is needed), and

are as thin as multilayer boards. This method is better suited to large-scale

production due to the machinery needed to implement it.

Another method that attempts to overcome the thickness disadvantage of

wire-wrap is stitch-weld wiring. This method utilizes point-to-point wiring as

wire-wrap does, but instead of using wire-wrap posts, the wires are welded to

circuit pads next to the IC pins using a special welding tool. Modification of a

stitch-welded board is not as easy as modifying a wire-wrapped board, but the

thickness problem is avoided.

Choosing a Circuit Card

The size and thickness of a circuit card should be defined by Circuit size and

enclosure constraints. Circuit boards for card cages and standardized buses

will be predetermined size-wise. The type of wiring method chosen should be

Interface Layout and Construction
309

based on individual requirements. If a board is a prototype and modifications are to be made, wire-wrap is the best choice. For large production runs of a
finalized design, two-sided boards are the best choice; and if packing density is
important in a production environment, multilayer or multiwire are good methods. The advantages· and disadvantages of each method should be weighed.

Solder versus Sockets

There are two methods of mounting integrated circuits: sockets and solder.
Many people have the idea that the mounting decision resolves to a purely
economic question. Sockets cost more than no· sockets, so one is led to believe
that soldering in ICs is an economizing measure. In reality, there are many
factors that must be weighed before deciding where to use and where not to use
sockets.

Table 8-llists some of the advantages of sockets and soldered construction.
It is true that ICs are easier to replace with sockets, and troubleshooting by the
chip replacement method (a poor way to diagnose problems, incidentally) is
easier, but it should be remembered that modem ICs are very reliable and rarely fail unless they are of the "surplus" variety often used by experimen­
ters. In addition, modern fault isolation tools allow a faulty IC to be spotted
quite easily, and special desoldering tools allow ICs to be removed quickly and
easily with no board damage.

Table 8-1 Solder versus Sockets

Characteristic Socket Soldered

Cost Higher Lower Mechanical integrity Poor to good Excellent Chance of bent-over High Extremely low pins due to poor
insertion
Replaceability Easy Difficult Thermal shock incurred None Moderate during installation

Most mainframe and minicomputer manufacturers have learned that sock­
ets are more of a service problem than a benefit. Due to poor mechanical
integrity, the chance of pins getting bent as ICs are inserted, and the possibility
of ICs being accidentally pulled out as the circuit card is inserted into a card
cage (possibly by rubbing against another card), soldered-in construction is almost exclusively used.

Thermal shock is another item to be considered in the decision between sockets and soldering. The soldering process transfers a lot of heat to an inte­grated circuit, especially if a wave-soldering machine (a machine that solders
all of a card's pins at once by dipping the card surface in a solder bath) is used. Integrated circuits, however, are designed to take soldering stresses of about

310 Interface Layout and Construction

300°C (lead temperature) for 10 seconds and should work fine after such

soldering unless they were defective to begin with. High heat applied from the

outside of an IC tends to cause bond failures due to package expansion and

rarely damages the IC chip itself. The thermal shock caused by direct

soldering does not have much effect on reliability, and the advantage of greater

mechanical integrity far outweighs it.
A mix of soldered-in and socket ICs is often a good idea. Small interface

parts such as drivers, receivers, and gates can be soldered into place, while

large LSI parts such as microprocessors and UARTs are plugged into sockets.

This allows quick replacement oflhe large, hard-to-remove parts, yet retains

the mechanical integrity of solder construction on most of the parts.

Special Board Processing

Complex circuit boards with many parallel buses are prone to solder bridges

caused by flux spUttering and excessive solder flow. Solder masks are there­

fore incorporated into many complex logic cards. A solder mask is a coating

(usually transparent green, blue, or pink) that covers the soldered side of the

circuit card in all areas not to be soldered. Solder cannot stick to the solder

mask, and flux can be removed easily from it. Solder masks are almost always

used in wave-soldering production applications.

Circuit cards destined for harsh environments (humid 1 dusty, greasy) are

often completely coated on both sides with a thin plastic protection blanket

called a conformal coating. Connectors are, of course, masked from the coating

to retain conduction. Circuits going into automative, industrial, and military

applications should always be conformally coated.

Circuit Card Layout

Once a board type has been chosen, it is time to lay out the parts ori the board.

The following tips for laying out boards should be followed.

1.

2.

3.

4.

5.

Arrange the logic circuitry as efficiently as possible. Group logical

sections with many interconnections close to one another.

Place bus transceivers close to the edge connector (a.ssuming a mod­

ular card cage and bus are being used). Lines taken from the bus

should be as short as possible to reduce bus noise.

Keep analog circuitry as far from noise-generating logic circuitry as

possible.

Place onboard voltage regulators where their heat will cause no prob­

lems. Cooling air should blow over logic circuitry first, followed by

the voltage regulator heatsink.

Allow space for decoupling capacitors and place the input voltage

regulation capacitor near the power input point on the board.

Interface Layout and Construction
311

6. If there is any space left on the board, arrange it so one or more
additional ICs can be added at a future date. Expandability is a
desirable feature.

Circuit Board Routing

Whether a circuit board is a printed circuit or wire-wrapped board, there are a
few general signal-routing techniques that should be followed. Signal leads
should be kept as short as possible. Squared-off wires and etches look nice, but
they are electrically inferior to shorter, more direct connections. Signal lengths
up to 50 em perform quite satisfactorily in well designed TTL and MOS micro­
processor systems in which good power distribution techniques (ground and
power planes or equivalent) are used.

On circuit boards, power and ground planes or etches should be as wide as
possible. Signal leads can be as narrow as 0.38 mm (0.015 in.) for TTL circuitry.
Signal spacing of 0.38 mm is adequate, but minimum spaced, long parallel lines
should be avoided for crosstalk reasons. Parallel bundles of wire-wrap wire
should likewise be avoided in wire-wrapped systems.

Circuit Board Assembly

After a circuit board is fabricated, assembly begins. Discrete components,
nonsensitive integrated circuits such as TTL drivers and transceivers, decou­
pling capacitors, and miscellaneous hardware should first be mounted on the
board. Sensitive MOS parts, including microprocessors, complex interface
parts, ROMs, and RAMs should be mounted or plugged in last.

Care should be taken to avoid exceeding component heat requirements,
and grounded soldering equipment should be used to avoid component destruc­
tion due to static or power-line voltages.

Finally, when parts are being plugged into IC sockets, care should be taken
to avoid bending IC pins. Pins that are bent out sideways are easy to spot, but
bent-under pins are nearly impossible to detect without test equipment.

PURCHASING THE PARTS

National parts distributors such as Cramer Electronics and Hamilton/Avnet
supply industry with microcomputer and interface parts, and parts obtained
from these distributors as well as certified representatives of the semiconductor
manufacturers can be assumed to be first-run, prime parts. But you also pay a
premium price for parts from these sources.

Slightly lower prices can be obtained by purchasing parts from a surplus or
discount parts distributor, but telling good parts from bad is very difficult.
Some discount distributors can give low prices because they buy in such large

312 Interface Layout and Construction

quantities. Parts obtained from these distributors are the same as you would get

from a national industrial supplier. In many cases, however, discount distribu­

tors buy surplus and marginally rejected lots of parts. There is nothing wrong

with true surplus parts, as these are manufacturers' overruns that would have

been sold to an industrial customer if one existed. Higher than expected chip

yields, canceled orders, and overestimated demand produce surplus parts. The

parts to watch out for are the rejected ones. These parts may not work over the

full temperature range, may not fall within voltage or current requirements, or

may have out-of-spec propagation delays. Using these parts in a well designed

circuit will defeat all the carefully performed work that preceded it. Here are a

few tips to help identify rejected parts.

1. Suspect the lack of the words first-run or prime on advertising mate­

rial.

2. Suspect the lack of official manufacturer markings on the IC pack­

age.

3. Suspect the words "100% tested" on advertising-even rejected

parts are tested.

4. Suspect obvious defects such as chipped cases and misformed leads.

In experimenter-type applications in which the experimenter is long on

time and short on money, rejected and surplus parts may be acceptable. Good

troubleshooting experience can be gained from tracing down initially bad and

prematurely failed parts. The use of surplus or rejected parts in production

applications or by the experimenter who would rather develop software than

spend time fixing his computer should be avoided. Overall system cost may be

a bit higher initially, but the added reliability will pay back the difference many

times over.

CIRCUIT AND SYSTEM TESTING

Even the most carefully designed and constructed system will rarely work

properly when first powered up. Component failures, software bugs, wiring

errors, unexpected noise interference, or uncaught errors in the design can

cause system problems. Fortunately, a wide selection of tools and methods is

available to help reduce troubleshooting effort.
The first things to check in a new system are the power forms. It is a good

idea to have important chips unplugged (if sockets are used) during the initial

power checkout just in case something is wrong. A voltmeter should be used to

check voltage levels and an oscilloscope should be used to examine the voltage

waveforms. Abnormal voltage levels can be caused by overloaded voltage

regulators, voltage drops across power lines, or malfunctioning power supply

components. Voltages at all points, including the power supply output, card

connections, and IC leads, should be tested.

Interface Layout and Construction
313

If all the power forms are within specified limits, an error in the logic circuitry or software is likely to be the problem. The first thing to check is the logic circuitry.
Static testing is a good first step in the logic troubleshooting process. Much

of a system's circuitry can be tested with the system clock stopped, using a voltmeter, oscilloscope, or logic probe. Gates, drivers, receivers, static RAMs, and discrete components can be checked for open circuits, short circuits, and
defective logical action. One particular problem to watch for is open-circuit enable lines. If problems still exist after static testing is complete, dynamic testing must be performed.

A wide selection of special tools is available for dynamic testing. Oscillo­
scopes allow actual waveforms to be watched and multi-channel digital oscillo­
scopes or logic analyzers allow signals to be watched on a 1 and 0 basis. By
connecting an oscilloscope's or logic analyzer's trigger and input probes to
logic signals, it is possible to trace down a problem to its source. A good place
to start tracing down problems is at the master clock oscillator. If the oscillator is working, devices d:dven by the oscillator should be checked.

Troubleshooting a computer system is unlike simple equipment trouble­
shooting. Once a computer is debugged to a semioperational point, the trouble­
shooting becomes easier because the computer can help troubleshoot itself. If a
microcomputer is working but one of its interfaces is not, a test program that repeatedly sends data or retrieves data from that interface can be written and run. An oscilloscope or logic analyzer can then be used to watch the input/ output interaction and the error can be quickly found.

A microcomputer is well suited to testing its own memory, also. By writing
memory test patterns into memory and reading them back under processor control, bad memory bits can be identified, and the diagnostic program can even be written to identify which memory card and IC is at fault.

Before you actually get involved with putting a micro system together, there is

a certain tendency to think that once the system is built and tested, what

follows is merely that "small matter of programming." This belief, however,

will very likely be dispelled the first time you take on the task of software

design and implementation in your microcomputer-based project.

It is true that some systems will require considerably less in the way of

software than others. A complex controller, for example, may require large

amounts of critical real-time software, while a general-purpose computer would

not, because in this case the programming burden is placed on the "program­

mers," whoever they may be. Software design may be likened to hardware

design in many ways, but there is no parallel more universally appropriate than

that which states ''a good design approach and the proper tools can make the

development go smoother and faster.''
Volumes have been devoted entirely to microcomputer software tools,

design, and implementation-and for a complete understanding of the subject,

a thorough study of one or more of these books is a virtual necessity. This

chapter is not offered to impart a full understanding of micro software; it does,

however, address those factors that are most important in microcomputer

software design and thus can serve as a guide for topics that merit your further

study.

314

THE ELEMENTS OF SOFTWARE DEVELOPMENT

In a microcomputer magazine article on software development, the author
spoke glowingly about the profits to be made by generating software and ad­
monished his readers to get cracking; he wrote," ... with the profits which can
be made in software, it would be foolish to not immediately run to your com­
puter and start typing in programs.'' With no intended reflection on the zealous
enthusiasm of the author of those words, a modicum of caution is certainly in
order. There is no question that the microcomputer software field can offer
some very attractive financial opportunities for the specially skilled, but the
quoted suggestion could hardly be more foolish than its implications. Software
generated in the manner suggested is usually not worth buying.

Jumping directly into computer coding (writing the actual computer in­
structions) is like developing an interface circuit by beginning with a soldering
iron and a bag of integrated circuits. It is of utmost importance to bear in mind
that software, like hardware, must be carefully specified, conceptualized, and
finally coded. A topdown approach is the key to successful software.

Software development is a process that consists of three discrete phases:
software definition, algorithm design, and software coding. And these phases
neglect the preliminary steps that involve the weighing of hardware-versus­
software tradeoffs, learning what can and what cannot be implemented
economically with software, the selection of the "right" computer language,
and other such mundane considerations.

Software Definition

Software definition consists of precisely defining the function of the software.
In a system programming application, this may mean defining the capabilities
of a program such as an editor, assembler, or high-level language. In a control
application this step would include specification of all the timing constraints
and a listing of the complete sequence of events of the controller.

Algorithm Design

Software algorithm design is the process of choosing a method for accomplish­
ing the task set forth in the specification. There are hundreds of ways to turn a
signal on and off with a microprocessor; the method best suited for the applica­
tion should be found and used. Algorithm design also involves program parti­
tioning. Large programs are more easily designed, debugged, and tested if they
are broken up into smaller modules or subroutines; and the points at which to
break the algorithm into modular elements must be defined. Modules should be
small enough so that each module is not too large in itself, and large enough that
individual instruction-like modules of a few statements each are avoided.

315

Coding Prerequisites

Before the actual coding begins, a few important decisions about the coding

should be made. The choice between using a high-level language such as

BASIC or FORTRAN for high-speed software development, or pure assembly

language for the highest possible execution speed, or a combination of both

assembly and high-level languages must be made. The documentation methods '

must also be specified to the person writing the code.

It is especially important to generate good documentation when writing

microcomputer software. Flowcharts should be used to represent program con­

trol flow, and data flow diagrams should be used to keep track of variables not

considered in the flowchart. A description of each module's function should be

written and comments should be used extensively within each module.

One of the keys to good programming is the efficient and logical use of
1

variables. Data areas within a program should be well defined, and all variables

that affect a particular subroutine should be clearly called out in the documen­

tation. Poorly defined variables and "under-the-table parameter-passing" be­

tween subroutines should be avoided.

Large systems and microcontrollers will usually contain one or more

interrupt-driven processes. Care must be taken in any subroutine called by an

interrupt service routine. Reentering a subroutine that has been interrupted can

cause unpredictable results upon subroutine return due to destruction of tem­

porary variables. Reentrant subroutines must therefore be used also.

In addition to good software design practices, good software and hardware

tools are required for successful software development. We look at some of

these requirements in detail in this chapter, but we begin with a cursory exami­

nation of the tradeoffs involved in language selection.

THE PROGRAMMING LANGUAGE

The choice of programming language will have a great impact on the support

software needed in a development system. The programming language choice

should therefore be made before ordering a system or picking a vendor to order

from (some vendors are specialized in certain languages).

The choice between assembly language or high-level language is basically a

tradeoff between software development cost and processing speed. High-level

languages typically require 2-10 times as much memory as optimized assembly

language and run 2-100 times slower. Development time can be cut from a half

to a tenth of the time required for assembly language programming by using a

high-level language.
The choice of languages is itself a tradeoff that must be weighed from a

system capability and economic viewpoint. The choice is not strictly a one-or­

the-other situation, however. Most high-level languages allow program subrou-

316

Interface Software Design and Implementation 317

tines to be replaced with equivalent assembly language routines. Studies show
that programs spend 90% of their time executing 10% of the program (the
commonly used subroutines), so by converting just a small percentage of the
program to assembly language, great speed increases can be effected with a
minimal software-development investment.

SOFTWARE TOOLS

Software development is a computer-aided design process that requires both
hardware and software tools. We will look at the hardware requirements in the
next section; here, we will examine some of the important items of develop­
ment software, which include editors, assemblers, simulators, debuggers, com­
pilers, and interpreters. Compilers and interpreters are less often used than
editors, assemblers, and debuggers, but they can serve a useful purpose, partic­
ularly in large software development tasks.

Editors

Programs must be "typed into the computer" and put into a computer-readable
format that other development software can use. It is the editor program that
allows text, mathematical expressions, and anything else to be input from the
typewriter keyboard.

Data typed into an editor is usually temporarily stored in microcomputer
memory as an "edit buffer." A 16K-byte edit buffer can store about 2600
five-letter words or their equivalent in expressions, and small or medium-sized
microcomputer programs can usually fit within the edit buffer. Many editors
have a paging feature that allows full data buffers to be dumped onto a data
storage device (disk or tape), leaving an empty edit buffer in which to continue
the program. A large program may consist of many pages of code. Paging is
very seldom an automatic feature. The programmer must decide when to ''turn
the page.''

Because computers have a great memory manipulation capability, editors
can incorporate many features that are not found in an ordinary typewriter.
These features include text insertion and deletion, character string searching
and changing (useful for replacing words or sentences of text), and block move­
ments of text.

There are three basic types of editors: string-oriented, cursor-oriented, and
line-oriented. Each type has its own advantages.

String-Oriented Editors. A string-oriented editor treats a whole program
(or equivalent text) as one long string of characters. The point at which charac­
ters will be added to or deleted from the program is determined by where the
''character pointer'' is. The user has complete control over where the character

318 Interface Software Design and Implementation

pointer moves and what it does, and can insert or delete text from the middle of

lines as well as at their beginnings and ends. Moving blocks of characters from·

one location to another is not usually possible with simple character editors

found on microcomputers.

Line-Oriented Editors. In a line-oriented editor, a line number is assigned

to and printed at the beginning of every line of text. Line editors have the 1

advantage of simple character block movement but require that line numbers

be specified when editing text. Smooth text typing is difficult for the occasional

typist, because line numbers must be put at the beginning of every line.

Cursor-Oriented Editors. These are used primarily on video terminals on

which the blinking cursor can be moved left, right, up, or down. Editing is

accomplished by moving the cursor to exactly the point on the screen where

the data is to begin, and then typing the data. Old data at the location is

overtyped by new data. This kind of editor is particularly useful when many

small changes are required and cursor positioning ease is of prime importance.

Assemblers

Assemblers take microcomputer programs that are in an assembly language or

source code format (instruction names instead of the 1 s and Os of pure machine

code) and convert them to machine language or object code. Assemblers auto­

matically associate addresses with variable names and compute numeric offsets

commonly found in relative addressing and branching. Assemblers are usually

matched to a particular editor format and must therefore be compatible with the

editor used on the microcomputer system.
The capabilities of assemblers vary widely. Most assemblers can assign

machine-code values to symbolic names and compute addresses .. Advanced

assemblers have far more than these rudimentary features, however.

Program location control is one valuable feature to look for in an as­

sembler. By changing a start location variable in the submitted program it is

possible to have the program assembled to run at any location in memory. An

even more powerful feature than program-specific program location control is

relocatable object-code generation. Object code created by a "relocating as­

sembler" (often called relocatable object code) can be loaded at any location in

memory using a relocatable loader program. No new assemblies are required to

make it run at a different address.
Macro capability is another desirable feature in an assembler. Assembly

language programs usually end up having certain sequences of instructions that

are written over and over again by the programmer! A macro assembler allows

a special code word to be assigned to these repeated sequences, essentially

turning them into macros. Instead of retyping the sequence of instructions each

time it is needed, the programmer merely writes the macro name and the

Interface Software Design and Implementation 319

assembler accordingly substitutes the proper code sequence. Macros can help
make programming easier and help make documentation more understandable. A descriptive macro name such as SHIFTS for a sequence of instructions that performs eight shifts in a row is more descriptive than eight shift instructions one following another.

Monitors and Debuggers

A monitor is a small control program from which other, larger programs such as assemblers and editors can be loaded and run by the microcomputer operator. When a program is finished running, or when the microcomputer reset button is pressed (assuming a reset-and-go type microcomputer is being used), control is returned to the monitor for new program selection and execution~
Because monitors are the central operating point for program execution and system operation in general, many useful features are incorporated into them. The ability to examine memory locations and register contents, modify memory locations, and jump to programs is usually included. Monitors with even more convenient functions fall into the "monitor-debugger" class of programs. These programs usually include a breakpoint feature that allows the person executing the program to put a return-to-monitor point at any location in the program. The program's progress up to the breakpoint can be studied and any error-causing conditions can be debugged.

Compilers

It is a well documented fact that programs can be developed with less time and effort if a high-level computer language is used instead of assembly language. Compilers are programs that convert high-level languages such as FORTRAN, BASIC, and PL/M into assembly language and finally into machine code.
Compilers create machine-language programs that perform the specified task, but the programs take longer to execute than hand-optimized assembly language due to the general way in which expressions are handled by the compiler. Most compilers, for instance, would not recognize the fact that a number multiplied by 2 is the same as a simple left arithmetic shift. A full multiply would therefore be performed needlessly.
There are compilers that do their best to recognize candidate program optimization points, but these optimizing compilers are not available for micro­computers at this time. The future will undoubtedly see programs of this type.

Interpreters

High-level lanugages can also be executed by an interpreter. An interpreter does not convert the high-level language program into machine language before

320 Interface Software Design and Implementation

executing it as does the compiler, however. Instead, statements are read as the

program is executed, each instruction is broken apart and interpreted for its

logical or arithmetic meaning, and the calculations are performed. This is a

very slow process, because all the statements must be.reread every time they

are executed.
FORTRAN and PL-type languages (Intel's PL/M, Zilog's PL/Z, and

others) are usually compiled, while BASIC is usually interpreted. An advan­

tage to using slowly interpreted BASIC is that program debugging is very easy.

Because the program does not need to be compiled every time a simple pro­

gram change is made, rapid user feedback of modification effects is possible.

There are a few BASIC compilers available for the most popular micropro­

cessors, and a viable approach to software development is to develop software

using interpreted BASIC as a debugging tool and compiled BASIC as the final

product.

HARDWARE AIDS

Software-development hardware includes such tangibles as development sys­

tems, time-sharing mainframe computer systems, minicomputers, in-circuit

emulators, evaluation kits, and PROM programmers. The list of hardware that

could be used to assist in the implementation of software can be made much

longer, but these mentioned items are certainly a cross section of such aids, and

it is to these that we now direct our attention.

The Microcomputer Itself

It is desirable to have an interactive computer system to develop microcompu­

ter software. The system can be used for typing in, assembling or compiling,

and debugging programs. One prime candidate for this task is another micro­

computer system. Nearly any general-purpose microcomputer with a key­

board, data storage medium, fairly large memory, and a hard-copy output

device can be used as a system development tool. Of course, there must be

development software that runs on the system as well.

An editor and assembler constitute a minimum set of software; compilers,

debuggers, and interpreters add to the system's development capabilities.

In a serious software development effort, it is imperative that a hard-copy

device such as· a line printer or printing terminal be used. Video terminals are

fine for program editing, but debugging a program without a hard-copy program

listing is at best cumbersome and at worst nearly impossible. It is preferable

that the hard-copy device print on paper that you can mark up with ordinary

writing tools, because marking up a listing can help significantly in the debug­

ging process.

Development Systems

Microprocessor manufacturers and other companies recognized the need for
microcomputer software and hardware development tools and produced micro­
computers designed specifically for that purpose. Intel's MDS system,
Motorola's EXORciser system, and Tektronix' 8002 system are but a few of the
currently available "development systems." Microprocessor manufacturers
tend to orient their development systems around their individual products,
while instrument companies tend to take the "universal" approach. The best
way to get an idea of what a typical development system contains is to examine
one.

The American Microsystems Incorporated (AMI) MDC system is a devel­
opment system designed primarily for 6800 microprocessor software and hard­
ware development. The system includes advanced hardware and software fea­
tures that simplify debugging and testing considerably.

The heart of the MDC system is the development station. This device is a
modular card cage, keyboard, and CRT display built into one large enclosure
that looks like an oversize video terminal. The card cage contains slots for 16
modules, including processor, PROM programmer, dual disk drive, debug,
memory (RAM and preprogrammed ROM), and many other optional modules.

While many other manufacturers offer minifloppy disks and cassette tape
as storage-device options, AMI offers only a full-size {8-inch) dual floppy-disk
system for the MDC. This is a wise choice because the time loss and aggrava­
tion caused by the smaller, slower data-storage peripherals is not worth the
price savings they would return on this $9000 system. Total data storage capac­
ity is therefore 512K bytes, which is adequate for many user programs as well
as a good-size library of development software.

A PROM programmer card can be plugged into the MDC card cage, and
object files can be transferred directly to PROMs using the MDC's PROM
programming software.

Software support for the MDC system includes a disk operating and file
management system, resident assembler and loader, resident editor, debug
control programs, and trace programs.

A data acquisition module and logic analyzer module are planned expan­
sions for the MDC system, and these additions will increase the system
hardware's debugging capability.

One feature not found in the MDC is an in-circuit emulator. Many develop­
ment system manufacturers produce modules for their development systems
that have a 40-pin extender plug that mates with the microprocessor socket of
the device being developed. The development system then mimics the micro­
processor and simultaneously allows user intervention in the program execu­
tion process. In-circuit emulators allow memory locations, external interfaces,
and microprocessor registers to be examined, thereby giving the user a good
idea of what is happening in a newly built system.

321

Evaluation Kits and Prototyping Boards

Another way of developing software for a microcomputer is by breadboarding

the microcomputer (or a reasonably similar copy of it), and testing it in action.

It is not necessary to start the breadboarding process from scratch, however.

Many manufacturers make universal breadboards based on their particular

processors. These breadboards, which are often called evaluation kids or pro­

totyping kits, are built on double-sided circuit boards and contain enough logic

to build a reasonably powerful system. A design can be built up using the

board's facilities, and the used portions of the design can be transferred to the

final product.
The American Microsystems Incorporated (AMI) E VK200 proto typing kit

is representative of a good breadboard that can be used for hardware as well as

software development. This breadboard contains:

• 2KROM

• 512 bytes EPROM

• lK bytes RAM

• EPROM programmer

• 20 rnA current-loop interface

• EIA RS-232C interface

• TTY operating system software in ROM

• ROM subroutine library

• Interval timer

• Tiny BASIC

Assembler and disassembler ROMs are also available for this unit.

TIME-SHARING AND MINICOMPUTER-BASED

SOFTWARE DEVELOPMENT

If a small, one-time programming task is all that is going to be undertaken, it is

advantageous to avoid purchasing an expensive development system. One al­

ternative to a development system is a time-sharing system. Many national

time-sharing services such as National CSS and General Electric have exten­

sive microprocessor support software that can be run from a rented terminal.

Cross assemblers (assemblers that assemble programs for another computer)

and compilers are used because large time-sharing systems typically use IBM

or Control Data mainframes as the main processor. Simulators are used to

"run" programs on time-sharing systems and are useful in debugging programs

before transferring them to a micr-ocomputer system.

322

Interface Software Design and Implementation 323

Popular minicomputers can also be used to develop microprocessor software. Microprocessor manufacturers offer broad lines of non-resident software for users who already have their own minicomputers or mainframes. Motorola, for example, offers 6800-compatible cross assemblers, simulators, and high-level language compilers for IBM 360-370, HP 2100, Data General Nova, HIS 6000, CDC 6000, PDP-11, and Sigma 9 computers.

OBTAINING SOFTWARE DESIGN
INFORMATION

Books devoted exclusively to software development are available and a repre­sentative sampling should be consulted before programming a microprocessor. For the engineer with extensive microprocessor experience, a system design data manual and programmer's manual are all that is really required to program a system. Engineers who need some guidance in the area of programming techniques should consult college-level texts concerning programming methods.
It is a good idea to learn good programming techniques from the very beginning, or unlearn bad habits that may have been picked up. The most common bad software habits are poor documentation and unstructured data flow. This is not surprising, because most books that deal with programming techniques concern themselves with program control rather than data flow or style. A good book that can help develop a good programming style is Program Style, Design, Efficiency, Debugging and Testing by Dennie Van Tassel.

CONCLUSION

Building a microcomputer system properly is not as simple as many micropro­cessor manufacturers lead you to believe. As this text has shown, system conceptualization, design, fabrication, testing, software design, and system integration all play an important part in the function and reliability of the final product. In summation, a properly designed and constructed system will take more engineering effort to develop than a poorly designed system, but the rewards in reliability, functional operation, and cost reduction due to logic optimization and lower service requirements more than compensate for the added effort. In regard to microcomputer interfacing, it pays to do it right!

Absolute address. A location in memory specified by its numerically assigned

value.

Absolute loader. A program that loads data or instructions into memory at a

fixed absolute address.

Access time. The time required to read a word out of memory.

Accumulator. An internal microcomputer register (or registers) where

arithmetic and logical data are stored and manipulated.

ACIA. Abbreviation for asynchronous communications interface adapter

(used for serial data communication).

Acknowledge. A signal commonly used to signify that data has been received

or control information accepted in a handshaking situation.

Acoustic coupler. A piece of hardware designed to connect a telephone

handset to a computer system, usually through inductive means.

AID. Analog-to-digital (as in AID converter).

Adder. A circuit that performs binary addition in a processor or interface.

Address. A numerical value that identifies word positions in a memory

system.

Algorithm A step-by-step procedure that always leads to the solution of a

problem.

Alphanumeric Containing potentially both letters and numerals as characters.

324

Glossary
325

ALU Abbreviation for arithmetic logic unit (used to perform binary arithmetic and logical functions in a processor).
Analog The property of operating over a continuous, varying range of voltage or current values.
AND A logical operation in which all inputs must be at a logic 1 level for the output to be at a logic 1 level.
ANSI Abbreviation for American National Standards Institute,an organization that establishes standards.
Arithmetic logic unit A device used to perform binary arithmetic and logical functions in a processor or interface.
ASCII Abbreviation for American Standard Code for Information Inter­change. This code is commonly used in data communications.
Assembler A program that takes symbolic instructions and variable names and converts them to a computer-usable program consisting of 1s and Os.
Asynchronous Signals or device actions that are not synchronized with a master clock frequency.
Backplane A piece of computer hardware that contains the connectors and bus wiring for the system circuit boards.
Bank A large unit of memory.
BASIC Acronym for beginners' all-purpose symbolic instruction code, a popular computer language characterized by its ease of use. This language is usually interpreted instead of compiled.
Baud Officially defined as the reciprocal of the shortest pulse width in a data communication stream, but usually taken to mean bits per second.
BCD Abbreviation for binary-coded decimal, a limited radix-10 system in which four bits are used to express the numerals 0 through 9.
Benchmark A test program designed to test the performance of a processor in a given application.
Bidirectional The property of handling data flow in two directions.
Bipolar The characteristic of containing NPN or PNP transistors.
Bit A binary digit that can be set to represent a 1 or a 0.
Bit-sliced A system consisting of many identical parallel components, each of which performs operations on only a few bits of the total processed word.
Boolean algebra Binary arithmetic rules that define the logical operations of AND, OR, inversion, and exclusive-OR.
Bootstrap An initialization program that is used to start a computer's operation.
Buffer A circuit that amplifies and restores a signal to a proper drive level. An area of memory where data can be temporarily stored.
Bug An error in a piece of hardware or software.

326
Glossary

Burn-in The act of operating a piece of equipment for a period of time to

isolate any early-failing parts.

Byte A predefined number of parallel bits. In the microcomputer field, a byte

is typically 8 bits.

Cache A high-speed intermediate buffer memory that lies between the

processor and main memory in a computer's memory hierarchy.

Carry An output signal or status bit which is used to indicate positive

arithmetic overflow of an· adder or left shift overflow of a shift register.

CerDIP An acronym for ceramic dual-inline package.

Checksum A character residing at the end of a data block that corresponds to

the binary sum of all the characters in the block. This is used for error

checking.

Chip Commonly used to describe a monolithic integrated circuit, in or out of

a package.

Clock A master reference waveform used to synchronize all of the logic in a

system.

Coaxial cable A transmission line consisting of a central conductor sur­

rounded by dielectric material and an external conductor, and possessing a

predictable characteristic impedance.

Complement The logical inverse of a signal or bit. The complement of 1 is 0,

and the complement of 0 is 1.

Console The central control terminal in a computer system, or the front panel

controls on a computer system.

Core Commonly used word describing memory, but officially used to define

memory built with small magnetic toroids strung together to form memory

words.

Crash The act of losing control of a computer by getting into a loop or

executing the wrong program. The situation in which a floating disk head

accidentally contacts the disk surface, thereby misreading or destroying

the disk.

CRT Abbreviation for cathode-ray tube, a vacuum tube with a viewing

screen as an integral part of its envelope.

Compiler A program that translates a high-level language consisting of

arithmetic expressions and character manipulations into assembly language

or directly into machine code.

Cycle time The time it takes a memory to read data and restore itself for the

following read operation.

DIA Abbreviation for digital-to-analog.

Daisy chain An electrical wiring scheme that passes signals through logic in

every module to which the signals go.

Glossary
327

Data base A large collection of data files organized for easy access.
Debouncing The act of removing the intermediate noise states from a

mechanical switch.
Debugger A program that is useful for checking out and developing computer

programs.
Decoder A circuit or array of circuits that converts a few coded inputs into

many discrete inputs, of which each corresponds to a unique code.
Dice Small silicon wafers that contain integrated circuitry.
Diskette A flexible plastic (usually Mylar) disk coated with magnetic oxide

and enclosed in a plastic jacket; also referred to as floppy disk.
Direct addressing An addressing mode that uses a short field in an instruction

to signify a portion of the addressed memory's address. The remaining
portion of the field is either loaded separately or assumed to be a certain
value.

DMA Abbreviation for direct memory access, the process of bypassing the
processor and taking data from or putting data directly into memory.

Dot matrix A square or rectangular field of LEDs or points on a CRT that are
selectively turned on or off to form characters and graphics. Printers also
use dot matrix methods to form characters.

Double density Having twice the storage capacity of a standard disk.
Double precision A method of increasing the range of expressible numbers in

a computer by using multiple bytes to represent single numbers.
Driver A circuit that amplifies and reshapes a waveform for use by many

devices or a single high-power device.
Drum An obsolete memory system consisting of a rotating magnetically

coated drum anq appropriate magnetic read and write heads.
DTL Abbreviation for diode-transistor logic, the forerunner of TTL.
Dump The process or printing out or externally storing the contents of a

computer's memory.
Duplex Bidirectional data communication capability.
Dynamic Refers to circuitry that stores its states as tentative charges and

must be refreshed by restoring the charges periodically.
Dynamic memory Memory constructed of dynamic cells that need refreshing.
Echo The process of sending an acknowledging character or signal back to

the sending peripheral of a computer.
ECL Abbreviation for emitter-coupled logic.
Editor A program that allows a user to type data into a formatted computer

file and to change and manipulate that data.
EIA The Electronic Industries Association, an agency that sets standards.

328 Glossary

Emulate The process of simulating the actions of a device or system in real
time.

EOF The end-of-file character.

EOT The end-of-transmission character.

EPROM Acronym for erasable programmable read-only memory.

Error-correcting code A computer data transmission code that allows one or
more bits of data to be in error without resulting in the loss of any
information.

FAMOS Acronym for floating-gate avalanche MOS. This device technology
is commonly used in PROMs.

Fan-in The number of inputs a gate or device will accept.

Fan-out The number of devices or gates a circuit will successfully drive.

Fetch The act of retrieving an instruction or data from computer memory.

File A formatted block of data that is treated as a unit.

Firmware System programs stored in ROM in a microcomputer system. A
processor-internal bootstrap program is an example of firmware.

Flag A status signal in hardware or a bit of memory from the software point
of view that holds a status indication until read or reset by the interrogating
device.

FSK Abbreviation for frequency-shift keying; a method for using audio
_signals to operate teletypewriter keys.

Gap A small amount of unused recording material between tape or disk files
and used as file separators.

Glitch An unwanted transient noise pulse or burst of pulses usually of very
short duration and high amplitude.

Ground A standard potential (usually zero volts)_ to which all other system
voltages are referenced.

Half-duplex Bidirectional communications in which data can travel in only
one direction at a time due to the sharing of a common communication line.

Halt A digital system's or a computer's stopped state (where no operations
are performed).

Hamming code A common error-correction code that assigns extra parity
digits to correct errors in words.

Handshaking Data communications control technique based on multiple data
transfer requests and ready and acknowledge signals between devices.

Hard copy A physical written or printed record of computer output. Printers
are hard-copy devices.

Hard-sectored The division of a disk into sectors through the use of index
holes in the disk.

Glossary 329

Hard-wired A function perlormed by physical logic and wiring instead of
software.

Hexadecimal Radix-16 arithmetic and numerical representation.
High-order Refers to the most significant bits of a word.

Immediate An addressing mode in which data for an instruction immediately
follows the instruction in memory.

Impact printer A hard-copy device that prints letters on paper using a physical
hammer motion of some kind.

Indexed addressing An addressing mode in which data for an instruction is
located at the memory location pointed to by an index register plus an
offset value contained in the instruction.

Indirect addressing An addressing mode in which data for an instruction is
located in the memory location pointed to by the contents of the addressed
word.

Initialization The process of resetting and preparing an interface or processor
for program execution.

Interlace The technique of creating a raster-scan image by overlaying two
scanned fields, with the second field's lines falling between the first's.

Interleaving A memory addressing scheme based on successive addresses
being assigned to different memory banks, and used to increase memory
throughput.

Interpreter A program that executes a high-level language by reading the
language statements, interpreting them, and performing the operation in a
real-time mode. Statements are not converted to assembly language first.

Interrupt The act of diverting a program's execution to a more urgent task.
IlL or J2L Abbreviation for integrated injection logic.
Joystick A manual control device consisting of a vertical stick that can be

tilted in any direction, thereby sending the longitudinal and lateral tilt
parameters to a computer or other device.

Kansas City standard A common micocomputer tape format consisting of ones
represented by 8 cycles of 2400 Hz and zeros represented by 4 cycles of
1200Hz.

Kludge A poorly designed trick or circuit patch used to temporarily correct a
circuit error.

LCD Abbreviation for liquid-crystal display.
LED Abbreviation for light-emitting diode.
Light pen An input "pencil" that a user points at a desired position on a

display screen, thereby sending that positional information to the
computer.

330 Glossary

Linking loader A program that loads program segments that were assembled
separately and generates all the proper jump addresses and variable
addresses between segments.

Load The process of moving data from one peripheral to another, from a
peripheral to memory, or from one register to another.

Logic analyzer A piece of test equipment that is similar to an oscilloscope but
that displays strings of ls and Os as well as waveforms.

Loop A sequence of instructions cyclically repeated a number of times.

LSB Abbreviation for least significant bit.

Machine language A computer program in binary form.

Macro A sequence of instructions that is so often used that a separate name is
given to it. A macro assembler implements the instruction seuqence
whenever the name is submitted.

Macro assembler An assembler capable of handling macro expansions.

Mask A logical function used to always set certain bits in a word to an
established binary state.

Masked ROM A nonprogrammable ROM that must be programmed at the
factory by varying the chip's mask.

Memory map A diagram showing a system's memory addresses and what
programs and data are assigned to each section of memory.

Memory-mapped 1/0 A method of interfacing by assigning memory addresses
to 1/0 ports as well as memory. Data is sent to and read from peripherals by
simply reading or writing into a certain memory location.

Microcomputer A completely operational computer system built around a
microprocessor.

Microcontroller A microcomputer designed strictly for control applications.

Microprocessor A complete processor including arithmetic logic and control
logic on one or more LSI chips.

Microprogram A wide-word-width program that controls the internal
workings of a microprocessor.

Mnemonic A descriptive name given to a computer instruction that makes
assembly-language programming easier.

Modem A device that modulates digital signals and sends them across a
telephone line, and that demodulates incoming signals and converts them
into digital signals.

Monitor A program that performs communication between a computer and
the console terminal and handles simple system loading and execution
commands.

Motherboard Another name for a backplane, and usually referring to a
backplane module.

Glossary 331

MSB Abbreviation for most significant bit.
Multiplex The act of channeling two signals to one source, or sharing a

system resource between users.
MUX Abbreviation for multiplexer.

Negative logic Logic that has 0 assigned to the voltage normally associated
with logic 1 and 1 assigned to the voltage normally associated with 0.

Nested The name given to subroutine calls in subroutines or loops inside
loops.

Nybble Half a byte-typically 4 bits in a microcomputer system.
Noise Unwanted electrical signals caused by induction, capacitive action, or

semiconductor characteristics.
Null modem A cable that interconnects two RS-232C devices together by

acting as a piece of dummy data communication equipment.
Object code The binary machine-language output of an assembler. Object

code can be loaded into a computer and run as-is.
Octal Representation of numbers in a radix-8 system.
Ones' complement A binary representation in which the MSB of the word is

assigned the negative value of its normal weight minus one. Negative
numbers can thereby be expressed and numbers can be negated by simply
complementing them.

Operating system A program that manages software files and hardware
functions of a computer system.

OR A logical function defined as a logic 1 output if any one of the inputs is
equal to 1.

Overflow The act of exceeding an ALU's or adder's numerical capacity in the
positive or negative direction.

Paging The process of breaking memory or files into smaller, more
manageable pieces.

Parity The even or odd characteristic of the number of 1s in a byte or word.
Peripheral An external device connected to a computer.
Phase A clock waveform that occurs with a predefined relation to other clock

waveforms in a multiphase clock system.
PIA Abbreviation for peripheral interface adapter.
PIO Abbreviation for programmable input/output, an integrated-circuit chip.
Plotter A device that allows a computer to draw images using a motor-

controlled pen.
Polling The act of determining device or peripheral status by continually

interrogating the associated status word.
Positive logic The normal mode of logic operation and the associated logical

functions.

332 Glossary

Power-fail restart The process of saving a computer's execution state in

nonvolatile memory as power is failing, and resuming execution when

power returns.

Power supply The unit that supplies the voltage power forms to a system's

circuitry.

Priority The importance of a device or peripheral in an interrupt system. If

two devices interrupt at the same time, the higher-priority device will get

serviced first.

PROM Acronym for programmable read-only memory.

Propagation delay The amount of time it takes an electrical signal to go

through a logic element or wire.

PSW Abbreviation for program status word.

Pullup or pullup resistor A resistor that holds a point in a circuit to a logic 1

level. Typically used to hold unused inputs high and to supply current to

open-collector gates.

Push The act of putting data into a stack.

Quad The characteristic of four units. A quad-gate package has four g~tes.

Random access The ability to interrogate any location in a memory without

interrogating any others first.

Raster scan The process of forming an image by scanning a beam of electrons

in a multilined pattern on a phosphorescent screen.

Redundant A signal that is not necessary for a system to perform an identical

function under all conditions.

Refresh The act of replenishing the charge on the MOS data storage

transistors in a dynamic device.

Relative addressing An addressing mode in which data is- located at a

displacement distance from a base word or instruction.

Relocatable loader A program that can load object code into memory at any

location and retain the functionality of the program. This type of loader

must co-mpute new addresses; it offsets corresponding to the load address.

Resident The property of software residing in the memory of the computer

system. If two programs are in memory at once, they are coresident.

Rise time The time it takes for a waveform to change from its low to high logic

state.

Rollover The action of pressing two or more keyboard keys simultaneously.

RTL Abbreviation for resistor-transistor logic.

Sample-and-hold A circuit that samples an input voltage and holds an output

voltage at that level until resampling occurs.

Scratchpad A small memory (usually high-speed) used to store temporary

results inside a processor.

Glossary 333

Second source An alternate manufacturer of a part.
Sector A pie-slice shaped section of a disk.
Seek The act of a disk head moving to a proper disk track to perform a read or

write operation.
Serial data Data broken into single bits and transmitted on a sequential bit-by­

bit basis.
Setup time The time a signal must be stable at an input before another signal

(usually a clock signal) occurs.

Simplex Unidirectional data transfer.

Simulator A program that acts like the device it is simulating on a nonreal­
time basis.

Slew rate The rate at which voltage rises on a line (expressed as volts per
second).

Socket A mechanical connection device used to connect the pins of an
integrated circuit to the circuit board.

Solder mask A protective coating on a printed circuit card that only allows
solder to adhere to areas it is supposed to.

Source code The user-readable assembly language input file that is read into
the assembler.

Stack A file of hardware registers or an area in memory assigned to act as a
last-in-first-out memory. Data is put onto the stack using pushes and is
taken off using pops. ·

Start bit The first bit in an asynchronous word transmission.
Static memory Memory that retains its contents without refreshing.
Status The condition or state of a device.
Stop bit The last bit in an asynchronous word transmission.
Strain gage A transducer that varies its resistance depending on the amount

of tension applied to it.
Technology The materials and fabrication method used to manufacture a

device. A circuit built from CMOS _parts is said to use CMOS technology.
Thermistor A device that varies its resistance depending on the temperature

applied to it.
Throughput The rate at which data is processed or accessed from a device. It

is typically measured as instructions per second or words per second.
Track A concentric ring on a disk on which data is stored.
Trap The process of diverting program execution to an error routine if an

error condition is detected.
Triac A thyristor consisting essentially of back-to-back SCRs connected in

parallel.

334 Glossary

TTL Abbreviation for transistor-transistor logic.

Twos' complement A numbering system used to express positive and negative
binary numbers in which the MSB takes on the negative value of its normal
weight.

UART Abbreviation for universal asynchronous receiver/transmitter.

USART Abbreviation for universal synchronous/asynchronous receiver/

transmitter.

Utilities Short useful programs that are often used in a computer system.

Vectors Addresses set aside as jump addresses to be used in case of interrupts
(interrupt vectors), traps (trap vectors), and other program actions.

Virtual memory A memory addressing scheme in which hardware completely
controls the memory hierarchy and the system appears (to the
programmer) to have one huge random-access memory.

VLSI Abbreviation for very large-scale integration.

VMOS Logic built with V-groove semiconductor technology.

Wire-wrap A circuit interconnection method incorporating individual silver­
plated wires wrapped around square posts.

Word A predefined field of bits that usually consists of two bytes.
Microcomputers typically have 8- or 16-bit words.

Word processing The field of working with text and manuscripts using
computers.

Workspace An area of memory where user programs are allowed to reside.

XOR The logical exclusive-OR function defined as a 1 output when either of
two inputs is logic 1.

Yield The percentage of operational chips resulting from the fabrication of an
entire batch of chips.

Zener diode A diode whose reverse breakdown voltage is precisely controlled
and can be used to advantage.

-A-

Access time, 106
ACIA, 15, 156, 202
Acqusition time, 223
Address decoder, 105
Advanced data communication control

procedure (ADCCP), 215
Algorithm design, 315
Amdahl470, 118
Analog devices, 15
Analog switch, 234
Aperture time, 223
Aperture uncertainty, 223
Apple II, 21
Apple II bus, 277
Architecture, 5
Architecture philosophy, 44
Arithmetic processing unit, 215
Array of memory cells, 103
ASCII, 14
ASR-33 teleprinter, 139
Assemblers, 318
Asynchronous communication, 155

Asynchronous design, 255
Asynchronous device interfacing, 262
A to D converter, 17, 220, 226
Automotive applications, 27

-B-

Backplane ringing, 10
BASIC, 316
BCD, 42
Biphase-L encoding, 136
Biphase-M encoding, 135
Bipolar microprocessors, 80, 84
Bit -sliced microprocessors, 81
Bit slicing, 39
Bit width, 38
Block diagrams, 37
Blocks, tape, 137
Bootstrap loader, 143
Bubble generator/eater, 127
Bubble memories, 101, 127
Buffer interface gates, 228
Bulk memory, 101
Bus, 170, 276

335

336

Bus compatibility, 173
Bus driver, 8
Bus receiver, 9
Bus terminations, 174

-C-

Cache memory, 102
Cadillac trip computer, 28
Card cage, 302
Card reader/punch, 297
Cassettes, 136, 296
Cassette controller chip, 211
Cell-addressable machine, 100
Character generator, 214
Charge-coupled devices, 101, 128
Checksum errors, 178
Chip enable, 111
Choice, of microprocessor, 33
Circuit boards, 306
Clock distribution, 272
Clock rate, 40, 41
Closed-loop communication, 156
CMOS microprocessor, 64
Coding, software, 316
Compilers, 319
Conformal coating, 310
Connectors, 305
Construction techniques, 299
Content-addressable memory, 115
Control interface, 18
Core memory, 13
COSMAC, 64
Cost, microprocessor, 43
Cost, system, 6
Crowbar; 272
CRT controllers, 211
Cursor-oriented editors, 318
Custom enclosures, 304
CW recording, 135
Cycle stealing, 169

-D-

Darlington transistors, 231
Data acquisition system, 220
Data channel, 158
Data tablet, 297

Data transfer, 151
Debugger, 319
Decay rate, 223
Decimal arithmetic, 42
Decoder, 148
Decou piing capacitors, 271
DEC writer, 98
De facto standards, 277
Design rules, 251
Development system, 320
Device control characters, 141
Differential driver, 189
Digital-to-analog converter, 226
Digitizer, 297
Disk controller, 126
Disk drive, 101, 296
Disk power-down, 20
DMA, 42, 167
DM74S287, 120
Documentation, 251
Drawings, 252
Driver circuits, 183
Dual slope A-to-D, 224
Duplex, 175
Dynamic memory, 104, 112, 115
Dynamic ROM, 120

-E­

Echo, 156
ECL drivers, 187
ECL microprocessors, 84
ECL receivers, 194
Enclosures, 300
Edge-triggering, 145
Editors, 317
EIA standards, 277
1802, 64
8T26, 196
8T95, 196
8T96, 196
8T380, 196
8080 series, 47
8086, 77
8255, 200

Index

Electronic Data Processing (EDP), 37
EPROM, 118, 122
EROM, 118, 123
Error-correcting codes, 175

Index 337

Error detection, disks, 126 High power interface design, 228
Evaluating system requirements, 34 Hold time, register, 145
Evaluation kits, 322
Execution rate, 40 -1-
Execution time, 36
EXORciser, 93 IEEE 488 bus, 277, 287

Image sensor, 296
-F- IM6100, 69

Incandescent displays, 242
fanout, 183 Increasing performance, 35
Feedthrough, 223 Inertial navigation system, 4
F8 microprocessor, 63 Input/output unit, 100
F464 CCD, 128 inputs, open or floating, 192
FIFO, 206, 249 input transducers, 236
File management, 136 Instruction sets, 40
files, tape, 137 Integrated enclosures, 300
FLAD, 244 Intelligent terminals, 21
Floating point, 216 Interface components, 182
Float state, 185 Interface design, 250
Floppy disk, 20, 124 Interface layout, 299
Floppy disk controller, 126, 208 Interfaces, 7
Flow rate sensor, 237 Interfacing common peripherals, 295
FORTRAN, 320 Interleaved DMA, 170
4116, 115 Interpreters, 319
4027, 114 Interrecord gaps, 137
Framing error, 155, 204 Interrupt mask, 165
FSK, 135 Interrupts, 42, 160, 162
Full duplex, 175 1/0 direction conventions, 153

1/0 methods, 144
-G- 1/0 selection logic, 151

1/0 software, 166
Gate reduction, 256 IPL, 143
Glitch-free design, 256 Isolation, 18
Graphics devices, 14 ISP-8C, 94
Grounding, 268

-J-
-H-

Half duplex, 17 5
Joystick, 297

Hall-effect tape head, 131
-K-Hamming codes, 180

Handshaking, 156
K, definition, 10 Hard errors, 126

Hard-sectored disk, 125
Hierarchy control, 102 -L-
Hewlett Packard 2648A, 26
High performance microprocessors, Latch, 147

69 Layout, 299

338

Level,papertape, 140
LED, 239
LED array, 241
Light pen, 297
Line-oriented editor, 318
Line printer, 297
Liquid crystal display, 243
Load-driving capabilities, 43
Loading, MOS, 194
Long-term storage, 130
LSI-11 bus, 285
LSI-11 system, 98, 69
LSI traits, 3
LSI, using, 260
LSTTL inputs, 193

-M-

Machine tool controller, 29
Magnetic bubbles, 127
Magnetic dipoles, 131
Magnetic recording, 132
Magnetic tape, 131, 296
Magnetic tape drive, 136
Mainframe, 2
Manchester code, 135
Mass storage, 130
MCP-1600, 69
MDC, 321
MDS system, 93
Mechanical relay, 23 2
Medium-term storage, 101
Memory, 100, 106
Memory configuration, 106
Memory hierarchy, 101
Memory-mapped 1/0, 159
Memory read operation, 103
Memory size, 106
Memory speed, 106
Memory system design, 275
Microcomputer, 2
Microcontroller, 3
Microinstructions, 82
Microprocessor, 3
Microprocessor characteristics, 36
Microprogramming, 82
Midwest Scientific, 283
Minicomputer, 3

Minidisks, 127
Mixed logic families, 191
Modem, 206, 135
Modular enclosure, 302
Monitor software, 319
Monos table multi vibrator, 263
MOS drivers, 186
MOS receivers, 194
Motion sensor, 236
Motor control, 137
M68MM01A, 94
Multilayer boards, 306
Multiplexer, 148

-N-

Nineteen inch relay rack, 302
9511, 216
9900, 70
9940,69
NM6100, 69
Noise, 255
Noise margin, 187
NRZ,132
NRZI, 132
NTDS parallel standard, 14
NTSC television standard, 212

-0-

Object code, 319
Onboard regulation, 270
One-board microcomputer, 90, 94
One-shot, 263
Open collector, 183.
Open loop, 156
Operational overhead interface, 8
Optical display, 237
Optoisolator, 18, 246
OUT instruction, 152
Output-transducer, 237
Overvoltage protection, 271

-P-

Package count, 256
Page mode RAM, 115, 118

Index

ndex

Paging, 102
Paper media, 139
Paper tape, 13 9
Parallel conversion A-to-D, 226
Parallel data transfer, 151
Parallel interface, 14
Parallel port chips, 196
Parallel standards, 294
Parallel-to-serial conversion, 294
Parametron, 101
Parity, 178
Parity errors, 204
Parts layout, 310
Parts purchase, 311
PDP-11 system, 98
PerCom, 283
Performance, 35
Peripheral cost, 6
Personal computers, 19
PET bus, 277
Photocell, 244
Photodiodes, 244
Photo-electric devices, 17
Physical design, 263
Phototransistor, 246
PIA, 196
Plotter, 296
PL/M, 6, 93, 320
PL/Z, 6, 81, 93,320
Polling, 160
Power devices, 19
Power dissipatioQ,, 41
Power distribution, 267
Power lines, 270
Power transistor, 229
PPI, 200 .
Processing power, 35
Programming languages, 316
Pressure sensor, 237
Priorities, 163
Processing speed, 39
Programming cost, 4
Program memory, 100
PROM, 13, 119
PROM programming, 120
Propagation delay, 267
Prototyping boards, 322
Pseudo static memory, 105

Purpose, microprocessor, 37
PWM recording, 135

-Q-

Quantizer, 222

-R-

Rack mounting, 302
RAM features, 105
RAM organization, 10
RAM/ROM, 124
RAMTEK 6000, 23
Raster-scan bit map, 212
Read recovery time, 106
Receivers, 189
Records, tape, 136
Redundancy avoidance, 259
Reentrant software, 167
Refresh, 104
Register, 145
Register file, 262
Relays, 232
Reliability, 35
Relocatable code, 318
ROMs, 12, 118
Routing, 311
RS232-C, 14, 20, 26, 175, 290

-S-

Sample and hold, 222
Sampling, 260
Schmitt trigger, 193
SC/MP, 94
SCR, 231
Search, tape, 138
Secondsources,42
Sectors, 125
Seek error, 126
Seeking, 125
Selection, of microprocessor, 33
Self clocking, 135
Semiconductor RAM, 103
Sensory interface, 15
Serial communication standard, 290

339

340

Serial 1/0, 153
Serial interface chips, 200
Serial-to-parallel conversion, 295
Servo amplifier, 234
Servo A-to-D, 224
Servomechanisms, 238
Setup time, 145
74125 driver, 185
74S287, 120
Single-memory machine, 100
6500 series, 59
6800series, 10,28, 56,59
6809,69,74
6821, 197
6843, 210
6845,215
6860,206
68000,69
68047, 214
Smoke detectors, 237
Smoke Signal Broadcasting, 283
Sockets, 309
Soft error, 126
Software, 314
Software definition, 315
Software support, 43
Software tools, 317
Soft-sectored disks, 125
Solenoids, 238
Soldering, 309
Solder mask, 310
Solid state relay, 233
S 100 bus, 278, 93
Source code, 318
Specification sheets, 265
Speech synthesis, 297
Start bits, 155
State reduction, 257
Static memory, 104
Statistical mix, 266
Stepping motor, 238
Stop bits, 155
String-oriented editor, 317
Successive approximation A-to-D, 224
Surplus parts, 312
SWTP 6800 system, 20, 277
Synchronous communication, 154
Synchronous communication chips, 206
Synchronous design, 254
System, 29, 84

-T-

Tarbell tape format, 36
TBM 0103, 127
Television, 212
Temperature-compensated ECL, 189
10000 ECL, 84
Terminals, 21, 296
Testing parts, 312
3850, 63
Thyristors, 231
Timing margins, 260

Index

Time-sharing software development, 322
TMS-1000, 44
TMS-9900, 69
Totem pole output, 185
Tracks, disk, 125
Transducers, 236
Transmission line effects, 274
Transistors, 229
Tri-Safe programming, 120
Tristate, 185
Tristate receivers, 193
TRS-80 bus, 277, i89
TRW MPY-16 AJ, 217
TTL drivers, 183
TTL inputs, 192
TTL'microprocessors, 80
TTL receivers, 189
TV typewriter, 21
io rna current loop, 292
2101, 108
2102, 107
2107, 112
2704, 122
2708, 122
2716, 122
2812 FIFO, 249
2900 series, 80

-U-

UART, 34, 155, 202
UNIBUS, 277
Unit load, 190
Unused inputs, 273
UPD372, 211
User interaction interfaces, 13
USRT, 156, 206

ndex

-V-

VFET switch, 233
Virtual memory, 102
VLSI, 90
VMOS ROM, 124
Voice coil movement, 125
Volitile ROM, 120
Voltage regulator, 270
VROMs, 118, 124

-W-

Wait loops, 14
Wiring methods, 307
Wire wrap, 307
Word width, 38
Working store, 101

-Z­

Z-80, 24, 53
Z8000, 68, 81

341

